WO2006003849A1 - リチウム二次電池用負極材料及びその製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池 - Google Patents

リチウム二次電池用負極材料及びその製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池 Download PDF

Info

Publication number
WO2006003849A1
WO2006003849A1 PCT/JP2005/011641 JP2005011641W WO2006003849A1 WO 2006003849 A1 WO2006003849 A1 WO 2006003849A1 JP 2005011641 W JP2005011641 W JP 2005011641W WO 2006003849 A1 WO2006003849 A1 WO 2006003849A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
lithium secondary
graphite
less
Prior art date
Application number
PCT/JP2005/011641
Other languages
English (en)
French (fr)
Inventor
Tooru Fuse
Hiroyuki Uono
Keita Yamaguchi
Tomiyuki Kamada
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to US11/630,470 priority Critical patent/US8637187B2/en
Priority to EP05765121.8A priority patent/EP1775785B1/en
Publication of WO2006003849A1 publication Critical patent/WO2006003849A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Negative electrode material for lithium secondary battery method for producing the same, and negative electrode for lithium secondary battery using the same and lithium secondary battery
  • the present invention relates to a negative electrode material for a lithium secondary battery, a method for producing the same, and a negative electrode for a lithium secondary battery and a lithium secondary battery using the same.
  • a lithium secondary battery negative electrode material comprising graphite powder, characterized in that the battery performance is excellent in a well-balanced manner even when used at high electrode density.
  • the present invention relates to a negative electrode material and a method for producing the same, and a negative electrode for a lithium secondary battery using the same and a lithium secondary battery.
  • Amorphous carbon, artificial graphite, natural graphite and the like have been studied as a negative electrode material for lithium secondary batteries.
  • natural graphite unlike the above-mentioned artificial graphite, has a high discharge capacity close to the theoretical capacity due to the developed graphite crystal, and the press load at the time of electrode formation is small and wide in that it is inexpensive. It has been used.
  • Patent Document 1 discloses cycle characteristics and preservation by subjecting highly crystalline natural graphite to a purification treatment at a temperature of 2400 ° C. or higher in a nitrogen gas or argon gas atmosphere. It is described to obtain a natural graphite negative electrode material having excellent properties.
  • Patent Document 2 the packing property is high by forming highly crushed natural graphite or artificial graphite into relatively isotropic rounded particles by mechanical energy treatment. It is described that an electrode having high capacity and excellent load characteristics and cycle characteristics can be obtained. It is also described that after mechanical energy treatment, if the true density is less than 2.25 gZ cm 3 and the crystallinity is not very high, the heat treatment to further enhance the crystallinity is performed at 2000 ° C. or higher.
  • Patent Document 3 discloses that a natural graphite or the like having an average particle diameter in a specific range is re-heat treated at a temperature of 2000 ° C. or higher, and is required in Raman spectrum analysis using argon ion laser light. It is described that a negative electrode material excellent in load characteristics can be obtained by setting the Raman R value and the peak half width within a specific range.
  • Patent Document 1 Patent No. 3188032
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-223120
  • Patent Document 3 Japanese Patent Application Laid-Open No. 11-25979
  • the graphite negative electrode particles are easily oriented parallel to the current collector, the electrode expansion due to the formation of the graphite interlayer compound with lithium increases, and the amount of the active material that can be packed per unit volume of the electrode active material Decrease, resulting in a decrease in battery capacity.
  • Patent Document 1 When a natural graphite such as scaly, etc. is used in high pressure and electrode density in Patent Document 1 while the force is applied, the pores in the electrode are reduced and the crystals are reduced. Patent Document 1 does not mention the improvement at all, which has the problem that load characteristics are degraded because it is easy to align in the same direction.
  • Patent Document 2 also describes that when the true density is less than 2.25 g Z cm 3 and the crystallinity is low, the heat treatment to further enhance the crystallinity is performed at 2000 ° C. or more.
  • the true density is high at 2.25 gZ cm 3 or more after the chemical treatment, the need for heat treatment is not touched at all, and the surface functional group content of the graphite material is not touched at all.
  • Patent Document 3 the use of highly crystalline scaly natural graphite or the like is insufficient in terms of suppressing expansion during battery charging in which the orientation ratio of the electrode active material is low. That is, even if the active material has high crystal and high capacity, the conventional graphite negative electrode material reduces pores in the electrode when the electrode density becomes higher (for example, 1.6 gZ cm 3 or more), and the crystals are identical. Since it is easy to align in the direction, it is difficult to simultaneously achieve high charge / discharge efficiency, high load characteristics, expansion suppression during battery charging, and suppression of gas generation amount.
  • the present invention has been made in view of the above problems. That is, the present invention is a negative electrode material which also has a graphite powder power, and even when used at a high electrode density, it has excellent load characteristics in which the charge / discharge efficiency is high and the discharge capacity is high. , Anode materials capable of obtaining a lithium secondary battery excellent in balance with various battery performances, such as expansion suppressed at the time of battery charge and having a small amount of gas generation, and such anode materials efficiently and inexpensively It is an object of the present invention to provide a method for producing a negative electrode material for a lithium secondary battery that can be manufactured as well as a negative electrode for a lithium secondary battery and a lithium secondary battery using the same. Means to solve the problem
  • the inventors of the present invention conducted intensive studies on a negative electrode material having a graphite powder power, and as a result, used a negative electrode material having a tap density, a Raman R value, and a BET specific surface area within a predetermined range.
  • a negative electrode material having a tap density, a Raman R value, and a BET specific surface area within a predetermined range Even when used at a high electrode density, the press load force at the time of electrode formation, the charge and discharge efficiency at high discharge capacity are excellent, and the load characteristics are high, battery expansion is suppressed, and the gas generation amount is increased.
  • the inventors have found that the above-described negative electrode material can be stably, efficiently and inexpensively manufactured, and
  • the gist of the present invention is a negative electrode material for a lithium secondary battery which also has a graphite powder (A), and the tap density of the graphite powder (A) is 0.8 g / cm 3 or more, 1. 35 g. / cm 3 or less, surface functional group weight OZC value is 0 or more, 0.10 or less, BET specific surface area is 2.5 mg or more, 7.0 m 2 Zg or less, Raman R value is 0.0 2
  • the present invention relates to a negative electrode material for a lithium secondary battery, characterized in that the above is not more than 0.05.
  • the surface functional group amount OZC value and Raman R value are measured by the following method.
  • Another aspect of the present invention is a method of producing a negative electrode material for a lithium secondary battery, which has a tap density of 0.8 g Z cm 3 or more and 1. 35 g Z cm 3 or less, and a BET specific surface area of 3 Natural graphite having a true density of 2.25 g Zcm 3 or more, which is 5 m 2 Zg or more and 11.0 m 2 Zg or less Is heat treated at 1600 ° C. or more and 3200 ° C. or less to obtain a graphite powder (C) having a surface functional group amount OZC value of 0.10 or less, a negative electrode material for a lithium secondary battery It belongs to the manufacturing method.
  • Another aspect of the present invention is to provide a current collector and an active material layer formed on the current collector, and the active material layer is the negative electrode for lithium secondary battery described above.
  • a negative electrode for a lithium secondary battery comprising the material or the negative electrode material for a lithium secondary battery obtained by the above-mentioned production method.
  • another aspect of the present invention is characterized in that a positive electrode and a negative electrode capable of absorbing and desorbing lithium ions, and an electrolyte are provided, and the negative electrode is the above-described negative electrode for lithium secondary battery. Yes, they reside in lithium secondary batteries.
  • the negative electrode material for a lithium secondary battery of the present invention even when used at a high electrode density, it is possible to realize a lithium secondary battery excellent in various types of battery performance in a well-balanced manner.
  • the method for producing a negative electrode material for a lithium secondary battery according to the present invention heat-treats natural graphite as a raw material, the number of steps can be reduced, and the above-mentioned negative electrode material for lithium secondary battery can be efficiently obtained in a high yield. And it can be manufactured inexpensively, and is very useful industrially.
  • the negative electrode material for a lithium secondary battery of the present invention (hereinafter appropriately referred to as “the negative electrode material of the present invention”) is characterized by comprising a graphite powder (A) satisfying the following characteristics. Although this graphite powder (A) may be used alone, it may be mixed with other carbon material (B) as needed as described later.
  • the graphite powder (A) (hereinafter referred to as “graphite material of the present invention” as appropriate) used as the negative electrode material of the present invention has a tap density of 0.8 g Z cm 3 or more and 1. 35 g Z cm 3 or less.
  • Amount OZC value is 0 or more, 0.10 or less
  • BET specific surface area is 2.5 m 2 Zg or more
  • Raman R value is 0.02 or more, 0. 05 or less It is characterized by
  • the shape of the graphite material of the present invention is not particularly limited, and examples thereof include spheres and ovals.
  • the degree of circularity of the graphite material of the present invention is not particularly limited, but is usually in the range of 0.90 or more, preferably 0.92 or more, and usually 0.96 or less, preferably 0.95 or less. If the degree of circularity falls below this range, the gaps between the particles become smaller, which may lower the load characteristics. On the other hand, in order to make the degree of circularity a value exceeding this range, it is necessary to perform spheric treatment strongly or for a long time, which is not preferable because the production cost becomes high.
  • the diameter of a circle having a projected area of Z particles can be measured using a flow type particle image analyzer (for example, FPIA manufactured by SYSMETAS INDUSTRIAL CORPORATION).
  • FPIA flow type particle image analyzer
  • 0.2 g of a graphite material was mixed with a 0.2 volume% aqueous solution (about 50 ml) of polyoxyethylene (20) sonorebitan monoacrylate as a surfactant, and 28 kHz ultrasound was irradiated for 1 minute at an output of 60 W.
