WO2006009218A1 - 2安定抵抗値取得装置及びその製造方法並びに金属酸化物薄膜及びその製造方法 - Google Patents

2安定抵抗値取得装置及びその製造方法並びに金属酸化物薄膜及びその製造方法 Download PDF

Info

Publication number
WO2006009218A1
WO2006009218A1 PCT/JP2005/013413 JP2005013413W WO2006009218A1 WO 2006009218 A1 WO2006009218 A1 WO 2006009218A1 JP 2005013413 W JP2005013413 W JP 2005013413W WO 2006009218 A1 WO2006009218 A1 WO 2006009218A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resistance value
metal
voltage
metal oxide
Prior art date
Application number
PCT/JP2005/013413
Other languages
English (en)
French (fr)
Inventor
Yoshito Jin
Hideaki Sakai
Masaru Shimada
Original Assignee
Nippon Telegraph And Telephone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph And Telephone Corporation filed Critical Nippon Telegraph And Telephone Corporation
Priority to CNA2005800011575A priority Critical patent/CN1860609A/zh
Priority to EP05766330A priority patent/EP1770778B1/en
Priority to KR1020087025627A priority patent/KR100932477B1/ko
Priority to JP2006524553A priority patent/JP4559425B2/ja
Priority to US10/566,522 priority patent/US7696502B2/en
Publication of WO2006009218A1 publication Critical patent/WO2006009218A1/ja
Priority to US12/712,024 priority patent/US7875872B2/en
Priority to US12/954,316 priority patent/US8088644B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/101Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including resistors or capacitors only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/354Introduction of auxiliary energy into the plasma
    • C23C14/357Microwaves, e.g. electron cyclotron resonance enhanced sputtering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/82Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays the switching components having a common active material layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/253Multistable switching devices, e.g. memristors having three or more electrodes, e.g. transistor-like devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8836Complex metal oxides, e.g. perovskites, spinels

Definitions

  • the present invention relates to a bistable resistance value acquisition device, a manufacturing method thereof, a metal oxide thin film, and a manufacturing method thereof.
  • DRAM dynamic random access memory
  • a unit memory element (hereinafter referred to as a memory cell) of DRAM consists of one storage capacitor and one MOSFET (Metal Oxide-Semiconductor Field Effect Transistor), and is stored in the storage capacitor of the selected memory cell.
  • MOSFET Metal Oxide-Semiconductor Field Effect Transistor
  • the stored data is read out (Simon 'G', “Fujitas” Ob'Semiconductor ⁇ ⁇ Devices ", 1981, (SMSze,” Physics of Semiconductor Devices “, John Wiley and Sons. Inc.), Fujio Tsujioka, Applied Physics, 73, No. 9, p. 1166 , 2004;).
  • DRAM is a volatile memory element.
  • DRAM requires a refresh operation for rewriting data, which has the disadvantage of reducing the operation speed.
  • Non-volatile memory is a function that does not volatilize even when the power is turned off. Ead only Memory) is well known. It is impossible to delete or change the recorded data.
  • a flash memory using EEPROM Electrically erasable programmable read only memory
  • Flash memory is used in many fields as a practical non-volatile memory.
  • a memory cell of a typical flash memory has a stack gate structure having a plurality of layer forces including a gate electrode force control gate electrode and a floating gate electrode of a MOSFET.
  • data can be recorded by utilizing the fact that the threshold value of the MOSFET changes depending on the amount of charge accumulated in the floating gate.
  • Data writing in the flash memory is performed by hot carriers generated by applying a high voltage to the drain region overcoming the energy barrier of the gate insulating film.
  • electric charges generally electrons
  • Writing is performed.
  • Data is erased by extracting charges from the floating gate by applying a high electric field in the opposite direction to the gate insulating film.
  • Flash memory does not require a refresh operation like DRAM, but it uses the FN tunnel phenomenon, so it takes longer to write and erase data than DRAM. There's a problem. Furthermore, if data writing and erasing are repeated, the gate insulating film deteriorates, and there is a problem that the number of times of rewriting is limited to some extent.
  • FeRAM Feroelectric RAM
  • MRAM Magneticoresist RAM
  • Ferroelectrics include oxide ferroelectrics (also called ferroelectric ceramics) and polyvinyl fluoride.
  • Polymer ferroelectrics such as bisidene (PVDF), fluoride inducement such as BaMgF
  • polarization reversal occurs due to the rotation of individual molecular chains whose main process is the conformation (bonding form) change of the molecular chains that are long bonded by covalent bonds.
  • Oxide ferroelectrics include perovskite structures such as BaTiO and PbTiO, Liov
  • Pseudo-ilmenite structures such as NbO and LiTaO, PbNb O and Ba NaNb
  • Tungsten bronze (TB) structure such as O, SrBi Ta O, Bi Ti
  • BLSF Bismuth layer-structure ferroelectric
  • Polymeric ferroelectrics include polyvinylidene fluoride (PVDF), and vinylidene fluoride (PDV) and trifluoroethylene copolymer P (VDF / TrEF). Made by polymerization reaction.
  • PVDF polyvinylidene fluoride
  • PDV vinylidene fluoride
  • TrEF trifluoroethylene copolymer P
  • oxide ferroelectrics are mainly used for FeRAM.
  • Pb (Zr, Ti) 0 (among the ferroelectrics having a perovskite structure (hereinafter referred to as perovskite type ferroelectrics) is often used among the oxide ferroelectrics. PZT)
  • Lead-based ferroelectric 3
  • lead-containing materials and lead oxides are materials regulated by the Occupational Safety and Health Act, and there are concerns about their impact on the ecology and an increase in environmental impact. For this reason, in Europe and the United States, it is becoming a subject of regulation in terms of ecological knowledge and pollution prevention.
  • FeRAM which is expected to replace flash memory, is mainly classified into stack type and FET type.
  • the stack type is also called 1-transistor 1-capacitor FeRAM.
  • This structure has a stack-type capacitor as shown in Fig. 127, and a planar-type capacitor. Some have a three-dimensional capacitor.
  • the stack type includes a 1-transistor 1-capacitor FeRAM and a 2-transistor 2-capacitor FeRAM in which two are stacked for stable operation.
  • a stack type FeRAM shown in FIG. 127 includes a MOS transistor including a gate electrode 12705 provided on a semiconductor substrate 12701 via a source 12702, a drain 12703, and a gate insulating film 12704.
  • the source of the MOS transistor A capacitor consisting of a lower electrode 12711, a dielectric layer 12712 made of a ferroelectric material, and an upper electrode 12713 is connected to 12702.
  • the capacitor is connected to the source 12702 by the source electrode 12706.
  • a drain electrode 12707 is connected to the drain 12703, and an ammeter is connected to the drain 12703.
  • FET type FeRAM is expected as the next generation FeRAM.
  • FET type FeRAM is also called 1-transistor type FeRAM. From this structure, MFS (Meta ferroelectric-semiconductor) type FeRAM, MOSFET in which a ferroelectric film is placed instead of the gate electrode of the MOSFET and the gate insulating film in the channel region.
  • MFS Metal ferroelectric-semiconductor
  • MFMIS iMetaHferroelectric-metaHnsula tor-semiconductor type FeRAM with a ferroelectric film on top of the gate electrode, and a MFIS with a ferroelectric film placed between the gate electrode and gate insulating film of the MOSFET as shown in Figure 128 (Metal-ferroelectric-insulator-semiconductor)
  • FeRAM FeRAM
  • FIG. 128 [shown by MFIS] on the semiconductor substrate 12801 [the source 12802, the drain 128 03 is provided on the gate insulating film 12804 disposed between the source and the drain, the ferroelectric material A dielectric layer 12805 is provided, and a gate electrode 12806 is provided on the dielectric layer 12805.
  • a source voltage is applied to the source 12802 through a source electrode 12807, and an ammeter is connected to the drain 12803 through a drain electrode 12808.
  • FeRAMs are obtained by applying ferroelectric polarization to the operation of the MOSFET.
  • the channel 12821 is formed on the semiconductor surface immediately below the gate insulating film 12804, and the formation is performed. It has a function to create a state of not being performed, read the current value between the source and drain at this time, and take it out as “on” or “off” of the electrical digital signal.
  • FET type FeRAM is expected to operate at high speed because non-destructive readout is possible because the amount of polarization of the ferroelectric material does not change even when data is read out from the principle of operation.
  • the area occupied by one transistor and one capacitor type FeRAM can be reduced, it has the advantage of being highly integrated.
  • MFIS type FeRAM Fig. 128 of the one-transistor type FeR AM (Fig. 128)
  • Fig. 128 there is a gate insulating film between the ferroelectric film and the semiconductor, so the polarization amount of the ferroelectric substance is canceled out. Such a depolarizing electric field is generated.
  • MFS type FeRAM does not require an insulating film on a semiconductor, and therefore, in principle, a decrease in polarization due to a depolarizing electric field can be avoided.
  • the ferroelectric film formation method such as the sol-gel method MOCVD method requires a high film formation temperature, so that the surface of the semiconductor such as Si may be oxidized or denatured, and the oxide film is formed at the interface. And many defects are formed.
  • an oxide film interfacial oxide film
  • a depolarizing electric field is generated as in the case of the MFIS type FeRAM.
  • the high-frequency sputtering method (rf-sputtering, RF sputtering method is also called magnetron sputtering method), ECR ⁇ tta method (Electron cyclotron resonance sputtering).
  • the sol-gel method is the CSD method called the MOD method.
  • the CSD method is a method in which a ferroelectric substrate is dissolved in an organic solvent, and this film is applied to the substrate and repeatedly sintered to form a film.
  • the ferroelectric film is formed in a simple and relatively large area. It is a feature that can be done.
  • the CSD method is capable of forming a ferroelectric film with any composition by controlling the composition of the solution to be applied, and many research institutions have reported it.
  • the CSD method requires that the temperature for sintering be higher than the Curie temperature of the ferroelectric film, so that if the temperature and atmosphere are poorly controlled, a film with good characteristics can be obtained. I have a problem that I cannot get it at all.
  • the PLD method that can form a ferroelectric film with good film quality by sputtering a target of a ferroelectric material with a powerful laser light source such as an excimer laser is attracting attention.
  • the area of the portion irradiated with the laser in the target surface has a large distribution in the raw material sputtered and supplied from a very small irradiation surface.
  • the PLD method has a large in-plane distribution in the film thickness of the ferroelectric material formed on the substrate, and the reproducibility, such as completely different characteristics even when formed under the same conditions. There is a big problem with.
  • this characteristic is suitable for examining the conditions in detail, and a combinatorial method is attracting attention as a method for examining the film forming characteristic by utilizing this characteristic.
  • it is essential for industrial viewpoints to be able to form large areas with good reproducibility, and the current PLD method is difficult to use industrially.
  • a sputtering method is used as a method for forming a ferroelectric film.
  • Sputtering is one of the promising methods for film deposition because of its high degree of danger and relatively good surface roughness (surface morphology) of the deposited film without using gas or toxic gas. ing.
  • oxygen gas and nitrogen gas are supplied, and reactivity to prevent oxygen and nitrogen from being lost in the film A sputter system is promising.
  • a target compound (sintered body) target is used when depositing an oxide ferroelectric.
  • argon as an inert gas
  • oxygen as a reactive gas
  • oxygen in the ferroelectric film formed on the substrate is not sufficiently taken in.
  • the conventional sputtering method has an additional step called annealing.
  • annealing There is a problem that the manufacturing process becomes complicated. Also, in this annealing process, it was necessary to strictly manage conditions such as temperature in order to control so as to obtain a certain film quality. Depending on the material of the film to be formed, annealing may not be performed.
  • plasma is generated by electron cyclotron resonance (ECR), and the substrate is irradiated with a plasma flow created by using the divergent magnetic field of the plasma.
  • ECR electron cyclotron resonance
  • a stable plasma cannot be obtained unless the gas pressure is about 0.1 lPa or higher, whereas in the ECR sputtering method, a stable ECR plasma can be obtained at a pressure of the order of 0. OlPa. have.
  • the ECR sputtering method performs sputtering by applying particles generated by ECR to a target by high frequency or negative DC high voltage, sputtering can be performed at a low pressure.
  • the substrate is irradiated with an ECR plasma flow and sputtered particles.
  • the ions in the ECR plasma flow have an energy of 1 OeV to several 1 OeV due to the divergent magnetic field.
  • the ions in the ECR plasma flow give energy to the raw material particles sputtered and flying on the substrate, and promote the binding reaction between the raw material particles and oxygen, improving the film quality of the deposited film.
  • the ECR ⁇ patch method is characterized in that a high-quality film can be formed at a low substrate temperature.
  • the EC putter method is suitable for forming an extremely thin film such as a gate insulating film with a well-controlled film thickness because the film deposition rate is relatively stable.
  • the surface morphology of films deposited by the ECR ⁇ Pattern method is flat on the order of atomic scale. Therefore, the ECR sputtering method uses a high dielectric constant gate insulating film. It can be said that this is a promising method for the formation of the ferroelectric film and the metal electrode film necessary for FeRAM as described above.
  • JP-A-10-152397 JP-A-10-152398, “Matsuoka et al., J. Appl. Phys., 76 (3), 1768, (1994).”, A strong material containing barium or strontium is disclosed. It reports on the production of dielectrics.
  • “Watazu et al.,“ Powder and Powder Metallurgy ”, 44, 86, 1997” reports on the production of Ba NaNi 2 O.
  • the memory is not realized by the effect of changing the state of the semiconductor (forming a channel) by the amount of polarization of the ferroelectric, as shown in FIG.
  • a technique has been proposed in which the resistance value of the ferroelectric layer 12902 formed directly on the upper portion of the semiconductor substrate 12901 is changed, and as a result, a memory function is realized (see Japanese Patent Laid-Open No. 7-263646).
  • the resistance value of the ferroelectric layer 12902 is controlled by applying a voltage between the electrode 12903 and the electrode 12904.
  • the structure proposed in Patent Document 6 shown in FIG. 129 has a structure in which a ferroelectric layer is provided on a semiconductor, just like the above-described MFS type FeRAM gate electrode. It is. Therefore, in the device shown in FIG. 129, it is difficult to form a high-quality ferroelectric layer on the semiconductor, which is the biggest problem in the manufacturing process of MFS type FeRAM. A semiconductor oxide is formed in the meantime, and the generation of a depolarizing electric field and the generation of many defects greatly affect the characteristics, and it is expected that long-term data retention is impossible. In fact, in the element shown in FIG. 129, only a holding time of about 2 minutes is achieved, and rewriting of data is forced in about 1 minute.
  • Patent Document 6 states that a semiconductor substrate 12901 that is preferred is a material with a small number of carriers related to electrical conduction. However, since the carrier trap phenomenon of interface defects is used, if the number of traps to be captured increases, the data retention time is shortened due to the leakage current accompanying the increase in traps.
  • the ferroelectric layer 12902 is formed on the semiconductor substrate 12901 without an interface and the leakage current is reduced, carrier capture does not occur and the memory effect is lost. Due to these contradictions, the element shown in FIG. 129 is not suitable in principle for long-term memory retention.
  • the present invention has been made in order to solve the above-described problems, and a stable operation using a metal oxide such as a memory device capable of storing and holding data more stably can be configured.
  • An object of the present invention is to provide an element capable of obtaining the above.
  • a two-stable resistance value acquiring apparatus is a first metal oxide having a predetermined thickness formed on a substrate and comprising a metal oxide force including at least two metals.
  • a first electrode formed on one surface of the first metal oxide layer, and a second electrode formed on the other surface of the first metal oxide layer. .
  • the second stable resistance value acquisition apparatus may include a third electrode formed on the other surface of the first metal oxide layer so as to be separated from the second electrode.
  • a three-terminal element can be constituted by the gate electrode that is the first electrode cap, the source electrode that also has the second electrode force, and the drain electrode that also has the third electrode force.
  • a second metal oxide layer having a predetermined thickness formed on the substrate and made of a metal oxide, and the second metal oxide layer are provided.
  • the first electrode, the first metal oxide layer, the second metal oxide layer, and the fourth electrode may be connected in series in this order.
  • the bistable resistance value acquiring apparatus may include an insulating layer formed in contact with at least one of the one surface and the other surface of the first metal oxide layer. Further, the second metal oxide layer is formed in contact with at least one surface of the one surface and the other surface. An insulating layer may be provided. In the above-described two stable resistance value acquisition apparatus, the first amorphous amorphous layer formed on the substrate and the crystalline conductive material formed on the amorphous layer.
  • a plurality of elements comprising an electrode, a first metal oxide layer formed on the first electrode, and a second electrode formed on the first metal oxide layer; And at least a separation layer formed on the amorphous layer between the layers and having a metal oxide strength, and a plurality of elements may be separated by the separation layer.
  • the first metal oxide layer and the separation layer may be integrally formed.
  • the metal oxide has a resistance value changed by an electric signal applied between the first electrode and the second electrode.
  • a metal oxide enters a first state having a first resistance value when a voltage equal to or higher than a first voltage value is applied, and differs from a first resistance value when a voltage equal to or lower than a second voltage value having a polarity different from that of the first voltage is applied.
  • the second state with the second resistance value is entered.
  • a metal oxide enters a first state having a first resistance value when a voltage exceeding a first voltage value is applied, and a first resistance is applied when a voltage exceeding a second voltage value within a range not exceeding the first voltage is applied.
  • the second state has a second resistance value higher than the value.
  • the metal oxide comprises a base layer composed of at least a first metal and oxygen, a first metal, a second metal, and oxygen, and is contained in the base layer. And at least a plurality of fine particles dispersed therein.
  • the base layer may be composed of the first metal, the second metal, and oxygen, and the composition ratio of the second metal may be smaller than the stoichiometric composition.
  • the base layer may include a first metal, a second metal, and oxygen columnar crystals.
  • the metal oxide is disposed in contact with the base layer, and includes a metal oxide single layer that is composed of at least a first metal and oxygen and is at least one of a columnar crystal and an amorphous material.
  • the metal oxide single layer has a small composition ratio of the second metal compared to the stoichiometric composition of the first metal, the second metal, and oxygen.
  • the metal oxide single layer does not contain fine particles.
  • the first metal is titanium
  • the second metal is bismuth
  • the base layer should be in an amorphous state consisting of a layer containing excess titanium compared to the stoichiometric yarn.
  • the metal oxide may be a ferroelectric.
  • the first electrode may be composed of at least one of ruthenium and platinum, and may be at least one of a single layer structure made of the same material and a laminated structure made of a plurality of materials.
  • the substrate may also be constructed of a conductive material force. Further, the first electrode and the substrate may be the same.
  • a method for manufacturing a two-stable resistance value acquiring apparatus includes a first oxide having a predetermined thickness formed of a metal oxide formed on a substrate and containing at least two metals. At least a metal oxide layer, a first electrode formed on one surface of the first metal oxide layer, and a second electrode formed on the other surface of the first metal oxide layer.
  • a method for manufacturing a stable resistance value acquisition device wherein a first plasma composed of an inert gas and an oxygen gas supplied at a predetermined composition ratio is generated, and is composed of at least a first metal and a second metal.
  • the target metal is deposited from the first metal, the second metal, and oxygen.
  • the first plasma is an electron cyclotron resonance plasma that is generated by electron cyclotron resonance and given kinetic energy by a divergent magnetic field, and the substrate is heated to a predetermined temperature. .
  • the surface of the layer made of the metal oxide is irradiated with the second plasma made of the inert gas and the reactive gas supplied at a predetermined composition ratio.
  • the second step may be any electron cyclotron resonance plasma that is generated by electron cyclotron resonance and given kinetic energy by a divergent magnetic field.
  • the reactive gas may be oxygen gas.
  • the substrate is preferably heated to a temperature below the Curie point temperature of the metal oxide. Further, a voltage for controlling ion energy generated by plasma may be applied to the substrate.
  • the first metal may be titanium and the second metal may be bismuth.
  • the target may be any one that is composed of at least a first metal, a second metal, and oxygen.
  • the metal oxide thin film according to the present invention includes a base layer composed of at least a first metal and an oxygen force, a first metal, a second metal, and oxygen, and is dispersed in the base layer. And a plurality of microcrystalline grains (for example, microcrystals of stoichiometric composition).
  • the method for producing a metal oxide thin film according to the present invention generates a first plasma composed of an inert gas and an oxygen gas supplied at a predetermined composition ratio, and the first metal and the second metal By applying a negative vice to the target composed of the particles and causing the particles generated from the first plasma to collide with the target to cause a sputtering phenomenon, and depositing the material constituting the target on the substrate, at least the first Forming a metal oxide thin film on a substrate, comprising at least a base layer composed of a metal and oxygen, and a plurality of fine particles dispersed in the base layer, the first metal, a second metal, and oxygen
  • the first plasma is an electron cyclotron resonance plasma generated by electron cyclotron resonance and given kinetic energy by a divergent magnetic field, and the substrate is heated to a predetermined temperature. It is something to be made into a state.
  • the first metal is titanium and the second metal is bismuth.
  • the first electrode is formed on one surface of the first metal oxide layer having a predetermined thickness and having a metal oxide force including at least two metals. Stable operation using metal oxides, such as a memory device that can hold and store memory more stably. An excellent effect can be obtained when an element capable of obtaining the above can be provided.
  • FIG. 1A is a cross-sectional view showing a configuration example of a bistable resistance value acquiring apparatus (ferroelectric element) in an embodiment of the present invention.
  • FIG. 1B is a cross-sectional view showing a portion of the element shown in FIG. 1A.
  • FIG. 2 is a characteristic diagram showing current-voltage characteristics of the element shown in FIG. 1A.
  • FIG. 3 is a characteristic diagram showing data retention in the element shown in FIG. 1A.
  • FIGS. 4A-4D are process diagrams illustrating an example of a method of manufacturing the element shown in FIG. 1A.
  • FIG. 5 is a schematic cross-sectional view showing a schematic configuration example of an ECR sputtering apparatus.
  • Fig. 6 shows the flow of oxygen introduced when Bi Ti O was deposited using ECR sputtering.
  • FIGS. 7A-7d are cross-sectional views of a thin film fabricated as a structural example of the ferroelectric layer 104.
  • FIG. Fig. 7A, Fig. 7B, Fig. 7C, and Fig. 7D are micrographs, and Fig. 7a, Fig. 7b, Fig. 7c, and Fig. 7d schematically show the respective states. It is a schematic diagram.
  • FIG. 8 shows changes in deposition rate and refractive index with respect to substrate temperature conditions during film formation.
  • FIG. 9 is a schematic cross-sectional view showing another configuration example of the ferroelectric layer 104.
  • FIGS. 10A, 10B, 10C, and 10D are schematic cross-sectional views showing configuration examples of other ferroelectric elements according to the embodiment of the present invention.
  • FIG. 11A, FIG. 11B, FIG. 11C, FIG. 11D, and FIG. 11E are schematic cross-sectional views showing configuration examples of other ferroelectric elements according to the present embodiment.
  • FIGS. 12A, 12B, 12C, and 12D are schematic cross-sectional views showing examples of the configuration of another ferroelectric element according to the present embodiment.
  • FIG. 13 is a schematic cross-sectional view showing a configuration example of another ferroelectric element according to the present embodiment.
  • FIG. 14 is a schematic cross-sectional view showing a configuration example of another ferroelectric element according to the present embodiment.
  • FIG. 15 flows when a predetermined current is applied to the ferroelectric layer 104 of the element shown in FIG. 1 and then a constant current flows and then a voltage of +0.5 V is applied. It is a characteristic diagram showing the result of observing the current value.
  • FIG. 16 is a timing chart showing an operation example in which the element shown in FIG. 1 is driven by a pulse voltage.
  • FIG. 17 is a characteristic diagram showing a change in current value by the drive control shown in FIG.
  • FIG. 18 is an explanatory diagram for explaining the multi-value operation of the element shown in FIG. 1.
  • FIG. 19 is an explanatory diagram for explaining the multi-value operation of the element shown in FIG. 1.
  • FIG. 20 is an explanatory diagram for explaining the multi-value operation of the element shown in FIG. 1.
  • FIG. 21 is a characteristic diagram showing current-voltage characteristics when electrodes are made of other metal materials.
  • FIG. 22 is a graph showing current-voltage characteristics when electrodes are composed of other metal materials.
  • FIG. 23 is a characteristic diagram showing current-voltage characteristics when an electrode is made of another metal material.
  • FIG. 24 is a characteristic diagram showing data retention when an electrode is formed from another metal material cover.
  • FIG. 25A-25B are characteristic diagrams showing general current-voltage characteristics of a strong dielectric (thin film) made of an oxide composed of two or more metals.
  • FIG. 26 is a characteristic diagram showing a process of dielectric breakdown (breakdown).
  • FIG. 27 is a characteristic diagram showing the voltage-current characteristics of the ferroelectric layer 104 having a predetermined thickness or more.
  • FIG. 28 is an explanatory diagram for explaining a state in which EO treatment is performed by irradiating a plurality of elements with ECR plasma.
  • FIG. 29 is an explanatory diagram showing a change in resistance value of a device when a voltage of +1 V is applied in a device that smoothly transitions to a low resistance state at +1.6 V.
  • FIG. 30 is an explanatory diagram showing the change over time of the resistance value of the element when a constant voltage (eg, 1.2 V) is applied between the upper electrode and the lower electrode layer.
  • a constant voltage eg, 1.2 V
  • FIG. 31 is a cross-sectional view schematically showing a configuration example of another element in the embodiment of the present invention.
  • FIGS. 32A-32E are process diagrams showing an example of a method for manufacturing the element shown in FIG.
  • FIG. 33 is a characteristic diagram showing a state of change in current density when a voltage is applied between lower electrode layer 3103 and upper electrode 3106 of the element shown in FIG.
  • FIG. 34 is an explanatory diagram for explaining a time for which data is held in the element shown in FIG. 31.
  • FIGS. 35A-35D are cross-sectional views schematically showing configuration examples of other elements in the embodiment of the present invention.
  • FIG. 36 is a cross-sectional view schematically showing a configuration example of another element in the embodiment of the present invention.
  • FIG. 37 is a cross-sectional view schematically showing a configuration example of another element in the embodiment of the present invention.
  • FIGS. 38A-38C are cross-sectional views schematically showing configuration examples of other elements in the embodiment of the present invention.
  • FIG. 39 is a characteristic diagram showing the relationship between the material constituting the insulating layer 3105 on the ferroelectric layer 3104, the film thickness, and the current density.
  • FIGS. 40A, 40B, 40C, 40D, and 40E are cross-sectional views schematically showing configuration examples of other elements in the embodiment of the present invention.
  • FIG. 41 is a characteristic diagram showing the relationship between the current value flowing between the lower electrode layer 3103 and the upper electrode 3106 and the current measured when a voltage for current detection is applied between the electrodes. is there
  • FIG. 42 is a timing chart showing an operation example in which the element shown in FIG. 31 is driven by a pulse voltage.
  • FIG. 43 is a characteristic diagram showing a change in current value by the drive control shown in FIG. 42.
  • FIGS. 44A-44B are explanatory diagrams illustrating the case where the element shown in FIG. 31 is used as a switch element for controlling current.
  • FIG. 45 is a timing chart showing a control sequence when the element shown in FIG. 31 is used as a switch element for controlling current.
  • FIG. 46 is an explanatory diagram for explaining the multi-value operation of the element shown in FIG. 31.
  • FIG. 47 is a sectional view schematically showing a configuration example of another element in the embodiment of the present invention.
  • FIG. 48A, FIG. 48B, FIG. 48C, FIG. 48D, and FIG. 48E are process diagrams showing an example of a method for manufacturing an element in the embodiment of the present invention.
  • FIG. 49 is a characteristic diagram showing a state of current change when a voltage is applied between lower electrode layer 4703 and upper electrode 4706 of the element shown in FIG. 47.
  • FIGS. 50A-50D are cross-sectional views schematically showing configuration examples of other elements in the embodiment of the present invention.
  • FIG. 51 is a cross-sectional view schematically showing a configuration example of another element in the embodiment of the present invention.
  • FIG. 52 is a cross-sectional view schematically showing a configuration example of another element in the embodiment of the present invention.
  • FIGS. 53A-53C are cross-sectional views schematically showing configuration examples of other elements in the embodiment of the present invention.
  • FIG. 54A, FIG. 54B, FIG. 54C, FIG. 54D, and FIG. 54E are cross-sectional views schematically showing configuration examples of other elements in the embodiment of the present invention.
  • FIG. 55 is a cross-sectional view schematically showing a configuration example of another element in the embodiment of the present invention.
  • FIG. 56 is a cross-sectional view schematically showing a result of observing a cross-sectional state of a metal oxide layer containing bismuth and titanium formed on a silicon substrate with a transmission electron microscope. .
  • FIG. 57 is a photomicrograph showing the result of observation by a transmission electron microscope of a cross-sectional state of a metal oxide layer containing bismuth and titanium formed on a ruthenium electrode layer.
  • FIG. 58 is a cross-sectional view schematically showing a result of observing a cross-sectional state of a metal oxide layer containing bismuth and titanium formed on a ruthenium electrode layer with a transmission electron microscope.
  • FIG. 59 is a characteristic diagram showing electrical characteristics in an insulating layer having a multilayer structure.
  • FIG. 60 includes bismuth and titanium formed on an insulating layer in which a tantalum pentoxide layer, a silicon dioxide layer, and a tantalum pentoxide layer are stacked in this order on a ruthenium electrode layer. It is a microscope picture which shows the result of having observed the cross-sectional state of the metal oxide layer with the transmission electron microscope.
  • FIG. 61 includes bismuth and titanium formed on an insulating layer in which a tantalum pentoxide layer, a silicon dioxide layer, and a tantalum pentoxide layer are stacked in this order on a ruthenium electrode layer.
  • FIG. 6 is a cross-sectional view schematically showing a result of observing a cross-sectional state of a metal oxide layer with a transmission electron microscope.
  • FIG. 62 is a cross sectional view schematically showing a configuration example of an element using a metal oxide layer in an embodiment of the present invention.
  • FIGS. 63A-63F are process diagrams showing an example of a method for manufacturing the functional element shown in FIG.
  • FIG. 64 is a characteristic diagram showing a state of current change when a voltage is applied between the lower electrode layer 6203 and the upper electrode 6207 of the element shown in FIG. 62.
  • FIG. 65A and FIG. 65B are cross-sectional views schematically showing configuration examples of other elements in the embodiment of the present invention.
  • FIGS. 66A-66B are cross-sectional views schematically showing configuration examples of other elements in the embodiment of the present invention.
  • FIGS. 67A-67B are cross-sectional views schematically showing configuration examples of other elements in the embodiment of the present invention.
  • FIG. 68 is a sectional view schematically showing a configuration example of another element in the embodiment of the present invention.
  • FIGS. 69A-69E are cross-sectional views schematically showing configuration examples of other elements in the embodiment of the present invention.
  • FIG. 70 is a cross-sectional view schematically showing a configuration example of another element in the embodiment of the present invention.
  • FIG. 71 is an explanatory diagram for explaining a multi-valued operation of the element shown in FIG. 62.
  • FIG. 71 is an explanatory diagram for explaining a multi-valued operation of the element shown in FIG. 62.
  • FIG. 72 is a characteristic diagram showing another current-voltage characteristic of the element shown in FIG. 1A.
  • FIG. 73 is a photomicrograph showing the result of observation with a transmission electron microscope of a cross section of a thin film fabricated as a structural example of the ferroelectric layer 104.
  • FIG. 74 is a characteristic diagram showing another current-voltage characteristic of the element shown in FIG. 1A.
  • FIG. 75 is a characteristic diagram showing another current-voltage characteristic of the element shown in FIG. 31.
  • FIG. 76 is a characteristic diagram showing data retention in the element having the current-voltage characteristic shown in FIG. 75.
  • FIG. 77 is a characteristic diagram showing another current-voltage characteristic of the element shown in FIG. 1A.
  • FIG. 78 is an explanatory diagram for explaining a low resistance state.
  • FIG. 79 is an explanatory diagram for explaining a low resistance state.
  • FIG. 80 is an explanatory diagram for explaining a high resistance state.
  • FIG. 81 is an explanatory diagram for explaining a high resistance state.
  • FIG. 82 is an explanatory diagram for explaining a low resistance state.
  • FIG. 83 is an explanatory diagram for explaining a low resistance state.
  • FIG. 84 is a characteristic diagram showing another current-voltage characteristic of the element shown in FIG. 1A.
  • FIG. 85 is a characteristic diagram showing another current-voltage characteristic of the element shown in FIG. 1A in pulse drive.
  • FIGS. 86A to 86C are a schematic cross-sectional view and a characteristic diagram schematically showing a configuration example of the three-terminal element in the embodiment of the present invention.
  • FIG. 87 is a characteristic diagram showing a change in current flowing between the source electrode 8605 and the drain electrode 8606 when different gate voltages are applied by the gate electrode 8603.
  • FIG. 88 is an explanatory diagram showing changes in ON and OFF states depending on the gate voltage.
  • Figure 89 shows the state of the current that flows when the read voltage applied between the source and drain is increased to 0V force 0.2V after + IV is applied as the gate voltage to turn it off.
  • FIGS. 90A-90D are process diagrams for explaining an example of a method of manufacturing the three-terminal element shown in FIGS. 86A and 86B.
  • FIG. 91 is a schematic cross-sectional view schematically showing a configuration example of another three-terminal element in the embodiment of the present invention.
  • FIGS. 92A-92B are schematic cross-sectional views schematically showing a configuration example of another three-terminal element in the embodiment of the present invention.
  • FIGS. 93A-93B are schematic cross-sectional views schematically showing a configuration example of another three-terminal element in the embodiment of the present invention.
  • FIG. 94 is a characteristic diagram showing current-voltage characteristics in the metal oxide layer 8604 when a DC gate voltage is applied to the gate electrode 8603.
  • FIG. 95 is an explanatory diagram for explaining a state of a predetermined pulse voltage having a predetermined pulse width applied to the three-terminal element shown in FIGS. 86A and 86B.
  • FIG. 96 is a characteristic diagram showing changes in the current value read from between the source and the drain each time a predetermined pulse voltage having a predetermined pulse width is applied a predetermined number of times.
  • FIGS. 97A-97B are schematic cross-sectional views schematically showing a configuration example of the three-terminal element in the embodiment of the present invention.
  • FIGS. 98A-98E are process diagrams for explaining an example of a method of manufacturing the three-terminal element shown in FIGS. 97A and 97B.
  • FIG. 99 is a schematic cross-sectional view schematically showing a configuration example of another three-terminal element in the embodiment of the present invention.
  • FIGS. 100A and 100B are schematic cross-sectional views schematically showing a configuration example of another three-terminal element in the embodiment of the present invention.
  • FIG. 101 is a timing chart showing an operation example in which the three-terminal element shown in FIGS. 97A and 97B is driven by a pulse voltage.
  • FIGS. 102A-102B are schematic cross-sectional views schematically showing a configuration example of the three-terminal element in the embodiment of the present invention.
  • 103A-103E are process diagrams for explaining an example of a method for manufacturing the three-terminal element shown in FIGS. 102A and 102B.
  • FIG. 104 is a schematic cross-sectional view schematically showing a configuration example of another three-terminal element in the embodiment of the present invention.
  • FIGS. 105A-105B are schematic cross-sectional views schematically showing a configuration example of another three-terminal element in the embodiment of the present invention.
  • FIGS. 106A and 106B are schematic cross-sectional views schematically showing a configuration example of another three-terminal element in the embodiment of the present invention.
  • FIGS. 107A-107F are process diagrams illustrating an example of a method for manufacturing the three-terminal element shown in FIGS. 106A and 106B.
  • FIG. 108 is a schematic configuration example of another three-terminal element in the embodiment of the present invention. It is a typical sectional view shown.
  • FIGS. 109A and 109B are schematic cross-sectional views schematically showing a configuration example of another three-terminal element in the embodiment of the present invention.
  • FIG. 110 is a schematic cross sectional view schematically showing a configuration example of the memory element in the embodiment of the present invention.
  • FIG. 111 is a timing chart showing read and write operations.
  • FIGS. 112A-112F are process diagrams for explaining an example of a method of manufacturing the memory element shown in FIG.
  • FIGS. 113A-113B are schematic cross-sectional views schematically showing a configuration example of another memory element in the embodiment of the present invention.
  • FIGS. 114A-114C are schematic cross-sectional views schematically showing configuration examples of other memory elements in the embodiment of the present invention.
  • 115A to 115F are schematic cross-sectional views schematically showing a configuration example of another memory element in the embodiment of the present invention.
  • FIG. 116 is a characteristic diagram showing current-voltage characteristics in the memory layer 11006 when a DC voltage is applied to the bit electrode 11005.
  • FIG. 117 is an explanatory diagram illustrating a state of a predetermined pulse voltage having a predetermined pulse width applied to the memory element shown in FIG. 110.
  • FIG. 118 is a characteristic diagram showing a change in current value read between electrodes each time a predetermined pulse voltage having a predetermined pulse width is applied a predetermined number of times.
  • FIGS. 119A-119F are process diagrams showing an example of a method for manufacturing an element isolation structure.
  • FIG. 120 is a cross-sectional view showing a configuration example of the element isolation structure in the embodiment of the present invention.
  • FIGS. 121A to 121E are process diagrams illustrating an example of a method of manufacturing an element isolation structure according to an embodiment of the present invention.
  • FIG. 122 is an explanatory diagram showing the relationship between the substrate temperature condition and the state of the metal oxide layer to be formed.
  • FIG. 123 is a characteristic diagram showing a result of observing an electric current when a voltage is applied between the lower electrode 103 and the upper electrode 136 by a power source and the voltage is applied and observed with an ammeter.
  • FIG. 124 shows a result of observing an electric current when a voltage is applied by a power source between the lower electrode 103 and the upper electrode 136 after the EO treatment, and an electric current is measured when the voltage is applied.
  • FIG. 125 is a cross sectional view showing a configuration example of another element isolation structure in the embodiment of the present invention.
  • FIGS. 126A to 126E are process diagrams for explaining an example of a method for manufacturing another element isolation structure in the embodiment of the present invention.
  • FIG. 127 is a configuration diagram showing a configuration example of a conventional element.
  • FIG. 128 is a block diagram showing a configuration example of a conventional element.
  • FIG. 129 is a block diagram showing a configuration example of a conventional element.
  • FIG. 1A is a schematic cross-sectional view schematically showing a configuration example of a bistable resistance value acquiring apparatus according to an embodiment of the present invention
  • FIG. 1B is a partial cross-sectional view.
  • 1A is, for example, a strong dielectric having a film thickness of about 30 to 200 nm in which an insulating layer 102 and a lower electrode layer 103 such as Bi, Ti, and O are formed on a substrate 101 that also has a single crystal silicon force A layer 104 and an upper electrode 105 are provided.
  • the substrate 101 may be made of any conductive material such as a semiconductor, an insulator, or a metal. If the substrate 101 is also configured with an insulating material force, the insulating layer 102 may be omitted. Further, when the substrate 101 is also configured with a conductive material force, the insulating layer 102 and the lower electrode layer 103 may not be provided. In this case, the substrate 101 configured with the conductive material force serves as a lower electrode.
  • the lower electrode layer 103 and the upper electrode 105 only need to have a metal force of a transition metal including a noble metal such as platinum (Pt), ruthenium (Ru), gold (Au), silver (Ag), for example.
  • the lower electrode layer 103 and the upper electrode 105 are made of titanium nitride (TiN), hafnium nitride (HfN), lute, -Strontium humate (SrRuO), zinc oxide (ZnO), tin leadate (ITO), lanthanum fluoride
  • Transition metal nitrides such as lanthanum (LaF), compounds such as oxides and fluorides, and these
  • It may be a composite film with laminated layers.
  • the ferroelectric layer 104 is composed of an oxide ferroelectric force, for example, a material having a velovskite structure, a material having a pseudo-ilmenite structure, or a tungsten 'bronze structure. It may be composed of a material, a material having a bismuth layer structure, and a material having a pyrochlore structure. Specifically, BaTiO, Pb (Zr, Ti) 0, (Pb, La) (Zr,
  • the ferroelectric layer 104 is generally composed of a material exhibiting ferroelectric properties, such as an acid, nitride, or fluoride containing at least two metals. It also includes a state that does not show ferroelectric properties due to thickness conditions.
  • the “ferroelectric material” described below also indicates a material that is generally considered to exhibit ferroelectric properties composed of metallized materials composed of at least two metal forces!
  • the lower electrode layer 103 is a ruthenium film having a thickness of 10 nm, and the ferroelectric layer 104 has a thickness of 40 ⁇ .
  • m Bi Ti 2 O 3 film, and the upper electrode 105 is also composed of gold.
  • the structure of the substrate 101 and the insulating layer 102 is not limited to this, and other materials can be appropriately selected as long as the electrical characteristics are not affected.
  • Ferroelectric layer 104 contains excess titanium compared to Bi Ti O stoichiometry as shown in an enlarged view in FIG. 1B.
  • the base layer 141 made of a plurality of layers, a plurality of particles having a grain size of 3 to 15 nm, which also has a crystal force of BiTiO.
  • the fine crystal grains 142 are dispersed. This has been confirmed by observation with a transmission electron microscope.
  • the base layer 141 may be TiO with a bismuth composition of approximately zero. In other words, the base layer 141 is a state layer in which a metal oxide composed of two metals has few metals compared to the stoichiometric composition.
  • 1B is a cross-sectional view schematically showing a schematic state of the ferroelectric layer 104.
  • FIGS. 1A and 1B The characteristics of the ferroelectric element shown in FIGS. 1A and 1B will be described. This characteristic has been investigated by applying a voltage between the lower electrode layer 103 and the upper electrode 105. When a voltage was applied between the lower electrode layer 103 and the upper electrode 105 by a power source and the current when the voltage was applied was observed with an ammeter, the results shown in FIG. 2 were obtained. In Fig. 2, the vertical axis represents the current density obtained by dividing the current value by the area.
  • FIG. 2 will be described, and the operation principle of the ferroelectric element shown in FIGS. 1A and 1B will also be described.
  • the voltage and current values described here are those observed with actual devices. Therefore, this phenomenon is not limited to the following numerical values. Other values may be observed depending on the material and thickness of the film actually used for the element and other conditions.
  • FIG. 2 shows the ferroelectric layer 104 when the voltage applied to the upper electrode 105 is increased to zero after the zero force is also increased in the positive direction, further decreased in the negative direction, and finally returned to zero.
  • the positive current value starts to increase rapidly.
  • the positive current value further increases from IV to about 0.7V despite the decrease in voltage value.
  • the current value also starts to decrease.
  • the positive current at this time is easier to flow than before, and the current value is about 1.3 AZcm 2 at 0.4. (About 100 times the previous).
  • the applied voltage is returned to zero, the current value also becomes zero.
  • the hysteresis of the current flowing in the ferroelectric layer 104 is interpreted to be caused by the resistance value of the ferroelectric layer 104 being changed by the voltage applied to the upper electrode 105. it can.
  • V a positive voltage
  • the electric conductor layer 104 transitions to a “low resistance state” (data “1”) where current easily flows.
  • data “1” data “1”
  • V of a certain magnitude the ferroelectric layer 104 flows current.
  • the ferroelectric layer 104 has two stable states, a low-resistance state and a high-resistance state. Each state is in each state unless a positive or negative voltage exceeding a certain level is applied. Maintain state.
  • the value of V is about + IV, and the value of V is about IV.
  • the resistance ratio between the resistance state and the low resistance state is about 10 to about L00.
  • the memory operation is performed as follows. First, a positive voltage greater than V is applied to bring the ferroelectric layer 104 to a low resistance state.
  • R Rl R it is important to select a value that is as small as possible so that the state does not change and that the resistance ratio appears sufficiently (in the above example, about 0.4 V is appropriate). This makes it possible to read many times without destroying the low resistance state, that is, data “1”.
  • the ferroelectric layer 104 is made to have a high resistance.
  • the ferroelectric layer 104 is not
  • This element is also used as a switch element for controlling current. It can be done.
  • FIG. 3 shows data retention characteristics of the ferroelectric element shown in FIG. 1A.
  • the positive voltage V is applied to the upper electrode 105
  • the low resistance state data retention characteristics of the ferroelectric element shown in FIG. 1A.
  • read voltage V is applied to upper electrode 105 at regular intervals.
  • the observed ONZOFF ratio has a tendency to gradually decrease with time, it is in a range where data can be sufficiently discriminated.
  • the ONZOFF ratio after 1000 minutes expected from the outer straight line (broken line) based on the observation results shown by the black circles in Fig. 3 is about 21, and can be distinguished at this point.
  • the ferroelectric element shown in FIG. 1A has a holding time of at least 1000 minutes.
  • the applied voltage is a direct current. Even if a pulse voltage having an appropriate width and strength is applied, the same effect can be obtained.
  • a substrate 101 made of p-type silicon carbide having a main surface of plane orientation (100) and a resistivity of 1 to 2 ⁇ -cm is prepared. Wash with a mixture of water and hydrogen peroxide, pure water and dilute hydrogen fluoride, and then dry.
  • the insulating layer 102 is formed on the cleaned and dried substrate 101.
  • the insulating layer 102 is formed on the substrate 101 by using the above-described ECR ⁇ sputtering apparatus, pure silicon (Si) as the target, and argon (Ar) and oxygen gas as the plasma gas using the ECR ⁇ sputtering method. Then, a metal mode insulating layer 102 made of Si—O molecules is formed so as to cover the surface.
  • the flow rate 20sccm the plasma generating chamber is set to 10- 5 Pa stand the internal pressure Ar gas was introduced extent, the internal pressure 10- 3 ⁇ : LO- 2 to about Pa, here, electron cyclotron supplies 2. microwave 45GHz and (500 W ⁇ degree) and the magnetic field of 0. 0875T
  • Ar plasma is generated in the plasma generation chamber.
  • Sec m is a unit of flow rate, and indicates that a fluid at 0 ° C'l atmospheric pressure flows lcm 3 per minute.
  • the plasma generated as described above is emitted from the plasma generation chamber to the processing chamber side by the divergent magnetic field of the magnetic coil.
  • a high frequency power of 13.56 MHz for example, 500 W
  • a silicon target placed at the outlet of the plasma generation chamber As a result, Ar ions collide with the silicon target, causing a sputtering phenomenon, and Si particles pop out.
  • the Si particles that have ejected from the silicon target reach the surface of the substrate 101 together with the plasma released from the plasma generation chamber and the oxygen gas that has been introduced and activated by the plasma, and are oxidized by the activated oxygen. It becomes acid silicon.
  • the insulating layer 102 having a thickness of, for example, about lOOnm and having silicon dioxide strength can be formed on the substrate 101 (FIG. 4A).
  • the insulating layer 102 does not leak to the substrate 101 when a voltage is applied to the lower electrode layer 103 and the upper electrode 105 to be formed later, and does not affect desired electrical characteristics. Thus, insulation is intended.
  • an oxide silicon film formed by oxidizing the surface of a silicon substrate by a thermal oxidation method may be used as the insulating layer 102.
  • the insulating layer 102 may be made of any other insulating material force other than silicon oxide as long as the insulating property is maintained.
  • the film thickness of the insulating layer 102 is not limited to lOOnm, and may be thinner than this. It may be thick.
  • the insulating layer 102 is heated to the substrate 101 in the above-described film formation by ECR sputtering! /, But, film formation while heating the substrate 101.
  • a ruthenium film is formed on the insulating layer 102 by the same ECR sputtering method using pure ruthenium (Ru) as a target.
  • Ru ruthenium
  • FIG. 4B the lower electrode layer 103 is formed.
  • the formation of the Ru film will be described in detail.
  • a silicon substrate on which an insulating layer is formed is heated to 400 ° C., and, for example, in a plasma generation chamber, Introducing Ar gas, a rare gas, at a flow rate of 7 sccm, power!
  • flow rate 5 introducing Xe gas in sccm the inside of the plasma generating chamber, for example, 10- 2 ⁇ : LO- 3 is set to Pa range pressure.
  • a magnetic field under an electron cyclotron resonance condition was applied to the plasma generation chamber, and then a 2.45 GHz microwave (eg, 500 W) was introduced into the plasma generation chamber, and Ar and Xe ECR plasmas were introduced into the plasma generation chamber. Assume that it has been created.
  • the generated ECR plasma is emitted from the plasma generation chamber to the processing chamber side by the divergent magnetic field of the magnetic coil.
  • 13.56MHz high-frequency power eg 500W
  • the lower electrode layer 103 having a thickness of, for example, about lOnm is formed on the insulating layer 102 (FIG. 4B).
  • the lower electrode layer 103 makes it possible to apply a voltage to the ferroelectric layer 104 when a voltage is applied between the lower electrode layer 103 and the upper electrode 105 to be formed later. Therefore, the lower electrode layer 103 may be composed of other than ruthenium as long as it has conductivity.
  • the lower electrode layer 103 may be composed of platinum. However, it is known that when a platinum film is formed on silicon dioxide, it is easy to peel off.
  • a platinum layer is formed via a titanium layer, a titanium nitride layer, or a ruthenium layer. What is necessary is just a structure.
  • the thickness of the lower electrode layer 103 is not limited to lOnm. It is thicker and thinner than this.
  • the Ru film is formed by the ECR ⁇ sputtering method, it is not necessary to heat the substrate 101 heated to 400 ° C. However, if heating is not performed, the adhesion of luteum to silicon dioxide and silicon may be reduced, and peeling may occur. To prevent this, it is desirable to form a film by heating the substrate. .
  • the ferroelectric layer 104 is formed on the lower electrode layer 103 so as to cover the surface by ECR sputtering using Ar) and oxygen gas.
  • the substrate is set in the range of 300 ° C to 700 ° C.
  • the plasma generating chamber for example, Ar gas is a noble gas at a flow rate 20sccm introduced, for example, 10- 3 Pa ⁇ : LO- 2 is set to Pa range pressure.
  • a magnetic field having an electron cyclotron resonance condition is applied to the plasma generation chamber, and then a 2.45 GHz microwave (for example, 500 W) is introduced into the plasma generation chamber, and this microwave is introduced into the plasma generation chamber.
  • ECR plasma is generated.
  • the generated ECR plasma is emitted from the plasma generation chamber to the processing chamber side by the divergent magnetic field of the magnetic coil.
  • a high frequency power of 13.56 MHz for example, 500 W
  • Ar particles collide with the sintered compact target, causing a sputtering phenomenon, and Bi particles and Ti particles pop out.
  • the Bi particles and Ti particles that have jumped out of the sintered body target are heated together with the ECR plasma released from the plasma generation chamber and the oxygen gas activated by the released ECR plasma. It reaches the surface of layer 103 and is oxidized by the activated oxygen.
  • oxygen (O 2) gas as a reaction gas is separate from Ar gas, as will be described later.
  • the formed ferroelectric layer 104 may be irradiated with ECR plasma of an inert gas and a reactive gas to improve the film quality.
  • the reactive gas is not limited to oxygen gas, and nitrogen gas, fluorine gas, and hydrogen gas can be used. This improvement in film quality can also be applied to the formation of the insulating layer 102.
  • the formed ferroelectric layer 104 is annealed (heat treatment) in an appropriate gas atmosphere such as an oxygen atmosphere. ) And improve the quality of the film quality.
  • the upper electrode 105 made of Au having a predetermined area is formed on the ferroelectric layer 104.
  • the top electrode 105 is shaped by the well-known lift-off method and gold deposition by resistance heating vacuum deposition. Can be made.
  • the upper electrode 105 may be made of another metal material such as Ru, Pt, TiN, or a conductive material. If Pt is used, it may peel off due to poor adhesion. Therefore, a structure that does not peel easily, such as Ti—Pt—Au, is used, and a patterning process such as photolithography and lift-off treatment is performed on it. Therefore, it is necessary to form an electrode having a predetermined area.
  • each layer by ECR sputtering described above may be performed using an ECR sputtering apparatus as shown in FIG.
  • the ECR sputtering apparatus shown in FIG. 5 will be described.
  • a processing chamber 501 and a plasma generation chamber 502 communicating therewith are provided.
  • the processing chamber 501 communicates with an evacuation device (not shown), and the inside of the processing chamber 501 is evacuated together with the plasma generation chamber 502 by the evacuation device.
  • the processing chamber 501 is provided with a substrate holder 504 to which the film formation target substrate 101 is fixed.
  • the substrate holder 504 is inclined at a desired angle by an inclination rotation mechanism (not shown) and is rotatable. By tilting and rotating the substrate holder 504, it is possible to improve the in-plane uniformity of the film and the step coverage with the material to be deposited.
  • a ring-shaped target 505 is provided so as to surround the opening region in the opening region where the plasma from the plasma generation chamber 502 in the processing chamber 501 is introduced.
  • the target 505 is placed in a container 505 a that also has insulating strength, and the inner surface is exposed in the processing chamber 501.
  • a high frequency power source 522 is connected to the target 505 via a matching unit 521, and for example, a high frequency of 13.56 MHz can be applied.
  • a DC negative voltage may be applied.
  • the target 505 may be in a polygonal state that is not only a circular shape as viewed from above.
  • the plasma generation chamber 502 communicates with the vacuum waveguide 506, and the vacuum waveguide 506 is connected to the waveguide 508 through a quartz window 507.
  • the waveguide 508 communicates with a microwave generation unit (not shown).
  • a magnetic coil (magnetic field forming means) 510 is provided around the plasma generation chamber 502 and on the upper portion of the plasma generation chamber 502.
  • These microwave generator, waveguide 508, quartz window 507, and vacuum waveguide 506 constitute microwave supply means.
  • mode transformation is provided in the middle of the waveguide 508.
  • the inert gas supply unit 511 introducing argon gas is more inert gases, also from the reactive gas inlet 512 to introduce a reactive gas such as oxygen gas, the plasma generation chamber 502 for example 10- 3 ⁇ : LO- 2 Pa about Of pressure.
  • a magnetic field of 0.0875T in the plasma generation chamber 502 is generated from the magnetic coil 510, and then a 2.45 GHz microwave is generated in the plasma generation chamber 502 through the waveguide 508 and the quartz window 507.
  • ECR electron cyclotron resonance
  • the ECR plasma forms a plasma flow in the direction of the substrate holder 504 by the divergent magnetic field from the magnetic coil 510.
  • electrons pass through the target 505 by the divergent magnetic field formed by the magnetic coil 510 and are extracted to the substrate 101 side and irradiated onto the surface of the substrate 101.
  • positive ions in the ECR plasma are drawn to the substrate 101 side so as to neutralize the negative charge due to electrons, that is, to weaken the electric field, and are irradiated on the surface of the layer being deposited. The Thus, while each particle is irradiated, some of the positive ions combine with electrons to become neutral particles.
  • microwave power supplied from a microwave generation unit is branched in the waveguide 508 and is guided in the vacuum waveguide above the plasma generation chamber 502.
  • the lateral force of the plasma generation chamber 502 is also coupled to the tube 506 through the quartz window 507.
  • the film uses a sintered oxide target (Bi Ti O), which is formed so that bismuth and titanium have a composition of 4: 3.
  • Bi Ti O sintered oxide target
  • Figure 6 shows Bi Ti O film deposition using the ECR ⁇
  • FIG. 6 shows the results under the condition where single crystal silicon is used for the substrate and the substrate temperature is 420 ° C.
  • FIG. 6 shows that when the oxygen flow rate is as small as 0 to 0.5 sccm, the oxygen flow rate is 0.5 to 0.8 sccm, and the oxygen flow rate is divided into regions when the oxygen flow rate is 0.8 sccm or later.
  • ICP inductively coupled plasma emission
  • oxygen region A As a result of the investigation, when the oxygen flow rate is as small as 0 to 0.5 SC cm, Ti is hardly contained even though Bi-Ti-O sintered target is used for target 205. It was found that a crystal film containing —O as a main component was formed. This oxygen region is referred to as oxygen region A.
  • the film was formed of crystals or columnar crystals. This oxygen region is defined as oxygen region C. Furthermore, when the oxygen flow rate is 3 sccm or more, the film has a high Bi ratio, and Bi Ti O 2
  • This oxygen region is defined as oxygen region D. Furthermore, it has been found that when the oxygen flow rate is 0.5 to 0.8 sccm, the film formation is intermediate between the oxygen region A film and the oxygen region C film. This oxygen region is referred to as oxygen region B.
  • this is a characteristic film formation characteristic when 2 is formed.
  • a film having a desired composition and quality can be obtained. From further rigorous measurement results, it was found that the film formation condition in which the obtained film clearly shows ferroelectricity is the oxygen region C in which the stoichiometric composition can be realized.
  • FIGS. 7A to 7d show the results of observing the cross section of the prepared thin film with a transmission electron microscope.
  • 7A, FIG. 7B, FIG. 7C, and FIG. 7D are micrographs
  • FIG. 7a, FIG. 7b, FIG. 7c, and FIG. 7d are schematic diagrams that schematically show the respective states.
  • the entire film is composed of columnar crystals.
  • the base layer 141 includes titanium, and the base layer 141 includes Bi Ti O crystals.
  • the base layer 141 is in an amorphous state.
  • FIGS. 7C and 7c show the results of observation of the film manufactured under the condition that the oxygen flow rate is lsccm. However, as described below, the temperature conditions during film formation are different.
  • FIG. 8 shows changes in the deposition rate and refractive index with respect to the substrate temperature.
  • FIG. 8 shows changes in the deposition rate and refractive index of the oxygen flow rate corresponding to the oxygen region A, oxygen region C, and oxygen region D shown in FIG. As shown in Fig. 8, it can be seen that the deposition rate and refractive index both change with temperature.
  • the oxygen region A, the oxygen region C, and the oxygen region D exhibit the same behavior with respect to the shifted regions.
  • the refractive index is as small as about 2, indicating amorphous characteristics.
  • the refractive index is about 2.6, which is close to the bulk reported in the paper, and Bi Ti O crystallization is progressing. I understand that. To these numbers
  • the above results are considered to be consistent. Looking at the temperature dependence of the deposition rate, it can be seen that each oxygen region exhibits the same behavior. Specifically, the film formation rate increases with temperature up to about 200 ° C. However, the film formation rate decreases rapidly in the range of about 200 ° C to 300 ° C.
  • the temperature suitable for is a region where the refractive index is close to Balta and the film formation rate is constant. From the above results, the temperature range is 300 ° C to 600 ° C.
  • the state of the ferroelectric layer 104 changes depending on the temperature conditions at the time of film formation described above, and when the film formation temperature condition is increased to 450 ° C under the oxygen flow rate condition as shown in FIG. As shown in Fig. 7D and Fig. 7d, columnar crystal force of Bi Ti O Dimensions (grain size) 20-40nm
  • the columnar crystal part 143 corresponds to the base layer 141 shown in FIGS. 7C and 7c.
  • a peak on the (117) axis of BiTi 2 O is observed by XRD (X-ray diffraction method) measurement.
  • the transmission electron microscope described above is also used.
  • a material exhibiting ferroelectricity cannot maintain crystallinity at a temperature equal to or higher than the Curie temperature, and ferroelectricity is not exhibited.
  • it consists of Bi, Ti, and oxygen, such as Bi Ti O.
  • the Curie temperature is around 675 ° C. For this reason, when the temperature is close to 600 ° C, the energy given to the ECR plasma force is also added, and oxygen vacancies are likely to occur, resulting in poor crystallinity and less ferroelectricity. Conceivable.
  • BiTi 2 O 3 film formed at an oxygen flow rate C in the above temperature range (450 ° C) was a (117) oriented film. Film formation under these conditions Bi Ti O film has a sufficient electrical resistance exceeding 2MVZcm when it is about lOOnm thick.
  • composition and characteristics of the film are controlled by forming a BiTiO film within the range shown in Fig. 6 and Fig. 8 using ECR sputtering.
  • the strong dielectric layer 104 shown in Fig. 9 consists of a metal oxide containing excess titanium compared to the stoichiometric composition of BiTiO.
  • FIG. 9 It is a laminated structure of a single layer 144 and a base layer 141 in which a plurality of microcrystalline grains 142 are dispersed.
  • the state shown in FIG. 9 is also confirmed by observation with a transmission electron microscope, similarly to the state shown in FIGS. 1B and 7.
  • the state of each of the ferroelectric layers 104 described above varies depending on the state of the lower layer to be formed, the film formation temperature, and the oxygen flow rate during film formation. For example, on the base made of a metal material, the oxygen flow rate is as shown in FIG. In the case of
  • the base layer is in an amorphous state and columnar crystals are observed within the range of film formation conditions where microcrystalline grains are observed.
  • the observed fine crystal grains with no change in the state of the fine crystal grains are about 3 to 15 nm in size.
  • the ferroelectric layer 104 in the state where the microcrystalline grains are observed there are two stable states, a low resistance state and a high resistance state, as shown in FIGS. 7A and 7a. In these thin films, the above two conditions are significantly worse.
  • the provided ferroelectric element can be realized.
  • This characteristic is obtained in the film formed under the conditions of the oxygen regions B and C in FIG. 6 when the film is formed by ECR sputtering described above.
  • the above characteristics are as described above under the temperature conditions in which the film formation rate decreases and stabilizes, and the refractive index increases and stabilizes to about 2.6.
  • a thin film with the specified characteristics can be formed.
  • the characteristic that the two states are maintained by taking as an example the binary metal force of bismuth and titanium is composed of at least two metals and oxygen. It is considered that it can also be obtained with other metal oxide thin films. With at least two metals Consists of oxygen, and one of the metals is less than the stoichiometric composition, a plurality of microcrystalline grains of the stoichiometric composition are dispersed in the layer, If this is the case, it is considered that the characteristics described using Fig. 2 will appear.
  • BaTiO, Pb (Zr, Ti) 0, (Pb, La) (Zr, Ti) 0, LiNbO, LiTaO, Pb
  • each of the insulating layer on the silicon-powered substrate, the lower electrode layer on the insulating layer, and the ferroelectric layer on the lower electrode layer is formed by ECR sputtering.
  • the method for forming these layers is not limited to the ECR sputtering method.
  • the insulating layer formed on the silicon substrate may be formed by a thermal oxidation method, a chemical vapor deposition method (CVD method), or a conventional sputtering method.
  • the lower electrode layer may be formed by other film forming methods such as EB vapor deposition, CVD, MBE, IBD, and heat vapor deposition.
  • the ferroelectric layer can also be formed by the MOD method described above, the conventional sputtering method, the PLD method, or the like. However, by using the ECR ⁇ Pattern method, a flat and good insulating film, metal film, and ferroelectric film can be easily obtained.
  • each layer is formed by continuous processing without taking it out to the atmosphere by using an apparatus in which the processing chambers for realizing each ECR sputtering for forming each layer are connected in a vacuum transfer chamber. May be.
  • the substrate to be processed can be transported in a vacuum, and is less susceptible to disturbances such as moisture adhesion, leading to improved film quality and interface characteristics.
  • the basic idea of the present invention is that the ferroelectric layer 104 is formed by two electrodes as shown in FIG. 1A. With such a configuration, a predetermined voltage (DC, pulse) is applied between the two electrodes to change the resistance value of the ferroelectric layer, so that a stable high resistance state and a low resistance state can be obtained. As a result, the memory function can be realized.
  • DC predetermined voltage
  • an insulating substrate 101a may be used, and stacked lower electrode layers 103a and 103b may be used.
  • an insulating substrate 101a may be used and a contact electrode 103c may be provided on the lower electrode layer 103.
  • an insulating substrate 101a may be used, and stacked upper electrodes 105a and 105b may be used.
  • laminated lower electrode layers 103a and 103b and laminated upper electrodes 105a and 105b may be used.
  • an insulating substrate 1101 having strength such as glass or quartz may be used. With this structure, it can be applied to glass substrates that are easy to process.
  • a through-hole is formed in the substrate 1101, and a plug is provided here to take an electrical contact from the back surface of the substrate 1101 (opposite the formation surface of the lower electrode layer 103). May be.
  • the ferroelectric layer 104 is optically transparent with a refractive index of about 2.6 when measured at a wavelength of 632.8 nm, the configuration shown in FIG. 11A and FIG. Application to is possible. Further, by forming the ferroelectric layer 104 to a thickness that emits an interference color between 10 to 200 nm, a visual effect in a colored state can be obtained.
  • a substrate 1111 having conductivity such as metal may be used.
  • a lower electrode 1102 may be provided on and in contact with the substrate 1111, and a ferroelectric layer 1103 and an upper electrode 1104 may be provided thereon.
  • a predetermined electrical signal is applied between the substrate 1111 and the upper electrode 1104. It becomes possible to do.
  • a ferroelectric layer 1112 and an upper electrode 1113 may be provided on the metal plate 1121.
  • the metal plate 1121 becomes the lower electrode layer.
  • the ferroelectric layers 104, 1103, and 1112 have a resistance that increases as the film thickness increases, making it difficult for current to flow.
  • the resistance value in each of the low resistance state and the high resistance state becomes a problem.
  • the thickness of the ferroelectric layers 104, 1103, and 1112 is increased, the resistance value in the low resistance state is increased, the SZN ratio is difficult to obtain, and it is difficult to determine the state of the memory.
  • the thickness of the ferroelectric layers 104, 1103, and 1112 is reduced and the leakage current becomes dominant, it becomes difficult to retain the memory information, and the resistance value in the high resistance state is reduced, and the SZN ratio is increased. It becomes difficult to take.
  • the ferroelectric layers 104, 1103, and 1112 are preferably set to optimum thicknesses as appropriate.
  • the ferroelectric layers 104, 1103, and 1112 may have a thickness of at least 10 ⁇ m.
  • the ferroelectric layers 104, 1103, and 1112 should be thinner than 300 nm.
  • the thickness of the strong dielectric layers 104, 1103, and 1112 is 30 to 20011111, the operation of the memory is confirmed.
  • a plurality of ferroelectric elements may be arranged and integrated.
  • a common lower electrode layer 602 and ferroelectric layer 603 are formed on an insulating substrate 601 and separated from each other by a predetermined distance on the ferroelectric layer 603.
  • a plurality of ferroelectric elements are arranged corresponding to the plurality of upper electrodes 604.
  • a common lower electrode layer 602 is formed on an insulating substrate 601, and a ferroelectric layer 613 and an upper electrode 614 are formed on the lower electrode layer 602.
  • the individual ferroelectric layers 613 can be formed by using processing methods such as RIE, ICP etching, and ECR etching on the formed metal oxide thin film. By separating and configuring in this way, the distance between elements can be further shortened, and the degree of integration can be further improved.
  • the side surface of the ferroelectric layer 613 constituting each element may be covered with an insulating side wall 615.
  • a plurality of ferroelectric layers 613 are formed corresponding to each element, and are separated from each other so as to fill the sides of the plurality of ferroelectric layers 613.
  • An insulating layer 625 may be formed.
  • the X direction bus is connected to the lower electrode layer, and the Y direction
  • an element composed of a lower electrode 801, a ferroelectric layer 802, and an upper electrode 803 is arranged, and a Y-direction bus 812 is commonly used for the lower electrode 801 in each column.
  • the X direction nose 811 may be connected in common to the upper electrode 803 of each row.
  • Data can be written or read by applying a predetermined voltage to the X-direction bus 811 and the Y-direction bus 812 that intersect at the selected element as described above.
  • a memory cell that requires a transistor for selecting a memory cell or the like can be configured only by the ferroelectric element having the above-described configuration, so that high integration can be achieved.
  • the change in the resistance value in the ferroelectric layer 104 can also be controlled by a current.
  • a certain current flows as a state where a predetermined voltage is applied to the ferroelectric layer 104, and the current value flowing when a voltage of +0.5 V is applied is observed, as shown in FIG. high current value to the dielectric layer 104 is a current of 1 X 10- 5 a is observed after shed is substantially OA.
  • the value of the current observation seen after current to the IX 104 Alpha is flowed ferroelectric layer 104 is less than or equal to approximately 0. 02 ⁇ .
  • strong observation current value seen after the dielectric layer 104 1 X 104 Alpha more current is flowed is a 0. 7.alpha rapidly changing.
  • the resistance change in the ferroelectric layer 104 is also changed by the current flowing in the ferroelectric layer 104, and there are two resistance values, a high resistance state and a low resistance state. Accordingly, the ferroelectric elements illustrated in FIGS. 1, 10, 10, and 12 can be driven by voltage and can also be driven by current.
  • the resistance change of the ferroelectric layer 104 can be controlled by the pulse voltage.
  • the current value that flows when a + 0.3V DC voltage is initially applied to the device described above is measured.
  • voltage application and current are between the lower electrode layer 103 and the upper electrode 105.
  • a pulse voltage of 10 s at +5 V for 4 times between the upper electrode 105 and the lower electrode layer 103 and then measure the value of the current that flows when a + 0.3V DC voltage is applied.
  • a pulse voltage of 10 s was applied four times at +5 V between the upper electrode 105 and the lower electrode layer 103, and then the current value that flows when a + 0.3V DC voltage was applied was determined. taking measurement. After repeating these steps a predetermined number of times, a pulse voltage of 1 ⁇ s at -4V is applied 10 times between the upper electrode 105 and the lower electrode layer 103, and then a + 0.3V DC voltage is applied.
  • the memory state of the element is changed from the “ ⁇ ” state to the “off” state, and from the “off” state to the “on” state.
  • the memory operation to change the state to "" is possible.
  • the voltage and time of the voltage pulse that can change the resistance state of the ferroelectric layer 104 can be changed depending on the situation. For example, at + 5V, 10 / zs, 4 voltage pulses are applied to make a high resistance state, then at 4V: Applying a short s pulse 10 times changes the state to a low resistance state. Can do. In this state, it is possible to change to a high resistance state by applying a short pulse of 1 s at + 5V 100 times. Furthermore, it is also possible to change to a low resistance state by applying 100 s of 100 s as a voltage as low as -3V to this state.
  • a multi-value memory operation is also possible.
  • the current-voltage characteristics when a DC voltage is applied between the upper electrode 105 and the lower electrode layer 103 change to a different low resistance state when the positive applied voltage is changed, as shown in FIG. To do.
  • the read voltage shown in the figure shows the low resistance state after applying up to 0.5V, the low resistance state after applying up to 1.0V, and the low resistance state after applying up to 1.5V.
  • the current value at is different.
  • a memory with three states (three values) “0”, “1”, and “2” can be realized.
  • the lower electrode layer 103 is a multilayer film in which ruthenium and platinum are laminated in this order from the insulating layer 102 side.
  • the lower electrode layer 103 may be a multilayer film in which titanium and platinum are stacked in this order from the insulating layer 102 side.
  • the current-voltage characteristics are as shown in FIG. Figure 21 shows the ferroelectric layer when the voltage applied to the upper electrode 105 is increased to zero after the zero force is also increased in the positive direction, further decreased in the negative direction, and finally returned to zero. This represents the hysteresis characteristic drawn by the current value flowing through 104.
  • the positive current flowing through the ferroelectric layer 104 is relatively small! / ⁇ (high resistance state).
  • the positive current value starts to increase rapidly. After further increasing the voltage to about 1.6V, the positive voltage is decreased, and when the voltage value becomes about 0.5V or less, the current value starts to decrease (low resistance state). The positive current at this time is more likely to flow than the high resistance state described above, and the current value is about 50 A at 0.2V. When the applied voltage is returned to the outlet, the current value becomes zero.
  • the ferroelectric layer 104 has two stable states, a low resistance state and a high resistance state. Each state is maintained unless a positive or negative voltage exceeding a certain value is applied. Therefore, even if the lower electrode layer 103 of the ferroelectric element shown in FIG. 1 has a platinum force, the ferroelectric element shown in FIG. 1 can realize a functional element that is non-volatile and capable of a nondestructive read operation.
  • the ferroelectric element shown in FIG. 1 the case where the lower electrode layer 103 in the portion in contact with the ferroelectric layer 104 has a titanium nitride force will be described.
  • the lower electrode layer 103 may be composed of a single layer film of titanium nitride.
  • the current-voltage characteristics are as shown in FIG.
  • the positive voltage applied to the upper electrode 105 is greater than V.
  • the ferroelectric layer 104 has two stable states, a low resistance state and a high resistance state. Each state is maintained unless a positive or negative voltage exceeding a certain level is applied!]. Therefore, even if the lower electrode layer 103 of the ferroelectric element shown in FIG. 1 is made of titanium nitride, the ferroelectric element shown in FIG. 1 can realize a functional element that is non-volatile and capable of a nondestructive read operation. .
  • the lower electrode layer 103 formed on the insulating substrate 1101 having quartz force is made of ruthenium and the upper electrode 105 is made of titanium nitride.
  • the upper electrode 105 having titanium nitride force is formed on the ferroelectric layer 104, the current-voltage characteristics are as shown in FIG. 23, and the same tendency as the result shown in FIG. Show. Therefore, even if titanium nitride is used for the upper electrode 105, the ferroelectric layer 104 has two stable states, a low resistance state and a high resistance state, and each state is higher than a certain level described above. Each state is maintained unless positive or negative voltage is applied.
  • Bi Ti O crystals are bismuth-layered ferroelectrics with a pseudo-perovskite structure.
  • ferroelectric layer metal oxide thin film having the configuration illustrated in FIG. IB composed of BiTiO in the present embodiment.
  • the leakage current (measured value) of the metal oxide thin film comprising the ferroelectric layer 104 shown in Fig. 1 is small enough to confirm the ferroelectricity, it is shown in Fig. 25A.
  • the current-voltage characteristics as shown. The state shown in FIG. 25A will be explained. First, when a positive DC voltage is applied from the initial state of OA at OV, a positive current starts to flow. The current value gradually increases at first, but when a voltage of + 4V or higher is applied, the current value increases, and a current value of + 2.5nA flows at + 5.3V.
  • the leakage current observed here is equal to the value obtained by superimposing the displacement current described above on the leakage current actually flowing in the film. For example, when lowering the voltage to + 4V, only about +0. InA will flow, unlike the case of increasing the voltage (+ 1 ⁇ 1). If the applied voltage is reduced to OV, a current of -0.5 nA will flow.
  • an insulating film or a ferroelectric film having a high withstand voltage causes dielectric breakdown by applying a high voltage exceeding 5 V.
  • a high voltage is applied to a ferroelectric thin film having a film thickness of 200 nm or more that has a high dielectric strength and a ferroelectric force.
  • FIG. 26 be applied to the + 15V, but only flows minute current of about 10- 9 A, the application of a further voltage is as a current rapidly flows, the thin film itself is damaged Causes breakdown (breakdown). In this way, a thin film that has undergone dielectric breakdown will always be in a state where a large current flows, and a state having two or more resistance values cannot be obtained.
  • the “oxide thin film (ferroelectric layer 104)” exhibits current-voltage characteristics as shown in FIG. 27 when the film thickness is about 40 nm.
  • the ferroelectric layer 104 is formed by ECR sputtering, and the device as shown in FIG. 4D is formed. In this stage, even if a voltage of up to + 14V is applied, only a very small current of about 10-9 9 flows, and a high electric withstand voltage is obtained.
  • the ferroelectric layer 104 has a film thickness of about 40 nm or more by applying a high voltage of about +15 V in the initial film formation state where the electric breakdown voltage is large. Characteristic current-voltage characteristics as shown in 2 etc. come to be expressed. In this way, the initial process for changing from the initial state of film formation to the state showing the resistance change characteristic is called an electrical orientation (EO) process. In the state where the metal oxide thin film of this embodiment is formed in a state where the film thickness is large and the electric withstand voltage is high, by performing EO treatment, each of the above-described characteristics is exhibited. Etc. can be realized.
  • a voltage exceeding 10 V is applied to the device. If the EO process is performed in this state, the semiconductor element may be destroyed.
  • EO treatment may be performed using ECR plasma.
  • a plasma flow can be generated by a divergent magnetic field, and a plasma flow having an energy of 20 to 30 eV can be irradiated to a substrate to be processed.
  • the energy distribution in the plasma flow reflects the distribution of the magnetic field, and the central force has a distribution toward the periphery.
  • This energy distribution can control several eV force between several tens of eV depending on the divergence of the divergent magnetic field, and can generate a potential difference of several volts to several tens of volts between the center and the periphery. Therefore, in the element shown in FIG. 1, if one end of the wiring connected to the lower electrode layer 103 is exposed to the peripheral part of the plasma flow and the upper electrode 105 is exposed to the central part of the plasma flow, The potential difference generated by the distribution distribution in the middle makes it possible to apply the voltage required for EO treatment between these two electrodes. For example, by generating plasma with Ar as the main component and irradiating the device, it is possible to perform EO processing in as short a time as several tens of seconds per second.
  • FIG. 28 shows the state in which EO processing is performed.
  • EO processing is performed on multiple devices integrated in the equipment. Is possible.
  • FIG. 29 is an explanatory diagram showing a change in the resistance value of a device that smoothly transitions to a low resistance state at +1.6 V when a + IV voltage is applied.
  • the horizontal axis indicates the time during which the voltage is applied
  • the vertical axis indicates the resistance value of the element.
  • the multi-level memory operation can be realized as follows.
  • the multi-value memory (three-value memory) operation will be described below with reference to FIG. Figure 30 shows the upper and lower electrode layers. It shows the change over time of the resistance value of the element when a constant voltage (for example, 1.2 V) is applied between the two.
  • a constant voltage for example, 1.2 V
  • two low resistance states can be created by changing the application time when a constant voltage is continuously applied between the upper electrode and the lower electrode layer. As shown in Figure 30, if a voltage is applied for t seconds (for example, 250 ms) from the high resistance state, the low resistance state 1 (
  • Transition to resistance state 2 (data “2”) is possible. 1. It is possible to transition to the high resistance state (data “0”) at about 2V and reset it. By changing the voltage application time from this reset state to t and t, a ternary memory is realized. it can.
  • FIG. 31 is a cross-sectional view schematically showing a configuration example of another bistable resistance value acquiring apparatus according to the embodiment of the present invention.
  • the element shown in FIG. 31 includes, for example, an insulating layer 3102, a lower electrode layer 3103, a ferroelectric layer 3104, an insulating layer 3105, and an upper electrode 3106 on a substrate 3101 having a single crystal silicon force.
  • the substrate 3101 may be made of any conductive material such as a semiconductor, an insulator, or a metal.
  • the insulating layer 3102 is not necessary. Further, when the base plate 3101 is made of a conductive material, the insulating layer 3102 and the lower electrode layer 3103 may be omitted. In this case, the substrate 3101 made of the conductive material cover becomes the lower electrode. .
  • the lower electrode layer 3103 and the upper electrode 3106 are made of, for example, a metal shell of a transition metal containing a noble metal such as platinum (Pt), ruthenium (Ru), gold (Au), silver (Ag), or the like. That's fine.
  • the lower electrode layer 3103 and the upper electrode 3106 are made of titanium nitride (TiN), hafnium nitride (HfN), strontium ruthenate (SrRuO), zinc oxide (ZnO), tin lead (ITO), fluoride.
  • Transition metals such as lanthanum (LaF), compounds such as oxides and fluorides,
  • the insulating layer 3105 is composed of silicon dioxide, silicon oxynitride, alumina, or an oxide such as LiNbO composed of light metal such as lithium, beryllium, magnesium, or calcium.
  • Insulating layer 3105 is composed of scandium, titanium, strontium, yttrium, Zirconium, hafnium, tantalum, and transition metal oxides and nitrides containing lanthanum series, or silicates (metal, silicon, oxygen ternary compounds) containing these elements, and aluminum containing these elements Nate (metal, aluminum, oxygen ternary compound), and oxides and nitrides containing two or more of the above elements may be used.
  • the ferroelectric layer 3104 is the same as the ferroelectric layer 104 described above.
  • the ferroelectric layer 3104 is constituted by an oxide ferroelectric force.
  • the ferroelectric layer 3104 is made of a material that generally exhibits ferroelectric properties, such as an oxide, nitride, or fluoride containing at least two metals. It also includes a state that does not show ferroelectric properties due to thickness conditions.
  • the lower electrode layer 3 103 is a ruthenium film having a thickness of lOnm
  • the ferroelectric layer 3104 is formed of Bi Ti having a thickness of 40 nm.
  • the insulating layer 3105 is a 5 nm thick film made of tantalum pentoxide and silicon dioxide.
  • the upper electrode 3106 is also configured with a gold power.
  • the upper electrode 3106 may have a multilayer structure in which a titanium layer, a titanium nitride layer, and a gold layer are stacked in this order from the insulating layer 3105 side. By making the contact surface with the insulating layer 3105 a titanium layer, adhesion can be improved. Note that as described above, the materials of the substrate 3101 and the insulating layer 3102 are not limited thereto, and other materials can be appropriately selected as long as they do not affect electrical characteristics.
  • FIG. 5 The insulating layer 3102, the lower electrode layer 3103, the ferroelectric layer 3104, the insulating layer 3105, and the upper electrode 3106 described above are shown in FIG. 5 in the same manner as FIG.
  • metal targets and sintered targets can be formed by sputtering in ECR plasma consisting of argon gas, oxygen gas, and nitrogen gas!
  • FIG. 32A a substrate 3101 having a ⁇ -type silicon force with a main surface of the plane orientation (100) and a resistivity of 1 to 2 ⁇ cm is prepared, and the surface of the substrate 3101 is mixed with sulfuric acid and peroxide. Washing with a mixture of hydrogen water, pure water and dilute hydrogen fluoride water, followed by drying.
  • an insulating layer 3102 is formed on the cleaned and dried substrate 3101.
  • the ECR sputtering apparatus shown in FIG. The substrate 3101 is fixed to the substrate holder 504, pure silicon (Si) is used as the target 505, and the surface is covered on the substrate 3101 by the ECR ⁇ -pattor method using argon (Ar) and oxygen gas as the plasma gas.
  • a metal mode insulating layer 3102 is formed by Si—O molecules.
  • ECR sputtering shown in FIG. 5 first, after evacuating the plasma generation chamber 502 to 10- 5 Pa stand high vacuum of, the plasma generating chamber 502, from the inert gas inlet 511, for example by introducing Ar gas as a rare gas at a flow rate of about 20 sccm, it sets the internal plasma generation chamber 502, for example, 10- 2 ⁇ 10- 3 Pa base pressure.
  • the plasma generation chamber 502 is provided with a magnetic field having an electron cyclotron resonance condition by supplying a coil current of, for example, 28 A to the magnetic coil 510.
  • the magnetic flux density in the plasma generation chamber 502 is about 87.5 mT (Tesla).
  • a 2.45 GHz microwave (eg, 500 W) is supplied from a microwave generation unit (not shown), and this is supplied via a waveguide 508, a quartz window 507, and a vacuum waveguide 506. Then, the plasma is introduced into the plasma generation chamber 502, and Ar plasma is generated in the plasma generation chamber 502 due to the introduction of the microwave.
  • sccm is the unit of flow rate, 0 ° C 'l vapor pressure of the fluid shows the lcm 3 Flowing to 1 minute.
  • the plasma generated as described above is emitted from the plasma generation chamber 502 to the processing chamber 501 side by the divergent magnetic field of the magnetic coil 510. Further, high frequency power (eg, 13.56 MHz, 500 W) is supplied from a high frequency power source 522 to a target 505 disposed at the outlet of the plasma generation chamber 502. As a result, Ar particles collide with the target 505 to cause a sputtering phenomenon, and Si particles jump out of the target 505.
  • high frequency power eg, 13.56 MHz, 500 W
  • an insulating layer 3102 having a film thickness of, for example, about lOOnm and having silicon dioxide strength can be formed on the substrate 3101 (FIG. 32A). Shape up to a specified film thickness After the formation, the film formation is stopped by preventing the sputtered raw material from reaching the substrate 3101 with the aforementioned shutter closed. Thereafter, the plasma irradiation is stopped by stopping the supply of microwave power, etc., the supply of each gas is stopped, the substrate temperature is lowered to a predetermined value, and the internal pressure of the processing chamber 501 is increased to increase the atmospheric pressure. Then, the substrate 3101 formed into a film from the inside of the processing chamber 501 is unloaded.
  • the insulating layer 3102 does not leak to the substrate 3101 when a voltage is applied to the lower electrode layer 3103 and the upper electrode 3106 to be formed later, and the desired electrical characteristics are not affected. It is intended to insulate.
  • an oxide silicon film formed by oxidizing the surface of a silicon substrate by a thermal oxidation method may be used as the insulating layer 3102.
  • the insulating layer 3102 may be made of an insulating material other than silicon oxide as long as the insulating property is maintained.
  • the thickness of the insulating layer 3102 is not limited to lOOnm, and may be thinner or thicker. May be.
  • the insulating layer 3102 may be formed by heating the substrate 3101 while heating the substrate 3101 in the above-described film formation using the ECR ⁇ patch.
  • the substrate 3101 is carried out from the inside of the apparatus to the atmosphere, and then the ECR ⁇ pattern similar to that shown in Fig. 5 using pure ruthenium (Ru) as the target 505.
  • the substrate 3101 is fixed to the substrate holder 504 of the apparatus. Subsequently, by ECR sputtering using argon (Ar) and xenon (Xe) as plasma gases,
  • a Ru film is formed on the insulating layer 3102 so as to cover the surface, whereby the lower electrode layer 3103 is formed.
  • the substrate 3101 is first heated to about 400 ° C, for example, and then the plasma generation chamber in 502, from the inert gas inlet 511, introducing Ar gas as a rare gas, for example a flow rate 7 sccm, introducing Xe gas, for example a flow rate 5 sccm, the inside of the plasma generation chamber 502, for example, 10- 2-10 — Set the pressure in the 3 Pa range.
  • the plasma generation chamber 502 is provided with a magnetic field under electron cyclotron resonance conditions by supplying a coil current of, for example, 26 A to the magnetic coil 510.
  • a 2.45 GHz microwave (for example, 500 W) is supplied from a microwave generation unit (not shown), and this is supplied via a waveguide 508, a quartz window 507, and a vacuum waveguide 506. Tep The plasma is introduced into the plasma generation chamber 502, and Ar and Xe plasmas are generated in the plasma generation chamber 502 by introducing the microwave. The generated plasma is emitted from the plasma generation chamber 502 to the processing chamber 501 side by the divergent magnetic field of the magnetic coil 510.
  • high frequency power (for example, 500 W) is supplied from the high frequency electrode supply unit to the target 505 disposed at the outlet of the plasma generation chamber 502.
  • the lower electrode layer 3103 having a thickness of, for example, about 10 nm is formed on the insulating layer 3102 (FIG. 32B).
  • the lower electrode layer 3103 enables voltage to be applied to the ferroelectric layer 3104 and the insulating layer 3105 when a voltage is applied between the lower electrode layer 3103 and the upper electrode 3106 to be formed later. Therefore, the lower electrode layer 3103 may be made of material other than ruthenium as long as it has conductivity, and the film thickness is not limited to 10 nm.
  • the Ru film is formed by the ECR ⁇ sputtering method, it is not necessary to heat the substrate 3101 heated to 400 ° C. However, if heating is not performed, adhesion of luteum to silicon dioxide may be reduced, and peeling may occur. To prevent this, it is better to heat the substrate to form a film. desirable.
  • the film formation is stopped by closing the shutter, etc., and if the termination process such as stopping the microwave irradiation and stopping the plasma irradiation, The substrate 310 1 can be carried out.
  • the substrate 3101 is unloaded from the apparatus into the atmosphere, and then the sintered body with a ratio of Bi and Ti of 4: 3 is used as the target 505 1-1.
  • the substrate 3101 is fixed to the substrate holder 504 of the ECR sputtering apparatus similar to FIG. 5 using —0).
  • the ferroelectric layer is formed on the lower electrode layer 3103 so as to cover the surface by the ECR ⁇ -Pattern method using argon (Ar) and oxygen gas as the plasma gas. Assume that 3104 is formed.
  • the formation of the ferroelectric layer 3104 will be described in detail.
  • the substrate 3101 force S300 to 700 ° C is set.
  • Ar gas which is a rare gas
  • O gas which is a reaction gas
  • LO- 3 is set to Pa base pressure of.
  • a magnetic field under an electron cyclotron resonance condition is applied to the formation chamber 502 by supplying a coil current of, for example, 27 A to the magnetic coil 510.
  • a 2.45 GHz microwave (eg, 500 W) is supplied from a microwave generation unit (not shown), and this is supplied via a waveguide 508, a quartz window 507, and a vacuum waveguide 506. Then, the plasma is introduced into the plasma generation chamber 502, and Ar plasma is generated in the plasma generation chamber 502 by introducing the microwave. The generated plasma is emitted from the plasma generation chamber 502 to the processing chamber 501 side by the divergent magnetic field of the magnetic coil 510.
  • high frequency power (for example, 500 W) is supplied from the high frequency electrode supply unit to the target 505 disposed at the outlet of the plasma generation chamber 502. As a result, Ar particles collide with the target 505 to cause a sputtering phenomenon, and Bi particles and Ti particles jump out of the target 505.
  • Bi particles and Ti particles jumped out from the target 505 are combined with the plasma emitted from the plasma generation chamber 502 and the oxygen gas introduced from the reactive gas introduction unit 512 and activated by the plasma, and the lower electrode layer. It reaches the surface of 3103 and is oxidized by the activated oxygen.
  • the target 505 is a sintered body and contains oxygen. However, supply of oxygen can prevent oxygen shortage in the film.
  • the film By forming the film by the ECR sputtering method described above, for example, a state in which the ferroelectric layer 3104 having a thickness of about 40 nm is formed can be obtained (FIG. 32C). Thereafter, the termination process is performed in the same manner as described above, so that the substrate can be unloaded.
  • the formed ferroelectric layer 3104 may be irradiated with ECR plasma of inert gas and reactive gas to improve the film quality.
  • the reactive gas is not limited to oxygen gas, and nitrogen gas, fluorine gas, and hydrogen gas can be used. This improvement in film quality can also be applied to the formation of the insulating layer 3102 and the insulating layer 3105 described below.
  • the substrate 3101 is carried out from the apparatus to the atmosphere, and then the ECR ⁇ node similar to that shown in Fig. 5 using pure tantalum (Ta) as the target 505 is used.
  • the substrate 3101 is fixed to the substrate holder 504 of the cutter device.
  • an insulating layer 3105 is formed on the ferroelectric layer 3104 so as to cover the surface by an ECR ⁇ -pattor method using argon (Ar) and oxygen gas.
  • argon (Ar) and oxygen gas As described below, a metal mode film made of Ta—O molecules is formed to form the insulating layer 3105.
  • an inert gas is introduced into the plasma generation chamber 502.
  • Ar gas that is a rare gas is introduced at a flow rate of 25 sccm from the unit 511, and the inside of the plasma generation chamber 502 is set to a pressure of, for example, 10 ⁇ 3 Pa.
  • the plasma generation chamber 502 is provided with a magnetic field under electron cyclotron resonance conditions by supplying a coil current of 28 A, for example, to the magnetic coil 510.
  • a 2.45 GHz microwave (for example, 500 W) is supplied from a microwave generator (not shown), and this is supplied via a waveguide 508, a quartz window 507, and a vacuum waveguide.
  • the plasma is introduced into the plasma generation chamber 502, and Ar plasma is generated in the plasma generation chamber 502 by introducing this microwave.
  • the generated plasma is emitted from the plasma generation chamber 502 to the processing chamber 501 side by the divergent magnetic field of the magnetic coil 510.
  • high frequency power (for example, 500 W) is supplied from the high frequency electrode supply unit to the target 505 disposed at the outlet of the plasma generation chamber 502.
  • Ta particles collide with the target 505 to cause a sputtering phenomenon, and Ta particles jump out of the target 505.
  • the Ta particles ejected from the target 505 together with the plasma emitted from the plasma generation chamber 502 and the oxygen gas introduced from the reactive gas introduction unit 512 and activated by the plasma are activated by the ferroelectric layer 3104 of the substrate 3101. It reaches the surface and is oxidized by activated oxygen to form tantalum pentoxide.
  • a tantalum pentoxide film is formed on the ferroelectric layer 3104.
  • a silicon dioxide film is formed on the tantalum pentoxide film by ECR sputtering using a target 505 having a pure silicon force in the same manner as the deposition of silicon dioxide described with reference to FIG. 32A. It is assumed that it is formed.
  • the above-described formation process of the tantalum pentoxide film and the silicon dioxide film is repeated to form a multilayer film of, for example, about 5 nm of a tantalum pentoxide film and a silicon dioxide film, thereby insulating the film.
  • Layer 3105 is obtained ( Figure 32D).
  • the insulating layer 3105 made of a tantalum pentoxide film and a silicon dioxide film controls the voltage applied to the ferroelectric film when a voltage is applied to the ferroelectric layer 3104. Use for. Therefore, if the voltage applied to the ferroelectric layer 3104 can be controlled, a force other than the multilayer structure of the tantalum pentoxide film and the silicon dioxide film may be used to form the insulating layer 3105. May be. Also, the film thickness is not limited to 5 nm. In the above-described ECR sputtering method, the substrate 3101 is not heated, but may be heated.
  • an element using a layer having a ferroelectric force is formed by forming an upper electrode 3106 having a predetermined area of Au force on the insulating layer 3105. Is obtained.
  • the upper electrode 3106 can be formed by a well-known lift-off method and gold deposition by a resistance heating vacuum deposition method. Note that the upper electrode 3106 may be made of another metal material such as Ru, Pt, or TiN, or a conductive material, for example.
  • Ru tungsten
  • Pt platinum
  • TiN titanium oxide
  • a conductive material for example.
  • the above-mentioned Bi Ti O film has a thickness that allows a certain amount of leakage current.
  • the “low resistance mode” When in the “low resistance mode” state transitioned by applying a voltage of 8V or more, the “low resistance mode” is maintained in the voltage range of 0.5V to + 0.2V. These two “high resistance mode” and “low resistance mode” are switched. The same applies to the negative resistance mode of “negative high resistance mode” and “negative low resistance mode”.
  • each ratio is as high as 200 times. This allows easy mode identification.
  • the inventors presume that the phenomenon described above appears when the resistance value of the ferroelectric film changes dramatically depending on the direction and strength of the applied voltage.
  • carriers can be controlled from the band structure of the insulating layer 3105 by the insulating layer 3105 provided between the ferroelectric layer 3104 and the upper electrode 3106.
  • tantalum pentoxide has a band gap of about 4.5 eV. If we look at the energy difference from the Fermi level, the conduction band is about 1.2 eV and the valence band is 2. It is known that Noria is high on the valence band side at 3 eV. Therefore, it has a high barrier property for holes in the valence band, but a low noria property for electrons in the conduction band. For more information, see “The Journal of Wilk et al. 'Ob' Applied 'Physitas, No. 87, p. 484. 2000, (Wilk et. Al., J. Appl. Phys., 87, 484 (2000).).
  • the element shown in FIG. 31 can be used as a nonvolatile, non-destructive memory. I found. Specifically, first, initialization of the element and erasing of data, that is, writing of the data “off” is performed as shown in (4) or (5) of FIG. This may be done by changing the mode from “low resistance mode” to “high resistance mode” by applying a voltage.
  • data “on” is written by applying a negative voltage of 0.8 V or more to the upper electrode 3106 so that the current flows rapidly as shown in (2) of FIG. Just do it.
  • the mode conversion from “high resistance mode” to “low resistance mode” is performed, and data “on” is written.
  • data written as described above can be easily read by reading the current value when an appropriate voltage of 0.8 to +0.8 V is applied to the upper electrode 3106. it can.
  • an appropriate voltage of ⁇ 0.8 to +0.8 V is applied as shown in FIG. 33 (1). This can be determined by the fact that current does not flow easily during application.
  • the above-described memory read operation can be easily performed only by checking whether the element shown in FIG. 31 is in the “high resistance mode” force or “low resistance mode”.
  • the element force shown in FIG. 31 is the state in which data is held while the above two modes can be held. Furthermore, even if a positive voltage is applied to the electrode to check which mode is selected, the held mode does not change and the data is not destroyed. Therefore, according to the ferroelectric element shown in FIG. 31, nondestructive reading is possible.
  • the element shown in FIG. 31 functions as a nonvolatile memory element by changing the resistance value according to the voltage applied between the strong dielectric layer 3105, the lower electrode layer 3103, and the upper electrode 3106. This element can also be used as a switch element for controlling current.
  • the voltage for operating the element shown in Fig. 31 is the maximum power when writing to set to "negative low resistance mode". As shown in Fig. 33, it is about 0.8V.
  • the power consumption is small. Low power consumption is very advantageous for devices. For example, mobile communication devices, digital general-purpose devices, digital imaging devices, notebook personal computers, and personal 'digital' appliances (PDAs) only In addition, it is possible to reduce the power consumption of all electronic computers, personal computers, workstations, office computers, large computers, and devices using memories such as communication units and multifunction devices.
  • FIG. 34 shows the data retention time in the element shown in FIG. After applying a positive voltage to the upper electrode 3106 to set it to the ⁇ positive high resistance state '' shown in Fig. 33, that is, the ⁇ high resistance mode '', applying a voltage of 0.8V or more above the upper electrode 3106 “Negative low resistance state” (“low resistance mode”), that is, data “on” is written. After that, apply 0.3V to the upper electrode 3106 at regular intervals and observe the current value observed when the voltage is applied. This observation result is shown in FIG.
  • each of the insulating layer on the substrate having silicon force, the lower electrode layer on the insulating layer, and the ferroelectric layer on the lower electrode layer is formed by ECR sputtering.
  • the formation method of each of these layers is not limited to the ECR ⁇ Pattern method.
  • the insulating layer formed on the silicon substrate may be formed by a thermal oxidation method, a chemical vapor deposition method (CVD method), a conventional sputtering method, or the like.
  • the lower electrode layer may be formed by other film forming methods such as EB vapor deposition, CVD, MBE, and IBD.
  • the ferroelectric layer can also be formed by the MOD method described above, the conventional notched method, the PLD method, or the like. However, by using the EC putter method, a flat and good insulating film, metal film, and ferroelectric film can be easily obtained.
  • each layer is formed and taken out to the atmosphere, an apparatus in which the processing chambers for realizing each ECR ⁇ patch are connected by a vacuum transfer chamber is used.
  • each layer may be formed by continuous processing without taking it out to the atmosphere. This makes it possible to transport the substrate to be processed in a vacuum, making it less susceptible to disturbances such as moisture adhesion, and improving the film quality and interface characteristics.
  • the surface of the formed layer may be irradiated with ECR plasma to improve the characteristics.
  • the formed layer may be annealed (heat treatment) in a suitable gas atmosphere such as a hydrogen atmosphere to greatly improve the characteristics of each layer.
  • the degree of integration is called “integration”, and the degree of integration is called the degree of integration.
  • the structure of FIG. 31 is very simple, and it is a conventional memory cell. Compared to the above, it is possible to significantly increase the degree of integration. In DRAMs, SRAMs, and flash memories that use MOSFET as a basic technology, it is necessary to secure the gate, source, and drain regions. On the other hand, according to the element shown in FIG. 31, by using a simple structure, it is possible to increase the degree of integration without being caught by the current integration limit. [0220] Further, in the above embodiment, the applied voltage is a direct current.
  • the basic idea of the present invention is that an insulating layer is disposed in contact with a ferroelectric layer and is sandwiched between two electrodes as shown in FIG. With this configuration, a predetermined voltage (DC, pulse) is applied between the two electrodes to change the resistance value of the ferroelectric layer, and a stable high resistance mode and low resistance mode are achieved. As a result, the memory function can be realized.
  • DC predetermined voltage
  • an insulating substrate 3101a is used, and the stacked lower electrode layers 3103a and 3103b are used.
  • a contact electrode 3103c may be provided on the lower electrode layer 3103 using an insulating substrate 310la as shown in FIG. 35B.
  • an insulating substrate 3101a may be used, and stacked upper electrodes 3106a and 3106b may be used.
  • the laminated lower electrode layers 3103a and 3103b and the laminated upper electrode electrodes 3106a and 3106b may be used.
  • an insulating substrate 3601 having strength such as glass or quartz may be used.
  • a through-hole is formed in the substrate 3601 and a plug is provided here, so that an electrical contact is taken from the back surface of the substrate 3601 (opposite the formation surface of the lower electrode layer 3103). May be.
  • a substrate 3801 having conductivity such as metal may be used.
  • a lower electrode layer 3802 may be provided on and in contact with the substrate 3801, and a ferroelectric layer 3803, an insulating layer 3804, and an upper electrode 3805 may be provided thereon.
  • a predetermined electrical signal can be applied between the substrate 3801 and the upper electrode 3805.
  • a ferroelectric layer 1202, an insulating layer 1203, and an upper electrode 1204 may be provided on the metal plate 1201.
  • the metal plate 1201 becomes the lower electrode layer.
  • the resistance value in each of the on state and the off state becomes a problem.
  • the resistance value in the on state increases, making it difficult to obtain the SZN ratio and making it difficult to determine the state of the memory.
  • the thickness of the ferroelectric layer is reduced and the leakage current becomes dominant, it becomes difficult to retain memory information, and the resistance value in the off state increases, making it difficult to obtain the SZN ratio.
  • the ferroelectric layer is preferably set to an optimum thickness as appropriate.
  • the ferroelectric layer only needs to have a thickness of at least lOnm.
  • the ferroelectric layer should be thinner than 200 nm.
  • the thickness of the ferroelectric layer is 30-: LOOnm, the operation of the memory is confirmed, and the best state is when the thickness of the ferroelectric layer is 50 nm. Was obtained.
  • a more preferable film thickness exists also in the insulating layer on the ferroelectric layer. This film thickness will be explained using an example in which an AlO film, SiO film, and TaO film are formed on a silicon substrate by ECR sputtering using an A1 target, Si target, and Ta target, respectively.
  • each of the above films is formed in a predetermined thickness, and an upper electrode of about A1 is formed on each film, and a voltage is applied between the silicon substrate and the upper electrode.
  • the current density varies depending on the material constituting the insulating layer, and the thinner the film thickness, the greater the leak current flows and the greater the current density.
  • the current density decreases. This is because if the film thickness is too thin, the characteristics as an insulating layer cannot be obtained, and if the film thickness is large, the voltage applied to the ferroelectric film decreases, and the SZN ratio becomes low. It shows that the state becomes ⁇ in judgment. Therefore, it is preferable that the insulating layer has an optimum thickness as appropriate in combination with the ferroelectric layer.
  • the insulating layer should be thicker than 20 nm.
  • the film thickness is 3 to 5 nm.
  • a plurality of ferroelectric elements may be arranged and integrated as will be described later with the force described using one ferroelectric element as an example.
  • a common lower electrode layer 4002, a ferroelectric layer 4003, and an insulating layer 4004 are formed on an insulating substrate 4001, and are separated from each other by a predetermined distance on the insulating layer 4004.
  • a plurality of ferroelectric elements are arranged corresponding to the plurality of upper electrodes 4005.
  • Ferroelectrics and insulating films have a very low electrical conductivity compared to conductors such as metals, and thus can be used in common as described above. In this case, since the processing process can be omitted, the productivity can be improved and the industrial advantage is great. In addition, stable operation can be expected by arranging the distance between the ferroelectric elements corresponding to the plurality of upper electrodes 4005 in consideration of conductivity.
  • a common lower electrode layer 4002 is formed on an insulating substrate 4001, and a ferroelectric layer 4013, an insulating layer 4014, an upper portion are formed on the lower electrode layer 4002.
  • a plurality of elements composed of the electrodes 40 15 may be arranged.
  • individual ferroelectric layers 4013 can be formed on the formed ferroelectric film by using a processing method such as RIE, ICP etching, or ECR etching. By separating and configuring in this way, the distance between elements can be further shortened, and the degree of integration can be further improved.
  • the side surfaces of the ferroelectric layer 4013 and the insulating layer 4014 constituting each element may be covered with an insulating side wall 4016.
  • a common insulating layer 4024 may be formed over each element, and the side surface of the ferroelectric layer 4013 may be covered with the insulating layer 4024.
  • the insulating layer 4014 shown in FIG. 40B is constituted by a part of the insulating layer 4024.
  • a plurality of ferroelectric layers 4013 are formed corresponding to each element, and the insulating layer 4014 thereon is made common, and a plurality of separated strong layers are formed.
  • the insulating layer 4026 may be formed so as to fill a side portion of the dielectric layer 4013. As shown above, between the multiple ferroelectric layers 4013 formed separately for each element is covered with an insulator. Thus, the leakage current between the elements can be reduced and the stability of the ferroelectric element can be increased.
  • a plurality of elements are arranged in the X direction and m in the Y direction, and the X direction bus is connected to the lower electrode layer.
  • the change in the resistance value in the ferroelectric layer 3104 can be controlled by a current.
  • a predetermined current for example, ⁇ 0.8 V
  • a predetermined voltage for example, ⁇ 0.8 V
  • FIG. 41 the current value changes.
  • the vertical axis in FIG. 41 indicates the current measured when a voltage for current detection is applied between the electrodes.
  • the resistance change of the ferroelectric layer 3104 can be controlled by the pulse voltage.
  • a negative pulse voltage between the upper electrode 3106 and the lower electrode layer 3103 is For example, when s) is applied once at 4V, the resistance state is lowered.
  • a positive pulse voltage for example, 10 ⁇ s at +5 V
  • a plurality of times for example, 4 times
  • each pulse voltage described above is repeated, and the current value measured after each pulse voltage application changes as shown in FIG. As shown in FIG. 43, the initial state is a high resistance state, but after applying a negative pulse voltage, the state shifts to a low resistance state. Next, a positive resistance voltage is applied multiple times to this state, resulting in a high resistance state. By applying a negative voltage pulse, the resistance value of the ferroelectric layer 3104 changes. Therefore, for example, by applying a positive voltage pulse and a negative voltage pulse, the memory state of the element is changed from the “on” state to the “off” state, and from the “off” state to the “on” state. Memory operation to change to the state of "" is possible.
  • the voltage and time of the voltage pulse that can change the resistance state of the ferroelectric layer 3104 can be changed depending on the situation. For example, at +5 V, 10 / zs, 4 voltage pulses are applied to make a high resistance state, then at 4 V: Applying a short s pulse 10 times changes it to a low resistance state be able to. In this state, it is possible to change to a high resistance state by applying a short pulse of 1 s at + 5V 100 times. Furthermore, it is also possible to change to a low resistance state by applying 100 s of 100 s as a voltage as low as -3V to this state.
  • the element shown in FIG. 31 is used as a switch element for controlling current.
  • the current flowing between the upper electrode 3106 and the lower electrode layer 3103 is as shown in FIG. 44B. If the ferroelectric layer 3104 has a high resistance, the current is turned off. If the body layer 3104 is in a low resistance state, it is turned on.
  • the upper electrode 3106 and the lower electrode layer 3103 are The on-state and the off-state of the current flowing through can be switched alternately.
  • the current-voltage characteristic when a DC voltage is applied between the lower electrode layer 3103 and the upper electrode 3106 is obtained.
  • Fig. 46 it changes to a different low resistance state by changing the applied voltage on the positive side.
  • a memory of three states (three values) can be realized.
  • a ternary memory can be realized by setting the read voltage to about 0.5V.
  • a voltage of 2V is applied to the lower electrode layer 3103 to return to the high resistance state (reset).
  • the element illustrated in FIG. 31 also has a characteristic current-voltage characteristic as illustrated in FIG. 33 by applying a voltage as high as + 15V. Will be expressed. In this way, the electrical initialization (EO) By the processing, the above-described characteristics are exhibited, and a memory element or the like can be realized.
  • a characteristic current-voltage characteristic as illustrated in FIG. 33 by applying a voltage as high as + 15V. Will be expressed.
  • the electrical initialization (EO) By the processing, the above-described characteristics are exhibited, and a memory element or the like can be realized.
  • the EO process described above applies a voltage exceeding 10 V to the element, for example, it is integrated with a semiconductor element to form a plurality of elements in the state shown in FIG.
  • the semiconductor element may be destroyed.
  • the EO process may be performed using the ECR plasma.
  • the ECR plasma For example, in the element shown in FIG. 15, if one end of the wiring connected to the lower electrode layer 4002 is exposed to the peripheral portion of the plasma flow, and the upper electrode 4005 is exposed to the central portion in the plasma flow, Due to the potential difference generated by the distributed force, it is possible to apply the voltage required for EO treatment between these two electrodes. For example, by generating plasma with Ar as the main component and irradiating the device, it is possible to perform EO treatment in a short time from 1 second to several tens of seconds.
  • FIG. 47 is a cross-sectional view schematically showing a configuration example of another bistable resistance value acquiring apparatus according to an embodiment of the present invention.
  • a ferroelectric element composed of a ferroelectric layer 4705 made of a metal oxide exhibiting ferroelectric characteristics will be described as an example.
  • the element shown in FIG. 47 includes, for example, an insulating layer 4702, a lower electrode layer 4703, an insulating layer 4704, a ferroelectric layer 4705, and an upper electrode 4706 on a substrate 4701 having a single crystal silicon force. is there.
  • the substrate 4701 may be composed of a misalignment of a conductive material such as a semiconductor, an insulator, or a metal.
  • a conductive material such as a semiconductor, an insulator, or a metal.
  • the insulating layer 4702 may be omitted.
  • the insulating layer 4702 and the lower electrode layer 4703 may be omitted.
  • the substrate 4701 formed of the conductive material cover is connected to the lower electrode. Become.
  • the lower electrode layer 4703 and the upper electrode 4706 are made of a metal metal of a transition metal containing a noble metal such as platinum (Pt), ruthenium (Ru), gold (Au), silver (Ag), for example. That's fine.
  • the lower electrode layer 4703 and the upper electrode 4706 are made of titanium nitride (TiN), hafnium nitride (HfN), strontium ruthenate (SrRuO), zinc oxide (ZnO), tin lead (ITO), fluoride.
  • Transition metals such as lanthanum (LaF), compounds such as oxides and fluorides,
  • the insulating layer 4704 is composed of silicon dioxide, silicon oxynitride, alumina, or an oxide such as LiNbO that is composed of light metal such as lithium, beryllium, magnesium, and calcium.
  • the insulating layer 4704 includes scandium, titanium, strontium, yttrium, zirconium, hafnium, tantalum, and transition metal oxides and nitrides including the lanthanum series, or silicates including the above elements (metal, silicon, Oxygen ternary compounds), and aluminates containing these elements (metal, aluminum, oxygen ternary compounds), and oxides and nitrides containing two or more of these elements.
  • transition metal oxides and nitrides including the lanthanum series, or silicates including the above elements (metal, silicon, Oxygen ternary compounds), and aluminates containing these elements (metal, aluminum, oxygen ternary compounds), and oxides and nitrides containing two or more of these elements.
  • the ferroelectric layer 4705 is the same as the ferroelectric layer 104 and the ferroelectric layer 3104 described above. Note that the ferroelectric layer 4705 indicates that the ferroelectric layer 4705 is generally made of a material having a ferroelectric property made of a metal oxide composed of at least two metals. It also includes defects that do not exhibit ferroelectric properties.
  • the lower electrode layer 4703 is a ruthenium film having a thickness of 10 nm
  • the insulating layer 4704 is composed of tantalum pentoxide, silicon dioxide, and silicon.
  • the ferroelectric layer 4705 is a 40 nm thick BiTiO film.
  • the upper electrode 4706 is also configured with gold power.
  • the materials of the substrate 4701 and the insulating layer 4702 are not limited to this, and other materials can be appropriately selected as long as they do not affect the electrical characteristics.
  • the insulating layer 4702, the lower electrode layer 4703, the insulating layer 4704, the ferroelectric layer 4705, and the upper electrode 4706 described above are formed according to the ECR sputtering apparatus shown in FIG.
  • a metal target or a sintered target may be formed by sputtering in an ECR plasma composed of argon gas, oxygen gas, and nitrogen gas.
  • a p-type silicon substrate 4701 having a principal surface of (100) and a resistivity of 1 to 2 ⁇ -cm is prepared, and the surface of the substrate 4701 is washed with sulfuric acid. Wash with a mixture of hydrogen oxide water, pure water and dilute hydrogen fluoride water, and then dry.
  • an insulating layer 4702 is formed on the cleaned and dried substrate 4701.
  • the above-mentioned ECR sputtering apparatus is used, the substrate holder 504 in the processing chamber 501 is fixed, the silicon substrate 4701 is fixed, pure silicon (Si) is used as the target 505, and argon (Ar) is used as the plasma gas.
  • a metal mode insulating layer 4702 made of Si—O molecules is formed on the substrate 4701 to cover the surface by ECR sputtering using oxygen gas.
  • ECR sputtering shown in FIG. 5 first, after evacuating the plasma generation chamber 502 to 10- 5 Pa stand high vacuum of, the plasma generating chamber 502, from the inert gas inlet 511, for example by introducing Ar gas as a rare gas at a flow rate of about 20 sccm, it sets the internal plasma generation chamber 502, for example, 10- 2 ⁇ 10- 3 Pa base pressure.
  • the plasma generation chamber 502 is provided with a magnetic field having an electron cyclotron resonance condition by supplying a coil current of, for example, 28 A to the magnetic coil 510.
  • the magnetic flux density in the plasma generation chamber 502 is about 87.5 mT (Tesla).
  • a 2.45 GHz microwave (eg, 500 W) is supplied from a microwave generation unit (not shown), and this is supplied via a waveguide 508, a quartz window 507, and a vacuum waveguide 506. Then, the plasma is introduced into the plasma generation chamber 502, and Ar plasma is generated in the plasma generation chamber 502 due to the introduction of the microwave.
  • sccm is the unit of flow rate, 0 ° C 'l vapor pressure of the fluid shows the lcm 3 Flowing to 1 minute.
  • the plasma generated as described above is emitted from the plasma generation chamber 502 to the processing chamber 501 side by the divergent magnetic field of the magnetic coil 510. Further, high frequency power (eg, 500 W) is supplied from a high frequency power source 522 to a target 505 disposed at the outlet of the plasma generation chamber 502. As a result, Ar particles collide with the target 505 to cause a sputtering phenomenon, and Si particles jump out of the target 505.
  • high frequency power eg, 500 W
  • an insulating layer 4702 having a film thickness of, for example, about lOOnm and having silicon dioxide strength can be formed on the substrate 4701 (FIG. 48A). Shape up to a specified film thickness After the formation, the film formation is stopped by preventing the sputtered raw material from reaching the substrate 4701 with the aforementioned shutter closed. Thereafter, the plasma irradiation is stopped by stopping the supply of microwave power, etc., the supply of each gas is stopped, the substrate temperature is lowered to a predetermined value, and the internal pressure of the processing chamber 501 is increased to increase the atmospheric pressure. After that, the substrate 4701 formed into a film from the inside of the processing chamber 501 is unloaded.
  • the insulating layer 4702 does not leak voltage to the substrate 4701 when a voltage is applied to the lower electrode layer 4703 and the upper electrode 4706 to be formed later, and the desired electrical characteristics are not affected. It is intended to insulate.
  • an oxide silicon film formed by oxidizing the surface of a silicon substrate by a thermal oxidation method may be used as the insulating layer 4702.
  • the insulating layer 4702 may be made of an insulating material other than silicon oxide as long as the insulating property is maintained.
  • the thickness of the insulating layer 4702 is not limited to lOOnm, and may be thinner or thicker. Also good.
  • the insulating layer 4702 may be formed while the substrate 4701 is heated while the substrate 4701 is heated in the above-described film formation using the ECR ⁇ patch.
  • the substrate 4701 is carried out from the inside of the apparatus to the atmosphere, and then the ECR ⁇ pattern similar to that in Fig. 5 using pure ruthenium (Ru) as the target 505.
  • the substrate 4701 is fixed to the substrate holder 504 of the apparatus.
  • a Ru film is formed on the insulating layer 4702 so as to cover the surface by ECR ⁇ -Pattern method using argon (Ar) and xenon (Xe) as plasma gases.
  • the lower electrode layer 4703 is formed.
  • the substrate 4701 is first heated to about 400 ° C., for example, and then the plasma generation chamber 502 is formed. within, from inert gas inlet 511, introducing Ar gas as a rare gas, for example a flow rate 7 sccm, introducing Xe gas, for example a flow rate 5 sccm, the inside of the plasma generation chamber 502, for example, 10-2 to 10- Set the pressure to the level of 3 Pa.
  • the plasma generation chamber 502 is provided with a magnetic field under electron cyclotron resonance conditions by supplying a coil current of, for example, 26 A to the magnetic coil 510.
  • a 2.45 GHz microwave (eg, 500 W) is supplied from a microwave generation unit (not shown), and this is supplied via a waveguide 508, a quartz window 507, and a vacuum waveguide 506. Tep The plasma is introduced into the plasma generation chamber 502, and Ar and Xe plasmas are generated in the plasma generation chamber 502 by introducing the microwave. The generated plasma is emitted from the plasma generation chamber 502 to the processing chamber 501 side by the divergent magnetic field of the magnetic coil 510.
  • high frequency power (for example, 500 W) is supplied from the high frequency electrode supply unit to the target 505 disposed at the outlet of the plasma generation chamber 502.
  • the lower electrode layer 4703 having a thickness of, for example, about lOnm is formed on the insulating layer 4702 (FIG. 48B).
  • the lower electrode layer 4703 enables voltage to be applied to the ferroelectric layer 4705 and the insulating layer 4704 when a voltage is applied between the lower electrode layer 4703 and the upper electrode 4706 to be formed later. Therefore, the lower electrode layer 4703 may be made of other than ruthenium as long as it has conductivity, and the film thickness is not limited to lOnm.
  • the substrate 4701 is carried out from the inside of the apparatus to the atmosphere, and then the ECR ⁇ putter apparatus similar to FIG. 5 using pure tantalum (Ta) as the target 505.
  • the substrate 4701 is fixed to the substrate holder 504.
  • an insulating layer 4704 is formed on the lower electrode layer 4703 so as to cover the surface by an ECR ⁇ Pattern method using argon (Ar) and oxygen gas as plasma gases. Let it be a formed state.
  • a metal mode film made of Ta—O molecules is formed to form the insulating layer 4704.
  • Ar gas which is a rare gas is introduced into the plasma generation chamber 502 from the inert gas introduction unit 511 at a flow rate of 25 sccm, for example, 10- 2 to 10-3 is set to Pa base pressure of.
  • the plasma generation chamber 502 is provided with a magnetic field having an electron cyclotron resonance condition by supplying a coil current of 27 A, for example, to the magnetic coil 510.
  • a 2.45 GHz microwave (eg, 500 W) is supplied from a microwave generation unit (not shown), and this is supplied via a waveguide 508, a quartz window 507, and a vacuum waveguide 506. Then, the plasma is introduced into the plasma generation chamber 502, and Ar plasma is generated in the plasma generation chamber 502 by introducing the microwave. The generated plasma is emitted from the plasma generation chamber 502 to the processing chamber 501 side by the divergent magnetic field of the magnetic coil 510.
  • high frequency power (for example, 500 W) is supplied from the high frequency electrode supply unit to the target 505 disposed at the outlet of the plasma generation chamber 502. As a result, Ar particles collide with the target 505 to cause a sputtering phenomenon, and Ta particles jump out of the target 505.
  • the Ta particles that have jumped out of the target 505 together with the plasma released from the plasma generation chamber 502 and the oxygen gas introduced from the reactive gas introduction unit 512 and activated by the plasma are activated by the lower electrode layer of the substrate 4701. 4703 reaches the surface and is oxidized by activated oxygen to tantalum pentoxide.
  • a tantalum pentoxide tantalum film is formed on the lower electrode layer 4703.
  • a silicon dioxide film is formed on the tantalum pentoxide film by ECR sputtering using a target 505 that also has pure silicon power, similar to the deposition of silicon dioxide described with reference to FIG. 48A. It is assumed that it is formed.
  • the above-described formation process of the tantalum pentoxide film and the silicon dioxide film is repeated to form a multilayer film of, for example, about 5 nm of a tantalum pentoxide film and a silicon dioxide film, thereby insulating the film.
  • Layer 4704 is obtained ( Figure 48D).
  • the insulating layer 4704 made of a tantalum pentoxide film and a silicon dioxide film controls the voltage applied to the ferroelectric film when a voltage is applied to the ferroelectric layer 4705. Use for. Therefore, if the voltage applied to the ferroelectric layer 4705 can be controlled, a force other than the multilayer structure of the tantalum pentoxide film and the silicon dioxide film may be used to form the insulating layer 4704. May be. Also, the film thickness is not limited to 5 nm. The above ECR In the sputtering method, the substrate 4701 is not heated, but may be heated.
  • the substrate 4701 is carried out from the apparatus to the atmosphere, and then the sintered body with a ratio of Bi and Ti of 4: 3 as the target 505 1-1.
  • the substrate 4701 is fixed to the substrate holder 504 of the same ECR sputtering apparatus as in FIG.
  • FIG. 48D an ECR sputtering method using argon (Ar) and oxygen gas as a plasma gas is performed. As shown in FIG. Is formed.
  • the formation of the ferroelectric layer 4705 will be described in detail.