  • the detection range is specified to 0.6 to 40 ⁇ m, and it is possible to use the value measured for particles in the range of 10 to 40 ⁇ m.
  • the tap density of the graphite material of the present invention is usually 0. 8gZcm 3 or more, preferably 0. 9 g / cm 3 or more, more preferably 0. 95gZcm 3 or more, and usually 1. 35gZcm 3 or less, preferably 1. 2GZcm
  • the range is 3 or less. If the tap density is less than this range, it is difficult to obtain a high capacity battery in which the packing density is increased and difficult when used as a negative electrode material. On the other hand, when this range is exceeded, the gaps between particles in the electrode become too small, it becomes difficult to secure the conductivity between the particles, and it is difficult to obtain desirable battery characteristics.
  • a tap density using a sieve with an opening of 300 ⁇ m, drop the measurement target (here, a graphite material) in a 20 cm 3 tapping cell to fully fill the cell, and then use a powder density measuring device A tapping length of 10 mm may be tapped 1000 times using (for example, a tap denser manufactured by Seishin Enterprise Co., Ltd.), and a value obtained by measuring the tapping density at that time can be used.
  • a tap denser manufactured by Seishin Enterprise Co., Ltd. for example, a tap denser manufactured by Seishin Enterprise Co., Ltd.
  • the surface functional group weight O ZC value of the graphite material of the present invention measured using X-ray photoelectron spectroscopy (XPS) is usually in the range of 0 or more, and usually 0.10 or less, preferably 0.004 or less .
  • XPS X-ray photoelectron spectroscopy
  • the OZC value represents the ratio of oxygen atom concentration to carbon atom concentration on the surface of a graphite material or the like, and functional groups such as carboxyl group, phenolic hydroxyl group and carbonyl group are present on the surface. It is an index that represents quantity.
  • a carbon material having a large surface functional group ozc value indicates that a surface oxygen-containing functional group is bonded to an end face or the like of a crystal face of particle surface carbon.
  • the surface functional group content OZC value of the graphite material in X-ray photoelectron spectroscopy analysis, the peak area of the Cls and Ols spectrum is determined, and based on this, the atomic concentration ratio of C and O is determined. Calculate oZc (o atom concentration Zc atom concentration) and use this value.
  • the specific measurement procedure is not particularly limited, and an example is as follows.
  • the object to be measured (here, a graphite material) is placed on a sample table so that the surface is flat.
  • the spectra of Cls (280 to 300 eV) and Ols (525 to 545 eV) are measured by multiplex measurement with ⁇ alpha rays as the X-ray source.
  • the peak top of the obtained Cls is corrected to 284.3 eV, the peak areas of the Cls and Ols spectra are determined, and the device sensitivity coefficients are multiplied to calculate the surface atomic concentrations of C and O respectively.
  • the atomic concentration ratio OZC (O atomic concentration ZC atomic concentration) of the obtained O and C is calculated, and this is defined as the surface functional group weight OZC value of the graphite material.
  • the specific surface area of the graphite material of the present invention measured using the BET method is usually 2.5 m 2 Zg or more, preferably 3.0 m 2 Zg or more, and usually 7.0 m 2 Zg or less, preferably 5 .5m g or less.
  • the specific surface area falls below this range, lithium readily deteriorates in lithium acceptability at the time of charging when used as a negative electrode material, which is not preferable from the viewpoint of safety, because lithium is easily deposited on the electrode surface.
  • when exceeding this range it was used as a negative electrode material
  • the reactivity with the electrolyte increases, and it is difficult to obtain a preferable battery which easily generates a large amount of gas.
  • the BET specific surface area using a surface area meter (for example, a fully automatic surface area measuring device manufactured by Okura Riken), preliminary drying is carried out at 350 ° C. for 15 minutes under a stream of nitrogen against the object to be measured (here, a graphite material). After carrying out, use the value measured by the nitrogen adsorption by the gas flow method using the BET one-point method using a nitrogen-helium mixed gas that has been precisely adjusted so that the value of the relative pressure of nitrogen to the atmospheric pressure is 0.3. it can.
  • a surface area meter for example, a fully automatic surface area measuring device manufactured by Okura Riken
  • the Raman R value of the graphite material of the present invention measured using the Raman method is usually in the range of not less than 0.02, preferably not less than 0.03, and usually not more than 0.05, preferably not more than 0.04. is there.
  • Raman R-value force S Below this range, the crystallinity of the particle surface becomes too high, and in the case of high density, the crystal tends to be oriented parallel to the electrode plate, which may cause a decrease in load characteristics. There is. On the other hand, if this range is exceeded, crystals on the particle surface may be disturbed, the reactivity with the electrolytic solution may be increased, and the efficiency may be decreased or gas generation may be increased.
  • the Raman half width of the graphite material of the present invention is not particularly limited, it is usually in the range of usually 18.0 or more, preferably 19.0 or more, and usually 22.5 or less, preferably 21.5 or less. is there. If the Raman half width is less than this range, the crystallinity of the particle surface becomes too high, and in the case of high density, crystals tend to be oriented parallel to the electrode plate, which may cause deterioration in load characteristics. Ru. On the other hand, if this range is exceeded, crystals on the particle surface may be disturbed, the reactivity with the electrolytic solution may be increased, and the efficiency may be reduced or gas generation may be increased.
  • a sample is charged by naturally dropping a measurement target (here, a graphite material) into a measurement cell using a Raman spectrometer (for example, Raman spectrometer manufactured by Nippon Bunko Co., Ltd.).
  • the cell surface is rotated in a plane perpendicular to the laser beam while irradiating the sample surface with argon ion laser beam.
  • the Raman measurement conditions here are, for example, as follows.
  • the volume-based average particle size of the graphite material of the present invention is not particularly limited, but is usually in the range of preferably 14 ⁇ m or more, and usually 50 ⁇ m or less, preferably 40 ⁇ m or less. Below this range, when mixed with a binder which easily aggregates when used as a negative electrode material, it may become lumpy and the coated electrode may become nonuniform. On the other hand, if this range is exceeded, coating unevenness is likely to occur when the electrode is manufactured by coating as a negative electrode material.
  • volume-based average particle diameter, 2 volumes 0/0 aqueous solution of polyoxyethylene (20) sorbitan monolaurate as a surfactant (about lml) were mixed to graphite powders, a dispersing medium of ion-exchanged water
  • a value obtained by measuring the volume-based average particle diameter (median diameter) with a laser diffraction particle size distribution analyzer (for example, LA-700 manufactured by Horiba, Ltd.) can be used as As the ratio of 90% particle diameter to 10% particle diameter (d / ⁇ ), similarly measure 90% particle diameter and 10% particle diameter based on volume,
  • the ratio of (d / ⁇ ) can be used.
  • the spacing d of the (002) plane of the graphite material of the present invention measured by X-ray diffraction is particularly limited although not preferred, it is usually in the range of 0.3356 nm or less, preferably 0.3355 nm or less. If this range is exceeded, that is, if the crystallinity is poor, the discharge capacity per unit weight of the active material may decrease when the electrode is manufactured. On the other hand, the lower limit of the surface separation d
  • 002 is usually 0.33 nm or more as a theoretical limit.
  • 00 is not particularly limited, it is usually in the range of 90 nm or more, preferably 100 nm or more.
  • the graphite material of the present invention as an active material, the electrode density 1. 63 ⁇ 0. 05g / cm 3, i.e., 1. 58GZcm 3 or 1. active material orientation ratio of the formed electrode to be within the scope of 68GZcm 3 Is usually 0.02 or more, preferably 0.30 or more, more preferably 0.004 or more, and usually 0.09 or less, preferably 0.80 or less. Below this range, the electrode expansion during battery charging when the battery is manufactured becomes large, and there is a possibility that the battery capacity per unit volume of the electrode can not be increased. On the other hand, if it exceeds this range, the crystallinity of the active material is lowered, and the press load at the time of electrode formation tends to be large, and it is difficult to increase the packing density of the electrode after pressing.
  • the active material orientation ratio of the electrode is an index indicating the degree of orientation of the graphite crystal hexagonal network in the thickness direction of the electrode. As the orientation ratio is larger, the direction of the graphite crystal hexagonal mesh plane of the particles is more uniform, which represents the state.
  • the specific procedure for measuring the active material orientation ratio of the electrode is as follows.
  • Graphite material CMC (carboxymethylcellulose) aqueous solution as a thickener, SBR (styrene 'butadiene rubber) aqueous solution as a binder resin, with respect to the total weight of the mixture of graphite material, CMC and SBR after drying, Mix and agitate so that CMC and SBR become 1% by weight, respectively, to make a slurry. Then, using a doctor blade, 18 m thick copper foil Apply slurry on top. Coating thickness, after drying the electrode weight (exclusive of the copper foil) to select the gap so that lOmgZc m 2. After drying this electrode at 80 ° C, press the electrode density (excluding copper foil) to a force S1. 63 ⁇ 0. 05 g / cm 3 .
  • the active material orientation ratio of the electrode For the electrode after pressing, measure the active material orientation ratio of the electrode by X-ray diffraction.
  • the specific method is not particularly limited, as a standard method, the charts of the (110) plane and the (004) plane of the graphite material are measured by X-ray diffraction, and the asymmetric pieson is used as a profile function for the measured chart. Peak separation is performed by fitting using VII, and integrated intensities of the (110) plane and (004) plane peaks are calculated. From the obtained integrated intensity, a ratio represented by (110) area intensity intensity Z (004) area intensity is calculated and defined as an active material orientation ratio of the electrode.
  • the X-ray diffraction measurement conditions here are as follows.
  • 2 ⁇ indicates the diffraction angle.