  • the substrate is heated to 4701 force S300 ⁇ 700 ° C. and state and then set, in the plasma generation chamber 502, from the inert gas inlet 511, for example flow introducing Ar gas as a rare gas at 20 sccm, for example, 10- 2 ⁇ 10- 3 Pa stand pressure To do.
  • the plasma generation chamber 502 is supplied with a magnetic field under electron cyclotron resonance conditions by supplying a coil current, for example, 27 A to the magnetic coil 510.
  • a 2.45 GHz microwave (for example, 500 W) is supplied from a microwave generation unit (not shown), and this is supplied via a waveguide 508, a quartz window 507, and a vacuum waveguide 506. Then, the plasma is introduced into the plasma generation chamber 502, and plasma is generated in the plasma generation chamber 502 by introducing the microwave. The generated plasma is emitted from the plasma generation chamber 502 to the processing chamber 501 side by the divergent magnetic field of the magnetic coil 510. Further, high frequency power (for example, 500 W) is supplied from the high frequency electrode supply unit to the target 505 disposed at the outlet of the plasma generation chamber 502. As a result, Ar particles collide with the target 505 to cause a sputtering phenomenon, and Bi particles and Ti particles jump out of the target 505.
  • a 2.45 GHz microwave for example, 500 W
  • the Bi particles and Ti particles that have jumped out of the target 505 are combined with the plasma emitted from the plasma generation chamber 502 and the oxygen gas introduced from the reactive gas introduction unit 512 and activated by the plasma. It reaches the surface of and is oxidized by activated oxygen.
  • Oxygen (O 2) gas is introduced from the reactive gas inlet 512 at a flow rate of about lsccm, for example.
  • the target 505 is a sintered body and contains oxygen. By supplying oxygen, oxygen deficiency in the film can be prevented.
  • the formed ferroelectric layer 4705 may be irradiated with ECR plasma of an inert gas and a reactive gas to improve the film quality.
  • the reactive gas is not limited to oxygen gas, and nitrogen gas, fluorine gas, and hydrogen gas can be used. This improvement in film quality can also be applied to the formation of the insulating layer 4702 and the insulating layer 4704.
  • the upper electrode 4706 made of Au having a predetermined area is formed on the ferroelectric layer 4705, so that a layer having a ferroelectric force is also formed.
  • An element using is obtained.
  • the upper electrode 4706 can be formed by the well-known lift-off method and gold deposition by resistance heating vacuum deposition.
  • other metal materials such as Ru, Pt, TiN, or conductive materials may be used.
  • Pt is used, adhesion may be poor and may peel off. Therefore, it is difficult to peel off Ti Pt Au or other structures, and the structure can be used for patterning such as photolithography or lift-off treatment. It is necessary to form an electrode having a predetermined area by processing.
  • the ferroelectric layer 4705 is formed on the insulating layer 4704 in a state where the insulating layer 4704 is formed thereon.
  • a ferroelectric film can be formed without deteriorating the morphology of the lower metal film surface or the ferroelectric film surface.
  • the ferroelectric layer 4705 can be formed in a state where the surface morphology of the lower layer is good, and a higher quality ferroelectric layer 4705 can be obtained.
  • FIG. 49 the characteristics of the element shown in FIG. 47 will be described. This characteristic investigation is performed by applying a voltage between the lower electrode layer 4703 and the upper electrode 4706.
  • a voltage was applied between the lower electrode layer 4703 and the upper electrode 4706 by a power source and the current when the voltage was applied was observed with an ammeter
  • the result shown in FIG. 49 was obtained.
  • the vertical axis represents the current density obtained by dividing the current value by the area.
  • FIG. 49 will be described together with the memory operation principle of the present invention.
  • the voltage and current values described here are observed with actual devices. This is an example. Therefore, this phenomenon is not limited to the following numerical values. Other numerical values may be observed depending on the material and thickness of the film actually used for the device and other conditions.
  • the trajectory shown in (4) is passed.
  • the upper electrode 4706 must have a high resistance state as shown in (1) unless a voltage of IV or higher is applied. Will be maintained.
  • the state shown in (1) is called “positive high resistance mode”.
  • “positive high resistance mode” and “negative high resistance mode” are “high resistance mode” that shows the same high resistance state, “positive low resistance mode” and “negative low resistance mode”.
  • “Resistance mode” is a "low resistance mode” that shows the same low resistance state, and it was found that there are two modes. In other words, when in the “high resistance mode” state, the “high resistance mode” is maintained in the voltage range of ⁇ 1.5 V to + 1.OV. + 1.
  • the “low resistance mode” When in the “low resistance mode” state, which is transitioned by applying a voltage higher than OV, the “low resistance mode” is maintained in the voltage range of 0.2V to + 0.8V. These two “high resistance mode” and “low resistance mode” are switched. The same applies to the negative resistance mode of “negative high resistance mode” and “negative low resistance mode”.
  • carriers can be controlled from the band structure of the insulating layer 4704 by the insulating layer 4704 provided between the ferroelectric layer 4705 and the upper electrode 4706.
  • tantalum pentoxide has a band gap of about 4.5 eV. From the Ghee difference, it is known that the conduction band is about 1.2 eV, the valence band is 2.3 eV, and noria is high on the valence band side. Therefore, it has a high barrier property for holes in the valence band, but a low noria property for electrons in the conduction band.
  • the conduction band is about 1.2 eV
  • the valence band is 2.3 eV
  • noria is high on the valence band side. Therefore, it has a high barrier property for holes in the valence band, but a low noria property for electrons in the conduction band.
  • the element shown in FIG. 47 can be used as a nonvolatile, non-destructive memory. I found. Specifically, first, when initializing the element and erasing data, that is, writing data “off”, a negative voltage is applied to the upper electrode 4706 as shown in FIG. 49 (4) or (5). By applying the voltage, the mode may be changed from “low resistance mode” to “high resistance mode”.
  • data “on” is written by applying a positive voltage of 1. IV or more to the upper electrode 4706 so that the current flows rapidly as shown in (2) of FIG. Just do it.
  • the mode is changed from the “high resistance mode” to the “low resistance mode”, and the data “on” is written.
  • the memory read operation described above can be easily performed only by checking whether the element shown in FIG. 47 is in the “high resistance mode” force or “low resistance mode”.
  • the element force shown in FIG. 47 is a state in which data is held while the above two modes can be held. Furthermore, even if a positive voltage is applied to the electrode to check which mode is selected, the held mode does not change and the data is not destroyed. Therefore, according to the element shown in FIG. 47, nondestructive reading is possible.
  • the element shown in FIG. 47 functions as a nonvolatile memory element by changing the resistance value according to the voltage applied between the lower electrode layer 4703 and the upper electrode 4706. This element can also be used as a switch element for controlling current.
  • the voltage for operating the device shown in Fig. 47 is maximized at the time of writing to set to "positive low resistance mode", but as shown in Fig. 49, it is about 1.
  • IV Very low power consumption.
  • Low power consumption is very advantageous for devices, for example, mobile communication devices, digital general-purpose devices, digital imaging devices, notebook personal computers, personal 'digital' appliances (PDA)
  • PDA personal 'digital' appliances
  • the power consumption of all electronic computers, personal computers, workstations, office computers, large computers, and devices using memory such as communication units and multifunction devices can be reduced.
  • the memory using the element shown in FIG. 47 has a retention period of 10 years, similar to the element described above.
  • each of the insulating layer on the substrate made of silicon, the lower electrode layer on the insulating layer, the insulating layer on the lower electrode layer, and the ferroelectric layer on the insulating layer is formed.
  • the ECR sputtering method is used.
  • the method for forming these layers is not limited to the ECR sputtering method.
  • an insulating layer formed on a silicon substrate is formed by a thermal oxidation method.
  • it may be formed by a chemical vapor deposition method (CVD method) or a conventional sputtering method.
  • the lower electrode layer may be formed by other film forming methods such as EB vapor deposition, CVD, MBE, and IBD.
  • the insulating layer on the lower electrode layer may be formed by ALD, MOCVD, or a conventional sputtering method.
  • the ferroelectric layer can also be formed by the MOD method described above, the conventional sputtering method, the PLD method, and the MOCVD method.
  • ECR sputtering method a flat and good insulating film, metal film, and ferroelectric film can be easily obtained.
  • each layer is formed and taken out to the atmosphere, an apparatus in which processing chambers for realizing each ECR ⁇ patch are connected by a vacuum transfer chamber is used.
  • each layer may be formed by continuous processing without taking it out to the atmosphere. This makes it possible to transport the substrate to be processed in a vacuum, making it less susceptible to disturbances such as moisture adhesion, and improving the film quality and interface characteristics.
  • the surface of the formed layer may be irradiated with an ECR plasma to improve the characteristics.
  • the formed layer may be annealed (heat treatment) in an appropriate gas atmosphere such as a hydrogen atmosphere to greatly improve the characteristics of each layer.
  • Fig. 47 By the way, arranging multiple elements in a memory and simultaneously storing a plurality of data in a memory is called “integration”, and the degree of integration is called the degree of integration.
  • the structure in Fig. 47 is very simple, and is a conventional memory cell. Compared to the above, it is possible to significantly increase the degree of integration. In DRAMs, SRAMs, and flash memories that use MOSFET as a basic technology, it is necessary to secure the gate, source, and drain regions. On the other hand, according to the element shown in FIG. 47, by using a simple structure, it is possible to increase the degree of integration without being caught by the current integration limit.
  • the applied voltage is a direct current. Even if a pulse voltage having an appropriate width and strength is applied, the same effect can be obtained.
  • the basic idea of the present invention is that, as shown in FIG. 47, a ferroelectric layer is disposed in contact with an insulating layer and these are sandwiched between two electrodes. With such a configuration, a predetermined voltage (DC, pulse) is applied between the two electrodes to change the resistance value of the ferroelectric layer, so that a stable high resistance mode and a low resistance mode are achieved. As a result, the memory function can be realized.
  • an insulating substrate 4701a is used and the stacked lower electrode layers 4703a and 4703b are used.
  • an insulating substrate 4701a may be used, and a contact electrode 4703c may be provided on the lower electrode layer 4703.
  • an insulating substrate 4701a is used, and the stacked upper electrodes 4706a and 4706b are used.
  • the stacked lower electrode layers 4703a and 4703b and the stacked upper electrodes 4706a and 4706b may be used.
  • an insulating substrate 5101 having glass or quartz power may be used.
  • a through-hole is formed in the substrate 5101, a plug is provided here, and an electrical contact is taken from the back surface of the substrate 5101 (opposite the formation surface of the lower electrode layer 4703). Also good.
  • the ferroelectric layer 4705 has a refractive index of about 2.6 when measured at a wavelength of 632.8 nm, and is optically transparent. Therefore, the configuration shown in FIG. 51 can be applied to a display. It becomes possible. Further, by forming the ferroelectric layer 4705 to a thickness that generates an interference color between 10 to 200 nm, a visual effect in a colored state can be obtained.
  • a conductive substrate 5201 such as a metal may be used.
  • a lower electrode layer 5202 may be provided on and in contact with the substrate 5201, and an insulating layer 5203, a ferroelectric layer 5204, and an upper electrode 5205 may be provided thereon.
  • a predetermined electrical signal can be applied between the substrate 5201 and the upper electrode 5205.
  • an insulating layer 5302, a ferroelectric layer 5303, and an upper electrode 5304 may be provided on the metal plate 5301.
  • the metal plate 5301 becomes the lower electrode layer.
  • each component is formed on a metal plate 5301 with good thermal conductivity, so that a higher cooling effect can be obtained and a stable operation of the element can be expected.
  • each resistance in the on state and the off state Value matters.
  • the thickness of the ferroelectric layer increases, the resistance value in the on state increases, and the SZN ratio is determined, so that the state of the memory is determined.
  • the thickness of the ferroelectric layer is reduced and the leakage current becomes dominant, it becomes difficult to retain the memory information, and the resistance value in the off state increases, so that the SZN ratio becomes significant.
  • the ferroelectric layer is preferably set to an optimum thickness as appropriate.
  • the ferroelectric layer only needs to have a thickness of at least lOnm.
  • the ferroelectric layer should be thinner than 200 nm.
  • the thickness of the ferroelectric layer is 30-: LOOnm, the operation of the memory is confirmed, and the best state is when the thickness of the ferroelectric layer is 50 nm. Was obtained.
  • each of the above films is formed in a predetermined thickness, and an upper electrode of about A1 is formed on each film, and a voltage is applied between the silicon substrate and the upper electrode.
  • the current density differs depending on the material constituting the insulating layer, and the thinner the film thickness, the greater the leak current flows and the higher the current density.
  • the current density decreases. This is because when the film thickness is too thin, the characteristics as an insulating layer cannot be obtained, and when the film thickness is large, the voltage applied to the ferroelectric film decreases, and the SZN ratio becomes It shows that the state becomes ⁇ in judgment. Therefore, the insulating layer should have an optimal thickness as appropriate in combination with the ferroelectric layer!
  • the insulating layer should be thicker than 20 nm.
  • the film thickness is 3 to 5 nm.
  • a plurality of elements May be arranged and accumulated.
  • a common lower electrode layer 5402, insulating layer 5403, and ferroelectric layer 5404 are formed on an insulating substrate 5401, and predetermined portions are respectively formed on the ferroelectric layer 5404.
  • a plurality of upper electrodes 5405 may be formed at a distance from each other.
  • a plurality of elements are arranged corresponding to the plurality of upper electrodes 5405.
  • Ferroelectrics and insulating films have a very low electrical conductivity compared to electrical conductors such as metals, and thus can be used in common as described above. In this case, since the processing process can be omitted, the productivity can be improved and the industrial advantage is great. In addition, stable operation can be expected by arranging the distance between the elements corresponding to the plurality of upper electrodes 5405 in consideration of conductivity.
  • a common lower electrode layer 5402 is formed on an insulating substrate 5401, and an insulating layer 5413, a ferroelectric layer 5414, an upper portion are formed on the lower electrode layer 5402.
  • a plurality of elements composed of the electrodes 54 15 may be arranged.
  • individual ferroelectric layers 5414 can be formed by using processing methods such as RIE, ICP etching, and ECR etching on the formed ferroelectric film. By separating and configuring in this way, the distance between elements can be further shortened, and the degree of integration can be further improved.
  • a common lower electrode layer 5402 and insulating layer 5403 are formed on an insulating substrate 5401, and a ferroelectric layer 5414 and an upper electrode 5415 are formed thereon.
  • a plurality of elements may be arranged.
  • the side surfaces of the insulating layer 5413 and the ferroelectric layer 5414 constituting each element may be covered with an insulating side wall 5416.
  • a common lower electrode layer 5402 and insulating layer 5403 are formed on an insulating substrate 5401, and a plurality of elements including a ferroelectric layer 5414 and an upper electrode 5415 are formed thereon.
  • the side surfaces of the ferroelectric layer 5414 constituting each element may be covered with an insulating side wall 5417.
  • a common lower electrode layer 5402 is formed on an insulating substrate 5401, and an insulating layer 5413, a ferroelectric layer 5414, an upper portion are formed on the lower electrode layer 5402.
  • the insulating layer 5426 may be formed so that a plurality of elements each including the electrode 5415 are arranged and the side portions of the plurality of separated ferroelectric layers 5414 are filled. Like these, it is separated for each element By covering the plurality of formed ferroelectric layers 5414 with an insulator, the leakage current between the respective elements can be reduced and the stability of the element can be improved.
  • a plurality of elements in the embodiment of the present invention are arranged in n pieces in the X direction and m pieces in the Y direction, and the X direction bus is connected to the lower electrode layer.
  • the change in the resistance value in the ferroelectric layer 4705 can be controlled by the current.
  • a predetermined current is applied to the ferroelectric layer 4705 in the “high resistance mode” state, a predetermined voltage (between the upper electrode 4706 and the lower electrode layer 4703) For example, when +0.5 V) is applied, the current value changes as shown in FIG.
  • the resistance change of the ferroelectric layer 4705 can be controlled by the pulse voltage. It can also be used as a switch element for controlling current. Also in the element shown in FIG. 47, a ternary memory can be realized in the same manner as the element described above.
  • the insulating layer 4704 also constitutes a multilayer film force of 5 nm in thickness of tantalum pentoxide and silicon dioxide.
  • the insulating layer 4704 has a three-layer structure in which an oxalate tantalum film, a diacid silicon film, and a pentoxide tantalum film are stacked in this order will be described.
  • the inventors formed a metal oxide layer to be the ferroelectric layer 4705 on the cleaned silicon substrate. As a result of examining this experimental result in detail, it was observed that an interface layer was formed between the silicon substrate and the metal oxide layer. It was.
  • the ferroelectric layer 4705 when the ferroelectric layer 4705 is formed on the silicon substrate, two kinds of oxide layers as described above are formed at the interface between them. Note that an oxide layer containing Bi, Ti, and Si is also present at the interface even when the ferroelectric layer 4705 is formed on the intentionally formed oxide silicon layer. Observed. Among the layers formed at these interfaces, the silicon oxide layer 4721 is expected to have a relative dielectric constant as small as 3.8. When a voltage is applied to the ferroelectric layer 4705, a higher voltage is expected. Is applied to the silicon oxide layer 4721, and no voltage is expected to be distributed to the ferroelectric layer 4705. Further, the oxide layer 4722 becomes a problem when interface controllability is required. From these facts, when forming the ferroelectric layer 4705, it is possible to suppress the reaction with silicon so that silicon oxide having a small relative dielectric constant is not formed, and the state can be obtained. Conceivable.
  • ferroelectric layer 4705 is formed directly on the metal layer such as ruthenium in the lower layer.
  • the metal layer such as ruthenium in the lower layer.
  • ruthenium forms an oxide. Therefore, when a ferroelectric layer is formed on a metal layer made of ruthenium, it is expected that the surface of the metal layer is oxidized and the morphology is lowered.
  • a silicon dioxide layer is formed on a silicon substrate by a thermal oxidation method, and a ruthenium electrode layer having a thickness of about 20 nm is formed thereon by the above-described ECR sputtering method.
  • a metal oxide layer containing bismuth and titanium was formed at a substrate temperature of 450 ° C. The state of this cross section was observed with a transmission electron microscope. Was observed. The state of the electron micrograph shown in FIG. 57 is schematically shown in FIG.
  • the lower electrode layer also has a ruthenium force on the silicon dioxide layer 4702a.
  • a state in which a ferroelectric layer 4705 is formed thereon is observed via an interface layer 4723 made of an oxide containing Bi, Ti, and Ru.
  • the interface layer 4723 has been confirmed to be an oxide containing Ru, Ti, and Bi by EDS (energy dispersive X-ray spectroscopy) measurement.
  • EDS energy dispersive X-ray spectroscopy
  • any material that does not form an interface layer at the interface between the lower electrode layer 4703 and the ferroelectric layer 4 705 can be used in place of tantalum pentoxide.
  • the silicon dioxide-silicon layer may be only a tantalum pentoxide layer, depending on the required insulating state.
  • a silicon dioxide layer is formed on a silicon substrate by a thermal oxidation method, and a ruthenium electrode layer having a thickness of about 20 nm is formed on the silicon dioxide layer by the above-described ECR sputtering method.
  • an insulating layer having a thickness of about 5 nm is formed on the formed ruthenium electrode layer by sequentially laminating a tantalum pentoxide layer, a silicon dioxide layer, and a tantalum pentoxide layer.
  • ECR ⁇ Pattern method explained using Fig. 48C.
  • sample A an insulating layer having a thickness of about 3 nm is formed on a cleaned p-type silicon substrate in which a tantalum pentoxide layer, a silicon dioxide layer, and a tantalum pentoxide layer are stacked in this order. It is what.
  • Sample B an insulating layer having a thickness of about 3 nm is formed on a cleaned p-type silicon substrate in which a silicon dioxide layer, a tantalum pentoxide layer, and a silicon dioxide layer are sequentially laminated.
  • sample C an insulating layer having a thickness of about 3 nm and also having silicon dioxide strength is formed on a cleaned p-type silicon substrate.
  • sample D an insulating layer made of tantalum pentoxide and having a thickness of about 3 nm is formed on a cleaned p-type silicon substrate.
  • an upper electrode having an aluminum force was formed on the insulating layer, and a predetermined voltage was applied between the silicon substrate and the upper electrode to obtain a current density. Measure. A state in which a negative voltage is applied to the upper electrode and a state in which the silicon substrate is in a semiconductor storage state is applied, so that a voltage is applied only to the insulating layer.
  • Fig. 59 shows the results of measurement using the above-described samples.
  • C of Fig. 59 it can be seen that the insulating layer having a silicon dioxide-based silicon force is highly insulating.
  • the insulating layer made of tantalum pentoxide has a high current density with a small applied voltage with low insulation.
  • Sample A and Sample B have intermediate characteristics between Sample C and Sample D.
  • the insulating layer having a multilayer structure in which the silicon dioxide layer is sandwiched by the tantalum pentoxide layer is higher than the insulating layer of tantalum pentoxide alone. Insulation is obtained.
  • an insulating layer having a thickness of about 5 nm is formed on the ruthenium electrode layer, in which a tantalum pentoxide layer, a silicon dioxide-silicon layer, and a tantalum pentoxide layer are stacked in this order.
  • the substrate temperature A metal oxide layer having a thickness of about 40 nm containing bismuth and titanium is formed on the insulating layer under the conditions of a temperature of 420 ° C. and an oxygen flow rate of lsccm.
  • FIG. 60 shows the result of observing the cross section of the element formed as described above with a transmission electron microscope
  • FIG. 61 schematically shows this state.
  • an insulating layer 4704 in which a tantalum pentoxide layer 4724, a silicon dioxide layer 4725, a silicon pentoxide layer 4726, and a tantalum pentoxide layer 4726 are stacked in this order on the lower electrode layer 4703 composed of ruthenium carbide.
  • the ferroelectric layer 4705 was formed on the insulating layer 4704. No interface layer is seen at the interface between the layers, and the interface between the layers is flat on the order of nm.
  • an interfacial layer is formed by a reaction after anticipation of acid oxidation by using an insulating layer having a multilayer structure in which a silicon dioxide layer is sandwiched with a tantalum pentoxide layer. Is suppressed, and the surface morphology of the ferroelectric layer is improved.
  • FIG. 62 is a cross-sectional view schematically showing a configuration example of another bistable resistance value acquiring apparatus according to an embodiment of the present invention.
  • an element (functional element) using a metal oxide layer will be described as an example.
  • the element shown in FIG. 62 includes, for example, an insulating layer 6202, a lower electrode layer 6203, an insulating layer (first insulating layer) 6204, a metal oxide layer 6205, an insulating layer ( 2nd insulation layer) 6206,
  • the substrate 6201 may be composed of any force of a conductive material such as a semiconductor, an insulator, or a metal. Further, in the case where the substrate 6201 is also formed of a conductive material force, the insulating layer 6202 is not necessary. In this case, the substrate 6201 formed of a conductive material is the lower electrode layer.
  • the lower electrode layer 6203 and the upper electrode 6207 are made of a metal layer of a transition metal containing a noble metal such as platinum (Pt), ruthenium (Ru), gold (Au), silver (Ag), for example. That's fine.
  • the lower electrode layer 6203 and the upper electrode 6207 are made of titanium nitride (TiN), hafnium nitride (HfN), strontium ruthenate (SrRuO), zinc oxide (ZnO), tin lead (ITO), fluoride.
  • Transition metals such as lanthanum (LaF), compounds such as oxides and fluorides,
  • the insulating layer 6204 and the insulating layer 6206 are formed of silicon dioxide, silicon oxynitride film, alumina, Or oxides such as Li NbO that are also made of light metal such as lithium, beryllium, magnesium, calcium, etc., such as LiCaAlF, LiSrAlF, LiYF, LiLuF, KMgF
  • the insulating layer 6204 and the insulating layer 6206 are scandium, titanium, strontium, yttrium, zirconium, hafnium, tantalum, and oxides and nitrides of transition metals including the lanthanum series, or silicates containing the above elements ( Metal, silicon, oxygen ternary compounds), and aluminates containing these elements (metal, aluminum, oxygen ternary compounds), oxides and nitrides containing two or more of these elements, etc. It should be structured.
  • the metal oxide layer 6205 is the same as the ferroelectric layer 104 shown in FIG. 1 and is composed of a metal oxide containing at least two metals.
  • a metal oxide containing at least two metals for example, Bi Ti O
  • the base layer may be TiO with a bismuth composition of approximately zero.
  • the base layer is a layer in which one of the metals is less than the stoichiometric composition in the metal oxide composed of two metal forces.
  • the metal oxide layer 6205 has, for example, a material having a belovskite structure, a material having a pseudo-ilmenite structure, a material having a tungsten 'bronze structure, a material having a bismuth layer structure, or a neuro-crore structure. Material power should be composed.
  • A is a symbol representing at least one kind of tetravalent, pentavalent, and hexavalent ions and combinations of these ions
  • B is a symbol representing oxygen.
  • the symbol representing bismuth is Bi and m is the symbol representing 1 to 5
  • a metal oxide having a bismuth layer structure represented by (Bi 2 O) 2+ (ABO) 2 (
  • Ferroelectric material etc. can be used.
  • a symbol representing at least one rare earth metal element selected as a lanthanum series force is L n, and a Group II light metal (Be, Mg and alkaline earth metal Ca, Sr, Ba, Ra) force is selected at least
  • the symbol representing one species is Ae, the symbol representing at least one selected from the group III, IV, V, VI, VII, VIII, I, II heavy metals (transition metals) is Tr, oxygen Lx x 3 1-xx 3 from Ln Ae TrO or LnAe Tr O
  • a metal oxide layer 6205 may be formed. However, X indicates a valid number within the solid solution limit range.
  • the metal oxide layer 6205 is made of a metal oxide having at least two metal forces, and generally has ferroelectric characteristics in many cases. However, the ferroelectric properties may not be shown depending on the film thickness conditions.
  • the lower electrode layer 6203 is a ruthenium film having a thickness of 10 nm
  • the insulating layer 6204 is a film thickness of tantalum pentoxide and silicon dioxide. Is a multilayer film with a thickness of about 5 nm
  • the metal oxide layer 6205 has a thickness of 40 nm.
  • the insulating layer 6206 is a 3 nm thick tantalum pentoxide film and the upper electrode 62
  • the materials of the substrate 6201 and the insulating layer 6202 are not limited to this, and other materials can be appropriately selected as long as they do not affect electrical characteristics.
  • the insulating layer 6202, the lower electrode layer 6203, the insulating layer 6204, the metal oxide layer 6205, the insulating layer 6206, and the upper electrode 6207 described above are exemplified in FIG.
  • the metal target and sintered target can be sputtered and formed in ECR plasma consisting of argon gas, oxygen gas, and nitrogen gas using the ECR sputtering equipment!
  • a substrate 6201 made of p-type silicon having a principal surface of (100) and a resistivity of 1 to 2 ⁇ -cm is prepared, and the surface of the substrate 6201 is passed with sulfuric acid. Wash with a mixed solution of hydrogen oxide water, pure water and dilute hydrogen fluoride water, and then dry.
  • the insulating layer 6202 is formed on the cleaned and dried substrate 6201.
  • the above-described ECR sputtering apparatus is used, the substrate holder 504 and the substrate 6201 in the processing chamber 501 are fixed, pure silicon (Si) is used as the target 505, and argon (Ar) is used as the plasma gas.
  • An ECR sputtering method using oxygen gas is used to form a metal mode insulating layer 6202 of Si—O molecules on the substrate 6201 so as to cover the surface.
  • ECR sputtering shown in FIG. 5 first, after evacuating the plasma generation chamber 502 to 10- 5 to 10-4 Pa stand high vacuum of, the plasma generating chamber 502, an inert gas introducing from part 5 11, introducing Ar gas, for example noble gases at a flow rate of about 20 sccm, to set the interior of the plasma generating chamber 50 2, for example, 10- 3 to 10-2 Pa base pressure.
  • Ar gas for example noble gases
  • sccm is a unit of flow rate, and indicates that a fluid at 0 ° C '1 atm flows lcm 3 per minute.
  • a magnetic field of electron cyclotron resonance condition is applied to the plasma generation chamber 502 by supplying a coil current of, for example, 28 A to the magnetic coil 510.
  • the magnetic flux density in the plasma generation chamber 502 is about 87.5 mT (Tesla).
  • a 2.45 GHz microwave (for example, 500 W) is supplied from a microwave generation unit (not shown), and this is supplied via a waveguide 508, a quartz window 507, and a vacuum waveguide 506. Then, the plasma is introduced into the plasma generation chamber 502, and Ar plasma is generated in the plasma generation chamber 502 due to the introduction of the microwave.
  • the plasma generated as described above is emitted from the plasma generation chamber 502 to the processing chamber 501 side by the divergent magnetic field of the magnetic coil 510. Further, high frequency power (eg, 500 W) is supplied from a high frequency power source 522 to a target 505 disposed at the outlet of the plasma generation chamber 502. As a result, Ar particles collide with the target 505 to cause a sputtering phenomenon, and Si particles jump out of the target 505.
  • high frequency power eg, 500 W
  • an insulating layer 6202 having a film thickness of, for example, about lOOnm and having silicon dioxide strength can be formed on the substrate 6201 (FIG. 63A). Shape up to a specified film thickness After the formation, the film formation is stopped by preventing the sputtered raw material from reaching the substrate 6201 with the aforementioned shutter closed. Thereafter, the plasma irradiation is stopped by stopping the supply of microwave power, etc., the supply of each gas is stopped, the substrate temperature is lowered to a predetermined value, and the internal pressure of the processing chamber 501 is increased to increase the atmospheric pressure. After that, the substrate 6201 formed into a film is carried out from the inside of the processing chamber 501.
  • the insulating layer 6202 does not leak to the substrate 6201 when a voltage is applied to the lower electrode layer 6203 and the upper electrode 6207 to be formed later, and the desired electrical characteristics are not affected. It is intended to insulate.
  • an oxide silicon film formed by oxidizing the surface of a silicon substrate by a thermal oxidation method may be used as the insulating layer 6202.
  • the insulating layer 6202 may be made of an insulating material other than silicon oxide as long as the insulating property is maintained.
  • the thickness of the insulating layer 6202 is not limited to lOOnm, and may be thinner or thicker. Also good.
  • the film may be formed while the substrate 6201 is heated.
  • an insulating layer 6202 made of silicon oxide may be formed by oxidizing the surface of the substrate 6201 also having silicon power by a thermal acid method.
  • the substrate 6201 is carried out from the apparatus to the atmosphere, and then the same ECR ⁇ pattern as in FIG. 5 using pure ruthenium (Ru) as the target 505.
  • the substrate 6201 is fixed to the substrate holder 504 of the apparatus.
  • a Ru film is formed on the insulating layer 6202 so as to cover the surface by ECR ⁇ Pattern method using argon (Ar) and xenon (Xe) as plasma gases.
  • the lower electrode layer 6203 is formed.
  • the substrate 6201 is first heated to about 400 ° C., for example, and then the plasma generation chamber 502 within, from inert gas inlet 511, for example flow introducing Ar gas as a rare gas at 7 sccm, for example, the flow rate introduced Xe gas at 5 sccm, the inside of the plasma generation chamber 502, for example, 10- 3 to 10- Set the pressure to 2 Pa.
  • the plasma generation chamber 502 is provided with a magnetic field under electron cyclotron resonance conditions by supplying a coil current of, for example, 26 A to the magnetic coil 510.
  • a 2.45 GHz microwave (eg, 500 W) is supplied from a microwave generation unit (not shown), and this is supplied via a waveguide 508, a quartz window 507, and a vacuum waveguide.
  • the plasma is introduced into the plasma generation chamber 502, and the introduction of the above microwaves causes the plasma generation chamber 502 to generate Ar and Xe plasma.
  • the generated plasma is emitted from the plasma generation chamber 502 to the processing chamber 501 side by the divergent magnetic field of the magnetic coil 510.
  • high frequency power (for example, 500 W) is supplied from the high frequency electrode supply unit to the target 505 disposed at the outlet of the plasma generation chamber 502.
  • the lower electrode layer 6203 having a thickness of, for example, about 10 nm is formed on the insulating layer 6202 (FIG. 63B).
  • the lower electrode layer 6203 makes it possible to apply a voltage to the metal oxide layer 6205 and the insulating layer 6204 when a voltage is applied between the upper electrode 6207 to be formed later. Therefore, as long as it has conductivity, it is possible to use a force other than ruthenium to form the lower electrode layer 6203, and the film thickness is not limited to 10 nm.
  • the substrate 6201 is taken out from the apparatus to the atmosphere, and then the ECR ⁇ putter apparatus similar to Fig. 5 using pure tantalum (Ta) as the target 505.
  • the substrate 6201 is fixed to the substrate holder 504.
  • an insulating layer 6204 is formed on the lower electrode layer 6203 so as to cover the surface by an ECR ⁇ -Pattern method using argon (Ar) and oxygen gas as plasma gases. Let it be a formed state.
  • argon (Ar) and oxygen gas as plasma gases Let it be a formed state.
  • a metal mode film made of Ta—O molecules is formed, and the insulating layer 6204 and To do.
  • the inside of the plasma generation chamber 502 is set to 10 15 ⁇ was evacuated to 10- 4 Pa stand high vacuum of, the plasma generating chamber 502, from the inert gas inlet 511, introducing Ar gas as a rare gas, for example a flow rate 25 sccm, for example, 10- 3-10 — Set the pressure in the 2 Pa range.
  • Ar gas as a rare gas, for example a flow rate 25 sccm, for example, 10- 3-10 — Set the pressure in the 2 Pa range.
  • a magnetic field under electron cyclotron resonance conditions is applied to the plasma generation chamber 502 by supplying a coil current of 27 A, for example, to the magnetic coil 510.
  • a 2.45 GHz microwave (eg, 500 W) is supplied from a microwave generation unit (not shown), and this is supplied via the waveguide 508, the quartz window 507, and the vacuum waveguide 506. Then, the plasma is introduced into the plasma generation chamber 502, and Ar plasma is generated in the plasma generation chamber 502 by introducing the microwave. The generated plasma is emitted from the plasma generation chamber 502 to the processing chamber 501 side by the divergent magnetic field of the magnetic coil 510.
  • high frequency power for example, 500 W
  • a tantalum pentoxide film is formed on the lower electrode layer 6203.
  • a silicon dioxide film is formed on the tantalum pentoxide film by ECR sputtering using a target 505 that also has pure silicon power, similar to the deposition of silicon dioxide described with reference to FIG. 63A. It is assumed that it is formed.
  • the above-described formation process of the tantalum pentoxide film and the silicon dioxide film is repeated to form a multilayer film of, for example, about 5 nm of a tantalum pentoxide film and a silicon dioxide film, thereby insulating the film.
  • Layer 6204 is obtained (FIG. 63D).
  • the insulating layer 6204 made of a tantalum pentoxide film and a silicon dioxide film controls the voltage applied to the metal oxide layer 6205 when a voltage is applied to the metal oxide layer 6205. Use for. Therefore, as long as the voltage applied to the metal oxide layer 6205 can be controlled, the insulating layer 6204 may be configured with a force other than the multilayer structure of the tantalum pentoxide film and the silicon dioxide film. Laminar force may be configured. Also, the film thickness is not limited to 5 nm. Note that in the ECR sputtering method described above, the substrate 6201 is not heated, but may be heated.
  • the substrate 6201 is carried out of the apparatus into the atmosphere, and then the target 505 is a sintered body with a ratio of Bi to Ti of 4: 3 1-1.
  • the substrate 6201 is fixed to the substrate holder 504 of the same ECR sputtering apparatus as in FIG.
  • a metal oxide layer 6205 is formed on the insulating layer 6204 so as to cover the surface by ECR sputtering using argon (Ar) and oxygen gas as plasma gases. It is assumed that it is formed.
  • the formation of the metal oxide layer 6205 will be described in detail.
  • the inside of the processing chamber 501 and the plasma generation chamber 502 is evacuated. after the pressure inside the 10- 5 ⁇ 10- 4 Pa evacuated to, a state in which the substrate 6201 is heated to 300 to 700 ° C, then, the plasma generating chamber 502, from the inert gas inlet 511 , for example, the flow introducing Ar gas as a rare gas at 20 sccm, to set, for example, 10- 3 ⁇ 10- 2 P a stand pressure.
  • a magnetic field of electron cyclotron resonance conditions is applied to the plasma generation chamber 502 by supplying a coil current of, for example, 27 A to the magnetic coil 510.
  • a 2.45 GHz microwave (eg, 500 W) is supplied from a microwave generation unit (not shown), and this is supplied via a waveguide 508, a quartz window 507, and a vacuum waveguide 506. Then, the plasma is introduced into the plasma generation chamber 502, and plasma is generated in the plasma generation chamber 502 by introducing the microwave. The generated plasma is emitted from the plasma generation chamber 502 to the processing chamber 501 side by the divergent magnetic field of the magnetic coil 510. Further, high frequency power (for example, 500 W) is supplied from the high frequency electrode supply unit to the target 505 disposed at the outlet of the plasma generation chamber 502. As a result, Ar particles collide with the target 505 to cause a sputtering phenomenon, and Bi particles and Ti particles jump out of the target 505.
  • a 2.45 GHz microwave eg, 500 W
  • Bi particles and Ti particles jumped out from the target 505 were introduced from the plasma generation chamber 502 and introduced from the reactive gas introduction unit 512 and activated by the plasma. Together with the oxygen gas, it reaches the surface of the insulating layer 6204 and is oxidized by the activated oxygen.
  • Oxygen (O 2) gas is introduced from the reactive gas inlet 512 at a flow rate of about lsccm, for example.
  • the target 505 is a sintered body and contains oxygen. By supplying oxygen, oxygen deficiency in the film can be prevented.
  • the substrate 6201 is unloaded from the apparatus to the atmosphere, and then pure tantalum (Ta) is used as the target 505, as in FIG.
  • the substrate 6201 is fixed to the substrate holder 504 of the ECR sputtering apparatus.
  • the surface is covered on the metal oxide layer 6205 by the ECR ⁇ -patcher method using argon as the plasma gas and additionally oxygen gas as the reaction gas.
  • the insulating layer 6206 is formed by forming the pentanoic acid tantalum film to an extent. As shown below, the tantalum pentoxide film is in the state of a metal mode film by Ta—O molecules.
  • the ECR sputtering apparatus shown in FIG. 5 using the target 505 made of tantalum first, the inside of the plasma generating chamber 50 2 10 5 - was evacuated to 10- 4 Pa stand high vacuum of, the plasma generating chamber 502, from the inert gas inlet 511, Ar gas was introduced, for example, flow rate 25 sccm, for example, 10- 3 ⁇ : L0- 2 Pa Set to base pressure.
  • the plasma generation chamber 502 is provided with a magnetic field of electron cyclotron resonance conditions by supplying a coil current of 27 A, for example, to the magnetic coil 510.
  • a 2.45 GHz microwave (for example, 500 W) is supplied from a microwave generation unit (not shown), and this is supplied via a waveguide 508, a quartz window 507, and a vacuum waveguide 506. Then, the plasma is introduced into the plasma generation chamber 502, and Ar plasma is generated in the plasma generation chamber 502 by introducing the microwave. The generated plasma is emitted from the plasma generation chamber 502 to the processing chamber 501 side by the divergent magnetic field of the magnetic coil 510.
  • high frequency power (for example, 500 W) is supplied from the high frequency electrode supply unit to the target 505 disposed at the outlet of the plasma generation chamber 502. As a result, Ar particles collide with the target 505 and The Ta particles are ejected from the target 505.
  • the Ta particles that have jumped out of the target 505 together with the plasma emitted from the plasma generation chamber 502 and the oxygen gas introduced from the reactive gas introduction unit 512 and activated by the plasma are activated by the lower electrode layer of the substrate 6201. 6203 reaches the surface and is oxidized by activated oxygen to tantalum pentoxide.
  • an insulating layer 6206 is formed as shown in FIG. 63 (e) by forming a tantalum pentoxide film with a film thickness of about 3 nm on the metal oxide layer 6205.
  • the obtained state is obtained.
  • the insulating layer 6206 having tantalum pentoxide tantalum force is used to control the voltage applied to the metal oxide layer 6205 when a voltage is applied to the metal oxide layer 6205. Therefore, as long as the voltage applied to the metal oxide layer 6205 can be controlled, the insulating layer 6206 may be formed from a material other than tantalum pentoxide, or a single layer force may be formed.
  • the film thickness is not limited to 3 nm.
  • the substrate 6201 is heated! Further, the surface of the formed insulating layer 6206 may be irradiated with ECR plasma of an inert gas and a reactive gas to improve the characteristics.
  • a reactive gas used for these, oxygen gas, nitrogen gas, fluorine gas, and hydrogen gas can be used. This improvement in film quality can also be applied to the insulating layer 6204 and the metal oxide layer 6205.
  • a metal containing at least two metals is formed by forming an upper electrode 6207 having a predetermined area of Au force on the insulating layer 6206.
  • An element using an oxide layer is obtained.
  • the upper electrode 6207 can be formed by the well-known lift-off method and gold deposition by resistance heating vacuum deposition.
  • other metal materials such as Ru, Pt, TiN, or conductive materials may be used. Note that when Pt is used, adhesion may be poor and may peel off. Therefore, it is necessary to form a film by heating, or to make a structure that is difficult to peel off, such as Ti-Pt-Au. -It is necessary to form an electrode having a predetermined area by performing a bending process.
  • the metal oxide layer 6205 is formed on the insulating layer 6204 in a state where the insulating layer 6204 is formed.
  • the surface of the lower metal film or the metal oxide layer 6205 No deterioration of the surface morphology.
  • the metal oxide layer 6205 can be formed in a state where the surface morphology of the lower layer is good, and the metal oxide layer 6205 with higher quality can be obtained.
  • FIG. 64 the vertical axis indicates the absolute value of the current value in logarithm. Therefore, it is shown as a positive current value regardless of the positive and negative voltages applied. Actually, when a positive voltage is applied, a positive current value is observed, and when a negative voltage is applied, a negative current value is observed.
  • FIG. 64 the vertical axis indicates the absolute value of the current value in logarithm. Therefore, it is shown as a positive current value regardless of the positive and negative voltages applied.
  • “positive high resistance mode” and “negative high resistance mode” are “high resistance mode” which shows the same high resistance state, “positive low resistance mode” and “negative low resistance mode”.
  • “Resistance mode” is a "low resistance mode” that shows the same low resistance state, and it has been found that there are two modes. In other words, when in the “high resistance mode” state, the “high resistance mode” is maintained in the voltage range of ⁇ 1.6 V to +1.6 V. + 1.
  • the “low resistance mode” When in the “low resistance mode” state transitioned by applying a voltage of 6V or higher, the “low resistance mode” is maintained in the voltage range from 0.5V to + 0.5V. These two “high resistance mode” and “low resistance mode” are switched. The same applies to the negative resistance mode of “negative high resistance mode” and “negative low resistance mode”.
  • the insulating layer 6204 provided between the metal oxide layer 6205 and the upper electrode 6207 can control carriers from the band structure of the insulating layer 6204.
  • tantalum pentoxide has a band gap of about 4.5 eV.
  • the conduction band is about 1.2 eV
  • the valence band is 2.
  • the barrier is high at 3 eV and the valence band side. Therefore, it has a high barrier property for holes in the valence band, but a low noria property for electrons in the conduction band.
  • the element shown in FIG. 62 can be used as a nonvolatile, non-destructive memory. I found. Specifically, first, initialization of the element and erasure of data, that is, writing of the data “off”, applies a negative voltage to the upper electrode 6207 as shown in (4) or (5) of FIG. By changing the mode from ⁇ low resistance mode '' to ⁇ high resistance mode '' Just do it.
  • data “on” is written by applying a positive voltage of 1.6 V or more to the upper electrode 6207 to cause the current to flow rapidly, as shown in FIG. 64 (2). Just do it. As a result, the mode is changed from the “high resistance mode” to the “low resistance mode”, and the data “on” is written. As described above, it is possible to write “off” or “on” data (state) by setting the “high resistance mode” or the “low resistance mode” by applying a voltage to the upper electrode 6207.
  • data written as described above can be easily read by reading the current value when an appropriate voltage of 0 to 1.6 V is applied to the upper electrode 6207. .
  • the mode state force of the element shown in FIG. 62 is “off”, that is, in the “high resistance mode”
  • the current is applied when an appropriate voltage of 0.5 to 1.6 V is applied as shown in (1) of FIG. It can be judged by the difficulty of flow.
  • the above-described memory read operation can be easily performed only by checking whether the element shown in FIG. 62 is in the “high resistance mode” force or “low resistance mode”. In other words, data is held while the element shown in FIG. 62 can hold the above two modes. Furthermore, even if a positive voltage is applied to the electrode to check which mode is selected, the held mode does not change and the data is not destroyed. Therefore, according to the functional element shown in FIG. 62, nondestructive reading is possible.
  • the element shown in FIG. 62 functions as a nonvolatile memory element by changing the resistance value according to the voltage applied between the metal oxide layer 6205 and the lower electrode layer 6203 and the upper electrode 6207. . This element can also be used as a switch element for controlling current.
  • Each of the insulating layers on the material layer is formed by the ECR ⁇ patter method.
  • the formation method of these layers is not limited to the ECR sputtering method.
  • the insulating layer formed on the silicon substrate may be formed by a thermal oxidation method, a chemical vapor deposition method (CVD method), a conventional sputtering method, or the like.
  • the lower electrode layer may be formed by other film forming methods such as EB vapor deposition, CVD, MBE, and IBD.
  • the insulating layer on the lower electrode layer may be formed by ALD, MOCVD, or a conventional sputtering method.
  • the metal oxide layer can also be formed by the MOD method described above, the conventional sputtering method, the PLD method, and the MOCVD method.
  • ECR sputtering method a flat and good metal oxide film such as an insulating film, a metal film, and a ferroelectric can be easily obtained.
  • each layer is formed and taken out to the atmosphere, an apparatus is used in which processing chambers for realizing each ECR ⁇ patch are connected by a vacuum transfer chamber.
  • each layer may be formed by continuous processing without taking it out to the atmosphere. This makes it possible to transport the substrate to be processed in a vacuum, making it less susceptible to disturbances such as moisture adhesion, and improving the film quality and interface characteristics.
  • the surface of the formed layer may be irradiated with ECR plasma to improve the characteristics.
  • the formed layer is annealed in an appropriate gas atmosphere such as a hydrogen atmosphere. (Heat treatment) may be used to greatly improve the characteristics of each layer.
  • arranging elements in a memory and simultaneously storing a plurality of data in a memory is called "integration", and the degree of integration is called the degree of integration.
  • the structure in Fig. 62 is very simple, and is a conventional memory cell. Compared to the above, it is possible to significantly increase the degree of integration. In DRAMs, SRAMs, and flash memories that use MOSFET as a basic technology, it is necessary to secure the gate, source, and drain regions. On the other hand, according to the element shown in FIG. 62, it is possible to increase the degree of integration by using a simple structure without being caught by the current integration limit.
  • the applied voltage is a direct current. Even if a pulse voltage having an appropriate width and strength is applied, the same effect can be obtained.
  • the basic idea of the present invention is that, as shown in FIG. 62, a metal oxide layer is disposed in contact with an insulating layer, and these are sandwiched between two electrodes. With such a configuration, a predetermined voltage (DC, pulse) is applied between the two electrodes to change the resistance value of the metal oxide layer, so that a stable high resistance mode and a low resistance mode are achieved. As a result, the memory function can be realized.
  • an insulating substrate 6201a is used, and the stacked lower electrode layers 6203a and 6203b are used.
  • an insulating substrate 620 la may be used, and the contact electrode 6203c may be provided on the lower electrode layer 6203.
  • an insulating substrate 6201a is used and the stacked upper electrodes 6207a and 6207b are used.
  • the stacked lower electrode layers 6203a and 6203b and the stacked upper electrode electrodes 6207a and 6207b may be used.
  • an insulating substrate 6601 having glass or quartz power may be used.
  • a through-hole is formed in the substrate 6601, and a plug is provided here, so that an electrical contact is taken from the back surface of the substrate 6601 (the opposite side of the formation surface of the lower electrode layer 6203). May be.
  • the metal oxide layer 6205 is optically transparent with a refractive index of about 2.6 when measured at a wavelength of 632.8 nm. Therefore, by adopting the configuration shown in FIGS. 66A and 66B, Application to a display becomes possible.
  • the metal oxide layer 6205 A visual effect in a colored state can be obtained by forming a thickness that generates an interference color between 10 and 200 nm.
  • a conductive substrate 6701 such as a metal may be used.
  • a lower electrode layer 6702 is provided on and in contact with a substrate 6701, and an insulating layer 6703, a metal oxide layer 6704, an insulating layer 6705, and an upper electrode 67 06 are provided thereon. Also good.
  • a predetermined electric signal can be applied between the substrate 6701 and the upper electrode 6706.
  • an insulating layer 6802, a metal oxide layer 6803, an insulating layer 6804, and an upper electrode 6805 may be provided over the metal plate 6801.
  • the metal plate 6801 becomes the lower electrode layer.
  • the metal oxide layer is preferably set to an optimal thickness as appropriate.
  • the metal oxide layer should have a minimum thickness of lOnm.
  • the metal oxide layer should be thinner than 200 nm. As a result of the inventors' experiment, if the thickness of the metal oxide layer is 30 to: LOOnm, the memory operation is confirmed, and the best condition is that the thickness of the metal oxide layer is Obtained at 50 nm.
  • the insulating layer has an optimum thickness as appropriate in combination with the metal oxide layer.
  • the film thickness is l to 3n.
  • the insulating layer should be thinner than 20nm.
  • the film thickness is 3 to 5 nm,
  • a plurality of functional elements may be arranged and integrated.
  • a common lower electrode layer 6902, insulating layer 6903, metal oxide layer 6904, and insulating layer 6905 are formed on an insulating substrate 6901.
  • a plurality of upper electrodes 6906 may be formed at a predetermined distance from each other.
  • a plurality of functional elements are arranged corresponding to the plurality of upper electrodes 6906.
  • the metal oxide layer 6205 and the insulating layers 6903 and 6905 have very small conductivity compared to a conductor such as metal, and thus can be used in common as described above. In this case, since the processing process can be omitted, the productivity can be improved and the industrial advantage is great. In addition, stable operation can be expected by arranging the distance between functional elements corresponding to the plurality of upper electrodes 6906 in consideration of conductivity.
  • a common lower electrode layer 6902 is formed on an insulating substrate 6901, and an insulating layer 6913, a metal oxide layer 6914 are formed on the lower electrode layer 6902.
  • a plurality of elements including the insulating layer 695 and the upper electrode 6916 may be arranged.
  • individual metal oxide layers 6914 can be formed on the formed metal oxide film by using a processing method such as RIE, ICP etching, or ECR etching.
  • a common lower electrode layer 6902 and insulating layer 6903 are formed on an insulating substrate 6901, and a metal oxide layer 6914 and insulating layer 6915 are formed thereon.
  • a plurality of elements including the electrodes 6916 may be arranged.
  • the side surfaces of the insulating layer 6913, the metal oxide layer 6914, and the insulating layer 6915 constituting each element may be covered with an insulating side wall 6917. Further, as shown in FIG.
  • a common lower electrode layer 6902 and insulating layer 6903 are formed on an insulating substrate 6901, and a metal oxide layer 6914, insulating layer 6915, A plurality of elements including the upper electrode 6916 may be arranged so that the side surface of the metal oxide layer 6914 constituting each element is covered with the insulating side wall 6918.
  • a common lower electrode layer 6902 is formed on an insulating substrate 6901, and an insulating layer 6913, a metal oxide layer 6914 are formed on the lower electrode layer 6902.
  • the insulating layer 6926 may be formed so as to fill the side portions of the plurality of metal oxide layers 6914 separated from each other by arranging a plurality of elements including the insulating layer 69 15, and the upper electrode 6916. Good.
  • the leakage current between the elements is reduced and the stability of the functional element is increased. This comes out.
  • n functional elements are arranged in the X direction and n in the Y direction, the X direction bus is connected to the lower electrode layer, the Y direction bus is connected to the upper electrode, the X direction bus and
  • the change in the resistance value in the metal oxide layer 6205 can also be controlled by the current, as in the above-described element.
  • the resistance change of the metal oxide layer 6205 can be controlled by a pulse voltage. It can also be used as a switch element.
  • the voltage characteristics change to different low resistance states by changing the applied voltage on the positive side.
  • a memory of three states (three values) indicated by a square, a circle and a triangle can be realized.
  • a ternary memory can be realized by setting the read voltage to about 0.5V. Before transitioning to each state, apply a voltage of ⁇ 2 V to the high resistance state by applying the lower electrode layer 6203. Yes (reset).
  • the ferroelectric layer 104 of the element shown in FIG. 1 is formed at room temperature (about 20 to 24 ° C.)
  • the lower electrode layer 103 is assumed to be composed of Pt—Ti.
  • the applied voltage is made higher than OV, first, as shown in (1) in Fig. 72, when the force applied voltage in the positive high resistance mode exceeds 1.6 V, as shown in (2) A sudden current flow is observed. After that, once the voltage application is stopped and then a positive voltage is applied again, as shown in (3), a positive low resistance mode is set.
  • the ferroelectric layer 104 of the element shown in FIG. 1 is formed at about 150 ° C.
  • the lower electrode layer 103 is made of Pt—Ti
  • the substrate 101 is made of plastic.
  • a voltage negative to the upper electrode 105
  • the current when a voltage was applied was observed with an ammeter
  • the result shown in FIG. 74 was obtained.
  • (1) in Fig. 74 when the force applied voltage in the negative high resistance mode exceeds 2V, a rapid current flow is observed as shown in (2). . After this, once the voltage application is stopped, and then a positive voltage is applied, the negative low resistance mode is entered as shown in (3).
  • the positive low resistance mode shown in (3) when a positive voltage is applied to the upper electrode 105, the positive low resistance mode shown in (4) is obtained. Furthermore, assuming that a positive voltage is applied to the upper electrode 105, the transition state shown in (5) is reached and the resistance value suddenly increases from the time when a voltage exceeding 0.8 V is applied. After this state, the positive high resistance mode shown in (6) is entered. These states (1) to (6) are observed repeatedly. Under the above-mentioned conditions, the ferroelectric layer 104 is almost transparent, and if a transparent material is used for the substrate and each electrode is made up of a transparent electrode such as ITO, the optical layer 104 is optically transparent. An element having transparency can be configured.
  • the ferroelectric layer 3104 of the element shown in FIG. 31 is formed at about 450 ° C.
  • the lower electrode layer 3103 also has a Ru force.
  • a voltage negative to the upper electrode 3106
  • the current when the voltage is applied is observed with an ammeter
  • the result shown in 75 was obtained.
  • (1) in Fig. 75 when the force applied voltage in the negative high resistance mode exceeds -3V, a rapid current flow is observed as shown in (2). Become. After this, when a positive voltage is applied, the negative low resistance mode is set as shown in (3).
  • Fig. 75 The memory retention characteristics of the element whose characteristics are shown in Fig. 75 will be described below.
  • Fig. 76 in the high resistance mode, the upper electrode 3106 When voltage is applied, a current value of about 10 ⁇ b A is observed. In contrast to this state, when a negative voltage exceeding ⁇ 4 V is applied to the upper electrode 3106, a low resistance mode in which a current of about 2 to 10 ⁇ 3 flows is obtained. According to the above element, it can be seen that the low resistance mode force has a stability exceeding 10 years from the extrapolated line as shown in FIG.
  • the ferroelectric layer 104 of the element shown in FIG. 1 is formed at about 430 ° C.
  • the lower electrode layer 103 is also configured with a Ru force
  • the upper electrode 105 is configured such that the lower layer is also configured with a titanium upper layer with a platinum force.
  • the applied voltage is made higher than OV, first, as shown in (1) in Fig.
  • the negative low resistance mode shown in (4) is obtained. Furthermore, assuming that a negative voltage is applied to the upper electrode 105, the transition state shown in (5) is reached from the point in time when a voltage exceeding 1.8 V is applied, and the resistance value rapidly increases. After this state, the negative high resistance mode of (6) is entered. These states (1) to (6) are observed repeatedly.
  • FIG. 78 a solid line schematically represents a plurality of dispersed fine particles 7801. It is considered that the low resistance mode is developed because the conductive path 7802 shown is formed. As the conductive path 7802, quantum tunneling between nano-sized fine particles 7801, holes and electron hopping, or oxygen vacancies can be considered. Although only one conductive path 7802 may be formed, in many cases, it is considered that a plurality of conductive paths 7802 are formed.
  • the resistance value between the electrodes to which the voltage is applied decreases, and the low resistance mode shown in FIG. 79 is set.
  • the low resistance mode is changed to the high resistance mode.
  • a voltage that allows current to flow between the electrodes is applied, a plurality of conductive paths 7802 are formed again as shown in FIG.
  • FIG. 83 the current suddenly flows and changes to the low resistance mode.
  • the force used to switch between the high resistance state and the low resistance state by applying a voltage of a different polarity is not limited to this.
  • Switching between the high resistance state and the low resistance state is also possible by applying a voltage.
  • the following state is when the metal oxide layer is formed at 450 ° C.
  • a voltage exceeding -3.5V is applied to the upper electrode from the negative low resistance state shown in (1), a sudden current is applied as shown in (2). A flow occurs. After that, when a negative voltage is applied again, the negative low resistance state shown in (3) is reached, and this state is maintained.
  • Pulse application is also possible when a voltage having the same polarity is applied.
  • FIG. 85 confirms the state of the element in the observation voltage one 0. IV, a high resistance state of about 10- 8 A, be observed four times with -0. IV observations voltage, high The resistance state is maintained. In this state, as shown by an outline arrow, -. 5.
  • OV, 500 ⁇ by applying a single pulse voltage, -0 as measured by observing the voltage of IV, 10- 4 Alpha about current observations In other words, the low resistance state is likely. In this state, the low resistance state is maintained even if the observation voltage is observed again 4 times with the observation voltage of 0.4.
  • FIG. 86A and 86B are schematic cross-sectional views schematically showing a configuration example of the three-terminal element in the embodiment of the present invention.
  • the three-terminal device shown in FIG. 86A and FIG. 86B is, for example, about 10 to 200 nm thick composed of an insulating layer 8602, a gate electrode 8603, Bi, Ti, and O on a substrate 8601 made of monocrystalline silicon.
  • the metal oxide layer 8604, the source electrode 8605, and the drain electrode 8606 are provided.
  • a state where a potential is applied as shown in FIG. 86A is a write state
  • a state where a potential is applied is a read state as shown in FIG. 86B. To do.
  • the substrate 8601 may be made of any conductive material such as a semiconductor, an insulator, or a metal. In the case where the substrate 8601 is also configured with an insulating material force, the insulating layer 8602 may be omitted. In the case where the substrate 8601 is made of a conductive material force, the insulating layer 8602 and the gate electrode 8603 may be omitted. In this case, the substrate 8601 also made of a conductive material force is a gate electrode.
  • the gate electrode 8603, the source electrode 8605, and the drain electrode 8606 are made of a transition metal metal including a noble metal such as platinum (Pt), ruthenium (Ru), gold (Au), and silver (Ag). That's fine.
  • the electrodes are made of titanium nitride (TiN), hafnium nitride (HfN), strontium ruthenate (SrRuO), zinc oxide (ZnO), tin oxide (IT
  • transition metals such as lanthanum fluoride (LaF), oxides and fluorides
  • the gate electrode 8603 is a ruthenium film with a thickness of 10 nm
  • the metal oxide layer 8604 has a thickness of 40 nm.
  • the source electrode 8605 and the drain electrode 8606 are made of gold. These metal oxides are made of Bi and Ti.
  • the metal oxide layer 8604 includes the ferroelectric layer 104, the ferroelectric layer 3104, the ferroelectric layer 4705, and the metal, which have various characteristics such as the state of the layer, the electrical characteristics, and the viewpoint of electrical initialization. This is similar to the oxide layer 6205.
  • the distance between the source electrode 8605 and the drain electrode 8606 is, for example, lmm.
  • the structure of the substrate 8601 and the insulating layer 8602 is not limited to this, and other materials can be appropriately selected as long as the electrical characteristics are not affected.
  • the metal oxide layer 8604 constituting the three-terminal element according to the present invention will be described in more detail. Similar to the ferroelectric layer 104 and the metal oxide layer 6 205 described above, the metal oxide layer 8604 is a layer containing excess titanium compared to the stoichiometric composition of BiTiO.
  • the base layer may be TiO with a bismuth composition of approximately zero.
  • the base layer is a state layer in which a metal oxide composed of two metals has less V or any metal than the stoichiometric composition. .
  • FIGS. 86A and 86B The characteristics of the three-terminal element shown in FIGS. 86A and 86B will be described. This characteristic was investigated by applying a voltage between the gate electrode 8603, the source electrode 8605, and the drain electrode 8606. When a voltage is applied between the gate electrode 8603, the source electrode 8605, and the drain electrode 8606 by a power source, and the current flowing from the gate electrode 8603 to the source electrode 8605 and the drain electrode 8606 is observed with an ammeter, the result shown in FIG. Obtained. Note that the vertical axis in FIG. 86C is positive for the current value flowing in the direction from the gate electrode 8603 to the source electrode 8605 and the drain electrode 8606.
  • FIG. 86C is described below, and the operation principle of the three-terminal element of the present invention is also described.
  • the voltage values and current values described here are those observed with actual devices. Therefore, this phenomenon is not limited to the following numerical values. Other values may be observed depending on the material and thickness of the film actually used for the device and other conditions.
  • Figure 86C shows that the voltage applied to the gate electrode 8603 (gate voltage) was reduced to zero force, then returned to zero, further increased in the positive direction, and finally returned to zero again.
  • the current value flowing through the metal oxide layer 8604 represents the hysteresis characteristic.
  • the gate voltage is gradually applied from 0V to the negative direction by the gate electrode 8603, the negative current flowing through the metal oxide layer 8604 is relatively small (approximately 0.1 for IV. 2mA).
  • the negative current value starts to increase. Further down the voltage to IV Conversely, if the negative voltage is decreased, the negative current value decreases while maintaining a state in which a negative current with a larger absolute value flows than before. At this time, the current value is about 0.13 V at about 0.13 mA, which is a state in which a current whose resistance value is about five times lower than before is likely to flow. When the applied gate voltage is returned to zero, the current value also becomes zero.
  • a positive gate voltage is applied to the gate electrode 8603.
  • the positive gate voltage is small, the previous history is taken over and a relatively large positive current flows (approximately 0.63 mA at 0.4).
  • the positive gate voltage is increased to approximately 0.7V.
  • the positive current suddenly decreases.
  • the positive gate voltage applied toward the + IV force OV is decreased, the positive current value decreases while maintaining this difficult flow state and returns to zero.
  • the positive current value is about 0.1 and about 0.12 mA.
  • the hysteresis of the current flowing in the metal oxide layer 8604 is that the resistance value of the metal oxide layer 8604 varies depending on the gate voltage applied to the gate electrode 8603. It can be interpreted that it is caused by. A negative gate voltage V greater than a certain level is marked.
  • the metal oxide layer 8604 transitions to a “low resistance state” (ON state) where current easily flows.
  • V positive gate voltage
  • the metal oxide layer 8604 is considered to transition to the “high resistance state” (OFF state) where current does not flow easily.
  • the metal oxide layer 8604 has two stable states, a low resistance state and a high resistance state, and each state does not apply a positive or negative gate voltage exceeding a certain level described above. As long as it is ON or OFF.
  • the value of V mentioned above is about + IV.
  • the resistance ratio between the high resistance state and the low resistance state is about 10 to 1.
  • the metal oxide layer 8604 is transitioned to a low resistance state. As a result, an ON state is reached in which current easily flows between the source and drain. This ON state is the source at the read voltage V. It can be read by observing the current between the source and drain. Read as V
  • Rl R It is important to select a value for Rl R that is as small as possible so that the state does not change and that the resistance ratio appears sufficiently (in the above example, about 0.4V is appropriate). This makes it possible to read many times without destroying the low resistance state, that is, the ON state.
  • the metal oxide layer 8604 is nonvolatile in order to maintain each state, and it is not necessary to apply a voltage except during writing and reading.
  • This element can also be used as a switch element for controlling current.
  • each of the above-described ON and OFF states can be either ON or OFF by applying either positive or negative gate voltage only once. This state is maintained.
  • FIG. 88 shows the change in current flowing between the source and drain when 0.1V is applied as the read voltage between the source electrode 8605 and the drain electrode 8606 after + IV or IV is applied to the gate electrode 8603. Is shown.
  • a gate voltage is applied to be in an ON state and an OFF state in a state where the source electrode 8605 is open will be described.
  • the gate voltage is applied between the gate electrode 8603 and the drain electrode 8606.
  • the state is read out by measuring the current flowing between the source and the drain in a state where a read voltage of up to 0.2 V is applied between the source electrode 8605 and the drain electrode 8606.
  • the gate voltage when the gate voltage is applied and the source electrode 8605 is in the open state, the current flows between the source and the drain to some extent when the read voltage is increased as described above. Become.
  • the applied voltage acts selectively in a region below the drain electrode 8606, and thus the above-described result is considered to be observed. From these results, the source 'drain current flows through the metal oxide layer 8604 in the region under the source electrode 8605 and the source electrode 8605 in the region under the metal oxide layer 8604 in the region under the drain electrode 8606. It is thought to flow through.
  • the ON and OFF state holding characteristics of the three-terminal element shown in FIGS. 86A and 86B also have a holding time of at least 1000 minutes, similar to the element shown in FIG. 1, for example. Yes.
  • the applied gate voltage is a direct current. Even if a pulse voltage having an appropriate width and strength is applied, the same effect can be obtained.
  • a substrate 8601 having a main surface of plane orientation (100) and a resistivity of 1 to 2 ⁇ -cm and having a p-type silicon force is prepared. Wash with a mixture of peracid-hydrogen water, pure water and dilute hydrogen fluoride water, and then dry.
  • an insulating layer 8602 is formed on the cleaned and dried substrate 8601.
  • an ECR ⁇ Pattern device is used, pure silicon (Si) is used as the target, and argon (Ar) and oxygen gas are used as the plasma gas, and the ECR ⁇ Pattern method using silicon gas is used.
  • a metal mode insulating layer 8602 is formed by Si—O molecules to cover the surface.
  • Ar gas was introduced at a flow rate of about 20sccm to the plasma generating chamber is set to 10- 5 Pa stand the internal pressure, the internal pressure 10- 3 ⁇ : LO- 2 to about Pa, where Ar plasma is generated in the plasma generation chamber by supplying a 0.0875T magnetic field and a 2.45 GHz microwave (500 W degree) for electron cyclotron resonance conditions.
  • sccm is the unit of flow rate, indicating a lcm 3 Flowing to 0 ° C 'l fluid pressure is 1 min.
  • the plasma generated as described above is emitted from the plasma generation chamber to the processing chamber side by the divergent magnetic field of the magnetic coil.
  • a high frequency power of 13.56 MHz for example, 500 W
  • a silicon target placed at the outlet of the plasma generation chamber As a result, Ar ions collide with the silicon target, causing a sputtering phenomenon, and Si particles pop out.
  • the Si particles that protrude from the silicon target reach the surface of the silicon substrate 8601 together with the plasma released from the plasma generation chamber and the oxygen gas that has been introduced and activated by the plasma, and activated oxygen. It is oxidized to silicon dioxide and silicon.
  • an insulating layer 8602 having a thickness of, for example, about lOOnm and having a silicon dioxide strength can be formed on the substrate 8601 (FIG. 90A).
  • the insulating layer 8602 is insulated so that when a voltage is applied to each electrode to be formed later, the voltage does not leak to the substrate 8601 and the desired electrical characteristics are not affected! With things is there.
  • a silicon oxide film formed by oxidizing the surface of a silicon substrate by a thermal oxidation method may be used as the insulating layer 8602.
  • the insulating layer 8602 may be made of any other insulating material force other than silicon oxide as long as the insulating property is maintained.
  • the thickness of the insulating layer 8602 is not limited to lOOnm, and is thinner than this. It may be thick.
  • the insulating layer 8602 is not heated with respect to the substrate 8601 in the above-described film formation by ECR sputtering, the film may be formed while the substrate 8601 is heated.
  • a ruthenium film is formed over the insulating layer 8602, whereby the gate electrode 8603 is formed as shown in FIG. 90B.
  • the formation of the Ru film will be described in detail.
  • an ECR sputtering apparatus using a Ru-powered target for example, first, the silicon substrate on which the insulating layer is formed is heated to 400 ° C. Introducing Ar gas, a rare gas at 7 sccm, power! ] Ete, introducing Xe gas, for example, flow rate 5 sccm, the inside of the plasma generating chamber, for example, 10- 2 ⁇ : LO- 3 is set to Pa range of pressure.
  • a magnetic field under an electron cyclotron resonance condition was applied to the plasma generation chamber, and then a 2.45 GHz microwave (for example, 500 W) was introduced into the plasma generation chamber, and Ar and Xe ECR plasmas were introduced into the plasma generation chamber. Assume that it has been created.
  • the generated ECR plasma is emitted from the plasma generation chamber to the processing chamber side by the divergent magnetic field of the magnetic coil.
  • 13.56MHz high-frequency power eg 500W
  • the gate electrode 8603 having a thickness of, eg, about 10 nm is formed on the insulating layer 8602 (FIG. 90B).
  • the gate electrode 8603 enables voltage to be applied to the metal oxide layer 8604 when a voltage is applied between the source electrode 8605 and the drain electrode 8606 to be formed later. Accordingly, a force other than lute may constitute the gate electrode 8603 as long as it has conductivity. For example, a platinum force may constitute the gate electrode 8603. However, it is easy to peel off when a platinum film is formed on silicon dioxide.
  • a laminated structure in which a platinum layer is formed through a titanium layer, a titanium nitride layer, a ruthenium layer, or the like may be used.
  • the thickness of the gate electrode 8603 is not limited to lOnm, and may be thicker or thinner.
  • a target having an oxide sintered body (Bi-Ti-O) force of Bi to Ti ratio force of 3 is used, and argon (Ar) is used as a plasma gas.
  • argon (Ar) is used as a plasma gas.
  • a metal oxide layer 8604 is formed on the gate electrode 8603 so as to cover the surface by an ECR ⁇ sputtering method using oxygen and oxygen gas.
  • the formation of the metal oxide layer 8604 will be described in detail.
  • the substrate 8601 is heated in the range of 300 ° C to 700 ° C.
  • the plasma generating chamber for example the flow rate 20 introducing Ar gas as a rare gas in sccm, is set to, for example, 10- 3 Pa ⁇ 10- 2 Pa base pressure.
  • a magnetic field under an electron cyclotron resonance condition is applied to the plasma generation chamber, and then a 2.45 GHz microwave (for example, 500 W) is introduced into the plasma generation chamber.
  • a 2.45 GHz microwave for example, 500 W
  • ECR is introduced into the plasma generation chamber. It is assumed that plasma is generated.
  • the generated ECR plasma is released from the plasma generation chamber to the processing chamber side by the divergent magnetic field of the magnetic coil.
  • a high frequency power of 13.56 MHz for example, 500 W
  • 13.56 MHz for example, 500 W
  • Ar particles collide with the sintered compact target, causing a sputtering phenomenon, and Bi particles and Ti particles pop out.
  • the formed metal oxide layer 8604 may be irradiated with ECR plasma of an inert gas and a reactive gas to improve the film quality.
  • the reactive gas is not limited to oxygen gas, and nitrogen gas, fluorine gas, and hydrogen gas can be used. This improvement in film quality can also be applied to the formation of the insulating layer 8602.
  • the formed metal oxide layer 8604 is annealed (heat treatment) in an appropriate gas atmosphere such as an oxygen atmosphere. ) And greatly improve the properties of the film quality.
  • a source electrode 8605 and a drain electrode 8606 made of Au having a predetermined area are formed on the metal oxide layer 8604.
  • the source electrode 8605 and the drain electrode 8606 can be formed by a well-known lift-off method and gold deposition by a resistance heating vacuum deposition method.
  • the source electrode 8605 and the drain electrode 8606 may be made of another metal material such as Ru, Pt, TiN, or a conductive material, for example. If Pt is used, adhesion may be poor and may peel off.
  • each layer by ECR sputtering described above may be performed using an ECR sputtering apparatus as shown in FIG.
  • the configuration example of the three-terminal element according to the present embodiment is not limited to the elements shown in FIGS. 86A and 86B.
  • the source electrode 8615 and the drain electrode 8616 are formed over the insulating layer 8602, and the source electrode 8615 and the drain electrode 8616 are covered with the metal oxide layer 8604, and the metal oxide layer 8604 is covered.
  • the gate electrode 8613 may be formed over the layer 8604.
  • an insulating substrate 8601a may be used. In this case, the insulating layer 8602 may be omitted.
  • a conductive substrate is used, and the structure of the metal oxide layer 8604, the source electrode 8605, and the drain electrode 8606 shown in FIGS. 86A and 86B is placed on the substrate. /,.
  • the substrate also serves as the gate electrode.
  • an insulating substrate such as force glass or quartz that uses the substrate 8601 that also has single crystal silicon force may be used. By adopting such a structure, it is possible to apply to a glass substrate that is easy to process.
  • the metal oxide layer 8604 has a refractive index of about 2.6 when measured at a wavelength of 632.8 nm, and is optically transparent, a transparent substrate is used. It is possible to apply a three-terminal element to a display. Further, by forming the metal oxide layer 8604 to a thickness that emits an interference color between 10 to 200 nm, a colored visual effect can be obtained.
  • the resistance value in each of the low resistance state and the high resistance state becomes a problem.
  • the thickness of the metal oxide layer is increased, the resistance value in the low resistance state is increased, the SZN ratio is difficult to obtain, and it is difficult to determine the ON and OFF states.
  • the thickness of the metal oxide layer becomes thin and the leakage current becomes dominant, it becomes difficult to maintain the ON and OFF states, and the resistance value in the high resistance state becomes small, and the SZN ratio is taken. It becomes difficult.
  • the metal oxide layer is preferably set to an optimum thickness as appropriate.
  • the metal oxide layer should have a minimum thickness of lOnm.
  • the metal oxide layer should be thinner than 300 nm. As a result of experiments by the inventors, if the thickness of the metal oxide layer is 30 to 200 nm, the operation of the three-terminal element is confirmed.
  • a plurality of three-terminal elements may be arranged in a cross-point manner and integrated.
  • a word line 9303 serving as a gate electrode is disposed on a substrate 9301 with an insulating layer 9302 interposed therebetween, and a predetermined interval is provided thereon.
  • the island-shaped metal oxide layers 9304 arranged in the above are arranged, and a plurality of source electrodes 9305 and drain electrodes 9306 are arranged on each metal oxide layer 9304.
  • the plate line 9315 is connected and arranged in common with the source electrode 9305 arranged in a direction perpendicular to the word line 9303!
  • a bit line 9316 is connected to the drain electrode 930 6 in common.
  • the three in this embodiment The terminal element can be highly integrated.
  • the metal oxide layers 9304 are arranged apart from each other in order to reduce interference between the plates or bit lines.
  • the material layer may be integrally formed.
  • the current-voltage characteristics in the metal oxide layer 8604 when a DC gate voltage is applied to the gate electrode 8603 changes to different low resistance states when the applied gate voltage is changed, as shown in FIG. Figure 94 shows the low resistance state after application to -0.5V, 1. low resistance state after application to OV, and low resistance state after application to 1.5V.
  • the current value in voltage is different.
  • These states can be read by applying a read voltage between the source and drain and observing the current flowing between the source and drain.
  • operation in three states (three values) “0”, “1”, and “2” can be realized.
  • FIG. 86A and FIG. 86B it is possible to realize a multi-value state due to the difference in the value of the pulse voltage.
  • Fig. 95 every time a predetermined pulse voltage with a predetermined pulse width is applied a predetermined number of times, when the current value between the source and the drain is read with a read voltage of 0.2 V at the time indicated by the triangle, As shown, three states (three values) “0”, “1”, and “2” are obtained. In this example, it is reset by the state of “2”.
  • FIG. 97A and 97B are schematic cross-sectional views schematically showing a configuration example of another three-terminal element in the embodiment of the present invention.
  • the three-terminal device shown in FIG. 97A and FIG. 97B is, for example, about 30 to 200 nm thick composed of an insulating layer 9702, a gate electrode 9703, Bi, Ti, and O on a substrate 9701 made of single crystal silicon force.
  • the metal oxide layer 9704, the source electrode 9706, and the drain electrode 9707 are provided, and the insulating layer 9705 is provided between the gate electrode 9703 and the metal oxide layer 9704.
  • a state where a potential is applied as shown in FIG. 97A is a write state
  • a state where a potential is applied is a read state as shown in FIG. 97B.
  • the substrate 9701 is made of any of conductive materials such as semiconductors, insulators, and metals. May be. In the case where the substrate 9701 is also configured with an insulating material force, the insulating layer 9702 may be omitted. In the case where the substrate 9701 is made of a conductive material force, the insulating layer 9702 and the gate electrode 9703 may be omitted. In this case, the substrate 9701 also made of a conductive material force is a gate electrode.
  • the gate electrode 9703, the source electrode 9706, and the drain electrode 9707 are made of transition metals including noble metals such as platinum (Pt), ruthenium (Ru), gold (Au), silver (Ag), and titanium (Ti). What is necessary is just to be comprised from the metal.
  • the above electrodes are made of titanium nitride (Ti N), hafnium nitride (HfN), strontium ruthenate (SrRuO), zinc oxide (Zn
  • ITO tin oxide lead
  • LaF lanthanum fluoride
  • a compound such as a nitride, or a composite film in which these are laminated may be used.
  • the insulating layer 9705 is composed of silicon dioxide, silicon oxynitride, alumina, or an oxide such as LiNbO composed of light metal such as lithium, beryllium, magnesium, or calcium.
  • the insulating layer 9705 includes scandium, titanium, strontium, yttrium, zirconium, hafnium, tantalum, and transition metal oxides and nitrides including the lanthanum series, or silicates (metal, silicon, Ternary compounds of oxygen), aluminates containing these elements (metal, aluminum, ternary compounds of oxygen), and oxides and nitrides containing two or more of these elements.
  • the metal oxide layer 9704 has the same chemistry as Bi Ti O.
  • the base layer may be TiO with a bismuth composition of approximately zero.
  • the base layer is a layer in which either metal is less than the stoichiometric composition in the metal oxide in which two metal forces are also formed.
  • the gate electrode 9703 is a ruthenium film having a thickness of 10 nm
  • the metal oxide layer 9704 is the above-described one.
  • the insulating layer 9705 is made of a metal oxide having the structure described above and has a thickness of 40 nm. It is a multi-layered film of 5 nm thickness that also includes tantalum nitride and silicon dioxide.
  • the source electrode 9706 and the drain electrode 9707 are made of gold.
  • the source electrode 9706 and the drain electrode 9707 may have a multilayer structure in which a titanium layer, a titanium nitride layer, and a gold layer are stacked in this order from the metal oxide layer 9704 side. By making the contact surface with the metal oxide layer 9704 a titanium layer, adhesion can be improved.
  • the distance between the source electrode 9706 and the drain electrode 9707 is, for example, 1 mm. Note that as described above, the structures of the substrate 9701 and the insulating layer 9702 can be appropriately selected from other materials as long as they do not affect the electrical characteristics.
  • the insulating layer 9702, the gate electrode 9703, the insulating layer 9705, the metal oxide layer 9704, the source electrode 9706, and the drain electrode 9707 described above have the specific manufacturing method as shown in FIG.
  • a metal target or sintered target may be formed by sputtering in an ECR plasma consisting of argon gas, oxygen gas, and nitrogen gas using an ECR sputtering system.
  • FIG. 98A a substrate 9701 having a main surface of plane orientation (100) and a resistivity of 1 to 2 ⁇ -cm and having ⁇ -type silicon force is prepared, and the surface of the substrate 9701 is made of sulfuric acid and peroxide. ⁇ Wash with a mixture of hydrogen water, pure water and dilute hydrogen fluoride water, and then dry. Next, an insulating layer 9702 is formed on the cleaned and dried substrate 9701.
  • the above-mentioned ECR ⁇ Pattern device is used, pure silicon (Si) is used as the target, argon (Ar) and oxygen gas are used as the plasma gas, and the ECR ⁇ Pattern method is used to achieve silicon power
  • a metal mode insulating layer 9702 made of Si—O molecules is formed to cover the surface.
  • Ar gas was introduced into the plasma generating chamber is set to 10- 5 Pa stand the internal pressure in a flow rate of about 20 sccm, the internal pressure 10- 3 ⁇ : LO- 2 to about Pa, where Ar plasma is generated in the plasma generation chamber by supplying a 0.0875T magnetic field and a 2.45 GHz microwave (500 W degree) for electron cyclotron resonance conditions.
  • sccm is a unit of flow rate, and indicates that a fluid at 0 ° C '1 atm flows lcm 3 per minute.
  • the plasma generated as described above is generated by the divergent magnetic field of the magnetic coil. It is discharged from the adult chamber to the processing chamber.
  • a high frequency power of 13.56 MHz for example, 500 W
  • a silicon target placed at the outlet of the plasma generation chamber As a result, Ar ions collide with the silicon target, causing a sputtering phenomenon, and Si particles pop out.
  • the Si particles that jump out of the silicon target reach the surface of the substrate 9701 made of silicon, together with the plasma released from the plasma generation chamber and the oxygen gas that has been introduced and activated by the plasma, and activated oxygen. It is oxidized to silicon dioxide and silicon.
  • an insulating layer 9702 having a thickness of, for example, about lOOnm and having silicon dioxide strength can be formed on the substrate 9701 (FIG. 98A).
  • the insulating layer 9702 is insulated so that when a voltage is applied to each electrode to be formed later, the voltage does not leak to the substrate 9701 and the desired electrical characteristics are not affected! It is a thing.
  • a silicon oxide film formed by oxidizing the surface of a silicon substrate by a thermal oxidation method may be used as the insulating layer 9702.
  • the insulating layer 9702 may be composed of other insulating material forces other than silicon oxide as long as the insulating property is maintained.
  • the thickness of the insulating layer 9702 is not limited to lOOnm, and may be thinner. It may be thick.
  • the insulating layer 9702 is not heated with respect to the substrate 9701 in the above-described film formation by ECR sputtering, but the film may be formed while the substrate 9701 is heated.
  • a ruthenium film is formed on the insulating layer 9702, whereby a gate electrode 9703 is formed as shown in FIG. 98B.
  • the formation of the Ru film will be described in detail.
  • an ECR sputtering apparatus using a Ru-powered target for example, first, the silicon substrate on which the insulating layer is formed is heated to 400 ° C., and the flow rate is set, for example, in the plasma generation chamber. Introducing Ar gas, a rare gas at 7 sccm, power! ] Ete, introducing Xe gas, for example, flow rate 5 sccm, the inside of the plasma generating chamber, for example, 10- 2 ⁇ : LO- 3 is set to Pa range of pressure.
  • a magnetic field under an electron cyclotron resonance condition was applied to the plasma generation chamber, and then a 2.45 GHz microwave (eg, 500 W) was introduced into the plasma generation chamber, and Ar and Xe ECR plasmas were introduced into the plasma generation chamber. Assume that it has been created.
  • the generated ECR plasma is emitted from the plasma generation chamber to the processing chamber side by the divergent magnetic field of the magnetic coil.
  • 13.56MHz high frequency power eg 500W
  • the gate electrode 9703 having a thickness of, for example, about lOnm is formed on the insulating layer 9702 (FIG. 98B).
  • the gate electrode 9703 allows a voltage to be applied to the metal oxide layer 9704 when a voltage is applied between the source electrode 9706 and the drain electrode 9707 to be formed later. Accordingly, a force other than lute may constitute the gate electrode 9703 as long as it has conductivity. For example, a platinum force may constitute the gate electrode 9703. However, it is known that a platinum film is easily peeled off when a platinum film is formed on silicon dioxide.
  • a titanium layer or a laminated structure in which a platinum layer is formed via a titanium nitride layer or a ruthenium layer is used. That's fine.
  • the thickness of the gate electrode 9703 is not limited to 10 nm, and may be thicker or thinner.
  • the substrate 9701 is unloaded from the apparatus into the atmosphere, and then the substrate of the ECR sputtering apparatus similar to that shown in FIG. 5 using pure tantalum (Ta) as the target.
  • the substrate 9701 is fixed to the holder.
  • an insulating layer 9705 is formed on the gate electrode 9703 so as to cover the surface by ECR ⁇ -Pattern method using argon (Ar) and oxygen gas as plasma gases. State.
  • argon (Ar) and oxygen gas as plasma gases.
  • a metal mode film made of Ta—O molecules is formed as an insulating layer 9705.
  • the formation of the metal mode film by Ta—O molecules will be described in detail.
  • the ECR sputtering apparatus shown in FIG. 5 using the target made of tantalum first, for example, from the inert gas introduction section into the plasma generation chamber. introducing Ar gas as a rare gas at a flow rate 25 sccm, the inside of the plasma generating chamber is set to, for example, 10- 3 Pa base pressure.
  • the plasma generation chamber is supplied with a coil current of 28 A, for example, to the magnetic coil, thereby allowing electron cyclotron resonance conditions. Giving magnetic field.
  • a 2.45 GHz microwave (eg, 500 W) is supplied from a microwave generation unit (not shown), and this is generated through a waveguide, a quartz window, and a vacuum waveguide. It is introduced into the chamber and Ar plasma is generated in the plasma generation chamber by introducing this microwave. The generated plasma is emitted from the plasma generation chamber to the processing chamber side by the divergent magnetic field of the magnetic coil.
  • high frequency power (for example, 500 W) is supplied from a high frequency electrode supply unit to a target disposed at the outlet of the plasma generation chamber.
  • a tantalum pentoxide film is formed over the gate electrode 9703.
  • the ECR ⁇ -patient method using a target that also has pure silicon strength is used to deposit the silicon dioxide on the tantalum pentoxide film.
  • ⁇ ⁇ ⁇ A silicon film is formed.
  • the above-described formation process of the tantalum pentoxide film and the silicon dioxide film is repeated to form a multilayer film of, for example, about 5 nm of a tantalum pentoxide film and a silicon dioxide film, thereby insulating the film.
  • Layer 9705 is obtained ( Figure 98C).
  • the insulating layer 9705 made of a tantalum pentoxide film and a silicon dioxide film is for controlling the voltage applied to the ferroelectric film when a voltage is applied to the metal oxide layer 9704. Used for. Therefore, if the voltage applied to the metal oxide layer 9704 can be controlled, a force other than the multilayer structure of the tantalum pentoxide film and the silicon dioxide film may be used to form the insulating layer 9705. It may be configured. Also, the film thickness is not limited to 5 nm. Note that in the ECR sputtering method described above, the substrate 9701 is not heated, but may be heated.
  • the substrate 9701 is heated in the range of 300 ° C to 700 ° C.
  • the plasma generating chamber for example the flow rate 20 introducing Ar gas as a rare gas in sccm, is set to, for example, 10- 3 Pa ⁇ 10- 2 Pa base pressure.
  • a magnetic field under an electron cyclotron resonance condition is applied to the plasma generation chamber, and then a 2.45 GHz microwave (for example, 500 W) is introduced into the plasma generation chamber.
  • a 2.45 GHz microwave for example, 500 W
  • ECR is introduced into the plasma generation chamber. It is assumed that plasma is generated.
  • the generated ECR plasma is emitted from the plasma generation chamber to the processing chamber side by the divergent magnetic field of the magnetic coil.
  • a high frequency power of 13.56 MHz for example, 500 W
  • Ar particles collide with the sintered compact target, causing a sputtering phenomenon, and Bi particles and Ti particles pop out.
  • Bi particles and Ti particles jumping out of the sintered target are heated together with the ECR plasma released from the plasma generation chamber and the oxygen gas activated by the released ECR plasma. It reaches the surface of 9705 and is oxidized by the activated oxygen.
  • oxygen (O) gas as the reaction gas is introduced separately from Ar gas, as will be described later.
  • the sintered compact target contains oxygen, supply of oxygen can prevent oxygen deficiency in the deposited film.
  • the formation of the film by the ECR ⁇ Pattern method described above, for example, provides a state in which a metal oxide layer 9704 having a thickness of about 40 nm is formed (FIG. 98D).
  • the formed metal oxide layer 9704 may be irradiated with ECR plasma of an inert gas and a reactive gas to improve the film quality.
  • the reactive gas is not limited to oxygen gas, and nitrogen gas, fluorine gas, and hydrogen gas can be used. This improvement in film quality can also be applied to the formation of the insulating layer 9702.
  • the formed metal oxide layer 9704 is annealed (heat treatment) in an appropriate gas atmosphere such as an oxygen atmosphere. ) And greatly improve the properties of the film quality.
  • Source electrode 9706 and the drain electrode 9707 having a predetermined area of Au force are formed on the metal oxide layer 9704.
  • the three-terminal element shown in 97A and Fig. 97B is obtained.
  • Source electrode 9706 and drain electrode 9707 Can be formed by well-known lift-off method and gold deposition by resistance heating vacuum evaporation
  • the source electrode 9706 and the drain electrode 9707 may be made of another metal material such as Ru, Pt, TiN, or a conductive material, for example. If Pt is used, the adhesion may be poor and may peel off. Therefore, a structure such as Ti-Pt-Au is difficult to peel off, and then a patterning process such as a lift-off process is applied to the photolithography. It is necessary to form it as an electrode having a large area.
  • FIGS. 97A and 97B the characteristics of the three-terminal element shown in FIGS. 97A and 97B will be described.
  • This characteristic investigation is performed by applying a voltage between the gate electrode 9703 and the drain electrode 9707 (source electrode 9706).
  • a voltage was applied between the gate electrode 9703 and the drain electrode 9707 by a power source and the current when the voltage was applied was observed with an ammeter, the result shown in FIG. 33 was obtained.
  • the vertical axis indicates the current density obtained by dividing the current value by the area.
  • the memory operation principle of the present invention will be described below with reference to FIG. However, the voltage values and current values described here are those observed with actual elements. Therefore, this phenomenon is not limited to the following numerical values. Other numerical values may be observed depending on the material and thickness of the film actually used for the device and other conditions.
  • the “low resistance mode” When in the “low resistance mode” state transitioned by applying a voltage of 8V or more, the “low resistance mode” is maintained in the voltage range of 0.5V to + 0.2V. These two “high resistance mode” and “low resistance mode” are switched. The same applies to the negative resistance mode of “negative high resistance mode” and “negative low resistance mode”.
  • each ratio is as high as 200 times. This allows easy mode identification.
  • the inventors presume that the phenomenon described above appears when the resistance value of the metal oxide layer 9704 changes dramatically depending on the direction and strength of the applied voltage.
  • carriers can be controlled from the band structure of the insulating layer 9705 by the insulating layer 9705 provided between the metal oxide layer 9704 and the gate electrode 9703.
  • tantalum pentoxide has a band gap of about 4.5 eV. If we look at the energy difference from the Fermi level, the conduction band is about 1.2 eV and the valence band is 2. It is known that noria is high at 3eV and the valence band side. Therefore, the barrier property is high for holes in the valence band, but the noria property is low for electrons in the conduction band.
  • the barrier property is high for holes in the valence band, but the noria property is low for electrons in the conduction band.
  • the elements shown in FIGS. 97A and 97B are non-volatile, non-destructive three-terminal elements. I found that I can use it as a child. Specifically, first, the current between the source and drain is As shown in (4) or (5) of FIG. 33, the OFF state that corresponds to the flow is a state in which a positive voltage is applied to the gate electrode 9703 and a negative voltage is applied to the drain electrode 9707. Change the mode from “resistance mode” to “high resistance mode”.
  • the transition to the on state where the current between the source and the drain easily flows is applied to the drain electrode 9707 by applying a negative voltage to the gate electrode 9703 as shown in (2) of FIG. This can be done by applying a voltage of 1. IV or higher so that the current flows rapidly.
  • the mode conversion from the “high resistance mode” to the “low resistance mode” is performed, and a transition is made to the ON state. In this way, it is possible to switch between the off state and the on state by switching to the “high resistance mode” or “low resistance mode” by applying a voltage to the gate electrode 9703 (drain electrode 9707). .
  • the ON / OFF state between the source and drain controlled as described above is to read the current value when an appropriate voltage of 0 to 1.0 V is applied between the source and drain.
  • an appropriate voltage of 0 to 1.0 V is applied between the source and drain. This can be determined by the fact that current does not flow easily during application.
  • the on / off state of the above-described three-terminal element can be easily identified only by examining whether the element shown in FIGS. 97A and 97B is in the “high resistance mode” force or “low resistance mode”. In other words, while the three-terminal element shown in FIGS. 97A and 97B can hold the above two modes, data is held. In addition, in order to check which mode is selected, even if a voltage is applied to the electrodes, the mode that is retained does not change and the data is not destroyed. Therefore, the three-terminal element element shown in FIGS. 97A and 97B can perform nondestructive operation.
  • the three-terminal element shown in FIGS. 97A and 97B has a metal oxide layer.
  • a device that functions as a three-terminal element that controls on / off between the source and drain by changing the resistance value according to the voltage applied between the gate electrode 9703 and the drain electrode 9707 (or the source electrode 9706). It is.
  • This element can be used as an element for controlling current.
  • the on state and the off state can be controlled by application of the gate voltage.
  • the gate voltage is applied while the source electrode 9706 is open, even if the gate voltage is applied and turned off, if the read voltage is increased, a current flows between the source and drain to some extent.
  • the gate voltage is applied while the source electrode 9706 is open, the applied voltage acts selectively in the region below the drain electrode 9707. Therefore, as described above, at a high read voltage, the gate voltage is applied to some extent. It is considered that source and drain currents flow. Therefore, the source drain current flows through the path of the metal oxide layer 9704 in the region under the source electrode 9706 and the metal oxide layer 9704 in the region under the drain electrode 9707 under the source electrode 9706. it is conceivable that.
  • the voltage for operating the three-terminal element shown in FIG. 97A and FIG. 97B is the maximum force when the gate voltage is applied to make the “positive low resistance mode”. IV level and very low power consumption. Low power consumption is very advantageous for devices. For example, mobile communication devices, digital general-purpose devices, digital imaging devices, notebook personal computers, personal 'digital' appliances ( Not only PDA), but also all electronic computers, personal computers, workstations, office computers, large computers, communication units, multifunction devices, and other devices that use three-terminal elements can reduce power consumption.
  • FIG. 34 shows the time during which the on / off state of the three-terminal element shown in FIGS. 97A and 97B is maintained.
  • each of the insulating layer on the substrate having a silicon force, the gate electrode layer on the insulating layer, and the metal oxide layer on the gate electrode is formed by ECR sputtering.
  • the method for forming these layers is not limited to the ECR sputtering method.
  • the insulating layer formed on the silicon substrate may be formed by a thermal oxidation method, a chemical vapor deposition method (CVD method), a conventional sputtering method, or the like.
  • the gate electrode layer may be formed by other film forming methods such as EB vapor deposition, CVD, MBE, and IBD.
  • the metal oxide layer can also be formed by the MOD method described above, the conventional sputtering method, the PLD method, the MOCVD method, or the like. However, by using the ECR sputtering method, a flat and good insulating film, metal film, and metal oxide film can be easily obtained.
  • each layer may be formed by continuous processing without taking it out to the atmosphere. This makes it possible to transport the substrate to be processed in a vacuum, making it less susceptible to disturbances such as moisture adhesion, and improving the film quality and interface characteristics.
  • the surface of the formed layer may be irradiated with an ECR plasma to improve the characteristics.
  • the formed layer may be annealed (heat treatment) in an appropriate gas atmosphere such as a hydrogen atmosphere to greatly improve the characteristics of each layer.
  • the basic idea of the present invention is that an insulating layer is disposed in contact with a metal oxide layer, and these are sandwiched between a gate electrode and a source / drain electrode. There is.
  • the upper source electrode 9716 and the drain electrode 9717 of the insulating layer 9702 are formed, and the source electrode 9716 and the drain electrode 9717 are covered with the metal oxide layer 9704.
  • a gate electrode 9713 may be formed over the metal oxide layer 9704 with an insulating layer 9715 interposed therebetween.
  • an insulating substrate 9701a may be used. In this case, the insulating layer 9702 in FIGS. 97A and 97B may be omitted.
  • a conductive substrate is used, and the structure of the insulating layer 9705, the metal oxide layer 9704, the source electrode 9706, and the drain electrode 9707 shown in FIGS. 97A and 97B may be disposed thereon. Good.
  • the substrate also serves as the gate electrode. If a metal substrate having high thermal conductivity is used as the conductive substrate, a higher cooling effect can be obtained and stable operation of the element can be expected.
  • the metal oxide layer 9704 is optically transparent with a refractive index of about 2.6 when measured at a wavelength of 632.8 nm, the three-terminal element in this embodiment can be obtained by using a transparent substrate. Can be applied to displays. Further, by forming the metal oxide layer 9704 to a thickness that generates an interference color between 10 to 200 nm, a visual effect in a colored state can be obtained.
  • the change in the resistance value in the metal oxide layer 9704 can also be controlled by the current.
  • a predetermined current for example, +0.5 V
  • the current value changes.
  • between the electrodes after applying a current of less than 1 X 10- 6 A from 1 X 10- 9 A is a high-resistance state small current power S.
  • the current value flowing is changed to become large (e.g., 0. 7 mA) low-resistance state.
  • the resistance change in the metal oxide layer 9704 also changes depending on the current flowing in the metal oxide layer 9704, and there are two resistance values, a high resistance state and a low resistance state. Exists. Therefore, the three-terminal element shown in FIGS. 97A and 97B can be turned on / off by voltage, and can be turned on / off by current.
  • the resistance change of the metal oxide layer 9704 can be controlled by the pulse voltage.
  • the pulse voltage for example, in the initial state, as shown in FIG. 42, the gate electrode 9703 (positive electrode side) and the drain electrode 9707 (with respect to the element shown in FIG. 97A and FIG.
  • a negative pulse voltage for example, 10 s at 4V
  • a positive pulse voltage for example, 10 ⁇ s at +5 V
  • a plurality of times for example, four times
  • each pulse voltage described above is repeated, and the current value measured after each pulse voltage application changes as shown in FIG. As shown in Fig. 43, the initial state is a high resistance state, but after applying a negative pulse voltage, the state shifts to a low resistance state. Next, in this state, a positive resistance voltage is applied multiple times to achieve a high resistance state, and a positive voltage pulse and a negative voltage pulse are applied to change the resistance value of the metal oxide layer 9704. . Therefore, for example, by applying a positive voltage pulse and a negative voltage pulse, the three-terminal element in FIGS. 97A and 97B also changes from the “on” state to the “off” state, and “off”. It is possible to change from the state of “1” to the state of “on”.
  • the voltage and time of the voltage pulse that can change the resistance state of the metal oxide layer 9704 can be changed depending on the situation. For example, after applying a voltage pulse of + 5V for 10 s and 4 times to make it into a high resistance state, at 4V: applying a short pulse of L s 10 times can change the state to a low resistance state. . In this state, it is possible to change to a high resistance state by applying a short pulse of 1 s at + 5V 100 times. Furthermore, it is possible to change to a low resistance state by applying 100 s of 100 s as a voltage as low as 3 V to this state. Next, a case will be described in which the three-terminal element shown in FIGS.
  • 97A and 97B is controlled by applying a pulse voltage.
  • a pulse voltage For example, as shown in the sequence of FIG. 101, by applying a negative pulse and a positive pulse alternately to the gate electrode 970 3, the resistance mode between the source electrode 9706 and the gate electrode 9703 and the drain electrode 9707 Corresponding to the change in the resistance mode between the source electrode 9706 and the gate electrode 9703, the on state and the off state of the current flowing between the source electrode 9706 and the drain electrode 9707 can be switched alternately.
  • the gate electrode 9703 and the drain electrode 9707 (source electrode 9706)
  • the gate electrode 9703 and the drain electrode 9707 when the DC voltage is applied between the two, it changes to a different low resistance state by changing the applied voltage on the positive side.
  • three states three values can be realized for the current flowing between the source and drain. In this case, for example, by setting the read voltage to about 0.5 V, it is possible to set a ternary state for the current value flowing between the source and the drain. Before transitioning to each state, a voltage of ⁇ 2 V is applied to the gate electrode 9703 to return to the high resistance state (reset).
  • FIG. 102A and 102B are schematic cross-sectional views schematically showing a configuration example of another three-terminal element in another embodiment of the present invention.
  • the three-terminal device shown in FIG. 102A and FIG. 102B is, for example, a metal oxide film having a thickness of about 30 to 200 nm formed of an insulating layer 10202, a gate electrode 10203, Bit Ti and O on a substrate 10201 made of single crystal silicon.
  • a physical layer 10204, an insulating layer 10205, a source electrode 10206, and a drain electrode 10207 are provided.
  • a state where a potential is applied as shown in FIG. 102A is a write state
  • a state where a potential is applied is a read state as shown in FIG. 102B. .
  • the substrate 10201 may be made of any conductive material such as a semiconductor, an insulator, or a metal. In the case where the substrate 10201 is formed of an insulating material force, the insulating layer 10202 may be omitted. In the case where the substrate 10201 is formed of a conductive material force, the insulating layer 10202 and the gate electrode 10203 may be omitted. In this case, the substrate 1020 is formed of a conductive material force.
  • 207 may be formed of a metal metal of a transition metal including a noble metal such as platinum (Pt), ruthenium (Ru), gold (Au), silver (Ag), titanium (Ti), and the like.
  • the above electrodes are made of titanium nitride (TiN), hafnium nitride (HfN), strontium ruthenate (SrRuO), acid
  • Nitrides of transition metals such as zinc dioxide (ZnO), tin leadate (ITO), lanthanum fluoride (LaF)
  • the insulating layer 10205 is made of silicon dioxide, silicon oxynitride, alumina, or an oxide such as LiNbO that is also composed of light metal such as lithium, beryllium, magnesium, and calcium.
  • the insulating layer 10205 includes scandium, titanium, strontium, yttrium, zirconium, hafnium, tantalum, and transition metal oxides and nitrides including the lanthanum series, or silicates (metal, silicon, Oxygen ternary compounds), aluminates containing these elements (metal, aluminum, oxygen ternary compounds), and oxides and nitrides containing two or more of these elements. Just do it.
  • the metal oxide layer 10204 is similar to the ferroelectric layer 104 and the like described above.
  • the base layer may be TiO with a bismuth composition of almost zero.
  • the base layer is also composed of two metal forces! / In the metal oxide, V, one of the metals is less in the state than the stoichiometric composition. is there.
  • the gate electrode 10203 is a ruthenium film having a thickness of 10 nm
  • the metal oxide layer 10204 has the above-described configuration
  • the insulating layer 10205 is a multi-layered film having a thickness of 5 nm made of tantalum pentoxide and silicon dioxide, and has a source electrode 10206 and a drain.
  • the electrode 10207 is made of gold.
  • the source electrode 10206 and the drain electrode 10207 may have a multilayer structure in which a side force of the insulating layer 10205, a titanium layer, a titanium nitride layer, and a gold layer are stacked in this order. Titanium contact surface with insulating layer 10205 Adhesion can be improved by using a layer. Further, the distance between the source electrode 10206 and the drain electrode 10207 is, for example, 1 mm. Note that as described above, the structure of the substrate 10201 and the insulating layer 10202 is not limited to this, and other materials can be appropriately selected as long as the electrical characteristics are not affected.
  • a metal target or sintered target may be formed by sputtering in an ECR plasma consisting of argon gas, oxygen gas, and nitrogen gas, using an ECR sputtering system as shown.
  • FIG. 103A a substrate 10201 made of p-type silicon having a main surface of plane orientation (100) and a resistivity of 1 to 2 ⁇ -cm is prepared, and the surface of the substrate 10201 is mixed with sulfuric acid and hydrogen peroxide. Wash with a mixture of water, pure water and dilute hydrogen fluoride, and then dry. Next, an insulating layer 10202 is formed on the cleaned and dried substrate 10201.
  • the above-described ECR ⁇ apparatus is used, a substrate having a silicon force is obtained by ECR sputtering using pure silicon (Si) as a target and argon (Ar) and oxygen gas as plasma targets. On top of this, a metal mode insulating layer 10202 of Si—O molecules is formed to cover the surface.
  • Ar gas was introduced at a flow rate of about 20sccm to the plasma generating chamber is set to 10- 5 Pa stand the internal pressure, the internal pressure 10- 3 ⁇ : LO- 2 to about Pa, where Ar plasma is generated in the plasma generation chamber by supplying a 0.0875T magnetic field and a 2.45 GHz microwave (500 W degree) for electron cyclotron resonance conditions.
  • sccm is a unit of flow rate, and indicates that a fluid at 0 ° C '1 atm flows lcm 3 per minute.
  • the plasma generated as described above is emitted from the plasma generation chamber to the processing chamber side by the divergent magnetic field of the magnetic coil.
  • a high frequency power of 13.56 MHz for example, 500 W
  • a silicon target placed at the outlet of the plasma generation chamber As a result, Ar ions collide with the silicon target, causing a sputtering phenomenon, and Si particles pop out. Si particles popping out of the silicon target generate plasma.
  • the plasma released from the chamber and the oxygen gas introduced and activated by the plasma it reaches the surface of the substrate 10201 made of silicon and is oxidized by the activated oxygen to form silicon dioxide.
  • an insulating layer 10202 having a thickness of, for example, about lOOnm can be formed on the substrate 10201 (FIG. 103A).
  • the insulating layer 10202 is insulated so that when a voltage is applied to each electrode to be formed later, the voltage leaks to the substrate 10201 and the desired electrical characteristics are not affected. It is.
  • a silicon oxide film formed by oxidizing the surface of a silicon substrate by a thermal oxidation method may be used as the insulating layer 10202.
  • the insulating layer 10202 may be made of any other insulating material force other than silicon oxide as long as the insulating property is maintained.
  • the thickness of the insulating layer 10202 is not limited to lOOnm, and may be thinner. It may be thick.
  • the substrate 10201 is heated to V, but the film can be formed while the substrate 10201 is heated.
  • a ruthenium film is formed on the insulating layer 10202 by a similar ECR sputtering method using pure ruthenium (Ru) as a target.
  • Ru ruthenium
  • FIG. 103B the gate electrode 10203 is formed.
  • the formation of the Ru film will be described in detail.
  • an ECR sputtering apparatus using a target of Ru, et al. For example, first, the silicon substrate on which the insulating layer is formed is heated to 400 ° C., and the plasma generation chamber is For example, Ar gas, which is a rare gas, is introduced at a flow rate of 7 sccm. For example, Xe gas is introduced at a flow rate of 5 sccm, and the inside of the plasma generation chamber is set to a pressure of, for example, 10 2 to 10 ⁇ 3 Pa.
  • a magnetic field under an electron cyclotron resonance condition was applied to the plasma generation chamber, and then a 2.45 GHz microwave (eg, 500 W) was introduced into the plasma generation chamber, and Ar and Xe ECR plasmas were introduced into the plasma generation chamber. Assume that it has been created.
  • the generated ECR plasma is emitted from the plasma generation chamber to the processing chamber side by the divergent magnetic field of the magnetic coil.
  • 13.56MHz high-frequency power eg 500W
  • the gate electrode 10203 having a thickness of, for example, about 10 nm is formed on the insulating layer 10202 (FIG. 103B).
  • the gate electrode 10203 makes it possible to apply a voltage to the metal oxide layer 10204 when a voltage is applied between the source electrode 10206 and the drain electrode 10207 to be formed later.
  • the gate electrode 10203 may be composed of force other than ruthenium as long as it has conductivity.
  • the gate electrode 10203 may be composed of platinum.
  • it is known that a platinum film is easily peeled off when a platinum film is formed on silicon dioxide.
  • the thickness of the gate electrode 10203 is not limited to 10 nm, and may be thicker or thinner.
  • the gate electrode 10203 is formed as described above, a target having an oxide sintered body (Bi—Ti—O) force with a ratio of Bi to Ti of 4: 3 is used, and argon (Ar ) And oxygen gas, the metal oxide layer 10204 is formed on the gate electrode 10203 so as to cover the surface as shown in FIG. 103C.
  • a target having an oxide sintered body (Bi—Ti—O) force with a ratio of Bi to Ti of 4: 3 is used, and argon (Ar ) And oxygen gas, the metal oxide layer 10204 is formed on the gate electrode 10203 so as to cover the surface as shown in FIG. 103C.
  • the formation of the metal oxide layer 10204 will be described in detail.
  • the substrate 10201 is heated in the range of 300 ° C to 700 ° C.
  • the plasma generating chamber for example, flow rate 2 by introducing Ar gas as a rare gas Osccm, for example 10- 3 Pa to: LO- 2 is set to Pa range pressure.
  • LO- 2 is set to Pa range pressure.
  • a magnetic field of electron cyclotron resonance conditions is applied to the plasma generation chamber, and then
  • a 45 GHz microwave (eg, 500 W) is introduced into the plasma generation chamber, and ECR plasma is generated in the plasma generation chamber by the introduction of this microwave.
  • the generated ECR plasma is emitted from the plasma generation chamber to the processing chamber side by the divergent magnetic field of the magnetic coil.
  • 1 the sintered compact target placed at the outlet of the plasma generation chamber.
  • the sintered compact target contains oxygen, supply of oxygen can prevent oxygen deficiency in the deposited film.
  • the formation of the film by the ECR ⁇ Pattern method described above can provide a state in which, for example, a metal oxide layer 10204 having a thickness of about 40 nm is formed (FIG. 103C).
  • the film quality may be improved by irradiating the formed metal oxide layer 10204 with ECR plasma of an inert gas and a reactive gas.
  • the reactive gas is not limited to oxygen gas, and nitrogen gas, fluorine gas, and hydrogen gas can be used. This improvement in film quality can also be applied to the formation of the insulating layer 10202.
  • the metal oxide layer 10204 is formed under a lower temperature condition of a substrate temperature of 300 ° C. or lower, the formed metal oxide layer 10204 is annealed (heated in an appropriate gas atmosphere such as an oxygen atmosphere). Process) and greatly improve the properties of the film quality.
  • the substrate 10201 is unloaded from the apparatus to the atmosphere, and then ECR similar to Fig. 5 is used using pure tantalum (Ta) as a target. ⁇ Fix the substrate 10201 to the substrate holder of the notch device. Subsequently, as shown in FIG. 103D, an insulating layer 10205 is formed on the metal oxide layer 10204 so as to cover the surface by ECR ⁇ -Pattern method using argon (Ar) and oxygen gas as plasma gases. It is assumed that it has been formed. As described below, a metal mode film made of Ta—O molecules is formed as the insulating layer 10205.
  • the formation of the metal mode film by Ta—O molecules will be described in detail.
  • the inside of the plasma generating chamber is set to, for example, 10- 3 Pa base pressure.
  • the plasma generation chamber is provided with a magnetic field having an electron cyclotron resonance condition by supplying a coil current of, for example, 28 A to the magnetic coil.
  • a 2.45 GHz microwave (eg, 500 W) is supplied from a microwave generator (not shown), and this is generated through a waveguide, a quartz window, and a vacuum waveguide. It is introduced into the chamber and Ar plasma is generated in the plasma generation chamber by introducing this microwave. The generated plasma is emitted from the plasma generation chamber to the processing chamber side by the divergent magnetic field of the magnetic coil.
  • high frequency power (for example, 500 W) is supplied from a high frequency electrode supply unit to a target disposed at the outlet of the plasma generation chamber.
  • Ta particles jumping out of the target reach the surface of the metal oxide layer 10204 of the substrate 10201 together with the plasma released from the plasma generation chamber and the oxygen gas introduced from the reactive gas introduction part and activated by the plasma. Then, it is oxidized by activated oxygen to tantalum pentoxide.
  • a tantalum pentoxide film is formed over the metal oxide layer 10204. Subsequently, in the same manner as the deposition of silicon dioxide as described with reference to FIG. 103A, the silicon dioxide on the tantalum pentoxide film is formed on the tantalum pentoxide film by ECR ⁇ It is assumed that a film is formed. By repeating the process of forming the tantalum pentoxide tantalum film and the silicon oxyoxide film described above, a multi-layer film of tantalum pentoxide tantalum film and silicon oxyoxide film is formed, for example, to have a thickness of about 5 nm. Layer 10205 is obtained (FIG. 103D).
  • the insulating layer 10205 made of a tantalum pentoxide film and a silicon dioxide film is used to control the voltage applied to the ferroelectric film when a voltage is applied to the metal oxide layer 10204. Used for. Therefore, if the voltage applied to the metal oxide layer 10204 can be controlled, a force other than the multilayer structure of the pentoxide-tantalum film and the dioxide-silicon film can be used to form the insulating layer 10205. It may be configured. Also, the film thickness is not limited to 5 nm. In the above-described ECR sputtering method, the substrate 10201 is not heated, but may be heated.
  • Source electrode 10206 and a drain electrode 10207 made of Au having a predetermined area are formed on the insulating layer 10205, so that FIG. 102A and FIG. A three-terminal element shown in 102B is obtained.
  • Source electrode 10206 and drain electrode 10 207 are formed by the well-known lift-off method and gold deposition by resistance heating vacuum deposition. it can.
  • the source electrode 10206 and the drain electrode 10207 may be made of another metal material such as Ru, Pt, TiN, or a conductive material, for example. If Pt is used, the adhesion may be poor and may peel off. Therefore, a structure that is difficult to peel off, such as Ti Pt Au, is used, and a patterning process such as photolithography is performed on the specified area. It is necessary to form as an electrode having.
  • FIG. 49 will be described together with the operation principle of the element of the present invention.
  • the voltage values and current values described here are those observed with actual elements. Therefore, this phenomenon is not limited to the following numerical values. Other values may be observed depending on the material and thickness of the film actually used for the device, and other conditions.
  • the value of the flowing current decreases and the negative current stops flowing.
  • the gate When a negative voltage is applied to the electrode 10203, as shown in (6), it shows a trajectory in which almost no current flows. After this, even if the absolute value of the voltage is reduced, almost no current flows as shown in (6). Further, when a positive voltage is subsequently applied to the gate electrode 10203, as shown in (1), almost no current value flows from about 0 to 1.OV.
  • the metal oxide layer 10204 has apparently "positive high resistance mode”, “positive low resistance mode”, “negative high resistance mode”, and “negative low resistance mode”.
  • Positive high resistance mode” and “negative high resistance mode” are “high resistance mode” which shows the same high resistance state, “positive low resistance mode” and “negative low resistance mode”.
  • Anti-mode is a “low-resistance mode” that shows the same low-resistance state, and it has been found that two modes exist. In other words, when in the “high resistance mode” state, the “high resistance mode” is maintained in the voltage range of ⁇ 1.5 V to + 1. OV. + 1.
  • the “low resistance mode” When in the “low resistance mode” state, transitioned by applying a voltage of OV or higher, the “low resistance mode” is maintained in the voltage range of 0.2V to + 0.8V. These two “high resistance mode” and “low resistance mode” It will be switched. The same applies to the negative resistance mode of “negative high resistance mode” and “negative low resistance mode”.
  • each ratio is high as 5,000 times. This allows easy mode identification.
  • the inventors presume that the phenomenon described above appears when the resistance value of the metal oxide layer 10204 changes dramatically depending on the direction and strength of the applied voltage.
  • tantalum pentoxide has a band gap of about 4.5 eV, but when looking at the energy difference from the Fermi level, it is about 1.2 eV in the conduction band and in the valence band. 2. It is known that noria is high on the valence band side at 3 eV. Therefore, the barrier property is high for holes in the valence band, but the noria property is low for electrons in the conduction band. For details, refer to ⁇ Wilk et al. Journal of 'Applied Fijitas, No. 87, 484, 2000, (Wilk et. Al, J. Appl. Phys., 87, 48 4 (2000). " It was made! / ⁇ .
  • the elements shown in FIGS. 102A and 102B are non-volatile and capable of non-destructive readout. It was found that it can be used as a child element. Specifically, first, in the off state where the current between the source and the drain becomes a flow, a negative voltage is applied to the gate electrode 10203 as shown in (4) or (5) of FIG. A state where a positive voltage is applied to the drain electrode 10207 If you change the mode from "resistance mode” to "high resistance mode,”
  • a positive voltage is applied to the gate electrode 10203 and a negative voltage is applied to the drain electrode 10207, as shown in (2) of FIG. It can be done by applying a voltage of 8V or more and causing the current to flow rapidly.
  • the mode conversion from the “high resistance mode” to the “low resistance mode” is performed, and a transition is made to the ON state.
  • the ON / OFF state between the source and the drain controlled as described above is the current when an appropriate voltage of ⁇ 0.8 to +0.8 V is applied between the source and the drain. It can be easily recognized by reading the value. For example, when the mode state of the element shown in FIGS. 102A and 102B is “off”, that is, “high resistance mode”, as shown in (1) of FIG. 49, ⁇ 0.8 to +0.8 V This can be determined by the fact that current does not flow easily when an appropriate voltage is applied.
  • the on / off state described above can be easily identified only by examining whether the element shown in FIGS. 102A and 102B is in the “high resistance mode” or the “low resistance mode”. Even if a positive voltage is applied to the electrode to check which mode is being used, the held mode does not change. Therefore, according to the three-terminal element shown in FIGS. 102A and 102B, nondestructive operation is possible.
  • the element shown in FIGS. 102A and 102B has a metal oxide layer 10204, and the resistance value varies depending on the voltage applied between the gate electrode 10 203 and the drain electrode 10207 (or the source electrode 10206). 'It functions as a three-terminal element that controls on / off between drains.
  • This element can also be used as an element for controlling current.
  • the on state and the off state can be controlled by application of the gate voltage.
  • the gate voltage is applied and turned off, if the read voltage is increased, a current flows between the source and the drain to some extent.
  • the applied voltage selectively acts on the region below the drain electrode 10207. It is considered that drain current flows. Therefore, the source 'drain current flows through the path of the metal oxide layer 10204 in the region under the source electrode 10206 and the metal oxide layer 10204 in the region under the drain electrode 10207 under the source electrode 10206. Conceivable.
  • the voltage for operating the device shown in FIGS. 102A and 102B is maximized when the “negative low resistance mode” is set, but is about 0.8 V as shown in FIG. Low power consumption.
  • Low power consumption is very advantageous for devices, such as mobile communication devices, digital general-purpose devices, digital imaging devices, notebook personal computers, and personal 'digital' appliances (PDAs) only. In other words, it is possible to reduce the power consumption of all electronic computers, personal computers, workstations, office computers, large computers, and devices using three-terminal elements such as communication units and multifunction devices.
  • each of the insulating layer on the substrate having a silicon force, the gate electrode layer on the insulating layer, and the metal oxide layer on the gate electrode is formed by ECR sputtering.
  • the method for forming these layers is not limited to the ECR sputtering method.
  • the insulating layer formed on the silicon substrate may be formed by a thermal oxidation method, a chemical vapor deposition method (CVD method), a conventional sputtering method, or the like.
  • the gate electrode layer may be formed by other film forming methods such as EB vapor deposition, CVD, MBE, and IBD.
  • the metal oxide layer is also formed by the MOD method described above or the conventional method. Sputtering method, PLD method, MOCVD method, etc. can be used. However, by using the ECR sputtering method, a flat and good insulating film, metal film, and metal oxide film can be easily obtained.
  • each layer is formed and taken out to the atmosphere, an apparatus in which the processing chambers for realizing each ECR ⁇ patch are connected by a vacuum transfer chamber is used.
  • each layer may be formed by continuous processing without taking it out to the atmosphere. This makes it possible to transport the substrate to be processed in a vacuum, making it less susceptible to disturbances such as moisture adhesion, and improving the film quality and interface characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 強誘電体層(104)を下部電極層(103)と上部電極(105)とで挾み、下部電極層(103)と上部電極(105)との間に所定の電圧(DC,パルス)を印加して強誘電体層(104)の抵抗値を変化させ、安定な高抵抗モードと低抵抗モードを切り替えれば、メモリ動作が得られる。読み出しは、上部電極(105)に、所定の電圧を印加したときの電流値を読み取ることで容易に行うことができる。

Description

明 細 書
2安定抵抗値取得装置及びその製造方法並びに金属酸化物薄膜及びそ の製造方法
技術分野
[0001] 本発明は、 2安定抵抗値取得装置及びその製造方法並びに金属酸化物薄膜及び その製造方法に関する。
背景技術
[0002] マルチメディア情報化社会の拡大、さらには、ュビキタスサービスの実現に向けた 研究開発が盛んに行われている。特に、ネットワーク機器,情報端末に搭載される情 報を記録する装置 (以下、メモリという)は、重要なキーデバイスである。ュビキタス端 末に搭載されるメモリに求められる機能として、高速動作,長期保持期間,耐環境性 ,低消費電力、さらに、電源を切っても蓄積された情報が消去されない機能、つまり、 不揮発性が必須とされて 、る。
[0003] 従来、メモリには、半導体装置が多く用いられてきた。その中の 1つとして、 DRAM
(Dynamic Random Access Memory)が広く使用されている。 DRAMの単位記憶素子 (以下、メモリセルという)では、 1個の蓄積容量と 1個の MOSFET (Meta卜 oxide- semi conductor field effect transistor)からなり、選択されたメモリセルの蓄積容量に蓄えら れた電荷の状態に対応する電圧を、ビット線から電気的なデジタル信号の「on」ある いは「off」として取り出すことで、記憶されて 、るデータを読み出す (サイモン'ジー著 、「フイジタス'ォブ'セミコンダクタ^ ~·デバイス」、 1981年、 (S.M.Sze, "Physics of Sem iconductor Devices",John Wiley and Sons.Inc.) ,舛岡富士雄著、応用物理、 73卷、 第 9号、頁 1166、 2004年参照;)。
[0004] しかし、 DRAMでは、電源を切ると蓄積容量の状態を維持することが不可能となり 、蓄積された情報が消去されてしまう。言い換えると、 DRAMは揮発性のメモリ素子 である。また、よく知られているように、 DRAMでは、データを再び書き込むリフレツシ ュ動作が必要となり、動作速度が低下するという欠点もある。
[0005] 電源を切ってもデータが揮発しな 、機能である不揮発性のメモリとしては、 ROM (R ead only Memory)がよく知られている力 記録されているデータの消去や変更が不 可能である。また、書き換え可能な不揮発性のメモリとして、 EEPROM (Electrically erasable programmable read only memory)を用 ヽたフフッンュ モリ (Flash memory) が開発されている (特開平 8— 031960号公報, 「舛岡富士雄著、応用物理、 73卷、 第 9号、頁 1166、 2004年」参照)。フラッシュメモリは、実用的な不揮発性メモリとし て、多くの分野で使用されている。
[0006] 代表的なフラッシュメモリのメモリセルは、 MOSFETのゲート電極部力 制御ゲート 電極と浮遊ゲート電極を有した複数の層力もなるスタックゲート(Stack gate)構造とな つている。フラッシュメモリでは、浮遊ゲートに蓄積された電荷の量により、 MOSFET の閾値が変化することを利用して、データの記録を可能として 、る。
[0007] フラッシュメモリのデータの書き込みは、ドレイン領域に高電圧を印加して発生した ホットキャリアがゲート絶縁膜のエネルギー障壁を乗り越えることで行う。また、ゲート 絶縁膜に高電界を印加して F— N (Fowler-Nordheim)トンネル電流を流すことで、半 導体基板力 浮遊ゲートに電荷 (一般的には電子)を注入することで、データの書き 込みが行われる。データの消去は、ゲート絶縁膜に逆方向の高電界を印加すること で、浮遊ゲートから電荷を引き抜くことにより行われる。
[0008] フラッシュメモリは、 DRAMのようなリフレッシュ動作が不要な反面、 F— Nトンネル 現象を用いるために、 DRAMに比べてデータの書き込み及び消去に要する時間が けた違いに長くなつてしまうというの問題がある。さらに、データの書き込み '消去を繰 り返すと、ゲート絶縁膜が劣化するので、書き換え回数がある程度制限されていると いう問題もある。
[0009] 上述したフラッシュメモリに対し、新たな不揮発性メモリとして、強誘電体の分極を用 いた強誘電体メモリ(以下、 FeRAM (Ferroelectric RAM)や、強磁性体の磁気抵抗 を用いた強磁性体メモリ(以下、 MRAM (Magnetoresist RAM)と!、う)などが注目さ れており、盛んに研究されている。この中で、 FeRAMは、既に実用化されていること もあり、諸処の課題を解決できれば、可搬型メモリだけでなくロジックの DRAMも置き 換えできると期待されている。
[0010] 強誘電体には、酸化物強誘電体 (強誘電体セラミックスとも呼ばれる)とポリフッ化ビ 二リデン (PVDF)に代表されるような高分子強誘電体、 BaMgFなどのフッ化物強誘
4
電体がある。酸化物強誘電体とフッ化物強誘電体は、分極を担う原子の僅かな変位 によって分極反転が起きる。一方、高分子強誘電体では、共有結合で長く結合した 分子鎖のコンフオメーシヨン (結合形態)変化を素過程とする個々の分子鎖の回転に よって、分極反転が起きる。
[0011] 酸化物強誘電体は、 BaTiO , PbTiOなどのぺロブスカイト構造(Perovskite)、 Li
3 3
NbO , LiTaOなどの擬ィルメナイト構造(Pseudo- ilmenite)、 PbNb O , Ba NaNb
3 3 3 6 2 5
O などのタングステン 'ブロンズ(TB)構造(Tumgsten- bronze)、 SrBi Ta O , Bi Ti
15 2 2 9 4
O などのビスマス層状構造(Bismuth layer-structure ferroelectric, BLSF)等、 La Ti
3 12 2
Oなどのパイロクロア構造(Pyrochlore)に分類される。
2 7
[0012] また、高分子強誘電体は、ポリフッ化ビニリデン (PVDF)を始め、フッ化ビニリデン( PDV)と三フッ化工チレンの共重合体の P (VDF/TrEF)などがあり、高分子の重合 反応により作製される。強誘電体に関しての詳しくは、「塩寄忠 監修、「強誘電体材 料の開発と応用」、シーエムシー出版」を参考されたい。
[0013] 上述した強誘電体材料のうち、 FeRAMには主に酸化物強誘電体が使用される。
さらに、酸ィ匕物強誘電体の中でよく使用されているのは、ぺロブスカイト構造を持つ 強誘電体(以下、ぺロブスカイト型強誘電体と呼ぶ)の中でも Pb (Zr, Ti) 0 (PZT)で
3 代表される鉛系強誘電体である。しカゝしながら、鉛含有物や鉛酸化物は、労働安全 衛生法により規制される材料であり、生態への影響や環境負荷の増大などが懸念さ れる。このため欧米では、生態学的見知及び公害防止の面から規制対象となりつつ ある。
[0014] 近年の環境負荷軽減の必然性から、非鉛系(無鉛)で鉛系強誘電体の性能に匹敵 する強誘電体材料が世界的に注目されており、この中でも無鉛べ口ブスカイト型強誘 電体ゃビスマス層状構造強誘電体 (BLSF)が有望とされている。しかし、鉛系強誘 電体に比べ分極量力 、さく成膜法 ·加工法ともに課題が多いのも事実である。
[0015] フラッシュメモリの代わりとして期待される FeRAMには、主に、スタック型と FET型 に分類される。スタック型は、 1トランジスタ 1キャパシタ型 FeRAMとも呼ばれ、この構 造から図 127に示すようなスタック型キャパシタを持つものと、プレーナ型キャパシタ を持つもの、立体型キャパシタを持つものがある。また、スタック型には、 1トランジスタ 1キャパシタ型 FeRAMやこれを 2つ重ねて安定動作化させた 2トランジスタ 2キャパ シタ型 FeRAMがある。
[0016] 図 127に示すスタック型の FeRAMは、半導体基板 12701の上に、ソース 12702, ドレイン 12703,ゲート絶縁膜 12704を介して設けられたゲート電極 12705よりなる MOSトランジスタを備え、 MOSトランジスタのソース 12702に、下部電極 12711,強 誘電体からなる誘電体層 12712,上部電極 12713からなるキャパシタが接続して ヽ る。図 127の例では、ソース電極 12706により上記キャパシタがソース 12702に接続 している。また、ドレイン 12703にはドレイン電極 12707が接続し、電流計が接続し ている。
[0017] これらの構造は、強誘電体力もなる誘電体層 12712の分極の向きをソース ドレイ ン間(チャネル 12721)に流れる電流として検出することで、「on」あるいは「off」のデ ータとして取り出す機能を持っている。強誘電体の分極は、電圧を印加してなくても 保持できることから不揮発性を有するが、この構造では、データ読み出し時にデータ を破壊してしまい、データの再書き込みが必要となり高速性にかけるという問題や、 1 つの素子の占有する面積が大き 、ため、高集積化には向かな 、と 、う欠点がある。
[0018] 上述したスタック型 FeRAMに対し、 FET型 FeRAMは、次世代を担う FeRAMとし て期待されている。 FET型 FeRAMは、 1トランジスタ型 FeRAMとも呼ばれ、この構 造から、 MOSFETのゲート電極とチャネル領域のゲート絶縁膜の代わりに強誘電体 膜を配置した MFS (Meta ferroelectric- semiconductor)型 FeRAM、 MOSFETの ゲート電極の上に強誘電体膜を配置した MFMIS iMetaHferroelectric-metaHnsula tor-semiconductor)型 FeRAM、さらに MOSFETのゲート電極とゲート絶縁膜の間 に強誘電体膜を配置した図 128に示すような MFIS (Metal-ferroelectric-insulator-s emiconductor)型 FeRAMなどの 1トランジスタ型 FeRAMがある(猪俣浩一郎、田原 修ー、有本由弘編、「MRAM技術—基礎力も LSI応用まで—」、サイペック参照)。
[0019] 図 128【こ示す MFISで ίま、半導体基板 12801の上【こ、ソース 12802,ドレイン 128 03を備え、ソース'ドレイン間に配置されたゲート絶縁膜 12804の上に、強誘電体か らなる誘電体層 12805を備え、誘電体層 12805の上にゲート電極 12806を備える。 ソース 12802にはソース電極 12807を介してソース電圧が印加され、ドレイン 1280 3にはドレイン電極 12808を介して電流計が接続して!/、る。
[0020] これらの FeRAMは、 MOSFETの動作に強誘電体の分極を適用させたものであり 、分極の状態により、ゲート絶縁膜 12804直下の半導体表面にチャネル 12821が形 成される場合と、形成されない場合との状態を作り出し、このときのソース一ドレイン 間の電流値を読み取り、電気的なデジタル信号の「on」あるいは「off」として取り出す 機能を持っている。
[0021] FET型 FeRAMでは、動作原理から、データ読み出しを行っても、強誘電体の分 極量は変化しないことから非破壊読み出しが可能であり、高速動作が期待されている 。また、 1トランジスタ 1キャパシタ型 FeRAMに比べて専有面積も小さくできることから 、高集積ィ匕に有利である特徴を持つ。し力しながら、実際には、 1トランジスタ型 FeR AMのうち MFIS型 FeRAM (図 128)では、強誘電体膜と半導体の間にゲート絶縁 膜があるために、強誘電体の分極量を打ち消すような減分極電界が発生する。
[0022] さらに、上述した構成を実現するためには、一般的に非晶質 (アモルファス)である 絶縁膜の上に、分極特性と配向性を持つ高品質な高誘電体を成膜することになる。 ところが、後に説明する既存の成膜手法を用いては、絶縁膜上に高配向性の強誘電 体を形成することが難し力つた。このため、従来技術で作製された MFIS型 FeRAM は、減分極電界により分極が持ちこたえることができず、長時間のデータ保持ができ なかった。さらに、半導体の上に形成する絶縁膜の品質が乏しい場合、電界により生 じるリーク電流によって、強誘電体の分極量がさらに低下してしまう。これらのために、 現状の MFIS型 FeRAMにおいては、メモリとしての動作のデータ保持期間(データ 寿命)が 10日程度に留まっており、実用にはほど遠!、のが現状である。
[0023] ところで、 MFMIS型 FeRAMにお!/、ては、結晶の金属電極(Ptや SrRuOなどが
2 一般的)の上に強誘電体を形成できるため、 MFIS型 FeRAM構造のように絶縁膜 の上に強誘電体を形成する必要がなく高品質な成膜ができる。し力しながら、強誘電 体は、金属上に対してもいまだ安定した成膜方法が提案されておらず、やはり、半導 体上の絶縁膜による減分極電界による分極低下が問題となり長期のメモリ保持が実 現されていない。 [0024] 一方、 MFS型 FeRAMでは、半導体上の絶縁膜を必要としないために、原理的に 減分極電界による分極の低下を回避できる。しかし、ゾルゲル法ゃ MOCVD法など の強誘電体成膜方法では高温の成膜温度が必要となるために、 Siなどの半導体表 面が酸ィ匕又は変質していまい、界面に酸ィ匕膜や欠陥を多く形成してしまう。この結果 、半導体と強誘電体との界面に酸化膜 (界面酸化膜)が形成されてしまった場合、 M FIS型 FeRAMと同様に減分極電界が生じてしまう。
[0025] 界面酸化膜が形成されなくても、界面に欠陥準位を多く形成した場合、電荷蓄積 の電荷の影響が大きくなり、正確なメモリ動作ができなくなる。また、形成した強誘電 体膜の品質が低い場合、膜中にリーク電流が流れてしまい長期間の分極特性を保 持できな!/、ことが多く報告されて!、る。
[0026] 上述した FeRAMなどでは、基体上への酸ィ匕物強誘電体の形成が重要である。現 在までに様々な形成装置及び種々の薄膜形成方法が試みられている。例えば、ゾ ルゲル (sol-gel)法と有機金属熱分解 (Metal-organic deposition.MOD)を含む化学 溶液堆積法(Chemical solution deposition, CSD)、有機金属化学気相堆積法(Metal -organic chemical vapor deposition'MOCVD又は MOVPE)、ノヽノレス ·レーザー ·テホ ジシヨン (Pulselaser deposition, PLD)、液体ミストイ匕' 積法 (Liquid source misted c hemical deposition, LSMCD)、電気泳動堆 法 (Electro— phoretic deposition, EPD)、 高周波スパッタリング法 (rf- sputtering、 RFスパッタ法ゃマグネトロンスパッタ法とも呼 ぶ)、 ECR ^ッタ法 (Electron cyclotron resonance sputtering)なとか举げられる。
[0027] これらの成膜方法のうち主流となっているのは、ゾルゲル法ゃ MOD法と呼ばれる C SD法である。 CSD法は、強誘電体の基材を有機溶媒に溶解し、これを基体に塗布' 焼結を繰り返して膜を形成する方法であり、簡便で比較的大面積に強誘電体膜が形 成できるのが特徴である。 CSD法は、塗布する溶液の組成を制御することで任意の 組成を持つ強誘電体膜が形成でき、多くの研究機関から報告がなされている。
[0028] しかし、塗布する基体によっては濡れ性が悪く形成できないこともあること、形成した 膜中に溶液に用いる溶媒が残されてしまい良好な膜質が得られないことなどの問題 がある。また、 CSD法では、焼結させるための温度を強誘電体膜のキュリー温度より も高くする必要があるために、温度や雰囲気の制御が悪い場合、良好な特性の膜が 全く得られな 、と ヽつた問題を抱える。
[0029] また、 CSD法以外の方法による強誘電体膜の形成も試みられて 、る。例えば、ェキ シマレーザなどの強力なレーザ光源で強誘電体原料のターゲットをスパッタすること で、良好な膜質の強誘電体膜が形成できる PLD法が注目されている。しかし、この方 法では、ターゲット面内においてレーザが照射される部分の面積は非常に小さぐ小 さな照射面からスパッタされて供給される原料に大きな分布が生じる。このために PL D法では、基体に形成される強誘電体の膜厚'膜質などに大きな面内分布を生じ、ま た、同一条件で形成しても全く異なった特性になるなど、再現性について大きな問題 がある。
[0030] ただし、この特性は、条件を詳細に検討するのには向いており、この特性を生かし て成膜特性を検討する手法としてコンビナトリアル法が注目されて 、る。しかしながら 、工業的な観点力 は、大面積に再現性よく形成できる手法が必須であり、現在の P LD法は、工業的な使用は困難であるといえる。
[0031] 上述した種々の膜形成方法に対し、強誘電体膜の形成方法としてスパッタリング法
(単にスパッタ法とも 、う)が注目されて 、る。スパッタ法は、危険度の高!、ガスや有毒 ガスなどを用いることなぐ堆積する膜の表面凹凸 (表面モフォロジ)が比較的良いな どの理由により、有望な成膜装置 '方法の 1つになっている。スパッタ法において、化 学量論的組成の強誘電体膜を得るための優れた装置 ·方法として、酸素ガスや窒素 ガスを供給し、膜中の酸素や窒素が欠落するのを防止する反応性スパッタ装置-方 法が有望である。
[0032] 従来から使用されて!、る RFスパッタ法 (従来スパッタ法)にお 、て、酸化物強誘電 体を堆積するときには、対象となる化合物 (焼結体)ターゲットを用いる。しかしながら 、従来スパッタ法では、不活性ガスとしてアルゴン、反応性ガスとして酸素を用いて酸 化物強誘電体を形成した場合、基板上に形成された強誘電体膜中の酸素が充分に 取り込まれずに、良好な膜質の強誘電体が得られな 、と 、う問題があった。
[0033] このため、強誘電体を堆積した後に、加熱炉などを用いた酸素中でのアニーリング と呼ばれる加熱処理により、基体の上に形成した強誘電体膜の膜質を改善する必要 があった。従って、上記従来スパッタ法では、アニーリングという工程が追加され、製 造プロセスに煩雑性が増すという問題があった。また、このアニーリング工程では、一 定の膜質を得るように制御するため、温度などの条件を厳密に管理する必要があつ た。カロえて、形成する膜の材質によっては、アニーリング処理を行うことができない場 合もあった。
[0034] また、スパッタ膜の膜品質を改善する方法として、電子サイクロトロン共鳴 (ECR)に よりプラズマを発生させ、このプラズマの発散磁界を利用して作られたプラズマ流を 基板に照射し、同時に、ターゲットと接地間に高周波又は負の直流電圧を印加し、上 記 ECRで発生させたプラズマ流中のイオンをターゲットに引き込み衝突させてスパッ タリングし、膜を基板に堆積させる パッタ法がある。
[0035] 従来のスパッタ法では、 0. lPa程度以上のガス圧力でないと安定なプラズマは得 られないのに対し、 ECRスパッタ法では、安定な ECRプラズマが 0. OlPa台の圧力 で得られる特徴を持つ。また、 ECRスパッタ法は、高周波又は負の直流高電圧により 、 ECRにより生成した粒子をターゲットに当ててスパッタリングを行うため、低い圧力 でスパッタリングができる。
[0036] ECR^パッタ法では、基板に ECRプラズマ流とスパッタされた粒子が照射される。
ECRプラズマ流中のイオンは、発散磁界により 1 OeVから数 1 OeVのエネルギーを持 つている。また、気体が分子流として振る舞う程度の低い圧力でプラズマを生成-輪 送しているため、基板に到達するイオンのイオン電流密度も大きく取れる。従って、 E CRプラズマ流中のイオンは、スパッタされて基板上に飛来した原料粒子にエネルギ 一を与えると共に、原料粒子と酸素との結合反応を促進することとなり、堆積した膜の 膜質が改善される。
[0037] ECR^パッタ法では、低 、基板温度で高品質の膜が形成できることが特徴となって いる。 ECR^パッタ法でいかに高品質な薄膜を堆積し得るかは、例えば、特許第 28 14416号公報、特許第 2779997号公報や、「天沢他の J.Vac.Sci.Technol.,B17,no.5 ,2222(1999).」を参照されたい。さらに、 EC パッタ法は、膜の堆積速度が比較的 安定しているため、ゲート絶縁膜などの極めて薄い膜を、膜厚の制御よく形成するの に適している。また、 ECR^パッタ法で堆積した膜の表面モフォロジは、原子スケー ルのオーダーで平坦である。従って、 ECRスパッタ法は、高誘電率ゲート絶縁膜の 形成するだけでなぐ前述した FeRAMに必要な強誘電体膜の形成や金属電極膜 の形成にとって有望な方法であると言える。
[0038] ECR^パッタ法を用いた強誘電体膜の検討にっ 、ても 、くつか報告されて!、る。
例えば、特開平 10— 152397号公報,特開平 10— 152398号公報, 「松岡らの J.Ap pl.Phys.,76(3),1768,(1994).」では、バリウム又はストロンチウムを含む強誘電体の製 造について報告している。また、「渡津らの「粉体及び粉末冶金」、第 44号、 86頁、 1 997年」では、 Ba NaNi O の製造について報告している。さらに、「増本らの、 Appl.
2 5 15
Phys丄 ett.,58,243,(1991).」
[0039] しカゝしながら、従来では、 ECRスパッタ法を用いても、先人らは従来スパッタ法と同 様の方法として捉えた思想により条件を選択し、強誘電体材料力 なる膜を形成しよ うとしていた。このため、従来では、 ECR^パッタ法を用いて強誘電体膜を形成しても 、FeRAMに適用できる良好な強誘電性を示すことができな力つた。
[0040] 上述したようなメモリを取り巻く状況に対し、強誘電体の分極量により半導体の状態 を変化させる(チャネルを形成する)などの効果によりメモリを実現させるのではなぐ 図 129に示すように、半導体基板 12901の上部に直接形成した強誘電体層 12902 の抵抗値を変化させ、結果としてメモリ機能を実現する技術が提案されて ヽる (特開 平 7— 263646号公報参照)。強誘電体層 12902の抵抗値の制御は、電極 12903と 電極 12904との間に電圧を印加することで行う。
発明の開示
発明が解決しょうとする課題
[0041] し力しながら、図 129に示した特許文献 6に提案されている構造は、前述した MFS 型 FeRAMのゲート電極直下と同様に、半導体の上に強誘電体層を備える構造とな つている。従って、図 129に示す素子では、 MFS型 FeRAMの製造過程に最大の問 題となる半導体上の良質な強誘電体層の形成が困難であるば力りでなぐ半導体と 強誘電体層との間に半導体酸化物が形成されてしまい、減分極電界の発生や多くの 欠陥の発生が特性に大きく影響し、長時間のデータ保持は不可能であることが予想 される。実際、図 129に示す素子では、 2分程度の保持時間しか達成されておらず、 1分程度でデータの再書き込みを強いられることになる。 [0042] 図 129に示す素子に見られる電流電圧ヒステリシスは、半導体基板 12901と強誘 電体層 12902の界面に発生した欠陥に、電子又はホールが捕獲(トラップ)されるた めに起きるとされている。このため、特許文献 6では、電気伝導に関連するキャリア数 が少ない材料が好ましぐ半導体基板 12901が適しているとしている。しかし、界面 欠陥のキャリアトラップ現象を用いているために、捕獲するトラップが多くなれば、トラ ップの増加に伴うリーク電流によりデータ保持時間は短くなる。これに対し、半導体基 板 12901の上に界面なく強誘電体層 12902を形成し、リーク電流を少なくすれば、 キャリアの捕獲は発現せず、メモリの効果はなくなる。これらの矛盾により、図 129に 示す素子では、長時間のメモリ保持を行うには原理的に不適であるものであった。
[0043] 本発明は、以上のような問題点を解消するためになされたものであり、より安定に記 憶保持が行えるメモリ装置が構成できるなど、金属酸ィ匕物を用いて安定した動作が 得られる素子を提供できるようにすることを目的とする。
課題を解決するための手段
[0044] 本発明に係る 2安定抵抗値取得装置は、基板の上に形成されて少なくとも 2つの金 属を含んだ金属酸ィ匕物力 構成された所定の厚さの第 1金属酸ィ匕物層と、この第 1 金属酸化物層の一方の面に形成された第 1電極と、第 1金属酸化物層の他方の面に 形成された第 2電極とを少なくとも備えるようにしたものである。
[0045] 上記 2安定抵抗値取得装置において、第 1金属酸化物層の他方の面に第 2電極と 離間して形成された第 3電極を備えるようにしてもよい。この場合、第 1電極カゝらなる ゲート電極と、第 2電極力もなるソース電極と、第 3電極力もなるドレイン電極とにより 3 端子素子が構成できる。
[0046] 上記 2安定抵抗値取得装置において、基板の上に形成されて金属酸化物から構 成された所定の厚さの第 2金属酸化物層と、この第 2金属酸化物層に設けられた第 4 電極とを少なくとも備え、第 1電極、第 1金属酸化物層,第 2金属酸化物層,及び第 4 電極は、これらの順に直列に接続されて 、るようにしてもょ 、。
[0047] 上記 2安定抵抗値取得装置において、第 1金属酸化物層の一方の面及び他方の 面の少なくとも 1つの面に接して形成された絶縁層を備えるようにしてもよい。また、第 2金属酸ィ匕物層の一方の面及び他方の面の少なくとも 1つの面に接して形成された 絶縁層を備えるようにしてもよい。上記 2安定抵抗値取得装置において、基板の上に 形成された非晶質状態の非晶質層と、この非晶質層の上に形成されて結晶状態の 導電性材料から構成された第 1電極,この第 1電極の上に形成された第 1金属酸ィ匕 物層,及びこの第 1金属酸化物層の上に形成された第 2電極より構成された複数の 素子と、これら素子の間の非晶質層の上に形成されて金属酸ィ匕物力 構成された分 離層とを少なくとも備え、分離層により複数の素子が分離されて ヽるようにしてもょ ヽ 。この場合、第 1金属酸ィ匕物層と分離層とは、一体に形成されているようにしてもよい
[0048] 上記 2安定抵抗値取得装置において、金属酸化物は、第 1電極と第 2電極との間に 印加された電気信号により抵抗値が変化するものである。例えば、金属酸化物は、第 1電圧値以上の電圧印加により第 1抵抗値を持つ第 1状態となり、第 1電圧とは極性 の異なる第 2電圧値以下の電圧印加により第 1抵抗値と異なる第 2抵抗値を持つ第 2 状態となる。また、例えば、金属酸化物は、第 1電圧値を超える電圧印加により第 1抵 抗値を持つ第 1状態となり、第 1電圧を超えない範囲の第 2電圧値を超える電圧印加 により第 1抵抗値より高い第 2抵抗値を持つ第 2状態となる。
[0049] 上記 2安定抵抗値取得装置において、金属酸化物は、少なくとも第 1金属,及び酸 素から構成された基部層と、第 1金属,第 2金属,及び酸素からなり、基部層の中に 分散された複数の微粒子とを少なくとも備えるものである。このとき、基部層は、第 1金 属,第 2金属,及び酸素から構成され、化学量論的組成に比較して第 2金属の組成 比が小さいものであればよい。また、基部層は、第 1金属,第 2金属,及び酸素の柱 状結晶を含むものであってもよい。また、金属酸化物は、基部層に接して配置され、 少なくとも第 1金属,及び酸素から構成され、柱状結晶及び非晶質の少なくとも 1つで ある金属酸ィ匕物単一層を備えるものであってもよい。また、金属酸化物単一層は、第 1金属,第 2金属,及び酸素の化学量論的組成に比較して第 2金属の組成比が小さ いものである。また、金属酸化物単一層は、微粒子を含まない。なお、第 1金属はチ タンであり、第 2金属はビスマスであり、基部層は、化学量論的糸且成に比較して過剰 なチタンを含む層からなる非晶質状態であればょ 、。上記 2安定抵抗取得装置にお いて、金属酸化物は、強誘電体であってもよい。 [0050] 上記 2安定抵抗値取得装置において、第 1電極は、ルテニウム、白金の少なくとも 1 つから構成され、同一材料による単層構造,複数材料による積層構造の少なくとも 1 つであればよい。また、基板は導電性材料力も構成されたものであってもよい。また、 第 1電極と基板とは同一であってもよい。
[0051] 本発明に係る 2安定抵抗値取得装置の製造法は、基板の上に形成されて少なくと も 2つの金属を含んだ金属酸ィ匕物から構成された所定の厚さの第 1金属酸ィ匕物層と 、この第 1金属酸化物層の一方の面に形成された第 1電極と、第 1金属酸化物層の 他方の面に形成された第 2電極とを少なくとも備えた 2安定抵抗値取得装置の製造 方法であって、所定の組成比で供給された不活性ガスと酸素ガスとからなる第 1ブラ ズマを生成し、少なくとも第 1金属及び第 2金属から構成されたターゲットに負のバイ スを印加して第 1プラズマより発生した粒子をターゲットに衝突させてスパッタ現象を 起こし、ターゲットを構成する材料を堆積することで、第 1金属,第 2金属及び酸素か ら構成された金属酸化物からなる第 1金属酸化物層を形成する第 1工程を備え、第 1 プラズマは、電子サイクロトロン共鳴により生成されて発散磁界により運動エネルギー が与えられた電子サイクロトロン共鳴プラズマであり、基板は所定温度に加熱された 状態とするようにしたものである。
[0052] 上記 2安定抵抗値取得装置の製造方法において、金属酸化物からなる層の表面 に、所定の組成比で供給された不活性ガスと反応性ガスとからなる第 2プラズマを照 射する第 2工程を備え、第 2プラズマは、電子サイクロトロン共鳴により生成されて発 散磁界により運動エネルギーが与えられた電子サイクロトロン共鳴プラズマであれば よい。また、反応性ガスは、酸素ガスであればよい。また、第 1工程において、基板は 、金属酸ィ匕物のキュリー点温度以下に加熱したほうがよい。また、基板に、プラズマに より生成されるイオンエネルギーを制御するための電圧を印加するようにしてもよい。 なお、第 1金属はチタンであり、第 2金属はビスマスであればよい。また、ターゲットは 、少なくとも第 1金属と第 2金属と酸素とから構成されたものであればよい。
[0053] 本発明に係る金属酸ィ匕物薄膜は、少なくとも第 1金属及び酸素力も構成された基 部層と、第 1金属,第 2金属,及び酸素よりなり、基部層の中に分散された複数の微 晶粒 (例えばィ匕学量論的組成の微結晶)とを少なくとも備えるようにしたものである。 [0054] また、本発明に係る金属酸化物薄膜の製造方法は、所定の組成比で供給された不 活性ガスと酸素ガスとからなる第 1プラズマを生成し、第 1金属と第 2金属とから構成さ れたターゲットに負のバイスを印加して第 1プラズマより発生した粒子をターゲットに 衝突させてスパッタ現象を起こし、ターゲットを構成する材料を基板の上に堆積する ことで、少なくとも第 1金属及び酸素から構成された基部層と、第 1金属,第 2金属, 及び酸素からなり、基部層の中に分散された複数の微粒子とを少なくとも備える金属 酸化物薄膜を基板の上に形成する工程を備え、第 1プラズマは、電子サイクロトロン 共鳴により生成されて発散磁界により運動エネルギーが与えられた電子サイクロトロ ン共鳴プラズマであり、基板は所定温度に加熱された状態とするようにしたものである 。なお、第 1金属はチタンであり、第 2金属はビスマスである。
発明の効果
[0055] 以上説明したように、本発明によれば、少なくとも 2つの金属を含んだ金属酸化物 力 構成された所定の厚さの第 1金属酸ィ匕物層の一方の面に第 1電極を用意し、他 方の面に第 2電極を用意して素子を構成するようにしたので、より安定に記憶保持が 行えるメモリ装置が構成できるなど、金属酸ィ匕物を用いて安定した動作が得られる素 子を提供できるようになると ヽぅ優れた効果が得られる。
図面の簡単な説明
[0056] [図 1A]図 1Aは、本発明の実施の形態における 2安定抵抗値取得装置 (強誘電体素 子)の構成例を示す断面図である。
[図 1B]図 1Bは、図 1 Aに示す素子の部分を示す断面図である。
[図 2]図 2は、図 1 Aに示す素子の電流電圧特性を示す特性図である。
[図 3]図 3は、図 1Aに示した素子におけるデータ保持について示す特性図である。
[図 4A-4D]図 4A,図 4B,図 4C,図 4Dは、図 1 Aに示す素子の製造方法例について 説明する工程図である。
[図 5]図 5は、 ECRスパッタ装置の概略的な構成例を示す模式的な断面図である。
[図 6]図 6は、 ECRスパッタ法を用いて Bi Ti O を成膜した場合の、導入した酸素流
4 3 12
量に対する成膜速度の変化を示した特性図である。
[図 7A-7d]図 7A〜図 7dは、強誘電体層 104の構成例として作製した薄膜の断面を 透過型電子顕微鏡で観察した結果を示し、図 7A,図 7B,図 7C,図 7Dは、顕微鏡 写真であり、図 7a,図 7b,図 7c,図 7dは、各々の状態を模式的に示した模式図であ る。
[図 8]図 8は、膜形成時の基板温度条件に対する成膜速度と屈折率の変化を示した ものである。
[図 9]図 9は、強誘電体層 104の他の構成例を示す模式的な断面図である。
[図 10A-10D]図 10A,図 10B,図 10C,図 10Dは、本発明の実施の形態に係る他の 強誘電体素子の構成例を示す模式的な断面図である。
[図 11A-11E]図 11A,図 11B,図 11C,図 11D,図 11Eは、本実施の形態に係る他 の強誘電体素子の構成例を示す模式的な断面図である。
[図 12A-12D]図 12A,図 12B,図 12C,図 12Dは、本実施の形態に係る他の強誘電 体素子の構成例を示す模式的な断面図である。
[図 13]図 13は、本実施の形態に係る他の強誘電体素子の構成例を示す模式的な断 面図である。
[図 14]図 14は、本実施の形態に係る他の強誘電体素子の構成例を示す模式的な断 面図である。
[図 15]図 15は、図 1に示す素子の強誘電体層 104に所定の電圧が印加された状態 として一定の電流が流れた後に、 +0. 5Vの電圧が印加されたときに流れる電流値 を観察した結果を示す特性図である。
[図 16]図 16は、図 1に示す素子をパルス電圧により駆動する動作例を示すタイミング チャートである。
[図 17]図 17は、図 16に示す駆動制御による電流値の変化を示す特性図である。
[図 18]図 18は、図 1に示す素子の多値動作について説明するための説明図である。
[図 19]図 19は、図 1に示す素子の多値動作について説明するための説明図である。
[図 20]図 20は、図 1に示す素子の多値動作について説明するための説明図である。
[図 21]図 21は、他の金属材料から電極を構成した場合の電流電圧特性を示す特性 図である。
[図 22]図 22は、他の金属材料から電極を構成した場合の電流電圧特性を示す特性 図である。
[図 23]図 23は、他の金属材料から電極を構成した場合の電流電圧特性を示す特性 図である。
[図 24]図 24は、他の金属材料カゝら電極を構成した場合のデータ保持について示す 特性図である。
[図 25A-25B]図 25A,図 25Bは、 2つ以上の金属から構成された酸ィ匕物よりなる強誘 電体 (薄膜)の一般的な電流電圧特性を示す特性図である。
[図 26]図 26は、絶縁破壊 (ブレイクダウン)の過程を示す特性図である。
圆 27]図 27は、所定の膜厚以上とした強誘電体層 104の電圧電流特性を示す特性 図である。
[図 28]図 28は、複数の素子に対して ECRプラズマを照射して EO処理をする状態を 説明するための説明図である。
[図 29]図 29は、 + 1. 6Vで低抵抗状態になだらかに遷移する素子において、 + 1V の電圧を印加した場合の素子の抵抗値の変化を示す説明図である。
[図 30]図 30は、上部電極と下部電極層との間に一定電圧 (例えば 1. 2V)を印加した ときの、素子の抵抗値の時間変化を示す説明図である。
[図 31]図 31は、本発明の実施の形態における他の素子の構成例を模式的に示す断 面図である。
[図 32A- 32E]図 32A,図 32B,図 32C,図 32D,図 32Eは、図 31に示す素子の製造 方法例を示す工程図である。
[図 33]図 33は、図 31に示す素子の下部電極層 3103と上部電極 3106との間に電圧 を印カロしたときの電流密度の変化の状態を示す特性図である。
[図 34]図 34は、図 31に示す素子におけるデータ保持される時間について説明する ための説明図である。
[図 35A- 35D]図 35A,図 35B,図 35C,図 35Dは、本発明の実施の形態における他 の素子の構成例を模式的に示す断面図である。
[図 36]図 36は、本発明の実施の形態における他の素子の構成例を模式的に示す断 面図である。 [図 37]図 37は、本発明の実施の形態における他の素子の構成例を模式的に示す断 面図である。
[図 38A-38C]図 38A,図 38B,図 38Cは、本発明の実施の形態における他の素子の 構成例を模式的に示す断面図である。
[図 39]図 39は、強誘電体層 3104の上の絶縁層 3105を構成する材料及び膜厚と電 流密度との関係を示す特性図である。
[図 40A- 40E]図 40A,図 40B,図 40C,図 40D,図 40Eは、本発明の実施の形態に おける他の素子の構成例を模式的に示す断面図である。
[図 41]図 41は、下部電極層 3103と上部電極 3106との間に流れる電流値と、電極間 に電流検出用の電圧を印加したときに測定される電流との関係を示す特性図である
[図 42]図 42は、図 31に示す素子をパルス電圧により駆動する動作例を示すタイミン グチャートである。
[図 43]図 43は、図 42に示す駆動制御による電流値の変化を示す特性図である。
[図 44A-44B]図 44A,図 44Bは、図 31に示す素子を電流を制御するスィッチ素子と して用いる場合にっ 、て説明する説明図である。
[図 45]図 45は、図 31に示す素子を電流を制御するスィッチ素子として用いる場合の 制御シーケンスを示すタイミングチャートである。
[図 46]図 46は、図 31に示す素子の多値動作について説明するための説明図である
[図 47]図 47は、本発明の実施の形態における他の素子の構成例を模式的に示す断 面図である。
[図 48A- 48E]図 48A,図 48B,図 48C,図 48D,図 48Eは、本発明の実施の形態に おける素子の製造方法例を示す工程図である。
[図 49]図 49は、図 47に示す素子の下部電極層 4703と上部電極 4706との間に電圧 を印カロしたときの電流変化の状態を示す特性図である。
[図 50A-50D]図 50A,図 50B,図 50C,図 50Dは、本発明の実施の形態における他 の素子の構成例を模式的に示す断面図である。 [図 51]図 51は、本発明の実施の形態における他の素子の構成例を模式的に示す断 面図である。
[図 52]図 52は、本発明の実施の形態における他の素子の構成例を模式的に示す断 面図である。
[図 53A-53C]図 53A,図 53B,図 53Cは、本発明の実施の形態における他の素子の 構成例を模式的に示す断面図である。
[図 54A- 54E]図 54A,図 54B,図 54C,図 54D,図 54Eは、本発明の実施の形態に おける他の素子の構成例を模式的に示す断面図である。
[図 55]図 55は、本発明の実施の形態における他の素子の構成例を模式的に示す断 面図である。
[図 56]図 56は、シリコン基板の上に形成されたビスマスとチタンとを含む金属酸ィ匕物 層の断面状態を透過型電子顕微鏡により観察した結果を模式的に示す断面図であ る。
[図 57]図 57は、ルテニウム電極層の上に形成されたビスマスとチタンとを含む金属酸 化物層の断面状態を透過型電子顕微鏡により観察した結果を示す顕微鏡写真であ る。
[図 58]図 58は、ルテニウム電極層の上に形成されたビスマスとチタンとを含む金属酸 化物層の断面状態を透過型電子顕微鏡により観察した結果を模式的に示す断面図 である。
[図 59]図 59は、積層構造の絶縁層における電気的特性を示す特性図である。
[図 60]図 60は、ルテニウム電極層の上に、五酸化タンタル層,二酸化シリコン層,五 酸ィ匕タンタル層の順に積層された絶縁層を介して形成されたビスマスとチタンとを含 む金属酸化物層の断面状態を透過型電子顕微鏡により観察した結果を示す顕微鏡 写真である。
[図 61]図 61は、ルテニウム電極層の上に、五酸化タンタル層,二酸化シリコン層,五 酸ィ匕タンタル層の順に積層された絶縁層を介して形成されたビスマスとチタンとを含 む金属酸化物層の断面状態を透過型電子顕微鏡により観察した結果を模式的に示 す断面図である。 [図 62]図 62は、本発明の実施の形態における金属酸ィ匕物層を用いた素子の構成例 を模式的に示す断面図である。
[図 63A- 63F]図 63A,図 63B,図 63C,図 63D,図 63E,図 63Fは、図 62に示す機 能素子の製造方法例を示す工程図である。
[図 64]図 64は、図 62に示す素子の下部電極層 6203と上部電極 6207との間に電圧 を印カロしたときの電流変化の状態を示す特性図である。
[図 65A-65D]図 65A,図 65Bは、本発明の実施の形態における他の素子の構成例 を模式的に示す断面図である。
[図 66A-66B]図 66A,図 66Bは、本発明の実施の形態における他の素子の構成例 を模式的に示す断面図である。
[図 67A-67B]図 67A,図 67Bは、本発明の実施の形態における他の素子の構成例 を模式的に示す断面図である。
[図 68]図 68は、本発明の実施の形態における他の素子の構成例を模式的に示す断 面図である。
[図 69A- 69E]図 69A,図 69B,図 69C,図 69D,図 69Eは、本発明の実施の形態に おける他の素子の構成例を模式的に示す断面図である。
[図 70]図 70は、本発明の実施の形態における他の素子の構成例を模式的に示す断 面図である。
[図 71]図 71は、図 62に示す素子の多値動作について説明するための説明図である
[図 72]図 72は、図 1 Aに示す素子の他の電流電圧特性を示す特性図である。
圆 73]図 73は、強誘電体層 104の構成例として作製した薄膜の断面を透過型電子 顕微鏡で観察した結果を示す顕微鏡写真である。
[図 74]図 74は、図 1 Aに示す素子の他の電流電圧特性を示す特性図である。
[図 75]図 75は、図 31に示す素子の他の電流電圧特性を示す特性図である。
[図 76]図 76は、図 75に電流電圧特性を示す素子におけるデータ保持について示す 特性図である。
[図 77]図 77は、図 1 Aに示す素子の他の電流電圧特性を示す特性図である。 [図 78]図 78は、低抵抗状態を説明するための説明図である。
[図 79]図 79は、低抵抗状態を説明するための説明図である。
[図 80]図 80は、高抵抗状態を説明するための説明図である。
[図 81]図 81は、高抵抗状態を説明するための説明図である。
[図 82]図 82は、低抵抗状態を説明するための説明図である。
[図 83]図 83は、低抵抗状態を説明するための説明図である。
[図 84]図 84は、図 1 Aに示す素子の他の電流電圧特性を示す特性図である。
[図 85]図 85は、パルス駆動における図 1 Aに示す素子の他の電流電圧特性を示す 特性図である。
[図 86A-86C]図 86A〜図 86Cは、本発明の実施の形態における三端子素子の構成 例を概略的に示す模式的な断面図及び特性図である。
[図 87]図 87は、ゲート電極 8603により異なるゲート電圧を印加したときにソース電極 8605とドレイン電極 8606との間に流れる電流の変化について示す特性図である。
[図 88]図 88は、ゲート電圧による ON及び OFFの各状態の変化について示す説明 図である。
[図 89]図 89は、ゲート電圧として + IVを印加して OFF状態とした後に、ソース'ドレイ ン間に印加する読み出し電圧を 0V力 0. 2Vへと高くしたときに流れる電流の状態 を示す特性図である。
[図 90A-90D]図 90A,図 90B,図 90C,図 90Dは、図 86A及び図 86Bに示した三端 子素子の製造方法例について説明する工程図である。
[図 91]図 91は、本発明の実施の形態における他の三端子素子の構成例を概略的に 示す模式的な断面図である。
[図 92A-92B]図 92A,図 92Bは、本発明の実施の形態における他の三端子素子の 構成例を概略的に示す模式的な断面図である。
[図 93A-93B]図 93A及び図 93Bは、本発明の実施の形態における他の三端子素子 の構成例を概略的に示す模式的な断面図である。
[図 94]図 94は、ゲート電極 8603に直流のゲート電圧を印加したときの金属酸ィ匕物層 8604における電流―電圧特性を示す特性図である。 [図 95]図 95は、図 86A及び図 86Bに示す三端子素子に印加する所定のパルス幅の 所定のパルス電圧の状態を説明する説明図である。
[図 96]図 96は、所定のパルス幅の所定のパルス電圧を所定回数印加する毎に、ソー ス 'ドレイン間より読み出された電流値の変化を示す特性図である。
[図 97A-97B]図 97A及び図 97Bは、本発明の実施の形態における三端子素子の構 成例を概略的に示す模式的な断面図である。
[図 98A-98E]図 98A〜図 98Eは、図 97A及び図 97Bに示した三端子素子の製造方 法例について説明する工程図である。
[図 99]図 99は、本発明の実施の形態における他の三端子素子の構成例を概略的に 示す模式的な断面図である。
[図 100A-100B]図 100A,図 100Bは、本発明の実施の形態における他の三端子素 子の構成例を概略的に示す模式的な断面図である。
[図 101]図 101は、図 97A及び図 97Bに示す三端子素子をパルス電圧により駆動す る動作例を示すタイミングチャートである。
[図 102A-102B]図 102A及び図 102Bは、本発明の実施の形態における三端子素子 の構成例を概略的に示す模式的な断面図である。
[図 103A-103E]図 103A—103Eは、図 102A及び図 102Bに示した三端子素子の 製造方法例について説明する工程図である。
圆 104]図 104は、本発明の実施の形態における他の三端子素子の構成例を概略 的に示す模式的な断面図である。
[図 105A-105B]図 105A,図 105Bは、本発明の実施の形態における他の三端子素 子の構成例を概略的に示す模式的な断面図である。
[図 106A-106B]図 106A及び図 106Bは、本発明の実施の形態における他の三端子 素子の構成例を概略的に示す模式的な断面図である。
[図 107A- 107F]図 107A,図 107B,図 107C,図 107D,図 107E,図 107Fは、図 1 06A及び図 106Bに示した三端子素子の製造方法例について説明する工程図であ る。
[図 108]図 108は、本発明の実施の形態における他の三端子素子の構成例を概略 的に示す模式的な断面図である。
[図 109A-109B]図 109A,図 109Bは、本発明の実施の形態における他の三端子素 子の構成例を概略的に示す模式的な断面図である。
[図 110]図 110は、本発明の実施の形態におけるメモリ素子の構成例を概略的に示 す模式的な断面図である。
[図 111]図 111は、読み出し及び書き込みの動作を示すタイミングチャートである。
[図 112A-112F]図 112A〜図 112Fは、図 110に示したメモリ素子の製造方法例につ いて説明する工程図である。
[図 113A-113B]図 113A,図 113Bは、本発明の実施の形態における他のメモリ素子 の構成例を概略的に示す模式的な断面図である。
[図 114A-114C]図 114A〜図 114Cは、本発明の実施の形態における他のメモリ素 子の構成例を概略的に示す模式的な断面図である。
[図 115A-115F]図 115A〜図 115Fは、本発明の実施の形態における他のメモリ素 子の構成例を概略的に示す模式的な断面図である。
[図 116]図 116は、ビット電極 11005に直流の電圧を印加したときのメモリ層 11006 における電流 電圧特性を示す特性図である。
[図 117]図 117は、図 110に示すメモリ素子に印加する所定のパルス幅の所定のパ ルス電圧の状態を説明する説明図である。
[図 118]図 118は、所定のパルス幅の所定のパルス電圧を所定回数印加する毎に、 電極間より読み出された電流値の変化を示す特性図である。
[図 119A-119F]図 119A〜図 119Fは、素子分離構造の製造法法例を示す工程図 である。
圆 120]図 120は、本発明の実施の形態における素子分離構造の構成例を示す断 面図である。
[図 121A- 121E]図 121A〜図 121Eは、本発明の実施の形態における素子分離構造 の製造方法例を説明する工程図である。
[図 122]図 122は、基板温度の条件と形成される金属酸化物層の状態との関係を示 す説明図である。 [図 123]図 123は、下部電極 103と上部電極 136との間に電源により電圧を印加し、 電圧を印カロしたときの電流を電流計により観測した結果を示す特性図である。
[図 124]図 124は、 EO処理の後で、下部電極 103と上部電極 136との間に電源によ り電圧を印加し、電圧を印加したときの電流を電流計により観測した結果を示す特性 図である。
[図 125]図 125は、本発明の実施の形態における他の素子分離構造の構成例を示 す断面図である。
[図 126A-126E]図 126A〜図 126Eは、本発明の実施の形態における他の素子分離 構造の製造方法例を説明する工程図である。
[図 127]図 127は、従来よりある素子の構成例を示す構成図である。
[図 128]図 128は、従来よりある素子の構成例を示す構成図である。
[図 129]図 129は、従来よりある素子の構成例を示す構成図である。
発明を実施するための最良の形態
[0057] 以下、本発明の実施の形態について図を参照して説明する。図 1Aは、本発明の 実施の形態における 2安定抵抗値取得装置の構成例を概略的に示す模式的な断面 図であり、図 1Bは、部分断面図である。以下では、強誘電体特性を示す金属酸化物 の層(強誘電体層 104)を用いた強誘電体素子に適用した場合について説明する。 図 1Aに示す素子は、例えば、単結晶シリコン力もなる基板 101の上に絶縁層 102, 下部電極層 103,例えば Biと Tiと Oと力も構成された膜厚 30〜200nm程度の強誘 電体層 104,上部電極 105を備えるようにしたものである。
[0058] 基板 101は、半導体,絶縁体,金属などの導電性材料のいずれから構成されてい てもよい。基板 101が絶縁材料力も構成されている場合、絶縁層 102はなくてもよい 。また、基板 101が導電性材料力も構成されている場合、絶縁層 102,下部電極層 1 03はなくてもよく、この場合、導電性材料力 構成された基板 101が、下部電極とな る。
[0059] 下部電極層 103,上部電極 105は、例えば、白金(Pt)、ルテニウム (Ru)、金 (Au) 、銀 (Ag)などの貴金属を含む遷移金属の金属力も構成されていればよい。また、下 部電極層 103,上部電極 105は、窒化チタン (TiN)、窒化ハフニウム(HfN)、ルテ -ゥム酸ストロンチウム(SrRuO )、酸化亜鉛 (ZnO)、鉛酸スズ (ITO)、フッ化ランタ
2
ン (LaF )などの遷移金属の窒化物や酸ィ匕物やフッ化物等の化合物、さらに、これら
3
を積層した複合膜であってもよ ヽ。
[0060] 強誘電体層 104は、酸ィ匕物強誘電体力 構成されたものであり、例えば、ベロブス カイト構造を持つ材料、又は、擬ィルメナイト構造を持つ材料、さらに、タングステン' ブロンズ構造を持つ材料、ビスマス層状構造を持つ材料、パイロクロア構造を持つ材 料から構成されていればよい。詳細には、 BaTiO、 Pb (Zr, Ti) 0、(Pb, La) (Zr,
3 3
Ti) O、 LiNbO、 LiTaO、 PbNb O、 PbNaNb O 、 Cd Nb O、 Pb Nb O、 Bi T
3 3 3 3 6 5 15 2 2 7 2 2 7 4 i O 、 (Bi, La) Ti O 、 SrBi Ta Oなどが挙げられる。
3 12 4 3 12 2 2 9
[0061] なお、強誘電体層 104は、少なくとも 2つの金属を含む酸ィヒ物,窒化物,フッ化物 などの、一般に強誘電特性を示す材料から構成されていることを示しており、膜厚条 件などにより強誘電特性を示さない状態も含んでいる。また、以降で記載している「強 誘電体」についても、少なくとも 2つの金属力 構成された金属化物からなる一般に 強誘電特性を示すとされて!/ヽる材料を示して!/、る。
[0062] 図 1A及び図 1Bに示した強誘電体素子の具体例について説明すると、例えば、下 部電極層 103は、膜厚 10nmのルテニウム膜であり、強誘電体層 104は、膜厚 40η mの Bi Ti O 膜であり、上部電極 105は、金力も構成されたものである。なお、前述
4 3 12
したように、基板 101及び絶縁層 102の構成は、これに限るものではなぐ電気特性 に影響を及ぼさなければ、他の材料も適当に選択できる。
[0063] 次に、強誘電体層 104について、より詳細に説明する。強誘電体層 104は、図 1B に拡大して示すように、 Bi Ti O の化学量論的糸且成に比較して過剰なチタンを含む
4 3 12
層からなる基部層 141の中に、 Bi Ti O の結晶力もなる粒径 3〜15nm程度の複数
4 3 12
の微結晶粒 142が分散されて構成されたものである。これは、透過型電子顕微鏡の 観察により確認されている。基部層 141は、ビスマスの組成がほぼ 0となる TiOの場 合もある。言い換えると、基部層 141は、 2つの金属から構成されている金属酸化物 にお 、て、 、ずれかの金属が化学量論的な組成に比較して少な 、状態の層である。 なお、図 1Bは、強誘電体層 104の概略的な状態を模式的に示す断面図である。
[0064] このような強誘電体層 104を用いた強誘電体素子によれば、以降に説明するように 、 2つの状態が保持される機能素子が実現できる。図 1 A及び図 1Bに示す強誘電体 素子の特性について説明する。この特性は、下部電極層 103と上部電極 105との間 に電圧を印加することで調査されたものである。下部電極層 103と上部電極 105との 間に電源により電圧を印加し、電圧を印加したときの電流を電流計により観測すると 、図 2に示す結果が得られた。図 2において、縦軸は、電流値を面積で除した電流密 度である。
[0065] 以下、図 2を説明し、あわせて図 1A及び図 1Bに示す強誘電体素子の動作原理を 説明する。ただし、ここで説明する電圧値や電流値は、実際の素子で観測されたもの を例としている。従って、本現象は、以下に示す数値に限るものではない。実際に素 子に用いる膜の材料や膜厚、及び他の条件により、他の数値が観測されることがある
[0066] 図 2は上部電極 105に印加する電圧をゼロ力も正の方向に増加させた後にゼロに 戻し、さらに負の方向に減少させ、最後に再びゼロに戻したときに強誘電体層 104の 中を流れる電流値が描くヒステリシスの特性を表している。まずはじめに、上部電極 1 05に電圧を OVから正の方向に徐々に印加させた場合、強誘電体層 104を流れる正 の電流は比較的少ない(0. IVで約 0. 014AZcm2程度)。
[0067] しかし、 0. 5Vを超えると急激に正の電流値が増加し始める。さらに約 IVまで電圧 を上げた後、逆に正の電圧を減少させていくと、 IVから約 0. 7Vまでは電圧値の減 少にも拘わらず、正の電流値はさらに増加する。電圧値が約 0. 7V以下になると、電 流値も減少に転じる力 このときの正の電流は先と比べて流れやすい状態であり、電 流値は 0. IVで約 1. 3AZcm2程度である(先の約 100倍)。印加電圧をゼロに戻す と、電流値もゼロとなる。
[0068] 次に上部電極 105に負の電圧を印加していく。この状態では、負の電圧が小さいと きは、前の履歴を引き継ぎ、比較的大きな負の電流が流れる。ところが、—0. 5V程 度まで負の電圧を印加すると、負の電流が突然減少し始め、この後、約 IV程度ま で負の電圧を印加しても負の電流値は減少し続ける。最後に、—IVから OVに向か つて印加する負の電圧を減少させると、負の電流値も共にさらに減少し、ゼロに戻る 。この場合のときは、負の電流は流れ難ぐ -0. IVで約— 0. 035AZcm2程度であ る。
[0069] 以上に説明したような、強誘電体層 104中を流れる電流のヒステリシスは、上部電 極 105に印加する電圧により強誘電体層 104の抵抗値が変化することが原因で発現 すると解釈できる。ある一定以上の大きさの正の電圧 V を印加することにより、強誘
W1
電体層 104は電流が流れやすい「低抵抗状態」(データ「1」)に遷移する。一方、ある 一定の大きさの負の電圧 V を印加することにより、強誘電体層 104は電流が流れに
W0
くい「高抵抗状態」(データ「0」)に遷移すると考えられる。
[0070] 強誘電体層 104には、これらの低抵抗状態と高抵抗状態の 2つの安定状態が存在 し、各々の状態は、前述した一定以上の正あるいは負の電圧を印加しない限り、各 状態を維持する。なお、 V の値は約 + IV程度であり、 V の値 IV程度であり、高
Wl W0
抵抗状態と低抵抗状態の抵抗比は約 10〜: L00程度である。上記のような、電圧によ り強誘電体層 104の抵抗がスィッチする現象を用いることで、図 1A及び図 1Bに示す 強誘電体素子により、不揮発性で非破壊読み出し動作が可能な機能素子が実現で きる。
[0071] 図 1 Aに示す強誘電体素子は、 DC電圧を用いると、メモリ動作は以下のように行う 。まず、 V 以上の大きさの正の電圧を印加し、強誘電体層 104を低抵抗状態に遷
W1
移させる。これはメモリとしてデータ「1」を書き込むことに対応する。このデータ「1」は 、読み出し電圧 Vにおける電流街 を観測することにより読み出すことができる。 V
R Rl R としては、状態が遷移しない程度のなるべく小さな値で、かつ抵抗比が十分に現れる ような値を選択することが重要となる(上記の例では 0. IV程度が適当)。これにより、 低抵抗状態、すなわちデータ「1」を破壊することなぐ何回も読み出すことが可能とな る。
[0072] 一方、 V 以上の大きさの負の電圧を印加することにより、強誘電体層 104を高抵
W0
抗状態に遷移させ、データ「0」を書き込むことができる。この状態の読み出しはと全く 同様に、読み出し電圧 V
Rにおける電流街 R0を観測することにより、行うことができる CF
Λ 10〜: L00)。また、電極間に通電がない状態では、強誘電体層 104は各状
Rl R0
態を保持するため不揮発性を有しており、書き込み時と読み出し時以外には、電圧 を印加する必要はない。なお、本素子は、電流を制御するスィッチ素子としても用い ることがでさる。
[0073] ここで図 1Aに示した強誘電体素子におけるデータ保持特性について、図 3に示す 。例えば、上部電極 105に正の電圧 V を印加して、図 2に示す低抵抗状態 (データ
W1
「ι」)に遷移させた後、読み出し電圧 Vを印加して電流街 を観測する。次に、上部
R R1
電極 105に負の電圧電圧 V を印加することで高抵抗状態に遷移させ、データ「0」
W0
を書き込んだ状態とし、この後、一定時間毎に上部電極 105に読み出し電圧 Vを印
R
加し、電流街 を観測する。強誘電体素子としての ONZOFF比は、 J
R0 Rl A の値と
R0 して表せるので、図 3では、 j 縦軸とし、上述した観測により得られ^ J /
Rl A の値を
R0 Rl
J
R0の値の経時に伴う変化を示した。
[0074] 観測された ONZOFF比は、経時に伴い徐々に減少する傾向が示されているが、 充分にデータの判別が可能な範囲である。図 3に黒丸で示す観測結果による外揷直 線 (破線)から予想される 1000分後の ONZOFF比は 21程度であり、この時点でも 判別は可能である。このように、図 1Aに示す強誘電体素子によれば、少なくとも 100 0分の保持時間を有していることがわかる。また、以上の実施の形態では、印加した 電圧は直流であった力 適当な幅と強さのパルス電圧を印加しても同様の効果は得 られる。
[0075] 次に、図 1Aに示した強誘電体素子の製造方法例について説明する。なお、以降 では、 ECRプラズマスパッタ法を例に各薄膜の形成方法を説明している力 これに 限るものではなぐ他の成膜技術や方法を用いるようにしてもよいことは、いうまでもな い。
[0076] まず、図 4Aに示すように、主表面が面方位(100)で抵抗率が 1〜2 Ω— cmの p形の シリコンカゝらなる基板 101を用意し、基板 101の表面を硫酸と過酸化水素水の混合 液と純水と希フッ化水素水とにより洗浄し、このあと乾燥させる。ついで、洗浄'乾燥し た基板 101の上に、絶縁層 102が形成された状態とする。絶縁層 102の形成では、 上述した ECR^パッタ装置を用い、ターゲットとして純シリコン(Si)を用い、プラズマ ガスとしてアルゴン (Ar)と酸素ガスを用いた ECR^パッタ法により、基板 101の上に 、表面を覆う程度に Si— O分子によるメタルモードの絶縁層 102を形成する。
[0077] 例えば、 10— 5Pa台の内部圧力に設定されているプラズマ生成室内に流量 20sccm 程度で Arガスを導入し、内部圧力を 10— 3〜: LO— 2Pa程度にし、ここに、 2. 45GHzの マイクロ波(500W©度)と 0. 0875Tの磁場とを供給して電子サイクロトロン共鳴条件 とすることで、プラズマ生成室内に Arのプラズマが生成された状態とする。なお、 sec mは流量の単位あり、 0°C ' l気圧の流体が 1分間に lcm3流れることを示す。また、 T( テスラ)は、磁束密度の単位であり、 1Τ= 10000ガウスである。
[0078] 上述したことにより生成されたプラズマは、磁気コイルの発散磁場によりプラズマ生 成室より処理室の側に放出される。また、プラズマ生成室の出口に配置されたシリコ ンターゲットに、高周波電源より 13. 56MHzの高周波電力(例えば 500W)を供給 する。このことにより、シリコンターゲットに Arイオンが衝突してスパッタリング現象が起 こり、 Si粒子が飛び出す。シリコンターゲットより飛び出した Si粒子は、プラズマ生成 室より放出されたプラズマ、及び導入されてプラズマにより活性化された酸素ガスと共 に基板 101の表面に到達し、活性化された酸素により酸化され二酸ィ匕シリコンとなる 。以上のことにより、基板 101上に二酸ィ匕シリコン力もなる例えば lOOnm程度の膜厚 の絶縁層 102が形成された状態とすることができる(図 4A)。
[0079] なお、絶縁層 102は、この後に形成する下部電極層 103と上部電極 105に電圧を 印カ卩した時に、基板 101に電圧が洩れて、所望の電気的特性に影響することがない ように絶縁を図るものである。例えば、シリコン基板の表面を熱酸化法により酸化する ことで形成した酸ィ匕シリコン膜を絶縁層 102として用いるようにしてもよ 、。絶縁層 10 2は、絶縁性が保てればよぐ酸ィ匕シリコン以外の他の絶縁材料力 構成してもよぐ また、絶縁層 102の膜厚は、 lOOnmに限らず、これより薄くてもよく厚くてもよい。絶 縁層 102は、上述した ECRスパッタによる膜の形成では、基板 101に対して加熱は して!/、な 、が、基板 101を加熱しながら膜の形成を行ってもょ 、。
[0080] 以上のようにして絶縁層 102を形成した後、今度は、ターゲットとして純ルテニウム( Ru)を用いた同様の ECRスパッタ法により、絶縁層 102の上にルテニウム膜を形成 することで、図 4Bに示すように、下部電極層 103が形成された状態とする。 Ru膜の 形成について詳述すると、 Ru力 なるターゲットを用いた ECR^パッタ装置において 、例えば、まず、絶縁層を形成したシリコン基板を 400°Cに加熱し、また、プラズマ生 成室内に、例えば流量 7sccmで希ガスである Arガスを導入し、力!]えて、例えば流量 5 sccmで Xeガスを導入し、プラズマ生成室の内部を、例えば 10— 2〜: LO— 3Pa台の圧力 に設定する。
[0081] ついで、プラズマ生成室内に電子サイクロトロン共鳴条件の磁場を与え、この後、 2 . 45GHzのマイクロ波(例えば 500W)をプラズマ生成室内に導入し、プラズマ生成 室に Arと Xeの ECRプラズマが生成した状態とする。生成された ECRプラズマは、磁 気コイルの発散磁場によりプラズマ生成室より処理室側に放出される。また、プラズマ 生成室の出口に配置されたルテニウムターゲットに、 13. 56MHzの高周波電力(例 えば 500W)を供給する。このことにより、スパッタリング現象が起き、ルテニウムター ゲットより Ru粒子が飛び出す。ルテニウムターゲットより飛び出した Ru粒子は、基板 1 01の絶縁層 102表面に到達して堆積する。
[0082] 以上のことにより、絶縁層 102の上に、例えば lOnm程度の膜厚の下部電極層 103 が形成された状態が得られる(図 4B)。下部電極層 103は、この後に形成する上部 電極 105との間に電圧を印加した時に、強誘電体層 104に電圧が印加できるように するものである。従って、導電性が持てればルテニウム以外から下部電極層 103を構 成してもよぐ例えば、白金から下部電極層 103を構成してもよい。ただし、二酸化シ リコンの上に白金膜を形成すると剥離しやすいことが知られているが、これを防ぐため には、チタン層ゃ窒化チタン層もしくはルテニウム層などを介して白金層を形成する 積層構造とすればよい。また、下部電極層 103の膜厚も lOnmに限るものではなぐ これより厚くてちょく薄くてちょ ヽ。
[0083] ところで、上述したように ECR^パッタ法により Ruの膜を形成するときに、基板 101 を 400°Cに加熱した力 加熱しなくても良い。ただし、加熱を行わない場合、ルテユウ ムのニ酸ィ匕シリコンへの密着性が低下するため、剥がれが生じる恐れがあり、これを 防ぐために、基板を加熱して膜を形成する方が望ま ヽ。
[0084] 以上のようにして下部電極層 103を形成した後、 Biと Tiの割合が 4 : 3の酸化物焼 結体 (Bi— Ti— O)力もなるターゲットを用い、プラズマガスとしてアルゴン (Ar)と酸素 ガスとを用いた ECRスパッタ法により、図 4Cに示すように、下部電極層 103の上に、 表面を覆う程度に、強誘電体層 104が形成された状態とする。
[0085] 強誘電体層 104の形成について詳述すると、まず、 300°C〜700°Cの範囲に基板 101が加熱されている状態とする。また、プラズマ生成室内に、例えば流量 20sccm で希ガスである Arガスを導入し、例えば 10— 3Pa〜: LO— 2Pa台の圧力に設定する。この 状態で、プラズマ生成室に電子サイクロトロン共鳴条件の磁場を与え、この後、 2. 45 GHzのマイクロ波(例えば 500W)をプラズマ生成室に導入し、このマイクロ波の導入 により、プラズマ生成室に ECRプラズマが生成された状態とする。
[0086] 生成された ECRプラズマは、磁気コイルの発散磁場によりプラズマ生成室より処理 室側に放出される。また、プラズマ生成室の出口に配置された焼結体ターゲットに、 1 3. 56MHzの高周波電力(例えば 500W)を供給する。このことにより、焼結体ターゲ ットに Ar粒子が衝突してスパッタリング現象を起こし、 Bi粒子と Ti粒子が飛び出す。
[0087] 焼結体ターゲットより飛び出した Bi粒子と Ti粒子は、プラズマ生成室より放出された ECRプラズマ、及び、放出された ECRプラズマにより活性ィ匕した酸素ガスと共に、加 熱されている下部電極層 103の表面に到達し、活性ィ匕された酸素により酸ィ匕される。 なお、反応ガスとしての酸素(O )ガスは、以降にも説明するように Arガスとは個別に
2
導入され、例えば、例えば流量 lsccmで導入されている。焼結体ターゲットは酸素を 含んでいるが、酸素を供給することにより堆積している膜中の酸素不足を防ぐことが できる。以上に説明した ECR^パッタ法による膜の形成で、例えば、膜厚 40nm程度 の強誘電体層 104が形成された状態が得られる(図 4C)。
[0088] なお、形成した強誘電体層 104に、不活性ガスと反応性ガスの ECRプラズマを照 射し、膜質を改善するようにしてもよい。反応性ガスとしては、酸素ガスに限らず、窒 素ガス,フッ素ガス,水素ガスを用いることができる。また、この膜質の改善は、絶縁 層 102の形成にも適用可能である。また、基板温度を 300°C以下のより低い温度条 件として強誘電体層 104を形成した後に、酸素雰囲気中などの適当なガス雰囲気中 で、形成した強誘電体層 104をァニール (加熱処理)し、膜質の特性を大きく改善す るようにしてちょい。
[0089] 以上のようにして強誘電体層 104を形成した後、図 4Dに示すように、強誘電体層 1 04の上に、所定の面積の Auからなる上部電極 105が形成された状態とすることで、 本実施の形態における金属酸ィ匕物薄膜からなる層を用いた素子が得られる。上部電 極 105は、よく知られたリフトオフ法と抵抗加熱真空蒸着法による金の堆積とにより形 成できる。なお、上部電極 105は、例えば、 Ru、 Pt、 TiNなどの他の金属材料や導 電性材料を用いるようにしてもよい。なお、 Ptを用いた場合、密着性が悪く剥離する 可能性があるので、 Ti— Pt— Auなどの剥離し難い構造とし、この上でフォトリソダラ フィーやリフトオフ処理などのパター-ング処理をして所定の面積を持つ電極として 形成する必要がある。
[0090] 以上に説明した ECRスパッタによる各層の形成は、図 5に示すような ECRスパッタ 装置を用いればよい。図 5に示す ECRスパッタ装置について説明すると、まず、処理 室 501とこれに連通するプラズマ生成室 502とを備えている。処理室 501は、図示し ていない真空排気装置に連通し、真空排気装置によりプラズマ生成室 502とともに 内部が真空排気される。処理室 501には、膜形成対象の基板 101が固定される基板 ホルダ 504が設けられている。基板ホルダ 504は、図示しない傾斜回転機構により所 望の角度に傾斜し、かつ回転可能とされている。基板ホルダ 504を傾斜して回転させ ることで、堆積させる材料による膜の面内均一性と段差被覆性とを向上させることが 可能となる。
[0091] また、処理室 501内のプラズマ生成室 502からのプラズマが導入される開口領域に おいて、開口領域を取り巻くようにリング状のターゲット 505が備えられている。ターゲ ット 505は、絶縁体力もなる容器 505a内に載置され、内側の面が処理室 501内に露 出している。また、ターゲット 505には、マッチングユニット 521を介して高周波電源 5 22が接続され、例えば、 13. 56MHzの高周波が印加可能とされている。ターゲット 505が導電性材料の場合、直流の負電圧を印加するようにしても良い。なお、ターゲ ット 505は、上面から見た状態で、円形状だけでなぐ多角形状態であっても良い。
[0092] プラズマ生成室 502は、真空導波管 506に連通し、真空導波管 506は、石英窓 50 7を介して導波管 508に接続されている。導波管 508は、図示していないマイクロ波 発生部に連通している。また、プラズマ生成室 502の周囲及びプラズマ生成室 502 の上部には、磁気コイル (磁場形成手段) 510が備えられている。これら、マイクロ波 発生部、導波管 508,石英窓 507,真空導波管 506により、マイクロ波供給手段が構 成されている。なお、導波管 508の途中に、モード変翻を設けるようにする構成も ある。 [0093] 図 5の ECRスパッタ装置の動作例について説明すると、まず、処理室 501及びプラ ズマ生成室 502内を 10—5Paから 10—4Paに真空排気した後、不活性ガス導入部 511 より不活性ガスであるアルゴンガスを導入し、また、反応性ガス導入部 512より酸素ガ スなどの反応性ガスを導入し、プラズマ生成室 502内を例えば 10— 3〜: LO—2Pa程度の 圧力にする。この状態で、磁気コイル 510よりプラズマ生成室 502内〖こ 0. 0875Tの 磁場を発生させた後、導波管 508,石英窓 507を介してプラズマ生成室 502内に 2. 45GHzのマイクロ波を導入し、電子サイクロトロン共鳴 (ECR)プラズマを発生させる
[0094] ECRプラズマは、磁気コイル 510からの発散磁場により、基板ホルダ 504の方向に プラズマ流を形成する。生成された ECRプラズマのうち、電子は磁気コイル 510で形 成される発散磁場によりターゲット 505の中を貫通して基板 101の側に引き出され、 基板 101の表面に照射される。このとき同時に、 ECRプラズマ中のプラスイオンが、 電子による負電荷を中和するように、すなわち、電界を弱めるように基板 101側に引 き出され、成膜している層の表面に照射される。このように各粒子が照射される間に、 プラスイオンの一部は電子と結合して中性粒子となる。
[0095] なお、図 5の薄膜形成装置では、図示していないマイクロ波発生部より供給された マイクロ波電力を、導波管 508においてー且分岐し、プラズマ生成室 502上部の真 空導波管 506に、プラズマ生成室 502の側方力も石英窓 507を介して結合させてい る。このようにすることで、石英窓 507に対するターゲット 505からの飛散粒子の付着 力 防げるようになり、ランニングタイムを大幅に改善できるようになる。
[0096] 次に、強誘電体層 104を構成する ECR^パッタ法により形成される Bi Ti O 膜の
4 3 12 特性について、より詳細に説明する。発明者らは、 ECRスパッタ法を用いた Bi Ti O
4 3 12 膜の形成について注意深く観察を繰り返すことで、温度と導入する酸素流量によって
、形成される Bi Ti O 膜の組成が制御できることを見いだした。なお、このスパッタ成
4 3 12
膜では、ビスマスとチタンが 4: 3の組成を持つように形成された酸化物焼結体ターゲ ット(Bi Ti O )を用いている。図 6は、 ECR^パッタ法を用いて Bi Ti O を成膜した
4 3 4 3 12
場合の、導入した酸素流量に対する成膜速度の変化を示した特性図である。図 6は 、基板に単結晶シリコンを用い、基板温度を 420°Cとした条件の結果である。 [0097] 図 6より、酸素流量が 0〜0. 5sccmと小さいとき、酸素流量が 0. 5〜0. 8sccmの時、 酸素流量が 0. 8sccm以降の時の領域に分かれることがわかる。この特性について、 高周波誘導結合プラズマ発光 (ICP)分析と透過型電子顕微鏡の断面観察を実施し 、成膜された膜を詳細に調べた。調査の結果、酸素流量が 0〜0. 5SCcmと小さい時 には、ターゲット 205に Bi—Ti—Oの焼結ターゲットを使用しているのにも拘わらず、 Biがほとんど含まれない Ti—Oが主成分の結晶膜が形成されていることが判明した。 この酸素領域を酸素領域 Aとする。
[0098] また、酸素流量が 0. 8〜3sccm程度の場合は、 Bi Ti O の化学量論的組成の微
4 3 12
結晶又は柱状結晶で成膜していることが判明した。この酸素領域を酸素領域 Cとする 。さらに、酸素流量が 3sccm以上の場合には、 Biの割合が多い膜となり、 Bi Ti O の
4 3 12 化学量論的組成力 ずれてしまうことが判明した。この酸素領域を酸素領域 Dとする 。さらにまた、酸素流量が 0. 5〜0. 8sccmの場合は、酸素領域 Aの膜と酸素領域 C の中間的な成膜となることが判明した。この酸素領域を酸素領域 Bとする。
[0099] これらの供給する酸素に対して、 4つの領域に分かれて、組成変化することは今ま で知られておらず、 ECR^パッタ法で Bi—Ti—Oの焼結ターゲットを用いて Bi Ti O
4 3 1
2を成膜した場合の特徴的な成膜特性であるといえる。この領域を把握した上で、成 膜を制御することで所望の組成と膜質の膜が得られることになる。さらに別の厳密な 測定結果より、得られた膜が強誘電性を明らかに示す成膜条件は、化学量論的組成 が実現できている酸素領域 Cであることが判明した。
[0100] 次に、図 6中の酸素領域 A内の a ,酸素領域 B内の β ,酸素領域 C内の γの酸素 流量条件で作製したビスマスチタン酸ィ匕物薄膜の状態にっ 、て、図 7Α〜図 7dを用 いて説明する。図 7A〜図 7dは、作製した薄膜の断面を透過型電子顕微鏡で観察し た結果を示している。図 7A,図 7B,図 7C,図 7Dは、顕微鏡写真であり、図 7a,図 7 b,図 7c,図 7dは、各々の状態を模式的に示した模式図である。まず、酸素流量を 0 とした条件ひでは、図 7A及び図 7aに示すように、膜全体が柱状結晶から構成されて V、る。条件 ocで作製した薄膜の元素の組成状態を EDS (エネルギー分散形 X線分 光)法で分析すると、ビスマスが含まれていなぐこの膜は、酸ィ匕チタンであることがわ 力る。 [0101] 次に、酸素流量を 0. 5sccmとした条件 13では、図 7B及び図 7bに示すように、作製 した薄膜は 2層に分離しており、 Bi Ti O の化学量論的組成に比較して過剰なチタ
4 3 12
ンを含む金属酸ィ匕物単一層 144と、 Bi Ti O の化学量論的組成に比較して過剰な
4 3 12
チタンを含む基部層 141とから構成され、基部層 141の中に Bi Ti O の結晶からな
4 3 12
る粒径 3〜 15nm程度の複数の微結晶粒 142が分散している状態が確認される。基 部層 141は、非晶質の状態となっている。
[0102] 次に、酸素流量を lsccmとした条件 γでは、図 7C及び図 7cに示すように、基部層 1 41の中に微結晶粒 142が分散している状態が確認される。ただし、基部層 141及び 金属酸化物単一層 144は、ともにほぼビスマスが存在して ヽな 、状態となって!/、る。 図 7Cに示す顕微鏡写真の状態は、図 1Bに示した状態と同等である。以上に示した 状態は、成膜時の温度条件が 420°Cである。なお、図 7D及び図 7dは、酸素流量を lsccmとした条件で作製した膜の観察結果であるが、以降に説明するように、膜形成 時の温度条件が異なる。
[0103] ECR^パッタ法により形成される Bi Ti O 膜の特徴は、成膜温度にも関係する。図
4 3 12
8は、基板温度に対する成膜速度と屈折率の変化を示したものである。図 8には、図 6に示した酸素領域 Aと酸素領域 Cと酸素領域 Dに相当する酸素流量の成膜速度と 屈折率の変化が示してある。図 8に示すように、成膜速度と屈折率が、温度に対して ともに変化することがわかる。
[0104] まず、屈折率に注目すると、酸素領域 A、酸素領域 C、酸素領域 Dの 、ずれの領域 に関して同様の振る舞いを示すことがわかる。具体的には、約 250°C程度までの低 温領域では、屈折率は約 2と小さくアモルファス的な特性を示している。 300°C力も 6 00°Cでの中間的な温度領域では、屈折率は、約 2. 6と論文などで報告されているバ ルクに近い値となり、 Bi Ti O の結晶化が進んでいることがわかる。これらの数値に
4 3 12
関しては、例えば、山口らのジャパニーズ 'ジャーナル 'アプライド 'フイジタス、第 37 号、 5166頁、 1998年、(Jpn.J.Appl.Phys., 37,5166(1998).)などを参考にしていただ きたい。
[0105] しかし、約 600°Cを超える温度領域では、屈折率が大きくなり表面モフォロジ (表面 凹凸)が大きくなつてしまい結晶性が変化しているものと思われる。この温度は、 Bi Ti O のキュリー温度である 675°Cよりも低いが、成膜している基板表面に ECRプラズ
3 12
マが照射されることでエネルギーが供給され、基板温度が上昇して酸素欠損などの 結晶性の悪ィ匕が発生しているとすれば、上述した結果に矛盾はないものと考える。成 膜速度の温度依存性についてみると、各酸素領域は、同じ傾向の振る舞いを示すこ とがわかる。具体的には、約 200°Cまでは、温度と共に成膜速度が上昇する。しかし 、約 200°Cから 300°Cの領域で、急激に成膜速度が低下する。
[0106] 約 300°Cに達すると成膜速度は 600°Cまで一定となる。この時の各酸素領域にお ける成膜速度は、酸素領域 Aが約 1. 5nmZmin、酸素領域 Cが約 3nmZmin、酸 素領域 Dが約 2. 5nmZminであった。以上の結果から、 Bi Ti O の結晶膜の成膜
4 3 12
に適した温度は、屈折率がバルタに近くなり、成膜速度が一定となる領域であり、上 述の結果からは、 300°Cから 600°Cの温度領域となる。
[0107] 上述した成膜時の温度条件により、強誘電体層 104の状態は変化し、図 7Cに示し た状態となる酸素流量条件で、成膜温度条件を 450°Cと高くすると、図 7D及び図 7d に示すよう〖こ、 Bi Ti O の柱状結晶力 なる寸法(グレインサイズ) 20〜40nm程度
4 3 12
の複数の柱状結晶部 143の中に、寸法が 3〜15nm程度の微結晶粒 142が観察さ れるようになる。この状態では、柱状結晶部 143が、図 7C及び図 7cに示す基部層 1 41に対応している。なお、図 7に示すいずれの膜においても、 XRD (X線回折法)測 定では、 Bi Ti O の(117)軸のピークが観測される。また、前述した透過型電子顕
4 3 12
微鏡の観察において、微結晶粒 142に対する電子線回折により、微結晶粒 142は、 Bi Ti O の(117)面を持つことが確認されている。
4 3 12
[0108] 一般に、強誘電性を示す材料では、キュリー温度以上では結晶性が保てなくなり、 強誘電性が発現されなくなる。例えば、 Bi Ti O などの Biと Tiと酸素とから構成され
4 3 12
る強誘電材料では、キュリー温度が 675°C付近である。このため、 600°Cに近い温度 以上になると、 ECRプラズマ力 与えられるエネルギーも加算され、酸素欠損などが 起こりやすくなるため、結晶性が悪ィ匕し、強誘電性が発現され難くなるものと考えられ る。
[0109] また、 X線回折による解析により、上記の温度領域 (450°C)で、酸素流量 Cで成膜 した Bi Ti O 膜は、(117)配向した膜であることが判明した。このような条件で成膜 した Bi Ti O 膜は、 lOOnm程度の厚さにすると 2MVZcmを超える十分な電気耐
4 3 12
圧性を示すことが確認された。以上に説明したように、 ECRスパッタを用い、図 6や図 8で示される範囲内で Bi Ti O 膜を形成することにより、膜の組成と特性を制御する
4 3 12
ことが可能となる。
[0110] ところで、強誘電体層 104は、図 9に示す状態も観察されている。図 9に示す強誘 電体層 104は、 Bi Ti O の化学量論的組成に比較して過剰なチタンを含む金属酸
4 3 12
化物単一層 144と、複数の微結晶粒 142が分散して 、る基部層 141との積層構造で ある。図 9に示す状態も、図 1B及び図 7に示す状態と同様に、透過型電子顕微鏡の 観察により確認されている。上述した各強誘電体層 104の状態は、形成される下層 の状態や、成膜温度,成膜時の酸素流量により変化し、例えば、金属材料からなる 下地の上では、酸素流量が図 8に示す |8条件の場合、図 7Bもしくは図 9に示す状態 となることが確認されて!、る。
[0111] 上述したように、微結晶粒が観察される成膜条件の範囲において、基部層が非晶 質の状態の場合と柱状結晶が観察される場合とが存在するが、いずれにおいても、 微結晶粒の状態には変化がなぐ観察される微結晶粒は、寸法が 3〜15nm程度と なっている。このように、微結晶粒が観察される状態の強誘電体層 104において、前 述したように、低抵抗状態と高抵抗状態の 2つの安定状態が存在し、図 7A及び図 7a に示す状態の薄膜では、上記 2つの状態が著しく悪くなる。
[0112] 従って、図 1B及び図 7B〜図 7d,及び図 9に示す状態となっている金属酸化物薄 膜によれば、図 2を用いて説明したように、状態が保持される機能を備えた強誘電体 素子を実現することが可能となる。この特性は、上述した ECRスパッタにより膜を形成 する場合、図 6の酸素領域 B, Cの条件で形成した膜に得られていることになる。また 、図 8に示した成膜温度条件に着目すると、上記特性は、成膜速度が低下して安定 し、かつ屈折率が上昇して 2. 6程度に安定する範囲の温度条件で、上述した特性の 薄膜が形成できる。
[0113] 上述では、ビスマスとチタンとの 2元金属力 なる酸ィ匕物を例に説明した力 2つの 状態が保持されるようになる特性は、少なくとも 2つの金属と酸素とから構成されてい る他の金属酸ィ匕物薄膜においても得られるものと考えられる。少なくとも 2つの金属と 酸素とから構成され、いずれかの金属が化学量論的な組成に比較して少ない状態と なって 、る層の中に、化学量論的な組成の複数の微結晶粒が分散して 、る状態で あれば、図 2を用いて説明した特性が発現するものと考えられる。
[0114] 例えば、 BaTiO、 Pb (Zr, Ti) 0、 (Pb, La) (Zr, Ti) 0、 LiNbO、 LiTaO、 Pb
3 3 3 3 3
Nb O、 PbNaNb O 、 Cd Nb O、 Pb Nb O、(Bi, La) Ti O 、 SrBi Ta Oなど
3 6 5 15 2 2 7 2 2 7 4 3 12 2 2 9 の金属酸ィ匕物薄膜であっても、いずれかの金属が化学量論的な組成に比較して少 な 、状態となって 、る層の中に、化学量論的な組成の複数の微結晶粒が分散して 、 る状態であれば、前述した実施例と同様の作用効果が得られるものと考えられる。ま た、例えばビスマスとチタンとの 2元金属からなる酸ィ匕物の場合、金属酸化物薄膜中 にランタン (La)やストロンチウム (ストロンチウム)が添加されて 、る (La, Bi) TiOや( Sr, Bi) TiOのような状態とすることで、各抵抗値の状態を可変制御させることが可能 となる。
[0115] なお、上述では、シリコン力 なる基板上の絶縁層、絶縁層上の下部電極層、下部 電極層上の強誘電体層の各々を ECRスパッタ法で形成するようにした。しかしながら 、これら各層の形成方法は、 ECRスパッタ法に限定するものではない。例えば、シリ コン基板の上に形成する絶縁層は、熱酸化法や化学気相法 (CVD法)、また、従来 のスパッタ法などで形成しても良 、。
[0116] また、下部電極層は、 EB蒸着法、 CVD法、 MBE法、 IBD法、加熱蒸着法などの 他の成膜方法で形成しても良い。また、強誘電体層も、上記で説明した MOD法や 従来よりあるスパッタ法、 PLD法などで形成することができる。ただし、 ECR^パッタ 法を用いることで、平坦で良好な絶縁膜、金属膜、強誘電体膜が容易に得られる。
[0117] また、各層を形成するための各々の ECRスパッタを実現する処理室を、真空搬送 室で連結させた装置を用いることで、大気に取り出すことなぐ連続的な処理により各 層を形成してもよい。これらのことにより、処理対象の基板を真空中で搬送できるよう になり、水分付着などの外乱の影響を受け難くなり、膜質と界面の特性の向上につな がる。
[0118] ところで、素子を並べて複数のデータを同時にメモリ蓄積することを「集積」と呼び、 集積する度合いを集積度と呼ぶが、図 1Aの構造は、非常に単純であり、従来のメモ リセルに比較して、集積度を格段に上げることが可能となる。 MOSFETを基本技術 とした DRAMや SRAM、フラッシュメモリなどでは、ゲート,ソース, ドレインの領域を 確保する必要があるため、近年では、集積限界が指摘され始めている。これに対し、 図 1Aに示す素子によれば、単純な構造を用いることで、現在の集積限界に捕らわれ ずに集積度を高めることが可能となる。
[0119] 本発明の基本的な思想は、図 1Aに示すように、強誘電体層 104を 2つの電極で挾 むようにしたところにある。このような構成とすることで、 2つの電極間に所定の電圧( DC,パルス)を印カロして強誘電体層の抵抗値を変化させ、安定な高抵抗状態と低抵 抗状態とを切り替え、結果としてメモリ機能が実現可能となる。
[0120] 従って、例えば、図 10Aに示すように、絶縁性基板 101aを用い、積層された下部 電極層 103a, 103bを用いるようにしてもよい。また、図 10Bに示すように、絶縁性基 板 101aを用い、下部電極層 103にコンタクト電極 103cを設けるようにしてもよい。ま た、図 10Cに示すように、絶縁性基板 101aを用い、積層された上部電極 105a, 10 5bを用いるようにしてもよい。さらに、図 10Dに示すように、積層された下部電極層 1 03a, 103bと積層された上部電極 105a, 105bとを用いるようにしてもよい。
[0121] また、図 11Aに示すように、ガラスや石英など力もなる絶縁性の基板 1101を用いる ようにしてもよい。この構造とすることによって、加工しやすいガラス基板などへの適用 が可能となる。この場合、図 11Bに示すように、基板 1101に貫通孔形成してここにプ ラグを設け、基板 1101の裏面(下部電極層 103の形成面の反対側)より電気的コン タクトをとるようにしてもよい。また、強誘電体層 104は、波長 632. 8nmで測定したと きの屈折率が 2. 6程度で光学的に透明であるため、図 11A,図 11Bに示す構成とす ることで、ディスプレイへの応用が可能となる。また、強誘電体層 104を、 10〜200n mの間で干渉色を発する厚さに形成することで、着色した状態の視覚効果が得られ る。
[0122] さらに、図 11Cに示すように、金属などの導電性を有する基板 1111を用いるように してもよい。また、図 11Dに示すように、基板 1111の上に接して下部電極 1102を備 え、この上に強誘電体層 1103,上部電極 1104を設けるようにしてもよい。図 11Dに 示す構成とした場合、基板 1111と上部電極 1104との間に所定の電気信号を印加 することが可能となる。
[0123] また、図 11Eに示すように、金属板 1121の上に、強誘電体層 1112,上部電極 11 13を設けるようにしてもよい。この構成とした場合、金属板 1121が、下部電極層とな る。図 11Eに示す構造にすることによって、熱伝導性のよい金属板 1121の上に各構 成要素が形成されているので、より高い冷却効果が得られ、素子の安定動作が期待 できる。
[0124] なお、強誘電体層 104, 1103, 1112は、膜厚が厚くなるほど電流が流れ難くなり 抵抗が大きくなる。抵抗値の変化を利用してメモリを実現する場合、低抵抗状態と高 抵抗状態の各々の抵抗値が問題となる。例えば、強誘電体層 104, 1103, 1112の 膜厚が厚くなると、低抵抗状態の抵抗値が大きくなり、 SZN比がとり難くなり、メモリ の状態を判断し難くなる。一方、強誘電体層 104, 1103, 1112の膜厚が薄くなり、リ ーク電流が支配的になると、メモリ情報が保持し難くなると共に、高抵抗状態の抵抗 値が小さくなり、 SZN比がとり難くなる。
[0125] 従って、強誘電体層 104, 1103, 1112は、適宜最適な厚さとした方がよい。例え ば、リーク電流の問題を考慮すれば、強誘電体層 104, 1103, 1112は、最低 10η mの膜厚があればよい。また、低抵抗状態における抵抗値を考慮すれば、強誘電体 層 104, 1103, 1112は 300nmより薄くした方がよい。発明者らの実験の結果、強誘 電体層 104, 1103, 1112の厚さが30〜20011111でぁれば、メモリの動作が確認され ている。
[0126] 上述では、 1つの強誘電体素子を例にして説明した力 以降に説明するように、複 数の強誘電体素子を配列させて集積させるようにしてもよい。例えば、図 12Aに示す ように、絶縁性基板 601の上に、共通となる下部電極層 602,強誘電体層 603を形 成し、強誘電体層 603の上に、各々所定距離離間して複数の上部電極 604を形成 すればよ!ヽ。複数の上部電極 604に対応して複数の強誘電体素子が配列されたこと になる。複数の上部電極 604に対応する素子間の距離を導電性などを考慮して配置 することで、安定した動作が期待できる。
[0127] また、図 12Bに示すように、絶縁性基板 601の上に、共通となる下部電極層 602を 形成し、下部電極層 602の上に、強誘電体層 613,上部電極 614からなる複数の素 子を配列させるようにしてもよい。例えば、形成した金属酸化物薄膜を、 RIE法や ICP エッチング、また ECRエッチングなど加工法を用いることで、個々の強誘電体層 613 が形成できる。このように分離して構成することで、素子間の距離をより短くすることが 可能となり、集積度をさらに向上させることができる。
[0128] さらに、図 12Cに示すように、各々の素子を構成している強誘電体層 613の側面を 、絶縁側壁 615で覆うようにしてもよい。また、図 12Dに示すように、各素子に対応し て複数の強誘電体層 613を形成し、各々分離して!/、る複数の強誘電体層 613の側 部を充填するように、絶縁層 625を形成するようにしてもよい。これらのように、素子毎 に分離して形成した複数の強誘電体層 613の間を絶縁体で覆うことで、各素子間の リーク電流を減らして素子の安定性を高めることができる。
[0129] また、図 13に示すように、本発明の実施の形態における複数の素子を X方向に n個 、 Y方向に m個配列し、 X方向バスを下部電極層に接続し、 Y方向バスを上部電極に 接続し、 X方向バス及び Y方向バスの各々に選択信号のスィッチ機能を備えたプロ セッサユニットを接続することで、各素子にランダムにアクセスが可能なメモリが実現 できる。
[0130] 例えば、図 14の斜視図に示すように、下部電極 801,強誘電体層 802,上部電極 803からなる素子を配列し、各列の下部電極 801に共通に各々 Y方向バス 812を接 続し、各行の上部電極 803に共通に各々 X方向ノ ス 811を接続すればよい。選択す る素子において交差する X方向バス 811と Y方向バス 812とに前述したように所定の 電圧を印加することで、データの書き込みや読み出しを行うことができる。このように 構成した場合、メモリセル選択用のトランジスタなどが必要なぐメモリセルを上述した 構成の強誘電体素子だけで構成できるので、高集積ィ匕が可能である。
[0131] ところで、強誘電体層 104における抵抗値の変化は、電流により制御することも可 能である。強誘電体層 104に所定の電圧が印加された状態として一定の電流が流れ た後に、 +0. 5Vの電圧が印加されたときに流れる電流値を観察すると、図 15に示 すように、強誘電体層 104に 1 X 10— 5Aの電流が流された後に観察される電流値は、 ほぼ OAとなる。同様に、強誘電体層 104に I X 10—4Αまでの電流が流された後に観 察される電流値は、ほぼ 0. 02Α以下となる。 [0132] これらの状態に対し、強誘電体層 104に 1 X 10—4Α以上の電流が流された後に観 察された電流値は、急激に変化して 0. 7Αとなる。このことから明らかなように、強誘 電体層 104における抵抗変化は、強誘電体層 104に流れた電流によっても変化し、 高抵抗状態と低抵抗状態との 2つの抵抗値が存在する。従って、図 1,図 10,図 11, 図 12に例示した強誘電体素子は、電圧により駆動することが可能であるとともに、電 流により駆動することも可能である。
[0133] また、パルス電圧により、強誘電体層 104の抵抗変化を制御できる。例えば、上述 した素子に対し、図 16に示すように、まず、初期に + 0. 3Vの直流電圧を印加したと きに流れる電流値を測定する。なお、電圧の印加や電流は、下部電極層 103と上部 電極 105との間のことである。ついで、上部電極 105と下部電極層 103との間に、 4Vで 10 sのパルス電圧を 1回印加し、この後、 +0. 3Vの直流電圧を印加したとき に流れる電流値を測定する。ついで、上部電極 105と下部電極層 103との間に、 + 5 Vで 10 sのパルス電圧を 4回印加し、この後、 +0. 3Vの直流電圧を印加したとき に流れる電流値を測定する。
[0134] 引き続いて、上部電極 105と下部電極層 103との間に、 4Vで 10 sのパルス電 圧を 1回印加し、この後、 +0. 3Vの直流電圧を印加したときに流れる電流値を測定 する。ついで、上部電極 105と下部電極層 103との間に、 + 5 Vで 10 sのパルス電 圧を 4回印加し、この後、 +0. 3Vの直流電圧を印加したときに流れる電流値を測定 する。これらを所定回数繰り返した後、上部電極 105と下部電極層 103との間に、 - 4Vで 1 μ sのパルス電圧を 10回印加し、この後、 +0. 3Vの直流電圧を印加したとき に流れる電流値を測定する。ついで、上部電極 105と下部電極層 103との間に、 + 5 Vで 1 μ sのパルス電圧を 100回印加し、この後、 +0. 3Vの直流電圧を印加したとき に流れる電流値を測定する。ついで、上部電極 105と下部電極層 103との間に、—3 Vで 100 sのパルス電圧を 100回印加し、この後、 +0. 3Vの直流電圧を印加した ときに流れる電流値を測定する。
[0135] 上述した各パルス電圧の印加の後に測定した電流値は、図 17に示すように変化す る。図 17に示すように、初期状態では 10— 5Α以下の電流値を示す高抵抗状態である 力 4Vで 10 /z sのパルス電圧を 1回印加すると、 10— 5Α以上の電流値を示す低抵 抗状態に移行する。さらに、この状態に、 + 5Vで 10 sのパルス電圧を 4回印加する ことで、 10—5Α以下の電流値を示す高抵抗状態となる。これらのことは、正電圧パルス 及び負電圧パルスを印加することで、強誘電体層 104の抵抗値が変化することを示 している。従って、例えば、正電圧パルス及び負電圧パルスを印加することで、上記 素子のメモリ状態を、「οη」の状態から「off」の状態へ変化させ、また、「off」の状態か ら「on」の状態へ変化させるメモリ動作が可能である。
[0136] 強誘電体層 104の抵抗状態を変化させることができる電圧パルスの電圧と時間は、 状況により変化させることができる。例えば、 + 5Vで 10 /z s, 4回の電圧パルスを印 カロして高抵抗状態とした後、 4Vで: sの短いパルスを 10回印加することで、低抵 抗状態へと変化させることができる。また、この状態に、 + 5Vで 1 sの短いパルスを 100回印加することで、高抵抗状態へと変化させることも可能である。さらに、この状 態に、—3Vと低い電圧として 100 sのノ ルスを 100回印加することで、低抵抗状態 へと変化させることも可能である。
[0137] また、図 1に示す強誘電体素子によれば、多値のメモリ動作も可能である。例えば、 上部電極 105と下部電極層 103との間に直流電圧を印加したときの電流—電圧特 性は、図 18に示すように、正側の印加電圧を変化させると異なる低抵抗状態に変化 する。図 18では、 0. 5Vまで印加した後の低抵抗状態と、 1. 0Vまで印加した後の低 抵抗状態と、 1. 5Vまで印加した後の低抵抗状態との、図中に示す読み出し電圧に おける電流値が異なる。これら各々の状態における読み出し電圧における電流値に 対応し、「0」, 「1」, 「2」の 3つの状態(3値)のメモリが実現できる。
[0138] また、図 1に示す素子によれば、パルス電圧の値の違いにより、多値メモリを実現す ることが可能である。図 19に示すように、所定のパルス幅の所定のパルス電圧を所定 回数印加する毎に、三角で示す時点で 0. 2Vの読み出し電圧で電流値を読み出 すと、図 20に示すように、「0」, 「1」, 「2」の 3つの状態(3値)が得られる。この例では 、「2」の状態によりリセットがされていることになる。
[0139] 次に、図 1に示した素子の各電極に用いることが可能な他の金属材料について、以 下に説明する。まず、図 1に示す強誘電体素子において、強誘電体層 104が接触す る部分の下部電極層 103が、白金力も構成されている場合について説明する。この 場合、下部電極層 103は、絶縁層 102の側から、ルテニウム, 白金の順に積層され た多層膜とする。また、下部電極層 103は、絶縁層 102の側から、チタン, 白金の順 に積層された多層膜としてもよい。絶縁層 102の側に、ルテニウムやチタンの層を設 けることで、絶縁層 102との密着性が向上する。
[0140] このように、白金からなる下部電極層 103の上に接して強誘電体層 104が形成され た強誘電体素子においては、電流電圧特性が、図 21に示すようになる。図 21は、上 部電極 105に印加する電圧をゼロ力も正の方向に増カロさせた後にゼロに戻し、さら に負の方向に減少させ、最後に再びゼロに戻したときに強誘電体層 104の中を流れ る電流値が描くヒステリシスの特性を表している。まずはじめに、上部電極 105に電圧 を OV力 正の方向に徐々に印加させた場合、強誘電体層 104を流れる正の電流は 比較的少な!/ヽ (高抵抗状態)。
[0141] しかし、 IVを超えると急激に正の電流値が増加し始める。さらに約 1. 6Vまで電圧 を上げた後、逆に正の電圧を減少させていき電圧値が約 0. 5V以下になると、電流 値が減少に転じる(低抵抗状態)。このときの正の電流は、上述した高抵抗状態と比 ベて流れやすい状態であり、電流値は 0. 2Vで約 50 A程度である。印加電圧をゼ 口に戻すと、電流値もゼロとなる。
[0142] 次に、上部電極 105に負の電圧を印加していく。この状態では、負の電圧が小さい ときは、前の履歴を引き継ぎ、比較的大きな負の電流が流れる。ところが、—0. 3V程 度まで負の電圧を印加すると、負の電流が突然減少し始め、この後、約 0. 4V程 度まで負の電圧を印加すると、負の電流値は減少し続けてゼロに戻る。この後、上部 電極 105に印加する電圧を、 -0. IV程度まで変化させた後、今度は、 0Vにまで変 化させても、ほとんど電流は流れない。
[0143] 以上に説明したように、白金力も構成された下部電極層 103を用いるようにしても、 強誘電体層 104には、低抵抗状態と高抵抗状態の 2つの安定状態が存在し、各々 の状態は、前述した一定以上の正あるいは負の電圧を印力 tlしない限り、各状態を維 持する。従って、図 1に示す強誘電体素子の下部電極層 103を白金力も構成しても、 図 1に示す強誘電体素子により、不揮発性で非破壊読み出し動作が可能な機能素 子が実現できる。 [0144] 次に、図 1に示す強誘電体素子において、強誘電体層 104が接触する部分の下部 電極層 103が、窒化チタン力 構成されている場合について説明する。この場合、下 部電極層 103は、窒化チタンの単層膜から構成すればよい。このように、窒化チタン 力もなる下部電極層 103の上に接して強誘電体層 104が形成された強誘電体素子 においては、電流電圧特性が、図 22に示すようになる。
[0145] 窒化チタンから下部電極層 103が構成されている場合、上部電極 105に印加する 正の電圧を 0Vから V まで間で掃引した場合は、図 22に黒丸で示すように、高抵抗
wO
状態が保持される。これに対し、上部電極 105に印加する正の電圧を V より大きい
wO
V まで印加すると、図 22に白丸で示す低抵抗状態に遷移する。また上部電極 105 wl
に、 V の電圧を印加すると、高抵抗状態に遷移する。
wO
[0146] 以上に説明したように、窒化チタン力 構成された下部電極層 103を用いるようにし ても、強誘電体層 104には、低抵抗状態と高抵抗状態の 2つの安定状態が存在し、 各々の状態は、前述した一定以上の正あるいは負の電圧を印力!]しない限り、各状態 を維持する。従って、図 1に示す強誘電体素子の下部電極層 103を窒化チタンから 構成しても、図 1に示す強誘電体素子により、不揮発性で非破壊読み出し動作が可 能な機能素子が実現できる。
[0147] 図 11に示す強誘電体素子において、石英力 なる絶縁性の基板 1101の上に形 成された下部電極層 103がルテニウムカゝら構成され、上部電極 105が窒化チタンか ら構成された場合について説明する。このように、窒化チタン力もなる上部電極 105 が強誘電体層 104の上に形成されている場合、電流電圧特性が、図 23に示すように なり、図 21に示した結果と同様の傾向を示す。従って、上部電極 105に窒化チタンを 用いるようにしても、強誘電体層 104には、低抵抗状態と高抵抗状態の 2つの安定状 態が存在し、各々の状態は、前述した一定以上の正あるいは負の電圧を印加しない 限り、各状態を維持する。
[0148] 従って、図 11Aに示す強誘電体素子の上部電極 105を窒化チタン力 構成しても 、図 11Aに示す強誘電体素子により、不揮発性で非破壊読み出し動作が可能な機 能素子が実現できる。また、この構成とした強誘電体素子においても、図 24に示すよ うに、長期にわたつて状態が保持されることがわかる。 [0149] 一般に、 Bi Ti O の結晶は、擬ぺロブスカイト構造を有するビスマス層状の強誘電
4 3 12
体であるが、膜厚を 40nm以下と薄層化した場合、リーク電流が多く流れるようになる ために明確な強誘電性が観測されないことが知られている。本実施の形態における Bi Ti O から構成された図 IBに例示する構成の強誘電体層(金属酸化物薄膜)に
4 3 12
おいても、膜厚が 40nm以下になると電流が多く流れるようになり(測定値)、明確な 強誘電性が観測されない。これに対し、上記金属酸化物薄膜は、膜厚が 40nmを超 えて厚くなると、成膜直後の状態で、流れる電流 (測定値)が小さくなり、僅かに強誘 電性が観測されるようになる。
[0150] 図 1に示す強誘電体層 104を構成して 、る金属酸ィ匕物薄膜は、強誘電性が確認で きる程度にリーク電流 (測定値)が小さい場合には、図 25Aに示すような電流電圧特 性を示す。図 25Aに示す状態を説明すると、まず、 OVで OAの初期状態から、正の 直流電圧を印加していくと、正の電流が流れ始める。流れる電流値は、はじめは穏ゃ かに増加していくが、 +4V以上の電圧を印加すると電流値が大きくなり、 + 5. 3Vで + 2. 5nAの電流値が流れるようになる。
[0151] この状態から、印加している電圧を順次小さくしていくと、初期値からの電流電圧特 性とは異なり、電流が流れない傾向の特性をとるようになる。これは、電圧を小さくす るように掃引して 、るため、キャパシタ間に蓄えられて!/、る電荷量が時間とともに減少 し、これが負の変位電流として現れるからである。従って、ここで観測されているリーク 電流は、実際に膜中を流れているリーク電流に、上述した変位電流が重ね合わさつ た値に等しい。例えば、電圧を低下させる場合、 +4Vにまで低下すると、電圧を上 昇させている場合( + 1ηΑ)とは異なり、 +0. InA程度しか流れなくなる。し力も、印 加する電圧を OVに低下させると、 -0. 5nAの電流が流れるようになる。
[0152] さらに、負の電圧を印加していくと、例えば、 4Vで 2. 3nA程度、 5. 3Vで 2. 8nA程度の負の電流が流れる。この状態力 負の電圧を 0に近づけていくように、 電圧を正の方向に掃引して行くと、今度は先と反対の変位電流が流れるようになる。 実際に膜中を通過しているリーク電流にカ卩え、上述した正の変位電流がリーク電流と して観測されるため、電圧を負の方向に掃引してきた場合と異なる電流電圧特性を 示す。例えば、 4Vで— 0. 5nA程度しか流れず、印加する電圧を OVにしても、 + 1 nAの正電流が流れるようになる。
[0153] 以上に説明したように、リーク電流が小さい場合には、変位電流の振る舞いが支配 的になるため、電圧を掃引する方向(電圧の増力!],減小)の違いによる、電流電圧特 性の変化が顕著に観測される。しかしながら、このような現象は、キャパシタ間の電圧 の時間変化に伴う電荷量の時間変化が、掃引の方向により正負の異なる変位電流と して現れることが原因で生じて 、るため、電圧の掃引速度を遅くして 、くと消失して ヽ く現象である。例えば、先と同様の素子において異なる掃引速度で電流電圧を測定 すると、図 25Bに示すように、特性に変化が現れる。図 25Bから明らかなように、掃引 速度が遅い方が、掃引方向の違いによる電流電圧特性の変化が小さい。また、掃引 速度をさらに遅くして準静的な掃引をすれば、掃引方向にかかわらず、電流電圧特 性は同じになり、実際に膜中を通過するリーク電流の特性のみが観測されるようにな る。
[0154] 従って、図 25Aに示した電流電圧特性のヒステリシスに似た現象は、電圧の掃引に より正負の異なる変位電流が、実際に膜中を流れるリーク電流に重ね合わさつたため に観測されているだけである。これは、素子の抵抗変化 (実際の膜中を流れるリーク 電流値の変化)とは全く関係なく起こる現象であり、一般の強誘電体を含む誘電体キ ャパシタで観測され得る現象である。また、当然ながら、このような電流特性の変化を メモリ動作として利用することは、原理的に不可能である。
[0155] また、一般的に耐圧が高い絶縁膜や強誘電体膜においては、 5Vを超える高い電 圧を印加することで、膜が絶縁破壊することも知られている。例えば、耐圧が高い強 誘電体力もなる例えば膜厚 200nm以上の強誘電体薄膜に、高い電圧を印加した場 合について以下に示す。図 26に示すように、 + 15Vまで印加しても、 10— 9 A程度の 微少な電流しか流れないが、これ以上の電圧を印加すると急激に電流が流れるよう になり、薄膜自体が破損する絶縁破壊 (ブレイクダウン)を引き起こす。このように絶縁 破壊した薄膜は、これ以降常に大きな電流が流れる状態となり、 2つ以上の抵抗値を 持つ状態は得られない。
[0156] 以上に説明した強誘電体における特性に対し、図 1B,図 7,及び図 9に例示したよ うに、「Bi Ti O の化学量論的組成に比較して過剰なチタンを含む層からなる基部 層の中に、粒径 3〜15nm程度の複数の Bi Ti O の微結晶粒が分散している金属
4 3 12
酸ィ匕物薄膜 (強誘電体層 104)」は、膜厚 40nm程度の状態では、図 27に示すような 電流電圧特性を示す。まず、図 4A,図 4B,図 4C,図 4D,及び図 5を用いて説明し たように、 ECRスパッタ法により強誘電体層 104を形成し、図 4Dに示すような素子を 形成した初期の段階では、 + 14Vまで電圧を印加しても、 10—9Α程度の微少な電流 しか流れな 、高 、電気耐圧を示す状態となって 、る。
[0157] さらに、 + 15V以上の電圧を印加すると、図 26に示した特性と同様に、急激に電流 が流れるようになる。し力しながら、強誘電体層 104では、高電圧を印加して電流が 流れる状態となった後に負の電圧を印加すると、 10—2Α程度の電流が流れるが、 印加する負の電圧を 2V程度とすると、急に電流が流れない高抵抗の状態となる。 この後、この状態から正の電圧を印加すると、正の高抵抗状態の電流電圧特性となり 、 + 2. 5V程度で急激に電流値が大きくなり、正の低抵抗状態となる。これは、図 21 に示す特性と同様である。
[0158] 以上に説明したように、強誘電体層 104は、 40nm程度以上の膜厚においては、電 気耐圧の大きい成膜初期状態において、 + 15V程度の高い電圧を印加することで、 図 2などに示すような、特徴的な電流電圧特性が発現されるようになる。このように、 成膜初期状態から抵抗変化特性を示す状態に変化させる初期処理を、電気的初期 ィ匕(Electrical Orientation :EO)処理と呼ぶこととする。本実施の形態の金属酸化物 薄膜は、膜厚が厚く電気的な耐圧が高い状態で成膜した状態では、 EO処理をする ことで、前述した各特性を示すようになり、強誘電体素子などを実現することが可能と なる。
[0159] 上述した EO処理は、 10Vを超える電圧を素子に印加することになるため、例えば、 半導体素子と集積して図 1
Figure imgf000048_0001
、る状態で EO処理をする場合、 半導体素子を破壊する場合がある。これを抑制するために、 ECRプラズマを用いて EO処理を行うようにしてもよい。例えば、 ECRプラズマ装置では、発散磁界によりプ ラズマ流を生成し、 20〜30eVのエネルギーを持つプラズマ流を処理対象の基板に 照射させることができる。プラズマ流中のエネルギー分布は、プラズマ流の発散方向 に垂直な断面では、磁界の分布を反映して中心力も周辺に向力つて分布を持ってい る。
[0160] このエネルギー分布は、発散磁界の発散度により数 eV力も数 10eVの間で制御可 能であり、中心と周辺との間で数ボルトから数十 Vの電位差を発生させることができる 。従って、図 1に示す素子において、下部電極層 103に接続する配線の一端をブラ ズマ流の周辺部に晒し、上部電極 105がプラズマ流中の中央部に晒される状態とす れば、プラズマ流中の分布カゝら発生する電位差で、これら 2つの電極間に EO処理に 必要な電圧を印加することが可能となる。例えば、 Arを主成分とするプラズマを発生 させて素子に照射することで、 1秒力 数十秒という短い時間で EO処理をすることが 可能である。
[0161] また、上述したようにプラズマを利用することで、図 28に示すように、複数の素子に 対して、同時に EO処理をすることも可能である。図 28では、図 12Aに示した、共通と した強誘電体層 603の上に複数の上部電極 604により複数の素子が配列して集積さ れた装置に対し、 ECRプラズマ流を照射することで、 EO処理を行う状態を示してい る。 ECRプラズマ流の分布カゝら発生する電位差を、複数個の素子の EO処理に必要 な電位差を超える値に制御することで、装置に集積されている複数の素子に対して E O処理をすることが可能となる。
[0162] ところで、強誘電体層 104における抵抗値をスィッチ(変化)させる電圧値は、図 29 に例示するように、電圧の印加時間を変化させることにより制御することができる。図 2 9は、 + 1. 6Vで低抵抗状態になだらかに遷移する素子において、 + IVの電圧を印 カロした場合の素子の抵抗値の変化を示す説明図である。図 29において、横軸は電 圧を印加している時間を示し、縦軸は素子の抵抗値を示している。通常の動作電圧 1. 6Vを印加した場合、 t (約 150ms)という短い時間で低抵抗状態へと遷移させる し 1
ことができる。一方、通常の動作電圧よりもやや低い電圧 IVを印加した場合でも、印 加する時間を t (約 3. 7秒)と長くすることで、低抵抗状態へと遷移させることができ
L2
る。このように、電圧印加の時間制御により、動作電圧を変化させてメモリとして駆動 させることが可會となる。
[0163] また、多値メモリ動作は、次に示すように実現することができる。以下、図 30を用い て多値メモリ(3値メモリ)動作について説明する。図 30は、上部電極と下部電極層と の間に一定電圧 (例えば 1. 2V)を印加したときの、素子の抵抗値の時間変化を示し ている。例えば、上部電極と下部電極層との間に一定の電圧を印加し続け際の印加 時間を変化させることで、 2つの低抵抗状態をつくり出すことができる。図 30に示すよ うに、高抵抗状態から t秒 (例えば 250ms)だけ電圧を印加すれば、低抵抗状態 1 (
1
データ「1」)への遷移が可能となる。一方、より長い時間 tだけ電圧を印加すると、低
2
抵抗状態 2 (データ「2」)への遷移が可能となる。 1. 2V程度で高抵抗状態 (データ 「0」)に遷移させ、リセットさせることが可能であり、このリセット状態からの電圧印加時 間を t , tと変化させることにより、 3値メモリが実現できる。
1 2
[0164] 次に、本発明の他の実施の形態について図を参照して説明する。図 31は、本発明 の実施の形態における他の 2安定抵抗値取得装置の構成例を模式的に示す断面図 である。以下では、強誘電体特性を示す金属酸化物の層(強誘電体層 3104)を用い た強誘電体素子に適用した場合について説明する。図 31に示す素子は、例えば、 単結晶シリコン力もなる基板 3101の上に絶縁層 3102,下部電極層 3103,強誘電 体層 3104,絶縁層 3105,上部電極 3106を備えるようにしたものである。基板 3101 は、半導体,絶縁体,金属などの導電性材料のいずれカゝら構成されていてもよい。基 板 3101が絶縁材料から構成されている場合、絶縁層 3102はなくてもよい。また、基 板 3101が導電性材料から構成されている場合、絶縁層 3102,下部電極層 3103は なくてもよぐこの場合、導電性材料カゝら構成された基板 3101が、下部電極となる。
[0165] 下部電極層 3103,上部電極 3106は、例えば、白金(Pt)、ルテニウム (Ru)、金( Au)、銀 (Ag)などの貴金属を含む遷移金属の金属カゝら構成されていればよい。また 、下部電極層 3103,上部電極 3106は、窒化チタン (TiN)、窒化ハフニウム(HfN) 、ルテニウム酸ストロンチウム(SrRuO )、酸化亜鉛(ZnO)、鉛酸スズ (ITO)、フッ化