  • the active material orientation ratio by X-ray diffraction can be determined for an electrode formed to have an electrode density of 1.63 ⁇ 0.5 g / cm 3 .
  • the discharge capacity of the lithium secondary battery is, for example, 355 mAh or more. Furthermore, it will be in the range of 360 mAh Zg or more. If the discharge capacity falls below this range, it becomes difficult to improve the battery capacity. Also, the higher the discharge capacity, the higher the better! /, But the upper limit is usually about 370 mAh Zg. There are no particular limitations on the specific method of measuring the discharge capacity, but a standard measurement method is as follows.
  • an electrode using a graphite material is produced.
  • the electrode is manufactured by using a copper foil as a current collector and forming an active material layer on the current collector.
  • a mixture of a graphite material and styrene butadiene rubber (SBR) as binder resin is used for the active material layer.
  • SBR styrene butadiene rubber
  • the amount of noinda resin is 1% by weight with respect to the weight of the electrode.
  • the electrode density is in the range of 1.45 g Z cm 3 or more and 1. 95 g Z cm 3 or less.
  • the evaluation of the discharge capacity is carried out by preparing a two-electrode coin cell using metal lithium as a counter electrode on the manufactured electrode and performing a charge-discharge test.
  • the electrolyte of the two-pole coin cell is an optional force.
  • the separator used in the bipolar coin cell may be any force, for example, a polyethylene sheet having a thickness of 15 ⁇ m to 35 ⁇ m.
  • a charge / discharge test is performed using the two-pole coin cell manufactured in this manner to determine the discharge capacity. Specifically, charge to 5mV with respect to the lithium counter electrode at a current density of 0.2mAZcm 2 and charge to a current value of 0.20mA at a constant voltage of 5mV, and dope lithium into the negative electrode. After that, repeat the charge and discharge cycle of discharging the lithium counter electrode to 1.5 V at a current density of 0.4 mAZcm 2 for 3 cycles, and let the discharge value for the third cycle be the discharge capacity.
  • the method for producing the above-mentioned graphite powder (A) (the graphite material of the present invention) is not particularly limited, but preferred examples include the following methods.
  • the method for producing a negative electrode material for a lithium secondary battery of the present invention (hereinafter appropriately referred to as “the production method of the present invention”) has a tap density of 0.8 g Z cm 3 or more and 1. 35 g Z cm 3 or less in and, BET specific surface area of 3. 5 m 2 Zg above, 11. and a 0 m 2 Zg hereinafter, true density of 2. 25 g / c
  • the surface functional group amount OZC value of black bell powder after heat treatment is set to 0.10 or less.
  • natural graphite as a raw material is preferably a spheroidized graphite powder.
  • natural graphite is used as a starting material.
  • natural graphite is classified into flake-like graphite (Flake Graphite), flake-like graphite (Crystalline (Vein) Graphite), and soil graphite (Amorphous Graphite) according to its properties (" Industrial Technology Center Co., Ltd., See Graphite issued in 1959, and “HAND BOOK OF CARBON, GRAPHITE, DIAMOND AND FULLERENES”, published by Noy es Publications).
  • the degree of graphitization is as high as 100% for scaly graphite followed by 99.9% for scaly graphite and as low as 28% for soil graphite.
  • the quality of natural graphite is mainly determined by the production site and veins.
  • Flaky graphite is produced in Madagascar, China, Brazil, Ukraine, China and other countries, and flaky graphite is produced mainly in Sri Lanka. Soil graphite is mainly produced on the Korean peninsula, China, Mexico and other countries.
  • scale-like graphite and scale-like graphite are preferable as the raw material of the present invention because they have advantages such as a small amount of impurities having a high graphite density.
  • the above-mentioned natural graphite is subjected to an acid treatment such as hydrochloric acid or hydrofluoric acid and a purification treatment to remove ash by heat treatment at Z or 2000.degree.
  • an acid treatment such as hydrochloric acid or hydrofluoric acid
  • a purification treatment to remove ash by heat treatment at Z or 2000.degree.
  • the ash content of natural graphite subjected to the above-mentioned ash removal is not particularly limited, but is usually not less than 0.00% by weight, and usually not more than 0.20% by weight, preferably not more than 0.15% by weight. It is a range. Ash force S If this range is exceeded, there is a risk that the storage characteristics may deteriorate due to self-discharge.
  • the method defined in JIS M 8812 can be used.
  • the true density of natural graphite before heat treatment is usually in the range of 2.25 g Z cm 3 or more.
  • the true density hardly changes due to the heat treatment described later. Below this range, the heat treatment The crystallinity is not improved, and the discharge capacity per unit weight of the active material may be reduced when the electrode is manufactured, which is not preferable.
  • the upper limit of the true density is usually 2.27 gZ cm 3 or less as a theoretical limit.
  • the tap density of the natural graphite before the heat treatment is usually 0. 8gZcm 3 or more, preferably 0. 9 g / cm 3 or more, more preferably 0. 95gZcm 3 or more, and usually 1. 35gZcm 3 or less, preferably 1. 2GZcm
  • the range is 3 or less.
  • the tap density may change due to heat treatment to be described later, but using natural graphite having a tap density in this range, the tap density of natural black lead after heat treatment may be within the range defined above. It is possible. If the tap density of natural black lead before heat treatment falls below this range, it is difficult to obtain a high capacity battery in which the packing density is increased and difficult when the heat treated graphite material is used as the active material. On the other hand, when this range is exceeded, the number of voids between particles in the electrode when the heat-treated graphite material is used as the active material is too large, the conductivity between particles is difficult to be secured, and favorable battery characteristics are difficult to obtain. .
  • the method for measuring the tap density is as described above.
  • the BET specific surface area of natural graphite before heat treatment is usually 3.5 m 2 Zg or more, preferably 4.5 m 2 Zg or more, and usually 1.10 m 2 Zg or less, preferably 9.0 m 2 Zg or less, more preferably 7 0 m 2 Zg or less Since the BET specific surface area is reduced by heat treatment described later, by using natural graphite having a BET specific surface area within this range, the BET specific surface area of the natural graphite after heat treatment should be within the range defined above. Is possible.
  • the measurement method of the BET specific surface area is as described above.
  • the Raman R value of natural graphite before heat treatment is not particularly limited, but is usually 0.10 or more, preferably Or 0.20 or more, and usually 0.35 or less, preferably 0.30 or less.
  • the R value is below this range, the crystallinity of the particle surface of the graphite material becomes too high after heat treatment, and when the density is increased, the crystals tend to be oriented parallel to the electrode plate, and the load characteristics are degraded. There is a risk of On the other hand, if this range is exceeded, the crystal restoration of the particle surface of the graphite material after heat treatment is insufficient, the reactivity with the electrolytic solution is increased, and the efficiency may be decreased and the gas generation may be increased.
  • the Raman half value width of natural graphite before heat treatment is not particularly limited, but is usually in the range of 21.0 or more, preferably 21.5 or more, and usually 26.0 or less, preferably 24.0 or less. It is. If the half width is less than this range, the crystallinity of the particle surface becomes too high, and when the density is increased, the crystals may be easily oriented in the parallel direction to the electrode plate, which may lead to a decrease in load characteristics. On the other hand, if this range is exceeded, the crystal surface of the particle is not sufficiently repaired in the subsequent heat treatment step, and the as-disturbed crystal remains, increasing the reactivity with the electrolytic solution, reducing the efficiency and generating gas. May cause an increase in
  • the spacing d of the (002) plane measured by X-ray diffraction of natural graphite before heat treatment is particularly limited.
  • the range is usually 0.33 nm or less, preferably 0.33 nm or less. If this range is exceeded, that is, if the crystallinity is poor, the crystal repair of the particles is not sufficiently performed in the subsequent heat treatment step, and the discharge capacity per unit weight of the active material is small when the electrode is manufactured. There is a risk of On the other hand, the lower limit of the above-mentioned face separation d is a theoretical limit.
  • the discharge capacity per weight of the active material may be reduced when the electrode is manufactured.
  • the measuring method of surface spacing is based on the said description.
  • the degree of circularity of natural graphite before heat treatment is not particularly limited, but is usually 0.90 or more, preferably Is in the range of 0.92 or more and usually 0.96 or less, preferably 0.95 or less. If the degree of circularity is less than this range, when the heat-treated graphite material is used as the negative electrode material, the gaps between the particles become small, and the load characteristics may be deteriorated. On the other hand, in order to exceed this range, it is necessary to perform processing such as spheroidizing treatment strongly or for a long time, and it is necessary to remove a large amount of fine powder by-produced at the time of spheroid treatment. Not desirable.
  • the measuring method of circularity is based on the said description.
  • the method for obtaining natural graphite before heat treatment having a tap density in the above range is not particularly limited, but natural graphite spheroidized by spheroidizing treatment is preferable.
  • a device that repeatedly applies mechanical action such as compression, friction, shear force, etc., including particle interaction mainly based on impact force.
  • it has a rotor with a large number of blades installed inside the casing, and when the rotor rotates at high speed, mechanical such as impact compression, friction, and shear force are applied to the carbon material introduced inside.
  • An apparatus that exerts action and performs surface treatment is preferred.
  • a hybridisation system manufactured by Nara Machinery Co., Ltd. can be mentioned.
  • Heat treatment is performed on natural graphite having a tap density in the above range under the following conditions.
  • the crystals on the surface of the natural graphite particles may be disordered, and the disorder is particularly pronounced when the above-mentioned spheroidizing treatment is carried out, but the heat treatment produces a disordered graphite particle surface.
  • the crystals can be repaired to reduce the Raman R value and BET specific surface area.
  • the temperature conditions at the time of heat treatment are not particularly limited, but are usually 1600 ° C. or more, preferably 2000 ° C. or more, more preferably 2500 ° C. or more, and usually 3200 ° C. or less, preferably 3100 ° C. or less It is a range. If the temperature condition is below this range, the crystal restoration on the surface of the graphite particle disturbed by the spheroidizing treatment is insufficient, and the Raman R value and the BET specific surface area force S are not small, which is not preferable. On the other hand, if the above range is exceeded, the amount of sublimation of graphite tends to be large, which is also not preferable.
  • the holding time to keep the temperature condition in the above range is not particularly limited. However, it is usually longer than 10 seconds and less than 72 hours.
  • the heat treatment is performed in an inert gas atmosphere such as nitrogen gas, or in a non-acidic atmosphere with a gas generated from the raw material graphite.
  • the apparatus used for the heat treatment is not particularly limited.
  • a shuttle furnace, a tunnel furnace, an electric furnace, a lead hammer furnace, a rotary kiln, a direct current conduction furnace, an atchison furnace, a resistance heating furnace, an induction heating furnace, etc. can be used. .
  • the surface functional group content of the graphite can be controlled, for example, by controlling the atmosphere oxygen concentration at the time of heat treatment.
  • the surface functional group weight OZC value is not more than 0.01 by controlling the atmospheric oxygen concentration, the treatment temperature and the treatment time.
  • the surface functional group content of natural graphite before heat treatment is not particularly limited, but is usually in the range of 0.70 or less, preferably 0.04 or less.
  • Surface Functional Group Amount When the OZC value exceeds this range, the surface functional group amount after heat treatment, the OZC value does not easily fall within the previously defined range.
  • the amount of surface functional groups OZC of the graphite powder after the heat treatment is not particularly limited, but is usually in the range of 0.10 or less, preferably 0.004 or less.
  • Surface Functional Group Amount When the OZC value exceeds this range, the functional group amount on the particle surface increases, the reactivity with the electrolytic solution increases, and there is a possibility that the gas generation amount may be increased.
  • the classification process is for removing coarse and fine powders which make the particle size after graphitization process the target particle size.
  • the apparatus used for classification treatment is not particularly limited.
  • the apparatus used for classification treatment is not particularly limited.
  • dry sieving in the case of dry sieving
  • inertia type classifier inertia type classifier, centrifugal type classifier (classifier, cyclone etc.) etc.
  • wet sieving mechanical wet classifier, hydraulic classifier, sedimentation classifier, centrifugal wet classification A machine etc. can be used, respectively.
  • the classification process can be performed before the heat treatment, or may be performed at other timings, for example, after the heat treatment. Furthermore, it is possible to omit the classification process itself. However, graphite From the viewpoint of the productivity of the powder negative electrode material, it is preferable to carry out classification treatment immediately after the spheronization treatment and before heat treatment.
  • the above-mentioned graphite powder (A) (or the heat-treated graphite powder obtained by the above-mentioned production method of the present invention.
  • This is referred to as graphite powder (C)
  • graphite powder (C) can be used as it is as a negative electrode material.
  • two or more kinds of graphite powder (A) (or graphite powder (C)) which are good even when any one kind of graphite powder (A) (or graphite powder (C)) is used alone, and any combination and It may be used in combination.
  • the negative electrode material that is, one or more of graphite powder (A) (or graphite powder (C)) is mixed with other one or more carbon materials (B), and this is used as a negative electrode material. You may use it as,.
  • the total amount of (A) and (B) (or (C) and (B) is usually 5% by weight or more, preferably 20% or more, and usually 95% by weight or less, preferably 80% by weight or less.
  • the mixing ratio of the carbon material (B) falls below the above range, the effect of the addition of (B) hardly occurs, which is not preferable.
  • the properties of the graphite powder (A) (or the graphite powder (C)) are impaired, which is also preferable.
  • the carbon material (B) a material selected from natural graphite, artificial graphite, amorphous-coated graphite, resin-coated graphite and amorphous carbon is used. These materials may be used alone or in any combination of two or more in any combination and composition.
  • natural graphite for example, highly purified scaly graphite or spherical graphite can be used.
  • the volume-based average particle size of natural graphite is usually 8 m or more, preferably 12 m or more, and usually 60 ⁇ m or less, preferably 40 ⁇ m or less.
  • the BET specific surface area of natural graphite is usually in the range of 4 m 2 Zg or more, preferably 4.5 m 2 Zg or more, usually 7 m 2 Zg or less, preferably 5.5 m 2 Zg or less.
  • artificial graphite for example, particles obtained by compounding Cotus powder or natural graphite with a binder, particles obtained by firing single black ship precursor particles in powder state, or the like can be used.
  • amorphous coated graphite for example, particles obtained by coating natural graphite or artificial graphite with an amorphous precursor and firing the particles, or particles obtained by coating natural graphite or an artificial graphite with amorphous by CVD are used. It is possible to
  • the resin-coated graphite for example, particles obtained by coating natural graphite or artificial graphite with a polymer material and drying it can be used.
  • amorphous carbon for example, particles obtained by firing a noble mesophase or particles obtained by subjecting a carbon precursor to infusiblization treatment and firing can be used.
  • carbon materials (b) and ⁇ ⁇ ) selected from the group consisting of
  • binder constituting the carbon material (b) petroleum-based and coal-based condensed polycyclic aromatic compounds having a soft pitch power up to a hard pitch are preferable, as long as they are carbonaceous materials capable of graphitizing. There is no particular limitation.
  • natural graphite particles constituting the carbon material (b) for example, highly purified scaly black lead or spherical graphite can be used.
  • the volume-based average particle size of natural graphite is usually 10 ⁇ m or more, preferably 12 ⁇ m or more, and usually 50 ⁇ m or less, preferably 30 ⁇ m or less.
  • the BET specific surface area of natural graphite is usually 4 m 2 Zg or more, preferably 4.5 m 2 / g or more, and usually 10 m 2 / g or less, preferably 6 m 2 / g or less.
  • the ratio of the carbon material (b) to the total amount of the graphite powder (A) (or graphite powder (C)) and the carbon material (b) is The content is usually 10% by weight or more, preferably 30% by weight or more, more preferably 50% by weight or more, most preferably 60% by weight or more, and usually 90% by weight or less, more preferably 80% by weight or less.
  • the total of them should be within the above range.
  • carbon material (B) When mixing carbon material (B) with graphite powder (A) (or graphite powder (C)), carbon material
  • (B) There is no particular limitation on the selection of (B), but, for example, by mixing, it is possible to improve cycle characteristics and charge acceptance by improving conductivity, to reduce irreversible capacity, and to improve pressability. It is possible to select a carbon material (B) that can be improved depending on the case.
  • An apparatus used for mixing the graphite powder (A) (or the graphite powder (C)) and the carbon material (B) is not particularly limited, but in the case of, for example, a rotary mixer: a cylindrical mixer, In the case of twin cylindrical mixer, double cone mixer, regular cubic mixer, vertical mixer, fixed mixer: spiral mixer, ribbon mixer, Muller mixer, HelicalFlight type A mixer, a Pug mill mixer, a fluidizing mixer, etc. can be used.
  • the above-described negative electrode material of the present invention (graphite powder (A) or graphite powder (C), or a mixture of these graphite powder and carbon material (B)) is a positive electrode capable of absorbing and releasing lithium ions. And a negative electrode, and a lithium secondary battery provided with an electrolytic solution, preferably used as a material of the negative electrode.
  • the negative electrode material of the present invention even when used at a high electrode density, the load capacity at the time of forming the electrode is small, the discharge capacity is high, and the charge / discharge efficiency is high. Thus, it is possible to obtain a lithium secondary battery excellent in balance with various battery performances, such as a small amount of gas generation.
  • heat treatment is performed using natural graphite having physical properties in a predetermined range as a raw material, so the number of steps can be reduced. It can be manufactured and is very useful industrially.
  • selection of the necessary members There is no particular limitation on the selection of the necessary members.
  • the details of the negative electrode for a lithium secondary battery and the lithium secondary battery using the negative electrode material of the present invention will be exemplified below, but materials that can be used, methods of manufacturing, etc. are limited to the following specific examples. .
  • a negative electrode for lithium secondary battery By forming a layer (negative electrode layer) containing the negative electrode material of the present invention as an active material on a current collector, a negative electrode for lithium secondary battery can be produced.
  • the negative electrode may be produced according to a conventional method. For example, a binder, a thickener, a conductive material, a solvent, and the like are added to a negative electrode active material (the negative electrode material of the present invention) to form a slurry, which is coated on a current collector, dried and pressed to obtain high density. Ways to As the negative electrode active material, the present invention These negative electrode materials may be used alone, or may be used together with other active materials.
  • the density of [0099] active material layer is usually 1. 40gZcm 3 or more, preferably 1. 50gZcm 3 or more, more favorable Mashiku is When 1. 60gZcm 3 or more ranges, preferred because the capacity of the battery increases.
  • the active material layer is a layer formed of an active material, a binder, a conductive agent and the like on the current collector, and the density thereof is the density at the time of assembly into a battery.
  • any material can be used as long as it is a material stable to the solvent and the electrolyte used in electrode production.
  • poly (vinyl fluoride), polytetrafluoroethylene, polyethylene, polypropylene, styrene 'butadiene rubber (SBR), isopropyl rubber, butadiene rubber, ethylene acrylic acid copolymer, ethylene methacrylic acid copolymer and the like can be mentioned. These may be used alone or in combination of two or more in any combination and ratio.
  • any known one may be optionally selected and used.
  • CMC carboxinolemethinoresenoresulose
  • methinoresenorelos methinoresenorelos
  • hydroxymethinoresenorelos ethylcellulose
  • Polybutyl alcohol oxidized starch
  • phosphorylated starch phosphorylated starch and casein etc.