2
ランタン (LaF )などの遷移金属の窒化物や酸ィ匕物やフッ化物等の化合物、さらに、
3
これらを積層した複合膜であってもよ 、。
[0166] 絶縁層 3105は、二酸ィ匕シリコン,シリコン酸窒化膜,アルミナ,又は、リチウム,ベリ リウム,マグネシウム,カルシウムなどの軽金属力 構成された LiNbOなどの酸化物
3
、 LiCaAlF、 LiSrAlF、 LiYF、 LiLuF、 KMgFなどのフッ化物から構成されてい
6 6 4 4 3
ればよい。また、絶縁層 3105は、スカンジウム,チタン,ストロンチウム,イットリウム, ジルコニウム,ハフニウム,タンタル,及び、ランタン系列を含む遷移金属の酸化物及 び窒化物、又は、以上の元素を含むシリケート (金属、シリコン、酸素の三元化合物) 、及び、これらの元素を含むアルミネート (金属、アルミニウム、酸素の三元化合物)、 さらに、以上の元素を 2以上含む酸化物及び窒化物などから構成されて ヽればよ ヽ
[0167] 強誘電体層 3104は、前述した強誘電体層 104と同様であり、例えば、酸化物強誘 電体力ゝら構成されたものである。なお、強誘電体層 3104は、少なくとも 2つの金属を 含む酸化物,窒化物,フッ化物などの、一般に強誘電特性を示す材料から構成され ていることを示しており、前述したように、膜厚条件などにより強誘電特性を示さない 状態も含んでいる。
[0168] 図 31に示した強誘電体素子の具体例について説明すると、例えば、下部電極層 3 103は、膜厚 lOnmのルテニウム膜であり、強誘電体層 3104は、膜厚 40nmの Bi Ti
4
O 膜であり、絶縁層 3105は、五酸ィ匕タンタルと二酸ィ匕シリコンとからなる膜厚 5nm
3 12
の多層膜であり、上部電極 3106は、金力も構成されたものである。また、上部電極 3 106は、絶縁層 3105の側から、チタン層,窒化チタン層,金層の順に積層された多 層構造であってもよい。絶縁層 3105との接触面をチタン層とすることで、密着性の向 上が図れる。なお、前述したように、基板 3101及び絶縁層 3102の構成は、これに限 るものではなぐ電気特性に影響を及ぼさなければ、他の材料も適当に選択できる。
[0169] 以上で説明した、絶縁層 3102,下部電極層 3103,強誘電体層 3104,絶縁層 31 05,上部電極 3106は、具体的な製法は後述する力 図 1Aと同様に図 5に示すよう な ECRスパッタ装置により、金属ターゲットや焼結ターゲットを、アルゴンガス,酸素 ガス,窒素ガスからなる ECRプラズマ内でスパッタリングして形成すればよ!、。
[0170] 次に、図 31にした強誘電体素子の製造方法例について、図 32A〜図 32Eを用い て説明する。まず、図 32Aに示すように、主表面が面方位(100)で抵抗率が 1〜2 Ω cmの ρ形のシリコン力もなる基板 3101を用意し、基板 3101の表面を硫酸と過酸ィ匕 水素水の混合液と純水と希フッ化水素水とにより洗浄し、このあと乾燥させる。
[0171] ついで、洗浄'乾燥した基板 3101の上に、絶縁層 3102が形成された状態とする。
絶縁層 3102の形成では、図 5に示した ECRスパッタ装置を用い、処理室 501内の 基板ホルダ 504に基板 3101を固定し、ターゲット 505として純シリコン(Si)を用い、 プラズマガスとしてアルゴン (Ar)と酸素ガスを用いた ECR^パッタ法により、基板 31 01の上に、表面を覆う程度に Si— O分子によるメタルモードの絶縁層 3102を形成す る。
[0172] 図 5に示す ECRスパッタ法において、まず、プラズマ生成室 502内を 10— 5Pa台の高 真空状態に真空排気した後、プラズマ生成室 502内に、不活性ガス導入部 511より 、例えば希ガスである Arガスを流量 20sccm程度で導入し、プラズマ生成室 502の内 部を例えば 10—2〜10—3Pa台の圧力に設定する。また、プラズマ生成室 502には、磁 気コイル 510にコイル電流を例えば 28 Aを供給することで電子サイクロトロン共鳴条 件の磁場を与える。例えば、プラズマ生成室 502内の磁束密度が 87. 5mT (テスラ) 程度の状態とする。
[0173] 加えて、図示していないマイクロ波発生部より、例えば 2. 45GHzのマイクロ波(例 えば 500W)を供給し、これを導波管 508、石英窓 507、真空導波管 506を介してプ ラズマ生成室 502の内部に導入し、このマイクロ波の導入により、プラズマ生成室 50 2に Arのプラズマが生成された状態とする。なお、 sccmは流量の単位あり、 0°C ' l気 圧の流体が 1分間に lcm3流れることを示す。
[0174] 上述したことにより生成されたプラズマは、磁気コイル 510の発散磁場によりプラズ マ生成室 502より処理室 501の側に放出される。また、プラズマ生成室 502の出口に 配置されたターゲット 505に、高周波電源 522より高周波電力(例えば 13. 56MHz , 500W)を供給する。このことにより、ターゲット 505に Ar粒子が衝突してスパッタリ ング現象が起こり、 Si粒子がターゲット 505より飛び出す。
[0175] この状態とされた後、ターゲット 505と基板 3101との間の図示しないシャッターを開 放すると、ターゲット 505より飛び出した Si粒子は、プラズマ生成室 502より放出され たプラズマ、及び、反応性ガス導入部 512より導入されてプラズマにより活性化され た酸素ガスと共に基板 3101の表面に到達し、活性化された酸素により酸化され二酸 化シリコンとなる。
[0176] 以上のことにより、基板 3101上に二酸ィ匕シリコン力もなる例えば lOOnm程度の膜 厚の絶縁層 3102が形成された状態とすることができる(図 32A)。所定の膜厚まで形 成した後、前述したシャッターを閉じた状態としてスパッタされた原料が基板 3101に 到達しないようにすることで、成膜を停止する。この後、マイクロ波電力の供給を停止 するなどによりプラズマ照射を停止し、各ガスの供給を停止し、基板温度が所定の値 にまで低下しまた処理室 501の内部圧力を上昇させて大気圧程度とした後、処理室 501の内部より成膜された基板 3101を搬出する。
[0177] なお、絶縁層 3102は、この後に形成する下部電極層 3103と上部電極 3106に電 圧を印加した時に、基板 3101に電圧が洩れて、所望の電気的特性に影響すること がないように絶縁を図るものである。例えば、シリコン基板の表面を熱酸化法により酸 化することで形成した酸ィ匕シリコン膜を絶縁層 3102として用いるようにしてもょ 、。絶 縁層 3102は、絶縁性が保てればよぐ酸化シリコン以外の他の絶縁材料から構成し てもよく、また、絶縁層 3102の膜厚は、 lOOnmに限らず、これより薄くてもよく厚くて もよい。絶縁層 3102は、上述した ECR^パッタによる膜の形成では、基板 3101に対 して加熱はして 、な 、が、基板 3101を加熱しながら膜の形成を行ってもょ 、。
[0178] 以上のようにして絶縁層 3102を形成した後、基板 3101を装置内より大気中に搬 出し、ついで、ターゲット 505として純ルテニウム(Ru)を用いた図 5同様の ECR^パ ッタ装置の基板ホルダ 504に、基板 3101を固定する。引き続いて、プラズマガスとし てアルゴン (Ar)とキセノン (Xe)を用いた ECRスパッタ法により、
図 32Bに示すように、絶縁層 3102の上に、表面を覆う程度に Ru膜を形成することで 、下部電極層 3103が形成された状態とする。
[0179] Ru膜の形成について詳述すると、 Ruからなるターゲット 505を用いた図 5に示す E CR^パッタ装置において、まず、基板 3101を例えば 400°C程度に加熱し、ついで、 プラズマ生成室 502内に、不活性ガス導入部 511より、例えば流量 7sccmで希ガスで ある Arガスを導入し、例えば流量 5sccmで Xeガスを導入し、プラズマ生成室 502の 内部を、例えば 10—2〜10—3Pa台の圧力に設定する。また、プラズマ生成室 502には 、磁気コイル 510にコイル電流を例えば 26Aを供給することで電子サイクロトロン共鳴 条件の磁場を与える。
[0180] 加えて、図示していないマイクロ波発生部より、例えば 2. 45GHzのマイクロ波(例 えば 500W)を供給し、これを導波管 508、石英窓 507、真空導波管 506を介してプ ラズマ生成室 502内に導入し、この上記マイクロ波の導入により、プラズマ生成室 50 2に Arと Xeのプラズマが生成した状態とする。生成されたプラズマは、磁気コイル 51 0の発散磁場によりプラズマ生成室 502より処理室 501側に放出される。また、プラズ マ生成室 502の出口に配置されたターゲット 505に、高周波電極供給部より高周波 電力(例えば 500W)を供給する。このことにより、ターゲット 505に Ar粒子が衝突して スパッタリング現象が起こり、 Ru粒子がターゲット 505より飛び出す。ターゲット 505よ り飛び出した Ru粒子は、基板 3101の絶縁層 3102表面に到達し堆積する。
[0181] 以上のことにより、絶縁層 3102の上に、例えば 10nm程度の膜厚の下部電極層 31 03が形成された状態が得られる(図 32B)。下部電極層 3103は、この後に形成する 上部電極 3106との間に電圧を印加した時に、強誘電体層 3104と絶縁層 3105に電 圧が印加できるようにするものである。従って、導電性が持てればルテニウム以外か ら下部電極層 3103を構成してもよぐまた、膜厚も 10nmに限るものではなぐこれよ り厚くてちょく薄くてちょい。
[0182] ところで、上述したように ECR^パッタ法により Ruの膜を形成するときに、基板 310 1を 400°Cに加熱した力 加熱しなくても良い。ただし、加熱を行わない場合、ルテ- ゥムの二酸ィ匕シリコンへの密着性が低下するため、剥がれが生じる恐れがあり、これ を防ぐために、基板を加熱して膜を形成する方が望ましい。以上のようにして所望の 膜厚に Ruを堆積した後、シャッターを閉じることなどにより成膜を停止し、マイクロ波 電力の供給を停止してプラズマ照射を停止するなどの終了処理をすれば、基板 310 1が搬出可能となる。
[0183] 以上のようにして下部電極層 3103を形成した後、基板 3101を装置内より大気中 に搬出し、ついで、ターゲット 505として Biと Tiの割合が 4 : 3の焼結体 1—1 —0) を用いた図 5同様の ECRスパッタ装置の基板ホルダ 504に、基板 3101を固定する。 引き続 、て、プラズマガスとしてアルゴン (Ar)と酸素ガスとを用いた ECR^パッタ法 により、図 32Cに示すように、下部電極層 3103の上に、表面を覆う程度に、強誘電 体層 3104が形成された状態とする。
[0184] 強誘電体層 3104の形成について詳述すると、 Bi—Ti—Oからなるターゲット 505 を用いた図 5に示す ECR^パッタ装置において、まず、基板 3101力 S300〜700°Cに 加熱された状態とし、ついで、プラズマ生成室 502内に、不活性ガス導入部 511より 、例えば流量 20sccmで希ガスである Arガスを導入し、例えば流量 lsccmで反応ガス である Oガスを導入し、例えば 10—2〜: LO—3Pa台の圧力に設定する。また、プラズマ生
2
成室 502には、磁気コイル 510にコイル電流を例えば 27Aを供給することで電子サイ クロトロン共鳴条件の磁場を与える。
[0185] 加えて、図示していないマイクロ波発生部より、例えば 2. 45GHzのマイクロ波(例 えば 500W)を供給し、これを導波管 508、石英窓 507、真空導波管 506を介してプ ラズマ生成室 502内に導入し、このマイクロ波の導入により、プラズマ生成室 502に A rのプラズマが生成された状態とする。生成されたプラズマは、磁気コイル 510の発散 磁場によりプラズマ生成室 502より処理室 501側に放出される。また、プラズマ生成 室 502の出口に配置されたターゲット 505に、高周波電極供給部より高周波電力(例 えば 500W)を供給する。このことにより、ターゲット 505に Ar粒子が衝突してスパッタ リング現象を起こし、 Bi粒子と Ti粒子がターゲット 505より飛び出す。
[0186] ターゲット 505より飛び出した Bi粒子と Ti粒子は、プラズマ生成室 502より放出され たプラズマ、及び、反応性ガス導入部 512より導入されてプラズマにより活性ィ匕した 酸素ガスと共に、下部電極層 3103の表面に到達し、活性化された酸素により酸化さ れる。ターゲット 505は焼結体であり、酸素が含まれるが、酸素を供給することにより 膜中の酸素不足を防ぐことができる。
[0187] 以上に説明した ECRスパッタ法による膜の形成で、例えば、膜厚 40nm程度の強 誘電体層 3104が形成された状態が得られる(図 32C)。この後、前述と同様にするこ とで終了処理をし、基板が搬出可能な状態とする。なお、形成した強誘電体層 3104 に、不活性ガスと反応性ガスの ECRプラズマを照射し、膜質を改善するようにしても よい。反応性ガスとしては、酸素ガスに限らず、窒素ガス,フッ素ガス,水素ガスを用 いることができる。また、この膜質の改善は、絶縁層 3102や以降に説明する絶縁層 3 105の形成にも適用可能である。
[0188] 以上のようにして強誘電体層 3104を形成した後、基板 3101を装置内より大気中 に搬出し、ついで、ターゲット 505として純タンタル (Ta)を用いた図 5同様の ECR^ ノ ッタ装置の基板ホルダ 504に、基板 3101を固定する。引き続いて、プラズマガスと してアルゴン (Ar)と酸素ガスとを用いた ECR^パッタ法により、図 32Dに示すように、 強誘電体層 3104の上に、表面を覆う程度に、絶縁層 3105が形成された状態とする 。以下に説明するように、 Ta— O分子によるメタルモード膜を形成し、絶縁層 3105と する。
[0189] Ta— O分子によるメタルモード膜の形成について詳述すると、タンタルからなるター ゲット 505を用いた図 5に示す ECRスパッタ装置において、まず、プラズマ生成室 50 2内に、不活性ガス導入部 511より、例えば流量 25sccmで希ガスである Arガスを導 入し、プラズマ生成室 502の内部を、例えば 10—3Pa台の圧力に設定する。また、ブラ ズマ生成室 502には、磁気コイル 510にコイル電流を例えば 28Aを供給することで 電子サイクロトロン共鳴条件の磁場を与える。
[0190] 加えて、図示していないマイクロ波発生部より、例えば 2. 45GHzのマイクロ波(例 えば 500W)を供給し、これを導波管 508、石英窓 507、真空導波管を介してプラズ マ生成室 502内に導入し、このマイクロ波の導入により、プラズマ生成室 502に Arの プラズマが生成した状態とする。生成されたプラズマは、磁気コイル 510の発散磁場 によりプラズマ生成室 502より処理室 501の側に放出される。また、プラズマ生成室 5 02の出口に配置されたターゲット 505に、高周波電極供給部より高周波電力(例え ば 500W)を供給する。
[0191] このことにより、ターゲット 505に Ar粒子が衝突してスパッタリング現象を起こし、 Ta 粒子がターゲット 505より飛び出す。ターゲット 505より飛び出した Ta粒子は、プラズ マ生成室 502より放出されたプラズマ、及び反応性ガス導入部 512より導入されてプ ラズマにより活性ィ匕された酸素ガスと共に基板 3101の強誘電体層 3104表面に到達 し、活性ィ匕された酸素により酸ィ匕され五酸ィ匕タンタルとなる。
[0192] 以上のことにより、まず、強誘電体層 3104の上に五酸化タンタル膜を形成する。続 いて、図 32Aを用いて説明した二酸ィ匕シリコンの堆積と同様に、純シリコン力もなるタ 一ゲット 505を用いた ECRスパッタ法により、上記五酸化タンタル膜の上に二酸化シ リコン膜が形成された状態とする。上述した五酸ィ匕タンタル膜と二酸ィ匕シリコン膜の形 成工程を繰り返し、五酸ィ匕タンタル膜と二酸ィ匕シリコン膜との多層膜を例えば、 5nm 程度形成することで、絶縁層 3105が得られる(図 32D)。 [0193] なお、五酸ィ匕タンタル膜と二酸ィ匕シリコン膜からなる絶縁層 3105は、強誘電体層 3 104に電圧を印加した時に、強誘電体膜に印加される電圧を制御するために用いる 。従って、強誘電体層 3104に印加される電圧を制御することができれば、五酸化タ ンタル膜と二酸ィ匕シリコン膜の多層構造以外力も絶縁層 3105を構成してもよぐ単 層力 構成してもよい。また、膜厚も、 5nmに限るものではない。なお、上述した ECR スパッタ法では、基板 3101に対して加熱はしていないが、加熱しても良い。
[0194] 次に、図 32Eに示すように、絶縁層 3105の上に、所定の面積の Au力もなる上部 電極 3106が形成された状態とすることで、強誘電体力もなる層を用いた素子が得ら れる。上部電極 3106は、よく知られたリフトオフ法と抵抗加熱真空蒸着法による金の 堆積とにより形成できる。なお、上部電極 3106は、例えば、 Ru、 Pt、 TiNなどの他の 金属材料や導電性材料を用いるようにしてもよい。なお、 Ptを用いた場合、密着性が 悪く剥離する可能性があるので、加熱による成膜を行うことや、 Ti Pt Auなどの剥 離し難い構造とすることなどにより、フォトリソグラフィーゃリフトオフ処理などのパター ユング処理をして所定の面積を持つ電極として形成する必要がある。
[0195] なお、前述したように、例えば ECRスパッタ法などにより形成した品質のよ!ヽ Bi Ti
4 3
O
12膜は、膜厚 50nm程度以下にすると、強誘電性力 、さくなる傾向がある。また、上 記 Bi Ti O 膜は、ある程度のリーク電流が流れる膜厚で、電流電圧測定に特有のヒ
4 3 12
ステリシスが現れる。これらの知見により、これらの現象を顕著に用いることで、図 1A に示す素子と同様に、図 31に示す素子においても、以降に説明するように、 2つの 状態が保持される素子が実現できる。
[0196] 次に、図 31に示す強誘電体素子の特性について説明する。この特性調査は、下 部電極層 3103と上部電極 3106との間に電圧を印加することで行う。下部電極層 31 03と上部電極 3106との間に電源により電圧を印加し、電圧を印加したときの電流を 電流計により観測すると、図 33に示す結果が得られた。以下、図 33を説明し、あわ せて本発明のメモリ動作原理を説明する。ただし、ここで説明する電圧値や電流値は 、実際の素子で観測されたものを例としている。従って、本現象は、以下に示す数値 に限るものではない。実際に素子に用いる膜の材料や膜厚、及び他の条件により、 他の数値が観測されることがある。 [0197] まず、上部電極 3106に負の電圧を印加すると、図 33中の(1)に示すように、—0. 8Vまでは流れる電流は非常に少ない。しかし、(2)に示すように、 -0. 8Vを超える と急に負の電流が流れる。実際には、 15 Aを超える電流も流れている力 測定 器を保護するためにこれ以上電流を流さな 、ようにして 、るので、観測されて 、な ヽ 。ここで、(1)に示す OVから—0. 8Vの領域では、(2)に示すような電流が大きく流れ ないようにすると、高抵抗の状態が保持 (維持)される。
[0198] 続いて、再び上部電極 3106に負の電圧を印加すると、(3)に示すように、 0. 5V 程度で 10 A以上の負の電流が流れる軌跡を示す。さらに続いて、上部電極 31 06に負の電圧を印加すると、やはり(3)に示すように— 0. 5V程度で— A以上 の電流が流れる。しかし、今度は、上部電極 3106に正の電圧を印加すると、(4)に 示すように、 +0. 2V程度まで正の電流が流れ、最大 3 Aになる。ここで、電圧の絶 対値を小さくしていくと、(4)に示す軌跡を通る。
[0199] 再び、 0. 2V迄の正の電圧を印加すると、(4)に示すような軌跡を通る。この後、(5 )に示すように、流れる電流値が減少して正の電流が流れなくなる。続いて、上部電 極 3106に正の電圧を印加すると(6)に示すように、ほとんど電流が流れない軌跡を 示すようになる。この後、電圧の絶対値を小さくしていっても、(6)に示すようにほとん ど電流が流れない。さらに、続いて上部電極 3106に負の電圧を印加すると、(1)に 示すようにように 0〜一 0. 8V程度まで、ほとんど電流が流れない。従って、(2)のよう に急激に電流が流れな 、ように上部電極 3106に— 0. 8V以上の電圧を印加しなけ れば、(1)のような電流が流れない高抵抗の状態を維持することになる。(1)に示す 状態を「負の高抵抗モード」と呼ぶことにする。
[0200] 例えば、(2)に示すように 0. 8V以上の電圧を印加し、急激な電流が流れる状態 とすると、(3)のような電流が流れやすくなる低抵抗の状態になる。この状態も、上部 電極 3106に負の電圧を印加している間は維持される。(3)に示す状態を「負の低抵 抗モード」と呼ぶことにする。
[0201] し力し、上部電極 3106に正の電圧を印加すると、(4)〖こ示すように、正の 0〜0. 2 Vの電圧領域で、電流が流れる低抵抗の状態になる。ここでも、 0カゝら 0. 2Vの間で 正の電圧を印加している間、この状態が維持されるので、(4)に示す状態を「正の低 抵抗モード」と呼ぶことにする。
[0202] さらに、 0. 2V以上の正の電圧を印加すると、 (5)に示すように電流が流れなくなり 、高抵抗な状態に移行する。この状態〖こなると、(6)に示すように、正の 0〜0. 2Vの 電圧領域で電圧を印加している間、電流値が高抵抗の状態が維持される。この(6) に示される状態を、「正の高抵抗モード」と呼ぶことにする。
[0203] 以上より、図 31で示す強誘電体層を用いた素子では、「正の高抵抗モード」、 「正の 低抵抗モード」、「負の高抵抗モード」、「負の低抵抗モード」の見かけ上 4つのモード が安定して存在することになる。詳細に調べると、「正の高抵抗モード」と「負の高抵 抗モード」は、同じ高抵抗の状態を示す「高抵抗モード」であり、「正の低抵抗モード」 と「負の低抵抗モード」は、同じ低抵抗の状態を示す「低抵抗モード」であり、 2つのモ ードが存在していることが判明した。つまり、「高抵抗モード」の状態にあるとき、 -0. 8Vから + 0. 8Vの電圧領域で「高抵抗モード」が維持される。 -0. 8V以上の電圧を 印加することで遷移した「低抵抗モード」の状態にあるときは、 0. 5Vから + 0. 2V の電圧領域で「低抵抗モード」が維持される。これらの 2つの「高抵抗モード」と「低抵 抗モード」とが切り替わることになる。これらは、「負の高抵抗モード」及び「負の低抵 抗モード」の負の抵抗モードについても、同様である。
[0204] また、各「負のモード」の実際の電流値は、 0. 5V印加時に、「負の高抵抗モード 」で 5 X 10— 8 Aであり、「負の低抵抗モード」で— 1 X 10— 5 Aであることから、各々の 比は、 200倍にも達する。このことは、容易なモードの識別を可能にするものである。 発明者らは、印加する電圧の向きと強さにより、強誘電体膜の抵抗値が劇的に変化 することで、上述した現象が発現するものと推定している。
[0205] また、強誘電体層 3104と上部電極 3106の間に備えた絶縁層 3105により、絶縁層 3105の持つバンド構造から、キャリアの制御が可能である。具体的には、例えば、五 酸化タンタルは、バンドギャップは 4. 5eV程度である力 フェルミレベルからのェネル ギー差を見た場合、伝導帯には 1. 2eV程度、価電子帯には 2. 3eVと価電子帯側に ノリアが高いことが知られている。従って、価電子帯のホール (正孔)に対してはバリ ァ性が高いが、伝導帯のエレクトロン (電子)に対してはノリア性が低いと言うことにな る。詳しくは、「ウィルクらのジャーナル'ォブ 'ァプライド'フイジタス、第 87号、 484頁 、 2000年、 (Wilk et. al., J.Appl.Phys.,87,484(2000).」を参考にされたい。
[0206] 上述した特性から、例えば五酸ィ匕タンタル膜を、電極と強誘電体層との間の絶縁層 に用いた場合、電子は流れやすぐ正孔は流れにくいという現象が期待できる。実際 に、図 33に示すように、上部電極 3106に正の電圧を印加したときと、負の電圧を印 カロしたときでは、流れる電流の値が大きく異なっている。このことは、メモリの判別を行 う場合に、信号 ·ノイズ比(SZN比)を向上させ、データの判別を容易にする効果が 非常に大きい。これは、絶縁層 3105を用いた効果である。
[0207] 上述した図 33に示す「低抵抗モード」と「高抵抗モード」のモードをメモリ動作として 応用することで、図 31に示す素子が、不揮発性で非破壊のメモリとして使用できるこ とを見いだした。具体的には、まず、素子の初期化とデータの消去、つまり、データ「o ff」の書き込みは、図 33の(4)又は(5)〖こ示すよう〖こ、上部電極 3106に負の電圧を 印加することで、「低抵抗モード」から「高抵抗モード」にモード変更することにより行 えばよい。
[0208] また、データ「on」の書き込みは、図 33の(2)〖こ示すように、上部電極 3106に負の 電圧を一 0. 8V以上印加して電流が急激に流れるようにすることで行えばよい。この ことで、「高抵抗モード」から「低抵抗モード」にモード変換してデータ「on」の書き込 みが行われる。これらのように、上部電極 3106への電圧印加により、「高抵抗モード」 か「低抵抗モード」にすることによって「off」又は「on」のデータ(状態)を書き込むこと が可能である。
[0209] 一方、以上のようにして書き込まれたデータの読み出しは、上部電極 3106に、 0 . 8〜 + . 8Vの適当な電圧を印加したときの電流値を読み取ることで容易に行うこと ができる。例えば、図 31に示す素子のモード状態力 「off」言い換えると「高抵抗モ ード」である場合、図 33の(1)に示すように—0. 8〜+ 0. 8Vの適当な電圧印加時 に電流が流れ難いことにより判断できる。
[0210] また、図 31に示す素子のモード状態力 「on」言い換えると「低抵抗モード」である 場合、図 33の(2)に示すのように、 0. 5〜+ 0. 2Vの適当な電圧印加時に電流が 急激に流れることにより判断できる。「負の高抵抗モード」と「負の低抵抗モード」、つ まり、「off」と「on」の状態の電流値は、 200倍以上もあることから、「off」と「on」の判 断力 容易に可能である。同様に、正の電圧領域においても、 0〜+ 0. 2Vの電圧範 囲で「on」と「off」の判断が可能である。
[0211] 上述したメモリの読み出しの動作は、図 31に示す素子が「高抵抗モード」力「低抵 抗モード」かを調べるだけで容易に行える。言い換えれば、図 31に示す素子力 上 記 2つのモードを保持できている間は、データが保持されている状態である。さらに、 どちらかのモードかを調べるために、電極に正の電圧を印加しても、保持しているモ ードは変化することなくデータが破壊されてしまうことはない。従って、図 31に示す強 誘電体素子によれば、非破壊の読み出しが可能である。図 31に示す素子は、強誘 電体層 3105力 下部電極層 3103と上部電極 3106との間に印加された電圧により 抵抗値が変化することにより、不揮発メモリ素子として機能するものである。なお、本 素子は、電流を制御するスィッチ素子としても用いることができる。
[0212] 図 31に示す素子を動作させるための電圧は、「負の低抵抗モード」にするための書 き込み時に最大になる力 図 33に示すように、 0. 8V程度であり、非常に消費電力 が小さい。消費電力が小さいと言うことは、デバイスにとって非常に有利になり、例え ば、移動体通信機器,デジタル汎用機器,デジタル撮像機器を始め、ノートタイプの パーソナルコンピュータ,パーソナル'デジタル'アプライアンス (PDA)のみならず、 全ての電子計算機,パーソナルコンピュータ,ワークステーション,オフィスコンビユー タ,大型計算機や、通信ユニット,複合機などのメモリを用いている機器の消費電力 を下げることが可能となる。
[0213] 図 31に示す素子におけるデータ保持される時間について、図 34に示す。上部電 極 3106に正の電圧を印加して図 33に示す「正の高抵抗状態」つまり「高抵抗モード 」にした後に、上部電極 3106〖こ 0. 8V以上の電圧を印加することで、「負の低抵抗 状態」(「低抵抗モード」)、つまり、データ「on」を書き込んだ状態とする。この後、一 定時間ごとに上部電極 3106に— 0. 3Vを印加して、電圧を印加したときに観測され る電流値を観測する。この観察結果が、図 34である。
[0214] 観測された電流は、約 10分が最大となり、この後、緩やかに 1000分まで小さくなつ ている。し力し、この時の電流値は、最大値の 86%であり、データの判別には問題な い値である。また、図 34に示す 10年に相当する 10, 000, 000分に外挿される線よ り、 10年後の電流値は、最大値の 66% (3分の 2)程度に相当し、データの判別は可 能であることが予想される。以上に示したことにより、図 31に示す素子を用いたメモリ によれば、 10年の保持期間を有していることがわかる。
[0215] ところで、上述した本発明の例では、シリコン力もなる基板上の絶縁層、絶縁層上の 下部電極層、下部電極層上の強誘電体層の各々を ECRスパッタ法で形成するよう にした。し力しながら、これら各層の形成方法は、 ECR^パッタ法に限定するもので はない。例えば、シリコン基板の上に形成する絶縁層は、熱酸化法や化学気相法 (C VD法)、また、従来のスパッタ法などで形成しても良い。
[0216] また、下部電極層は、 EB蒸着法、 CVD法、 MBE法、 IBD法などの他の成膜方法 で形成しても良い。また、強誘電体層も、上記で説明した MOD法や従来よりあるス ノッタ法、 PLD法などで形成することができる。ただし、 EC パッタ法を用いること で、平坦で良好な絶縁膜、金属膜、強誘電体膜が容易に得られる。
[0217] また、上述した実施の形態では、各層を形成した後、ー且大気に取り出していたが 、各々の ECR^パッタを実現する処理室を、真空搬送室で連結させた装置を用いる ことで、大気に取り出すことなぐ連続的な処理により各層を形成してもよい。これらの ことにより、処理対象の基板を真空中で搬送できるようになり、水分付着などの外乱 の影響を受け難くなり、膜質と界面の特性の向上につながる。
[0218] 特開 2003— 77911号公報に示されているように、各層を形成した後、形成した層 の表面に ECRプラズマを照射し、特性を改善するようにしてもよい。また、各層を形 成した後に、水素雰囲気中などの適当なガス雰囲気中で、形成した層をァニール( 加熱処理)し、各層の特性を大きく改善するようにしてもよい。
[0219] ところで、素子を並べて複数のデータを同時にメモリ蓄積することを「集積」と呼び、 集積する度合いを集積度と呼ぶが、図 31の構造は、非常に単純であり、従来のメモ リセルに比較して、集積度を格段に上げることが可能となる。 MOSFETを基本技術 とした DRAMや SRAM、フラッシュメモリなどでは、ゲート,ソース, ドレインの領域を 確保する必要があるため、近年では、集積限界が指摘され始めている。これに対し、 図 31に示す素子によれば、単純な構造を用いることで、現在の集積限界に捕らわれ ずに集積度を高めることが可能となる。 [0220] また、以上の実施の形態では、印加した電圧は直流であった力 適当な幅と強さの パルス電圧を印加しても同様の効果は得られる。本発明の基本的な思想は、図 31〖こ 示すように、強誘電体層に絶縁層を接して配置し、これらを 2つの電極で挾むようにし たところにある。このような構成とすることで、 2つの電極間に所定の電圧 (DC,パル ス)を印カロして強誘電体層の抵抗値を変化させ、安定な高抵抗モードと低抵抗モー ドを切り替え、結果としてメモリ機能が実現可能となる。
[0221] 従って、例えば、図 35Aに示すように、絶縁性基板 3101aを用い、積層された下部 電極層 3103a, 3103bを用!ヽるよう【こしてもよ!ヽ。また、また、図 35B【こ示すよう【こ、 絶縁性基板 310 laを用い、下部電極層 3103にコンタクト電極 3103cを設けるように してもよい。また、図 35Cに示すように、絶縁性基板 3101aを用い、積層された上部 電極 3106a, 3106bを用いるようにしてもよい。さらに、図 35Dに示すように、積層さ れた下咅電極層 3103a, 3103bと積層された上咅電極 3106a, 3106bとを用!/、るよ うにしてもよい。
[0222] また、図 36に示すように、ガラスや石英など力もなる絶縁性の基板 3601を用いるよ うにしてもよい。この場合、図 37に示すように、基板 3601に貫通孔形成してここにプ ラグを設け、基板 3601の裏面(下部電極層 3103の形成面の反対側)より電気的コ ンタクトをとるようにしてもよい。この構造とすることによって、加工しやすいガラス基板 などへの適用が可能となる。また、透光性を有する基板を用いることで、ディスプレイ への応用が可能となる。
[0223] さらに、図 38Aに示すように、金属などの導電性を有する基板 3801を用いるように してもよい。また、図 38Bに示すように、基板 3801の上に接して下部電極層 3802を 備え、この上に強誘電体層 3803,絶縁層 3804,上咅電極 3805を設けるようにして もよい。図 38Bに示す構成とした場合、基板 3801と上部電極 3805との間に所定の 電気信号を印加することが可能となる。
[0224] また、図 38Cに示すように、金属板 1201の上に、強誘電体層 1202,絶縁層 1203 ,上部電極 1204を設けるようにしてもよい。この構成とした場合、金属板 1201が、下 部電極層となる。図 38Cに示す構造にすることによって、熱伝導性のよい金属板 120 1の上に各構成要素が形成されているので、より高い冷却効果が得られ、素子の安 定動作が期待できる。
[0225] なお、強誘電体層は、膜厚が厚くなるほど電流が流れ難くなり抵抗が大きくなる。抵 抗値の変化を利用してメモリを実現する場合、オン状態とオフ状態の各々の抵抗値 が問題となる。例えば、強誘電体層の膜厚が厚くなると、オン状態の抵抗値が大きく なり、 SZN比がとり難くなり、メモリの状態を判断し難くなる。一方、強誘電体層の膜 厚が薄くなり、リーク電流が支配的になると、メモリ情報が保持し難くなると共に、オフ 状態の抵抗値が大きくなり、 SZN比がとり難くなる。
[0226] 従って、強誘電体層は、適宜最適な厚さとした方がよい。例えば、リーク電流の問 題を考慮すれば、強誘電体層は、最低 lOnmの膜厚があればよい。また、オン状態 における抵抗値を考慮すれば、強誘電体層は 200nmより薄くした方がよい。発明者 らの実験の結果、強誘電体層の厚さが 30〜: LOOnmであれば、メモリの動作が確認さ れ、最も良好な状態は、強誘電体層の厚さを 50nmとしたときに得られた。
[0227] 同様に、強誘電体層の上の絶縁層においても、より好適な膜厚が存在する。この膜 厚について、 A1ターゲット, Siターゲット, Taターゲットを用いた ECRスパッタ法により 、各々 Al O膜, SiO膜, Ta O膜をシリコン基板の上に形成した場合を例に説明す
2 3 2 2 3
る。上記各膜が、所定の膜厚に形成された状態とし、各々の膜の上に A1カゝらなる上 部電極が形成された状態とし、シリコン基板と上部電極との間に電圧を印加したとき の電流電圧測定を行!ヽ、各々の薄膜における IVで観察される電流密度を観察す る。これらの電流密度の結果は、図 39に示すようになる。
[0228] 図 39に示すように、絶縁層を構成する材料により電流密度が異なり、膜厚が薄いほ どリーク電流が多く流れて電流密度が大きくなる。一方、膜厚が厚くなると、電流密度 は小さくなる。これは、膜厚があまり薄いと、絶縁層としての特性が得られず、膜厚が 厚い場合、強誘電体膜に印加される電圧が小さくなり、 SZN比がとりに《なり、メモ リの状態が判断しに《なることを示している。従って、絶縁層は、強誘電体層との組 み合わせにおいて、適宜最適な厚さとした方がよい。
[0229] 例えば、リーク電流の問題を考慮すれば、 Al O膜, SiO膜を用いる場合は、膜厚
2 3 2
力^〜 3nm程度がよい。 Ta O膜の場合は、 3nm以上の膜厚があればよい。一方、
2 3
抵抗値の大きさの問題を考慮すれば、絶縁層は 20nmより厚くした方がよい。発明者 らの実験の結果、 SiOと Ta Oから構成された絶縁層の場合、膜厚が 3〜5nmであ
2 2 3
れば、前述したメモリの動作が確認された。
[0230] 上述では、 1つの強誘電体素子を例にして説明した力 以降に説明するように、複 数の強誘電体素子を配列させて集積させるようにしてもよい。例えば、図 40Aに示す ように、絶縁性基板 4001の上に、共通となる下部電極層 4002,強誘電体層 4003, 絶縁層 4004を形成し、絶縁層 4004の上に、各々所定距離離間して複数の上部電 極 4005を形成すればよ ヽ。複数の上部電極 4005に対応して複数の強誘電体素子 が配列されたことになる。
[0231] 強誘電体や絶縁膜は、金属などの導電体に比べて導電性が非常に小さいので、 上述したように共通に使用することができる。この場合、加工プロセスを省くことができ るので、生産性の向上が図れ、工業的に利点が大きい。また、複数の上部電極 400 5に対応する強誘電体素子間の距離を導電性などを考慮して配置することで、安定 した動作が期待できる。
[0232] また、図 40Bに示すように、絶縁性基板 4001の上に、共通となる下部電極層 4002 を形成し、下部電極層 4002の上に、強誘電体層 4013,絶縁層 4014,上部電極 40 15からなる複数の素子を配列させるようにしてもよい。例えば、形成した強誘電体膜 を、 RIE法や ICPエッチング、また ECRエッチングなど加工法を用いることで、個々の 強誘電体層 4013が形成できる。このように分離して構成することで、素子間の距離 をより短くすることが可能となり、集積度をさらに向上させることができる。
[0233] さらに、図 40Cに示すように、各々の素子を構成している強誘電体層 4013,絶縁 層 4014の側面を、絶縁側壁 4016で覆うようにしてもよい。また、図 40Dに示すように 、各素子に渡って共通の絶縁層 4024を形成し、絶縁層 4024により強誘電体層 401 3の側面を覆うようにしてもよい。この場合、絶縁層 4024の一部で、図 40Bに示す絶 縁層 4014が構成されていることになる。
[0234] また、図 40 (e)に示すように、各素子に対応して複数の強誘電体層 4013を形成し 、この上の絶縁層 4014は共通とし、各々分離している複数の強誘電体層 4013の側 部を充填するように、絶縁層 4026を形成するようにしてもよい。これらのように、素子 毎に分離して形成した複数の強誘電体層 4013の間を、絶縁体で覆うようにすること で、各素子間のリーク電流を減らして強誘電体素子の安定性を高めることができる。
[0235] また、図 31に示す素子においても、図 13に示したように、複数の素子を X方向に n 個、 Y方向に m個配列し、 X方向バスを下部電極層に接続し、 Y方向バスを上部電極 に接続し、 X方向バス及び Y方向バスの各々に選択信号のスィッチ機能を備えたプ 口セッサユニットを接続することで、各素子にランダムにアクセスが可能なメモリが実 現できる。
[0236] ところで、強誘電体層 3104における抵抗値の変化は、電流により制御することも可 能である。強誘電体層 3104に所定の電圧が印加された状態として一定の電流を流 した直後に、上部電極 3106と下部電極層 3103との間に所定の電圧 (例えば— 0. 8 V)を印加すると、図 41に示すように電流値が変化する。なお、図 41の縦軸は、上記 電極間に電流検出用の電圧を印加したときに測定される電流を示している。
[0237] 例えば、上記電極間に、 1 X 10— 9 Aから 1 X 10— 6 A未満の電流を流した後は電流値 力 S小さく高抵抗状態である。これに対し、上記電極間に 1 X 10—6Α以上の電流を流し た後は、流れる電流値が大きくなり(例えば 10 Α)低抵抗状態へと変化する。このこ とから明らかなように、強誘電体層 3104における抵抗変化は、強誘電体層 3104に 流れた電流によっても変化し、高抵抗状態と低抵抗状態との 2つの抵抗値が存在す る。従って、図 31に示す素子は、電圧により駆動することが可能であるとともに、電流 により駆動することも可能である。
[0238] また、パルス電圧により、強誘電体層 3104の抵抗変化を制御できる。例えば、初期 状態では強誘電体層 3104が高抵抗状態の図 31に示す素子に対し、図 42に示すよ うに、まず、上部電極 3106と下部電極層 3103との間に、負のパルス電圧(例えば 4Vで s)を 1回印加すると、低抵抗状態となる。この後に、上記電極間に、正の パルス電圧 (例えば + 5Vで 10 μ s)を複数回 (例えば 4回)印加すると高抵抗状態と なる。
[0239] 上述した各パルス電圧の印加を繰り返し、各パルス電圧印加の後に測定した電流 値は、図 43に示すように変化する。図 43に示すように、初期状態では高抵抗状態で あるが、負のパルス電圧を印加した後は、低抵抗状態に移行する。ついで、この状態 に、正のノ ルス電圧を複数回印加することで、高抵抗状態となり、正電圧パルス及び 負電圧パルスを印加することで、強誘電体層 3104の抵抗値が変化する。従って、例 えば、正電圧パルス及び負電圧パルスを印加することで、上記素子のメモリ状態を、 「on」の状態から「off」の状態へ変化させ、また、「off」の状態から「on」の状態へ変 化させるメモリ動作が可能である。
[0240] 強誘電体層 3104の抵抗状態を変化させることができる電圧パルスの電圧と時間は 、状況により変化させることができる。例えば、 + 5Vで 10 /z s, 4回の電圧ノ ルスを印 カロして高抵抗状態とした後、 4Vで: sの短いパルスを 10回印加することで、低抵 抗状態へと変化させることができる。また、この状態に、 + 5Vで 1 sの短いパルスを 100回印加することで、高抵抗状態へと変化させることも可能である。さらに、この状 態に、—3Vと低い電圧として 100 sのノ ルスを 100回印加することで、低抵抗状態 へと変化させることも可能である。
[0241] 次に、図 31に示す素子を電流を制御するスィッチ素子として用いる場合について 説明する。図 44Aに示す素子において、上部電極 3106と下部電極層 3103との間 に流れる電流は、図 44B〖こ示すよう〖こ、強誘電体層 3104が高抵抗であればオフ状 態となり、強誘電体層 3104が低抵抗状態であればオン状態となる。例えば、図 45の シーケンスに示すように、上部電極 3106と下部電極層 3103との間に負のパルスと 正のパルスとを交互に印加することで、上部電極 3106と下部電極層 3103との間に 流れる電流のオン状態とオフ状態とを、交互に切り替えることができる。
[0242] また、本実施の形態における強誘電体層 3104を用いた図 31に示す素子によれば 、下部電極層 3103と上部電極 3106との間に直流電圧を印加したときの電流 電圧 特性が、図 46に示すように、正側の印加電圧を変化させることで異なる低抵抗状態 に変化する。これら各々の状態における読み出し電圧における電流値に対応し、 3つ の状態(3値)のメモリが実現できる。この場合、例えば、読み出し電圧を 0. 5V程度と することで、 3値のメモリが実現できる。なお、各状態に遷移させる前には、 2Vの電 圧を下部電極層 3103印加して高抵抗状態に戻している(リセット)。
[0243] なお、図 31に例示した素子においても、図 1Aに例示した素子と同様に、 + 15V程 度の高い電圧を印加することで、図 33に示すような、特徴的な電流電圧特性が発現 されるようになる。このように、図 31に例示した素子においても、電気的初期化 (EO) 処理により、前述した各特性を示すようになり、メモリ素子などを実現することが可能と なる。
[0244] また、上述した EO処理は、 10Vを超える電圧を素子に印加することになるため、例 えば、半導体素子と集積して図 40に示すような状態に複数の素子を形成している状 態で EO処理をする場合、半導体素子を破壊する場合がある。従って、この場合にお いても、半導体素子の破壊を抑制するために、前述したように、 ECRプラズマを用い て EO処理を行うようにしてもよい。例えば、図 15に示す素子において、下部電極層 4 002に接続する配線の一端をプラズマ流の周辺部に晒し、上部電極 4005がプラズ マ流中の中央部に晒される状態とすれば、プラズマ流中の分布力 発生する電位差 で、これら 2つの電極間に EO処理に必要な電圧を印加することが可能となる。例え ば、 Arを主成分とするプラズマを発生させて素子に照射することで、 1秒から数十秒 t 、う短 、時間で EO処理をすることが可能である。
[0245] 次に、本発明の他の実施の形態について図を参照して説明する。図 47は、本発明 の実施の形態における他の 2安定抵抗値取得装置の構成例を模式的に示す断面図 である。以下では、強誘電特性を示す金属酸化物からなる強誘電体層 4705よりなる 強誘電体素子を例に説明する。図 47に示す素子は、例えば、単結晶シリコン力 な る基板 4701の上に絶縁層 4702,下部電極層 4703,絶縁層 4704,強誘電体層 47 05,上部電極 4706を備えるようにしたものである。基板 4701は、半導体,絶縁体, 金属などの導電性材料の 、ずれから構成されて 、てもよ 、。基板 4701が絶縁材料 力も構成されている場合、絶縁層 4702はなくてもよい。また、基板 4701が導電性材 料力も構成されている場合、絶縁層 4702,下部電極層 4703はなくてもよぐこの場 合、導電性材料カゝら構成された基板 4701が、下部電極となる。
[0246] 下部電極層 4703,上部電極 4706は、例えば、白金(Pt)、ルテニウム (Ru)、金( Au)、銀 (Ag)などの貴金属を含む遷移金属の金属カゝら構成されていればよい。また 、下部電極層 4703,上部電極 4706は、窒化チタン (TiN)、窒化ハフニウム(HfN) 、ルテニウム酸ストロンチウム(SrRuO )、酸化亜鉛(ZnO)、鉛酸スズ (ITO)、フッ化
2
ランタン (LaF )などの遷移金属の窒化物や酸ィ匕物やフッ化物等の化合物、さらに、
3
これらを積層した複合膜であってもよ 、。 [0247] 絶縁層 4704は、二酸ィ匕シリコン,シリコン酸窒化膜,アルミナ,又は、リチウム,ベリ リウム,マグネシウム,カルシウムなどの軽金属力 構成された LiNbOなどの酸化物
3
、 LiCaAlF、 LiSrAlF、 LiYF、 LiLuF、 KMgFなどのフッ化物から構成されてい
6 6 4 4 3
ればよい。また、絶縁層 4704は、スカンジウム,チタン,ストロンチウム,イットリウム, ジルコニウム,ハフニウム,タンタル,及び、ランタン系列を含む遷移金属の酸化物及 び窒化物、又は、以上の元素を含むシリケート (金属、シリコン、酸素の三元化合物) 、及び、これらの元素を含むアルミネート (金属、アルミニウム、酸素の三元化合物)、 さらに、以上の元素を 2以上含む酸ィ匕物及び窒化物など力 構成されて 、ればよ ヽ
[0248] 強誘電体層 4705は、前述した強誘電体層 104及び強誘電体層 3104と同様であ る。なお、強誘電体層 4705は、少なくとも 2つの金属から構成された金属酸ィ匕物から なる一般に強誘電特性を示す材料から構成されていることを示しており、前述したよ うに、膜厚条件などにより強誘電特性を示さな ヽ状態も含んで 、る。
[0249] 図 47に示した素子の具体例について説明すると、例えば、下部電極層 4703は、 膜厚 10nmのルテニウム膜であり、絶縁層 4704は、五酸ィ匕タンタルと二酸ィ匕シリコン との膜厚が 5nmの多層膜であり、強誘電体層 4705は、膜厚 40nmの Bi Ti O 膜で
4 3 12 あり、上部電極 4706は、金力も構成されたものである。なお、前述したように、基板 4 701及び絶縁層 4702の構成は、これに限るものではなぐ電気特性に影響を及ぼさ なければ、他の材料も適当に選択できる。
[0250] 以上で説明した、絶縁層 4702,下部電極層 4703,絶縁層 4704,強誘電体層 47 05,上部電極 4706は、具体的な製法は後述する力 図 5に示すような ECRスパッタ 装置により、金属ターゲットや焼結ターゲットを、アルゴンガス,酸素ガス,窒素ガスか らなる ECRプラズマ内でスパッタリングして形成すればよい。
[0251] 次に、図 47にした素子の製造方法例について、図 48を用いて説明する。まず、図 48Aに示すように、主表面が面方位(100)で抵抗率が 1〜2 Ω— cmの p形のシリコン カゝらなる基板 4701を用意し、基板 4701の表面を硫酸と過酸化水素水の混合液と純 水と希フッ化水素水とにより洗浄し、このあと乾燥させる。
[0252] ついで、洗浄'乾燥した基板 4701の上に、絶縁層 4702が形成された状態とする。 絶縁層 4702の形成では、上述した ECRスパッタ装置を用い、処理室 501内の基板 ホルダ 504〖こ基板 4701を固定し、ターゲット 505として純シリコン(Si)を用い、プラズ マガスとしてアルゴン (Ar)と酸素ガスを用いた ECRスパッタ法により、基板 4701の 上に、表面を覆う程度に Si— O分子によるメタルモードの絶縁層 4702を形成する。
[0253] 図 5に示す ECRスパッタ法において、まず、プラズマ生成室 502内を 10— 5Pa台の高 真空状態に真空排気した後、プラズマ生成室 502内に、不活性ガス導入部 511より 、例えば希ガスである Arガスを流量 20sccm程度で導入し、プラズマ生成室 502の内 部を例えば 10—2〜10—3Pa台の圧力に設定する。また、プラズマ生成室 502には、磁 気コイル 510にコイル電流を例えば 28 Aを供給することで電子サイクロトロン共鳴条 件の磁場を与える。例えば、プラズマ生成室 502内の磁束密度が 87. 5mT (テスラ) 程度の状態とする。
[0254] 加えて、図示していないマイクロ波発生部より、例えば 2. 45GHzのマイクロ波(例 えば 500W)を供給し、これを導波管 508、石英窓 507、真空導波管 506を介してプ ラズマ生成室 502の内部に導入し、このマイクロ波の導入により、プラズマ生成室 50 2に Arのプラズマが生成された状態とする。なお、 sccmは流量の単位あり、 0°C ' l気 圧の流体が 1分間に lcm3流れることを示す。
[0255] 上述したことにより生成されたプラズマは、磁気コイル 510の発散磁場によりプラズ マ生成室 502より処理室 501の側に放出される。また、プラズマ生成室 502の出口に 配置されたターゲット 505に、高周波電源 522より高周波電力(例えば 500W)を供 給する。このことにより、ターゲット 505に Ar粒子が衝突してスパッタリング現象が起こ り、 Si粒子がターゲット 505より飛び出す。
[0256] この状態とされた後、ターゲット 505と基板 4701との間の図示しないシャッターを開 放すると、ターゲット 505より飛び出した Si粒子は、プラズマ生成室 502より放出され たプラズマ、及び、反応性ガス導入部 512より導入されてプラズマにより活性化され た酸素ガスと共に基板 4701の表面に到達し、活性化された酸素により酸化され二酸 化シリコンとなる。
[0257] 以上のことにより、基板 4701上に二酸ィ匕シリコン力もなる例えば lOOnm程度の膜 厚の絶縁層 4702が形成された状態とすることができる(図 48A)。所定の膜厚まで形 成した後、前述したシャッターを閉じた状態としてスパッタされた原料が基板 4701に 到達しないようにすることで、成膜を停止する。この後、マイクロ波電力の供給を停止 するなどによりプラズマ照射を停止し、各ガスの供給を停止し、基板温度が所定の値 にまで低下しまた処理室 501の内部圧力を上昇させて大気圧程度とした後、処理室 501の内部より成膜された基板 4701を搬出する。
[0258] なお、絶縁層 4702は、この後に形成する下部電極層 4703と上部電極 4706に電 圧を印加した時に、基板 4701に電圧が洩れて、所望の電気的特性に影響すること がないように絶縁を図るものでる。例えば、シリコン基板の表面を熱酸化法により酸化 することで形成した酸ィ匕シリコン膜を絶縁層 4702として用いるようにしてもょ 、。絶縁 層 4702は、絶縁性が保てればよぐ酸化シリコン以外の他の絶縁材料から構成して もよぐまた、絶縁層 4702の膜厚は、 lOOnmに限らず、これより薄くてもよく厚くても よい。絶縁層 4702は、上述した ECR^パッタによる膜の形成では、基板 4701に対 して加熱はして 、な 、が、基板 4701を加熱しながら膜の形成を行ってもょ 、。
[0259] 以上のようにして絶縁層 4702を形成した後、基板 4701を装置内より大気中に搬 出し、ついで、ターゲット 505として純ルテニウム(Ru)を用いた図 5同様の ECR^パ ッタ装置の基板ホルダ 504に、基板 4701を固定する。引き続いて、プラズマガスとし てアルゴン (Ar)とキセノン (Xe)を用いた ECR^パッタ法により、図 48Bに示すように 、絶縁層 4702の上に、表面を覆う程度に Ru膜を形成することで、下部電極層 4703 が形成された状態とする。
[0260] Ru膜の形成について詳述すると、 Ruからなるターゲット 505を用いた図 5に示す E CRスパッタ装置において、まず、基板 4701を例えば 400°C程度に加熱し、ついで、 プラズマ生成室 502内に、不活性ガス導入部 511より、例えば流量 7sccmで希ガスで ある Arガスを導入し、例えば流量 5sccmで Xeガスを導入し、プラズマ生成室 502の 内部を、例えば 10—2〜10—3Pa台の圧力に設定する。また、プラズマ生成室 502には 、磁気コイル 510にコイル電流を例えば 26Aを供給することで電子サイクロトロン共鳴 条件の磁場を与える。
[0261] 加えて、図示していないマイクロ波発生部より、例えば 2. 45GHzのマイクロ波(例 えば 500W)を供給し、これを導波管 508、石英窓 507、真空導波管 506を介してプ ラズマ生成室 502内に導入し、この上記マイクロ波の導入により、プラズマ生成室 50 2に Arと Xeのプラズマが生成した状態とする。生成されたプラズマは、磁気コイル 51 0の発散磁場によりプラズマ生成室 502より処理室 501側に放出される。また、プラズ マ生成室 502の出口に配置されたターゲット 505に、高周波電極供給部より高周波 電力(例えば 500W)を供給する。このことにより、ターゲット 505に Ar粒子が衝突して スパッタリング現象が起こり、 Ru粒子がターゲット 505より飛び出す。ターゲット 505よ り飛び出した Ru粒子は、基板 4701の絶縁層 4702表面に到達し堆積する。
[0262] 以上のことにより、絶縁層 4702の上に、例えば lOnm程度の膜厚の下部電極層 47 03が形成された状態が得られる(図 48B)。下部電極層 4703は、この後に形成する 上部電極 4706との間に電圧を印加した時に、強誘電体層 4705と絶縁層 4704に電 圧が印加できるようにするものである。従って、導電性が持てればルテニウム以外か ら下部電極層 4703を構成してもよぐまた、膜厚も lOnmに限るものではなぐこれよ り厚くてちょく薄くてちょい。
[0263] ところで、上述したように ECR^パッタ法により Ruの膜を形成するときに、基板 470 1を 400°Cに加熱した力 加熱しなくても良い。ただし、加熱を行わない場合、ルテ- ゥムの二酸ィ匕シリコンへの密着性が低下するため、剥がれが生じる恐れがあり、これ を防ぐために、基板を加熱して膜を形成する方が望ましい。以上のようにして所望の 膜厚に Ruを堆積した後、シャッターを閉じることなどにより成膜を停止し、マイクロ波 電力の供給を停止してプラズマ照射を停止するなどの終了処理をすれば、基板 470 1が搬出可能となる。
[0264] 以上のようにして下部電極層 4703を形成した後、基板 4701を装置内より大気中 に搬出し、ついで、ターゲット 505として純タンタル (Ta)を用いた図 5同様の ECR^ パッタ装置の基板ホルダ 504に、基板 4701を固定する。引き続いて、プラズマガスと してアルゴン (Ar)と酸素ガスとを用いた ECR^パッタ法により、図 48Cに示すように、 下部電極層 4703の上に、表面を覆う程度に、絶縁層 4704が形成された状態とする 。以下に説明するように、 Ta— O分子によるメタルモード膜を形成し、絶縁層 4704と する。
[0265] Ta— O分子によるメタルモード膜の形成について詳述すると、タンタルからなるター ゲット 505を用いた図 5に示す ECRスパッタ装置において、まず、プラズマ生成室 50 2内に、不活性ガス導入部 511より、例えば流量 25sccmで希ガスである Arガスを導 入し、例えば 10—2〜10—3Pa台の圧力に設定する。また、プラズマ生成室 502には、磁 気コイル 510にコイル電流を例えば 27Aを供給することで電子サイクロトロン共鳴条 件の磁場を与える。
[0266] 加えて、図示していないマイクロ波発生部より、例えば 2. 45GHzのマイクロ波(例 えば 500W)を供給し、これを導波管 508、石英窓 507、真空導波管 506を介してプ ラズマ生成室 502内に導入し、このマイクロ波の導入により、プラズマ生成室 502に A rのプラズマが生成された状態とする。生成されたプラズマは、磁気コイル 510の発散 磁場によりプラズマ生成室 502より処理室 501の側に放出される。また、プラズマ生 成室 502の出口に配置されたターゲット 505に、高周波電極供給部より高周波電力( 例えば 500W)を供給する。このことにより、ターゲット 505に Ar粒子が衝突してスパ ッタリング現象を起こし、 Ta粒子がターゲット 505より飛び出す。
[0267] ターゲット 505より飛び出した Ta粒子は、プラズマ生成室 502より放出されたプラズ マ、及び反応性ガス導入部 512より導入されてプラズマにより活性ィ匕された酸素ガス と共に基板 4701の下部電極層 4703表面に到達し、活性化された酸素により酸化さ れて五酸ィ匕タンタルとなる。
[0268] 以上のことにより、まず、下部電極層 4703の上に五酸ィ匕タンタル膜を形成する。続 いて、図 48Aを用いて説明した二酸ィ匕シリコンの堆積と同様に、純シリコン力もなるタ 一ゲット 505を用いた ECRスパッタ法により、上記五酸化タンタル膜の上に二酸化シ リコン膜が形成された状態とする。上述した五酸ィ匕タンタル膜と二酸ィ匕シリコン膜の形 成工程を繰り返し、五酸ィ匕タンタル膜と二酸ィ匕シリコン膜との多層膜を例えば、 5nm 程度形成することで、絶縁層 4704が得られる(図 48D)。
[0269] なお、五酸ィ匕タンタル膜と二酸ィ匕シリコン膜からなる絶縁層 4704は、強誘電体層 4 705に電圧を印加した時に、強誘電体膜に印加される電圧を制御するために用いる 。従って、強誘電体層 4705に印加される電圧を制御することができれば、五酸化タ ンタル膜と二酸ィ匕シリコン膜の多層構造以外力も絶縁層 4704を構成してもよぐ単 層力 構成してもよい。また、膜厚も、 5nmに限るものではない。なお、上述した ECR スパッタ法では、基板 4701に対して加熱はしていないが、加熱しても良い。
[0270] 以上のようにして絶縁層 4704を形成した後、基板 4701を装置内より大気中に搬 出し、ついで、ターゲット 505として Biと Tiの割合が 4 : 3の焼結体 1—1 —0)を用 いた図 5同様の ECRスパッタ装置の基板ホルダ 504に、基板 4701を固定する。引き 続いて、プラズマガスとしてアルゴン (Ar)と酸素ガスとを用いた ECRスパッタ法により 、図 48D〖こ示すよう〖こ、絶縁層 4704の上に、表面を覆う程度に、強誘電体層 4705 が形成された状態とする。
[0271] 強誘電体層 4705の形成について詳述すると、 Bi—Ti—Oからなるターゲット 505 を用いた図 5に示す ECR^パッタ装置において、まず、基板 4701力 S300〜700°Cに 加熱された状態とし、ついで、プラズマ生成室 502内に、不活性ガス導入部 511より 、例えば流量 20sccmで希ガスである Arガスを導入し、例えば 10— 2〜10— 3Pa台の圧 力に設定する。また、プラズマ生成室 502には、磁気コイル 510にコイル電流を例え ば 27Aを供給することで電子サイクロトロン共鳴条件の磁場を与える。
[0272] 加えて、図示していないマイクロ波発生部より、例えば 2. 45GHzのマイクロ波(例 えば 500W)を供給し、これを導波管 508、石英窓 507、真空導波管 506を介してプ ラズマ生成室 502内に導入し、このマイクロ波の導入により、プラズマ生成室 502に プラズマが生成された状態とする。生成されたプラズマは、磁気コイル 510の発散磁 場によりプラズマ生成室 502より処理室 501側に放出される。また、プラズマ生成室 5 02の出口に配置されたターゲット 505に、高周波電極供給部より高周波電力(例え ば 500W)を供給する。このことにより、ターゲット 505に Ar粒子が衝突してスパッタリ ング現象を起こし、 Bi粒子と Ti粒子がターゲット 505より飛び出す。
[0273] ターゲット 505より飛び出した Bi粒子と Ti粒子は、プラズマ生成室 502より放出され たプラズマ、及び、反応性ガス導入部 512より導入されてプラズマにより活性ィ匕した 酸素ガスと共に、絶縁層 4704の表面に到達し、活性化された酸素により酸化される 。酸素(O )ガスは、反応性ガス導入部 512より例えば流量 lsccm程度で導入されれ
2
ばよい。ターゲット 505は焼結体であり、酸素が含まれるが、酸素を供給することによ り膜中の酸素不足を防ぐことができる。
[0274] 以上に説明した ECRスパッタ法による膜の形成で、例えば、膜厚 40nm程度の強 誘電体層 4705が形成された状態が得られる(図 48D)。この後、前述と同様にするこ とで終了処理をし、基板が搬出可能な状態とする。なお、形成した強誘電体層 4705 に、不活性ガスと反応性ガスの ECRプラズマを照射し、膜質を改善するようにしても よい。反応性ガスとしては、酸素ガスに限らず、窒素ガス,フッ素ガス,水素ガスを用 いることができる。また、この膜質の改善は、絶縁層 4702や絶縁層 4704の形成にも 適用可能である。
[0275] 次に、図 48E〖こ示すよう〖こ、強誘電体層 4705の上に、所定の面積の Auからなる 上部電極 4706が形成された状態とすることで、強誘電体力もなる層を用いた素子が 得られる。上部電極 4706は、よく知られたリフトオフ法と抵抗加熱真空蒸着法による 金の堆積とにより形成できる。なお、上部電極 4706は、例えば、 Ru、 Pt、 TiNなどの 他の金属材料や導電性材料を用いるようにしてもよい。なお、 Ptを用いた場合、密着 性が悪く剥離する可能性があるので、加熱による成膜を行うことや、 Ti Pt Auなど の剥離し難 、構造とし、フォトリソグラフィーゃリフトオフ処理などのパターユング処理 をして所定の面積を持つ電極として形成する必要がある。
[0276] ここで、本実施の形態によれば、絶縁層 4704が形成されている状態で、この上に 強誘電体層 4705を形成するようにした。この結果、上述した ECRスパッタ法による強 誘電体層 4705の形成において、下層の金属膜の表面や強誘電体膜の表面のモフ ォロジを劣化させることなぐ強誘電体膜が形成できる。例えば、下層が金属材料など のように酸ィ匕される状態であると、上述した強誘電体層 4705の形成では、下層の表 面が部分的に酸化され、モフォロジが劣化する場合がある。これに対し、本実施の形 態によれば、下層の表面のモフォロジがよい状態で、強誘電体層 4705が形成でき、 より品質の高い強誘電体層 4705が得られる。
[0277] 次に、図 47に示す素子の特性について説明する。この特性調査は、下部電極層 4 703と上部電極 4706との間に電圧を印加することで行う。下部電極層 4703と上部 電極 4706との間に電源により電圧を印加し、電圧を印加したときの電流を電流計に より観測すると、図 49に示す結果が得られた。図 49では、縦軸が、電流値を面積で 除した電流密度として示している。以下、図 49を説明し、あわせて本発明のメモリ動 作原理を説明する。ただし、ここで説明する電圧値や電流値は、実際の素子で観測 されたものを例としている。従って、本現象は、以下に示す数値に限るものではない。 実際に素子に用いる膜の材料や膜厚、及び他の条件により、他の数値が観測される ことがある。
[0278] まず、上部電極 4706に正の電圧を印加すると、図 49中の(1)〖こ示すように、 0〜1 . OVでは流れる電流は非常に少ない。しかし、(2)に示すように、 1. IVを超えると急 に正の電流が流れる。実際には、 0. 1 A/cm2を超える電流も流れている力 測定器 を保護するためにこれ以上電流を流さないようにしているので、観測されていない。こ こで、(1)に示す 0〜1. OVの領域で、(2)に示すような電流が大きく流れないように すると、高抵抗の状態が保持 (維持)される。
[0279] 続いて、再び上部電極 4706に正の電圧を印加すると、 (3)〖こ示すよう〖こ、 0. 8V程 度で 0. lAZcm2以上の正の電流が流れる軌跡を示す。さらに続いて、上部電極 47 06に正の電圧を印加すると、やはり(3)に示すように 0. 8V程度で 0. lAZcm2以上 の電流が流れる。
[0280] しかし、今度は、上部電極 4706に負の電圧を印加すると、(4)に示すように、—0.
2V程度まで負の電流が流れ、最大— 1. 5 X 10—2AZcm2になる。ここで、電圧の絶 対値を小さくしていくと、(4)に示す軌跡を通る。
[0281] 再び、 0. 2V迄の負の電圧を印加すると、(4)に示すような軌跡を通る。この後、
(5)に示すように、流れる電流値が減少して負の電流が流れなくなる。続いて、上部 電極 4706に負の電圧を印加すると(6)に示すように、ほとんど電流が流れない軌跡 を示すようになる。この後、電圧の絶対値を小さくしていっても、(6)に示すようにほと んど電流が流れない。さらに、続いて上部電極 4706に正の電圧を印加すると、 (1) に示すようにように 0〜1. OV程度まで、ほとんど電流値が流れない。
[0282] 従って、(2)のように急激に電流が流れないように上部電極 4706に 1. IV以上の 電圧を印加しなければ、(1)のような電流が流れない高抵抗の状態を維持することに なる。 (1)に示す状態を「正の高抵抗モード」と呼ぶことにする。
[0283] 例えば、(2)に示すように 1. IV以上の電圧を印加し、急激な電流が流れる状態と すると、(3)のような電流が流れやすくなる低抵抗の状態になる。この状態も、上部電 極 4706に正の電圧を印加している間は維持される。(3)に示す状態を「正の低抵抗 モード」と呼ぶことにする。
[0284] し力し、上部電極 4706に負の電圧を印加すると、(4)〖こ示すように、負の 0〜一 0.
2Vの電圧領域で、初期に少量の電流が流れる低抵抗の状態になる。ここでも、 0か ら 0. 2Vの間で負の電圧を印加している間、この状態が維持されるので、(4)に示 す状態を「負の低抵抗モード」と呼ぶことにする。
[0285] さらに、 0. 2V以上の負の電圧を印加すると、(5)に示すように電流が流れなくな り、高抵抗な状態に移行する。この状態になると、(6)に示すように、負の 0〜一 1. 0 Vの電圧領域で電圧を印加している間、電流値が高抵抗の状態が維持される。この( 6)に示される状態を、「負の高抵抗モード」と呼ぶことにする。
[0286] 以上より、図 47で示す強誘電体層を用いた素子では、「正の高抵抗モード」、「正の 低抵抗モード」、「負の高抵抗モード」、「負の低抵抗モード」の見かけ上 4つのモード が安定して存在することになる。詳細に調べると、「正の高抵抗モード」と「負の高抵 抗モード」は、同じ高抵抗の状態を示す「高抵抗モード」であり、「正の低抵抗モード」 と「負の低抵抗モード」は、同じ低抵抗の状態を示す「低抵抗モード」であり、 2つのモ ードが存在していことが判明した。つまり、「高抵抗モード」の状態にあるとき、 - 1. 5 Vから + 1. OVの電圧領域で「高抵抗モード」が維持される。 + 1. OV以上の電圧を 印加することで遷移した「低抵抗モード」の状態にあるときは、 0. 2Vから + 0. 8V の電圧領域で「低抵抗モード」が維持される。これらの 2つの「高抵抗モード」と「低抵 抗モード」とが切り替わることになる。これらは、「負の高抵抗モード」及び「負の低抵 抗モード」の負の抵抗モードについても、同様である。
[0287] また、各「正のモード」の実際の電流値は、 0. 5V印加時に、「正の高抵抗モード」 で 1. 0 X 10— 5AZcm2であり、「正の低抵抗モード」で 5 X 10— 2AZcm2であることから 、各々の比は、 5000倍にも達する。このことは、容易なモードの識別を可能にするも のである。発明者らは、印加する電圧の向きと強さにより、強誘電体膜の抵抗値が劇 的に変化することで、上述した現象が発現するものと推定している。
[0288] また、強誘電体層 4705と上部電極 4706の間に備えた絶縁層 4704により、絶縁層 4704の持つバンド構造から、キャリアの制御が可能である。具体的には、例えば、五 酸化タンタルは、バンドギャップは 4. 5eV程度である力 フェルミレベルからのェネル ギー差を見た場合、伝導帯には 1. 2eV程度、価電子帯には 2. 3eVと価電子帯側に ノリアが高いことが知られている。従って、価電子帯のホール (正孔)に対してはバリ ァ性が高いが、伝導帯のエレクトロン (電子)に対してはノリア性が低いと言うことにな る。詳しくは、「ウィルクらのジャーナル'ォブ 'ァプライド'フイジタス、第 87号、 484頁 、 2000年、 (Wilk et. al., J.Appl.Phys.,87,484(2000).」を参考にされたい。
[0289] 上述した特性から、例えば五酸ィ匕タンタル膜を、電極と強誘電体層との間の絶縁層 に用いた場合、電子は流れやすぐ正孔は流れにくいという現象が期待できる。実際 に、図 49に示すように、上部電極 4706に正の電圧を印加したときと、負の電圧を印 カロしたときでは、流れる電流の値が大きく異なっている。このことは、メモリの判別を行 う場合に、信号 ·ノイズ比(SZN比)を向上させ、データの判別を容易にする効果が 非常に大きい。これは、絶縁層 4704を用いた効果である。
[0290] 上述した図 49に示す「低抵抗モード」と「高抵抗モード」のモードをメモリ動作として 応用することで、図 47に示す素子が、不揮発性で非破壊のメモリとして使用できるこ とを見いだした。具体的には、まず、素子の初期化とデータの消去、つまり、データ「o ff」の書き込みは、図 49の(4)又は(5)に示すように、上部電極 4706に負の電圧を 印加することで、「低抵抗モード」から「高抵抗モード」にモード変更することにより行 えばよい。
[0291] また、データ「on」の書き込みは、図 49の(2)〖こ示すように、上部電極 4706に正の 電圧を 1. IV以上印加して電流が急激に流れるようにすることで行えばよい。このこと で、「高抵抗モード」から「低抵抗モード」にモード変換してデータ「on」の書き込みが 行われる。 これらのように、上部電極 4706への電圧印加により、「高抵抗モード」か 「低抵抗モード」にすることによって「off」又は「on」のデータ (状態)を書き込むことが 可能である。
[0292] 一方、以上のようにして書き込まれたデータの読み出しは、上部電極 4706に、 0〜 1. OVの適当な電圧を印加したときの電流値を読み取ることで容易に行うことができ る。例えば、図 47に示す素子のモード状態力 「off」言い換えると「高抵抗モード」で ある場合、図 49の(1)に示すように 0〜1. OVの適当な電圧印加時に電流が流れ難 いことにより判断できる。 [0293] また、図 47に示す素子のモード状態力 「on」言 、換えると「低抵抗モード」である 場合、図 49の(2)に示すのように、 0〜0. 8Vの適当な電圧印加時に電流が急激に 流れること〖こより判断できる。「正の高抵抗モード」と「正の低抵抗モード」、つまり、「of f」と「on」の状態の電流値は、 5000倍以上もあることから、「off」と「on」の判断力、容 易に可能である。同様に、負の電圧領域においても、 0〜― 0. 2Vの電圧範囲で「on 」と「off」の判断が可能である。
[0294] 上述したメモリの読み出しの動作は、図 47に示す素子が「高抵抗モード」力「低抵 抗モード」かを調べるだけで容易に行える。言い換えれば、図 47に示す素子力 上 記 2つのモードを保持できている間は、データが保持されている状態である。さらに、 どちらかのモードかを調べるために、電極に正の電圧を印加しても、保持しているモ ードは変化することなくデータが破壊されてしまうことはない。従って、図 47に示す素 子によれば、非破壊の読み出しが可能である。図 47に示す素子は、強誘電体層 47 05力 下部電極層 4703と上部電極 4706との間に印加された電圧により抵抗値が 変化することにより、不揮発メモリ素子として機能するものである。なお、本素子は、電 流を制御するスィッチ素子としても用いることができる。
[0295] 図 47に示す素子を動作させるための電圧は、「正の低抵抗モード」にするための書 き込み時に最大になるが、図 49に示すように、 1. IV程度であり、非常に消費電力が 小さい。消費電力が小さいと言うことは、デバイスにとって非常に有利になり、例えば 、移動体通信機器,デジタル汎用機器,デジタル撮像機器を始め、ノートタイプのパ 一ソナルコンピュータ,パーソナル'デジタル'アプライアンス(PDA)のみならず、全 ての電子計算機,パーソナルコンピュータ,ワークステーション,オフィスコンピュータ ,大型計算機や、通信ユニット,複合機などのメモリを用いている機器の消費電力を 下げることが可能となる。また、図 47に示す素子を用いたメモリにおいても、前述した 素子と同様に、 10年の保持期間を有している。
[0296] ところで、上述した本発明の例では、シリコンカゝらなる基板上の絶縁層、絶縁層上の 下部電極層、下部電極層上の絶縁層、絶縁層上の強誘電体層の各々を ECRスパッ タ法で形成するようにした。しかしながら、これら各層の形成方法は、 ECRスパッタ法 に限定するものではない。例えば、シリコン基板の上に形成する絶縁層は、熱酸化法 や化学気相法 (CVD法)、また、従来のスパッタ法などで形成しても良い。
[0297] また、下部電極層は、 EB蒸着法、 CVD法、 MBE法、 IBD法などの他の成膜方法 で形成しても良い。また、下部電極層上の絶縁層は、 ALD法, MOCVD法,従来よ りあるスパッタ法で形成してもよい。強誘電体層も、上記で説明した MOD法や従来よ りあるスパッタ法、 PLD法及び MOCVD法などで形成することができる。ただし、 EC Rスパッタ法を用いることで、平坦で良好な絶縁膜、金属膜、強誘電体膜が容易に得 られる。
[0298] また、上述した実施の形態では、各層を形成した後、ー且大気に取り出して 、たが 、各々の ECR^パッタを実現する処理室を、真空搬送室で連結させた装置を用いる ことで、大気に取り出すことなぐ連続的な処理により各層を形成してもよい。これらの ことにより、処理対象の基板を真空中で搬送できるようになり、水分付着などの外乱 の影響を受け難くなり、膜質と界面の特性の向上につながる。
[0299] 特許文献 7に示されているように、各層を形成した後、形成した層の表面に ECRプ ラズマを照射し、特性を改善するようにしてもよい。また、各層を形成した後に、水素 雰囲気中などの適当なガス雰囲気中で、形成した層をァニール (加熱処理)し、各層 の特性を大きく改善するようにしてもょ 、。
[0300] ところで、素子を並べて複数のデータを同時にメモリ蓄積することを「集積」と呼び、 集積する度合いを集積度と呼ぶが、図 47の構造は、非常に単純であり、従来のメモ リセルに比較して、集積度を格段に上げることが可能となる。 MOSFETを基本技術 とした DRAMや SRAM、フラッシュメモリなどでは、ゲート,ソース, ドレインの領域を 確保する必要があるため、近年では、集積限界が指摘され始めている。これに対し、 図 47に示す素子によれば、単純な構造を用いることで、現在の集積限界に捕らわれ ずに集積度を高めることが可能となる。
[0301] また、以上の実施の形態では、印加した電圧は直流であった力 適当な幅と強さの パルス電圧を印加しても同様の効果は得られる。本発明の基本的な思想は、図 47に 示すように、絶縁層に強誘電体層を接して配置し、これらを 2つの電極で挾むようにし たところにある。このような構成とすることで、 2つの電極間に所定の電圧 (DC,パル ス)を印カロして強誘電体層の抵抗値を変化させ、安定な高抵抗モードと低抵抗モー ドを切り替え、結果としてメモリ機能が実現可能となる。
[0302] 従って、例えば、図 50Aに示すように、絶縁性基板 4701aを用い、積層された下部 電極層 4703a, 4703bを用!ヽるよう【こしてもよ!ヽ。また、また、図 50B【こ示すよう【こ、 絶縁性基板 4701aを用い、下部電極層 4703にコンタクト電極 4703cを設けるように してもよい。また、図 50Cに示すように、絶縁性基板 4701aを用い、積層された上部 電極 4706a, 4706bを用!ヽるよう【こしてちょ!ヽ。さら【こ、図 50D【こ示すよう【こ、積層さ れた下部電極層 4703a, 4703bと積層された上部電極 4706a, 4706bとを用いるよ うにしてもよい。
[0303] また、図 51に示すように、ガラスや石英力もなる絶縁性の基板 5101を用いるように してもよい。この場合、図 52に示すように、基板 5101に貫通孔形成してここにプラグ を設け、基板 5101の裏面(下部電極層 4703の形成面の反対側)より電気的コンタク トをとるようにしてもよい。この構造とすることによって、加工しやすいガラス基板などへ の適用が可能となる。また、強誘電体層 4705は、波長 632. 8nmで測定したときの 屈折率が 2. 6程度で光学的に透明であるため、図 51に示す構成とすることで、ディ スプレイへの応用が可能となる。また、強誘電体層 4705を、 10〜200nmの間で干 渉色を発する厚さに形成することで、着色した状態の視覚効果が得られる。
[0304] さらに、図 53Aに示すように、金属などの導電性を有する基板 5201を用いるように してもよい。また、図 53Bに示すように、基板 5201の上に接して下部電極層 5202を 備え、この上に絶縁層 5203,強誘電体層 5204,上部電極 5205を設けるようにして もよい。図 53Bに示す構成とした場合、基板 5201と上部電極 5205との間に所定の 電気信号を印加することが可能となる。
[0305] また、図 53Cに示すように、金属板 5301の上に、絶縁層 5302,強誘電体層 5303 ,上部電極 5304を設けるようにしてもよい。この構成とした場合、金属板 5301が、下 部電極層となる。図 53Cに示す構造にすることによって、熱伝導性のよい金属板 530 1の上に各構成要素が形成されているので、より高い冷却効果が得られ、素子の安 定動作が期待できる。
[0306] なお、強誘電体層は、膜厚が厚くなるほど電流が流れにくくなり抵抗が大きくなる。
抵抗値の変化を利用してメモリを実現する場合、オン状態とオフ状態の各々の抵抗 値が問題となる。例えば、強誘電体層の膜厚が厚くなると、オン状態の抵抗値が大き くなり、 SZN比がとりに《なり、メモリの状態を判断しに《なる。一方、強誘電体層 の膜厚が薄くなり、リーク電流が支配的になると、メモリ情報が保持しにくくなると共に 、オフ状態の抵抗値が大きくなり、 SZN比がとりに《なる。
[0307] 従って、強誘電体層は、適宜最適な厚さとした方がよい。例えば、リーク電流の問 題を考慮すれば、強誘電体層は、最低 lOnmの膜厚があればよい。また、オン状態 における抵抗値を考慮すれば、強誘電体層は 200nmより薄くした方がよい。発明者 らの実験の結果、強誘電体層の厚さが 30〜: LOOnmであれば、メモリの動作が確認さ れ、最も良好な状態は、強誘電体層の厚さを 50nmとしたときに得られた。
[0308] 同様に、下部電極層の上の絶縁層においても、より好適な膜厚が存在する。この膜 厚について、 A1ターゲット, Siターゲット, Taターゲットを用いた ECRスパッタ法により 、各々 Al O膜, SiO膜, Ta O膜をシリコン基板の上に形成した場合を例に説明す
2 3 2 2 3
る。上記各膜が、所定の膜厚に形成された状態とし、各々の膜の上に A1カゝらなる上 部電極が形成された状態とし、シリコン基板と上部電極との間に電圧を印加したとき の電流電圧測定を行!ヽ、各々の薄膜における IVで観察される電流密度を観察す る。これらの電流密度の結果は、図 39に示した状態と同様である。
[0309] 図 39に示したように、絶縁層を構成する材料により電流密度が異なり、膜厚が薄い ほどリーク電流が多く流れて電流密度が大きくなる。一方、膜厚が厚くなると、電流密 度は小さくなる。これは、膜厚があまり薄いと、絶縁層としての特性が得られず、膜厚 が厚い場合、強誘電体膜に印加される電圧が小さくなり、 SZN比がとりに《なり、メ モリの状態が判断しに《なることを示している。従って、絶縁層は、強誘電体層との 組み合わせにお 、て、適宜最適な厚さとした方がよ!、。
[0310] 例えば、リーク電流の問題を考慮すれば、 Al O膜, SiO膜を用いる場合は、膜厚
2 3 2
力^〜 3nm程度がよい。 Ta O膜の場合は、 3nm以上の膜厚があればよい。一方、
2 3
抵抗値の大きさの問題を考慮すれば、絶縁層は 20nmより厚くした方がよい。発明者 らの実験の結果、 SiOと Ta Oから構成された絶縁層の場合、膜厚が 3〜5nmであ
2 2 3
れば、前述したメモリの動作が確認された。
[0311] 上述では、 1つの素子を例にして説明した力 以降に説明するように、複数の素子 を配列させて集積させるようにしてもよい。例えば、図 54Aに示すように、絶縁性基板 5401の上に、共通となる下部電極層 5402,絶縁層 5403,強誘電体層 5404を形 成し、強誘電体層 5404の上に、各々所定距離離間して複数の上部電極 5405を形 成すればよい。複数の上部電極 5405に対応して複数の素子が配列されたことにな る。
[0312] 強誘電体や絶縁膜は、金属などの導電体に比べて導電性が非常に小さいので、 上述したように共通に使用することができる。この場合、加工プロセスを省くことができ るので、生産性の向上が図れ、工業的に利点が大きい。また、複数の上部電極 540 5に対応する素子間の距離を導電性などを考慮して配置することで、安定した動作が 期待できる。
[0313] また、図 54Bに示すように、絶縁性基板 5401の上に、共通となる下部電極層 5402 を形成し、下部電極層 5402の上に、絶縁層 5413,強誘電体層 5414,上部電極 54 15からなる複数の素子を配列させるようにしてもよい。例えば、形成した強誘電体膜 を、 RIE法や ICPエッチング、また ECRエッチングなど加工法を用いることで、個々の 強誘電体層 5414が形成できる。このように分離して構成することで、素子間の距離 をより短くすることが可能となり、集積度をさらに向上させることができる。
[0314] また、図 54Cに示すように、絶縁性基板 5401の上に、共通となる下部電極層 5402 ,絶縁層 5403を形成し、この上に、強誘電体層 5414,上部電極 5415からなる複数 の素子を配列させるようにしてもよい。さらに、図 54Dに示すように、各々の素子を構 成している絶縁層 5413,強誘電体層 5414の側面を、絶縁側壁 5416で覆うようにし てもよい。また、図 54Eに示すように、絶縁性基板 5401の上に、共通となる下部電極 層 5402,絶縁層 5403を形成し、この上に、強誘電体層 5414,上部電極 5415から なる複数の素子を配列させ、各々の素子を構成している強誘電体層 5414の側面を 、絶縁側壁 5417で覆うようにしてもよい。
[0315] また、図 55に示すように、絶縁性基板 5401の上に、共通となる下部電極層 5402 を形成し、下部電極層 5402の上に、絶縁層 5413,強誘電体層 5414,上部電極 54 15からなる複数の素子を配列させ、各々分離している複数の強誘電体層 5414の側 部を充填するように、絶縁層 5426を形成してもよい。これらのように、素子毎に分離 して形成した複数の強誘電体層 5414の間を、絶縁体で覆うようにすることで、各素 子間のリーク電流を減らして素子の安定性を高めることができる。
[0316] また、図 13に示したように、本発明の実施の形態における複数の素子を X方向に n 個、 Y方向に m個配列し、 X方向バスを下部電極層に接続し、 Y方向バスを上部電極 に接続し、 X方向バス及び Y方向バスの各々に選択信号のスィッチ機能を備えたプ 口セッサユニットを接続することで、各素子にランダムにアクセスが可能なメモリが実 現できる。
[0317] ところで、強誘電体層 4705における抵抗値の変化は、電流により制御することも可 能である。「高抵抗モード」の状態の強誘電体層 4705に所定の電圧が印加された状 態として一定の電流を流した直後に、上部電極 4706と下部電極層 4703との間に所 定の電圧 (例えば +0. 5V)を印加すると、図 41に示したように電流値が変化する。
[0318] 例えば、上記電極間に、 1 X 10— 5 Aから 1 X 10— 4 A未満の電流を流した後は電流値 力 S小さく高抵抗状態である。これに対し、上記電極間に 1 X 10—4Α以上の電流を流し た後は、流れる電流値が大きくなり(例えば 0. 7mA)低抵抗状態へと変化する。この ことから明らかなように、強誘電体層 4705における抵抗変化は、強誘電体層 4705 に流れた電流によっても変化し、高抵抗状態と低抵抗状態との 2つの抵抗値が存在 する。従って、図 1に示す素子は、電圧により駆動することが可能であるとともに、電 流により駆動することも可能である。
[0319] また、図 47の素子においても、前述した素子と同様に、パルス電圧により、強誘電 体層 4705の抵抗変化を制御できる。また、電流を制御するスィッチ素子として用いる ことも可能である。また、図 47に示す素子においても、前述した素子と同様に、 3値の メモリが実現できる。
[0320] 次に、絶縁層 4704を、五酸ィ匕タンタルと二酸ィ匕シリコンとの膜厚が 5nmの多層膜 力も構成することについて説明する。なお、以下では、絶縁層 4704が、五酸ィ匕タンタ ル膜,二酸ィ匕シリコン膜,五酸ィ匕タンタル膜の順に積層された 3層構造の場合につい て説明する。発明者らは、初期の実験段階では、強誘電体層 4705となる金属酸ィ匕 物層を、洗浄したシリコン基板の上に形成していた。この実験結果を詳細に検討した 結果、シリコン基板と上記金属酸ィ匕物層との間に界面層が形成されることが観察され た。
[0321] 上記観察結果について示すと、前述した ECRスパッタ法により、基板温度を 420°C とした状態で、シリコン基板の上にビスマスとチタンとを含む金属酸ィ匕物層を形成し、 この断面の状態を透過型電子顕微鏡により観察すると、図 56に模式的に示すような 状態が観察された。図 56に示すように、シリコン力もなる基板 4701の上に、酸化シリ コン層 4721と Biと Tiと Siとを含む酸化物からなる酸化物層 4722との界面層を介し、 強誘電体層 4705が形成された状態が観察される。
[0322] このように、シリコン基板の上に強誘電体層 4705が形成された状態とすると、これら の界面に、上述したような 2種類の酸ィ匕物層が形成されてしまう。なお、 Biと Tiと Siと を含む酸ィ匕物の層は、意図的に形成された酸ィ匕シリコン層の上に強誘電体層 4705 が形成された状態とする場合にも、界面に観察される。これらの界面に形成される層 の中で、酸ィ匕シリコン層 4721は、比誘電率が 3. 8と小さいことが予想され、強誘電体 層 4705に電圧を印加した場合、より多くの電圧が酸ィ匕シリコン層 4721に印加される ようになり、強誘電体層 4705に電圧が分配されない状態が予想される。また、酸ィ匕 物層 4722は、界面制御性を要求される場合に問題となる。これらのことから、強誘電 体層 4705を形成する場合、シリコンとの反応を抑制し、比誘電率の小さい酸化シリコ ンが形成されな 、ようにすることがよりよ 、状態が得られるものと考えられる。
[0323] 次に、下層にルテニウムなどの金属層の上に、直接、強誘電体層 4705を形成する 場合について考察する。よく知られているように、ルテニウムは酸ィ匕物を形成する。従 つて、ルテニウムからなる金属層の上に強誘電体の層を形成する場合、金属層の表 面が酸ィ匕されてモフォロジが低下することが予想される。
[0324] 例えば、シリコン基板の上に熱酸化法により二酸化シリコン層が形成された状態とし 、この上に、前述した ECRスパッタ法により、膜厚 20nm程度のルテニウム電極層が 形成された状態とし、この上に、基板温度を 450°Cとした状態で、ビスマスとチタンと を含む金属酸化物層を形成し、この断面の状態を透過型電子顕微鏡により観察する と、図 57に示すような状態が観察された。図 57に示す電子顕微鏡写真の状態を模 式的に図 58に示している。
[0325] 図 58に示すように、二酸化シリコン層 4702aの上にルテニウム力もなる下部電極層 4703力形成され、この上に、 Biと Tiと Ruとを含む酸化物からなる界面層 4723を介 し、強誘電体層 4705が形成された状態が観察される。界面層 4723は、 EDS (エネ ルギー分散型 X線分光)測定により、 Ruと Tiと Biとを含む酸ィ匕物であることが確認さ れている。また、強誘電体層 4705の表面が、界面層 4723の影響を受け、 lOnmか ら 20nmのモフォロジが存在していることが判明している。従って、強誘電体層 4705 は、金属層の上に直接形成しない方がよりよい状態が得られることがわかる。
[0326] 以上の実験及び観察の結果より、発明者らは、二酸化シリコンの層を五酸化タンタ ルの層で挾んだ多層構造の絶縁層に着目した。五酸ィ匕タンタルの層が下部電極層 4 703及び強誘電体層 4705に接触した状態とすることで、まず、下部電極層 4703の 界面における酸ィ匕が防止できるようになる。また、強誘電体層 4705との界面におけ る反応による界面層の形成が抑制できるようになる。また、二酸化シリコン層を備える ことで、絶縁性が確保できるようになる。従って、下部電極層 4703及び強誘電体層 4 705との界面に界面層が形成されない材料であれば、五酸ィ匕タンタルの代わりに用 いることが可能である。なお、二酸ィ匕シリコンの層は、必ずしも必要ではなぐ必要な 絶縁性の状態によっては、五酸ィ匕タンタルの層のみでもよい。
[0327] 次に、五酸化タンタルの層から構成した絶縁層(絶縁層 4702)を用いた素子の特 性について説明する。まず、シリコン基板の上に熱酸化法により二酸化シリコン層が 形成された状態とし、この上に、前述した ECRスパッタ法により、膜厚 20nm程度の ルテニウム電極層が形成された状態とする。ついで、形成したルテニウム電極層の上 に、五酸化タンタル層,二酸化シリコン層,五酸ィ匕タンタル層の順に積層して膜厚 5n m程度とした絶縁層が形成された状態とする。これらの各層は、図 48Cを用いて説明 した ECR^パッタ法により形成する。
[0328] 上述したルテニウム電極層の上に絶縁層が形成された断面の状態を透過型電子 顕微鏡で観察すると、結晶の状態のルテニウム電極層の上に、 5nmという極めて薄 い膜の状態で、非晶質の五酸ィ匕タンタル層,二酸化シリコン層,五酸化タンタル層が 見られた。また、各層の界面は、界面層が見られず、非常に平坦に形成されているこ とが確認された。
[0329] 次に、上述した積層構造の絶縁層における電気的特性の調査結果について説明 する。電気的の特性は、次に示す A, B, C, Dの 4つのサンプルを作製して調査した 。まず、サンプル Aは、洗浄した p形シリコン基板の上に、五酸化タンタル層,二酸ィ匕 シリコン層,五酸ィ匕タンタル層の順に積層された膜厚 3nm程度の絶縁層が形成され ているものである。また、サンプル Bは、洗浄した p形シリコン基板の上に、二酸化シリ コン層,五酸化タンタル層,二酸ィ匕シリコン層の順に積層された膜厚 3nm程度の絶 縁層が形成されているものである。また、サンプル Cは、洗浄した p形シリコン基板の 上に、二酸ィ匕シリコン力もなる膜厚 3nm程度の絶縁層が形成されているものである。 また、サンプル Dは、洗浄した p形シリコン基板の上に、五酸ィ匕タンタルカゝらなる膜厚 3nm程度の絶縁層が形成されているものである。
[0330] また、各サンプルにおいて、絶縁層の上には、アルミニウム力も構成された上部電 極が形成された状態とし、シリコン基板と上部電極との間に、所定の電圧を印加して 電流密度を測定する。上部電極に負の電圧が印加された状態とし、シリコン基板が 半導体の蓄積状態とされた状態とすることで、絶縁層にのみ電圧が印加される状態と する。
[0331] 上述した各サンプルを用いた測定の結果を図 59に示す。図 59の Cに示されている ように、二酸ィ匕シリコン力もなる絶縁層は、絶縁性が高いことがわかる。これに対し、 D に示すように、五酸ィ匕タンタルカゝらなる絶縁層は、絶縁性が低ぐ僅かな印加電圧で 大きな電流密度となっている。また、サンプル A及びサンプル Bは、サンプル Cとサン プル Dの中間的な特性となる。これらの結果から明らかなように、二酸ィ匕シリコンの層 を五酸ィ匕タンタルの層で挾んだ多層構造の絶縁層は、五酸ィ匕タンタル単独の絶縁 層に比較し、より高い絶縁性が得られている。
[0332] 次に、二酸ィ匕シリコンの層を五酸ィ匕タンタルの層で挾んだ多層構造の絶縁層を用 いた、図 47に示す構成と同様の素子の観察結果について説明する。観察に用いた 素子の形成について簡単に説明すると、まず、シリコン基板の上に熱酸化法により二 酸化シリコン層が形成された状態とし、この上に、前述した ECR^パッタ法により、膜 厚 20nm程度のルテニウム電極層が形成された状態とする。ついで、ルテニウム電極 層の上に、前述したように、五酸化タンタル層,二酸ィ匕シリコン層,五酸化タンタル層 の順に積層された膜厚 5nm程度の絶縁層が形成された状態とする。次に、基板温 度が 420°C,酸素流量が lsccmの条件で、上記絶縁層の上にビスマスとチタンとを含 む膜厚 40nm程度の金属酸化物層が形成された状態とする。
[0333] 上述したように形成した素子の断面を、透過型電子顕微鏡で観察した結果を図 60 に示し、この状態を模式的に図 61に示す。観察の結果、ルテニウムカゝら構成された 下部電極層 4703の上に、五酸ィ匕タンタル層 4724,二酸ィ匕シリコン層 4725,五酸ィ匕 タンタル層 4726の順に積層された絶縁層 4704が形成され、絶縁層 4704の上に強 誘電体層 4705が形成された状態が見られた。各層の間の界面には、界面層は見ら れず、また、各層の界面は nmオーダで平坦な状態である。このように、図 47に示す 素子を構成する場合、二酸ィヒシリコンの層を五酸ィヒタンタルの層で挾んだ多層構造 の絶縁層を用いることで、酸ィヒ予想後反応による界面層の形成が抑制され、強誘電 体層の表面モフォロジが改善されるようになる。
[0334] 次に、本発明の他の実施の形態について図を参照して説明する。図 62は、本発明 の実施の形態における他の 2安定抵抗値取得装置の構成例を模式的に示す断面図 である。以下では、金属酸ィ匕物層を用いた素子 (機能素子)を例に説明する。図 62 に示す素子は、例えば、単結晶シリコン力もなる基板 6201の上に絶縁層 6202,下 部電極層 6203,絶縁層(第 1絶縁層) 6204,金属酸ィ匕物層 6205,絶縁層(第 2絶 縁層) 6206,
上部電極 6207を備えるようにしたものである。基板 6201は、半導体,絶縁体,金属 などの導電性材料のいずれ力も構成されていてもよい。また、基板 6201が導電性材 料力も構成されている場合、絶縁層 6202はなくてもよぐこの場合、導電性材料から 構成された基板 6201が、下部電極層となる。
[0335] 下部電極層 6203,上部電極 6207は、例えば、白金(Pt)、ルテニウム (Ru)、金( Au)、銀 (Ag)などの貴金属を含む遷移金属の金属カゝら構成されていればよい。また 、下部電極層 6203,上部電極 6207は、窒化チタン (TiN)、窒化ハフニウム(HfN) 、ルテニウム酸ストロンチウム(SrRuO )、酸化亜鉛(ZnO)、鉛酸スズ (ITO)、フッ化
2
ランタン (LaF )などの遷移金属の窒化物や酸ィ匕物やフッ化物等の化合物、さらに、
3
これらを積層した複合膜であってもよ 、。
[0336] 絶縁層 6204及び絶縁層 6206は、二酸化シリコン,シリコン酸窒化膜,アルミナ, 又は、リチウム,ベリリウム,マグネシウム,カルシウムなどの軽金属力も構成された Li NbOなどの酸化物、 LiCaAlF、 LiSrAlF、 LiYF、 LiLuF、 KMgFなどのフツイ匕
3 6 6 4 4 3 物から構成されていればよい。また、絶縁層 6204及び絶縁層 6206は、スカンジウム ,チタン,ストロンチウム,イットリウム,ジルコニウム,ハフニウム,タンタル,及び、ラン タン系列を含む遷移金属の酸化物及び窒化物、又は、以上の元素を含むシリケート (金属、シリコン、酸素の三元化合物)、及び、これらの元素を含むアルミネート (金属 、アルミニウム、酸素の三元化合物)、さらに、以上の元素を 2以上含む酸化物及び 窒化物などカゝら構成されて ヽればよ ヽ。
[0337] 金属酸ィ匕物層 6205は、図 1に示した強誘電体層 104などと同様であり、少なくとも 2つの金属を含む金属酸化物から構成されたものであり、例えば、 Bi Ti O の化学
4 3 12 量論的組成に比較して過剰なチタンを含む層からなる基部層の中に、 Bi Ti O の結
4 3 12 晶からなる粒径 3〜15nm程度の複数の微結晶粒や微粒子が分散されて構成された ものである。基部層は、ビスマスの組成がほぼ 0となる TiOの場合もある。言い換える と、基部層は、 2つの金属力 構成されている金属酸ィ匕物において、いずれかの金 属が化学量論的な組成に比較して少ない状態の層である。金属酸ィ匕物層 6205は、 例えば、ベロブスカイト構造を持つ材料、又は、擬ィルメナイト構造を持つ材料、さら に、タングステン 'ブロンズ構造を持つ材料、ビスマス層状構造を持つ材料、ノイロク ロア構造を持つ材料力 構成されて 、ればよ 、。
[0338] 詳細には、 Bi Ti O 、 La Ti O BaTiO、 PbTiO、 Pb (Zr Ti ) O、 (Pb La ) (
4 3 12 2 2 7 3 3 1-x x 3 1-y y
Zr Ti ) 0 , LiNbO、 LiTaO、 KNbO、 YMnOなど、 PbNb O、 Ba NaNb O l-x x 3 3 3 3 3 3 6 2 5 15
、 (Ba Sr ) NaNb O 、 Ba Na Bi Nb O ,さらに、一価,二価,三価の少なくと l-x 2 5 15 2 l-x x/3 5 15
も一種のイオン及びこれらのイオンの組み合わせを表す記号を Aとし、四価,五価, 六価の少なくとも一種のイオン及びこれらのイオンの組み合わせを示す記号を Bとし 、酸素を表す記号を Oとし、ビスマスを表す記号を Biとし、 mを 1から 5を表す記号とし たときに、(Bi O ) 2+(A B O ) 2で表されるビスマス層状構造を持つ金属酸化物(
2 2 m-1 m 3m+l
強誘電体など)を用いることができる。
[0339] (Bi O ) 2+ (A B O ) 2で表されるビスマス層状構造を持つ金属酸ィ匕物としては
2 2 m-1 m 3m+l
、例えば、 SrBi Ta O、 SrBi Nb O、 BaBi Nb O、 BaBi Ta O、 PbBi Nb O、 P bBi Ta O、 BiO Ta O 、 CaBi Ti O 、 SrBi Ti O 、 BaBi Ti O 、 Na Bi Ti O
2 2 9 4 3 12 4 4 15 4 4 15 4 4 15 0.5 4.5 4 1
、 K Bi . Ti O 、 Sr Bi Ta O , Ba Bi Ta O 、 Pb2Bi Ta O が挙げられる。
5 0.5 4 5 4 15 2 4 5 18 2 4 5 18 4 5 18
[0340] さらに、ランタン系列力 選ばれる少なくとも一種の希土類金属元素を表す記号を L nとし、 II族の軽金属(Be, Mgとアルカリ土類金属の Ca, Sr, Ba, Ra)力 選ばれる 少なくとも一種を表す記号を Aeとし、 III族、 IV族、 V族、 VI族、 VII族、 VIII族、 I族、 II族の重金属 (遷移金属)から選ばれる少なくとも一種を表す記号を Trとし、酸素を 示す記号を Oとしたとき、 Ln Ae TrO、又は、 LnAe Tr Oで表されるものから、 l-x x 3 1-x x 3
金属酸化物層 6205を構成してもよい。ただし、 Xは、固溶限界範囲内で有効な数字 を示すものである。
[0341] なお、金属酸ィ匕物層 6205は、少なくとも 2つの金属力も構成された金属酸ィ匕物か ら構成されたものであり、一般に強誘電特性を示す場合が多い。しかしながら、膜厚 条件などにより強誘電特性を示さな!/ヽ場合もある。
[0342] 図 62に示した機能素子の具体例について説明すると、例えば、下部電極層 6203 は、膜厚 10nmのルテニウム膜であり、絶縁層 6204は、五酸化タンタルと二酸化シリ コンとの膜厚が 5nm程度の多層膜であり、金属酸ィ匕物層 6205は、膜厚 40nmの Bi
4
Ti O 膜であり、絶縁層 6206は、膜厚 3nmの五酸ィ匕タンタル膜であり、上部電極 62
3 12
07は、金力も構成されたものである。なお、前述したように、基板 6201及び絶縁層 6 202の構成は、これに限るものではなぐ電気特性に影響を及ぼさなければ、他の材 料も適当に選択できる。
[0343] 以上で説明した、絶縁層 6202,下部電極層 6203,絶縁層 6204,金属酸化物層 6205,絶縁層 6206,及び上部電極 6207は、具体的な製法は後述するが、図 5に 例示した ECRスパッタ装置により、金属ターゲットや焼結ターゲットを、アルゴンガス, 酸素ガス,窒素ガスからなる ECRプラズマ内でスパッタリングして形成すればよ!、。
[0344] 次に、図 62にした機能素子の製造方法例について、図 63を用いて説明する。まず 、図 63Aに示すように、主表面が面方位(100)で抵抗率が 1〜2 Ω— cmの p形のシリ コンカゝらなる基板 6201を用意し、基板 6201の表面を硫酸と過酸化水素水の混合液 と純水と希フッ化水素水とにより洗浄し、このあと乾燥させる。
[0345] ついで、洗浄'乾燥した基板 6201の上に、絶縁層 6202が形成された状態とする。 絶縁層 6202の形成では、上述した ECRスパッタ装置を用い、処理室 501内の基板 ホルダ 504〖こ基板 6201を固定し、ターゲット 505として純シリコン(Si)を用い、プラズ マガスとしてアルゴン (Ar)と酸素ガスを用いた ECRスパッタ法により、基板 6201の 上に、表面を覆う程度に Si— O分子によるメタルモードの絶縁層 6202を形成する。
[0346] 図 5に示す ECRスパッタ法において、まず、プラズマ生成室 502内を 10— 5〜10— 4Pa 台の高真空状態に真空排気した後、プラズマ生成室 502内に、不活性ガス導入部 5 11より、例えば希ガスである Arガスを流量 20sccm程度で導入し、プラズマ生成室 50 2の内部を例えば 10— 3〜10— 2Pa台の圧力に設定する。なお、 sccmは流量の単位あり 、 0°C ' 1気圧の流体が 1分間に lcm3流れることを示す。
[0347] また、プラズマ生成室 502には、磁気コイル 510にコイル電流を例えば 28 Aを供給 することで電子サイクロトロン共鳴条件の磁場を与える。例えば、プラズマ生成室 502 内の磁束密度が 87. 5mT (テスラ)程度の状態とする。
[0348] 加えて、図示していないマイクロ波発生部より、例えば 2. 45GHzのマイクロ波(例 えば 500W)を供給し、これを導波管 508、石英窓 507、真空導波管 506を介してプ ラズマ生成室 502の内部に導入し、このマイクロ波の導入により、プラズマ生成室 50 2に Arのプラズマが生成された状態とする。
[0349] 上述したことにより生成されたプラズマは、磁気コイル 510の発散磁場によりプラズ マ生成室 502より処理室 501の側に放出される。また、プラズマ生成室 502の出口に 配置されたターゲット 505に、高周波電源 522より高周波電力(例えば 500W)を供 給する。このことにより、ターゲット 505に Ar粒子が衝突してスパッタリング現象が起こ り、 Si粒子がターゲット 505より飛び出す。
[0350] この状態とされた後、ターゲット 505と基板 6201との間の図示しないシャッターを開 放すると、ターゲット 505より飛び出した Si粒子は、プラズマ生成室 502より放出され たプラズマ、及び、反応性ガス導入部 512より導入されてプラズマにより活性化され た酸素ガスと共に基板 6201の表面に到達し、活性化された酸素により酸化され二酸 化シリコンとなる。
[0351] 以上のことにより、基板 6201上に二酸ィ匕シリコン力もなる例えば lOOnm程度の膜 厚の絶縁層 6202が形成された状態とすることができる(図 63A)。所定の膜厚まで形 成した後、前述したシャッターを閉じた状態としてスパッタされた原料が基板 6201に 到達しないようにすることで、成膜を停止する。この後、マイクロ波電力の供給を停止 するなどによりプラズマ照射を停止し、各ガスの供給を停止し、基板温度が所定の値 にまで低下しまた処理室 501の内部圧力を上昇させて大気圧程度とした後、処理室 501の内部より成膜された基板 6201を搬出する。
[0352] なお、絶縁層 6202は、この後に形成する下部電極層 6203と上部電極 6207に電 圧を印加した時に、基板 6201に電圧が洩れて、所望の電気的特性に影響すること がないように絶縁を図るものでる。例えば、シリコン基板の表面を熱酸化法により酸化 することで形成した酸ィ匕シリコン膜を絶縁層 6202として用いるようにしてもょ 、。絶縁 層 6202は、絶縁性が保てればよぐ酸化シリコン以外の他の絶縁材料から構成して もよぐまた、絶縁層 6202の膜厚は、 lOOnmに限らず、これより薄くてもよく厚くても よい。絶縁層 6202は、上述した ECR^パッタによる膜の形成では、基板 6201に対 して加熱はしていないが、基板 6201を加熱しながら膜の形成を行ってもよい。さらに 、シリコン力もなる基板 6201の表面を熱酸ィ匕法により酸ィ匕することで、酸ィ匕シリコンか らなる絶縁層 6202が形成されるようにしてもょ 、。
[0353] 以上のようにして絶縁層 6202を形成した後、基板 6201を装置内より大気中に搬 出し、ついで、ターゲット 505として純ルテニウム(Ru)を用いた図 5同様の ECR^パ ッタ装置の基板ホルダ 504に、基板 6201を固定する。引き続いて、プラズマガスとし てアルゴン (Ar)とキセノン (Xe)を用いた ECR^パッタ法により、図 63Bに示すように 、絶縁層 6202の上に、表面を覆う程度に Ru膜を形成することで、下部電極層 6203 が形成された状態とする。
[0354] Ru膜の形成について詳述すると、 Ruからなるターゲット 505を用いた図 5に示す E CRスパッタ装置において、まず、基板 6201を例えば 400°C程度に加熱し、ついで、 プラズマ生成室 502内に、不活性ガス導入部 511より、例えば流量 7sccmで希ガスで ある Arガスを導入し、例えば流量 5sccmで Xeガスを導入し、プラズマ生成室 502の 内部を、例えば 10—3〜10—2Pa台の圧力に設定する。また、プラズマ生成室 502には 、磁気コイル 510にコイル電流を例えば 26Aを供給することで電子サイクロトロン共鳴 条件の磁場を与える。 [0355] 加えて、図示していないマイクロ波発生部より、例えば 2. 45GHzのマイクロ波(例 えば 500W)を供給し、これを導波管 508、石英窓 507、真空導波管を介してプラズ マ生成室 502内に導入し、この上記マイクロ波の導入により、プラズマ生成室 502〖こ Arと Xeのプラズマが生成した状態とする。生成されたプラズマは、磁気コイル 510の 発散磁場によりプラズマ生成室 502より処理室 501側に放出される。また、プラズマ 生成室 502の出口に配置されたターゲット 505に、高周波電極供給部より高周波電 力(例えば 500W)を供給する。このこと〖こより、ターゲット 505に Ar粒子が衝突してス パッタリング現象が起こり、 Ru粒子がターゲット 505より飛び出す。ターゲット 505より 飛び出した Ru粒子は、基板 6201の絶縁層 6202表面に到達し堆積する。
[0356] 以上のことにより、絶縁層 6202の上に、例えば 10nm程度の膜厚の下部電極層 62 03が形成された状態が得られる(図 63B)。下部電極層 6203は、この後に形成する 上部電極 6207との間に電圧を印加した時に、金属酸ィヒ物層 6205と絶縁層 6204に 電圧が印加できるようにするものである。従って、導電性が持てればルテニウム以外 力も下部電極層 6203を構成してもよぐまた、膜厚も 10nmに限るものではなぐこれ より厚くてちょく薄くてちょい。
[0357] ところで、上述したように ECR^パッタ法により Ruの膜を形成するときに、基板 620 1を 400°Cに加熱した力 加熱しなくても良い。ただし、加熱を行わない場合、ルテ- ゥムの二酸ィ匕シリコンへの密着性が低下するため、剥がれが生じる恐れがあり、これ を防ぐために、基板を加熱して膜を形成する方が望ましい。以上のようにして所望の 膜厚に Ruを堆積した後、シャッターを閉じることなどにより成膜を停止し、マイクロ波 電力の供給を停止してプラズマ照射を停止するなどの終了処理をすれば、基板 620 1が搬出可能となる。
[0358] 以上のようにして下部電極層 6203を形成した後、基板 6201を装置内より大気中 に搬出し、ついで、ターゲット 505として純タンタル (Ta)を用いた図 5同様の ECR^ パッタ装置の基板ホルダ 504に、基板 6201を固定する。引き続いて、プラズマガスと してアルゴン (Ar)と酸素ガスとを用いた ECR^パッタ法により、図 63Cに示すように、 下部電極層 6203の上に、表面を覆う程度に、絶縁層 6204が形成された状態とする 。以下に説明するように、 Ta— O分子によるメタルモード膜を形成し、絶縁層 6204と する。
[0359] Ta— O分子によるメタルモード膜の形成について詳述すると、タンタルからなるター ゲット 505を用いた図 5に示す ECRスパッタ装置において、まず、プラズマ生成室 50 2の内部を 10一5〜 10— 4Pa台の高真空状態に真空排気した後、プラズマ生成室 502内 に、不活性ガス導入部 511より、例えば流量 25sccmで希ガスである Arガスを導入し 、例えば 10— 3〜 10— 2Pa台の圧力に設定する。また、プラズマ生成室 502には、磁気コ ィル 510にコイル電流を例えば 27Aを供給することで電子サイクロトロン共鳴条件の 磁場を与える。
[0360] 加えて、図示していないマイクロ波発生部より、例えば 2. 45GHzのマイクロ波(例 えば 500W)を供給し、これを導波管 508、石英窓 507、真空導波管 506を介してプ ラズマ生成室 502内に導入し、このマイクロ波の導入により、プラズマ生成室 502に A rのプラズマが生成された状態とする。生成されたプラズマは、磁気コイル 510の発散 磁場によりプラズマ生成室 502より処理室 501の側に放出される。また、プラズマ生 成室 502の出口に配置されたターゲット 505に、高周波電極供給部より高周波電力( 例えば 500W)を供給する。このことにより、ターゲット 505に Ar粒子が衝突してスパ ッタリング現象を起こし、 Ta粒子がターゲット 505より飛び出す。
[0361] ターゲット 505より飛び出した Ta粒子は、プラズマ生成室 502より放出されたプラズ マ、及び反応性ガス導入部 512より導入されてプラズマにより活性ィ匕された酸素ガス と共に基板 6201の下部電極層 6203表面に到達し、活性化された酸素により酸化さ れて五酸ィ匕タンタルとなる。
[0362] 以上のことにより、まず、下部電極層 6203の上に五酸ィ匕タンタル膜を形成する。続 いて、図 63Aを用いて説明した二酸ィ匕シリコンの堆積と同様に、純シリコン力もなるタ 一ゲット 505を用いた ECRスパッタ法により、上記五酸化タンタル膜の上に二酸化シ リコン膜が形成された状態とする。上述した五酸ィ匕タンタル膜と二酸ィ匕シリコン膜の形 成工程を繰り返し、五酸ィ匕タンタル膜と二酸ィ匕シリコン膜との多層膜を例えば、 5nm 程度形成することで、絶縁層 6204が得られる(図 63D)。
[0363] なお、五酸ィ匕タンタル膜と二酸ィ匕シリコン膜からなる絶縁層 6204は、金属酸化物 層 6205に電圧を印加した時に、金属酸化物層 6205に印加される電圧を制御する ために用いる。従って、金属酸化物層 6205に印加される電圧を制御することができ れば、五酸ィ匕タンタル膜と二酸ィ匕シリコン膜の多層構造以外力も絶縁層 6204を構成 してもよく、単層力 構成してもよい。また、膜厚も、 5nmに限るものではない。なお、 上述した ECRスパッタ法では、基板 6201に対して加熱はしていないが、加熱しても 良い。
[0364] 以上のようにして絶縁層 6204を形成した後、基板 6201を装置内より大気中に搬 出し、ついで、ターゲット 505として Biと Tiの割合が 4 : 3の焼結体 1—1 —0)を用 いた図 5同様の ECRスパッタ装置の基板ホルダ 504に、基板 6201を固定する。引き 続いて、プラズマガスとしてアルゴン (Ar)と酸素ガスとを用いた ECRスパッタ法により 、図 63Dに示すように、絶縁層 6204の上に、表面を覆う程度に、金属酸化物層 620 5が形成された状態とする。
[0365] 金属酸化物層 6205の形成について詳述すると、 Bi— Ti Oからなるターゲット 50 5を用いた図 5に示す ECRスパッタ装置において、まず、処理室 501及びプラズマ生 成室 502内を真空排気して内部の圧力を 10— 5〜10—4Paとした後、基板 6201が 300 〜700°Cに加熱された状態とし、ついで、プラズマ生成室 502内に、不活性ガス導入 部 511より、例えば流量 20sccmで希ガスである Arガスを導入し、例えば 10— 3〜 10— 2P a台の圧力に設定する。また、プラズマ生成室 502には、磁気コイル 510にコイル電 流を例えば 27Aを供給することで電子サイクロトロン共鳴条件の磁場を与える。
[0366] 加えて、図示していないマイクロ波発生部より、例えば 2. 45GHzのマイクロ波(例 えば 500W)を供給し、これを導波管 508、石英窓 507、真空導波管 506を介してプ ラズマ生成室 502内に導入し、このマイクロ波の導入により、プラズマ生成室 502に プラズマが生成された状態とする。生成されたプラズマは、磁気コイル 510の発散磁 場によりプラズマ生成室 502より処理室 501側に放出される。また、プラズマ生成室 5 02の出口に配置されたターゲット 505に、高周波電極供給部より高周波電力(例え ば 500W)を供給する。このことにより、ターゲット 505に Ar粒子が衝突してスパッタリ ング現象を起こし、 Bi粒子と Ti粒子がターゲット 505より飛び出す。
[0367] ターゲット 505より飛び出した Bi粒子と Ti粒子は、プラズマ生成室 502より放出され たプラズマ、及び、反応性ガス導入部 512より導入されてプラズマにより活性ィ匕した 酸素ガスと共に、絶縁層 6204の表面に到達し、活性化された酸素により酸化される 。酸素(O )ガスは、反応性ガス導入部 512より例えば流量 lsccm程度で導入されれ