  • the conductive material may, for example, be a metal material such as copper or nickel; or a carbon material such as graphite or carbon black. These may be used alone or in combination of two or more in any combination and ratio.
  • the material of the current collector for the negative electrode may, for example, be copper, nickel or stainless steel.
  • copper foil is preferred in view of easy processing into a thin film and cost. These may be used alone or in combination of two or more in any combination and ratio.
  • a lithium secondary battery can be formed by combining the above-described negative electrode for a lithium secondary battery with a positive electrode capable of absorbing and desorbing lithium, and an electrolyte.
  • the method for producing the positive electrode is not particularly limited, and the method for producing the positive electrode is the same as the method for producing the negative electrode described above. It can manufacture by forming the layer (positive electrode layer) containing a positive electrode active material on a collector.
  • Examples of the material of the positive electrode active material include lithium transition metal complex oxide materials such as lithium complex oxide, lithium nickel oxide, lithium manganese oxide and the like; diacid manganese Materials capable of absorbing and desorbing lithium such as transition metal oxide materials such as carbonaceous materials such as fluorinated graphite can be used.
  • lithium transition metal complex oxide materials such as lithium complex oxide, lithium nickel oxide, lithium manganese oxide and the like
  • diacid manganese Materials capable of absorbing and desorbing lithium such as transition metal oxide materials such as carbonaceous materials such as fluorinated graphite can be used.
  • MnO and non-stoichiometric compounds thereof MnO, TiS, FeS, Nb S, Mo S, CoS,
  • V 2 O, P 2 O, CrO, V 2 O, TeO, GeO or the like can be used.
  • valve metals metals belonging to IIIb, IVa, Va group (3B, 4A, 5A) and their alloys can be exemplified.
  • Al, Ti, Zr, Hf, Nb, Ta and alloys containing these metals can be exemplified, and Al, Ti, Ta and alloys containing these metals can be preferably used.
  • A1 and its alloys are lightweight and high in energy density and desirable.
  • any electrolyte such as an electrolytic solution or a solid electrolyte can be used.
  • electrolyte refers to all of the ion conductors, and the electrolyte, the electrolyte and the solid electrolyte are both included in the electrolyte.
  • the electrolytic solution for example, one in which a solute is dissolved in a non-aqueous solvent can be used.
  • alkali metal salts As the solute, alkali metal salts, quaternary ammonium salts and the like can be used. Specifically, LiCIO, LiPF, LiBF, LiCFSO, LiN (CF3SO4), LiN (CF2CF2SO4)
  • non-aqueous solvent for example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and vinyl carbonate, cyclic ester compounds such as y-butyrolactone, etc .; Chain ethers; cyclic ethers such as crown ether, 2-methyltetrahydrofuran, 1,2 dimethyltetrahydrofuran, 1,3 dioxsolane, tetrahydrofuran, etc .; linear carbonates such as jetyl carbonate, ethyl methyl carbonate, dimethyl carbonate, etc. it can.
  • the solute and the solvent may be used alone or in combination of two or more.
  • non-aqueous solvents containing cyclic carbonate and linear carbonate are preferable.
  • the non-aqueous electrolytic solution may contain an organic polymer compound in the electrolytic solution to form a gel-like or rubber-like or solid sheet-like solid electrolyte.
  • organic polymer compound include polyether polymers such as polyethylene oxide and polypropylene oxide; cross-linked polymers of polyether polymers; and polymers such as polyvinyl alcohol and polyvinyl butyral.
  • Alcohol-based polymer compounds Insolubilized products of bule alcohol-based polymer compounds; polyepichlorohydrin; polyphosphazene; polysiloxanes; polybole-based polymer compounds such as polypyrrole pyrrolidone, polybi-idene carbonate, polyacrylonitrile and the like; Polymer copolymers such as poly ( ⁇ -methoxyorganoethylene methacrylate), poly ( ⁇ -methoxy oligoethylene methacrylate) methyl methacrylate, and the like can be mentioned.
  • an outer can, a separator, a gasket, a sealing plate, a cell case, and the like can be used as the lithium secondary battery, as necessary.
  • the material and shape of the separator are not particularly limited.
  • the separator separates the positive electrode and the negative electrode so that they do not physically contact each other, and preferably has high ion permeability and low electrical resistance.
  • the separator is preferably selected from materials which are stable to the electrolyte and have excellent liquid retention.
  • the above-mentioned electrolytic solution can be impregnated using a porous sheet or non-woven fabric made of polyolefin such as polyethylene and polypropylene as a raw material.
  • the negative electrode is placed on the outer can, the electrolytic solution and the separator are provided on the outer can, and the positive electrode is placed to face the negative electrode.
  • the battery can be made tight together with the mouth plate.
  • the shape of the battery is not particularly limited.
  • a cylinder type having a spiral sheet electrode and separator a cylinder type having an inside-out structure combining a pellet electrode and a separator, a coin type having a pellet electrode and a separator laminated, etc. It is possible to Example
  • Spheronization treatment at 6500 rpm for 5 minutes, and then 45% by weight of fine powder is removed using a pneumatic classifier (OMC-100 made by Seishin Co., Ltd.), volume-based average particle size ( median diameter) 17 ⁇ m, tap density Spheroidized graphite powder with a specific surface area of 7.5 g / cm 3 and a BET specific surface area of 7.5 m 2 / g was obtained.
  • the classified spheroidized graphite powder is packed in a graphite crucible, and graphitized at 3000 ° C. for 5 hours in an inert atmosphere using a direct current furnace to obtain graphite powder (negative electrode material of Example 1) Got)
  • the physical properties of the negative electrode material of Example 1 obtained were measured, and the median diameter was 17 m, d / ⁇ .
  • an electrode having an electrode density of 1. 63 ⁇ 0. 05 gZcm 3 was produced according to the following method, and the active material orientation ratio of the electrode was determined. Met.
  • the press load at the time of electrode formation was 60 kg.
  • a lithium secondary battery was produced according to the following method, and the discharge capacity, charge / discharge efficiency, and load characteristics were measured. Similarly, a lithium secondary battery is fabricated, disassembled in the charged state, and the thickness of the electrode is measured to obtain the charge expansion coefficient. The measurements were taken.
  • Weight of negative electrode active material (weight of electrode) (weight of copper foil) (weight of binder)
  • press load line pressure
  • the press load load per 1 cm width of electrode at the time of electrode formation was determined.
  • EC ethylene carbonate
  • DEC Z jetyl carbonate
  • a coin battery (lithium secondary battery) was produced using a polyethylene separator as a capacitor and a lithium metal counter electrode as a counter electrode.
  • the charge termination condition of the 4th cycle was carried out with a constant capacity charge of 300 mAh Zg.
  • the charged coin battery was disassembled so as not to short-circuit in an argon glove box, the electrode was taken out, and the thickness of the electrode (excluding copper foil) at the time of charging was measured. Based on the thickness (excluding copper foil) of the press electrode before battery preparation, the charge expansion coefficient was determined based on the following equation.
  • Example 1 a lithium secondary battery was produced according to the following method, and the amount of gas generation was measured.
  • This slurry was applied onto a copper foil using a doctor blade in the same manner as in the above-described electrode production method.
  • the coating thickness was selected so that the electrode basis weight (excluding copper foil) after drying was 15 mg / cm 2 .
  • Weight of negative electrode active material (weight of electrode) (weight of copper foil) (weight of binder) ⁇ Method of Producing Lithium Secondary Battery for Measurement of Gas Generation>
  • a lithium secondary battery was manufactured according to the same procedure as that of the above-described lithium secondary battery, except that an assembled cell having a constant cell volume with a valve was used instead of the coin battery.
  • OMC-100 manufactured by Seishin Enterprise Co., Ltd.
  • the classified spheroidized graphite powder was heat treated in the same manner as in Example 1, and the physical properties of the negative electrode material of Example 2 obtained were measured.
  • the active material orientation ratio of the electrode was determined. Met.
  • the press load at the time of electrode formation was 40 kg.
  • a lithium secondary battery is manufactured in the same manner as in Example 1 using the negative electrode material of Example 2, and measurement of discharge capacity, charge / discharge efficiency, load characteristics, charge expansion coefficient, and gas generation amount is performed.
  • a classifier OMC-100, manufactured by Seishin Enterprise Co., Ltd.
  • 20% by weight fine powder was removed to obtain a spheroidized graphite powder having a median diameter of 22 m, a tap density of 0.9 g Z cm 3 , and a BET specific surface area of 5.8 m 2 Z g .
  • the values of median diameter, tap density, and BET specific surface area were measured using the method described above.
  • Example 3 The classified spheroidized graphite powder was heat-treated in the same manner as in Example 1, and the physical properties of the negative electrode material of Example 3 obtained were measured.
  • a median diameter of 22 / zmd / ⁇ 2. 7, a tap density 0
  • the active material orientation ratio of the electrode was determined using the negative electrode material of Example 3, and found to be 0.03.
  • the press load at the time of electrode formation was 36 kg.
  • a lithium secondary battery is manufactured in the same manner as in Example 1 using the negative electrode material of Example 3, and measurement of discharge capacity, charge and discharge efficiency, load characteristics, charge expansion coefficient, and gas generation amount is performed.
  • Example 4 The same treatment as in Example 1 is performed except that the heat treatment temperature of the spheroidized graphite powder is set to 2000 ° C. It was The physical properties of the negative electrode material of Example 4 obtained were measured, and the median diameter was 17 m, d
  • the active material orientation ratio of the electrode was calculated to be 0.5.
  • the press load at the time of electrode formation was 62 kg.
  • Example 4 Furthermore, a lithium secondary battery was produced in the same manner as in Example 1 using the negative electrode material of Example 4, and the discharge capacity, charge and discharge efficiency, load characteristics, charge expansion coefficient, and gas generation amount were measured. The evaluation results of the physical properties of the negative electrode material of Example 4 are shown in Table 1.
  • the physical properties of the negative electrode material of Example 5 obtained by mixing were measured.
  • the median diameter 19 m, d / ⁇ 2.5, tap density 1.0 g Z cm 3 , surface functional group weight OZC value 0. 015 , BET
  • Example 5 when the negative electrode material of Example 5 was used to determine the active material orientation ratio of the electrode, it was 0.004.
  • the press load at the time of electrode formation was 48 kg.
  • Example 5 Furthermore, a lithium secondary battery was produced in the same manner as in Example 1 using the negative electrode material of Example 5, and the discharge capacity, charge and discharge efficiency, load characteristics, charge expansion coefficient, and gas generation amount were measured. The evaluation results of the physical properties of the negative electrode material of Example 5 are shown in Table 1.
  • Example 6 Heat treatment and anode material 40 weight 0/0 of Example 2, the median diameter 13 m, tap density 1. Og / cm 3, spheroidized natural graphite powder as the BE T specific surface area 7. 5 m 2 Zg is a petroleum soft pitch
  • a negative electrode material of Example 6 was obtained by mixing 60% by weight of a carbon material (b) obtained by coating the whole or a part of the carbon material.
  • the physical properties of the negative electrode material of Example 6 obtained were measured, and the median diameter was 18 m, d / ⁇ .
  • the product was 2.6 m 2 Zg, Raman R value 0.09, and Raman half width was 21.5 cm_1 .
  • the median diameter, tap density, BET specific surface area, surface functional group amount OZC value, Raman R value, Raman half value width, and circularity were values measured by the method described above.
  • the active material orientation ratio of the electrode was determined using the negative electrode material of Example 6, and found to be 0.5.
  • the press load at the time of electrode formation was 70 kg.
  • Example 6 Furthermore, using the negative electrode material of Example 6, a lithium secondary battery was produced in the same manner as in Example 1.
  • the electrode preparation was performed using the negative electrode material of Comparative Example 1, it becomes an uneven film at the time of coating, and peeling from a copper foil after pressing makes it impossible to obtain battery characteristics. To the end of the day.
  • Natural graphite (ash content: 0.5% by weight) having a median diameter of 20 m, a tap density of 0.75 g Z cm 3 , and a BET specific surface area of 3 m 2 Z g which had been highly purified and treated as in Example 1 without being spheroidized. Heat-treated.
  • the active material orientation ratio of the electrode was determined using the negative electrode material of Comparative Example 2, it was 0.2.
  • the press load at the time of electrode formation was 30 kg.
  • a lithium secondary battery is produced using the negative electrode material of Comparative Example 2 in the same procedure as in Example 1, and measurement of discharge capacity, charge / discharge efficiency, load characteristics, charge expansion coefficient, and gas generation amount is performed. became.
  • Example 2 The same treatment as in Example 1 was carried out except that the heat treatment temperature of the spheroidized graphite powder was changed to 1200.degree.
  • the physical properties of the negative electrode material of Comparative Example 3 obtained were measured, and the median diameter was 17 m, d
  • the active material orientation ratio of the electrode was determined using the negative electrode material of Comparative Example 3 to be 0.5.
  • the press load at the time of electrode formation was 58 kg.
  • a lithium secondary battery is manufactured using the negative electrode material of Comparative Example 3 in the same procedure as in Example 1, and measurement of discharge capacity, charge / discharge efficiency, load characteristics, charge expansion coefficient, and gas generation amount is performed.
  • Example 2 The same process as in Example 1 was performed except that the heat treatment of the spheroidized graphite powder was not performed.
  • the physical properties of the negative electrode material of Comparative Example 4 obtained were measured, and the median diameter was 17 m, d / ⁇ .
  • the active material orientation ratio of the electrode was determined using the negative electrode material of Comparative Example 4 to be 0.5.
  • the press load at the time of electrode formation was 56 kg.
  • Spherical artificial graphite (mesocarbon single microbeads) was heat treated in the same manner as in Example 1 instead of graphite powder obtained by spheroidizing scaly natural graphite.
  • the active material orientation ratio of the electrode was determined using the negative electrode material of Comparative Example 5 to be 0.12.
  • the press load at the time of electrode formation was 400 kg.
  • Example 1 a lithium secondary battery was produced in the same manner as in Example 1 using the negative electrode material of Comparative Example 5, and the discharge capacity, charge / discharge efficiency, load characteristics, charge expansion coefficient, and gas generation amount were measured.
  • the evaluation results of the physical properties of the negative electrode material of Comparative Example 5 are shown in Table 1.
  • the heat-treated spheroidized graphite powder obtained in Example 1 was subjected to oxidation treatment with ozone gas to obtain a negative electrode material of Comparative Example 6.
  • the physical properties of the negative electrode material of Comparative Example 6 obtained were measured.
  • the median diameter, tap density, BET specific surface area, surface functional group amount OZC value, Raman R value, Raman half value width, and circularity were measured using the method described above.
  • the surface functional group amount OZC value, BET specific surface area, and Raman R value are included in the defined range of the present invention, but the tap density is lower than the defined range of the present invention, As a result, the charge expansion rate at which the load characteristics are low is also large.
  • the tap density, the surface functional group amount OZC value, and the BET specific surface area are included in the specified range of the present invention, and the Raman R value is within the specified range of the present invention because the heat treatment temperature is low. As a result, the amount of gas generation is large.
  • the surface functional group amount OZC value, BET specific surface area, and Raman R value of the present invention were obtained because the tap density was not subjected to the force heat treatment contained in the specified range of the present invention. It exceeds the specified range, and as a result, the amount of gas generation to lower the charge and discharge efficiency is large, and the load characteristics are also low.
  • the tap density, the BET specific surface area, and the Raman R value are included in the specified range of the present invention, but the surface functional group weight OZC value exceeds the specified range of the present invention, As a result, the amount of gas generation is large.
  • the negative electrode materials of Examples 1 to 4 all of the tap density, Raman R value, surface functional group weight OZC value, and BET specific surface area satisfy the specified range of the present invention.
  • the press load at the time of electrode formation decreases, and the produced battery exhibits high discharge capacity, and the charge expansion coefficient and gas generation amount of the electrode also have high charge / discharge efficiency and load characteristics. It is kept low.
  • the press load at the time of electrode formation is small.
  • the manufactured battery exhibits a high discharge capacity, and the charge expansion coefficient of the electrode and the amount of gas generation, which also increase the charge and discharge efficiency and the load characteristics, are suppressed to a low level.
  • the negative electrode material for a lithium secondary battery of the present invention even when used at a high electrode density, a load characteristic in which the press load at the time of electrode formation decreases and the discharge capacity increases and the charge and discharge efficiency increases. It is possible to realize a lithium secondary battery that is excellent in various battery performances with a good balance, such as low expansion of the battery at the time of battery charging, and a small amount of gas generation. And so on.
  • the above-described negative electrode material for a lithium secondary battery can be stably and efficiently produced at low cost. In the industrial production field, its value is great.