2
ばよい。ターゲット 505は焼結体であり、酸素が含まれるが、酸素を供給することによ り膜中の酸素不足を防ぐことができる。
[0368] 以上に説明した ECRスパッタ法による膜の形成で、例えば、膜厚 40nm程度の金 属酸化物層 6205が形成された状態が得られる(図 63D)。この後、前述と同様にす ることで終了処理をし、基板が搬出可能な状態とする。
[0369] 以上のようにして金属酸ィ匕物層 6205が形成された後、基板 6201を装置内より大 気中に搬出し、ついで、ターゲット 505として純タンタル (Ta)を用いた図 5同様の EC Rスパッタ装置の基板ホルダ 504に、基板 6201を固定する。引き続いて、プラズマガ スとしてアルゴンを用い、加えて酸素ガスを反応ガスとして用いた ECR^パッタ法によ り、図 63 (e)に示すように、金属酸化物層 6205の上に、表面を覆う程度に五酸ィ匕タ ンタル膜を形成することで、絶縁層 6206が形成された状態とする。五酸化タンタル 膜は、以降に示すように、 Ta— O分子によるメタルモード膜の状態とする。
[0370] Ta— O分子によるメタルモード膜の形成について詳述すると、タンタルからなるター ゲット 505を用いた図 5に示す ECRスパッタ装置において、まず、プラズマ生成室 50 2の内部を 10— 5〜10—4Pa台の高真空状態に真空排気した後、プラズマ生成室 502内 に、不活性ガス導入部 511より、例えば流量 25sccmで Arガスを導入し、例えば 10—3 〜: L0— 2Pa台の圧力に設定する。また、プラズマ生成室 502には、磁気コイル 510にコ ィル電流を例えば 27Aを供給することで電子サイクロトロン共鳴条件の磁場を与える
[0371] 加えて、図示していないマイクロ波発生部より、例えば 2. 45GHzのマイクロ波(例 えば 500W)を供給し、これを導波管 508、石英窓 507、真空導波管 506を介してプ ラズマ生成室 502内に導入し、このマイクロ波の導入により、プラズマ生成室 502に A rのプラズマが生成された状態とする。生成されたプラズマは、磁気コイル 510の発散 磁場によりプラズマ生成室 502より処理室 501の側に放出される。また、プラズマ生 成室 502の出口に配置されたターゲット 505に、高周波電極供給部より高周波電力( 例えば 500W)を供給する。このことにより、ターゲット 505に Ar粒子が衝突してスパ ッタリング現象を起こし、 Ta粒子がターゲット 505より飛び出す。
[0372] ターゲット 505より飛び出した Ta粒子は、プラズマ生成室 502より放出されたプラズ マ、及び反応性ガス導入部 512より導入されてプラズマにより活性ィ匕された酸素ガス と共に基板 6201の下部電極層 6203表面に到達し、活性化された酸素により酸化さ れて五酸ィ匕タンタルとなる。
[0373] 以上のことにより、金属酸ィ匕物層 6205の上に膜厚 3nm程度に五酸ィ匕タンタル膜を 形成することで、図 63 (e)に示すように、絶縁層 6206が形成された状態が得られる。 五酸ィ匕タンタル力もなる絶縁層 6206は、金属酸ィ匕物層 6205に電圧を印加した時に 、金属酸化物層 6205に印加される電圧を制御するために用いる。従って、金属酸化 物層 6205に印加される電圧を制御することができれば、五酸化タンタル以外から絶 縁層 6206を構成してもよぐ単層力も構成してもよい。また、膜厚も、 3nmに限るもの ではない。
[0374] なお、上述した ECR^パッタ法では、基板 6201に対して加熱はして!/ヽな 、が、カロ 熱しても良い。また、形成した絶縁層 6206の表面に不活性ガスと反応性ガスの ECR プラズマを照射し、特性を改善するようにしてもよい。これらに用いる反応性ガスとし ては、酸素ガス、窒素ガス,フッ素ガス,及び水素ガスを用いることができる。また、こ の膜質の改善は、絶縁層 6204や金属酸ィ匕物層 6205にも適用可能である。
[0375] 次に、図 63 (f)に示すように、絶縁層 6206の上に、所定の面積の Au力 なる上部 電極 6207が形成された状態とすることで、少なくとも 2つの金属を含む金属酸化物 層を用いた素子が得られる。上部電極 6207は、よく知られたリフトオフ法と抵抗加熱 真空蒸着法による金の堆積とにより形成できる。なお、上部電極 6207は、例えば、 R u、 Pt、 TiNなどの他の金属材料や導電性材料を用いるようにしてもよい。なお、 Ptを 用いた場合、密着性が悪く剥離する可能性があるので、加熱による成膜を行うことや 、 Ti—Pt—Auなどの剥離し難い構造とし、フォトリソグラフィーゃリフトオフ処理など のパター-ング処理をして所定の面積を持つ電極として形成する必要がある。
[0376] ここで、本実施の形態によれば、絶縁層 6204が形成されている状態で、この上に 金属酸化物層 6205を形成するようにした。この結果、上述した ECRスパッタ法による 金属酸化物層 6205の形成にお 、て、下層の金属膜の表面や金属酸化物層 6205 の表面のモフォロジを劣化させることない。例えば、下層が金属材料などのように酸 化される状態であると、上述した金属酸ィ匕物層 6205の形成では、下層の表面が部 分的に酸化され、モフォロジが劣化する場合がある。これに対し、本実施の形態によ れば、下層の表面のモフォロジがよい状態で、金属酸化物層 6205が形成でき、より 品質の高い金属酸ィ匕物層 6205が得られる。
[0377] 次に、図 62に示す機能素子の特性について説明する。この特性調査は、下部電 極層 6203と上部電極 6207との間に電圧を印加することで行う。下部電極層 6203と 上部電極 6207との間に電源により電圧を印加し、電圧を印加したときの電流を電流 計により観測すると、図 64に示す結果が得られた。図 64では、縦軸が、電流値の絶 対値を対数表示している。このため、印加する正負の電圧にかかわらず正の値の電 流値として示されている。実際には、正の電圧を印加した場合は、正の電流値が観 察され、負の電圧を印加した場合には、負の電流値が観察されている。以下、図 64 を説明し、あわせて本発明のメモリ動作原理を説明する。ただし、ここで説明する電 圧値や電流値は、実際の素子で観測されたものを例としている。従って、本現象は、 以下に示す数値に限るものではない。実際に素子に用いる膜の材料や膜厚、及び 他の条件により、他の数値が観測されることがある。
[0378] まず、上部電極 6207に正の電圧を印加すると、図 64中の(1)〖こ示すように、 0〜1 . 6Vでは流れる電流は非常に少ない。しかし、(2)に示すように、 1. 6Vを超えると急 に正の電流が流れる。実際には、 5 X 10—3AZcm2を超える電流も流れている力 測 定器を保護するためにこれ以上電流を流さな 、ようにして 、るので、観測されて 、な い。(2)に示すように急激な電流が流れないように 0〜1. 6Vの電圧を印加している 場合は、 (1)に示すような抵抗が高い状態が維持される。
[0379] 続いて、再び上部電極 6207に正の電圧を印加すると、 (3)〖こ示すよう〖こ、 0. 5V程 度で l X 10—3AZcm2以上の正の電流が流れる軌跡を示す。さらに続いて、上部電 極 6207に正の電圧を印加すると、やはり(3)に示すように 0. 5V程度で 1 X 10"3A/ cm2以上の電流が流れる。ここで、 0〜0. 5Vの電圧を印加している場合は、(3)に示 すような抵抗が低!ヽ状態が維持される。
[0380] しかし、今度は、上部電極 6207に負の電圧を印加すると、(4)に示すように、—0. 5V程度まで負の電流が流れ、最大—1. 5 X 10— 3AZcm2になる。ここで、 0〜一 0. 5 Vの電圧を印加している場合は、(4)に示すように、抵抗の低い状態が維持される。
[0381] この後、 0. 5Vから 1. 6Vに負の電圧を印加していくと、(5)〖こ示すように、電 流値が減少して負の電流が流れなくなる。この後、—1. 6Vから OVの電圧の絶対値 を小さくしていっても、(6)に示すようにほとんど電流が流れない。さらに、続いて上部 電極 6207に負の電圧を印加すると、(6)に示すようにように、ほとんど電流値が流れ な ヽ軌跡を示すようになる。
[0382] さらに続いて、上部電極 6207に正の電圧を印加すると、 (1)に示すように、 0〜1.
6V程度まで、ほとんど電流が流れない軌跡を示すようになる。さらに、 1. 6V以上の 電圧を印加すると、(2)に示す急激な正の電流が流れ、(3)に示す低抵抗を示す状 態となる。
[0383] 従って、(2)のように急激に電流が流れないように上部電極 6207に 1. 6V以上の 電圧を印加しなければ、(1)のような電流が流れない高抵抗の状態を維持することに なる。 (1)に示す状態を「正の高抵抗モード」と呼ぶことにする。
[0384] 例えば、(2)に示すように 1. 6V以上の電圧を印加し、急激な電流が流れる状態と すると、(3)のような電流が流れやすくなる低抵抗の状態になる。この状態も、上部電 極 6207に正の電圧を印加している間は維持される。(3)に示す状態を「正の低抵抗 モード」と呼ぶことにする。
[0385] し力し、上部電極 6207に負の電圧を印加すると、(4)〖こ示すように、負の 0〜一 0.
5Vの電圧領域で、初期に少量の電流が流れる低抵抗の状態になる。ここでも、 0か ら 0. 5Vの間で負の電圧を印加している間、この状態が維持されるので、(4)に示 す状態を「負の低抵抗モード」と呼ぶことにする。
[0386] さらに、 0. 5Vを超える負の電圧を印加すると、(5)に示すように電流が流れなく なり、高抵抗な状態に移行する。この状態になると、 (6)に示すように、負の 0〜一 1. 6Vの電圧領域で電圧を印加している間、電流値が高抵抗の状態が維持される。こ の(6)に示される状態を、「負の高抵抗モード」と呼ぶことにする。
[0387] 以上より、図 62で示す金属酸化物層を用いた素子では、「正の高抵抗モード」、「 正の低抵抗モード」、「負の高抵抗モード」、「負の低抵抗モード」の見かけ上 4つのモ ードが安定して存在することになる。詳細に調べると、「正の高抵抗モード」と「負の高 抵抗モード」は、同じ高抵抗の状態を示す「高抵抗モード」であり、「正の低抵抗モー ド」と「負の低抵抗モード」は、同じ低抵抗の状態を示す「低抵抗モード」であり、 2つ のモードが存在していことが判明した。つまり、「高抵抗モード」の状態にあるとき、 - 1. 6Vから + 1. 6Vの電圧領域で「高抵抗モード」が維持される。 + 1. 6V以上の電 圧を印加することで遷移した「低抵抗モード」の状態にあるときは、 0. 5Vから + 0. 5Vの電圧領域で「低抵抗モード」が維持される。これらの 2つの「高抵抗モード」と「低 抵抗モード」とが切り替わることになる。これらは、「負の高抵抗モード」及び「負の低 抵抗モード」の負の抵抗モードについても、同様である。
[0388] また、各「正のモード」の実際の電流値は、 0. 5V印加時に、「正の高抵抗モード」 で 5. 0 X 10— 6AZcm2であり、「正の低抵抗モード」で 5 X 10— 3AZcm2であることから 、各々の比は、 1000倍にも達する。このことは、容易なモードの識別を可能にするも のである。発明者らは、印加する電圧の向きと強さにより、金属酸化物層 6205の抵 抗値が劇的に変化することで、上述した現象が発現するものと推定している。同様な ことは、「負の低抵抗モード」についてもいえる。
[0389] また、金属酸ィ匕物層 6205と上部電極 6207の間に備えた絶縁層 6204により、絶縁 層 6204の持つバンド構造から、キャリアの制御が可能である。具体的には、例えば、 五酸化タンタルは、バンドギャップは 4. 5eV程度である力 フェルミレベルからのエネ ルギー差を見た場合、伝導帯には 1. 2eV程度、価電子帯には 2. 3eVと価電子帯側 にバリアが高いことが知られている。従って、価電子帯のホール (正孔)に対してはバ リア性が高いが、伝導帯のエレクトロン (電子)に対してはノリア性が低いと言うことに なる。詳しくは、「ウィルクらのジャーナル'ォブ 'アプライド 'フイジタス、第 87号、 484 頁、 2000年、 (Wilk et. al., J.Appl.Phys.,87,484(2000).」を参考にされたい。
[0390] 上述した図 64に示す「低抵抗モード」と「高抵抗モード」のモードをメモリ動作として 応用することで、図 62に示す素子が、不揮発性で非破壊のメモリとして使用できるこ とを見いだした。具体的には、まず、素子の初期化とデータの消去、つまり、データ「o ff」の書き込みは、図 64の(4)又は(5)に示すように、上部電極 6207に負の電圧を 印加することで、「低抵抗モード」から「高抵抗モード」にモード変更することにより行 えばよい。
[0391] また、データ「on」の書き込みは、図 64の(2)に示すように、上部電極 6207に正の 電圧を 1. 6V以上印加して電流が急激に流れるようにすることで行えばよい。このこと で、「高抵抗モード」から「低抵抗モード」にモード変換してデータ「on」の書き込みが 行われる。 これらのように、上部電極 6207への電圧印加により、「高抵抗モード」か 「低抵抗モード」にすることによって「off」又は「on」のデータ (状態)を書き込むことが 可能である。
[0392] 一方、以上のようにして書き込まれたデータの読み出しは、上部電極 6207に、 0〜 1. 6Vの適当な電圧を印加したときの電流値を読み取ることで容易に行うことができ る。例えば、図 62に示す素子のモード状態力 「off」言い換えると「高抵抗モード」で ある場合、図 64の(1)に示すように 0. 5〜1. 6Vの適当な電圧印加時に電流が流れ 難いことにより判断できる。
[0393] また、図 62に示す素子のモード状態力 「on」言 、換えると「低抵抗モード」である 場合、図 64の(2)に示すように、 1〜0. 6Vの適当な電圧印加時に電流が急激に流 れることにより判断できる。「高抵抗モード」と「低抵抗モード」、つまり、「off」と「on」の 状態の電流値は、 1000倍以上もあることから、「off」と「on」の判断力、容易に可能 である。同様に、負の電圧領域においても、 0〜― 1. 6Vの電圧範囲で「on」と「off」 の判断が可能である。
[0394] 上述したメモリの読み出しの動作は、図 62に示す素子が「高抵抗モード」力「低抵 抗モード」かを調べるだけで容易に行える。言い換えれば、図 62に示す素子が、上 記 2つのモードを保持できている間は、データが保持されている状態である。さらに、 どちらかのモードかを調べるために、電極に正の電圧を印加しても、保持しているモ ードは変化することなくデータが破壊されてしまうことはない。従って、図 62に示す機 能素子によれば、非破壊の読み出しが可能である。図 62に示す素子は、金属酸ィ匕 物層 6205力 下部電極層 6203と上部電極 6207との間に印加された電圧により抵 抗値が変化することにより、不揮発メモリ素子として機能するものである。なお、本素 子は、電流を制御するスィッチ素子としても用いることができる。
[0395] 図 62に示す素子を動作させるための電圧は、「正の低抵抗モード」にするための書 き込み時に最大になる力 図 64に示すように、高々 1. 6V程度であり、非常に消費電 力が小さい。消費電力が小さいと言うことは、デバイスにとって非常に有利になり、例 えば、移動体通信機器,デジタル汎用機器,デジタル撮像機器を始め、ノートタイプ のパーソナルコンピュータ,パーソナル'デジタル'アプライアンス (PDA)のみならず 、全ての電子計算機,パーソナルコンピュータ,ワークステーション,オフィスコンビュ ータ,大型計算機や、通信ユニット,複合機などのメモリを用いている機器の消費電 力を下げることが可能となる。なお、図 62に示す素子を用いたメモリにおいても、 10 年の保持期間を有している。
[0396] ところで、上述した本発明の例では、シリコンカゝらなる基板上の絶縁層、絶縁層上の 下部電極層、下部電極層上の絶縁層、絶縁層上の金属酸化物層,金属酸化物層上 の絶縁層の各々を ECR^パッタ法で形成するようにした。し力しながら、これら各層の 形成方法は、 ECRスパッタ法に限定するものではない。例えば、シリコン基板の上に 形成する絶縁層は、熱酸化法や化学気相法 (CVD法)、また、従来のスパッタ法など で形成しても良い。
[0397] また、下部電極層は、 EB蒸着法、 CVD法、 MBE法、 IBD法などの他の成膜方法 で形成しても良い。また、下部電極層上の絶縁層は、 ALD法, MOCVD法,従来よ りあるスパッタ法で形成してもよい。金属酸化物層も、上記で説明した MOD法や従 来よりあるスパッタ法、 PLD法及び MOCVD法などで形成することができる。ただし、 ECRスパッタ法を用いることで、平坦で良好な絶縁膜、金属膜、強誘電体などの金 属酸化物膜が容易に得られる。
[0398] また、上述した実施の形態では、各層を形成した後、ー且大気に取り出して 、たが 、各々の ECR^パッタを実現する処理室を、真空搬送室で連結させた装置を用いる ことで、大気に取り出すことなぐ連続的な処理により各層を形成してもよい。これらの ことにより、処理対象の基板を真空中で搬送できるようになり、水分付着などの外乱 の影響を受け難くなり、膜質と界面の特性の向上につながる。
[0399] 「特開 2003— 77911号公報」に示されているように、各層を形成した後、形成した 層の表面に ECRプラズマを照射し、特性を改善するようにしてもよい。また、各層を 形成した後に、水素雰囲気中などの適当なガス雰囲気中で、形成した層をァニール (加熱処理)し、各層の特性を大きく改善するようにしてもよい。
[0400] ところで、素子を並べて複数のデータを同時にメモリ蓄積することを「集積」と呼び、 集積する度合いを集積度と呼ぶが、図 62の構造は、非常に単純であり、従来のメモ リセルに比較して、集積度を格段に上げることが可能となる。 MOSFETを基本技術 とした DRAMや SRAM、フラッシュメモリなどでは、ゲート,ソース, ドレインの領域を 確保する必要があるため、近年では、集積限界が指摘され始めている。これに対し、 図 62に示す素子によれば、単純な構造を用いることで、現在の集積限界に捕らわれ ずに集積度を高めることが可能となる。
[0401] また、以上の実施の形態では、印加した電圧は直流であった力 適当な幅と強さの パルス電圧を印加しても同様の効果は得られる。本発明の基本的な思想は、図 62に 示すように、絶縁層に金属酸ィ匕物層を接して配置し、これらを 2つの電極で挾むよう にしたところにある。このような構成とすることで、 2つの電極間に所定の電圧 (DC, パルス)を印カロして金属酸ィ匕物層の抵抗値を変化させ、安定な高抵抗モードと低抵 抗モードを切り替え、結果としてメモリ機能が実現可能となる。
[0402] 従って、例えば、図 65Aに示すように、絶縁性基板 6201aを用い、積層された下部 電極層 6203a, 6203bを用!ヽるよう【こしてもよ!ヽ。また、また、図 65B【こ示すよう【こ、 絶縁性基板 620 laを用い、下部電極層 6203にコンタクト電極 6203cを設けるように してもよい。また、図 65Cに示すように、絶縁性基板 6201aを用い、積層された上部 電極 6207a, 6207bを用!ヽるよう【こしてちょ!ヽ。さら【こ、図 65D【こ示すよう【こ、積層さ れた下咅電極層 6203a, 6203bと積層された上咅電極 6207a, 6207bとを用!/、るよ うにしてもよい。
[0403] また、図 66Aに示すように、ガラスや石英力もなる絶縁性の基板 6601を用いるよう にしてもよい。この場合、図 66Bに示すように、基板 6601に貫通孔形成してここにプ ラグを設け、基板 6601の裏面(下部電極層 6203の形成面の反対側)より電気的コ ンタクトをとるようにしてもよい。この構造とすることによって、加工しやすいガラス基板 などへの適用が可能となる。また、金属酸ィ匕物層 6205は、波長 632. 8nmで測定し たときの屈折率が 2. 6程度で光学的に透明であるため、図 66A及び図 66Bに示す 構成とすることで、ディスプレイへの応用が可能となる。また、金属酸化物層 6205を、 10〜200nmの間で干渉色を発する厚さに形成することで、着色した状態の視覚効 果が得られる。
[0404] さらに、図 67Aに示すように、金属などの導電性を有する基板 6701を用いるように してもよい。また、図 67Bに示すように、基板 6701の上に接して下部電極層 6702を 備え、この上に絶縁層 6703,金属酸化物層 6704,絶縁層 6705,及び上部電極 67 06を設けるようにしてもよい。図 67Bに示す構成とした場合、基板 6701と上部電極 6 706との間に所定の電気信号を印加することが可能となる。
[0405] また、図 68〖こ示すよう〖こ、金属板 6801の上に、絶縁層 6802,金属酸化物層 6803 ,絶縁層 6804,及び上部電極 6805を設けるようにしてもよい。この構成とした場合、 金属板 6801が、下部電極層となる。図 68に示す構造にすることによって、熱伝導性 のよ ヽ金属板 6801の上に各構成要素が形成されて ヽるので、より高 ヽ冷却効果が 得られ、素子の安定動作が期待できる。
[0406] なお、金属酸化物層は、膜厚が厚くなるほど電流が流れにくくなり抵抗が大きくなる 。抵抗値の変化を利用してメモリを実現する場合、オン状態とオフ状態の各々の抵抗 値が問題となる。例えば、金属酸化物層の膜厚が厚くなると、オン状態の抵抗値が大 きくなり、 SZN比がとりに《なり、メモリの状態を判断しに《なる。一方、金属酸ィ匕 物層の膜厚が薄くなり、リーク電流が支配的になると、メモリ情報が保持しにくくなると 共に、オフ状態の抵抗値が大きくなり、 SZN比がとりにくくなる。
[0407] 従って、金属酸化物層は、適宜最適な厚さとした方がよい。例えば、リーク電流の 問題を考慮すれば、金属酸化物層は、最低 lOnmの膜厚があればよい。また、オン 状態における抵抗値を考慮すれば、金属酸ィ匕物層は 200nmより薄くした方がよい。 発明者らの実験の結果、金属酸ィ匕物層の厚さが 30〜: LOOnmであれば、メモリの動 作が確認され、最も良好な状態は、金属酸ィ匕物層の厚さを 50nmとしたときに得られ た。
[0408] 同様に、下部電極層の上の絶縁層においても、より好適な膜厚が存在する。具体 的には、 ECRスパッタ法を用いて形成する場合、膜厚が薄いとリーク電流が多く流れ 電流密度が高くなる。これに対し、膜厚が厚くなると、電流密度は小さくなる。従って、 膜厚があまり薄いと、絶縁層としての特性が得られず、膜厚が厚い場合、金属酸化物 層に印加される電圧が小さくなり、 SZN比がとりに《なり、メモリの状態が判断しにく くなることを示している。上述したように、絶縁層は、金属酸化物層との組み合わせに おいて、適宜最適な厚さとした方がよい。
[0409] 例えば、リーク電流の問題を考慮すれば、 SiO膜を用いる場合は、膜厚が l〜3n
2
m程度がよい。 Ta O膜の場合は、 3nm〜5nmの膜厚があればよい。一方、抵抗値
2 3
の大きさの問題を考慮すれば、絶縁層は 20nmより薄くした方がよい。発明者らの実 験の結果、 SiOと Ta Oから構成された絶縁層の場合、膜厚が 3〜5nmであれば、
2 2 3
前述したメモリの動作が確認された。
[0410] 上述では、 1つの機能素子を例にして説明した力 以降に説明するように、複数の 機能素子を配列させて集積させるようにしてもよい。例えば、図 69Aに示すように、絶 縁性基板 6901の上に、共通となる下部電極層 6902,絶縁層 6903,金属酸化物層 6904,絶縁層 6905を形成し、絶縁層 6905の上に、各々所定距離離間して複数の 上部電極 6906を形成すればよい。複数の上部電極 6906に対応して複数の機能素 子が配列されたことになる。
[0411] 金属酸ィ匕物層 6205や絶縁層 6903, 6905は、金属などの導電体に比べて導電性 が非常に小さいので、上述したように共通に使用することができる。この場合、加工プ 口セスを省くことができるので、生産性の向上が図れ、工業的に利点が大きい。また、 複数の上部電極 6906に対応する機能素子間の距離を導電性などを考慮して配置 することで、安定した動作が期待できる。
[0412] また、図 69Bに示すように、絶縁性基板 6901の上に、共通となる下部電極層 6902 を形成し、下部電極層 6902の上に、絶縁層 6913,金属酸ィ匕物層 6914,絶縁層 69 15,及び上部電極 6916からなる複数の素子を配列させるようにしてもよい。例えば、 形成した金属酸化物膜を、 RIE法や ICPエッチング、また ECRエッチングなど加工法 を用いることで、個々の金属酸ィ匕物層 6914が形成できる。このように分離して構成 することで、素子間の距離をより短くすることが可能となり、集積度をさらに向上させる ことができる。
[0413] また、図 69Cに示すように、絶縁性基板 6901の上に、共通となる下部電極層 6902 ,絶縁層 6903を形成し、この上に、金属酸ィ匕物層 6914,絶縁層 6915,及び上部 電極 6916からなる複数の素子を配列させるようにしてもよい。さらに、図 69Dに示す ように、各々の素子を構成している絶縁層 6913,金属酸ィ匕物層 6914,及び絶縁層 6915の側面を、絶縁側壁 6917で覆うようにしてもよい。また、図 69 (e)に示すように 、絶縁性基板 6901の上に、共通となる下部電極層 6902,絶縁層 6903を形成し、こ の上に、金属酸化物層 6914,絶縁層 6915,及び上部電極 6916からなる複数の素 子を配列させ、各々の素子を構成している金属酸ィ匕物層 6914の側面を、絶縁側壁 6918で覆うよう【こしてもよ!ヽ。
[0414] また、図 70に示すように、絶縁性基板 6901の上に、共通となる下部電極層 6902 を形成し、下部電極層 6902の上に、絶縁層 6913,金属酸ィ匕物層 6914,絶縁層 69 15,及び上部電極 6916からなる複数の素子を配列させ、各々分離している複数の 金属酸ィ匕物層 6914の側部を充填するように、絶縁層 6926を形成してもよい。これら のように、素子毎に分離して形成した複数の金属酸化物層 6914の間を、絶縁体で 覆うようにすることで、各素子間のリーク電流を減らして機能素子の安定性を高めるこ とがでさる。
[0415] また、複数の機能素子を X方向に n個、 Y方向に m個配列し、 X方向バスを下部電 極層に接続し、 Y方向バスを上部電極に接続し、 X方向バス及び Y方向バスの各々 に選択信号のスィッチ機能を備えたプロセッサユニットを接続することで、各素子にラ ンダムにアクセスが可能なメモリが実現できる。
[0416] ところで、金属酸ィ匕物層 6205における抵抗値の変化も、前述した素子と同様に、 電流により制御することも可能である。また、パルス電圧により、金属酸化物層 6205 の抵抗変化を制御できる。また、スィッチ素子として用いることもで可能である。
[0417] また、本実施の形態における金属酸ィ匕物層 6205を用いた図 62に示す素子によれ ば、下部電極層 6203と上部電極 6207との間に直流電圧を印加したときの電流ー電 圧特性が、図 71に示すように、正側の印加電圧を変化させることで異なる低抵抗状 態に変化する。これら各々の状態における読み出し電圧における電流値に対応し、 四角と丸と三角とで示す 3つの状態(3値)のメモリが実現できる。この場合、例えば、 読み出し電圧を 0. 5V程度とすることで、 3値のメモリが実現できる。なお、各状態に 遷移させる前には、—2Vの電圧を下部電極層 6203印加して高抵抗状態に戻して いる(リセット)。
[0418] 次に、図 1に示す素子の強誘電体層 104を室温(20〜24°C程度)で成膜した場合 について説明する。なお、ここでは、下部電極層 103は、 Pt— Tiから構成されている ものとする。このように形成された素子において、下部電極層 103と上部電極 105と の間に電源により電圧を印加し、電圧を印加したときの電流を電流計により観測する と、図 72に示す結果が得られた。印加電圧を OVより高くしていくと、はじめは、図 72 中の(1)に示すように正の高抵抗モードである力 印加電圧が 1. 6Vを超えると、(2) に示すように、急激な電流の流れが観測されるようになる。この後、一度電圧の印加 を停止してから、再び正の電圧を印加すると、 (3)に示すように、正の低抵抗モードと なる。
[0419] また、(3)に示す正の低抵抗モードにおいて、上部電極 105に負の電圧が印加さ れた状態とすると、(4)に示す負の低抵抗モードとなる。更に、上部電極 105に負の 電圧が印加された状態とすると、 0. 8Vを超える電圧が印加された時点より、(5)に 示す遷移状態となり、急激に抵抗値が上昇する。この状態を経た後、(6)の負の高抵 抗モードとなる。これら(1)〜 (6)の状態が繰り返し観測される。
[0420] 前述同様の EC パッタ法により低温で形成された強誘電体層 104を透過型電子 顕微鏡により観察すると、図 73の観察結果に示すように、膜全体がアモルファスの状 態となつていることが確認される。また、膜の全体に、粒径 3〜: LOnm程度の複数の微 粒子が分散されている状態が確認される。ただし、 lOnm程度の部分は、より微細な 複数の微粒子の集合体とも考えられる。この微粒子は、ビスマスの組成がチタンや酸 素に比較して多くなつていることも確認されている。このような状態は、 ECR^パッタ 法により形成された金属酸ィ匕物薄膜の特徴であり、成膜過程の薄膜に ECRプラズマ が照射されていることで、成膜表面の原子におけるマイグレーションが促進されるた めと考えられる。
[0421] 次に、図 1に示す素子の強誘電体層 104を 150°C程度で成膜した場合について説 明する。なお、ここでは、下部電極層 103は、 Pt— Tiから構成されているものとし、基 板 101は、プラスチックより構成されたものとする。このように形成された素子において 、下部電極層 103と上部電極 105との間に電源により電圧(上部電極 105に負)を印 加し、電圧を印加したときの電流を電流計により観測すると、図 74に示す結果が得ら れた。はじめは、図 74中の(1)に示すように負の高抵抗モードである力 印加電圧が 2Vを超えると、(2)に示すように、急激な電流の流れが観測されるようになる。この 後、一度電圧の印加を停止してから、今度は正の電圧を印加すると、(3)に示すよう に、負の低抵抗モードとなる。
[0422] また、(3)に示す負の低抵抗モードにおいて、上部電極 105に正の電圧が印加さ れた状態とすると、(4)に示す正の低抵抗モードとなる。更に、上部電極 105に正の 電圧が印加された状態とすると、 0. 8Vを超える電圧が印加された時点より、(5)に示 す遷移状態となり、急激に抵抗値が上昇する。この状態を経た後、(6)に示す正の高 抵抗モードとなる。これら(1)〜 (6)の状態が繰り返し観測される。上述した各条件に おいては、強誘電体層 104はほぼ透明な状態であり、基板に透明な材料を用い、ま た、各電極を ITOなどの透明電極カゝら構成すれば、光学的に透過性を有する素子が 構成できる。
[0423] 次に、図 31に示す素子の強誘電体層 3104を 450°C程度で成膜した場合につい て説明する。なお、ここでは、下部電極層 3103は、 Ru力も構成されているものとする 。このように形成された素子において、下部電極層 3103と上部電極 3106との間に 電源により電圧(上部電極 3106に負)を印加し、電圧を印加したときの電流を電流計 により観測すると、図 75に示す結果が得られた。はじめは、図 75中の(1)に示すよう に負の高抵抗モードである力 印加電圧がー 3Vを超えると、(2)に示すように、急激 な電流の流れが観測されるようになる。この後、今度は正の電圧を印加すると、 (3)に 示すように、負の低抵抗モードとなる。
[0424] また、(3)に示す負の低抵抗モードにおいて、上部電極 3106に正の電圧が印加さ れた状態とすると、(4)に示す正の低抵抗モードとなる。更に、上部電極 3106に正 の電圧が印加された状態とすると、 9Vを超える電圧が印加された時点より、(5)に示 す遷移状態となり、急激に抵抗値が上昇する。この状態を経た後、(6)に示す正の高 抵抗モードとなる。これら(1)〜 (6)の状態が繰り返し観測される。
[0425] 上述の図 75に特性を示した素子における記憶保持特性を以下に説明する。図 76 に示すよう〖こ、はじめに、高抵抗モードの状態では、上部電極 3106〖こ 0. 5Vの正の 電圧が印加されると、 10— bA程度の電流値が観測される状態である。この状態に対し 、上部電極 3106に— 4Vを超える負の電圧が印加された状態とすると、 2 Χ 10—3Α程 度の電流が流れる低抵抗モードとなる。上記素子によれば、この低抵抗モード力 図 76に示すように、外挿直線から 10年を超える安定性を備えていることがわかる。
[0426] 次に、図 1に示す素子の強誘電体層 104を 430°C程度で成膜した場合について説 明する。なお、ここでは、下部電極層 103は、 Ru力も構成され、上部電極 105は、下 層がチタン上層が白金力も構成されているものとする。このように形成された素子に おいて、下部電極層 103と上部電極 105との間に電源により電圧を印加し、電圧を 印加したときの電流を電流計により観測すると、図 77に示す結果が得られた。印加 電圧を OVより高くしていくと、はじめは、図 77中の(1)に示すように正の高抵抗モー ドである力 印加電圧が 2. 5Vを超えると、(2)に示すように、急激な電流の流れが観 測されるようになる。この後、一度電圧の印加を停止してから、再び正の電圧を印加 すると、(3)に示すように、正の低抵抗モードとなる。
[0427] また、(3)に示す正の低抵抗モードにおいて、上部電極 105に負の電圧が印加さ れた状態とすると、(4)に示す負の低抵抗モードとなる。更に、上部電極 105に負の 電圧が印加された状態とすると、 1. 8Vを超える電圧が印加された時点より、(5)に 示す遷移状態となり、急激に抵抗値が上昇する。この状態を経た後、(6)の負の高抵 抗モードとなる。これら(1)〜 (6)の状態が繰り返し観測される。
[0428] 次に、上述した強誘電体層 104や強誘電体層 3104などの金属酸ィ匕物層において 、 2つの状態が保持されることについて考察する。図 7C,図 7c及び図 73に示した状 態が観察される金属酸ィ匕物層においては、図 78に示すように、分散されている複数 の微粒子 7801の間に、実線で模式的に示す導電パス 7802が形成されるために、 低抵抗モードが発現するものと考えられる。導電パス 7802としては、ナノサイズの微 粒子 7801の間の量子トンネリングゃ、正孔.電子のホッピング、もしくは、酸素欠損な どに起因するものが考えられる。導電パス 7802は、 1本だけ形成される場合もあるが 、多くの場合は、複数本が形成されるものと考えられる。ある程度の数の導電パス 78 02が形成されている場合は、電圧を印加している電極間の抵抗値は低下し、図 79 に示す低抵抗モードとなる。 [0429] また、図 80に示すように、印加する電圧の極性を変えると、導電パス 7802の一部 が消失し、もしくは、すべての導電パス 7802が消失し、電極間の抵抗値が急激に増 加し、図 81に示すように、低抵抗モードより高抵抗モードに遷移する。この高抵抗モ ードの状態で、電極間に電流が流れるだけの電圧が印加された状態とすると、図 82 に示すように、再び複数の導電パス 7802が形成されるようになる。このことにより、図 83に示すように、電流が急激に流れるようになり、低抵抗モードへと変化する。
[0430] ところで、上述では、異なる極性の電圧印加により高抵抗状態と低抵抗状態とを切 り替えるようにしていた力 これに限るものではなぐ以降に説明するように、同一の極 性で異なる電圧を印加することによつても、高抵抗状態と低抵抗状態との切り替えが 可能である。なお、以下の状態は、金属酸ィ匕物の層を 450°Cで成膜した場合である 。例えば、図 84に示すように、(1)に示す負の低抵抗状態より、 - 3. 5Vを超える電 圧が上部電極に印加されると、(2)に示すように、急激な電流の流れが生じる。この 後再び負の電圧が印加されると、(3)に示す負の低抵抗状態となり、この状態が維持 されるようになる。
[0431] この負の低抵抗状態に IVを超える負の電圧が印加される状態とすると、遷移状 態が起こり、(5)に示す負の高抵抗状態となり、 3. 5Vを超えない電圧ではこの状 態が維持される。更に、 - 3. 5Vを超える電圧が印加されると、(6)に示す急激な電 流の流れが発生し、負の低抵抗状態となる。なお、印加する電圧の方向(印加する電 極)を変えれば、上述した各電圧が正の値の場合で上述同様の状態が得られる。
[0432] また、同一極性の電圧印加において、パルス駆動も可能である。図 85に示すように 、 一 0. IVの観測電圧で素子の状態を確認すると、 10— 8A程度の高抵抗状態であり、 -0. IVの観測電圧で 4回観測しても、高抵抗状態が維持されている。この状態で、 白抜きの矢印で示すように、 - 5. OV, 500 μ , 1回のパルス電圧を印加し、 -0. IVの観測電圧で測定すると、 10— 4Α程度の電流が観測され、低抵抗状態となってい ることがゎカゝる。この状態で、再度 0. IVの観測電圧で 4回観測しても、低抵抗状 態が維持されている。更に、この状態において、黒で塗りつぶされた矢印に示す 3. 0 V,: 秒, 10回のパルス電圧を印加し、 -0. IVの観測電圧で観測すると、 10"9Α 程度の電流が観測され、高抵抗状態となっていることがわかる。同様に適当なノ ルス 電圧を印加することで、高抵抗と低抵抗の状態が繰り返し観測される。
[0433] 次に、本発明の他の実施の形態について図を参照して説明する。図 86A及び図 8 6Bは、本発明の実施の形態における三端子素子の構成例を概略的に示す模式的 な断面図である。図 86A及び図 86Bに示す三端子素子は、例えば、単結晶シリコン 力らなる基板 8601の上に絶縁層 8602,ゲート電極 8603, Biと Tiと Oとから構成さ れた膜厚 10〜200nm程度の金属酸化物層 8604,ソース電極 8605, ドレイン電極 8606を備えるようにしたものである。このような構成とした三端子素子において、例え ば、図 86Aに示すように電位が印加されている状態を書き込み状態とし、図 86Bに 示すように、電位が印加されている状態を読み出し状態とする。
[0434] 基板 8601は、半導体,絶縁体,金属などの導電性材料のいずれから構成されて いてもよい。基板 8601が絶縁材料力も構成されている場合、絶縁層 8602はなくても よい。また、基板 8601が導電性材料力ら構成されている場合、絶縁層 8602,ゲート 電極 8603はなくてもよぐこの場合、導電性材料力も構成された基板 8601が、ゲー ト電極となる。ゲート電極 8603,ソース電極 8605,及びドレイン電極 8606は、例え ば、白金 (Pt)、ルテニウム (Ru)、金 (Au)、銀 (Ag)などの貴金属を含む遷移金属の 金属から構成されていればよい。また、上記電極は、窒化チタン (TiN)、窒化ハフ- ゥム(HfN)、ルテニウム酸ストロンチウム(SrRuO )、酸化亜鉛 (ZnO)、鉛酸スズ(IT
2
0)、フッ化ランタン (LaF )などの遷移金属の窒化物や酸ィ匕物やフッ化物等の化合
3
物、さらに、これらを積層した複合膜であってもよい。
[0435] 図 86A及び図 86Bに示した三端子素子の構成の具体例について説明すると、例 えば、ゲート電極 8603は、膜厚 10nmのルテニウム膜であり、金属酸化物層 8604は 、膜厚 40nmの Biと Tiとカゝらなる金属酸ィ匕物カゝら構成されたものであり、ソース電極 8 605及びドレイン電極 8606は、金から構成されたものである。金属酸化物層 8604は 、層の状態,電気的特性,及び電気的初期化の観点など、様々な特性が前述した強 誘電体層 104,強誘電体層 3104,強誘電体層 4705,及び金属酸化物層 6205と 同様である。また、ソース電極 8605とドレイン電極 8606との間隔は、例えば、 lmm である。なお、前述したように、基板 8601及び絶縁層 8602の構成は、これに限るも のではなぐ電気特性に影響を及ぼさなければ、他の材料も適当に選択できる。 [0436] 次に、本発明に係る三端子素子を構成する金属酸化物層 8604について、より詳 細に説明する。金属酸化物層 8604は、前述した強誘電体層 104や金属酸化物層 6 205などと同様に、 Bi Ti O の化学量論的組成に比較して過剰なチタンを含む層か
4 3 12
らなる基部層の中に、 Bi Ti O の結晶からなる粒径 3〜15nm程度の複数の微結晶
4 3 12
粒や微粒子が分散されて構成されたものである。基部層は、ビスマスの組成がほぼ 0 となる TiOの場合もある。言い換えると、基部層は、 2つの金属から構成されている金 属酸ィ匕物にぉ 、て、 V、ずれかの金属が化学量論的な組成に比較して少な 、状態の 層である。
[0437] このような金属酸ィ匕物層 8604を用いた三端子素子によれば、以降に説明するよう に、 2つの状態(ON及び OFF)が保持される状態が実現できる。図 86A及び図 86B に示す三端子素子の特性について説明する。この特性は、ゲート電極 8603とソース 電極 8605及びドレイン電極 8606との間に電圧を印加することで調査されたもので ある。ゲート電極 8603とソース電極 8605及びドレイン電極 8606との間に電源により 電圧を印加し、ゲート電極 8603からソース電極 8605及びドレイン電極 8606へ流れ る電流を電流計により観測すると、図 86Cに示す結果が得られた。なお、図 86Cの縦 軸は、ゲート電極 8603からソース電極 8605及びドレイン電極 8606へ流れる方向の 電流値を正としている。
[0438] 以下、図 86Cを説明し、あわせて本発明における三端子素子の動作原理を説明す る。ただし、ここで説明する電圧値や電流値は、実際の素子で観測されたものを例と している。従って、本現象は、以下に示す数値に限るものではない。実際に素子に用 いる膜の材料や膜厚、及び他の条件により、他の数値が観測されることがある。
[0439] 図 86Cは、ゲート電極 8603に印加する電圧(ゲート電圧)をゼロ力 負の方向に減 少させた後にゼロに戻し、さらに正の方向に増カロさせ、最後に再びゼロに戻したとき に金属酸ィ匕物層 8604を流れる電流値が描くヒステリシスの特性を表して 、る。まず はじめに、ゲート電極 8603によりゲート電圧を 0Vから負の方向に徐々に印加させた 場合、金属酸ィ匕物層 8604を流れる負の電流は比較的少ない(一 0. IVで約— 0. 1 2mA程度)。
[0440] しかし、 0. 4Vを超えると負の電流値が増加し始める。さらに一 IVまで電圧を下 げた後、逆に負の電圧を小さくしていくと、先ほどよりも絶対値が大きな負の電流が流 れる状態が保持されたまま、負の電流値は減少していく。このとき、電流値は— 0. 1 Vで約 0. 63mAであり、先ほどよりも 5倍程度抵抗値が低ぐ電流が流れやすい状 態である。印加するゲート電圧をゼロに戻すと、電流値もゼロとなる。
[0441] 次にゲート電極 8603に正のゲート電圧を印加していく。この状態では、正のゲート 電圧が小さいときは、前の履歴を引き継ぎ、比較的大きな正の電流が流れる(0. IV で約 0. 63mA) oところが、 0. 7V程度まで正のゲート電圧を印加すると、正の電流 が突然減少する。最後に、 + IV力 OVに向かって印加する正のゲート電圧を減少 させると、正の電流値もこの流れにくい状態を保持したまま減少し、ゼロに戻る。この とき、正の電流値は、 0. 1 で約0. 12mA程度である。
[0442] 以上に説明したような、金属酸ィ匕物層 8604中を流れる電流のヒステリシスは、ゲー ト電極 8603に印加するゲート電圧により金属酸ィ匕物層 8604の抵抗値が変化するこ とが原因で発現すると解釈できる。ある一定以上の大きさの負のゲート電圧 V を印
W1 加することにより、金属酸化物層 8604は電流が流れやすい「低抵抗状態」(ON状態 )に遷移する。一方、ある一定の大きさの正のゲート電圧 V を印加することにより、金
W0
属酸ィ匕物層 8604は電流が流れにくい「高抵抗状態」(OFF状態)に遷移すると考え られる。
[0443] 金属酸化物層 8604には、これらの低抵抗状態と高抵抗状態の 2つの安定状態が 存在し、各々の状態は、前述した一定以上の正あるいは負のゲート電圧を印加しな い限り、 ONもしくは OFFの各状態を維持する。なお、上述した V の値は約 + IV程
W0
度であり、 V の値 IV程度であり、高抵抗状態と低抵抗状態の抵抗比は約 10〜1
W1
00程度である。上記のような、ゲート電圧により金属酸ィ匕物層 8604の抵抗がスイツ チする現象を用いることで、図 86A及び図 86Bに示す三端子素子により、不揮発性 で非破壊読み出し動作が可能な機能素子が実現できる。
[0444] 次に、図 86A及び図 86Bに示す三端子素子を DC電圧を用いて動作させる場合に ついて説明する。まず、低抵抗遷移電圧 V 以上の大きさの負のゲート電圧を印加し
W1
、金属酸ィ匕物層 8604を低抵抗状態に遷移させる。このことにより、ソース'ドレイン間 に電流が流れ易くなる ON状態となる。この ON状態は、読み出し電圧 Vにおけるソ ース 'ドレイン間の電流銜 を観測することで読み出すことができる。読み出し Vとし
Rl R ては、状態が遷移しない程度のなるべく小さな値で、かつ抵抗比が十分に現れるよう な値を選択することが重要となる(上記の例では 0. IV程度が適当)。これにより、低 抵抗状態、すなわち ON状態を破壊することなぐ何回も読み出すことが可能となる。
[0445] 一方、高抵抗遷移電圧 V 以上の大きさの正のゲート電圧を印加することにより、金
W0
属酸ィ匕物層 8604を高抵抗状態に遷移させることで、ソース'ドレイン間に電流が流 れ難くなる OFF状態にできる。この OFF状態の読み出しも、読み出し電圧 Vにおけ
R
るソース'ドレイン間の電流街 を観測することにより行うことができる (J Λ 10〜
R0 Rl R0
100)。また、各電極間に通電がない状態では、金属酸化物層 8604は各状態を保 持するため不揮発性を有しており、書き込み時と読み出し時以外には、電圧を印加 する必要はない。なお、本素子は、電流を制御するスィッチ素子としても用いることが できる。
[0446] 次に、ゲート電極 8603により異なるゲート電圧を印加したときにソース電極 8605と ドレイン電極 8606との間に流れる電流(ソース'ドレイン電流)の変化について示す。 図 87に示すように、ゲート電圧として + IVを印加して OFF状態とした後では、ソース 'ドレイン間に印加する読み出し電圧が 0〜0. 15Vの範囲で、ソース'ドレイン電流は ほとんど流れない。一方、ゲート電圧として IVを印加して ON状態とした後では、ソ ース'ドレイン間に印加する読み出し電圧を 0Vカゝら 0. 15Vへと高くすると、これにほ ぼ比例して、ソース'ドレイン電流がより多く流れるようになる。 ON状態では、 0. 15V で約 0. 5mAのソース'ドレイン電流が観測される。このように、図 86A及び図 86Bに 示す三端子素子によれば、ゲート電圧によるソース'ドレイン電流の制御が可能であ る。
[0447] また、上述した ON及び OFFの各状態は、図 88に示すように、正もしくは負のいず れかのゲート電圧を一回だけ印加することで、対応する ONもしくは OFFのいずれか の状態に遷移し、この状態が維持される。なお、図 88は、ゲート電極 8603に + IV 又は IVを印加した後に、ソース電極 8605及びドレイン電極 8606の間に読み出し 電圧として 0. 15Vを印加したときの、ソース'ドレイン間に流れる電流の変化を示して いる。 [0448] ここで、ソース電極 8605がオープンとされた状態で、ゲート電圧を印加して ON状 態及び OFF状態とした場合について説明する。この場合、ゲート電圧は、ゲート電極 8603とドレイン電極 8606との間〖こ印カロされること〖こなる。なお、状態の読み出しは、 ソース電極 8605とドレイン電極 8606との間〖こ 0. 2Vまでの読み出し電圧を印加した 状態で、ソース ·ドレイン間に流れる電流を測定することで行う。
[0449] 図 89に示すように、ゲート電圧として + IVを印加して OFF状態とした後に、ソース •ドレイン間に印加する読み出し電圧を 0Vカゝら 0. 2Vへと高くすると、ソース'ドレイン 間には、ある程度の電流が流れるようになる。読み出し電圧 0. 2Vにおいて、ソース' ドレイン間には約 0. 1mAの電流が流れる状態となる。これに対し、ゲート電圧として - IVを印加して ON状態とした後に、ソース'ドレイン間に印加する読み出し電圧を 0 Vから 0. 2Vへと高くすると、これにほぼ比例して、ソース'ドレイン電流がより多く流れ るよう〖こなる。 ON状態では、読み出し電圧 0. 2Vで約 0. 4mAのソース'ドレイン電流 が観測される。従って、ソース電極 8605がオープンとされた状態でゲート電圧を印 加しても、図 86A及び図 86Bに示す三端子素子は、 ON、 OFF動作をすることが可 能である。
[0450] ただし、ソース電極 8605がオープンとされた状態でゲート電圧を印加して OFF状 態とした場合、上述したように、読み出し電圧を大きくすると、ある程度ソース'ドレイン 間に電流が流れるようになる。ソース電極 8605がオープンとされた状態でゲート電圧 を印加する場合、印加された電圧はドレイン電極 8606の下部の領域により選択的に 作用するため、上述した結果が観測されるものと考えられる。これらの結果から、ソー ス 'ドレイン電流は、ソース電極 8605 ソース電極 8605の下の領域の金属酸化物 層 8604 ゲート電極 8603 ドレイン電極 8606の下の領域の金属酸化物層 8604 ドレイン電極 8606の経路を通り流れるものと考えられる。
[0451] なお、図 86A及び図 86Bに示した三端子素子における ON及び OFFの各状態保 持特性も、前述した例えば図 1に示す素子と同様に、少なくとも 1000分の保持時間 を有している。また、以上の説明では、印加したゲート電圧は直流であった力 適当 な幅と強さのパルス電圧を印加しても同様の効果は得られる。
[0452] 次に、図 86A及び図 86Bに示した三端子素子の製造方法例について説明する。 なお、以降では、 ECRプラズマスパッタ法を例に各薄膜の形成方法を説明している 力 これに限るものではなぐ他の成膜技術や方法を用いるようにしてもよいことは、 いうまでもない。
[0453] まず、図 90Aに示すように、主表面が面方位(100)で抵抗率が 1〜2 Ω— cmの p形 のシリコン力もなる基板 8601を用意し、基板 8601の表面を硫酸と過酸ィ匕水素水の 混合液と純水と希フッ化水素水とにより洗浄し、このあと乾燥させる。ついで、洗浄' 乾燥した基板 8601の上に、絶縁層 8602が形成された状態とする。絶縁層 8602の 形成では、例えば ECR^パッタ装置を用い、ターゲットとして純シリコン(Si)を用い、 プラズマガスとしてアルゴン (Ar)と酸素ガスを用いた ECR^パッタ法により、シリコン 力もなる基板 8601の上に、表面を覆う程度に Si— O分子によるメタルモードの絶縁 層 8602を形成する。
[0454] 例えば、 10— 5Pa台の内部圧力に設定されているプラズマ生成室内に流量 20sccm 程度で Arガスを導入し、内部圧力を 10— 3〜: LO— 2Pa程度にし、ここに、 0. 0875Tの磁 場と 2. 45GHzのマイクロ波(500W©度)とを供給して電子サイクロトロン共鳴条件と することで、プラズマ生成室内に Arのプラズマが生成された状態とする。なお、 sccm は流量の単位あり、 0°C ' l気圧の流体が 1分間に lcm3流れることを示す。また、 T (テ スラ)は、磁束密度の単位であり、 1T= 10000ガウスである。
[0455] 上述したことにより生成されたプラズマは、磁気コイルの発散磁場によりプラズマ生 成室より処理室の側に放出される。また、プラズマ生成室の出口に配置されたシリコ ンターゲットに、高周波電源より 13. 56MHzの高周波電力(例えば 500W)を供給 する。このことにより、シリコンターゲットに Arイオンが衝突してスパッタリング現象が起 こり、 Si粒子が飛び出す。シリコンターゲットより飛び出した Si粒子は、プラズマ生成 室より放出されたプラズマ、及び導入されてプラズマにより活性化された酸素ガスと共 にシリコンカゝらなる基板 8601の表面に到達し、活性化された酸素により酸化され二 酸ィ匕シリコンとなる。以上のことにより、基板 8601上に二酸ィ匕シリコン力もなる例えば lOOnm程度の膜厚の絶縁層 8602が形成された状態とすることができる(図 90A)。
[0456] なお、絶縁層 8602は、この後に形成する各電極に電圧を印加した時に、基板 860 1に電圧が洩れて、所望の電気的特性に影響することがな!、ように絶縁を図るもので ある。例えば、シリコン基板の表面を熱酸化法により酸化することで形成した酸化シリ コン膜を絶縁層 8602として用いるようにしてもよい。絶縁層 8602は、絶縁性が保て ればよぐ酸ィ匕シリコン以外の他の絶縁材料力も構成してもよぐまた、絶縁層 8602 の膜厚は、 lOOnmに限らず、これより薄くてもよく厚くてもよい。絶縁層 8602は、上 述した ECRスパッタによる膜の形成では、基板 8601に対して加熱はしていないが、 基板 8601を加熱しながら膜の形成を行ってもよい。
[0457] 以上のようにして絶縁層 8602を形成した後、今度は、ターゲットとして純ルテニウム
(Ru)を用いた同様の ECRスパッタ法により、絶縁層 8602の上にルテニウム膜を形 成することで、図 90Bに示すように、ゲート電極 8603が形成された状態とする。 Ru膜 の形成について詳述すると、 Ru力 なるターゲットを用いた ECRスパッタ装置におい て、例えば、まず、絶縁層を形成したシリコン基板を 400°Cに加熱し、また、プラズマ 生成室内に、例えば流量 7sccmで希ガスである Arガスを導入し、力!]えて、例えば流 量 5sccmで Xeガスを導入し、プラズマ生成室の内部を、例えば 10— 2〜: LO— 3Pa台の圧 力に設定する。
[0458] ついで、プラズマ生成室内に電子サイクロトロン共鳴条件の磁場を与え、この後、 2 . 45GHzのマイクロ波(例えば 500W)をプラズマ生成室内に導入し、プラズマ生成 室に Arと Xeの ECRプラズマが生成した状態とする。生成された ECRプラズマは、磁 気コイルの発散磁場によりプラズマ生成室より処理室側に放出される。また、プラズマ 生成室の出口に配置されたルテニウムターゲットに、 13. 56MHzの高周波電力(例 えば 500W)を供給する。このことにより、スパッタリング現象が起き、ルテニウムター ゲットより Ru粒子が飛び出す。ルテニウムターゲットより飛び出した Ru粒子は、基板 8 601の絶縁層 8602表面に到達して堆積する。
[0459] 以上のことにより、絶縁層 8602の上に、例えば 10nm程度の膜厚のゲート電極 86 03が形成された状態が得られる(図 90B)。ゲート電極 8603は、この後に形成するソ ース電極 8605及びドレイン電極 8606との間に電圧を印加した時に、金属酸化物層 8604に電圧が印加できるようにするものである。従って、導電性が持てればルテユウ ム以外力もゲート電極 8603を構成してもよぐ例えば、白金力もゲート電極 8603を 構成してもよい。ただし、二酸化シリコンの上に白金膜を形成すると剥離しやすいこと が知られている力 これを防ぐためには、チタン層ゃ窒化チタン層もしくはルテニウム 層などを介して白金層を形成する積層構造とすればよい。また、ゲート電極 8603の 膜厚も lOnmに限るものではなぐこれより厚くてもよく薄くてもよい。
[0460] ところで、上述したように ECR^パッタ法により Ruの膜を形成するときに、基板 860 1を 400°Cに加熱した力 加熱しなくても良い。ただし、加熱を行わない場合、ルテ- ゥムの二酸ィ匕シリコンへの密着性が低下するため、剥がれが生じる恐れがあり、これ を防ぐために、基板を加熱して膜を形成する方が望ま ヽ。
[0461] 以上のようにしてゲート電極 8603を形成した後、 Biと Tiの割合力 : 3の酸化物焼 結体 (Bi— Ti— O)力もなるターゲットを用い、プラズマガスとしてアルゴン (Ar)と酸素 ガスとを用いた ECR^パッタ法により、図 90Cに示すように、ゲート電極 8603の上に 、表面を覆う程度に、金属酸化物層 8604が形成された状態とする。
[0462] 金属酸化物層 8604の形成について詳述すると、まず、 300°C〜700°Cの範囲に 基板 8601が加熱されている状態とする。また、プラズマ生成室内に、例えば流量 20 sccmで希ガスである Arガスを導入し、例えば 10— 3Pa〜10— 2Pa台の圧力に設定する。 この状態で、プラズマ生成室に電子サイクロトロン共鳴条件の磁場を与え、この後、 2 . 45GHzのマイクロ波(例えば 500W)をプラズマ生成室に導入し、このマイクロ波の 導入により、プラズマ生成室に ECRプラズマが生成された状態とする。
[0463] 生成された ECRプラズマは、磁気コイルの発散磁場によりプラズマ生成室より処理 室側に放出される。また、プラズマ生成室の出口に配置された焼結体ターゲットに、 1 3. 56MHzの高周波電力(例えば 500W)を供給する。このことにより、焼結体ターゲ ットに Ar粒子が衝突してスパッタリング現象を起こし、 Bi粒子と Ti粒子が飛び出す。
[0464] 焼結体ターゲットより飛び出した Bi粒子と Ti粒子は、プラズマ生成室より放出された ECRプラズマ、及び、放出された ECRプラズマにより活性ィ匕した酸素ガスと共に、加 熱されているゲート電極 8603の表面に到達し、活性ィ匕された酸素により酸ィ匕される。 なお、反応ガスとしての酸素(O )ガスは、以降にも説明するように Arガスとは個別に
2
導入され、例えば、例えば流量 lsccmで導入されている。焼結体ターゲットは酸素を 含んでいるが、酸素を供給することにより堆積している膜中の酸素不足を防ぐことが できる。以上に説明した ECR^パッタ法による膜の形成で、例えば、膜厚 40nm程度 の金属酸化物層 8604が形成された状態が得られる(図 90C)。
[0465] なお、形成した金属酸化物層 8604に、不活性ガスと反応性ガスの ECRプラズマを 照射し、膜質を改善するようにしてもよい。反応性ガスとしては、酸素ガスに限らず、 窒素ガス,フッ素ガス,水素ガスを用いることができる。また、この膜質の改善は、絶 縁層 8602の形成にも適用可能である。また、基板温度を 300°C以下のより低い温度 条件として金属酸化物層 8604を形成した後に、酸素雰囲気中などの適当なガス雰 囲気中で、形成した金属酸化物層 8604をァニール (加熱処理)し、膜質の特性を大 きく改善するようにしてもょ 、。
[0466] 以上のようにして金属酸化物層 8604を形成した後、図 90Dに示すように、金属酸 化物層 8604の上に、所定の面積の Auからなるソース電極 8605及びドレイン電極 8 606が形成された状態とすることで、図 86A及び図 86Bに示す三端子素子が得られ る。ソース電極 8605及びドレイン電極 8606は、よく知られたリフトオフ法と抵抗加熱 真空蒸着法による金の堆積とにより形成できる。なお、ソース電極 8605及びドレイン 電極 8606は、例えば、 Ru、 Pt、 TiNなどの他の金属材料や導電性材料を用いるよう にしてもよい。なお、 Ptを用いた場合、密着性が悪く剥離する可能性があるので、 Ti — Pt— Auなどの剥離し難い構造とし、この上でフォトリソグラフィーゃリフトオフ処理 などのパター-ング処理をして所定の面積を持つ電極として形成する必要がある。 以上に説明した ECRスパッタによる各層の形成は、図 89に示したような ECRスパッ タ装置を用いればよい。
[0467] ところで、本実施の形態に係る三端子素子の構成例は、図 86A及び図 86Bに示し た素子に限るものではない。例えば、図 91に例示するように、絶縁層 8602の上にソ ース電極 8615及びドレイン電極 8616が形成され、ソース電極 8615及びドレイン電 極 8616が金属酸化物層 8604に覆われ、金属酸化物層 8604の上にゲート電極 86 13が形成された状態としてもよい。なお、当然ではあるが、図 92A及び図 92Bに示 すように、絶縁性基板 8601aを用いてもよぐこの場合、絶縁層 8602はなくてもよい 。また、導電性を有する基板を用い、この上に、図 86A及び図 86Bに示す金属酸ィ匕 物層 8604,ソース電極 8605,ドレイン電極 8606の構成を酉己置するよう【こしてもよ!/、 。この場合、基板がゲート電極を兼用することになる。 [0468] なお、上述では、単結晶シリコン力もなる基板 8601を用いるようにした力 ガラスや 石英などの絶縁性基板を用いるようにしてもよい。これらの構造とすること〖こよって、 加工しやすいガラス基板などへの適用が可能となる。また、金属酸ィ匕物層 8604は、 波長 632. 8nmで測定したときの屈折率が 2. 6程度で光学的に透明であるため、透 明な基板を用いることで、本実施の形態における三端子素子のディスプレイへの応 用が可能となる。また、金属酸化物層 8604を、 10〜200nmの間で干渉色を発する 厚さに形成することで、着色した状態の視覚効果が得られる。
[0469] なお、金属酸化物層は、膜厚が厚くなるほど電流が流れ難くなり抵抗が大きくなる。
抵抗値の変化を利用して三端子素子を実現する場合、低抵抗状態と高抵抗状態の 各々の抵抗値が問題となる。例えば、金属酸化物層の膜厚が厚くなると、低抵抗状 態の抵抗値が大きくなり、 SZN比がとり難くなり、 ON、 OFFの各状態を判断し難くな る。一方、金属酸ィ匕物層の膜厚が薄くなり、リーク電流が支配的になると、 ON、 OFF の各状態の保持し難くなると共に、高抵抗状態の抵抗値が小さくなり、 SZN比がとり 難くなる。
[0470] 従って、金属酸化物層は、適宜最適な厚さとした方がよい。例えば、リーク電流の 問題を考慮すれば、金属酸化物層は、最低 lOnmの膜厚があればよい。また、低抵 抗状態における抵抗値を考慮すれば、金属酸ィ匕物層は 300nmより薄くした方がよい 。発明者らの実験の結果、金属酸ィ匕物層の厚さが 30〜200nmであれば、三端子素 子の動作が確認されて 、る。
[0471] 上述では、 1つの金属酸ィヒ物素子を例にして説明した力 以降に説明するように、 複数の三端子素子をクロスポイント型に配列させて集積させるようにしてもよい。例え ば、図 93Aの断面図及び図 93Bの平面図に示す例では、基板 9301の上に絶縁層 9302を介してゲート電極となるワード線 9303が配置され、これらの上に、所定の間 隔で配列された島状の金属酸ィ匕物層 9304が配置され、各金属酸ィ匕物層 9304の上 には、複数のソース電極 9305,ドレイン電極 9306が配列されている。また、各金属 酸ィ匕物層 9304の上にお!、て、ワード線 9303と垂直な方向に配列されて!、るソース 電極 9305に共通してプレート線 9315が接続され、配列されているドレイン電極 930 6に共通してビット線 9316が接続されている。このように、本実施の形態における三 端子素子は、高集積ィ匕が可能である。また、図 93A及び図 93Bでは、各プレートもし くはビット線間の干渉を軽減するため、金属酸ィ匕物層 9304を各々離間させて配置し ているが、これに限るものではなぐ金属酸化物層が一体に形成されていてもよい。
[0472] また、図 86A及び図 86Bに示す三端子素子によれば、多値の動作も可能である。
例えば、ゲート電極 8603に直流のゲート電圧を印加したときの金属酸化物層 8604 における電流 電圧特性は、図 94に示すように、印加するゲート電圧を変化させると 、異なる低抵抗状態に変化する。図 94では、 -0. 5Vまで印加した後の低抵抗状態 と、 1. OVまで印加した後の低抵抗状態と、 1. 5Vまで印加した後の低抵抗状態 との、図中に示す読み出し電圧における電流値が異なる。これらの状態は、ソース'ド レイン間に読み出し電圧を印加し、ソース ·ドレイン間に流れる電流を観測することに より読み出すことができる。一定の読み出し電圧により得られたソース'ドレイン間電 流に対応し、「0」, 「1」, 「2」の 3つの状態(3値)の動作が実現できる。
[0473] また、図 86A及び図 86Bに示す素子によれば、パルス電圧の値の違いにより、多 値の状態を実現することが可能である。図 95に示すように、所定のパルス幅の所定 のパルス電圧を所定回数印加する毎に、三角で示す時点で 0. 2Vの読み出し電圧 でソース'ドレイン間の電流値を読み出すと、図 96に示すように、「0」, 「1」, 「2」の 3 つの状態(3値)が得られる。この例では、「2」の状態によりリセットがされていることに なる。
[0474] 次に、本発明の他の実施の形態について図を参照して説明する。図 97A及び図 9 7Bは、本発明の実施の形態における他の三端子素子の構成例を概略的に示す模 式的な断面図である。図 97A及び図 97Bに示す三端子素子は、例えば、単結晶シリ コン力らなる基板 9701の上に絶縁層 9702,ゲート電極 9703, Biと Tiと Oとから構成 された膜厚 30〜200nm程度の金属酸化物層 9704,ソース電極 9706,ドレイン電 極 9707を備え、カロ免て、ゲート電極 9703と金属酸ィ匕物層 9704との間に絶縁層 97 05を備えるようにしたものである。このような構成とした三端子素子において、例えば 、図 97Aに示すように電位が印加されている状態を書き込み状態とし、図 97Bに示 すように、電位が印加されている状態を読み出し状態とする。
[0475] 基板 9701は、半導体,絶縁体,金属などの導電性材料のいずれから構成されて いてもよい。基板 9701が絶縁材料力も構成されている場合、絶縁層 9702はなくても よい。また、基板 9701が導電性材料力ら構成されている場合、絶縁層 9702,ゲート 電極 9703はなくてもよぐこの場合、導電性材料力も構成された基板 9701が、ゲー ト電極となる。ゲート電極 9703,ソース電極 9706,及びドレイン電極 9707は、例え ば、白金 (Pt)、ルテニウム (Ru)、金 (Au)、銀 (Ag)、チタン (Ti)などの貴金属を含 む遷移金属の金属から構成されていればよい。また、上記の電極は、窒化チタン (Ti N)、窒化ハフニウム(HfN)、ルテニウム酸ストロンチウム(SrRuO )、酸化亜鉛 (Zn
2
O)、鉛酸スズ (ITO)、フッ化ランタン (LaF )などの遷移金属の窒化物や酸ィ匕物ゃフ
3
ッ化物等の化合物、さらに、これらを積層した複合膜であってもよい
[0476] 絶縁層 9705は、二酸ィ匕シリコン,シリコン酸窒化膜,アルミナ,又は、リチウム,ベリ リウム,マグネシウム,カルシウムなどの軽金属力 構成された LiNbOなどの酸化物
3
、 LiCaAlF、 LiSrAlF、 LiYF、 LiLuF、 KMgFなどのフッ化物から構成されてい
6 6 4 4 3
ればよい。また、絶縁層 9705は、スカンジウム,チタン,ストロンチウム,イットリウム, ジルコニウム,ハフニウム,タンタル,及び、ランタン系列を含む遷移金属の酸化物及 び窒化物、又は、以上の元素を含むシリケート (金属、シリコン、酸素の三元化合物) 、及び、これらの元素を含むアルミネート (金属、アルミニウム、酸素の三元化合物)、 さらに、以上の元素を 2以上含む酸化物及び窒化物などから構成されて ヽればよ ヽ
[0477] 前述した強誘電体層 104などと同様に、金属酸化物層 9704も、 Bi Ti O の化学
4 3 12 量論的組成に比較して過剰なチタンを含む層からなる基部層の中に、 Bi Ti O の結
4 3 12 晶及びビスマスを過剰に含む部分力もなる粒径 3〜 15nm程度の複数の微結晶粒及 び微粒子が分散されて構成されたものである。これは、透過型電子顕微鏡の観察に より確認されている。基部層は、ビスマスの組成がほぼ 0となる TiOの場合もある。言 い換えると、基部層は、 2つの金属力も構成されている金属酸ィ匕物において、いずれ かの金属が化学量論的な組成に比較して少ない状態の層である。
[0478] 図 97A及び図 97Bに示した三端子素子の構成の具体例について説明すると、例 えば、ゲート電極 9703は、膜厚 10nmのルテニウム膜であり、金属酸ィ匕物層 9704は 、上述した構成の金属酸ィ匕物からなる膜厚 40nmの層であり、絶縁層 9705は、五酸 化タンタルと二酸ィ匕シリコンと力もなる膜厚 5nmの多層膜であり、ソース電極 9706及 びドレイン電極 9707は、金から構成されたものである。また、ソース電極 9706及びド レイン電極 9707は、金属酸化物層 9704の側から、チタン層,窒化チタン層,金層の 順に積層された多層構造であってもよい。金属酸ィ匕物層 9704との接触面をチタン層 とすることで、密着性の向上が図れる。また、ソース電極 9706とドレイン電極 9707と の間隔は、例えば、 1mmである。なお、前述したように、基板 9701及び絶縁層 970 2の構成は、これに限るものではなぐ電気特性に影響を及ぼさなければ、他の材料 も適当に選択できる。
[0479] 以上で説明した、絶縁層 9702,ゲート電極 9703,絶縁層 9705,金属酸化物層 9 704,ソース電極 9706及びドレイン電極 9707は、具体的な製法は後述する力 図 5 に示すような ECRスパッタ装置により、金属ターゲットや焼結ターゲットを、アルゴンガ ス,酸素ガス,窒素ガスからなる ECRプラズマ内でスパッタリングして形成すればよい
[0480] 次に、図 97A及び図 97Bにした三端子素子の製造方法例について、図 98を用い て説明する。まず、図 98Aに示すように、主表面が面方位(100)で抵抗率が 1〜2 Ω —cmの ρ形のシリコン力もなる基板 9701を用意し、基板 9701の表面を硫酸と過酸ィ匕 水素水の混合液と純水と希フッ化水素水とにより洗浄し、このあと乾燥させる。ついで 、洗浄 '乾燥した基板 9701の上に、絶縁層 9702が形成された状態とする。絶縁層 9 702の形成では、上述した ECR^パッタ装置を用い、ターゲットとして純シリコン(Si) を用い、プラズマガスとしてアルゴン (Ar)と酸素ガスを用いた ECR^パッタ法により、 シリコン力もなる基板 9701の上に、表面を覆う程度に Si— O分子によるメタルモード の絶縁層 9702を形成する。
[0481] 例えば、 10— 5Pa台の内部圧力に設定されているプラズマ生成室内に流量 20sccm 程度で Arガスを導入し、内部圧力を 10— 3〜: LO— 2Pa程度にし、ここに、 0. 0875Tの磁 場と 2. 45GHzのマイクロ波(500W©度)とを供給して電子サイクロトロン共鳴条件と することで、プラズマ生成室内に Arのプラズマが生成された状態とする。なお、 sccm は流量の単位あり、 0°C ' 1気圧の流体が 1分間に lcm3流れることを示す。
[0482] 上述したことにより生成されたプラズマは、磁気コイルの発散磁場によりプラズマ生 成室より処理室の側に放出される。また、プラズマ生成室の出口に配置されたシリコ ンターゲットに、高周波電源より 13. 56MHzの高周波電力(例えば 500W)を供給 する。このことにより、シリコンターゲットに Arイオンが衝突してスパッタリング現象が起 こり、 Si粒子が飛び出す。シリコンターゲットより飛び出した Si粒子は、プラズマ生成 室より放出されたプラズマ、及び導入されてプラズマにより活性化された酸素ガスと共 にシリコンカゝらなる基板 9701の表面に到達し、活性化された酸素により酸化され二 酸ィ匕シリコンとなる。以上のことにより、基板 9701上に二酸ィ匕シリコン力もなる例えば lOOnm程度の膜厚の絶縁層 9702が形成された状態とすることができる(図 98A)。
[0483] なお、絶縁層 9702は、この後に形成する各電極に電圧を印加した時に、基板 970 1に電圧が洩れて、所望の電気的特性に影響することがな!、ように絶縁を図るもので ある。例えば、シリコン基板の表面を熱酸化法により酸化することで形成した酸化シリ コン膜を絶縁層 9702として用いるようにしてもよい。絶縁層 9702は、絶縁性が保て ればよぐ酸ィ匕シリコン以外の他の絶縁材料力も構成してもよぐまた、絶縁層 9702 の膜厚は、 lOOnmに限らず、これより薄くてもよく厚くてもよい。絶縁層 9702は、上 述した ECRスパッタによる膜の形成では、基板 9701に対して加熱はしていないが、 基板 9701を加熱しながら膜の形成を行ってもよい。
[0484] 以上のようにして絶縁層 9702を形成した後、今度は、ターゲットとして純ルテニウム
(Ru)を用いた同様の ECRスパッタ法により、絶縁層 9702の上にルテニウム膜を形 成することで、図 98Bに示すように、ゲート電極 9703が形成された状態とする。 Ru膜 の形成について詳述すると、 Ru力 なるターゲットを用いた ECRスパッタ装置におい て、例えば、まず、絶縁層を形成したシリコン基板を 400°Cに加熱し、また、プラズマ 生成室内に、例えば流量 7sccmで希ガスである Arガスを導入し、力!]えて、例えば流 量 5sccmで Xeガスを導入し、プラズマ生成室の内部を、例えば 10— 2〜: LO— 3Pa台の圧 力に設定する。
[0485] ついで、プラズマ生成室内に電子サイクロトロン共鳴条件の磁場を与え、この後、 2 . 45GHzのマイクロ波(例えば 500W)をプラズマ生成室内に導入し、プラズマ生成 室に Arと Xeの ECRプラズマが生成した状態とする。生成された ECRプラズマは、磁 気コイルの発散磁場によりプラズマ生成室より処理室側に放出される。また、プラズマ 生成室の出口に配置されたルテニウムターゲットに、 13. 56MHzの高周波電力(例 えば 500W)を供給する。このことにより、スパッタリング現象が起き、ルテニウムター ゲットより Ru粒子が飛び出す。ルテニウムターゲットより飛び出した Ru粒子は、基板 9 701の絶縁層 9702表面に到達して堆積する。
[0486] 以上のことにより、絶縁層 9702の上に、例えば lOnm程度の膜厚のゲート電極 97 03が形成された状態が得られる(図 98B)。ゲート電極 9703は、この後に形成するソ ース電極 9706及びドレイン電極 9707との間に電圧を印加した時に、金属酸化物層 9704に電圧が印加できるようにするものである。従って、導電性が持てればルテユウ ム以外力もゲート電極 9703を構成してもよぐ例えば、白金力もゲート電極 9703を 構成してもよい。ただし、二酸化シリコンの上に白金膜を形成すると剥離しやすいこと が知られている力 これを防ぐためには、チタン層ゃ窒化チタン層もしくはルテニウム 層などを介して白金層を形成する積層構造とすればよい。また、ゲート電極 9703の 膜厚も 10nmに限るものではなぐこれより厚くてもよく薄くてもよい。
[0487] ところで、上述したように ECR^パッタ法により Ruの膜を形成するときに、基板 970 1を 400°Cに加熱した力 加熱しなくても良い。ただし、加熱を行わない場合、ルテ- ゥムの二酸ィ匕シリコンへの密着性が低下するため、剥がれが生じる恐れがあり、これ を防ぐために、基板を加熱して膜を形成する方が望ま ヽ。
[0488] 以上のようにしてゲート電極 9703を形成した後、基板 9701を装置内より大気中に 搬出し、ついで、ターゲットとして純タンタル (Ta)を用いた図 5同様の ECRスパッタ装 置の基板ホルダに、基板 9701を固定する。引き続いて、プラズマガスとしてアルゴン (Ar)と酸素ガスとを用いた ECR^パッタ法により、図 98Cに示すように、ゲート電極 9 703の上に、表面を覆う程度に、絶縁層 9705が形成された状態とする。以下に説明 するように、 Ta—O分子によるメタルモード膜を形成し、絶縁層 9705とする。
[0489] Ta— O分子によるメタルモード膜の形成について詳述すると、タンタルからなるター ゲットを用いた図 5に示す ECRスパッタ装置において、まず、プラズマ生成室内に、 不活性ガス導入部より、例えば流量 25sccmで希ガスである Arガスを導入し、プラズ マ生成室の内部を、例えば 10—3Pa台の圧力に設定する。また、プラズマ生成室には 、磁気コイルにコイル電流を例えば 28Aを供給することで電子サイクロトロン共鳴条 件の磁場を与える。
[0490] 加えて、図示していないマイクロ波発生部より、例えば 2. 45GHzのマイクロ波(例 えば 500W)を供給し、これを導波管、石英窓、真空導波管を介してプラズマ生成室 内に導入し、このマイクロ波の導入により、プラズマ生成室に Arのプラズマが生成し た状態とする。生成されたプラズマは、磁気コイルの発散磁場によりプラズマ生成室 より処理室の側に放出される。また、プラズマ生成室の出口に配置されたターゲット に、高周波電極供給部より高周波電力(例えば 500W)を供給する。
[0491] このこと〖こより、ターゲットに Ar粒子が衝突してスパッタリング現象を起こし、 Ta粒子 力 Sターゲットより飛び出す。ターゲットより飛び出した Ta粒子は、プラズマ生成室より 放出されたプラズマ、及び反応性ガス導入部より導入されてプラズマにより活性化さ れた酸素ガスと共に基板 9701のゲート電極 9703表面に到達し、活性化された酸素 により酸ィ匕され五酸ィ匕タンタルとなる。
[0492] 以上のことにより、まず、ゲート電極 9703の上に五酸ィ匕タンタル膜を形成する。続 いて、図 98Aを用いて説明した二酸ィ匕シリコンの堆積と同様に、純シリコン力もなるタ 一ゲットを用いた ECR^パッタ法により、上記五酸ィ匕タンタル膜の上に二酸ィ匕シリコ ン膜が形成された状態とする。上述した五酸ィ匕タンタル膜と二酸ィ匕シリコン膜の形成 工程を繰り返し、五酸ィ匕タンタル膜と二酸ィ匕シリコン膜との多層膜を例えば、 5nm程 度形成することで、絶縁層 9705が得られる(図 98C)。
[0493] なお、五酸ィ匕タンタル膜と二酸ィ匕シリコン膜からなる絶縁層 9705は、金属酸化物 層 9704に電圧を印加した時に、強誘電体膜に印加される電圧を制御するために用 いる。従って、金属酸化物層 9704に印加される電圧を制御することができれば、五 酸ィ匕タンタル膜と二酸ィ匕シリコン膜の多層構造以外力も絶縁層 9705を構成してもよ ぐ単層力 構成してもよい。また、膜厚も、 5nmに限るものではない。なお、上述した ECRスパッタ法では、基板 9701に対して加熱はしていないが、加熱しても良い。
[0494] 以上のように絶縁層 9705を形成した後、 Biと Tiの割合力 3の酸ィ匕物焼結体 (Bi
-Ti-O)力もなるターゲットを用い、プラズマガスとしてアルゴン (Ar)と酸素ガスとを 用いた ECRスパッタ法により、図 98Dに示すように、絶縁層 9705の上に、表面を覆う 程度に、金属酸化物層 9704が形成された状態とする。 [0495] 金属酸化物層 9704の形成について詳述すると、まず、 300°C〜700°Cの範囲に 基板 9701が加熱されている状態とする。また、プラズマ生成室内に、例えば流量 20 sccmで希ガスである Arガスを導入し、例えば 10— 3Pa〜10— 2Pa台の圧力に設定する。 この状態で、プラズマ生成室に電子サイクロトロン共鳴条件の磁場を与え、この後、 2 . 45GHzのマイクロ波(例えば 500W)をプラズマ生成室に導入し、このマイクロ波の 導入により、プラズマ生成室に ECRプラズマが生成された状態とする。
[0496] 生成された ECRプラズマは、磁気コイルの発散磁場によりプラズマ生成室より処理 室側に放出される。また、プラズマ生成室の出口に配置された焼結体ターゲットに、 1 3. 56MHzの高周波電力(例えば 500W)を供給する。このことにより、焼結体ターゲ ットに Ar粒子が衝突してスパッタリング現象を起こし、 Bi粒子と Ti粒子が飛び出す。
[0497] 焼結体ターゲットより飛び出した Bi粒子と Ti粒子は、プラズマ生成室より放出された ECRプラズマ、及び、放出された ECRプラズマにより活性ィ匕した酸素ガスと共に、加 熱されている絶縁層 9705の表面に到達し、活性ィ匕された酸素により酸ィ匕される。な お、反応ガスとしての酸素(O )ガスは、以降にも説明するように Arガスとは個別に導
2
入され、例えば、例えば流量 lsccmで導入されている。焼結体ターゲットは酸素を含 んでいるが、酸素を供給することにより堆積している膜中の酸素不足を防ぐことができ る。以上に説明した ECR^パッタ法による膜の形成で、例えば、膜厚 40nm程度の金 属酸ィ匕物層 9704が形成された状態が得られる(図 98D)。
[0498] なお、形成した金属酸化物層 9704に、不活性ガスと反応性ガスの ECRプラズマを 照射し、膜質を改善するようにしてもよい。反応性ガスとしては、酸素ガスに限らず、 窒素ガス,フッ素ガス,水素ガスを用いることができる。また、この膜質の改善は、絶 縁層 9702の形成にも適用可能である。また、基板温度を 300°C以下のより低い温度 条件として金属酸化物層 9704を形成した後に、酸素雰囲気中などの適当なガス雰 囲気中で、形成した金属酸化物層 9704をァニール (加熱処理)し、膜質の特性を大 きく改善するようにしてもょ 、。
[0499] 次に、図 98E〖こ示すよう〖こ、金属酸化物層 9704の上に、所定の面積の Au力 な るソース電極 9706及びドレイン電極 9707が形成された状態とすることで、図 97A及 び図 97Bに示す三端子素子が得られる。ソース電極 9706及びドレイン電極 9707は 、よく知られたリフトオフ法と抵抗加熱真空蒸着法による金の堆積とにより形成できる
。なお、ソース電極 9706及びドレイン電極 9707は、例えば、 Ru、 Pt、 TiNなどの他 の金属材料や導電性材料を用いるようにしてもよい。なお、 Ptを用いた場合、密着性 が悪く剥離する可能性があるので、 Ti—Pt—Auなどの剥離し難い構造とし、この上 でフォトリソグラフィーゃリフトオフ処理などのパターユング処理をして所定の面積を 持つ電極として形成する必要がある。
[0500] 次に、図 97A及び図 97Bに示す三端子素子の特性について説明する。この特性 調査は、ゲート電極 9703とドレイン電極 9707 (ソース電極 9706)との間に電圧を印 加することで行う。ゲート電極 9703とドレイン電極 9707との間に電源により電圧を印 加し、電圧を印加したときの電流を電流計により観測すると、図 33に示す結果が得ら れた。前述したように、図 33では、縦軸が、電流値を面積で除した電流密度として示 している。以下、図 33を説明し、あわせて本発明のメモリ動作原理を説明する。ただ し、ここで説明する電圧値や電流値は、実際の素子で観測されたものを例としている 。従って、本現象は、以下に示す数値に限るものではない。実際に素子に用いる膜 の材料や膜厚、及び他の条件により、他の数値が観測されることがある。
[0501] まず、ゲート電極 9703に負の電圧が印加された状態とすると、図 33中の(1)に示 すように、 0. 8Vまでは流れる電流は非常に少ない。しかし、(2)に示すように、 0. 8Vを超えると急に負の電流が流れる。実際には、—15 Aを超える電流も流れ ているが、測定器を保護するためにこれ以上電流を流さないようにしているので、観 測されていない。ここで、 (1)に示す OVから 0. 8Vの領域では、(2)に示すような 電流が大きく流れな ヽようにすると、高抵抗の状態が保持 (維持)される。
[0502] 続いて、再びゲート電極 9703に負の電圧が印加された状態とすると、 (3)に示すよ うに、—0. 5V程度で— 10 A以上の負の電流が流れる軌跡を示す。さらに続いて 、ゲート電極 9703に負の電圧が印加された状態とすると、やはり(3)に示すように— 0. 5V程度で— 10 A以上の電流が流れる。し力し、今度は、ゲート電極 9703に正 の電圧が印加された状態とすると、(4)に示すように、 +0. 2V程度まで正の電流が 流れ、最大 3 Aになる。ここで、電圧の絶対値を小さくしていくと、(4)に示す軌跡を 通る。 [0503] 再び、 0. 2V迄の正の電圧を印加すると、(4)に示すような軌跡を通る。この後、(5 )に示すように、流れる電流値が減少して正の電流が流れなくなる。続いて、ゲート電 極 9703に正の電圧が印加された状態とすると(6)に示すように、ほとんど電流が流 れない軌跡を示すようになる。この後、電圧の絶対値を小さくしていっても、(6)に示 すようにほとんど電流が流れない。さらに、続いてゲート電極 9703に負の電圧が印 加された状態とすると、(1)に示すようにように 0〜一 0. 8V程度まで、ほとんど電流が 流れない。従って、(2)のように急激に電流が流れないようにゲート電極 9703に 0 . 8V以上の電圧が印加されなければ、(1)のような電流が流れない高抵抗の状態を 維持することになる。(1)に示す状態を「負の高抵抗モード」と呼ぶことにする。
[0504] 例えば、(2)に示すように— 0. 8V以上の電圧がゲート電極 9703に印加され、急 激な電流が流れる状態とすると、 (3)のような電流が流れやすくなる低抵抗の状態に なる。この状態も、ゲート電極 9703に負の電圧が印加されている間は維持される。( 3)に示す状態を「負の低抵抗モード」と呼ぶことにする。
[0505] し力し、ゲート電極 9703に正の電圧が印加されると、(4)〖こ示すよう〖こ、正の 0〜0 . 2Vの電圧領域で、電流が流れる低抵抗の状態になる。ここでも、 0カゝら 0. 2Vの間 で正の電圧がゲート電極 9703に印加されている間、この状態が維持されるので、(4 )に示す状態を「正の低抵抗モード」と呼ぶことにする。
[0506] さらに、 0. 2V以上の正の電圧がゲート電極 9703に印加されると、(5)に示すよう に電流が流れなくなり、高抵抗な状態に移行する。この状態になると、(6)に示すよう に、正の 0〜0. 2Vの電圧領域でゲート電極 9703に電圧が印加されている間、電流 値が高抵抗の状態が維持される。この(6)に示される状態を、「正の高抵抗モード」と 呼ぶことにする。
[0507] 以上より、金属酸ィ匕物層 9704を用いた素子では、「正の高抵抗モード」、「正の低 抵抗モード」、「負の高抵抗モード」、「負の低抵抗モード」の見かけ上 4つのモードが 安定して存在することになる。詳細に調べると、「正の高抵抗モード」と「負の高抵抗 モード」は、同じ高抵抗の状態を示す「高抵抗モード」であり、「正の低抵抗モード」と「 負の低抵抗モード」は、同じ低抵抗の状態を示す「低抵抗モード」であり、 2つのモー ドが存在していることが判明した。つまり、「高抵抗モード」の状態にあるとき、 -0. 8 Vから + 0. 8Vの電圧領域で「高抵抗モード」が維持される。 -0. 8V以上の電圧を 印加することで遷移した「低抵抗モード」の状態にあるときは、 0. 5Vから + 0. 2V の電圧領域で「低抵抗モード」が維持される。これらの 2つの「高抵抗モード」と「低抵 抗モード」とが切り替わることになる。これらは、「負の高抵抗モード」及び「負の低抵 抗モード」の負の抵抗モードについても、同様である。
[0508] また、各「負のモード」の実際の電流値は、 0. 5V印加時に、「負の高抵抗モード 」で 5 X 10— 8 Aであり、「負の低抵抗モード」で— 1 X 10— 5 Aであることから、各々の 比は、 200倍にも達する。このことは、容易なモードの識別を可能にするものである。 発明者らは、印加する電圧の向きと強さにより、金属酸ィ匕物層 9704の抵抗値が劇的 に変化することで、上述した現象が発現するものと推定して ヽる。
[0509] また、金属酸ィ匕物層 9704とゲート電極 9703との間に備えた絶縁層 9705により、 絶縁層 9705の持つバンド構造から、キャリアの制御が可能である。具体的には、例 えば、五酸化タンタルは、バンドギャップは 4. 5eV程度である力 フェルミレベルから のエネルギー差を見た場合、伝導帯には 1. 2eV程度、価電子帯には 2. 3eVと価電 子帯側にノリアが高いことが知られている。従って、価電子帯のホール (正孔)に対し てはバリア性が高いが、伝導帯のエレクトロン (電子)に対してはノリア性が低いと言う ことになる。詳しくは、「ウィルクらのジャーナル'ォブ 'アプライド 'フイジタス、第 87号、 484頁、 2000年、 (Wilk et. al., J.Appl.Phys., 87,484(2000).」を参考にされたい。
[0510] 上述した特性から、例えば五酸ィ匕タンタル膜を、電極と金属酸化物層との間の絶縁 層に用いた場合、電子は流れやすぐ正孔は流れにくいという現象が期待できる。実 際に、図 33に示すように、ドレイン電極 9707からゲート電極 9703に正の電圧を印加 したときと、負の電圧を印加したときでは、流れる電流の値が大きく異なっている。こ のことは、金属酸ィ匕物層 9704の状態の判別を行う場合に、信号'ノイズ比(SZN比) を向上させ、状態の判別を容易にする効果が非常に大きい。これは、絶縁層 9705を 用いた効果である。
[0511] 上述した図 33に示す「低抵抗モード」と「高抵抗モード」のモードをメモリ動作として 応用することで、図 97A及び図 97Bに示す素子が、不揮発性で非破壊の三端子素 子として使用できることを見いだした。具体的には、まず、ソース'ドレイン間の電流が 流れに《なるオフ状態は、図 33の(4)又は(5)に示すように、ゲート電極 9703に正 の電圧を印加してドレイン電極 9707に負の電圧が印加された状態とし、「低抵抗モ ード」から「高抵抗モード」にモード変更することにより行えばょ 、。
[0512] また、ソース'ドレイン間の電流が流れやすくなるオン状態への移行は、図 33の(2) に示すように、ゲート電極 9703に負の電圧を印加してドレイン電極 9707に正の電 圧が 1. IV以上印加されて電流が急激に流れるようにすることで行えばよい。このこと で、「高抵抗モード」から「低抵抗モード」にモード変換し、オン状態に遷移する。これ らのように、ゲート電極 9703 (ドレイン電極 9707)への電圧印加により、「高抵抗モー ド」か「低抵抗モード」にすることにより、オフ状態とオン状態とを切り替えることが可能 である。
[0513] 一方、以上のようにして制御されたソース'ドレイン間のオン Zオフの状態は、ソース •ドレイン間に、 0〜1. 0Vの適当な電圧を印加したときの電流値を読み取ることで容 易に認識することができる。例えば、図 97A及び図 97Bに示す三端子素子のモード 状態が、「オフ」言い換えると「高抵抗モード」である場合、図 33の(1)に示すように 0 〜1. 0Vの適当な電圧印加時に電流が流れ難いことにより判断できる。
[0514] また、図 97A及び図 97Bに示す素子のモード状態力 「オン」言い換えると「低抵抗 モード」である場合、図 33の(2)に示すのように、 0〜0. 8Vの適当な電圧印加時に 電流が、ソース'ドレイン間に急激に流れることにより判断できる。「正の高抵抗モード 」と「正の低抵抗モード」、つまり、「オフ」と「オン」の状態の電流値は、 5000倍以上も あることから、「オフ」と「オン」の判断が、容易に可能である。同様に、負の電圧領域 においても、 0〜一 0. 2Vの電圧範囲で「オン」と「オフ」の判断が可能である。
[0515] 上述した三端子素子のオンオフの状態は、図 97A及び図 97Bに示す素子が「高抵 抗モード」力「低抵抗モード」かを調べるだけで容易に識別できる。言い換えれば、図 97A及び図 97Bに示す三端子素子が、上記 2つのモードを保持できている間は、デ ータが保持されている状態である。さらに、どちらかのモードかを調べるために、電極 に電圧を印加しても、保持して ヽるモードは変化することなくデータが破壊されてしま うことはない。従って、図 97A及び図 97Bに示す三端子素子素子によれば、非破壊 の動作が可能である。図 97A及び図 97Bに示す三端子素子は、金属酸化物層 970 4力 ゲート電極 9703とドレイン電極 9707 (もしくはソース電極 9706)との間に印加 された電圧により抵抗値が変化することにより、ソース'ドレイン間のオンオフを制御す る三端子素子素子として機能するものである。なお、本素子は、電流を制御する素子 としてち用いることがでさる。
[0516] なお、ソース電極 9706がオープンとされた状態でも、ゲート電圧の印加により、ォ ン状態とオフ状態とを制御することが可能である。ただし、ソース電極 9706がオーブ ンとされた状態では、ゲート電圧を印加してオフ状態としても、読み出し電圧を大きく すると、ある程度ソース'ドレイン間に電流が流れるようになる。ソース電極 9706がォ ープンとされた状態でゲート電圧を印加する場合、印加された電圧はドレイン電極 97 07の下部の領域により選択的に作用するため、上述したように、高い読み出し電圧 では、ある程度ソース'ドレイン電流が流れるようになるものと考えられる。従って、ソー ス 'ドレイン電流は、ソース電極 9706 ソース電極 9706の下の領域の金属酸化物 層 9704 ゲート電極 9703 ドレイン電極 9707の下の領域の金属酸化物層 9704 ドレイン電極 9707の経路を通り流れるものと考えられる。
[0517] 図 97A及び図 97Bに示す三端子素子を動作させるための電圧は、「正の低抵抗モ ード」にするためのゲート電圧印加時に最大になる力 図 33に示すように、 1. IV程 度であり、非常に消費電力が小さい。消費電力が小さいと言うことは、デバイスにとつ て非常に有利になり、例えば、移動体通信機器,デジタル汎用機器,デジタル撮像 機器を始め、ノートタイプのパーソナルコンピュータ,パーソナル'デジタル'アプライ アンス(PDA)のみならず、全ての電子計算機,パーソナルコンピュータ,ワークステ ーシヨン,オフィスコンピュータ,大型計算機や、通信ユニット,複合機などの三端子 素子を用いている機器の消費電力を下げることが可能となる。
[0518] また、図 97A及び図 97Bに示す三端子素子におけるオンオフいずれかの状態が 保持される時間について、図 34に示す。ドレイン電極 9707からゲート電極 9703に かけて負の電圧が印加されて図 33に示す「負の高抵抗状態」つまり「高抵抗モード」 にされた後に、ドレイン電極 9707力らゲート電極 9703〖こ力けて 1. IV以上の電圧を 印加することで、 「正の低抵抗状態」(「低抵抗モード」)、つまり、「オン」状態とする。こ の後、一定時間ごとにドレイン電極 9707からゲート電極 9703にかけて + 0. 5Vが印 加される状態として、電圧が印加された後、ソース'ドレイン間に観測される電流値を 観測する。この観察結果が、図 34である。
[0519] 観測された電流は、約 10分が最大となり、この後、緩やかに 1000分まで小さくなつ ている。し力し、この時の電流値は、最大値の 86%であり、データの判別には問題な い値である。また、図 34に示す 10年に相当する 10, 000, 000分に外挿される線よ り、 10年後の電流値は、最大値の 66% (3分の 2)程度に相当し、データの判別は可 能であることが予想される。以上に示したことにより、図 97A及び図 97Bに示す三端 子素子では、オンもしくはオフのいずれかの状態力 10年保持することが可能である
[0520] ところで、上述した本発明の例では、シリコン力もなる基板上の絶縁層、絶縁層上の ゲート電極の層、ゲート電極の上の金属酸化物層の各々を ECRスパッタ法で形成す るようにした。し力しながら、これら各層の形成方法は、 ECRスパッタ法に限定するも のではない。例えば、シリコン基板の上に形成する絶縁層は、熱酸化法や化学気相 法 (CVD法)、また、従来のスパッタ法などで形成しても良い。
[0521] また、ゲート電極の層は、 EB蒸着法、 CVD法、 MBE法、 IBD法などの他の成膜方 法で形成しても良い。また、金属酸化物層も、上記で説明した MOD法や従来よりあ るスパッタ法、 PLD法、 MOCVD法などで形成することができる。ただし、 ECRスパッ タ法を用いることで、平坦で良好な絶縁膜、金属膜、金属酸化物膜が容易に得られ る。
[0522] また、上述した実施の形態では、各層を形成した後、ー且大気に取り出していたが 、各々の ECR^パッタを実現する処理室を、真空搬送室で連結させた装置を用いる ことで、大気に取り出すことなぐ連続的な処理により各層を形成してもよい。これらの ことにより、処理対象の基板を真空中で搬送できるようになり、水分付着などの外乱 の影響を受け難くなり、膜質と界面の特性の向上につながる。
[0523] 特許文献 7に示されているように、各層を形成した後、形成した層の表面に ECRプ ラズマを照射し、特性を改善するようにしてもよい。また、各層を形成した後に、水素 雰囲気中などの適当なガス雰囲気中で、形成した層をァニール (加熱処理)し、各層 の特性を大きく改善するようにしてもょ 、。 [0524] 本発明の基本的な思想は、図 97A及び図 97Bに示すように、金属酸化物層に絶 縁層を接して配置し、これらをゲート電極とソース'ドレイン電極で挾むようにしたとこ ろにある。このような構成とすることで、ゲート電極に所定の電圧 (DC,パルス)を印 加して金属酸化物層の抵抗値を変化させ、安定な高抵抗モードと低抵抗モードを切 り替え、結果として三端子素子としての動作が実現可能となる。
[0525] 従って、例えば、図 99に例示するように、絶縁層 9702の上〖こソース電極 9716及 びドレイン電極 9717が形成され、ソース電極 9716及びドレイン電極 9717力 金属 酸化物層 9704に覆われ、金属酸化物層 9704の上に絶縁層 9715を介してゲート電 極 9713が形成された状態としてもよい。また、図 100A,図 100Bに示すように、絶縁 性基板 9701aを用いるようにしてもよい。この場合、図 97A及び図 97Bにおける絶縁 層 9702はなくてもよい。また、導電性を有する基板を用い、この上に、図 97A及び図 97Bに示す絶縁層 9705,金属酸ィ匕物層 9704,ソース電極 9706,ドレイン電極 97 07の構成を配置するようにしてもよい。この場合、基板がゲート電極を兼用することに なる。導電性基板として熱伝導性の高い金属基板を用いれば、より高い冷却効果が 得られ、素子の安定動作が期待できる。
[0526] また、ガラスや石英などの絶縁性基板を用いるようにしてもよ!ヽ。これらの構造とす ることによって、加工しやすいガラス基板などへの適用が可能となる。また、金属酸化 物層 9704は、波長 632. 8nmで測定したときの屈折率が 2. 6程度で光学的に透明 であるため、透明な基板を用いることで、本実施の形態における三端子素子のデイス プレイへの応用が可能となる。また、金属酸化物層 9704を、 10〜200nmの間で干 渉色を発する厚さに形成することで、着色した状態の視覚効果が得られる。
[0527] 次に、本発明の三端子素子の他の形態について説明する。上述では、 1つの強誘 電体素子を例にして説明したが、図 93A及び図 93Bを用いて説明したように、複数 の三端子素子をクロスポイント型に配列させて集積させるようにしてもよ!、。
[0528] ところで、金属酸化物層 9704における抵抗値の変化も、前述したように、電流によ り制御することも可能である。金属酸化物層 9704に所定の電圧が印加された状態と して一定の電流を流した直後に、ドレイン電極 9707とゲート電極 9703との間に所定 の電圧 (例えば +0. 5V)を印加すると電流値が変化する。 [0529] 例えば、上記電極間に、 1 X 10— 9 Aから 1 X 10— 6 A未満の電流を流した後は電流値 力 S小さく高抵抗状態である。これに対し、上記電極間に 1 X 10—6Α以上の電流を流し た後は、流れる電流値が大きくなり(例えば 0. 7mA)低抵抗状態へと変化する。この ことから明らかなように、金属酸ィ匕物層 9704における抵抗変化は、金属酸化物層 97 04に流れた電流によっても変化し、高抵抗状態と低抵抗状態との 2つの抵抗値が存 在する。従って、図 97A及び図 97Bに示す三端子素子は、電圧によりオンオフを制 御することが可能であるとともに、電流によりオンオフを制御することも可能である。
[0530] また、前述同様に、パルス電圧により、金属酸ィ匕物層 9704の抵抗変化を制御でき る。例えば、初期状態では金属酸化物層 9704が高抵抗状態の図 97A及び図 97B に示す素子に対し、図 42に示したように、まず、ゲート電極 9703 (正電極側)とドレイ ン電極 9707 (負電極側)との間に、負のパルス電圧(例えば 4Vで 10 s)を 1回印 加すると、低抵抗状態となる。この後に、上記電極間に、正のパルス電圧 (例えば + 5 Vで 10 μ s)を複数回 (例えば 4回)印加すると高抵抗状態となる。
[0531] 上述した各パルス電圧の印加を繰り返し、各パルス電圧印加の後に測定した電流 値は、図 43に示したように変化する。図 43に示すように、初期状態では高抵抗状態 であるが、負のパルス電圧を印加した後は、低抵抗状態に移行する。ついで、この状 態に、正のノ ルス電圧を複数回印加することで、高抵抗状態となり、正電圧パルス及 び負電圧パルスを印加することで、金属酸化物層 9704の抵抗値が変化する。従つ て、例えば、正電圧パルス及び負電圧パルスを印加することで、図 97A及び図 97B の三端子素子も、「オン」の状態から「オフ」の状態へ変化させ、また、「オフ」の状態 から「オン」の状態へ変化させることが可能である。
[0532] 金属酸化物層 9704の抵抗状態を変化させることができる電圧パルスの電圧と時間 は、状況により変化させることができる。例えば、 + 5Vで 10 s, 4回の電圧パルスを 印加して高抵抗状態とした後、 4Vで: L sの短いパルスを 10回印加することで、低 抵抗状態へと変化させることができる。また、この状態に、 + 5Vで 1 sの短いパルス を 100回印加することで、高抵抗状態へと変化させることも可能である。さらに、この 状態に、 3Vと低い電圧として 100 sのノ ルスを 100回印加することで、低抵抗状 態へと変化させることも可能である。 [0533] 次に、図 97A及び図 97Bに示す三端子素子を、パルス電圧の印加により制御する 場合について説明する。例えば、図 101のシーケンスに示すように、ゲート電極 970 3に負のパルスと正のパルスとを交互に印加することで、ソース電極 9706とゲート電 極 9703との間の抵抗モード及びドレイン電極 9707とゲート電極 9703との間の抵抗 モードが変化し、これに対応し、ソース電極 9706とドレイン電極 9707との間に流れ る電流のオン状態とオフ状態とを、交互に切り替えることができる。
[0534] また、本実施の形態における金属酸ィ匕物層 9704を用いた図 97A及び図 97Bに示 す三端子素子にお!、ても、ゲート電極 9703とドレイン電極 9707 (ソース電極 9706) との間に直流電圧を印加したときの電流 電圧特性力 図 46に示したように、正側 の印加電圧を変化させることで異なる低抵抗状態に変化する。これら各々の状態に 対応し、ソース'ドレイン間に流れる電流値に 3つの状態(3値)が実現できる。この場 合、例えば、読み出し電圧を 0. 5V程度とすることで、ソース'ドレイン間に流れる電 流値に 3値の状態を設定することが実現できる。なお、各状態に遷移させる前には、 - 2Vの電圧をゲート電極 9703印加して高抵抗状態に戻して 、る(リセット)。
[0535] 次に、本発明の他の実施の形態について図を参照して説明する。図 102A及び図 102Bは、本発明の他の実施の形態における他の三端子素子の構成例を概略的に 示す模式的な断面図である。図 102A及び図 102Bに示す三端子素子は、例えば、 単結晶シリコンからなる基板 10201の上に絶縁層 10202,ゲート電極 10203, Bit Tiと Oとから構成された膜厚 30〜200nm程度の金属酸化物層 10204,絶縁層 102 05,ソース電極 10206,ドレイン電極 10207を備えるようにしたものである。このよう な構成とした三端子素子において、例えば、図 102Aに示すように電位が印加されて いる状態を書き込み状態とし、図 102Bに示すように、電位が印加されている状態を 読み出し状態とする。
[0536] 基板 10201は、半導体,絶縁体,金属などの導電性材料のいずれから構成されて いてもよい。基板 10201が絶縁材料力ら構成されている場合、絶縁層 10202はなく てもよい。また、基板 10201が導電性材料力ら構成されている場合、絶縁層 10202 ,ゲート電極 10203はなくてもよぐこの場合、導電性材料力 構成された基板 1020 1力 ゲート電極となる。ゲート電極 10203,ソース電極 10206,及びドレイン電極 10 207は、例えば、白金(Pt)、ルテニウム (Ru)、金 (Au)、銀 (Ag)、チタン (Ti)などの 貴金属を含む遷移金属の金属カゝら構成されていればよい。また、上記の電極は、窒 化チタン (TiN)、窒化ハフニウム(HfN)、ルテニウム酸ストロンチウム(SrRuO )、酸
2 化亜鉛 (ZnO)、鉛酸スズ (ITO)、フッ化ランタン (LaF )などの遷移金属の窒化物や
3
酸化物やフッ化物等の化合物、さらに、これらを積層した複合膜であってもよい
[0537] 絶縁層 10205は、二酸ィ匕シリコン,シリコン酸窒化膜,アルミナ,又は、リチウム,ベ リリウム,マグネシウム,カルシウムなどの軽金属力も構成された LiNbOなどの酸ィ匕
3
物、 LiCaAlF、 LiSrAlF、 LiYF、 LiLuF、 KMgFなどのフッ化物から構成されて
6 6 4 4 3
いればよい。また、絶縁層 10205は、スカンジウム,チタン,ストロンチウム,イットリウ ム,ジルコニウム,ハフニウム,タンタル,及び、ランタン系列を含む遷移金属の酸化 物及び窒化物、又は、以上の元素を含むシリケート (金属、シリコン、酸素の三元化 合物)、及び、これらの元素を含むアルミネート (金属、アルミニウム、酸素の三元化合 物)、さらに、以上の元素を 2以上含む酸化物及び窒化物などから構成されていれば よい。
[0538] 金属酸ィ匕物層 10204は、前述した強誘電体層 104などと同様、 Bi Ti O の化学
4 3 12 量論的組成に比較して過剰なチタンを含む層からなる基部層の中に、 Bi Ti O の結
4 3 12 晶からなる粒径 3〜 15nm程度の複数の微結晶粒が分散されて構成されたものであ る。これは、透過型電子顕微鏡の観察により確認されている。基部層は、ビスマスの 組成がほぼ 0となる TiOの場合もある。言い換えると、基部層は、 2つの金属力も構 成されて!/ヽる金属酸化物にお ヽて、 V、ずれかの金属が化学量論的な組成に比較し て少な 、状態の層である。
[0539] 図 102A及び図 102Bに示した三端子素子の構成の具体例について説明すると、 例えば、ゲート電極 10203は、膜厚 10nmのルテニウム膜であり、金属酸化物層 102 04は、上述した構成の金属酸ィ匕物力もなる膜厚 40nmの層であり、絶縁層 10205は 、五酸ィ匕タンタルと二酸ィ匕シリコンとからなる膜厚 5nmの多層膜であり、ソース電極 1 0206及びドレイン電極 10207は、金から構成されたものである。また、ソース電極 10 206及びドレイン電極 10207は、絶縁層 10205の側力ら、チタン層,窒化チタン層, 金層の順に積層された多層構造であってもよい。絶縁層 10205との接触面をチタン 層とすることで、密着性の向上が図れる。また、ソース電極 10206とドレイン電極 102 07との間隔は、例えば、 1mmである。なお、前述したように、基板 10201及び絶縁 層 10202の構成は、これに限るものではなぐ電気特性に影響を及ぼさなければ、 他の材料も適当に選択できる。
[0540] 以上で説明した、絶縁層 10202,ゲート電極 10203,金属酸ィ匕物層 10204,絶縁 層 10205,ソース電極 10206及びドレイン電極 10207は、具体的な製法は後述す るが、図 5に示すような ECRスパッタ装置により、金属ターゲットや焼結ターゲットを、 アルゴンガス,酸素ガス,窒素ガス力 なる ECRプラズマ内でスパッタリングして形成 すればよい。
[0541] 次に、図 102A及び図 102Bにした三端子素子の製造方法例について、図 103を 用いて説明する。まず、図 103Aに示すように、主表面が面方位(100)で抵抗率が 1 〜2 Ω— cmの p形のシリコンからなる基板 10201を用意し、基板 10201の表面を硫酸 と過酸化水素水の混合液と純水と希フッ化水素水とにより洗浄し、このあと乾燥させ る。ついで、洗浄'乾燥した基板 10201の上に、絶縁層 10202が形成された状態と する。絶縁層 10202の形成では、上述した ECR^パッタ装置を用い、ターゲットとし て純シリコン(Si)を用い、プラズマガスとしてアルゴン (Ar)と酸素ガスを用いた ECR スパッタ法により、シリコン力もなる基板 10201の上に、表面を覆う程度に Si— O分子 によるメタルモードの絶縁層 10202を形成する。
[0542] 例えば、 10— 5Pa台の内部圧力に設定されているプラズマ生成室内に流量 20sccm 程度で Arガスを導入し、内部圧力を 10— 3〜: LO— 2Pa程度にし、ここに、 0. 0875Tの磁 場と 2. 45GHzのマイクロ波(500W©度)とを供給して電子サイクロトロン共鳴条件と することで、プラズマ生成室内に Arのプラズマが生成された状態とする。なお、 sccm は流量の単位あり、 0°C ' 1気圧の流体が 1分間に lcm3流れることを示す。
[0543] 上述したことにより生成されたプラズマは、磁気コイルの発散磁場によりプラズマ生 成室より処理室の側に放出される。また、プラズマ生成室の出口に配置されたシリコ ンターゲットに、高周波電源より 13. 56MHzの高周波電力(例えば 500W)を供給 する。このことにより、シリコンターゲットに Arイオンが衝突してスパッタリング現象が起 こり、 Si粒子が飛び出す。シリコンターゲットより飛び出した Si粒子は、プラズマ生成 室より放出されたプラズマ、及び導入されてプラズマにより活性化された酸素ガスと共 にシリコンカゝらなる基板 10201の表面に到達し、活性化された酸素により酸化され二 酸ィ匕シリコンとなる。以上のことにより、基板 10201上に二酸ィ匕シリコン力もなる例え ば lOOnm程度の膜厚の絶縁層 10202が形成された状態とすることができる(図 103 A)。
[0544] なお、絶縁層 10202は、この後に形成する各電極に電圧を印加した時に、基板 10 201に電圧が洩れて、所望の電気的特性に影響することがな!ヽように絶縁を図るも のである。例えば、シリコン基板の表面を熱酸化法により酸化することで形成した酸 化シリコン膜を絶縁層 10202として用いるようにしてもよい。絶縁層 10202は、絶縁 性が保てればよぐ酸ィ匕シリコン以外の他の絶縁材料力も構成してもよぐまた、絶縁 層 10202の膜厚は、 lOOnmに限らず、これより薄くてもよく厚くてもよい。絶縁層 102 02は、上述した ECRスパッタによる膜の形成では、基板 10201に対して加熱はして V、な 、が、基板 10201を加熱しながら膜の形成を行ってもょ 、。
[0545] 以上のようにして絶縁層 10202を形成した後、今度は、ターゲットとして純ルテユウ ム (Ru)を用いた同様の ECRスパッタ法により、絶縁層 10202の上にルテニウム膜を 形成することで、図 103Bに示すように、ゲート電極 10203が形成された状態とする。 Ru膜の形成について詳述すると、 Ruカゝらなるターゲットを用いた ECRスパッタ装置 において、例えば、まず、絶縁層を形成したシリコン基板を 400°Cに加熱し、また、プ ラズマ生成室内に、例えば流量 7sccmで希ガスである Arガスを導入し、力!]えて、例え ば流量 5sccmで Xeガスを導入し、プラズマ生成室の内部を、例えば 10一2〜 10— 3Pa台 の圧力に設定する。
[0546] ついで、プラズマ生成室内に電子サイクロトロン共鳴条件の磁場を与え、この後、 2 . 45GHzのマイクロ波(例えば 500W)をプラズマ生成室内に導入し、プラズマ生成 室に Arと Xeの ECRプラズマが生成した状態とする。生成された ECRプラズマは、磁 気コイルの発散磁場によりプラズマ生成室より処理室側に放出される。また、プラズマ 生成室の出口に配置されたルテニウムターゲットに、 13. 56MHzの高周波電力(例 えば 500W)を供給する。このことにより、スパッタリング現象が起き、ルテニウムター ゲットより Ru粒子が飛び出す。ルテニウムターゲットより飛び出した Ru粒子は、基板 1 0201の絶縁層 10202表面に到達して堆積する。
[0547] 以上のことにより、絶縁層 10202の上に、例えば 10nm程度の膜厚のゲート電極 1 0203が形成された状態が得られる(図 103B)。ゲート電極 10203は、この後に形成 するソース電極 10206及びドレイン電極 10207との間に電圧を印加した時に、金属 酸ィ匕物層 10204に電圧が印加できるようにするものである。従って、導電性が持てれ ばルテニウム以外力もゲート電極 10203を構成してもよぐ例えば、白金からゲート 電極 10203を構成してもよい。ただし、二酸化シリコンの上に白金膜を形成すると剥 離しやすいことが知られている力 これを防ぐためには、チタン層ゃ窒化チタン層もし くはルテニウム層などを介して白金層を形成する積層構造とすればよい。また、ゲー ト電極 10203の膜厚も 10nmに限るものではなぐこれより厚くてもよく薄くてもよい。
[0548] ところで、上述したように ECR^パッタ法により Ruの膜を形成するときに、基板 102 01を 400°Cに加熱した力 加熱しなくても良い。ただし、加熱を行わない場合、ルテ -ゥムの二酸ィ匕シリコンへの密着性が低下するため、剥がれが生じる恐れがあり、こ れを防ぐために、基板を加熱して膜を形成する方が望まし ヽ。
[0549] 以上のようにしてゲート電極 10203を形成した後、 Biと Tiの割合が 4 : 3の酸化物焼 結体 (Bi— Ti— O)力もなるターゲットを用い、プラズマガスとしてアルゴン (Ar)と酸素 ガスとを用いた ECR^パッタ法により、図 103Cに示すように、ゲート電極 10203の上 に、表面を覆う程度に、金属酸化物層 10204が形成された状態とする。
[0550] 金属酸化物層 10204の形成について詳述すると、まず、 300°C〜700°Cの範囲に 基板 10201が加熱されている状態とする。また、プラズマ生成室内に、例えば流量 2 Osccmで希ガスである Arガスを導入し、例えば 10— 3Pa〜: LO— 2Pa台の圧力に設定する 。この状態で、プラズマ生成室に電子サイクロトロン共鳴条件の磁場を与え、この後、
2. 45GHzのマイクロ波(例えば 500W)をプラズマ生成室に導入し、このマイクロ波 の導入により、プラズマ生成室に ECRプラズマが生成された状態とする。
[0551] 生成された ECRプラズマは、磁気コイルの発散磁場によりプラズマ生成室より処理 室側に放出される。また、プラズマ生成室の出口に配置された焼結体ターゲットに、 1
3. 56MHzの高周波電力(例えば 500W)を供給する。このことにより、焼結体ターゲ ットに Ar粒子が衝突してスパッタリング現象を起こし、 Bi粒子と Ti粒子が飛び出す。 [0552] 焼結体ターゲットより飛び出した Bi粒子と Ti粒子は、プラズマ生成室より放出された ECRプラズマ、及び、放出された ECRプラズマにより活性ィ匕した酸素ガスと共に、加 熱されているゲート電極 10203の表面に到達し、活性ィ匕された酸素により酸ィ匕される 。なお、反応ガスとしての酸素(O )ガスは、以降にも説明するように Arガスとは個別
2
に導入され、例えば、例えば流量 lsccmで導入されている。焼結体ターゲットは酸素 を含んでいるが、酸素を供給することにより堆積している膜中の酸素不足を防ぐこと ができる。以上に説明した ECR^パッタ法による膜の形成で、例えば、膜厚 40nm程 度の金属酸化物層 10204が形成された状態が得られる(図 103C)。