Abstract

 安価に製造できるとともに、高い電極密度で使用した場合でも、各種の電池性能にバランス良く優れたリチウム二次電池を得ることが可能な負極材料を提供する。  タップ密度が0.80g/cm3以上、1.35g/cm3以下であり、表面官能基量O/C値が0以上、0.01以下であり、BET比表面積が2.5m2/g以上、7.0m2/g以下であり、ラマンR値が0.02以上、0.05以下である黒鉛粉末を用いる。

Description

明 細 書
リチウム二次電池用負極材料及びその製造方法、並びにそれを用いたリ チウムニ次電池用負極及びリチウム二次電池
技術分野
[0001] 本発明は、リチウム二次電池用負極材料及びその製造方法、並びにそれを用いた リチウム二次電池用負極及びリチウム二次電池に関する。具体的には、黒鉛粉末か らなるリチウム二次電池用負極材料であって、高 ヽ電極密度で使用した場合でも各 種の電池性能にバランスよく優れていることを特徴とするリチウム二次電池用負極材 料及びそれを製造する方法、並びにそれを用いたリチウム二次電池用負極及びリチ ゥム二次電池に関する。
背景技術
[0002] 近年、電子機器の小型化に伴 、、高容量の二次電池が必要になってきて!/、る。特 に、ニッケル 'カドミウム、ニッケル '水素電池に比べ、よりエネルギー密度の高い非水 溶媒系リチウム二次電池が注目されてきている。従来、電池の高容量は広く検討され ていたが、電池に要求される性能も高度化してきており、更なる高容量化が必要とさ れている。
[0003] リチウム二次電池の負極材料として、これまで非晶質炭素、人造黒鉛、天然黒鉛な どが検討されている。
更なる高容量化の為に、電極形成時のプレス荷重が小さぐ高い電極密度でも使 用できるものを、簡便且つ安価に製造する方法を確立することが求められている。
[0004] 一方、天然黒鉛は前記人造黒鉛とは異なり、発達した黒鉛結晶により理論容量に 近い高い放電容量が得られ、電極形成時のプレス荷重が小さぐ且つ、安価であると いう点で広く使用されてきた。しかしながら、そうした優れた天然黒鉛力もなる負極材 料で、更なる高容量化の為に、高い電極密度でも使用できるものを、簡便且つ安定 して製造する方法を確立することが求められて 、る。
[0005] こうした中で、特許文献 1には、高結晶な天然黒鉛を窒素ガスやアルゴンガス雰囲 気下で 2400°C以上の温度で高純度化処理することにより、サイクル特性及び保存 特性に優れた天然黒鉛負極材料を得ることが記載されている。
[0006] また、特許文献 2には、高結晶な天然黒鉛や人造黒鉛を力学的エネルギー処理に 依って粉砕面が比較的等方的で丸みを帯びた粒子とすることにより、充填性が高く 高容量で、負荷特性、サイクル特性に優れた電極が得られることが記載されている。 また、力学的エネルギー処理を行なった後、真密度が 2. 25gZcm3未満で結晶性 がそれほど高くない場合には、更に結晶性を高める熱処理を 2000°C以上で行なう 旨も記載されている。
[0007] また、特許文献 3には、平均粒径が特定の範囲にある天然黒鉛等を 2000°C以上 の温度で再熱処理し、アルゴンイオンレーザー光を用いたラマンスペクトル分析にお いて求められるラマン R値とピーク半値幅を特定の範囲内にすることで、負荷特性に 優れた負極材料を得ることが記載されて ヽる。
[0008] 特許文献 1 :特許第 3188032号公報
特許文献 2:特開 2000 - 223120号公報
特許文献 3:特開平 11― 25979号公報
発明の開示
発明が解決しょうとする課題
[0009] ところで、電池の更なる高容量ィ匕に伴い、より高い電極密度(例えば、 1. 6g/cm3 以上)でも使える負極材料が望まれている力 この様な高い電極密度の条件では、 以下の 1)〜4)のような課題がある。
[0010] 1)電解液との反応に伴う不可逆容量が増加し、正極活物質中のリチウムを消費し、 結果として電池容量が低下する。
2)電極内の気孔が減少し、結果として負荷特性が低下する。
3)黒鉛負極粒子が集電体に対して平行に配向し易くなり、リチウムとの黒鉛層間化 合物の生成による電極膨張が大きくなり、電極活物質の単位体積当たりに充填でき る活物質量が減少し、結果として電池容量が低下する。
4)活物質の表面結晶が破壊し、電解液との反応に伴うガス発生量が多くなり、電池 の膨れや電極間へのガス滞留による有効反応面積の減少により電池容量が低下す る。 [0011] したがって、リチウム二次電池の更なる高容量ィ匕においては、活物質の高容量化だ けでなぐより高い電極密度で使える負極材料が望まれている。即ち、高い電極密度 で使用した場合でも、充放電効率の維持、負荷特性の維持、電池充電時の膨張、ガ ス発生量の増加の抑制等、各種の電池性能にバランスよく優れたリチウム二次電池 を得ることが可能な負極材料が強く求められている。
[0012] し力しながら、特許文献 1で、高 、電極密度で球形化処理などを経て!/、な 、鱗片状 などの天然黒鉛を用いた場合、電極内の気孔が減少し、結晶が同一方向に並び易 いため負荷特性が低下するという課題がある力 特許文献 1は、その改善について 何ら触れていない。
[0013] また、特許文献 2にお ヽては、高結晶な天然黒鉛や人造黒鉛を球形化処理する際 に、特に粒子表面の黒鉛結晶にダメージを与えられた場合にラマン R値が大きくなり 、 BET比表面積が増大し、電解液との反応性が増し、充放電効率の低下やガス発生 量の増加が起きると!、う課題がある。
[0014] 一方、特許文献 2には、真密度が 2. 25gZcm3未満で結晶性が低い場合には、更 に結晶性を高める熱処理を 2000°C以上で行なう旨も記載されている力 球形化処 理後に真密度が 2. 25gZcm3以上で高い場合には、熱処理の必要性は何ら触れら れておらず、また、黒鉛材料の表面官能基量についても何ら触れられていない。
[0015] また、特許文献 3で、高結晶な鱗片状天然黒鉛等を用いた場合、電極活物質の配 向比が低ぐ電池充電時の膨張を抑制する点で不十分であった。即ち、活物質が高 結晶で高容量であっても、従来の黒鉛負極材料は、より高い電極密度 (例えば、 1. 6 gZcm3以上)になると、電極内の気孔が減少し、結晶が同一方向に並び易いため、 高い充放電効率、高い負荷特性、電池充電時の膨張抑制、ガス発生量の抑制を同 時に達成することが困難であった。
[0016] 本発明は上記の課題に鑑みて創案されたものである。即ち、本発明は、黒鉛粉末 力もなる負極材料であって、高い電極密度で使用した場合でも、電極形成時のプレ ス荷重が小さぐ放電容量が高ぐ充放電効率が高ぐ負荷特性に優れ、電池充電時 の膨張が抑制され、ガス発生量が少ない等、各種の電池性能にバランスよく優れたリ チウムニ次電池を得ることができる負極材料と、そうした負極材料を効率的且つ安価 に製造することができるリチウム二次電池用負極材料の製造方法、並びにそれを用 V、たリチウム二次電池用負極及びリチウム二次電池を提供することを目的とする。 課題を解決するための手段
[0017] 本発明の発明者らは、黒鉛粉末力 なる負極材料について鋭意検討した結果、所 定範囲内のタップ密度、ラマン R値、 BET比表面積を有する黒鉛粉末カゝらなる負極 材料を用いることで、高い電極密度で使用した場合でも、電極形成時のプレス荷重 力 、さぐ放電容量が高ぐ充放電効率が高ぐ負荷特性に優れ、電池充電時の膨 張が抑制され、ガス発生量が少ない等、各種の電池性能にバランスよく優れたリチウ ムニ次電池を得られること、また、所定範囲内のタップ密度、 BET比表面積、真密度 を有する天然黒鉛を所定範囲内の温度で熱処理することにより、上述の負極材料を 安定して効率的且つ安価に製造できることを見出し、本発明を完成させた。
[0018] すなわち、本発明の趣旨は、黒鉛粉末 (A)力もなるリチウム二次電池用負極材料 であって、該黒鉛粉末 (A)のタップ密度が 0. 8g/cm3以上、 1. 35g/cm3以下で あり、表面官能基量 OZC値が 0以上、 0. 01以下であり、 BET比表面積が 2. 5m g以上、 7. 0m2Zg以下であり、ラマン R値が 0. 02以上、 0. 05以下であることを特徴 とする、リチウム二次電池用負極材料に存する。
なお、表面官能基量 OZC値及びラマン R値は、次の手法により測定される。
•表面官能基量 OZC値:
X線光電子分光法分析に於いて、 Clsと Olsのスペクトルのピーク面積を求め、こ れに基づいて Cと Oの原子濃度比 OZC (0原子濃度 ZC原子濃度)を算出し、この 値を表面官能基量 ozc値とする。
'ラマン R値:
ラマンスペクトル分析に於いて、 1580cm_1付近のピーク Pの強度 Iと、 1360cm
A A
1付近のピーク P Bの強度 I Bを測定し、その強度比 R(R=I B Λ A )を算出し、この値を ラマン R値とする。
[0019] また、本発明の別の趣旨は、リチウム二次電池用負極材料を製造する方法であつ て、タップ密度が 0. 8gZcm3以上、 1. 35gZcm3以下であり、 BET比表面積が 3. 5 m2Zg以上、 11. 0m2Zg以下であり、真密度が 2. 25gZcm3以上である天然黒鉛 を、 1600°C以上、 3200°C以下で熱処理することにより、表面官能基量 OZC値が 0 . 01以下の黒鉛粉末 (C)を得ることを特徴とする、リチウム二次電池用負極材料の製 造方法に存する。
[0020] また、本発明の別の趣旨は、集電体と、該集電体上に形成された活物質層とを備 えると共に、該活物質層が、上述のリチウム二次電池用負極材料、又は、上述の製 造方法により得られたリチウム二次電池用負極材料を含有することを特徴とする、リチ ゥム二次電池用負極に存する。
[0021] また、本発明の別の趣旨は、リチウムイオンを吸蔵 ·放出可能な正極及び負極、並 びに電解質を備えると共に、該負極が、上述のリチウム二次電池用負極であることを 特徴とする、リチウム二次電池に存する。
発明の効果
[0022] 本発明のリチウム二次電池用負極材料によれば、高い電極密度で使用した場合で も、各種の電池性能にバランス良く優れたリチウム二次電池を実現することができる。 また、本発明のリチウム二次電池用負極材料の製造方法は、天然黒鉛を原料とし て熱処理するため、工程数が少なくて済み、上述のリチウム二次電池用負極材料を 高い収率で効率的且つ安価に製造でき、工業上非常に有用である。
発明を実施するための最良の形態
[0023] 以下、本発明を詳細に説明するが、本発明は以下の説明に制限されるものではな ぐ本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる
[0024] [1.負極材料]