[0553] なお、形成した金属酸化物層 10204〖こ、不活性ガスと反応性ガスの ECRプラズマ を照射し、膜質を改善するようにしてもよい。反応性ガスとしては、酸素ガスに限らず 、窒素ガス,フッ素ガス,水素ガスを用いることができる。また、この膜質の改善は、絶 縁層 10202の形成にも適用可能である。また、基板温度を 300°C以下のより低い温 度条件として金属酸化物層 10204を形成した後に、酸素雰囲気中などの適当なガ ス雰囲気中で、形成した金属酸化物層 10204をァニール (加熱処理)し、膜質の特 性を大きく改善するようにしてもょ 、。
[0554] 以上のようにして金属酸ィ匕物層 10204を形成した後、基板 10201を装置内より大 気中に搬出し、ついで、ターゲットとして純タンタル (Ta)を用いた図 5同様の ECR^ ノ ッタ装置の基板ホルダに、基板 10201を固定する。引き続いて、プラズマガスとし てアルゴン (Ar)と酸素ガスとを用いた ECR^パッタ法により、図 103Dに示すように、 金属酸化物層 10204の上に、表面を覆う程度に、絶縁層 10205が形成された状態 とする。以下に説明するように、 Ta— O分子によるメタルモード膜を形成し、絶縁層 1 0205とする。
[0555] Ta— O分子によるメタルモード膜の形成について詳述すると、タンタルからなるター ゲットを用いた図 5に示す ECRスパッタ装置において、まず、プラズマ生成室内に、 不活性ガス導入部より、例えば流量 25sccmで希ガスである Arガスを導入し、プラズ マ生成室の内部を、例えば 10—3Pa台の圧力に設定する。また、プラズマ生成室には 、磁気コイルにコイル電流を例えば 28Aを供給することで電子サイクロトロン共鳴条 件の磁場を与える。 [0556] 加えて、図示していないマイクロ波発生部より、例えば 2. 45GHzのマイクロ波(例 えば 500W)を供給し、これを導波管、石英窓、真空導波管を介してプラズマ生成室 内に導入し、このマイクロ波の導入により、プラズマ生成室に Arのプラズマが生成し た状態とする。生成されたプラズマは、磁気コイルの発散磁場によりプラズマ生成室 より処理室の側に放出される。また、プラズマ生成室の出口に配置されたターゲット に、高周波電極供給部より高周波電力(例えば 500W)を供給する。
[0557] このこと〖こより、ターゲットに Ar粒子が衝突してスパッタリング現象を起こし、 Ta粒子 力 Sターゲットより飛び出す。ターゲットより飛び出した Ta粒子は、プラズマ生成室より 放出されたプラズマ、及び反応性ガス導入部より導入されてプラズマにより活性化さ れた酸素ガスと共に基板 10201の金属酸ィ匕物層 10204表面に到達し、活性化され た酸素により酸ィ匕され五酸ィ匕タンタルとなる。
[0558] 以上のことにより、まず、金属酸化物層 10204の上に五酸化タンタル膜を形成する 。続いて、図 103Aを用いて説明した二酸ィ匕シリコンの堆積と同様に、純シリコンから なるターゲットを用いた ECR^パッタ法により、上記五酸ィ匕タンタル膜の上に二酸ィ匕 シリコン膜が形成された状態とする。上述した五酸ィ匕タンタル膜と二酸ィ匕シリコン膜の 形成工程を繰り返し、五酸ィ匕タンタル膜と二酸ィ匕シリコン膜との多層膜を例えば、 5n m程度形成することで、絶縁層 10205が得られる(図 103D)。
[0559] なお、五酸ィ匕タンタル膜と二酸ィ匕シリコン膜からなる絶縁層 10205は、金属酸化物 層 10204に電圧を印加した時に、強誘電体膜に印加される電圧を制御するために 用いる。従って、金属酸化物層 10204に印加される電圧を制御することができれば、 五酸ィ匕タンタル膜と二酸ィ匕シリコン膜の多層構造以外力も絶縁層 10205を構成して もよぐ単層から構成してもよい。また、膜厚も、 5nmに限るものではない。なお、上述 した ECRスパッタ法では、基板 10201に対して加熱はしていないが、加熱しても良 い。
[0560] 次に、図 103Eに示すように、絶縁層 10205の上に、所定の面積の Auからなるソ ース電極 10206及びドレイン電極 10207が形成された状態とすることで、図 102A 及び図 102Bに示す三端子素子が得られる。ソース電極 10206及びドレイン電極 10 207は、よく知られたリフトオフ法と抵抗加熱真空蒸着法による金の堆積とにより形成 できる。なお、ソース電極 10206及びドレイン電極 10207は、例えば、 Ru、 Pt、 TiN などの他の金属材料や導電性材料を用いるようにしてもよい。なお、 Ptを用いた場合 、密着性が悪く剥離する可能性があるので、 Ti Pt Auなどの剥離し難い構造とし 、この上でフォトリソグラフィーゃリフトオフ処理などのパターユング処理をして所定の 面積を持つ電極として形成する必要がある。
[0561] 次に、金属酸ィ匕物層 10204を用いた素子の特性について説明する。この特性調 查は、ゲート電極 10203とドレイン電極 10207との間に電圧を印加することで行う。 ゲート電極 10203とドレイン電極 10207との間に電源により電圧を印加し、電圧を印 カロしたときの電流を電流計により観測すると、図 49に示した結果が得られた。以下、 図 49を説明し、あわせて本発明の素子における動作原理を説明する。ただし、ここで 説明する電圧値や電流値は、実際の素子で観測されたものを例としている。従って、 本現象は、以下に示す数値に限るものではない。実際に素子に用いる膜の材料や 膜厚、及び他の条件により、他の数値が観測されることがある。
[0562] まず、ゲート電極 10203に正の電圧を印加すると、図 49中の(1)〖こ示すように、 0 〜1. 0Vでは流れる電流は非常に少ない。しかし、(2)に示すように、 1. IVを超える と急に正の電流が流れる。実際には、 0. lAZcm2を超える電流も流れている力 測 定器を保護するためにこれ以上電流を流さな 、ようにして 、るので、観測されて 、な い。ここで、(1)に示す 0〜1. 0Vの領域で、(2)に示すような電流が大きく流れない ようにすると、高抵抗の状態が保持 (維持)される。
[0563] 続いて、再びゲート電極 10203に正の電圧を印加すると、 (3)〖こ示すように、 0. 8 V程度で 0. lAZcm2以上の正の電流が流れる軌跡を示す。さらに続いて、ゲート電 極 10203に正の電圧を印加すると、やはり(3)に示すように 0. 8V程度で 0. lA/c m2以上の電流が流れる。
[0564] しかし、今度は、ゲート電極 10203に負の電圧を印加すると、(4)に示すように、 - 0. 2V程度まで負の電流が流れ、最大— 1. 5 X 10— 2AZcm2になる。ここで、電圧の 絶対値を小さくしていくと、(4)に示す軌跡を通る。
[0565] 再び、 0. 2V迄の負の電圧を印加すると、(4)に示すような軌跡を通る。この後、
(5)に示すように、流れる電流値が減少して負の電流が流れなくなる。続いて、ゲート 電極 10203に負の電圧を印加すると(6)に示すように、ほとんど電流が流れない軌 跡を示すようになる。この後、電圧の絶対値を小さくしていっても、(6)に示すようにほ とんど電流が流れない。さらに、続いてゲート電極 10203に正の電圧を印加すると、 (1)に示すようにように 0〜1. OV程度まで、ほとんど電流値が流れない。
[0566] 従って、(2)のように急激に電流が流れないようにゲート電極 10203に 1. IV以上 の電圧を印加しなければ、(1)のような電流が流れない高抵抗の状態を維持すること になる。(1)に示す状態を「正の高抵抗モード」と呼ぶことにする。
[0567] 例えば、(2)に示すように 1. IV以上の電圧を印加し、急激な電流が流れる状態と すると、(3)のような電流が流れやすくなる低抵抗の状態になる。この状態も、ゲート 電極 10203に正の電圧を印加している間は維持される。(3)に示す状態を「正の低 抵抗モード」と呼ぶことにする。
[0568] し力し、ゲート電極 10203に負の電圧を印加すると、(4)〖こ示すように、負の 0〜一 0. 2Vの電圧領域で、初期に少量の電流が流れる低抵抗の状態になる。ここでも、 0 から 0. 2Vの間で負の電圧を印加している間、この状態が維持されるので、(4)に 示す状態を「負の低抵抗モード」と呼ぶことにする。
[0569] さらに、 0. 2V以上の負の電圧を印加すると、(5)に示すように電流が流れなくな り、高抵抗な状態に移行する。この状態になると、(6)に示すように、負の 0〜一 1. 0 Vの電圧領域で電圧を印加している間、電流値が高抵抗の状態が維持される。この( 6)に示される状態を、「負の高抵抗モード」と呼ぶことにする。
[0570] 以上より、金属酸ィ匕物層 10204には、「正の高抵抗モード」、「正の低抵抗モード」 、「負の高抵抗モード」、「負の低抵抗モード」の見かけ上 4つのモードが安定して存 在することになる。詳細に調べると、「正の高抵抗モード」と「負の高抵抗モード」は、 同じ高抵抗の状態を示す「高抵抗モード」であり、「正の低抵抗モード」と「負の低抵 抗モード」は、同じ低抵抗の状態を示す「低抵抗モード」であり、 2つのモードが存在 していことが判明した。つまり、「高抵抗モード」の状態にあるとき、 - 1. 5Vから + 1. OVの電圧領域で「高抵抗モード」が維持される。 + 1. OV以上の電圧を印加すること で遷移した「低抵抗モード」の状態にあるときは、 0. 2Vから + 0. 8Vの電圧領域で 「低抵抗モード」が維持される。これらの 2つの「高抵抗モード」と「低抵抗モード」とが 切り替わることになる。これらは、「負の高抵抗モード」及び「負の低抵抗モード」の負 の抵抗モードについても、同様である。
[0571] また、各「正のモード」の実際の電流値は、 0. 5V印加時に、「正の高抵抗モード」 で 1. 0 X 10— 5AZcm2であり、「正の低抵抗モード」で 5 X 10— 2AZcm2であることから 、各々の比は、 5000倍にも達する。このことは、容易なモードの識別を可能にするも のである。発明者らは、印加する電圧の向きと強さにより、金属酸化物層 10204の抵 抗値が劇的に変化することで、上述した現象が発現するものと推定している。
[0572] また、金属酸化物層 10204とドレイン電極 10207 (ソース電極 10206)の間に備え た絶縁層 10205により、絶縁層 10205の持つバンド構造から、キャリアの制御が可 能である。具体的には、例えば、五酸ィ匕タンタルは、バンドギャップは 4. 5eV程度で あるが、フェルミレベルからのエネルギー差を見た場合、伝導帯には 1. 2eV程度、 価電子帯には 2. 3eVと価電子帯側にノリアが高いことが知られている。従って、価 電子帯のホール (正孔)に対してはバリア性が高いが、伝導帯のエレクトロン (電子) に対してはノリア性が低いと言うことになる。詳しくは、「ウィルクらのジャーナル ·ォブ 'アプライドヽフイジタス、第 87号、 484頁、 2000年、 (Wilk et. al, J.Appl.Phys., 87,48 4(2000).」を参考にされた!/ヽ。
[0573] 上述した特性から、例えば五酸ィ匕タンタル膜を、電極と金属酸化物層 10204との 間の絶縁層に用いた場合、電子は流れやすぐ正孔は流れにくいという現象が期待 できる。実際に、図 49に示すように、ドレイン電極 10207に正の電圧が印加されたと きと、負の電圧が印加されたときでは、流れる電流の値が大きく異なっている。このこ とは、金属酸ィ匕物層 10204の状態の判別を行う場合に、信号 ·ノイズ比(SZN比)を 向上させ、状態の判別を容易にする効果が非常に大きい。これは、絶縁層 10205を 用いた効果である。
[0574] 上述した図 49に示す「低抵抗モード」と「高抵抗モード」のモードを応用することで、 図 102A及び図 102Bに示す素子が、不揮発性で非破壊の読み出しが可能な三端 子素子として使用できることを見いだした。具体的には、まず、ソース'ドレイン間の電 流が流れに《なるオフ状態は、図 49の(4)又は(5)に示すように、ゲート電極 1020 3に負の電圧を印加してドレイン電極 10207に正の電圧が印加された状態とし、「低 抵抗モード」から「高抵抗モード」にモード変更することにより行えばょ 、。
[0575] また、ソース'ドレイン間の電流が流れやすくなるオン状態は、図 49の(2)に示すよ うに、ゲート電極 10203に正の電圧を印加してドレイン電極 10207に負の電圧が 0. 8V以上印加されて電流が急激に流れるようにすることで行えばよい。このことで、 「高抵抗モード」から「低抵抗モード」にモード変換し、オン状態に遷移する。これらの ように、ゲート電極 10203 (ドレイン電極 10207)への電圧印加により、「高抵抗モー ド」か「低抵抗モード」にすることによって、オン状態とオフ状態とを切り替えることが可 能である。
[0576] 一方、以上のようにして制御されたソース'ドレイン間のオン Zオフの状態は、ソース •ドレイン間に、—0. 8〜+ 0. 8Vの適当な電圧を印加したときの電流値を読み取る ことで容易に認識することができる。例えば、図 102A及び図 102Bに示す素子のモ ード状態が、「オフ」言い換えると「高抵抗モード」である場合、図 49の(1)に示すよう に— 0. 8〜+ 0. 8Vの適当な電圧印加時に電流が流れ難いことにより判断できる。
[0577] また、図 102A及び図 102Bに示す素子のモード状態は、「オン」言い換えると「低 抵抗モード」である場合、図 49の(2)に示すように、 -0. 5〜+ 0. 2Vの適当な電圧 印加時に電流が急激に流れることにより判断できる。「負の高抵抗モード」と「負の低 抵抗モード」、つまり、「オフ」と「オン」の状態の電流値は、 200倍以上もあることから、 「オフ」と「オン」の判断力、容易に可能である。同様に、正の電圧領域においても、 0 〜 + 0. 2Vの電圧範囲で「オン」と「オフ」の判断が可能である。
[0578] 上述したオンオフの状態は、図 102A及び図 102Bに示す素子が「高抵抗モード」 か「低抵抗モード」かを調べるだけで容易に識別できる。どちらかのモードかを調べる ために、電極に正の電圧を印加しても、保持しているモードは変化することはない。 従って、図 102A及び図 102Bに示す三端子素子によれば、非破壊の動作が可能で ある。図 102A及び図 102Bに示す素子は、金属酸化物層 10204力 ゲート電極 10 203とドレイン電極 10207 (もしくはソース電極 10206)との間に印加された電圧によ り抵抗値が変化することにより、ソース'ドレイン間のオンオフを制御する三端子素子 として機能するものである。なお、本素子は、電流を制御する素子としても用いること ができる。 [0579] なお、ソース電極 10206がオープンとされた状態でも、ゲート電圧の印加により、ォ ン状態とオフ状態とを制御することが可能である。ただし、ソース電極 10206がォー プンとされた状態では、ゲート電圧を印加してオフ状態としても、読み出し電圧を大き くすると、ある程度ソース'ドレイン間に電流が流れるようになる。ソース電極 10206が オープンとされた状態でゲート電圧を印加する場合、印加された電圧はドレイン電極 10207の下部の領域により選択的に作用するため、上述したように、高い読み出し 電圧では、ある程度ソース'ドレイン電流が流れるようになるものと考えられる。従って 、ソース'ドレイン電流は、ソース電極 10206 ソース電極 10206の下の領域の金属 酸化物層 10204 ゲート電極 10203 ドレイン電極 10207の下の領域の金属酸化 物層 10204 ドレイン電極 10207の経路を通り流れるものと考えられる。
[0580] 図 102A及び図 102Bに示す素子を動作させるための電圧は、「負の低抵抗モード 」にする時に最大になるが、図 49に示すように、 0. 8V程度であり、非常に消費電 力が小さい。消費電力が小さいと言うことは、デバイスにとって非常に有利になり、例 えば、移動体通信機器,デジタル汎用機器,デジタル撮像機器を始め、ノートタイプ のパーソナルコンピュータ,パーソナル'デジタル'アプライアンス (PDA)のみならず 、全ての電子計算機,パーソナルコンピュータ,ワークステーション,オフィスコンビュ ータ,大型計算機や、通信ユニット,複合機などの三端子素子を用いている機器の 消費電力を下げることが可能となる。
[0581] なお、図 102A及び図 102Bに示す三端子素子におけるオンオフいずれかの状態 も、前述した各素子と同様に、オンもしくはオフのいずれかの状態が、 10年保持する ことが可能である。
[0582] ところで、上述した本発明の例では、シリコン力もなる基板上の絶縁層、絶縁層上の ゲート電極の層、ゲート電極の上の金属酸化物層の各々を ECRスパッタ法で形成す るようにした。し力しながら、これら各層の形成方法は、 ECRスパッタ法に限定するも のではない。例えば、シリコン基板の上に形成する絶縁層は、熱酸化法や化学気相 法 (CVD法)、また、従来のスパッタ法などで形成しても良い。
[0583] また、ゲート電極の層は、 EB蒸着法、 CVD法、 MBE法、 IBD法などの他の成膜方 法で形成しても良い。また、金属酸化物層も、上記で説明した MOD法や従来よりあ るスパッタ法、 PLD法、 MOCVD法などで形成することができる。ただし、 ECRスパッ タ法を用いることで、平坦で良好な絶縁膜、金属膜、金属酸化物膜が容易に得られ る。
[0584] また、上述した実施の形態では、各層を形成した後、ー且大気に取り出して 、たが 、各々の ECR^パッタを実現する処理室を、真空搬送室で連結させた装置を用いる ことで、大気に取り出すことなぐ連続的な処理により各層を形成してもよい。これらの ことにより、処理対象の基板を真空中で搬送できるようになり、水分付着などの外乱 の影響を受け難くなり、膜質と界面の特性の向上につながる。
[0585] 特許文献 7に示されているように、各層を形成した後、形成した層の表面に ECRプ ラズマを照射し、特性を改善するようにしてもよい。また、各層を形成した後に、水素 雰囲気中などの適当なガス雰囲気中で、形成した層をァニール (加熱処理)し、各層 の特性を大きく改善するようにしてもょ 、。
[0586] 本発明の基本的な思想は、図 102A及び図 102Bに示すように、金属酸化物層に 絶縁層を接して配置し、これらをゲート電極とソース'ドレイン電極で挾むようにしたと ころにある。このような構成とすることで、ゲート電極に所定の電圧 (DC,パルス)を印 加して金属酸化物層の抵抗値を変化させ、安定な高抵抗モードと低抵抗モードを切 り替え、結果として三端子素子としての動作が実現可能となる。
[0587] 従って、例えば、図 104に例示するように、絶縁層 10202の上にソース電極 10216 及びドレイン電極 10217が形成され、ソース電極 10216及びドレイン電極 10217が 、絶縁層 10215を介して金属酸化物層 10204に覆われ、金属酸化物層 10204の 上にゲート電極 10213が形成された状態としてもよい。また、図 105A,図 105Bに示 すように、絶縁性基板 10201aを用いるようにしてもよい。この場合、図 102A及び図 102Bにおける絶縁層 10202はなくてもよい。また、導電性を有する基板を用い、こ の上に、図 102A及び図 102Bに示す金属酸化物層 10204,絶縁層 10205,ソース 電極 10206,ドレイン電極 10207の構成を配置するようにしてもよい。この場合、基 板がゲート電極を兼用することになる。導電性基板として熱伝導性の高 ヽ金属基板 を用いれば、より高い冷却効果が得られ、素子の安定動作が期待できる。
[0588] また、ガラスや石英などの絶縁性基板を用いるようにしてもよ!ヽ。これらの構造とす ることによって、加工しやすいガラス基板などへの適用が可能となる。また、金属酸化 物層 10204は、波長 632. 8nmで測定したときの屈折率が 2. 6程度で光学的に透 明であるため、透明な基板を用いることで、本実施の形態における三端子素子のディ スプレイへの応用が可能となる。また、金属酸化物層 10204を、 10〜200nmの間で 干渉色を発する厚さに形成することで、着色した状態の視覚効果が得られる。
[0589] なお上述では、 1つの強誘電体素子を例にして説明した力 図 93を用いて説明し た場合と同様に、複数の三端子素子をクロスポイント型に配列させて集積させるよう にしてもよい。また、図 102A及び図 102Bに示す三端子素子における金属酸ィ匕物 層 10204の抵抗値の変化は、前述した三端子素子と同様に、電流により制御するこ とも可能である。また、パルス電圧により、金属酸化物層 10204の抵抗変化を制御で きる。また、図 102A及び図 102Bに示す三端子素子においても、ソース'ドレイン間 に流れる電流値に 3つの状態(3値)が実現できる。
[0590] 次に、本発明の他の実施の形態について図を参照して説明する。図 106A及び図 106Bは、本発明の実施の形態における他の三端子素子の構成例を概略的に示す 模式的な断面図である。図 106に示す三端子素子は、例えば、単結晶シリコンから なる基板 10601の上に絶縁層 10602,ゲート電極 10603, Biと Tiと Oとから構成さ れた膜厚 30〜200nm程度の金属酸化物層 10604,ソース電極 10607,ドレイン電 極 10608を備え、カロ免て、ゲート電極 10603と金属酸ィ匕物層 10604との間に絶縁 層(第 1絶縁層) 10605を備え、ソース電極 10607及びドレイン電極 10608と金属酸 化物層 10604との間に絶縁層(第 2絶縁層) 10606を備えるようにしたものである。こ のような構成とした三端子素子において、例えば、図 106Aに示すように電位が印加 されている状態を書き込み状態とし、図 106Bに示すように、電位が印加されている 状態を読み出し状態とする。
[0591] 基板 10601は、半導体,絶縁体,金属などの導電性材料のいずれから構成されて いてもよい。基板 10601が絶縁材料力ら構成されている場合、絶縁層 10602はなく てもよい。また、基板 10601が導電性材料力ら構成されている場合、絶縁層 10602 ,ゲート電極 10603はなくてもよぐこの場合、導電性材料力 構成された基板 1060 1力 ゲート電極となる。ゲート電極 10603,ソース電極 10607,及びドレイン電極 10 608は、例えば、白金(Pt)、ルテニウム (Ru)、金 (Au)、銀 (Ag)、チタン (Ti)などの 貴金属を含む遷移金属の金属カゝら構成されていればよい。また、上記の電極は、窒 化チタン (TiN)、窒化ハフニウム(HfN)、ルテニウム酸ストロンチウム(SrRuO )、酸
2 化亜鉛 (ZnO)、鉛酸スズ (ITO)、フッ化ランタン (LaF )などの遷移金属の窒化物や
3
酸化物やフッ化物等の化合物、さらに、これらを積層した複合膜であってもよい
[0592] 絶縁層 10605,絶縁層 10606は、二酸ィ匕シリコン,シリコン酸窒化膜,アルミナ,又 は、リチウム,ベリリウム,マグネシウム,カルシウムなどの軽金属力 構成された LiNb Oなどの酸化物、 LiCaAlF、 LiSrAlF、 LiYF、 LiLuF、 KMgFなどのフッ化物
3 6 6 4 4 3
力も構成されていればよい。また、絶縁層 10605,絶縁層 10606は、スカンジウム, チタン,ストロンチウム,イットリウム,ジルコニウム,ハフニウム,タンタル,及び、ランタ ン系列を含む遷移金属の酸化物及び窒化物、又は、以上の元素を含むシリケ一ト( 金属、シリコン、酸素の三元化合物)、及び、これらの元素を含むアルミネート (金属、 アルミニウム、酸素の三元化合物)、さらに、以上の元素を 2以上含む酸化物及び窒 化物などから構成されて!、ればよ!/、。
[0593] なお、金属酸化物層 10604は、前述した強誘電体層 10604,強誘電体層 31060 4,強誘電体層 4705,強誘電体層 6205,金属酸ィ匕物層 8604,金属酸化物層 970 4,及び金属酸ィ匕物層 10204と全く同様である。
[0594] 図 106に示した三端子素子の構成の具体例について説明すると、例えば、ゲート 電極 10603は、膜厚 10nmのルテニウム膜であり、金属酸化物層 10604は、上述し た構成の金属酸ィ匕物力 なる膜厚 40nmの層であり、絶縁層 10605, 106は、五酸 化タンタルと二酸化シリコンと力もなる膜厚 5nmの多層膜であり、ソース電極 10607 及びドレイン電極 10608は、金から構成されたものである。また、ソース電極 10607 及びドレイン電極 10608は、金属酸化物層 10604の側から、チタン層,窒化チタン 層,金層の順に積層された多層構造であってもよい。金属酸化物層 10604との接触 面をチタン層とすることで、密着性の向上が図れる。また、ソース電極 10607とドレイ ン電極 10608との間隔は、例えば、 1mmである。なお、前述したように、基板 10601 及び絶縁層 10602の構成は、これに限るものではなぐ電気特性に影響を及ぼさな ければ、他の材料も適当に選択できる。 [0595] 以上で説明した、絶縁層 10602,ゲート電極 10603,絶縁層 10605,金属酸化物 層 10604,絶縁層 10606,ソース電極 10607及びドレイン電極 10608は、具体的 な製法は後述するが、図 5に示すような ECRスパッタ装置により、金属ターゲットや焼 結ターゲットを、ァノレゴンガス,酸素ガス,窒素ガスからなる ECRプラズマ内でスパッ タリングして形成すればよ!、。
[0596] 次に、図 106にした三端子素子の製造方法例について、図 10607を用いて説明 する。まず、図 10607Aに示すように、主表面が面方位(100)で抵抗率が 1〜2 Ω mの ρ形のシリコンカゝらなる基板 10601を用意し、基板 10601の表面を硫酸と過酸化 水素水の混合液と純水と希フッ化水素水とにより洗浄し、このあと乾燥させる。ついで 、洗浄 '乾燥した基板 10601の上に、絶縁層 10602が形成された状態とする。絶縁 層 10602の形成では、上述した ECR^パッタ装置を用い、ターゲットとして純シリコン (Si)を用い、プラズマガスとしてアルゴン (Ar)と酸素ガスを用いた ECR^パッタ法に より、シリコン力もなる基板 10601の上に、表面を覆う程度に Si— O分子によるメタル モードの絶縁層 10602を形成する。
[0597] 例えば、 10— 5Pa台の内部圧力に設定されているプラズマ生成室内に流量 20sccm 程度で Arガスを導入し、内部圧力を 10— 3〜: LO— 2Pa程度にし、ここに、 0. 0875Tの磁 場と 2. 45GHzのマイクロ波(500W©度)とを供給して電子サイクロトロン共鳴条件と することで、プラズマ生成室内に Arのプラズマが生成された状態とする。なお、 sccm は流量の単位あり、 0°C ' 1気圧の流体が 1分間に lcm3流れることを示す。
[0598] 上述したことにより生成されたプラズマは、磁気コイルの発散磁場によりプラズマ生 成室より処理室の側に放出される。また、プラズマ生成室の出口に配置されたシリコ ンターゲットに、高周波電源より 13. 56MHzの高周波電力(例えば 500W)を供給 する。このことにより、シリコンターゲットに Arイオンが衝突してスパッタリング現象が起 こり、 Si粒子が飛び出す。シリコンターゲットより飛び出した Si粒子は、プラズマ生成 室より放出されたプラズマ、及び導入されてプラズマにより活性化された酸素ガスと共 にシリコンカゝらなる基板 10601の表面に到達し、活性化された酸素により酸化され二 酸ィ匕シリコンとなる。以上のことにより、基板 10601上に二酸ィ匕シリコン力もなる例え ば lOOnm程度の膜厚の絶縁層 10602が形成された状態とすることができる(図 107 A)。
[0599] なお、絶縁層 10602は、この後に形成する各電極に電圧を印加した時に、基板 10 601に電圧が洩れて、所望の電気的特性に影響することがな!ヽように絶縁を図るも のである。例えば、シリコン基板の表面を熱酸化法により酸化することで形成した酸 化シリコン膜を絶縁層 10602として用いるようにしてもよい。絶縁層 10602は、絶縁 性が保てればよぐ酸ィ匕シリコン以外の他の絶縁材料力も構成してもよぐまた、絶縁 層 10602の膜厚は、 lOOnmに限らず、これより薄くてもよく厚くてもよい。絶縁層 106 02は、上述した ECRスパッタによる膜の形成では、基板 10601に対して加熱はして V、な 、が、基板 10601を加熱しながら膜の形成を行ってもょ 、。
[0600] 以上のようにして絶縁層 10602を形成した後、今度は、ターゲットとして純ルテユウ ム(Ru)を用いた同様の ECRスパッタ法により、絶縁層 10602の上にルテニウム膜を 形成することで、図 107Bに示すように、ゲート電極 10603が形成された状態とする。 Ru膜の形成について詳述すると、 Ruカゝらなるターゲットを用いた ECRスパッタ装置 において、例えば、まず、絶縁層を形成したシリコン基板を 400°Cに加熱し、また、プ ラズマ生成室内に、例えば流量 7sccmで希ガスである Arガスを導入し、力!]えて、例え ば流量 5sccmで Xeガスを導入し、プラズマ生成室の内部を、例えば 10— 2〜: LO— 3Pa台 の圧力に設定する。
[0601] ついで、プラズマ生成室内に電子サイクロトロン共鳴条件の磁場を与え、この後、 2 . 45GHzのマイクロ波(例えば 500W)をプラズマ生成室内に導入し、プラズマ生成 室に Arと Xeの ECRプラズマが生成した状態とする。生成された ECRプラズマは、磁 気コイルの発散磁場によりプラズマ生成室より処理室側に放出される。また、プラズマ 生成室の出口に配置されたルテニウムターゲットに、 13. 56MHzの高周波電力(例 えば 500W)を供給する。このことにより、スパッタリング現象が起き、ルテニウムター ゲットより Ru粒子が飛び出す。ルテニウムターゲットより飛び出した Ru粒子は、基板 1 0601の絶縁層 10602表面に到達して堆積する。
[0602] 以上のことにより、絶縁層 10602の上に、例えば 10nm程度の膜厚のゲート電極 1 0603が形成された状態が得られる(図 107B)。ゲート電極 10603は、この後に形成 するソース電極 10607及びドレイン電極 10608との間に電圧を印加した時に、金属 酸ィ匕物層 10604に電圧が印加できるようにするものである。従って、導電性が持てれ ばルテニウム以外力もゲート電極 10603を構成してもよぐ例えば、白金からゲート 電極 10603を構成してもよい。ただし、二酸化シリコンの上に白金膜を形成すると剥 離しやすいことが知られている力 これを防ぐためには、チタン層ゃ窒化チタン層もし くはルテニウム層などを介して白金層を形成する積層構造とすればよい。また、ゲー ト電極 10603の膜厚も lOnmに限るものではなぐこれより厚くてもよく薄くてもよい。
[0603] ところで、上述したように ECR^パッタ法により Ruの膜を形成するときに、基板 106 01を 400°Cに加熱した力 加熱しなくても良い。ただし、加熱を行わない場合、ルテ -ゥムの二酸ィ匕シリコンへの密着性が低下するため、剥がれが生じる恐れがあり、こ れを防ぐために、基板を加熱して膜を形成する方が望まし ヽ。
[0604] 以上のようにしてゲート電極 10603を形成した後、基板 10601を装置内より大気中 に搬出し、ついで、ターゲットとして純タンタル (Ta)を用いた図 5同様の ECR^パッタ 装置の基板ホルダに、基板 10601を固定する。引き続いて、プラズマガスとしてアル ゴン (Ar)と酸素ガスとを用いた EC パッタ法により、図 107Cに示すように、ゲート 電極 10603の上に、表面を覆う程度に、絶縁層 10605が形成された状態とする。以 下に説明するように、 Ta— O分子によるメタルモード膜を形成し、絶縁層 10605とす る。
[0605] Ta— O分子によるメタルモード膜の形成について詳述すると、タンタルからなるター ゲットを用いた図 5に示す ECRスパッタ装置において、まず、プラズマ生成室内に、 不活性ガス導入部より、例えば流量 25sccmで希ガスである Arガスを導入し、プラズ マ生成室の内部を、例えば 10—3Pa台の圧力に設定する。また、プラズマ生成室には 、磁気コイルにコイル電流を例えば 28Aを供給することで電子サイクロトロン共鳴条 件の磁場を与える。
[0606] 加えて、図示していないマイクロ波発生部より、例えば 2. 45GHzのマイクロ波(例 えば 500W)を供給し、これを導波管、石英窓、真空導波管を介してプラズマ生成室 内に導入し、このマイクロ波の導入により、プラズマ生成室に Arのプラズマが生成し た状態とする。生成されたプラズマは、磁気コイルの発散磁場によりプラズマ生成室 より処理室の側に放出される。また、プラズマ生成室の出口に配置されたターゲット に、高周波電極供給部より高周波電力(例えば 500W)を供給する。
[0607] このこと〖こより、ターゲットに Ar粒子が衝突してスパッタリング現象を起こし、 Ta粒子 力 Sターゲットより飛び出す。ターゲットより飛び出した Ta粒子は、プラズマ生成室より 放出されたプラズマ、及び反応性ガス導入部より導入されてプラズマにより活性化さ れた酸素ガスと共に基板 10601のゲート電極 10603表面に到達し、活性化された 酸素により酸ィ匕され五酸ィ匕タンタルとなる。
[0608] 以上のことにより、まず、ゲート電極 10603の上に五酸ィ匕タンタル膜を形成する。続 いて、図 107Aを用いて説明した二酸ィ匕シリコンの堆積と同様に、純シリコン力もなる ターゲットを用いた ECRスパッタ法により、上記五酸ィ匕タンタル膜の上に二酸ィ匕シリコ ン膜が形成された状態とする。上述した五酸ィ匕タンタル膜と二酸ィ匕シリコン膜の形成 工程を繰り返し、五酸ィ匕タンタル膜と二酸ィ匕シリコン膜との多層膜を例えば、 5nm程 度形成することで、絶縁層 10605が得られる(図 107C)。
[0609] なお、五酸ィ匕タンタル膜と二酸ィ匕シリコン膜からなる絶縁層 10605は、金属酸化物 層 10604に電圧を印加した時に、強誘電体膜に印加される電圧を制御するために 用いる。従って、金属酸化物層 10604に印加される電圧を制御することができれば、 五酸ィ匕タンタル膜と二酸ィ匕シリコン膜の多層構造以外力も絶縁層 10605を構成して もよぐ単層から構成してもよい。また、膜厚も、 5nmに限るものではない。なお、上述 した ECRスパッタ法では、基板 10601に対して加熱はしていないが、加熱しても良 い。
[0610] 以上のように絶縁層 10605を形成した後、 Biと Tiの割合力 : 3の酸ィ匕物焼結体 (B i-Ti-O)力 なるターゲットを用い、プラズマガスとしてアルゴン (Ar)と酸素ガスと を用いた ECRスパッタ法により、図 107Dに示すように、絶縁層 10605の上に、表面 を覆う程度に、金属酸化物層 10604が形成された状態とする。
[0611] 金属酸化物層 10604の形成について詳述すると、まず、 300°C〜700°Cの範囲に 基板 10601が加熱されている状態とする。また、プラズマ生成室内に、例えば流量 2 Osccmで希ガスである Arガスを導入し、例えば 10— 3Pa〜: LO— 2Pa台の圧力に設定する 。この状態で、プラズマ生成室に電子サイクロトロン共鳴条件の磁場を与え、この後、 2. 45GHzのマイクロ波(例えば 500W)をプラズマ生成室に導入し、このマイクロ波 の導入により、プラズマ生成室に ECRプラズマが生成された状態とする。
[0612] 生成された ECRプラズマは、磁気コイルの発散磁場によりプラズマ生成室より処理 室側に放出される。また、プラズマ生成室の出口に配置された焼結体ターゲットに、 1 3. 56MHzの高周波電力(例えば 500W)を供給する。このことにより、焼結体ターゲ ットに Ar粒子が衝突してスパッタリング現象を起こし、 Bi粒子と Ti粒子が飛び出す。
[0613] 焼結体ターゲットより飛び出した Bi粒子と Ti粒子は、プラズマ生成室より放出された ECRプラズマ、及び、放出された ECRプラズマにより活性ィ匕した酸素ガスと共に、加 熱されている絶縁層 10605の表面に到達し、活性ィ匕された酸素により酸ィ匕される。な お、反応ガスとしての酸素(O )ガスは、以降にも説明するように Arガスとは個別に導
2
入され、例えば、例えば流量 lsccmで導入されている。焼結体ターゲットは酸素を含 んでいるが、酸素を供給することにより堆積している膜中の酸素不足を防ぐことができ る。以上に説明した ECR^パッタ法による膜の形成で、例えば、膜厚 40nm程度の金 属酸化物層 10604が形成された状態が得られる(図 107D)。
[0614] なお、形成した金属酸化物層 10604〖こ、不活性ガスと反応性ガスの ECRプラズマ を照射し、膜質を改善するようにしてもよい。反応性ガスとしては、酸素ガスに限らず 、窒素ガス,フッ素ガス,水素ガスを用いることができる。また、この膜質の改善は、絶 縁層 10602の形成にも適用可能である。また、基板温度を 300°C以下のより低い温 度条件として金属酸化物層 10604を形成した後に、酸素雰囲気中などの適当なガ ス雰囲気中で、形成した金属酸化物層 10604をァニール (加熱処理)し、膜質の特 性を大きく改善するようにしてもょ 、。
[0615] 以上のようにして金属酸化物層 10604を形成した後、前述した絶縁層 10605の形 成と同様にし、図 107Eに示すように、金属酸化物層 10604の上に、表面を覆う程度 に絶縁層 10606が形成された状態とする。
[0616] 次に、図 107Fに示すように、絶縁層 10606の上に、所定の面積の Auからなるソー ス電極 10607及びドレイン電極 10608が形成された状態とすることで、図 106に示 す三端子素子が得られる。ソース電極 10607及びドレイン電極 10608は、よく知られ たリフトオフ法と抵抗加熱真空蒸着法による金の堆積とにより形成できる。なお、ソー ス電極 10607及びドレイン電極 10608は、例えば、 Ru、 Pt、 TiNなどの他の金属材 料や導電性材料を用いるようにしてもよい。なお、 Ptを用いた場合、密着性が悪く剥 離する可能性があるので、 Ti—Pt—Auなどの剥離し難い構造とし、この上でフォトリ ソグラフィーゃリフトオフ処理などのパターユング処理をして所定の面積を持つ電極と して形成する必要がある。
[0617] 次に、図 106に示す三端子素子の特性について説明する。この特性調査は、ゲー ト電極 10603とドレイン電極 10608 (ソース電極 10607)との間に電圧を印加するこ とで行う。ゲート電極 10603とドレイン電極 10608との間に電源により電圧を印加し、 電圧を印加したときの電流を電流計により観測すると、図 64に示す結果が得られた。 図 64では、縦軸が、電流値を面積で除した電流密度として示している。以下、図 64 を説明し、あわせて本発明のメモリ動作原理を説明する。ただし、ここで説明する電 圧値や電流値は、実際の素子で観測されたものを例としている。従って、本現象は、 以下に示す数値に限るものではない。実際に素子に用いる膜の材料や膜厚、及び 他の条件により、他の数値が観測されることがある。
[0618] まず、ドレイン電極 10608に正の電圧を印加すると、図 64中の(1)〖こ示すように、 0 〜1. 6Vでは流れる電流は非常に少ない。しかし、(2)に示すように、 1. 6Vを超える と急に正の電流が流れる。実際には、 5 X 10—3AZcm2を超える電流も流れているが 、測定器を保護するためにこれ以上電流を流さないようにしているので、観測されて いない。(2)に示すように急激な電流が流れないように 0〜1. 6Vの電圧を印加して いる場合は、 (1)に示すような抵抗が高い状態が維持される。
[0619] 続いて、再びドレイン電極 10608に正の電圧を印加すると、 (3)〖こ示すように、 0. 5 V程度で 1 X 10— 3AZcm2以上の正の電流が流れる軌跡を示す。さらに続いて、ドレ イン電極 10608に正の電圧を印加すると、やはり(3)に示すように 0. 5V程度で 1 X 10— 3 AZcm2以上の電流が流れる。ここで、 0〜0. 5Vの電圧を印加している場合は、 (3)に示すような抵抗が低い状態が維持される。
[0620] しかし、今度は、ドレイン電極 10608に負の電圧を印加すると、(4)に示すように、
-0. 5V程度まで負の電流が流れ、最大— 1. 5 X 10— 3AZcm2になる。ここで、 0〜 0. 5Vの電圧を印加している場合は、(4)に示すように、抵抗の低い状態が維持さ れる。 [0621] この後、 0. 5Vから 1. 6Vに負の電圧を印加していくと、(5)〖こ示すように、電 流値が減少して負の電流が流れなくなる。この後、—1. 6Vから OVの電圧の絶対値 を小さくしていっても、(6)に示すようにほとんど電流が流れない。さらに、続いてドレ イン電極 10608に負の電圧を印加すると、(6)に示すようにように、ほとんど電流値 が流れな!/ヽ軌跡を示すようになる。
[0622] さらに続いて、ドレイン電極 10608に正の電圧を印加すると、 (1)〖こ示すように、 0 〜1. 6V程度まで、ほとんど電流が流れない軌跡を示すようになる。さらに、 1. 6V以 上の電圧を印加すると、 (2)に示す急激な正の電流が流れ、 (3)に示す低抵抗を示 す状態となる。
[0623] 従って、(2)のように急激に電流が流れないようにドレイン電極 10608に 1. 6V以 上の電圧を印加しなければ、(1)のような電流が流れない高抵抗の状態を維持する ことになる。(1)に示す状態を「正の高抵抗モード」と呼ぶことにする。
[0624] 例えば、(2)に示すように 1. 6V以上の電圧を印加し、急激な電流が流れる状態と すると、(3)のような電流が流れやすくなる低抵抗の状態になる。この状態も、ドレイン 電極 10608に正の電圧を印加している間は維持される。(3)に示す状態を「正の低 抵抗モード」と呼ぶことにする。
[0625] し力し、ドレイン電極 10608に負の電圧を印加すると、(4)〖こ示すように、負の 0〜
-0. 5Vの電圧領域で、初期に少量の電流が流れる低抵抗の状態になる。ここでも 、 0力らー 0. 5Vの間で負の電圧を印加している間、この状態が維持されるので、(4) に示す状態を「負の低抵抗モード」と呼ぶことにする。
[0626] さらに、 0. 5Vを超える負の電圧を印加すると、(5)に示すように電流が流れなく なり、高抵抗な状態に移行する。この状態になると、 (6)に示すように、負の 0〜一 1. 6Vの電圧領域で電圧を印加している間、電流値が高抵抗の状態が維持される。こ の(6)に示される状態を、「負の高抵抗モード」と呼ぶことにする。
[0627] 以上より、金属酸ィ匕物層 10604には、「正の高抵抗モード」、「正の低抵抗モード」 、「負の高抵抗モード」、「負の低抵抗モード」の見かけ上 4つのモードが安定して存 在することになる。詳細に調べると、「正の高抵抗モード」と「負の高抵抗モード」は、 同じ高抵抗の状態を示す「高抵抗モード」であり、「正の低抵抗モード」と「負の低抵 抗モード」は、同じ低抵抗の状態を示す「低抵抗モード」であり、 2つのモードが存在 していことが判明した。つまり、「高抵抗モード」の状態にあるとき、 - 1. 6Vから + 1. 6Vの電圧領域で「高抵抗モード」が維持される。 + 1. 6V以上の電圧を印加すること で遷移した「低抵抗モード」の状態にあるときは、 0. 5Vから + 0. 5Vの電圧領域で 「低抵抗モード」が維持される。これらの 2つの「高抵抗モード」と「低抵抗モード」とが 切り替わることになる。これらは、「負の高抵抗モード」及び「負の低抵抗モード」の負 の抵抗モードについても、同様である。
[0628] また、各「正のモード」の実際の電流値は、 0. 5V印加時に、「正の高抵抗モード」 で 5. 0 X 10— 6AZcm2であり、「正の低抵抗モード」で 5 X 10— 3AZcm2であることから 、各々の比は、 1000倍にも達する。このことは、容易なモードの識別を可能にするも のである。発明者らは、印加する電圧の向きと強さにより、金属酸化物層 10604の抵 抗値が劇的に変化することで、上述した現象が発現するものと推定している。同様な ことは、「負の低抵抗モード」についてもいえる。
[0629] また、金属酸化物層 10604とゲート電極 10603の間に備えた絶縁層 10605及び 金属酸化物層 10604とドレイン電極 10608 (ソース電極 10607)の間に備えた絶縁 層 10606により、絶縁層 10605,絶縁層 10606の持つノ ンド構造力ら、キャリアの 制御が可能である。具体的には、例えば、五酸ィ匕タンタルは、バンドギャップは 4. 5e V程度である力 フェルミレベルからのエネルギー差を見た場合、伝導帯には 1. 2e V程度、価電子帯には 2. 3eVと価電子帯側にノリアが高いことが知られている。従つ て、価電子帯のホール (正孔)に対してはバリア性が高いが、伝導帯のエレクトロン( 電子)に対してはノリア性が低いと言うことになる。詳しくは、「ウィルクらのジャーナル 'ォブ 'アプライド 'フイジタス、第 87号、 484頁、 2000年、 (Wilk et. al, J.Appl.Phys., 87,484(2000).」を参考にされた!/、。
[0630] 上述した特性から、例えば五酸ィ匕タンタル膜を、電極と金属酸化物層との間の絶縁 層に用いた場合、電子は流れやすぐ正孔は流れにくいという現象が期待できる。実 際に、図 64に示すように、ドレイン電極 10608からゲート電極 10603に正の電圧を 印加したときと、負の電圧を印加したときでは、流れる電流の値が大きく異なっている 。このことは、金属酸ィ匕物層 10604の状態の判別を行う場合に、信号'ノイズ比(SZ N比)を向上させ、状態の判別を容易にする効果が非常に大きい。これは、絶縁層 1 0605及び絶縁層 10606を用いた効果である。
[0631] 上述した図 64に示す「低抵抗モード」と「高抵抗モード」のモードを利用することで、 図 106に示す素子が、不揮発性で非破壊の三端子素子として使用できることを見い だした。具体的には、まず、ソース'ドレイン間の電流が流れに《なるオフ状態は、図 64の(4)又は(5)〖こ示すように、ゲート電極 10603に正の電圧を印加してドレイン電 極 10608に負の電圧が印加された状態とし、「低抵抗モード」から「高抵抗モード」に モード変更することにより行えばよい。
[0632] また、ソース'ドレイン間の電流が流れやすくなるオン状態への移行は、図 64の(2) に示すように、ゲート電極 10603に負の電圧を印加してドレイン電極 10608に正の 電圧が 1. 6V以上印加されて電流が急激に流れるようにすることで行えばよい。この ことで、「高抵抗モード」から「低抵抗モード」にモード変換し、オン状態に遷移する。 これらのように、ゲート電極 10603 (ドレイン電極 10608)への電圧印加により、「高抵 抗モード」か「低抵抗モード」にすることにより、オフ状態とオン状態とを切り替えること が可能である。
[0633] 一方、以上のようにして制御されたソース'ドレイン間のオン Zオフの状態は、ソース
'ドレイン間に、 0〜1. 6Vの適当な電圧を印加したときの電流値を読み取ることで容 易に認識することができる。例えば、図 106に示す三端子素子のモード状態が、「ォ フ」言い換えると「高抵抗モード」である場合、図 64の(1)に示すように 0. 5〜1. 6V の適当な電圧印加時に電流が流れ難いことにより判断できる。
[0634] また、図 106に示す素子のモード状態力 「オン」言い換えると「低抵抗モード」であ る場合、図 64の(2)に示すのように、 1〜0. 6Vの適当な電圧印加時に電流が、ソー ス 'ドレイン間に急激に流れることにより判断できる。「正の高抵抗モード」と「正の低抵 抗モード」、つまり、「オフ」と「オン」の状態の電流値は、 1000倍以上もあることから、 「オフ」と「オン」の判断力、容易に可能である。同様に、負の電圧領域においても、 0 〜― 2. 6Vの電圧範囲で「オン」と「オフ」の判断が可能である。
[0635] 上述した三端子素子のオンオフの状態は、図 106に示す素子が「高抵抗モード」か 「低抵抗モード」かを調べるだけで容易に識別できる。言い換えれば、図 106に示す 三端子素子が、上記 2つのモードを保持できている間は、データが保持されている状 態である。さらに、どちらかのモードかを調べるために、電極に電圧を印加しても、保 持しているモードは変化することなくデータが破壊されてしまうことはない。従って、図 106に示す三端子素子素子によれば、非破壊の動作が可能である。図 106に示す 三端子素子は、金属酸化物層 10604力 ゲート電極 10603とドレイン電極 10608 ( もしくはソース電極 10607)との間に印加された電圧により抵抗値が変化することによ り、ソース'ドレイン間のオンオフを制御する三端子素子素子として機能するものであ る。なお、本素子は、電流を制御する素子としても用いることができる。
[0636] なお、ソース電極 10607がオープンとされた状態でも、ゲート電圧の印加により、ォ ン状態とオフ状態とを制御することが可能である。ただし、ソース電極 10607がォー プンとされた状態では、ゲート電圧を印加してオフ状態としても、読み出し電圧を大き くすると、ある程度ソース'ドレイン間に電流が流れるようになる。ソース電極 10607が オープンとされた状態でゲート電圧を印加する場合、印加された電圧はドレイン電極 10608の下部の領域により選択的に作用するため、上述したように、高い読み出し 電圧では、ある程度ソース'ドレイン電流が流れるようになるものと考えられる。従って 、ソース'ドレイン電流は、ソース電極 10607—ソース電極 10607の下の領域の金属 酸化物層 10604—ゲート電極 10603—ドレイン電極 10608の下の領域の金属酸化 物層 10604—ドレイン電極 10608の経路を通り流れるものと考えられる。
[0637] 図 106に示す三端子素子を動作させるための電圧は、「正の低抵抗モード」にする ためのゲート電圧印加時に最大になる力 図 64に示すように、高々 1. 6V程度であり 、非常に消費電力が小さい。消費電力が小さいと言うことは、デバイスにとって非常に 有利になり、例えば、移動体通信機器,デジタル汎用機器,デジタル撮像機器を始 め、ノートタイプのパーソナルコンピュータ,パーソナル'デジタル'アプライアンス(P DA)のみならず、全ての電子計算機,パーソナルコンピュータ,ワークステーション, オフィスコンピュータ,大型計算機や、通信ユニット,複合機などの三端子素子を用 いている機器の消費電力を下げることが可能となる。なお、図 106に示す三端子素 子におけいても、オンもしくはオフのいずれかの状態が、 10年保持される。
[0638] 図 106に示す三端子素子の基本的な思想は、金属酸ィ匕物層に絶縁層を接して配 置し、これらをゲート電極とソース'ドレイン電極で挾むようにしたところにある。このよう な構成とすることで、ゲート電極に所定の電圧 (DC,パルス)を印加して金属酸化物 層の抵抗値を変化させ、安定な高抵抗モードと低抵抗モードを切り替え、結果として 三端子素子としての動作が実現可能となる。
[0639] 従って、例えば、図 108に例示するように、絶縁層 10602の上にソース電極 10617 及びドレイン電極 10618が形成され、ソース電極 10617及びドレイン電極 10618が 、絶縁層 10616を介して金属酸化物層 10604に覆われ、金属酸化物層 10604の 上に絶縁層 10615を介してゲート電極 10613が形成された状態としてもよい。また、 図 109A,図 109Bに示すように、絶縁性基板 10601aを用いるようにしてもよい。こ の場合、図 106における絶縁層 10602はなくてもよい。また、導電性を有する基板を 用い、この上に、図 106に示す絶縁層 10605,金属酸ィ匕物層 10604,絶縁層 1060 6,ソース電極 10607,ドレイン電極 10608の構成を配置するようにしてもよい。この 場合、基板がゲート電極を兼用することになる。導電性基板として熱伝導性の高い金 属基板を用いれば、より高い冷却効果が得られ、素子の安定動作が期待できる。
[0640] また、ガラスや石英などの絶縁性基板を用いるようにしてもよ!ヽ。これらの構造とす ることによって、加工しやすいガラス基板などへの適用が可能となる。また、金属酸化 物層 10604は、波長 632. 8nmで測定したときの屈折率が 2. 6程度で光学的に透 明であるため、透明な基板を用いることで、本実施の形態における三端子素子のディ スプレイへの応用が可能となる。また、金属酸化物層 10604を、 10〜200nmの間で 干渉色を発する厚さに形成することで、着色した状態の視覚効果が得られる。
[0641] また、図 106に示す三端子素子も、複数の三端子素子をクロスポイント型に配列さ せて集積させるようにしてもよい。また、金属酸ィ匕物層 10604における抵抗値の変化 も、電流により制御することも可能である。また、パルス電圧により、金属酸化物層 10 604の抵抗変化を制御できる。また、図 106に示す三端子素子においても、ソース' ドレイン間に流れる電流値に 3つの状態(3値)が実現できる。
[0642] 次に、本発明の他の実施の形態について図を参照して説明する。図 110は、本発 明の実施の形態におけるメモリ素子の構成例を概略的に示す模式的な断面図であ る。図 110に示すメモリ素子は、例えば、単結晶シリコン力もなる基板 11001の上に 絶縁層 11002,接地電極 11003, Biと Tiと Oとから構成された膜厚 30〜200nm程 度の金属酸化物からなるスィッチ層 11004,ビット電極 11005, Biと Tiと Oとから構 成された膜厚 30〜200nm程度の金属酸化物力 なるメモリ層 11006,ワード電極 1 1007を備える。本メモリ素子は、接地電極 11003とスィッチ層 11004とメモリ層 110 06とワード電極 11007と力 これらの順に直列に接続され、スィッチ層 11004にはビ ット電極 11005が設けられているようにしたものである。なお、図 110は、例えば、マト リクス状に配列された複数のビット線と複数のワード線との交点部分に接続されてい る 1つのメモリセル部分を示したものである。
[0643] 基板 11001は、半導体,絶縁体,金属などの導電性材料のいずれから構成されて いてもよい。基板 11001が絶縁材料力も構成されている場合、絶縁層 11002はなく てもよい。また、基板 11001が導電性材料力も構成されている場合、絶縁層 11002 ,接地電極 11003はなくてもよぐこの場合、導電性材料力 構成された基板 11001 1S 接地電極となる。接地電極 11003,ビット電極 11005,及びワード電極 11007 は、例えば、白金 (Pt)、ルテニウム (Ru)、金 (Au)、銀 (Ag)などの貴金属を含む遷 移金属の金属から構成されていればよい。また、各電極は、窒化チタン (TiN)、窒化 ハフニウム(HfN)、ルテニウム酸ストロンチウム(SrRuO )、酸化亜鉛 (ZnO)、鉛酸
2
スズ (ITO)、フッ化ランタン (LaF )などの遷移金属の窒化物や酸ィ匕物やフッ化物等
3
の化合物、さら〖こ、これらを積層した複合膜であってもよい。
[0644] 図 110に示したメモリ素子の構成の具体例について説明すると、例えば、接地電極 11003は、膜厚 10nmのルテニウム膜であり、ビット電極 11005は、膜厚 20nm程度 のチタン (Ti)膜の上に膜厚 10nmのルテニウム膜が形成された積層膜であり、スイツ チ層 11004,メモリ層 11006は、膜厚 40nmの Biと Tiとからなる金属酸化物から構成 されたものであり、ワード電極 11007は、 Auから構成されたものである。
[0645] 次に、なお、スィッチ層 11004及びメモリ層 11006は、前述した強誘電体層 1060 4,強誘電体層 310604,強誘電体層 4705,強誘電体層 6205,金属酸化物層 860 4,金属酸化物層 9704,金属酸化物層 10204,及び金属酸化物層 10604と全く同 様である。
[0646] このような金属酸ィ匕物の層(メモリ層 11006)を用いたメモリ素子によれば、以降に 説明するように、 2つの状態 (ON及び OFF)が保持される状態が実現できる。上述し た構成の金属酸ィ匕物層の特性は、図 110に示すメモリ素子のビット電極 11005とヮ ード電極 11007との間に電圧を印加することで調査されたものである。ビット電極 11 005とワード電極 11007との間に電源により電圧を印加し、ビット電極 11005からヮ ード電極 11007へ流れる電流を電流計により観測すると、図 33と同様の結果が得ら れた。なお、ここでは、図 33の縦軸は、ビット電極 11005からワード電極 11007へ流 れる方向の電流値を正として 、る。
[0647] 以下、図 33を説明し、あわせて本発明におけるメモリ素子の動作原理を説明する。
ただし、ここで説明する電圧値や電流値は、実際の素子で観測されたものを例として いる。従って、本現象は、以下に示す数値に限るものではない。実際に素子に用いる 膜の材料や膜厚、及び他の条件により、他の数値が観測されることがある。
[0648] 図 33は、ビット電極 11005に印加する電圧をゼロから負の方向に減少させた後に ゼロに戻し、さらに正の方向に増加させ、最後に再びゼロに戻したときにメモリ層 110 06を流れる電流値が描くヒステリシスの特性を表している。まずはじめに、ビット電極 11005により印加される電圧を 0Vから負の方向に徐々に印加させた場合、メモリ層 11006を流れる負の電流は比較的少ない( 0. IVで約—0. 12mA程度)。
[0649] しかし、 0. 4Vを超えると負の電流値が増加し始める。さらに IVまで電圧を下 げた後、逆に負の電圧を小さくしていくと、先ほどよりも絶対値が大きな負の電流が流 れる状態が保持されたまま、負の電流値は減少していく。このとき、電流値は— 0. 1 Vで約 0. 63mAであり、先ほどよりも 5倍程度抵抗値が低ぐ電流が流れやすい状 態である。印加する電圧をゼロに戻すと、電流値もゼロとなる。
[0650] 次に、ビット電極 11005に正の電圧を印加していく。この状態では、印加される正 の電圧が小さいときは、前の履歴を引き継ぎ、比較的大きな正の電流が流れる(0. 1 Vで約 0. 63mA) oところが、 0. 7V程度まで正の電圧を印加すると、正の電流が突 然減少する。最後に、—IVから 0Vに向カゝつて印加する正の電圧を減少させると、正 の電流値もこの流れにくい状態を保持したまま減少し、ゼロに戻る。このとき、正の電 流値は、 0. lVe ¾0. 12mA程度である。
[0651] 以上に説明したような、メモリ層 11006中を流れる電流のヒステリシスは、メモリ層 1 1006に印加される電圧によりメモリ層 11006の抵抗値が変化することが原因で発現 すると解釈できる。ここで、ワード電極 11007に電圧を印加する場合を考えると、ある 一定以上の大きさの正の電圧 V を印加することにより、メモリ層 11006は電流が流
W1
れやすい「低抵抗モード」(ON状態)に遷移する。一方、ある一定の大きさの負の電 圧 V を印加することにより、メモリ層 11006は電流が流れにくい「高抵抗モード」 (O
W0
FF状態)に遷移すると考えられる。
[0652] メモリ層 11006には、これらの低抵抗モードと高抵抗モードの 2つの安定状態が存 在し、各々の状態は、前述した一定以上の正あるいは負の電圧を印加しない限り、 O Nもしくは OFFの各状態を維持する。なお、上述した V の値は約 IV程度であり、
W0
V の値 + IV程度であり、高抵抗モードと低抵抗モードの抵抗比は約 10〜: L00程
W1
度である。上記のような、電圧によりスィッチ層 11004及びメモリ層 11006の抵抗が スィッチ (変化)する現象を用いることで、図 110に示すメモリ素子により、不揮発性で 非破壊読み出し動作が可能な機能素子が実現できる。
[0653] 次に、上述した 2つの状態を DC電圧を用いて制御する場合について説明する。ま ず、低抵抗遷移電圧 V 以上の大きさの正の電圧をワード電極 11007に印加し、メ
W1
モリ層 11006を低抵抗モードに遷移させる。このことにより、電流が流れやすくなる O N状態となる。この ON状態は、読み出し電圧 Vにおける電極間の電流街 を観測
R R1 することで読み出すことができる。読み出し Vとしては、状態が遷移しない程度のなる
R
ベく小さな値で、かつ抵抗比が十分に現れるような値を選択することが重要となる(上 記の例では 0. IV程度が適当)。これにより、低抵抗モード、すなわち ON状態を破 壊することなぐ何回も読み出すことが可能となる。
[0654] 一方、高抵抗遷移電圧 V 以上の大きさの負の電圧をワード電極 11007に印加す
W0
ることにより、メモリ層 11006を高抵抗モードに遷移させることで、電極間に電流が流 れ難くなる OFF状態にできる。この OFF状態の読み出しも、読み出し電圧 Vにおけ
R
る電極間の電流銜 を観測することにより行うことができる CF Λ 10 L00)
RO Rl R0 〜: 。ま た、各電極間に通電がない状態では、メモリ層 11006は各状態を保持するため不揮 発性を有しており、書き込み時と読み出し時以外には、電圧を印加する必要はない。
[0655] 上述した 2つの状態を有する特性は、スィッチ層 11004においても同様であり、こ れらスィッチ層 11004とメモリ層 11006とを用いた図 110に示すメモリ素子の動作に ついて、以下に説明する。はじめに、読み出し動作について説明すると、初期状態で は、全てのメモリセルのスィッチ層 11004力 高抵抗の状態としておく。この状態で、 ワード電極 11007 (ワード線)がオープンにされた状態で、対応するメモリセルのスィ ツチ層 11004が低抵抗モードとなるような電気信号力 ビット電極 11005 (対応する ビット線)に印加され、スィッチ層 11004がスィッチとしてオンにされた状態とする。つ いで、ビット電極 11005 (ビット線)がオープンにされた状態とし、ワード電極 11007 ( 対応するワード線)に読み出し電圧が印加された状態とし、メモリ層 11006の抵抗値 を測定すれば、データの読み出しとなる。最後に、ワード電極 11007 (ワード線)がォ ープンにされた状態とし、スィッチ層 11004が高抵抗モードとなるような電気信号力 ビット電極 11005に印加された状態とし、スィッチ層 11004がスィッチとしてオフにさ れた状態とする。
[0656] 次に、書き込み動作について説明すると、メモリ層 11006が高抵抗モードあるいは 低抵抗モードへと遷移するような電気信号が、書き込み対象のメモリセルに対応する ワード線とビット線とに印加された状態とする。このとき、ビット線側に印加される信号 は、スィッチ層 11004の抵抗状態が変化しない程度の電圧までとする。これらのこと により、書き込み対象のメモリセル (メモリ素子)のメモリ層 11006を、所望とする高抵 抗モードある 、は低抵抗モードへと遷移させることで、データの書き込みとする。
[0657] 上述した読み出し及び書き込みの動作は、例えば、図 111のフローに示すように行 えばよい。まず、ワード電極 11007がオープンとされた状態で、ビット電極 11005に 低抵抗遷移電圧 V が印加された状態とし、メモリ素子のスィッチ層 11004を「オン」
W1
状態、すなわち読み出し可能状態とする。ついで、ビット電極がオープンとされた状 態でワード電極 11007に読み出し電圧 Vが印加された状態とすることで、メモリ層 1
R
1006の状態が読み出せる。この後、ワード電極 11007がオープンとされた状態で、 ビット電極 11005に高抵抗遷移電圧 V が印加された状態とし、メモリ素子のスイツ
W0
チ層 11004を「オフ」状態、すなわち読み出し不能状態とする。
[0658] この後、例えば、ワード電極 11007に、低抵抗遷移電圧 V の半分程度の電圧の
W1
書き込みワード信号が印加され、ビット電極 11005に、上述と反対の極性で低抵抗 遷移電圧 V の半分程度の電圧の書き込みビット信号が印加された状態とすれば、「
W1
1」の「書き込み状態」となる。上述したようにワード電極 11007及びビット電極 11005 に信号が印加された状態とすることで、メモリ層 11006には、低抵抗遷移電圧 V に
W1 等しい電圧が印加された状態となり、メモリ層 11006は低抵抗モードとなる。従って、 この「書き込み状態」は、「1」が書き込まれたことになる。これに対し、ワード電極 110 07に、高抵抗遷移電圧 V の半分程度の電圧の書き込みワード信号が印加され、ビ
W0
ット電極 11005に、上述と反対の極性で高抵抗遷移電圧 V の半分程度の電圧の
W0
書き込みビット信号が印加された状態とすれば、メモリ層 11006に「0」の「書き込み 状態」となる。一方、いずれの「書き込み状態」においても、スィッチ層 11004には、 各遷移電圧の半分程度の電圧しか印加されな 、ので、抵抗の状態は変化しな 、。
[0659] 以上に説明したように、図 110に示すメモリ素子によれば、スィッチ層 11004を用い ることでメモリセルの「オン」状態と「オフ」とを切り替えるようにしたので、メモリ層 1100 6の抵抗状態にかかわらず、スィッチ層 11004を「オフ」状態とすることにより、非選択 メモリセルからのリーク電流 (干渉電流)が抑制できるようになる。また、図 110に示す 素子によれば、上述した「オン」と「オフ」との切り替えを、メモリ層 11006と同様の金 属酸ィ匕物から構成されたスィッチ層 11004により行うようにした。このように、シリコン などの半導体を用いた MOSトランジスタなど、他の材料力も構成された素子を用い る必要がな 、ため、基板 11001に適用可能な材料に制限がな 、。
[0660] また、以上の実施の形態では、印加した電圧は直流であった力 適当な幅と強さの パルス電圧を印加しても同様の効果は得られる。なお、図 110に示したメモリ素子に おける ON及び OFFの各状態保持特性も、前述した各素子と同様に、少なくとも 100 0分の保持時間を有して 、る。
[0661] 次に、図 110に示したメモリ素子の製造方法例について説明する。なお、以降では 、 ECRプラズマスパッタ法を例に各薄膜の形成方法を説明しているが、これに限るも のではなぐ他の成膜技術や方法を用いるようにしてもよいことは、いうまでもない。
[0662] まず、図 112Aに示すように、主表面が面方位(100)で抵抗率が 1〜2 Ω— cmの p形 のシリコンカゝらなる基板 11001を用意し、基板 11001の表面を硫酸と過酸化水素水 の混合液と純水と希フッ化水素水とにより洗浄し、このあと乾燥させる。ついで、洗浄 •乾燥した基板 11001の上に、絶縁層 11002が形成された状態とする。絶縁層 110 02の形成では、例えば ECR^パッタ装置を用い、ターゲットとして純シリコン(Si)を 用い、プラズマガスとしてアルゴン (Ar)と酸素ガスを用いた ECR^パッタ法により、シ リコンカもなる基板 11001の上に、表面を覆う程度に Si— O分子によるメタルモード の絶縁層 11002を形成する。
[0663] 例えば、 10— 5Pa台の内部圧力に設定されているプラズマ生成室内に流量 20sccm 程度で Arガスを導入し、内部圧力を 10— 3〜: LO— 2Pa程度にし、ここに、 0. 0875Tの磁 場と 2. 45GHzのマイクロ波(500W©度)とを供給して電子サイクロトロン共鳴条件と することで、プラズマ生成室内に Arのプラズマが生成された状態とする。なお、 sccm は流量の単位あり、 0°C ' l気圧の流体が 1分間に lcm3流れることを示す。また、 T (テ スラ)は、磁束密度の単位であり、 1T= 10000ガウスである。
[0664] 上述したことにより生成されたプラズマは、磁気コイルの発散磁場によりプラズマ生 成室より処理室の側に放出される。また、プラズマ生成室の出口に配置されたシリコ ンターゲットに、高周波電源より 13. 56MHzの高周波電力(例えば 500W)を供給 する。このことにより、シリコンターゲットに Arイオンが衝突してスパッタリング現象が起 こり、 Si粒子が飛び出す。シリコンターゲットより飛び出した Si粒子は、プラズマ生成 室より放出されたプラズマ、及び導入されてプラズマにより活性化された酸素ガスと共 にシリコンカゝらなる基板 11001の表面に到達し、活性化された酸素により酸化され二 酸ィ匕シリコンとなる。以上のことにより、基板 11001上に二酸ィ匕シリコン力もなる例え ば lOOnm程度の膜厚の絶縁層 11002が形成された状態とすることができる(図 112 A)。
[0665] なお、絶縁層 11002は、この後に形成する各電極に電圧を印加した時に、基板 11 001に電圧が洩れて、所望の電気的特性に影響することがな!ヽように絶縁を図るも のである。例えば、シリコン基板の表面を熱酸化法により酸化することで形成した酸 化シリコン膜を絶縁層 11002として用いるようにしてもよい。絶縁層 11002は、絶縁 性が保てればよぐ酸ィ匕シリコン以外の他の絶縁材料力も構成してもよぐまた、絶縁 層 11002の膜厚は、 lOOnmに限らず、これより薄くてもよく厚くてもよい。絶縁層 110 02は、上述した ECRスパッタによる膜の形成では、基板 11001に対して加熱はして V、な 、が、基板 11001を加熱しながら膜の形成を行ってもょ 、。
[0666] 以上のようにして絶縁層 11002を形成した後、今度は、ターゲットとして純ルテユウ ム (Ru)を用いた同様の ECRスパッタ法により、絶縁層 11002の上にルテニウム膜を 形成することで、図 112Bに示すように、接地電極 11003が形成された状態とする。 Ru膜の形成について詳述すると、 Ruカゝらなるターゲットを用いた ECRスパッタ装置 において、例えば、まず、絶縁層を形成したシリコン基板を 400°Cに加熱し、また、プ ラズマ生成室内に、例えば流量 7sccmで希ガスである Arガスを導入し、力!]えて、例え ば流量 5sccmで Xeガスを導入し、プラズマ生成室の内部を、例えば 10— 2〜: LO— 3Pa台 の圧力に設定する。
[0667] ついで、プラズマ生成室内に電子サイクロトロン共鳴条件の磁場を与え、この後、 2 . 45GHzのマイクロ波(例えば 500W)をプラズマ生成室内に導入し、プラズマ生成 室に Arと Xeの ECRプラズマが生成した状態とする。生成された ECRプラズマは、磁 気コイルの発散磁場によりプラズマ生成室より処理室側に放出される。また、プラズマ 生成室の出口に配置されたルテニウムターゲットに、 13. 56MHzの高周波電力(例 えば 500W)を供給する。このことにより、スパッタリング現象が起き、ルテニウムター ゲットより Ru粒子が飛び出す。ルテニウムターゲットより飛び出した Ru粒子は、基板 1 1001の絶縁層 11002表面に到達して堆積する。
[0668] 以上のことにより、絶縁層 11002の上に、例えば 10nm程度の膜厚の接地電極 11 003が形成された状態が得られる(図 112B)。接地電極 11003は、この後に形成す るビット電極 11005に電圧を印加した時に、スィッチ層 11004に電圧が印加できるよ うにするものである。従って、導電性が持てればルテニウム以外力 接地電極 11003 を構成してもよぐ例えば、白金カゝら接地電極 11003を構成してもよい。ただし、二酸 化シリコンの上に白金膜を形成すると剥離しやすいことが知られているが、これを防ぐ ためには、チタン層ゃ窒化チタン層もしくはルテニウム層などを介して白金層を形成 する積層構造とすればよい。また、接地電極 11003の膜厚も 10nmに限るものでは なく、これより厚くてちょく薄くてちょい。
[0669] ところで、上述したように ECR^パッタ法により Ruの膜を形成するときに、基板 110 01を 400°Cに加熱した力 加熱しなくても良い。ただし、加熱を行わない場合、ルテ -ゥムの二酸ィ匕シリコンへの密着性が低下するため、剥がれが生じる恐れがあり、こ れを防ぐために、基板を加熱して膜を形成する方が望ま ヽ。
[0670] 以上のようにして接地電極 11003を形成した後、 Biと Tiの割合力 : 3の酸化物焼 結体 (Bi— Ti— O)力もなるターゲットを用い、プラズマガスとしてアルゴン (Ar)と酸素 ガスとを用いた ECR^パッタ法により、図 112Cに示すように、接地電極 11003の上 に、表面を覆う程度に、スィッチ層 11004が形成された状態とする。
[0671] スィッチ層 11004の形成について詳述すると、まず、 300°C〜700°Cの範囲に基 板 11001が加熱されている状態とする。また、プラズマ生成室内に、例えば流量 20s ccmで希ガスである Arガスを導入し、例えば 10— 3Pa〜: LO— 2Pa台の圧力に設定する。 この状態で、プラズマ生成室に電子サイクロトロン共鳴条件の磁場を与え、この後、 2 . 45GHzのマイクロ波(例えば 500W)をプラズマ生成室に導入し、このマイクロ波の 導入により、プラズマ生成室に ECRプラズマが生成された状態とする。
[0672] 生成された ECRプラズマは、磁気コイルの発散磁場によりプラズマ生成室より処理 室側に放出される。また、プラズマ生成室の出口に配置された焼結体ターゲットに、 1 3. 56MHzの高周波電力(例えば 500W)を供給する。このことにより、焼結体ターゲ ットに Ar粒子が衝突してスパッタリング現象を起こし、 Bi粒子と Ti粒子が飛び出す。
[0673] 焼結体ターゲットより飛び出した Bi粒子と Ti粒子は、プラズマ生成室より放出された ECRプラズマ、及び、放出された ECRプラズマにより活性ィ匕した酸素ガスと共に、加 熱されている接地電極 11003の表面に到達し、活性化された酸素により酸化される 。なお、反応ガスとしての酸素(O )ガスは、以降にも説明するように Arガスとは個別
2
に導入され、例えば、例えば流量 lsccmで導入されている。焼結体ターゲットは酸素 を含んでいるが、酸素を供給することにより堆積している膜中の酸素不足を防ぐこと ができる。以上に説明した ECR^パッタ法による膜の形成で、例えば、膜厚 40nm程 度のスィッチ層 11004が形成された状態が得られる(図 112C)。
[0674] なお、形成したスィッチ層 11004に、不活性ガスと反応性ガスの ECRプラズマを照 射し、膜質を改善するようにしてもよい。反応性ガスとしては、酸素ガスに限らず、窒 素ガス,フッ素ガス,水素ガスを用いることができる。また、この膜質の改善は、絶縁 層 11002の形成にも適用可能である。また、基板温度を 300°C以下のより低い温度 条件としてスィッチ層 11004を形成した後に、酸素雰囲気中などの適当なガス雰囲 気中で、形成したスィッチ層 11004をァニール (加熱処理)し、膜質の特性を大きく 改善するようにしてもよ ヽ。
[0675] 以上のようにしてスィッチ層 11004を形成した後、まず、 ECRスパッタ法により、膜 厚 20nm程度の Ti膜が形成された状態とする。次に、再度、ターゲットとして純ルテ- ゥム (Ru)を用いた前述同様の ECRスパッタ法により、膜厚 lOnm程度のルテニウム 膜が形成された状態とすることで、図 112Dに示すように、スィッチ層 11004の上に、 積層構造のビット電極 11005が形成された状態とする。ルテニウム膜の形成は、前 述した接地電極 11003の形成と同様である。次に、 Biと Tiの割合が 4 : 3の酸ィ匕物焼 結体 (Bi— Ti— O)力もなるターゲットを用い、プラズマガスとしてアルゴン (Ar)と酸素 ガスとを用いた ECR^パッタ法により、図 112Eに示すように、ビット電極 11005の上 に、表面を覆う程度に、メモリ層 11006が形成された状態とする。メモリ層 11006の 形成は、前述したスィッチ層 11004の形成と同様である。
[0676] 以上のようにして、メモリ層 11006が形成された後、メモリ層 11006の上に、 Auから なるワード電極 11007が形成された状態とすることで、図 110に示すメモリ素子が得 られる。ワード電極 11007は、抵抗加熱真空蒸着法による金の堆積とにより形成でき る。なお、ワード電極 11007は、例えば、 Ru、 Pt、 TiNなどの他の金属材料や導電 性材料を用いるようにしてもよい。なお、 Ptを用いた場合、密着性が悪く剥離する可 能性があるので、 Ti— Pt— Auなどの剥離し難い構造とする必要がある。なお、スイツ チ層 11004,ビット電極 11005,メモリ層 11006,ワード電極 11007は、これらの積 層構造が形成された後、よく知られたフォトリソグラフィー技術とエッチング技術とによ りパター-ングすることで、メモリセルの構造に形成すればよ 、。
[0677] 以上に説明した ECRスパッタによる各層の形成は、図 112に示した ECRスパッタ装 置を用いればよい。
[0678] ところで、本実施の形態に係るメモリ素子の構成例は、図 110に示した素子に限る ものではない。例えば、図 113A〖こ例示するよう〖こ、 1つのメモリセル内で、基板 1100 1の平面方向に、スィッチ層 11014及びメモリ層 11016が配列されていてもよい。図 113Aに示すメモリ素子では、絶縁層 11002の上に接地電極 11013及びこれに離 間して接続電極 11015b力 S配置され、接地電極 11013と接続電極 11015bとにまた がるように、スィッチ層 11014が形成され、接続電極 11015bに接してメモリ層 1101 6が形成されている。また、スィッチ層 11014の上にはビット電極 11015aが形成され 、メモリ層 11016の上には、ワード電極 11017が形成されている。
[0679] 上述したように、まず、スィッチ層 11014の第 1方向の面に接続された接続電極 11 015bを新たに設け、メモリ層 11016の第 1方向の面に接続電極 11015bが接続され た状態とする。また、接地電極 11013は、スィッチ層 11014の第 1方向の面に接続 電極 11015bと絶縁分離されて接続された状態とする。また、ビット電極 11015aは、 スィッチ層 11014の第 1方向とは異なる第 2方向の面に接続された状態とする。また 、ワード電極 11017は、メモリ層 11016の第 2方向の面に接続された状態とする。こ れらのように構成しても、図 110に示した素子と同様に、接地電極 11013,スィッチ 層 11014,メモリ層 11016,及びワード電極 11017力 これらの順に直列に接続さ れた状態となる。従って、図 113Aの紙面上で、基板 11001の上において、各構成 を上下反転させて配置させることも可能である。
[0680] 図 113Aに示すメモリ素子の動作例について説明すると、まず、読み出しでは、スィ ツチ層 11014が高抵抗の「オフ」状態とし、この初期状態で、接続電極 11015bが接 地された状態とし、対応するメモリセルのビット電極 11015aに低抵抗遷移電圧 (例え ばパルス電圧)が印加された状態とし、スィッチ層 11014を「オン」状態とする。つい で、接続電極 11015bとビット電極 11015a (対応するビット線)がオープンにされた 状態とし、ワード電極 11017 (対応するワード線)に読み出し電圧が印加された状態 とし、メモリ層 11016の抵抗値を測定すれば、データの読み出しとなる。最後に、接 続電極 11015bが接地された状態とし、スィッチ層 11014が高抵抗モードとなるよう な電気信号 (例えばパルス電圧)力 ビット電極 11015aに印加された状態とし、スィ ツチ層 11014がスィッチとしてオフにされた状態とする。
[0681] 一方、図 113Aに示すメモリ素子の書き込み動作は、接続電極 11015bが接地され た状態とし、書き込み対象のメモリセルに対応するワード線に書き込み電圧を印加す ればよい。例えば、「1」の「書き込み状態」とするためには、ワード電極 11017に低抵 抗遷移電圧が印加された状態とすればよい。また、「0」の「書き込み状態」とするため には、ワード電極 11017に高抵抗遷移電圧が印加された状態とすればよい。
[0682] また、本発明のメモリ素子は、図 113Bに示すように構成されていてもよい。図 113 Bに示すメモリ素子では、絶縁層 11002の上にビット電極 11025aが配置され、ビット 電極 11025aの上にスィッチ層 11024が形成されている。また、スィッチ層 11024の 上に、接地電極 11023及びこれに離間して接続電極 11025bが配置され、接続電 極 11025bの上に、メモジ層 11026力形成されて!/、る。なお、メモジ層 11026の上に は、ワード電極 11027が形成されている。
[0683] 上述したように、まず、スィッチ層 11024の第 1方向の面に接続された接続電極 11 025bを新たに備え、メモリ層 11026の第 1方向とは異なる第 2方向の面に、接続電 極 11025bが接続されているようにする。また、接地電極 11023は、スィッチ層 1102 4の第 1方向の面に接続され、ビット電極 11025aは、スィッチ層 11024の第 2方向の 面に接続され、ワード電極 11027は、メモリ層 11026の第 1方向の面に接続されて いるようにする。これらのように構成しても、図 110に示した素子と同様に、接地電極 1 1023,スィッチ層 11024,メモリ層 11026,及びワード電極 11027力 これらの川頁に 直列に接続された状態となる。従って、図 113Bの紙面上で、基板 11001の上にお V、て、各構成を上下反転させて配置させることも可能である。
[0684] また、本発明のメモリ素子は、図 114に示すように、電極と金属酸化物の層との間に 、絶縁層が挾まれていてもよい。図 114Aに例示するメモリ素子は、ビット電極 11005 とメモリ層 11006との間〖こ、絶縁層 11008を備える。また、図 114Bに例示するメモリ 素子は、接地電極 11003とスィッチ層 11004との間に、絶縁層 11009を備える。ま た、図 114Cに例示するメモリ素子では、絶縁層 11008と絶縁層 11009の両方を備 える。
[0685] 絶縁層 11008,絶縁層 11009【こより、メモリ層 11006,スィッチ層 11004【こ電圧を 印加した時に、各層に印加される電圧が制御できるようになる。また、絶縁層が形成 されて!/、る状態で、この上にスィッチ層 11004やメモリ層 11006を形成することで、 前述した ECRスパッタ法による形成で、下層の金属膜の表面や金属酸化物層の表 面のモフォロジを劣化させることなぐスィッチ層 11004やメモリ層 11006が形成でき るようになる。例えば、下層が金属材料などのように酸ィ匕される状態であると、スィッチ 層 11004の形成で、下層の表面が部分的に酸ィ匕され、モフォロジが劣化する場合が ある。これに対し、絶縁層を介在させることで、下層の表面のモフォロジがよい状態で 、スィッチ層 11004が形成でき、より品質の高いスィッチ層 11004が得られる。
[0686] また、図 115に示すように、絶縁層 11018,絶縁層 11019,絶縁層 11028,及び 絶縁層 11029を備えるようにしてもよい。図 115Aに示すメモリ素子では、接続電極 1 1015bとメモリ層 11016との間に、絶縁層 11018を備える。図 115Bに示すメモリ素 子では、スィッチ層 11014とビット電極 11015aとの間に、絶縁層 11019を備える。 図 115Cに示すメモリ素子では、接続電極 11015bとメモリ層 11016との間〖こ、絶縁 層 11018を備え、スィッチ層 11014とビット電極 11015aとの間に、絶縁層 11019を 備える。また、図 115Dに示すメモリ素子では、スィッチ層 11024と接続電極 11025b との間に絶縁層 11028を備える。図 115Eに示すメモリ素子では、ビット電極 11025 aとスィッチ層 11024との間〖こ、絶縁層 11029を備える。図 115Fに示すメモリ素子で は、スィッチ層 11024と接続電極 11025bとの間に絶縁層 11028を備え、ビット電極 11025aとスィッチ層 11024との間に、絶縁層 11029を備える。
[0687] なお、図 114及び図 115は絶縁層を設ける形態の一例を示したものであり、これに 限るものではない。上述した絶縁層は、スィッチ層及びメモリ層に接して設けられてい ればよい。従って、スィッチ層及びメモリ層の一方の面に絶縁層が接して設けられて いてもよぐスィッチ層及びメモリ層の両方の面に、各々絶縁層が接して設けられてい てもよい。スィッチ層及びメモリ層を構成している金属酸ィ匕物層と、これに接続する電 極との 、ずれかの間に絶縁層が設けられて 、るようにすればょ 、。
[0688] ところで、スィッチ層 11004,メモリ層 11006を構成する金属酸化物層は、膜厚が 厚くなるほど電流が流れ難くなり抵抗が大きくなる。抵抗値の変化を利用してメモリ素 子を実現する場合、低抵抗モードと高抵抗モードの各々の抵抗値が問題となる。例 えば、金属酸化物層の膜厚が厚くなると、低抵抗モードの抵抗値が大きくなり、 S/N 比がとり難くなり、 ON、 OFFの各状態を判断し難くなる。一方、金属酸化物層の膜厚 が薄くなり、リーク電流が支配的になると、 ON、 OFFの各状態の保持し難くなると共 に、高抵抗モードの抵抗値が小さくなり、 SZN比がとり難くなる。
[0689] 従って、金属酸化物層は、適宜最適な厚さとした方がよい。例えば、リーク電流の 問題を考慮すれば、金属酸化物層は、最低 lOnmの膜厚があればよい。また、低抵 抗モードにおける抵抗値を考慮すれば、金属酸ィ匕物層は 300nmより薄くした方がよ い。発明者らの実験の結果、金属酸ィ匕物層の厚さが 30〜200nmであれば、メモリ素 子の動作が確認されて 、る。
[0690] また、図 110に示すメモリ素子によれば、多値の動作も可能である。例えば、ビット 電極 11005 (とワード電極 11007との間)に電圧を印加したときのメモリ層 11006に おける電流 電圧特性は、図 116に示すように、印加する電圧を変化させると、異な る低抵抗モードに変化する。図 116では、—0. 5Vまで印加した後の低抵抗モードと 、—1. 0Vまで印加した後の低抵抗モードと、 - 1. 5Vまで印加した後の低抵抗モー ドとの、図中に示す読み出し電圧における電流値が異なる。これらの状態は、電極間 に読み出し電圧を印加し、電極間に流れる電流を観測することにより読み出すことが できる。一定の読み出し電圧により得られた電極間電流に対応し、「0」, 「1」, 「2」の 3つの状態(3値)の動作が実現できる。
[0691] また、図 110に示す素子によれば、パルス電圧の値の違いにより、多値の状態を実 現することが可能である。図 117に示すように、所定のパルス幅の所定のパルス電圧 を所定回数印加する毎に、三角で示す時点で 0. 2Vの読み出し電圧で電極間の電 流値を読み出すと、図 118に示すように、「0」, 「1」, 「2」の 3つの状態(3値)が得ら れる。この例では、「2」の状態によりリセットがされていることになる。
[0692] また、例えば、図 114Aに例示したように、ビット電極 11005とメモリ層 11006との間 に絶縁層 11008を設ける場合のメモリ層 11006の電流—電圧特性は、ワード電極 1 1007に印加する電圧を変化させることで、図 46に示すように変化する。この場合、 例えば、読み出し電圧を 0. 5V程度とすることで、 3値の状態が実現できる。
[0693] ところで、上述したように金属酸ィ匕物力もなる薄膜を用いた複数の素子は、多くの場 合同一の基板の上にモノリシックに集積して用いられて 、る。このように複数の素子 を集積する場合、例えば、図 12Dに示したように、隣り合う素子の間を分離している。 このような素子の分離構造は、次のようにして製造されている。まず、図 119Aに示す ように、基板 1601の上に絶縁層 1602が形成された状態とし、ついで、絶縁層 1602 の上に、金属膜 1623が形成された状態とする。次に、図 119Bに示すように、強誘電 体薄膜 1614が、金属膜 1623の上に形成された状態とする。ついで、図 119Cに示 すように、金属膜 1615が、強誘電体薄膜 1614の上に形成された状態とする。
[0694] 次に、図 119Dに示すように、金属膜 1615の上に、複数のマスクパターン 1620が 形成された状態とする。次に、マスクパターン 1620をマスクとして金属層 1615及び 強誘電体薄膜 1614を選択的にエッチング除去し、図 119Eに示すように、強誘電体 層 1604,及び上部電極 1606からなる複数の素子力 下部電極層 1613の上に形 成された状態とする。この後、マスクパターン 1620を除去し、各素子の間に絶縁材 料を堆積することなどにより、図 119Fに示すように、各素子間に、素子分離絶縁層 1 605が形成された状態とする。
[0695] 上述したように、従来の素子分離では、強誘電体層となる薄膜を形成し、この薄膜 を加工して複数の素子部分を形成し、この後、各素子間に素子分離のための絶縁層 を形成している。従って、従来では、素子分離の構造を得るために、多くの薄膜の形 成工程及び薄膜の加工工程が必要となり、工程数の増大を招いていた。特に、加工 の工程では、一般には、フォトリソグラフィ一とエッチング技術とが用いられているため 、一回のパターン形成のために、非常に多くの工程が必要となる。
以上に説明した状態に対し、以降に説明するように素子を分離することで、素子の 分離構造が、多くの工程を必要とせずに形成できるようになる。
[0696] 以下、素子分離について図を参照して説明する。図 120は、本発明の実施の形態 における素子分離構造の構成例を概略的に示す模式的な断面図である。図 120に 示すように、図 120に示す素子分離構造は、基板 101の上に絶縁層 102を備え、こ の上に形成された下部電極 103,膜厚 30〜200nm程度の強誘電体層 104,上部 電極 136からなる複数の素子力 分離層 135により絶縁分離されて 、る 、るようにし たものである。強誘電体層 104は、結晶性材料カゝら構成された下部電極 103の上に 形成され、分離層 135は、非晶質材料から構成された絶縁層 102の上に形成されて いる。
[0697] 強誘電体層 104と分離層 135とは、例えば、 Bi, Ti, O力 構成され、 Bi Ti O の
4 3 12 化学量論的組成の結晶からなる粒径 3〜15nm程度の複数の微結晶粒を含む。また 、強誘電体層 104は、上記微結晶粒に加え、 Bi Ti O の化学量論的組成の柱状結 晶が共存している。上述した構成とされた分離層 135は、強誘電体層 104に比較し て電気抵抗が大きぐ絶縁破壊する耐圧が大きい。一方、強誘電体層 104は、後述 するように、低抵抗状態と高抵抗状態の 2つの安定状態が存在し、強誘電体層 104 による素子は、 2つの状態が保持される機能素子である。
[0698] 次に、図 120に示す素子分離構造の製造方法例について説明する。まず、図 121 Aに示すように、主表面が面方位(100)で抵抗率が 1〜2 Ω— cmの p形のシリコンから なる基板 101を用意し、基板 101の表面を硫酸と過酸化水素水の混合液と純水と希 フッ化水素水とにより洗浄し、このあと乾燥させる。ついで、洗浄'乾燥した基板 101 の上に、絶縁層 102が形成された状態とする。絶縁層 102の形成では、例えば、 EC Rスパッタ装置を用い、ターゲットとして純シリコン(Si)を用い、プラズマガスとしてァ ルゴン (Ar)と酸素ガスを用いた ECR^パッタ法により行えばよい。 ECR^パッタ法に より、シリコン力もなる基板 101の上に、表面を覆う程度に Si— O分子によるメタルモ ードの絶縁層 102を形成する。
[0699] 例えば、 10— 5Pa台の内部圧力に設定されているプラズマ生成室内に流量 20sccm 程度で Arガスを導入し、内部圧力を 10— 3〜: LO— 2Pa程度にし、ここに、 0. 0875Tの磁 場と 2. 45GHzのマイクロ波(500W©度)とを供給して電子サイクロトロン共鳴条件と することで、プラズマ生成室内に Arのプラズマが生成された状態とする。なお、 sccm は流量の単位あり、 0°C ' l気圧の流体が 1分間に lcm3流れることを示す。また、 T (テ スラ)は、磁束密度の単位であり、 1T= 10000ガウスである。
[0700] 上述したことにより生成されたプラズマは、磁気コイルの発散磁場によりプラズマ生 成室より処理室の側に放出される。また、プラズマ生成室の出口に配置されたシリコ ンターゲットに、高周波電源より 13. 56MHzの高周波電力(例えば 500W)を供給 する。このことにより、シリコンターゲットに Arイオンが衝突してスパッタリング現象が起 こり、 Si粒子が飛び出す。シリコンターゲットより飛び出した Si粒子は、プラズマ生成 室より放出されたプラズマ、及び導入されてプラズマにより活性化された酸素ガスと共 にシリコン力もなる基板 101の表面に到達し、活性化された酸素により酸化され二酸 化シリコンとなる。以上のことにより、基板 101上に二酸ィ匕シリコン力もなる例えば 100 nm程度の膜厚の絶縁層 102が形成された状態とすることができる。 [0701] なお、絶縁層 102は、この後に形成する各電極に電圧を印加した時に、基板 101 に電圧が洩れて、所望の電気的特性に影響することがな!、ように絶縁を図るものであ る。例えば、シリコン基板の表面を熱酸化法により酸化することで形成した酸化シリコ ン膜を絶縁層 102として用いるようにしてもよい。絶縁層 102は、絶縁性が保てれば よぐ酸ィ匕シリコン以外の他の絶縁材料力も構成してもよぐまた、絶縁層 102の膜厚 は、 lOOnmに限らず、これより薄くてもよく厚くてもよい。絶縁層 102は、上述した EC Rスパッタによる膜の形成では、基板 101に対して加熱はしていないが、基板 101を 加熱しながら膜の形成を行ってもよい。
[0702] 以上のようにして絶縁層 102を形成した後、今度は、ターゲットとして純ルテニウム( Ru)を用いた同様の ECRスパッタ法により、絶縁層 102の上にルテニウム膜を形成 する。 Ru膜の形成について詳述すると、 Ru力もなるターゲットを用いた ECRスパッタ 装置において、例えば、まず、絶縁層を形成したシリコン基板を 400°Cに加熱し、ま た、プラズマ生成室内に、例えば流量 7sccmで希ガスである Arガスを導入し、加えて 、例えば流量 5sccmで Xeガスを導入し、プラズマ生成室の内部を、例えば 10— 2〜: L0— 3Pa台の圧力に設定する。
[0703] ついで、プラズマ生成室内に電子サイクロトロン共鳴条件の磁場を与え、この後、 2 . 45GHzのマイクロ波(例えば 500W)をプラズマ生成室内に導入し、プラズマ生成 室に Arと Xeの ECRプラズマが生成した状態とする。生成された ECRプラズマは、磁 気コイルの発散磁場によりプラズマ生成室より処理室側に放出される。また、プラズマ 生成室の出口に配置されたルテニウムターゲットに、 13. 56MHzの高周波電力(例 えば 500W)を供給する。このことにより、スパッタリング現象が起き、ルテニウムター ゲットより Ru粒子が飛び出す。ルテニウムターゲットより飛び出した Ru粒子は、基板 1 01の絶縁層 102表面に到達して堆積する。
[0704] 以上のことにより、絶縁層 102の上に、例えば 10nm程度の膜厚の Ru力もなる金属 膜が形成できる。ついで、金属膜を公知のリソグラフィー技術とエッチング技術とによ りパター-ングすることで、図 121Aに示すように、各々が離間して配置された複数の 下部電極 103が形成された状態とする。例えば、ルテニウムは、酸素プラズマ,ォゾ ン,及び酸素ラジカルなどを照射することにより、高い蒸気圧を持つルテニウム酸ィ匕 物 (RuO、 RuOなど)を形成することが知られている。この性質を用いることにより、
2 4
マスクを介した上記照射によりルテニウムを酸ィ匕することで、選択的なエッチングが可 能である。
[0705] ただし、酸素プラズマ,オゾン,及び酸素ラジカルを用いるこのドライエッチングでは 、等方的なエッチング処理となり、エッチングされた断面の形状に、いわゆるアンダー カットが入る場合がある。これを避けるため、酸素にアルゴンが添加されたガスのプラ ズマを照射してもよい。このことによりエッチングに異方性を持たせれば、アンダー力 ットの入らない形状のパターン形成が可能となる。
[0706] なお、下部電極 103は、この後に形成する上部電極 136との間に電圧を印加した 時に、強誘電体層 104に電圧が印加できるようにするものである。従って、導電性が 持てればルテニウム以外から下部電極 103を構成してもよぐ例えば、白金から下部 電極 103を構成してもよい。ただし、二酸化シリコンの上に白金膜を形成すると剥離 しゃすいことが知られている力 これを防ぐためには、チタン層ゃ窒化チタン層もしく はルテニウム層などを介して白金層を形成する積層構造とすればよい。また、白金は
、ルテニウムのように酸素プラズマではエッチングされないが、公知のリフトオフ法を 用いることにより、電極形成のためのパターユングが可能である。また、下部電極 103 の膜厚も 10nmに限るものではなぐこれより厚くてもよく薄くてもよい。
[0707] ところで、上述したように ECR^パッタ法により Ruの膜を形成するときに、基板 101 を 400°Cに加熱した力 加熱しなくても良い。ただし、加熱を行わない場合、ルテユウ ムのニ酸ィ匕シリコンへの密着性が低下するため、剥がれが生じる恐れがあり、これを 防ぐために、基板を加熱して膜を形成する方が望ま ヽ。
[0708] 以上のようにして下部電極 103を形成した後、 Biと Tiの割合が 4 : 3の酸化物焼結 体 (Bi— Ti— O)力もなるターゲットを用い、プラズマガスとしてアルゴン (Ar)と酸素ガ スとを用いた ECRスパッタ法により、図 121Bに示すように、下部電極 103の上には 強誘電体層 104が形成され、絶縁層 102の上には分離層 135が形成された状態と する。強誘電体層 104及び分離層 135の形成について説明すると、まず、 400°C〜 450°Cの範囲に基板 101が加熱されている状態とする。また、プラズマ生成室内に、 例えば流量 20sccmで希ガスである Arガスを導入し、例えば 10— 3Pa〜10— 2Pa台の圧 力に設定する。この状態で、プラズマ生成室に電子サイクロトロン共鳴条件の磁場を 与え、この後、 2. 45GHzのマイクロ波(例えば 500W)をプラズマ生成室に導入し、 このマイクロ波の導入により、プラズマ生成室に ECRプラズマが生成された状態とす る。
[0709] 生成された ECRプラズマは、磁気コイルの発散磁場によりプラズマ生成室より処理 室側に放出される。また、プラズマ生成室の出口に配置された焼結体ターゲットに、 1 3. 56MHzの高周波電力(例えば 500W)を供給する。このことにより、焼結体ターゲ ットに Ar粒子が衝突してスパッタリング現象を起こし、 Bi粒子と Ti粒子が飛び出す。 焼結体ターゲットより飛び出した Bi粒子と Ti粒子は、プラズマ生成室より放出された E CRプラズマ、及び、放出された ECRプラズマにより活性ィ匕した酸素ガスと共に、加熱 されている絶縁層 102及び下部電極 103の表面に到達し、活性ィ匕された酸素により 酸化される。
[0710] なお、反応ガスとしての酸素(O )ガスは、以降にも説明するように Arガスとは個別
2
に導入され、例えば、例えば流量 lsccmで導入されている。焼結体ターゲットは酸素 を含んでいるが、酸素を供給することにより堆積している膜中の酸素不足を防ぐこと ができる。以上に説明した ECR^パッタ法による膜の形成で、例えば、膜厚 40nm程 度の強誘電体層 104及び分離層 135が形成された状態が得られる(図 121B)。ここ で、非晶質 (非結晶)状態である絶縁層 102の上に形成された分離層 135は、 Bi Ti
4 3
O の化学量論的組成の結晶からなる粒径 3〜15nm程度の複数の微結晶粒を含む
12
状態となる。これに対し、結晶状態である下部電極 103の上に形成された強誘電体 層 104は、上記微結晶粒に加え、 Bi Ti O の化学量論的組成の柱状結晶が共存し
4 3 12
た状態となる。
[0711] 次に、図 121Cに示すように、強誘電体層 104及び分離層 135の上に、例えば Au 力もなる金属膜 146が形成された状態とする。次に、図 121Dに示すように、よく知ら れたリソグラフィー技術により、素子となる部分の上にレジストパターン 150が形成さ れた状態とする。次に、レジストパターン 150をマスクとしたドライエッチングにより金 属膜 146をパターユングすることで、図 121Eに示すように、強誘電体層 104の上に 上部電極 136が形成された状態とする。この後、レジストパターン 150を除去すること で、図 120に示す素子分離構造が得られる。なお、上部電極 136は、例えば、 Ru、 P t、 TiNなどの他の金属材料や導電性材料を用いるようにしてもよい。なお、 Ptを用い た場合、密着性が悪く剥離する可能性があるので、 Ti—Pt—Auなどの剥離し難い 構造とし、この上でフォトリソグラフィ一によるパターユング処理をして電極として形成 する必要がある。
[0712] 以上に説明した ECRスパッタによる各層の形成は、図 5に示すような ECRスパッタ 装置を用いればよい。
ところで、図 7B及び図 7B'に示したように微結晶粒が観察される成膜条件の範囲 において、基部層が非晶質の状態の場合と柱状結晶が観察される場合とが存在する 力 いずれにおいても、微結晶粒の状態には変化がなぐ観察される微結晶粒は、 寸法が 3〜 15nm程度となって 、る。この微結晶粒が観測される成膜条件の範囲に おいて、図 122に示すように、形成する層の下地条件と温度条件とにより、異なる依 存性が見られる。まず、「アモルファス」, 「微結晶粒が分散」, 「分散している微結晶 粒と柱状結晶が混在」, 「柱状結晶もしくは単結晶の強誘電体」の状態となる温度が、 酸ィ匕シリコンなどの非結晶材料の上に形成する場合と、ルテニウムなどの結晶材料 の上に形成する場合とでは異なる。
[0713] 図 122に示すように、非結晶材料の上では、 350°Cまでの成膜条件では「ァモルフ ァス」となり、 350〜500°Cの成膜条件では「微結晶粒が分散」となり、 500〜540°C の成膜条件では「分散して 、る微結晶粒と柱状結晶が混在」となり、 540°C以上の成 膜条件では「柱状結晶もしくは単結晶の強誘電体」となる。これらに対し、結晶材料の 上では、 300°Cまでの成膜条件では「アモルファス」となり、 300〜450°Cの成膜条件 では「微結晶粒が分散」となり、 450〜530°Cの成膜条件では「分散している微結晶 粒と柱状結晶が混在」となり、 530°C以上の成膜条件では「柱状結晶もしくは単結晶 の強誘電体」となる。
[0714] 従って、図 122の温度領域 Tに例示する 450〜500°Cの成膜条件とすることで、非 結晶材料の上には「微結晶粒が分散」した膜が形成され、結晶材料の上には、「分散 して 、る微結晶粒と柱状結晶が混在」した膜が形成されるようになる。
[0715] 次に、「微結晶粒が分散」した膜と、「分散している微結晶粒と柱状結晶が混在」し た膜とについて説明する。まず、ルテニウム力もなる下部電極の上に、 450°Cより低 V、温度条件で「微結晶粒が分散」した膜 (膜厚 50nm程度)を形成し、この上に金力も なる上部電極が形成されたサンプル素子 Aを用意する。また、ルテニウム力もなる下 部電極の上に、 450〜500°Cの温度条件で「分散している微結晶粒と柱状結晶が混 在」した膜 (膜厚 50nm程度)を形成し、この上に金力ゝらなる上部電極が形成されたサ ンプル素子 Bを用意する。
[0716] 上述したサンプル素子 Aとサンプル素子 Bにおいて、上部電極と下部電極に電圧 を印加し、上部電極と下部電極との間に流れる電流の状態を測定した結果を図 123 に示す。図 123に示すように、サンプル素子 Aでは、 10V程度の電圧が印加されても 大きな電流が流れない。これに対し、サンプル素子 Bでは、 2V程度の電圧が印加さ れると大きな電流が流れている。このように、「微結晶粒が分散」している膜は、「分散 して ヽる微結晶粒と柱状結晶が混在」して ヽる膜に比較して、電気抵抗が大きく絶縁 破壊する耐圧が大きい。
[0717] さらに、これらの膜は、成膜初期状態において高電圧を印加する EO処理により、図 123に示すように電流が流れる状態となった後に、後述するように、印加する電圧に より高抵抗状態と低抵抗状態とを繰り返すような電流電圧特性 (抵抗変化特性)を備 えるようになる。
[0718] 「微結晶粒が分散」して 、る膜及び「分散して!/、る微結晶粒と柱状結晶が混在」して いる膜は、 EO処理を行うことで、図 124に示すような抵抗変化特性を示すようになる 。し力しながら、図 123に示すように、「微結晶粒が分散」している膜は、 EO処理に 1 OV以上の電圧印加が必要となるが、「分散している微結晶粒と柱状結晶が混在」し ている膜は、 2V程度の電圧印加で EO処理が行える。従って、 2V程度の印加により 「分散して!/ヽる微結晶粒と柱状結晶が混在」して ヽる膜を EO処理して抵抗変化特性 を示す状態としても、同様の電圧印加では、「微結晶粒が分散」している膜は、 EO処 理されず、抵抗変化特性を示す状態とならない。
[0719] 従って、「分散している微結晶粒と柱状結晶が混在」している膜を強誘電体層 104 とし、「微結晶粒が分散」している膜を分離層 135として用いれば、抵抗変化特性を 備える強誘電体層 104による複数の素子が、高抵抗な分離層 135により分離された 素子分離構造が得られる。また、前述したように、下層の条件を異なる状態としておく ことで、同一の温度領域 Tとした条件で、強誘電体層 104と分離層 135とが同一のス パッタ成膜条件により同時に形成された状態が得られる。
[0720] 次に、前述した抵抗変化特性について説明する。この特性は、下部電極 103と上 部電極 136との間に電圧を印加することで調査されたものである。前述した EO処理 をした後、下部電極 103と上部電極 136との間に電源により電圧を印加し、電圧を印 カロしたときの電流を電流計により観測すると、図 124に示す結果が得られた。図 124 において、縦軸は、電流値を面積で除した電流密度である。以下、図 124を説明し、 あわせて図 120に示す素子分離構造により分離された各素子の動作原理を説明す る。ただし、ここで説明する電圧値や電流値は、実際の素子で観測されたものを例と している。従って、本現象は、以下に示す数値に限るものではない。実際に素子に用 いる膜の材料や膜厚、及び他の条件により、他の数値が観測されることがある。
[0721] 図 124は上部電極 136に印加する電圧をゼロ力も正の方向に増加させた後にゼロ に戻し、さらに負の方向に減少させ、最後に再びゼロに戻したときに強誘電体層 104 中を流れる電流値が描くヒステリシスの特性を表している。まずはじめに、上部電極 1 36に電圧を OVから正の方向に徐々に印加させた場合、強誘電体層 104を流れる正 の電流は比較的少ない(0. IVで約 0. 4 A程度)。
[0722] しかし、 0. 5Vを超えると急激に正の電流値が増加し始める。さらに約 IVまで電圧 を上げた後、逆に正の電圧を減少させていくと、 IVから約 0. 7Vまでは電圧値の減 少にも拘わらず、正の電流値はさらに増加する。電圧値が約 0. 7V以下になると、電 流値も減少に転じる力 このときの正の電流は先と比べて流れやすい状態であり、電 流値は 0. IVで約 4 A程度である(先の約 10倍)。印加電圧をゼロに戻すと、電流 値ちゼロとなる。
[0723] 次に上部電極 136に負の電圧を印加していく。この状態では、負の電圧が小さいと きは、前の履歴を引き継ぎ、比較的大きな負の電流が流れる。ところが、—0. 5V程 度まで負の電圧を印加すると、負の電流が突然減少し始め、この後、約 IV程度ま で負の電圧を印加しても負の電流値は減少し続ける。最後に、—IVから 0Vに向か つて印加する負の電圧を減少させると、負の電流値も共にさらに減少し、ゼロに戻る 。この場合のときは、負の電流は流れ難ぐ -0. IVで約— 0. 5 A程度である。
[0724] 以上に説明したような、強誘電体層 104中を流れる電流のヒステリシスは、前述した ように、上部電極 136に印加する電圧により強誘電体層 104の抵抗値が変化するこ とが原因で発現すると解釈できる。ある一定以上の大きさの正の電圧 V を印加する
W1 ことにより、強誘電体層 104は電流を流しにくい「低抵抗状態」(データ「1」)に遷移す る。一方、ある一定の大きさの負の電圧 V を印加することにより、強誘電体層 104は
W0
電流が流れにくい「高抵抗状態」(データ「0」)に遷移すると考えられる。
[0725] 素子分離構造における強誘電体層 104にも、これらの低抵抗状態と高抵抗状態の 2つの安定状態が存在し、各々の状態は、前述した一定以上の正あるいは負の電圧 を印加しない限り、各状態を維持する。なお、 V の値は約 + IV程度であり、 V の
Wl W0 値— IV程度であり、高抵抗状態と低抵抗状態の抵抗比は約 10〜: L00程度である。 上記のような、電圧により強誘電体層 104の抵抗がスィッチする現象を用いることで、 素子分離構造においても、前述した各機能素子と同様に、不揮発性で非破壊読み 出し動作が可能なメモリ素子が実現できる。
[0726] 次に、本発明の実施の形態における他の素子分離構造について説明する。図 125 は、本発明の実施の形態における素子分離構造の他の構成例を概略的に示す模式 的な断面図である。図 125に示す素子分離構造は、例えば、単結晶シリコン力 なる 基板 101の上に絶縁層 102を備え、この上に形成された共通電極層 113,下部電極 103,膜厚 30〜200nm程度の強誘電体層 104,上部電極 136からなる複数の素子 力 分離層 135により絶縁分離されて 、る 、るようにしたものである。
[0727] 強誘電体層 104と分離層 135とは、例えば、 Bi, Ti, O力 構成され、 Bi Ti O の
4 3 12 化学量論的組成の結晶からなる粒径 3〜15nm程度の複数の微結晶粒を含む。また 、強誘電体層 104は、上記微結晶粒に加え、 Bi Ti O の化学量論的組成の柱状結
4 3 12
晶が共存している。上述した構成とされた分離層 135は、強誘電体層 104に比較し て電気抵抗が大きぐ絶縁破壊する耐圧が大きい。一方、強誘電体層 104は、後述 するように、低抵抗状態と高抵抗状態の 2つの安定状態が存在し、強誘電体層 104 による素子は、 2つの状態が保持される機能素子である。これらは、図 120に示す構 成と同様である。 [0728] 図 125に示す素子分離構造では、各下部電極 103が共通電極層 113により接続さ れている点で、図 120に示す素子分離構造と異なっている。また、図 125に示す素 子分離構造では、共通電極層 113が、非結晶状態の導電性材料から構成されてい る。例えば、共通電極層 113は、非晶質状態の窒化チタン,酸化亜鉛,及び ITO (ィ ンジゥム一スズ酸ィ匕物)など力も構成されたものである。従って、図 125に示す素子 分離構造においても、分離層 135は、非晶質状態の層の上に形成されている。
[0729] 次に、図 125に示す素子分離構造の製造方法例について説明する。まず、図 126 Aに示すように、主表面が面方位(100)で抵抗率が 1〜2 Ω— cmの p形のシリコンから なる基板 101を用意し、基板 101の表面を硫酸と過酸化水素水の混合液と純水と希 フッ化水素水とにより洗浄し、このあと乾燥させる。ついで、洗浄'乾燥した基板 101 の上に、絶縁層 102が形成された状態とする。次に、絶縁層 102の上に、例えば窒 化チタンからなる共通電極層 143が形成された状態とする。ついで、共通電極層 14 3の上に、例えば、 Ruカゝらなる膜厚 10nm程度の金属膜が形成された状態とし、この 金属膜を公知のリソグラフィー技術とエッチング技術とによりパターユングすることで、 図 126Aに示すように、各々が離間して配置された複数の下部電極 103が形成され た状態とする。
[0730] 以上のようにして下部電極 103を形成した後、 Biと Tiの割合が 4 : 3の酸化物焼結 体 (Bi— Ti— O)力もなるターゲットを用い、プラズマガスとしてアルゴン (Ar)と酸素ガ スとを用いた ECRスパッタ法により、図 126Bに示すように、下部電極 103の上には 強誘電体層 104が形成され、共通電極層 143の上には分離層 135が形成された状 態とする。強誘電体層 104及び分離層 135の形成について説明すると、まず、 400 °C〜450°Cの範囲に基板 101が加熱されている状態とする。また、プラズマ生成室 内に、例えば流量 20sccmで希ガスである Arガスを導入し、例えば 10— 3Pa〜10— 2Pa 台の圧力に設定する。この状態で、プラズマ生成室に電子サイクロトロン共鳴条件の 磁場を与え、この後、 2. 45GHzのマイクロ波(例えば 500W)をプラズマ生成室に導 入し、このマイクロ波の導入により、プラズマ生成室に ECRプラズマが生成された状 態とする。
[0731] 生成された ECRプラズマは、磁気コイルの発散磁場によりプラズマ生成室より処理 室側に放出される。また、プラズマ生成室の出口に配置された焼結体ターゲットに、 1 3. 56MHzの高周波電力(例えば 500W)を供給する。このことにより、焼結体ターゲ ットに Ar粒子が衝突してスパッタリング現象を起こし、 Bi粒子と Ti粒子が飛び出す。 焼結体ターゲットより飛び出した Bi粒子と Ti粒子は、プラズマ生成室より放出された E CRプラズマ、及び、放出された ECRプラズマにより活性ィ匕した酸素ガスと共に、加熱 されている共通電極層 143及び下部電極 103の表面に到達し、活性化された酸素 により酸ィ匕される。
[0732] なお、反応ガスとしての酸素(O )ガスは、以降にも説明するように Arガスとは個別
2
に導入され、例えば、例えば流量 lsccmで導入されている。焼結体ターゲットは酸素 を含んでいるが、酸素を供給することにより堆積している膜中の酸素不足を防ぐこと ができる。以上に説明した ECR^パッタ法による膜の形成で、例えば、膜厚 40nm程 度の強誘電体層 104及び分離層 135が形成された状態が得られる(図 126B)。ここ で、非晶質 (非結晶)状態である共通電極層 143の上に形成された分離層 135は、 B i Ti O の化学量論的組成の結晶力もなる粒径 3〜15nm程度の複数の微結晶粒を
4 3 12
含む状態となる。これに対し、結晶状態である下部電極 103の上に形成された強誘 電体層 104は、上記微結晶粒に加え、 Bi Ti O の化学量論的組成の柱状結晶が共
4 3 12
存した状態となる。
[0733] 次に、図 126Cに示すように、強誘電体層 104及び分離層 135の上に、例えば Au 力もなる金属膜 146が形成された状態とする。次に、図 126Dに示すように、よく知ら れたリソグラフィー技術により、素子となる部分の上にレジストパターン 150が形成さ れた状態とする。次に、レジストパターン 150をマスクとしたドライエッチングにより金 属膜 146をパターユングすることで、図 126Eに示すように、強誘電体層 104の上に 上部電極 136が形成された状態とする。この後、レジストパターン 150を除去すること で、図 125に示す素子分離構造が得られる。
[0734] なお、基板 101は、半導体,絶縁体,金属などの導電性材料のいずれから構成さ れていてもよい。基板 101が絶縁材料力も構成されている場合、絶縁層 102はなくて もよい。また、下部電極 103,上部電極 136は、例えば、金 (Au)、銀 (Ag)などの貴 金属を含む遷移金属の金属カゝら構成されていればよい。また、上記電極は、結晶状 態の窒化チタン(TiN)、窒化ハフニウム(HfN)、ルテニウム酸ストロンチウム(SrRu O )、酸化亜鉛 (ZnO)、インジウム一スズ酸化物(ITO)、フッ化ランタン (LaF )など
2 3 の遷移金属の窒化物や酸化物やフッ化物等の化合物、さらに、これらを積層した複 合膜であってもよい。一方、共通電極層 143は、非晶質状態の窒化ハフニウム (HfN )、ルテニウム酸ストロンチウム(SrRuO )、フッ化ランタン(LaF )などの遷移金属の
2 3
窒化物や酸化物やフッ化物等の化合物、さらに、これらを積層した複合膜であっても よい。
なお、図 120及び図 125では、 3つの素子部分を示したが、複数の素子が 2次元的 に配列されて集積されているようにしてもよい。例えば、基板の上に所定の間隔で配 列された島状の金属酸化物層が形成された状態とし、これらを電極で接続することで 、高集積ィ匕が容易に図れる。

Claims

請求の範囲
[1] 基板の上に形成されて少なくとも 2つの金属を含んだ金属酸化物から構成された所 定の厚さの第 1金属酸化物層と、
この第 1金属酸化物層の一方の面に形成された第 1電極と、
前記第 1金属酸化物層の他方の面に形成された第 2電極と
を少なくとも備えることを特徴とする 2安定抵抗値取得装置。
[2] 請求項 1記載の 2安定抵抗値取得装置において、
前記第 1金属酸化物層の他方の面に前記第 2電極と離間して形成された第 3電極 を備える
ことを特徴とする 2安定抵抗値取得装置。
[3] 請求項 2記載の 2安定抵抗値取得装置にぉ 、て、
前記第 1電極からなるゲート電極と、
前記第 2電極力 なるソース電極と、
前記第 3電極力 なるドレイン電極と
を備えることを特徴とする 2安定抵抗値取得装置。
[4] 請求項 1記載の 2安定抵抗値取得装置において、
前記基板の上に形成されて前記金属酸化物から構成された所定の厚さの第 2金属 酸化物層と、
この第 2金属酸化物層に設けられた第 4電極と
を少なくとも備え、
前記第 1電極、前記第 1金属酸化物層,前記第 2金属酸化物層,及び前記第 4電 極は、これらの順に直列に接続されている
ことを特徴とする 2安定抵抗値取得装置。
[5] 請求項 1記載の 2安定抵抗値取得装置において、
前記第 1金属酸ィヒ物層の一方の面及び他方の面の少なくとも 1つの面に接して形 成された絶縁層を備える
ことを特徴とする 2安定抵抗値取得装置。
[6] 請求項 4記載の 2安定抵抗値取得装置にお 、て、 前記第 2金属酸ィヒ物層の一方の面及び他方の面の少なくとも 1つの面に接して形 成された絶縁層を備える
ことを特徴とする 2安定抵抗値取得装置。
[7] 請求項 1記載の 2安定抵抗値取得装置において、
前記基板の上に形成された非晶質状態の非晶質層と、
この非晶質層の上に形成されて結晶状態の導電性材料カゝら構成された前記第 1電 極,この第 1電極の上に形成された前記第 1金属酸ィ匕物層,及びこの第 1金属酸ィ匕 物層の上に形成された前記第 2電極より構成された複数の素子と、
これら素子の間の前記非晶質層の上に形成されて前記金属酸化物から構成された 分離層と
を少なくとも備え、
前記分離層により複数の前記素子が分離されていることを特徴とする 2安定抵抗値 取得装置。
[8] 請求項 7記載の 2安定抵抗値取得装置にお 、て、
前記第 1金属酸化物層と前記分離層とは、一体に形成されている
ことを特徴とする 2安定抵抗値取得装置。
[9] 請求項 1記載の 2安定抵抗値取得装置において、
前記金属酸化物は、前記第 1電極と前記第 2電極との間に印加された電気信号に より抵抗値が変化する
ことを特徴とする 2安定抵抗値取得装置。
[10] 請求項 9記載の 2安定抵抗値取得装置にぉ 、て、
前記金属酸化物は、
第 1電圧値以上の電圧印加により第 1抵抗値を持つ第 1状態となり、
前記第 1電圧とは極性の異なる第 2電圧値以下の電圧印加により前記第 1抵抗値と 異なる第 2抵抗値を持つ第 2状態となる
ことを特徴とする 2安定抵抗値取得装置。
[11] 請求項 9記載の 2安定抵抗値取得装置において、
前記金属酸化物は、 第 1電圧値を超える電圧印加により第 1抵抗値を持つ第 1状態となり、 前記第 1電圧を超えない範囲の第 2電圧値を超える電圧印加により前記第 1抵抗 値より高い第 2抵抗値を持つ第 2状態となる
ことを特徴とする 2安定抵抗値取得装置。
[12] 請求項 1記載の 2安定抵抗値取得装置において、
前記金属酸化物は、少なくとも第 1金属,及び酸素から構成された基部層と、 前記第 1金属,第 2金属,及び酸素からなり、前記基部層の中に分散された複数の 微粒子と
を少なくとも備えることを特徴とする 2安定抵抗値取得装置。
[13] 請求項 12記載の 2安定抵抗値取得装置において、
前記基部層は、前記第 1金属,前記第 2金属,及び酸素から構成され、化学量論 的組成に比較して第 2金属の組成比が小さい
ことを特徴とする 2安定抵抗値取得装置。
[14] 請求項 12記載の 2安定抵抗値取得装置において、
前記基部層は、前記第 1金属,前記第 2金属,及び酸素の柱状結晶を含むことを 特徴とする 2安定抵抗値取得装置。
[15] 請求項 12記載の 2安定抵抗値取得装置において、
前記金属酸化物は、
前記基部層に接して配置され、少なくとも前記第 1金属,及び酸素から構成され、 柱状結晶及び非晶質の少なくとも 1つである金属酸ィヒ物単一層を備える
ことを特徴とした 2安定抵抗値取得装置。
[16] 請求項 15記載の 2安定抵抗値取得装置において、
前記金属酸化物単一層は、前記第 1金属,前記第 2金属,及び酸素の化学量論的 組成に比較して第 2金属の組成比が小さいことを特徴とする 2安定抵抗値取得装置。
[17] 請求項 15記載の 2安定抵抗値取得装置において、
前記金属酸化物単一層は、前記微粒子を含まないことを特徴とする 2安定抵抗値 取得装置。
[18] 請求項 12記載の 2安定抵抗値取得装置において、 前記第 1金属はチタンであり、前記第 2金属はビスマスであり、前記基部層は、化学 量論的組成に比較して過剰なチタンを含む層からなる非晶質状態であることを特徴 とする 2安定抵抗値取得装置。
[19] 請求項 18記載の 2安定抵抗値取得装置において、
前記第 1電極は、
ルテニウム、白金の少なくとも 1つから構成され、
同一材料による単層構造,複数材料による積層構造の少なくとも 1つである ことを特徴とする 2安定抵抗値取得装置。
[20] 請求項 1記載の 2安定抵抗値取得装置にぉ 、て、
前記基板は導電性材料カゝら構成されたものである
ことを特徴とする 2安定抵抗値取得装置。
[21] 請求項 20記載の 2安定抵抗値取得装置にぉ 、て、
前記第 1電極と前記基板とは同一である
ことを特徴とする 2安定抵抗値取得装置。
[22] 請求項 1記載の 2安定抵抗値取得装置にぉ 、て、
前記金属酸ィ匕物は、強誘電体であることを特徴とする 2安定抵抗値取得装置。
[23] 基板の上に形成されて少なくとも 2つの金属を含んだ金属酸化物から構成された所 定の厚さの第 1金属酸化物層と、この第 1金属酸化物層の一方の面に形成された第 1電極と、前記第 1金属酸化物層の他方の面に形成された第 2電極とを少なくとも備 えた 2安定抵抗値取得装置の製造方法であって、
所定の組成比で供給された不活性ガスと酸素ガスとからなる第 1プラズマを生成し、 少なくとも第 1金属及び第 2金属力も構成されたターゲットに負のバイスを印カロして前 記第 1プラズマより発生した粒子を前記ターゲットに衝突させてスパッタ現象を起こし 、前記ターゲットを構成する材料を堆積することで、前記第 1金属,前記第 2金属及 び酸素から構成された金属酸ィ匕物カゝらなる前記第 1金属酸ィ匕物層を形成する第 1ェ 程を備え、
前記第 1プラズマは、電子サイクロトロン共鳴により生成されて発散磁界により運動 エネルギーが与えられた電子サイクロトロン共鳴プラズマであり、 前記基板は所定温度に加熱された状態とする
を備えることを特徴とする 2安定抵抗値取得装置の製造方法。
[24] 請求項 23記載の 2安定抵抗値取得装置の製造方法にお 、て、
前記金属酸ィ匕物力もなる層の表面に、所定の組成比で供給された不活性ガスと反 応性ガスとからなる第 2プラズマを照射する第 2工程を備え、
前記第 2プラズマは、電子サイクロトロン共鳴により生成されて発散磁界により運動 エネルギーが与えられた電子サイクロトロン共鳴プラズマである
ことを特徴とする 2安定抵抗値取得装置の製造方法。
[25] 請求項 24記載の 2安定抵抗値取得装置の製造方法にぉ 、て、
前記反応性ガスは、酸素ガス、窒素ガス、フッ素ガス、水素ガスの少なくとも 1つで あることを特徴とする 2安定抵抗値取得装置の製造方法。
[26] 請求項 23記載の 2安定抵抗値取得装置の製造方法にお 、て、
前記第 1工程において、前記基板は、金属酸化物のキュリー点温度以下に加熱す ることを特徴とする 2安定抵抗値取得装置の製造方法。
[27] 請求項 23記載の 2安定抵抗値取得装置の製造方法にぉ 、て、
前記基板に、前記プラズマにより生成されるイオンエネルギーを制御するための電 圧を印加する
ことを特徴とする 2安定抵抗値取得装置の製造方法。
[28] 請求項 23記載の 2安定抵抗値取得装置の製造方法にぉ 、て、
前記第 1金属はチタンであり、前記第 2金属はビスマスである
ことを特徴とする 2安定抵抗値取得装置の製造方法。
[29] 請求項 23記載の 2安定抵抗値取得装置の製造方法にお 、て、
前記ターゲットは、少なくとも前記第 1金属と前記第 2金属と酸素とから構成されたも のであることを特徴とする 2安定抵抗値取得装置の製造方法。
[30] 少なくとも第 1金属及び酸素から構成された基部層と、
前記第 1金属,第 2金属,及び酸素よりなり、前記基部層の中に分散された複数の 微晶粒と
を少なくとも備えることを特徴とする金属酸化物薄膜。
[31] 所定の組成比で供給された不活性ガスと酸素ガスとからなる第 1プラズマを生成し、 第 1金属と第 2金属とから構成されたターゲットに負のバイスを印カロして前記第 1ブラ ズマより発生した粒子を前記ターゲットに衝突させてスパッタ現象を起こし、前記ター ゲットを構成する材料を基板の上に堆積することで、少なくとも前記第 1金属及び酸 素から構成された基部層と、前記第 1金属,第 2金属,及び酸素からなり、前記基部 層の中に分散された複数の微粒子とを少なくとも備える金属酸化物薄膜を前記基板 の上に形成する工程を備え、
前記第 1プラズマは、電子サイクロトロン共鳴により生成されて発散磁界により運動 エネルギーが与えられた電子サイクロトロン共鳴プラズマであり、
前記基板は所定温度に加熱された状態とする
ことを特徴とする金属酸化物薄膜の形成方法。
[32] 請求項 31記載の金属酸化物薄膜の形成方法において、
前記第 1金属はチタンであり、前記第 2金属はビスマスであることを特徴とする金属 酸化物薄膜の形成方法。
PCT/JP2005/013413 2004-07-22 2005-07-21 2安定抵抗値取得装置及びその製造方法並びに金属酸化物薄膜及びその製造方法 WO2006009218A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CNA2005800011575A CN1860609A (zh) 2004-07-22 2005-07-21 双稳态电阻值获得器件、其制造方法、金属氧化物薄膜及其制造方法
EP05766330A EP1770778B1 (en) 2004-07-22 2005-07-21 Apparatus for obtaining double stable resistance values, method for manufacturing the same, metal oxide thin film and method for manufacturing the same
KR1020087025627A KR100932477B1 (ko) 2004-07-22 2005-07-21 쌍안정 저항값 취득장치 및 그 제조방법과 금속 산화물 박막 및 그 제조방법
JP2006524553A JP4559425B2 (ja) 2004-07-22 2005-07-21 2安定抵抗値取得装置及びその製造方法
US10/566,522 US7696502B2 (en) 2004-07-22 2005-07-21 Bistable resistance value acquisition device, manufacturing method thereof, metal oxide thin film, and manufacturing method thereof
US12/712,024 US7875872B2 (en) 2004-07-22 2010-02-24 Bistable resistance value acquisition device, manufacturing method thereof, metal oxide thin film, and manufacturing method thereof
US12/954,316 US8088644B2 (en) 2004-07-22 2010-11-24 Bistable resistance value acquisition device, manufacturing method thereof, metal oxide thin film, and manufacturing method thereof

Applications Claiming Priority (34)

Application Number Priority Date Filing Date Title
JP2004214849 2004-07-22
JP2004-214858 2004-07-22
JP2004214863 2004-07-22
JP2004214851 2004-07-22
JP2004-214863 2004-07-22
JP2004-214851 2004-07-22
JP2004-214849 2004-07-22
JP2004214858 2004-07-22
JP2004-319088 2004-11-02
JP2004319088 2004-11-02
JP2004-357429 2004-12-09
JP2004357429 2004-12-09
JP2004361199 2004-12-14
JP2004361152 2004-12-14
JP2004-361152 2004-12-14
JP2004-361199 2004-12-14
JP2005006254 2005-01-13
JP2005-006254 2005-01-13
JP2005-010202 2005-01-18
JP2005010202 2005-01-18
JP2005052655 2005-02-28
JP2005-052655 2005-02-28
JP2005-068839 2005-03-11
JP2005068853 2005-03-11
JP2005068839 2005-03-11
JP2005-068853 2005-03-11
JP2005070723 2005-03-14
JP2005-070723 2005-03-14
JP2005091097 2005-03-28
JP2005-091097 2005-03-28
JP2005097714 2005-03-30
JP2005-097714 2005-03-30
JP2005-111756 2005-04-08
JP2005111756 2005-04-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/566,522 A-371-Of-International US7696502B2 (en) 2004-07-22 2005-07-21 Bistable resistance value acquisition device, manufacturing method thereof, metal oxide thin film, and manufacturing method thereof
US12/712,024 Division US7875872B2 (en) 2004-07-22 2010-02-24 Bistable resistance value acquisition device, manufacturing method thereof, metal oxide thin film, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2006009218A1 true WO2006009218A1 (ja) 2006-01-26

Family

ID=35785326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013413 WO2006009218A1 (ja) 2004-07-22 2005-07-21 2安定抵抗値取得装置及びその製造方法並びに金属酸化物薄膜及びその製造方法

Country Status (7)

Country Link
US (3) US7696502B2 (ja)
EP (2) EP1770778B1 (ja)
JP (2) JP4559425B2 (ja)
KR (3) KR100932477B1 (ja)
CN (1) CN1860609A (ja)
TW (1) TWI375273B (ja)
WO (1) WO2006009218A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335502A (ja) * 2006-06-13 2007-12-27 Nippon Telegr & Teleph Corp <Ntt> 金属酸化物素子及びその製造方法
JP2007335472A (ja) * 2006-06-12 2007-12-27 Nippon Telegr & Teleph Corp <Ntt> 金属酸化物素子及びその製造方法
JP2008016513A (ja) * 2006-07-03 2008-01-24 Nippon Telegr & Teleph Corp <Ntt> メモリ装置
JP2008021750A (ja) * 2006-07-11 2008-01-31 Matsushita Electric Ind Co Ltd 抵抗変化素子およびその製造方法、ならびにそれを用いた抵抗変化型メモリ
JP2008182157A (ja) * 2007-01-26 2008-08-07 Nippon Telegr & Teleph Corp <Ntt> メモリ装置
JP2008306004A (ja) * 2007-06-07 2008-12-18 Fujitsu Ltd 半導体装置及びその製造方法
WO2009096363A1 (ja) * 2008-01-28 2009-08-06 Nec Corporation 抵抗変化型不揮発性記憶装置とその製造方法
WO2010029645A1 (ja) * 2008-09-12 2010-03-18 株式会社 東芝 不揮発性記憶装置及びその製造方法
US8009454B2 (en) * 2006-03-10 2011-08-30 Samsung Electronics Co., Ltd. Resistance random access memory device and a method of manufacturing the same
JP2011199278A (ja) * 2010-03-23 2011-10-06 Internatl Business Mach Corp <Ibm> 高密度メモリ素子
US8981333B2 (en) 2011-10-12 2015-03-17 Panasonic Intellectual Property Management, Co., Ltd. Nonvolatile semiconductor memory device and method of manufacturing the same
JP2016025258A (ja) * 2014-07-23 2016-02-08 国立研究開発法人産業技術総合研究所 不揮発性メモリ素子とその製造方法
WO2017086399A1 (ja) * 2015-11-19 2017-05-26 国立大学法人東京大学 不揮発性メモリ素子、不揮発性メモリおよび不揮発性メモリの制御方法
CN109545959A (zh) * 2018-10-16 2019-03-29 叶建国 一种存储器件及其制造方法
WO2022084802A1 (ja) * 2020-10-20 2022-04-28 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の駆動方法
US20220199631A1 (en) * 2020-12-22 2022-06-23 Advanced Nanoscale Devices Ferroelectric semiconducting floating gate field-effect transistor

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070024196A (ko) * 2005-08-26 2007-03-02 삼성전자주식회사 실리콘 박막 형성방법
KR100859587B1 (ko) * 2007-03-07 2008-09-23 삼성전자주식회사 강유전체 기록매체 및 그의 제조 방법과 이를 이용한정보저장장치
US8006114B2 (en) * 2007-03-09 2011-08-23 Analog Devices, Inc. Software programmable timing architecture
CN101636841B (zh) * 2007-03-22 2011-06-22 松下电器产业株式会社 存储元件和存储装置
US20100176363A1 (en) * 2007-06-04 2010-07-15 Kensuke Takahashi Variable resistance element and semiconductor device provided with the same
JP5386374B2 (ja) * 2008-01-31 2014-01-15 パナソニック株式会社 光学的情報記録媒体及びその製造方法
FR2928663A1 (fr) * 2008-03-17 2009-09-18 Centre Nat Rech Scient Procede d'elaboration d'un film mince d'oxyde ou de silicate d'hafnium nitrure, compose de coordination utilise dans ce procede et procede de realisation d'un circuit electronique integre.
US20100102369A1 (en) * 2008-10-29 2010-04-29 Seagate Technology Llc Ferroelectric memory with magnetoelectric element
US20100135061A1 (en) * 2008-12-02 2010-06-03 Shaoping Li Non-Volatile Memory Cell with Ferroelectric Layer Configurations
CN102136836B (zh) * 2010-01-22 2013-02-13 清华大学 压控开关、其应用方法及使用该压控开关的报警系统
CN102136835B (zh) * 2010-01-22 2013-06-05 清华大学 温控开关、其应用方法及使用该温控开关的报警系统
CN102439724B (zh) * 2010-01-28 2013-12-04 复旦大学 铁电阻变存储器及其操作方法、制备方法
US8569104B2 (en) * 2012-02-07 2013-10-29 Intermolecular, Inc. Transition metal oxide bilayers
US8866118B2 (en) * 2012-12-21 2014-10-21 Intermolecular, Inc. Morphology control of ultra-thin MeOx layer
US9754945B2 (en) * 2014-08-06 2017-09-05 Globalfoundries Inc. Non-volatile memory device employing a deep trench capacitor
WO2016191830A1 (en) 2015-06-05 2016-12-08 Australian Advanced Materials Pty Ltd A memory structure for use in resistive random access memory devices and method for use in manufacturing a data storage device
US10109350B2 (en) * 2016-07-29 2018-10-23 AP Memory Corp., USA Ferroelectric memory device
GB201620835D0 (en) * 2016-12-07 2017-01-18 Australian Advanced Mat Pty Ltd Resistive switching memory
US10396085B2 (en) 2017-03-06 2019-08-27 Xerox Corporation Circular printed memory device with rotational detection
KR101912286B1 (ko) 2017-03-27 2018-10-29 삼성전기 주식회사 커패시터 부품
US10038092B1 (en) * 2017-05-24 2018-07-31 Sandisk Technologies Llc Three-level ferroelectric memory cell using band alignment engineering
US11107919B2 (en) 2017-08-31 2021-08-31 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing semiconductor device including ferroelectric layer having columnar-shaped crystals
DE102018108152A1 (de) * 2017-08-31 2019-02-28 Taiwan Semiconductor Manufacturing Co. Ltd. Halbleiterbauelement und herstellungsverfahren davon
KR20190067668A (ko) * 2017-12-07 2019-06-17 에스케이하이닉스 주식회사 저항 변화 소자
KR102146419B1 (ko) * 2018-10-18 2020-08-20 성균관대학교산학협력단 2 차원 소재를 포함하는 선택 소자
RU2700901C1 (ru) * 2019-02-07 2019-09-23 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина) Способ получения сегнетоэлектрических пленок Βа1-хSrхTiO3
KR102305342B1 (ko) * 2019-11-14 2021-09-24 울산과학기술원 2차원 강유전성 물질을 이용한 비휘발성 3진 메모리 소자 및 이의 제조 방법
KR102334601B1 (ko) 2020-01-03 2021-12-02 한남대학교 산학협력단 윷놀이를 이용한 언어 학습용 보드게임
KR102351336B1 (ko) 2020-01-29 2022-01-13 한남대학교 산학협력단 교육용 보드게임
US11538817B2 (en) 2020-06-26 2022-12-27 Sandisk Technologies Llc Bonded memory devices and methods of making the same
KR102707979B1 (ko) * 2020-06-26 2024-09-23 샌디스크 테크놀로지스 엘엘씨 접합된 메모리 디바이스 및 그 제조 방법
US11903218B2 (en) 2020-06-26 2024-02-13 Sandisk Technologies Llc Bonded memory devices and methods of making the same
KR20230117966A (ko) 2022-02-03 2023-08-10 동서울대학교 산학협력단 윷놀이를 이용한 언어 학습용 보드게임

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3796926A (en) 1971-03-29 1974-03-12 Ibm Bistable resistance device which does not require forming
JPS4934390B1 (ja) * 1970-10-02 1974-09-13
JPS504986A (ja) * 1971-12-30 1975-01-20
JPH07263646A (ja) * 1994-03-25 1995-10-13 Mitsubishi Chem Corp 強誘電体ダイオード素子、並びにそれを用いたメモリー装置、フィルター素子及び疑似脳神経回路
JPH08161933A (ja) * 1994-12-06 1996-06-21 Sharp Corp 強誘電体薄膜及び強誘電体薄膜被覆基板並びに強誘電体薄膜の製造方法
JPH08306806A (ja) * 1995-04-28 1996-11-22 Asahi Chem Ind Co Ltd 半導体装置及びその製造方法
WO2000049659A1 (en) 1999-02-17 2000-08-24 International Business Machines Corporation Microelectronic device for storing information and method thereof
EP1335417A2 (en) 2002-02-07 2003-08-13 Sharp Kabushiki Kaisha Method for fabricating variable resistance device, method for fabricating non-volatile variable resistance memory device, and non-volatile variable resistance memory device
EP1628352A1 (en) 2003-05-08 2006-02-22 Matsushita Electric Industrial Co., Ltd. Electric switch and storage device using same

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637486B2 (ja) 1972-07-27 1981-09-01
JP2814416B2 (ja) 1992-06-23 1998-10-22 日本電信電話株式会社 プラズマ処理装置
JP2779997B2 (ja) 1993-03-22 1998-07-23 日本電信電話株式会社 プラズマ処理装置
JP3460095B2 (ja) * 1994-06-01 2003-10-27 富士通株式会社 強誘電体メモリ
JP2991931B2 (ja) 1994-07-12 1999-12-20 松下電器産業株式会社 半導体装置およびそれらの製造方法
JP3651932B2 (ja) * 1994-08-24 2005-05-25 キヤノン株式会社 光起電力素子用裏面反射層及びその形成方法並びに光起電力素子及びその製造方法
US5519235A (en) * 1994-11-18 1996-05-21 Bell Communications Research, Inc. Polycrystalline ferroelectric capacitor heterostructure employing hybrid electrodes
JP3541331B2 (ja) * 1995-09-27 2004-07-07 富士通株式会社 強誘電体メモリセル
JPH10152397A (ja) 1996-11-18 1998-06-09 Nippon Telegr & Teleph Corp <Ntt> 常誘電体薄膜の形成方法
JPH10152398A (ja) 1996-11-18 1998-06-09 Nippon Telegr & Teleph Corp <Ntt> 強誘電体薄膜の形成方法
JPH10341002A (ja) 1997-06-06 1998-12-22 Oki Electric Ind Co Ltd 強誘電体トランジスタ、半導体記憶装置、強誘電体トランジスタの取扱い方法および強誘電体トランジスタの製造方法
JP3335303B2 (ja) * 1998-02-10 2002-10-15 シャープ株式会社 非線形素子及び表示装置
KR20010030023A (ko) * 1999-08-20 2001-04-16 마츠시타 덴끼 산교 가부시키가이샤 유전체막 및 그 제조방법
JP2001237387A (ja) * 2000-02-24 2001-08-31 Matsushita Electric Ind Co Ltd 強誘電体ゲートデバイスとその駆動方法
DE10104611A1 (de) * 2001-02-02 2002-08-14 Bosch Gmbh Robert Vorrichtung zur keramikartigen Beschichtung eines Substrates
JP3593049B2 (ja) * 2001-03-19 2004-11-24 日本電信電話株式会社 薄膜形成方法
US6676811B1 (en) * 2001-08-13 2004-01-13 The United States Of America As Represented By The Secretary Of The Air Force Method of depositing nanoparticles for flux pinning into a superconducting material
JP3571679B2 (ja) 2001-09-06 2004-09-29 日本電信電話株式会社 薄膜形成方法
US6623485B2 (en) * 2001-10-17 2003-09-23 Hammill Manufacturing Company Split ring bone screw for a spinal fixation system
JP4323156B2 (ja) * 2002-06-19 2009-09-02 株式会社日本触媒 微粒子含有金属酸化物膜およびその形成方法
US6990008B2 (en) * 2003-11-26 2006-01-24 International Business Machines Corporation Switchable capacitance and nonvolatile memory device using the same
JP2005167064A (ja) * 2003-12-04 2005-06-23 Sharp Corp 不揮発性半導体記憶装置
US7833256B2 (en) * 2004-04-16 2010-11-16 Biedermann Motech Gmbh Elastic element for the use in a stabilization device for bones and vertebrae and method for the manufacture of such elastic element
JP2005347468A (ja) 2004-06-02 2005-12-15 Matsushita Electric Ind Co Ltd 不揮発性メモリ
JP4365737B2 (ja) 2004-06-30 2009-11-18 シャープ株式会社 可変抵抗素子の駆動方法及び記憶装置
US7099141B1 (en) * 2005-06-06 2006-08-29 The United States Of America As Represented By The United States Department Of Energy Ceramic capacitor exhibiting graceful failure by self-clearing, method for fabricating self-clearing capacitor
US7942910B2 (en) * 2007-05-16 2011-05-17 Ortho Innovations, Llc Polyaxial bone screw

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4934390B1 (ja) * 1970-10-02 1974-09-13
US3796926A (en) 1971-03-29 1974-03-12 Ibm Bistable resistance device which does not require forming
JPS504986A (ja) * 1971-12-30 1975-01-20
JPH07263646A (ja) * 1994-03-25 1995-10-13 Mitsubishi Chem Corp 強誘電体ダイオード素子、並びにそれを用いたメモリー装置、フィルター素子及び疑似脳神経回路
JPH08161933A (ja) * 1994-12-06 1996-06-21 Sharp Corp 強誘電体薄膜及び強誘電体薄膜被覆基板並びに強誘電体薄膜の製造方法
JPH08306806A (ja) * 1995-04-28 1996-11-22 Asahi Chem Ind Co Ltd 半導体装置及びその製造方法
WO2000049659A1 (en) 1999-02-17 2000-08-24 International Business Machines Corporation Microelectronic device for storing information and method thereof
EP1335417A2 (en) 2002-02-07 2003-08-13 Sharp Kabushiki Kaisha Method for fabricating variable resistance device, method for fabricating non-volatile variable resistance memory device, and non-volatile variable resistance memory device
EP1628352A1 (en) 2003-05-08 2006-02-22 Matsushita Electric Industrial Co., Ltd. Electric switch and storage device using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1770778A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8009454B2 (en) * 2006-03-10 2011-08-30 Samsung Electronics Co., Ltd. Resistance random access memory device and a method of manufacturing the same
JP2007335472A (ja) * 2006-06-12 2007-12-27 Nippon Telegr & Teleph Corp <Ntt> 金属酸化物素子及びその製造方法
JP2007335502A (ja) * 2006-06-13 2007-12-27 Nippon Telegr & Teleph Corp <Ntt> 金属酸化物素子及びその製造方法
JP2008016513A (ja) * 2006-07-03 2008-01-24 Nippon Telegr & Teleph Corp <Ntt> メモリ装置
JP2008021750A (ja) * 2006-07-11 2008-01-31 Matsushita Electric Ind Co Ltd 抵抗変化素子およびその製造方法、ならびにそれを用いた抵抗変化型メモリ
JP2008182157A (ja) * 2007-01-26 2008-08-07 Nippon Telegr & Teleph Corp <Ntt> メモリ装置
JP2008306004A (ja) * 2007-06-07 2008-12-18 Fujitsu Ltd 半導体装置及びその製造方法
JPWO2009096363A1 (ja) * 2008-01-28 2011-05-26 日本電気株式会社 抵抗変化型不揮発性記憶装置とその製造方法
WO2009096363A1 (ja) * 2008-01-28 2009-08-06 Nec Corporation 抵抗変化型不揮発性記憶装置とその製造方法
WO2010029645A1 (ja) * 2008-09-12 2010-03-18 株式会社 東芝 不揮発性記憶装置及びその製造方法
JP5395799B2 (ja) * 2008-09-12 2014-01-22 株式会社東芝 不揮発性記憶装置
JP2011199278A (ja) * 2010-03-23 2011-10-06 Internatl Business Mach Corp <Ibm> 高密度メモリ素子
US8981333B2 (en) 2011-10-12 2015-03-17 Panasonic Intellectual Property Management, Co., Ltd. Nonvolatile semiconductor memory device and method of manufacturing the same
JP2016025258A (ja) * 2014-07-23 2016-02-08 国立研究開発法人産業技術総合研究所 不揮発性メモリ素子とその製造方法
WO2017086399A1 (ja) * 2015-11-19 2017-05-26 国立大学法人東京大学 不揮発性メモリ素子、不揮発性メモリおよび不揮発性メモリの制御方法
CN109545959A (zh) * 2018-10-16 2019-03-29 叶建国 一种存储器件及其制造方法
WO2022084802A1 (ja) * 2020-10-20 2022-04-28 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の駆動方法
US20220199631A1 (en) * 2020-12-22 2022-06-23 Advanced Nanoscale Devices Ferroelectric semiconducting floating gate field-effect transistor

Also Published As

Publication number Publication date
KR20080098083A (ko) 2008-11-06
KR20070106047A (ko) 2007-10-31
CN1860609A (zh) 2006-11-08
US7696502B2 (en) 2010-04-13
TW200614375A (en) 2006-05-01
EP1770778A1 (en) 2007-04-04
KR100892967B1 (ko) 2009-04-10
EP2348555B9 (en) 2013-05-08
US20110097843A1 (en) 2011-04-28
JP4559425B2 (ja) 2010-10-06
KR100781737B1 (ko) 2007-12-03
EP2348555A1 (en) 2011-07-27
EP2348555B1 (en) 2013-01-23
TWI375273B (en) 2012-10-21
KR100932477B1 (ko) 2009-12-17
EP1770778B1 (en) 2012-03-14
EP1770778A4 (en) 2010-06-02
US8088644B2 (en) 2012-01-03
US20070107774A1 (en) 2007-05-17
KR20060061381A (ko) 2006-06-07
JP5189613B2 (ja) 2013-04-24
US20100190033A1 (en) 2010-07-29
US7875872B2 (en) 2011-01-25
JP2010187004A (ja) 2010-08-26
JPWO2006009218A1 (ja) 2008-05-01

Similar Documents

Publication Publication Date Title
JP5189613B2 (ja) 2安定抵抗値取得装置及びその製造方法
WO2021112247A1 (ja) 不揮発性記憶装置、不揮発性記憶素子及びその製造方法
Fujisaki Current status of nonvolatile semiconductor memory technology
Vorotilov et al. Ferroelectric memory
US7425738B2 (en) Metal thin film and method of manufacturing the same, dielectric capacitor and method of manufacturing the same, and semiconductor device
TW201803033A (zh) 半導體強介電質記憶元件之製造方法及半導體強介電質記憶電晶體
JPH07502150A (ja) 集積回路メモリー
JP4978988B2 (ja) 金属酸化物素子
JP2008182154A (ja) メモリ装置
JP2007335472A (ja) 金属酸化物素子及びその製造方法
JP5048350B2 (ja) メモリ装置
JP2007332397A (ja) 導電薄膜及びその製造方法
JP2008277827A (ja) 不揮発性メモリ素子及びその製造方法
JP2007042784A (ja) 金属酸化物素子及びその製造方法
CN1938783A (zh) 在聚合物存储器器件的金属氮化物和金属氧化物电极中产生电子陷阱
JP2008182156A (ja) 金属酸化物素子及びその製造方法
JP4795873B2 (ja) メモリ装置
Gonzalez Hernandez Impact of oxygen on the conduction mechanism through hf0. 5zr0. 5o2 for ReRAM memory applications.
Hernandez Impact of Oxygen on the Conduction Mechanism Through Hf0. 5zr0. 5o2 For Reram Memory Applications
JP2007335502A (ja) 金属酸化物素子及びその製造方法
US20010018132A1 (en) Method for producing very thin ferroelectric layers
KR19980079121A (ko) 반도체장치의 커패시터 제조방법
JP2003282834A (ja) キャパシタ、強誘電体メモリおよび電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001157.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006524553

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2007107774

Country of ref document: US

Ref document number: 10566522

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005766330

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067007366

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067007366

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005766330

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10566522

Country of ref document: US