本発明のリチウム二次電池用負極材料 (以下適宜「本発明の負極材料」という。)は 、以下の特性を満たす黒鉛粉末 (A)からなることを特徴とする。この黒鉛粉末 (A)は 単独で用いても良いが、後述するように、必要に応じて他の炭素材料 (B)と混合して 用いても良い。
[0025] [1 - 1.黒鉛粉末〕
本発明の負極材料として用いられる黒鉛粉末 (A) (以下適宜「本発明の黒鉛材料」 という。)は、タップ密度が 0. 8gZcm3以上、 1. 35gZcm3以下であり、表面官能基 量 OZC値が 0以上、 0. 01以下であり、 BET比表面積が 2. 5m2Zg以上、 7. Om2 Zg以下であり、ラマン R値が 0. 02以上、 0. 05以下であることを特徴とする。
[0026] (形状)
本発明の黒鉛材料の形状は特に制限されないが、例としては球状、楕円状等が挙 げられる。
[0027] (円形度)
本発明の黒鉛材料の円形度は特に制限されないが、通常 0. 90以上、好ましくは 0 . 92以上、また、通常 0. 96以下、好ましくは 0. 95以下の範囲である。円形度がこの 範囲を下回ると、粒子間の空隙が小さくなり、負荷特性が低下する虞がある。一方、 円形度がこの範囲を上回る値とするためには、球形ィ匕処理を強く若しくは長時間行 なう必要性があり、製造コストが高くなり好ましくない。
[0028] 円形度湘当円の周囲長 Z粒子投影面積を持つ円の直径)としては、フロー式粒 子像分析装置 (例えば、シスメッタスインダストリアル社製 FPIA)を用い、測定対象 (こ こでは黒鉛材料) 0. 2gを界面活性剤であるポリオキシエチレン(20)ソノレビタンモノラ ゥレートの 0. 2体積%水溶液 (約 50ml)に混合し、 28kHzの超音波を出力 60Wで 1 分間照射した後、検出範囲を 0. 6〜40 μ mに指定し、 10-40 μ mの範囲の粒子に っ 、て測定した値を用いることができる。
[0029] (タップ密度)
本発明の黒鉛材料のタップ密度は、通常 0. 8gZcm3以上、好ましくは 0. 9g/cm 3以上、更に好ましくは 0. 95gZcm3以上、また、通常 1. 35gZcm3以下、好ましくは 1. 2gZcm3以下の範囲である。タップ密度がこの範囲を下回ると、負極材料として 用いた場合に充填密度が上がり難ぐ高容量の電池が得難い。一方、この範囲を上 回ると、電極中の粒子間の空隙が少なくなり過ぎ、粒子間の導電性が確保され難くな り、好ましい電池特性が得られにくい。
[0030] タップ密度としては、目開き 300 μ mの篩を使用し、 20cm3のタッピングセルに測定 対象 (ここでは黒鉛材料)を落下させてセルを満杯に充填した後、粉体密度測定器 ( 例えば、セイシン企業社製タップデンサ一)を用いてストローク長 10mmのタッピング を 1000回行なって、その時のタッピング密度を測定した値を用いることができる。 [0031] (表面官能基量 ozc値)
X線光電子分光法 (XPS)を用いて測定した本発明の黒鉛材料の表面官能基量 O ZC値は、通常 0以上、また、通常 0. 01以下、好ましくは 0. 004以下の範囲である。 表面官能基量 ozc値がこの範囲を上回ると、粒子表面の官能基量が増え、電解液 との反応性が増し、ガス発生量の増加を招く虞がある。
[0032] 表面官能基量 OZC値とは、黒鉛材料などの表面にある炭素原子濃度に対する酸 素原子濃度の比を表わし、カルボキシル基、フエノール性水酸基、カルボニル基など の官能基が表面に存在する量を表わす指標である。表面官能基量 ozc値が大き い炭素材料は、粒子面炭素の結晶子の端面などに表面含酸素官能基が結合してい ることを表わす。
[0033] なお、黒鉛材料の表面官能基量 OZC値としては、 X線光電子分光法分析に於 、 て、 Clsと Olsのスペクトルのピーク面積を求め、これに基づいて Cと Oの原子濃度比 oZc(o原子濃度 Zc原子濃度)を算出し、この値を用いる。
[0034] 具体的な測定手順は特に制限されないが、例としては以下の通りである。
即ち、 X線光電子分光法測定として X線光電子分光器 (例えば、アルバック 'フアイ 社製 ESCA)を用い、測定対象 (ここでは黒鉛材料)を表面が平坦になるように試料 台に載せ、アルミニウムの Κ α線を X線源とし、マルチプレックス測定により、 Cls (28 0〜300eV)と Ols (525〜545eV)のスペクトルを測定する。得られた Clsのピーク トップを 284. 3eVとして帯電補正し、 Clsと Olsのスペクトルのピーク面積を求め、 更に装置感度係数を掛けて、 Cと Oの表面原子濃度をそれぞれ算出する。得られた その Oと Cの原子濃度比 OZC (O原子濃度 ZC原子濃度)を算出し、これを黒鉛材 料の表面官能基量 OZC値と定義する。
[0035] (BET比表面積)
BET法を用いて測定した本発明の黒鉛材料の比表面積は、通常は 2. 5m2Zg以 上、好ましくは 3. 0m2Zg以上、また、通常は 7. 0m2Zg以下、好ましくは 5. 5m g 以下の範囲である。比表面積の値がこの範囲を下回ると、負極材料として用いた場 合の充電時にリチウムの受け入れ性が悪くなり易ぐリチウムが電極表面で析出し易 くなるため、安全上好ましくない。一方、この範囲を上回ると、負極材料として用いた 時に電解液との反応性が増加し、ガス発生が多くなり易ぐ好ましい電池が得られに くい。
[0036] BET比表面積としては、表面積計 (例えば、大倉理研製全自動表面積測定装置) を用い、測定対象 (ここでは黒鉛材料)に対して窒素流通下 350°Cで 15分間、予備 乾燥を行なった後、大気圧に対する窒素の相対圧の値が 0. 3となるように正確に調 整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着 BET1点法によって 測定した値を用いることができる。
[0037] (ラマン R値、ラマン半値幅)
ラマン法を用いて測定した本発明の黒鉛材料のラマン R値は、通常 0. 02以上、好 ましくは 0. 03以上、また、通常 0. 05以下、好ましくは 0. 04以下の範囲である。ラマ ン R値力 Sこの範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、高密度化した場 合に電極板と平行方向に結晶が配向し易くなり、負荷特性の低下を招く虞がある。一 方、この範囲を上回ると、粒子表面の結晶が乱れ、電解液との反応性が増し、効率の 低下やガス発生の増加を招く虞がある。
[0038] また、本発明の黒鉛材料のラマン半値幅は特に制限されないが、通常 18. 0以上、 好ましくは 19. 0以上、また、通常 22. 5以下、好ましくは 21. 5以下の範囲である。ラ マン半値幅がこの範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、高密度化し た場合に電極板と平行方向に結晶が配向し易くなり、負荷特性の低下を招く虞があ る。一方、この範囲を上回ると、粒子表面の結晶が乱れ、電解液との反応性が増し、 効率の低下やガス発生の増加を招く虞がある。
[0039] ラマン測定は、ラマン分光器 (例えば、日本分光社製ラマン分光器)を用い、測定 対象 (ここでは黒鉛材料)を測定セル内へ自然落下させることで試料充填し、測定は セル内のサンプル表面にアルゴンイオンレーザー光を照射しながら、セルをレーザ 一光と垂直な面内で回転させながら行なう。
[0040] 得られたラマンスペクトルについて、 1580cm_1付近のピーク Pの強度 I と、 1360
A A
cm—1付近のピーク Pの強度 Iとを測定し、その強度比 R (R=I 、こ
B B B /\ )を算出して
A
れを黒鉛材料のラマン R値と定義する。
また、得られたラマンスペクトルの 1580cm_1付近のピーク Pの半値幅を測定し、こ れを黒鉛材料のラマン半値幅と定義する。
[0041] なお、ここでのラマン測定条件は、例えば次の通りである。
'アルゴンイオンレーザー波長:514. 5nm
'試料上のレーザーパワー: 15〜25mW
'分解能: 10〜20cm_1
•測定範囲: 1100cm―1〜 1730cm_1
•R値、半値幅解析:バックグラウンド処理、
スムージング処理(単純平均、コンボリューシヨン 5ポイント)
[0042] (体積基準平均粒径、 90%粒径と 10%粒径の比)
本発明の黒鉛材料の体積基準平均粒径は、特に制限されないが、通常 以 上、好ましくは 14 μ m以上、また、通常 50 μ m以下、好ましくは 40 μ m以下の範囲 である。この範囲を下回ると、負極材料として用いた場合に凝集し易ぐバインダと混 練する時にダマ状になり、塗工した電極が不均一になる虞がある。一方、この範囲を 上回ると、負極材料として塗布により電極を製造する時に塗工むらが生じ易い。
[0043] また、本発明の黒鉛材料の体積基準における 90%粒径と 10%粒径の比(d /ά
90 10
)は、特に制限されないが、通常 1. 5以上、好ましくは 1. 7以上、また、通常 4. 0以下 、好ましくは 2. 5以下の範囲である。この範囲を下回ると、黒鉛粉末の粒度分布が狭 過ぎるため、黒鉛粉末粒子同士の電気的な接触が取り難くなり、サイクル特性が悪ィ匕 する虞がある。一方、この範囲を上回ると、電極中の気孔量が少なくなり、好ましい電 池特性が得られにくい。
[0044] 体積基準平均粒径としては、界面活性剤であるポリオキシエチレン(20)ソルビタン モノラウレートの 2体積0 /0水溶液 (約 lml)を黒鉛粉末に混合し、イオン交換水を分散 媒としてレーザー回折式粒度分布計 (例えば、堀場製作所社製 LA— 700)にて体積 基準の平均粒径 (メジアン径)を測定した値を用いることができる。 90%粒径と 10% 粒径の比(d /ά )としては、同様に体積基準 90%の粒径と 10%粒径を測定し、そ
90 10
の比(d /ά )を用いることができる。
90 10
[0045] (面間隔)
X線回折により測定した本発明の黒鉛材料の (002)面の面間隔 d は、特に制限 されないが、通常 0. 3356nm以下、好ましくは 0. 3355nm以下の範囲である。この 範囲を上回る場合、即ち、結晶性が劣る場合には、電極を製造したときに活物質の 単位重量当たりの放電容量が小さくなる虞がある。一方、前記の面間隔 d の下限
002 は、理論的限界として通常 0. 3354nm以上である。
[0046] また、 X線回折により測定した本発明の黒鉛材料の c軸方向の結晶子の大きさ Lc
00 は、特に制限されないが、通常 90nm以上、好ましくは lOOnm以上の範囲である。
4
この範囲を下回ると、これを用いて電極を製造した場合に、活物質重量当たりの放電 容量が小さくなる虞がある。
[0047] 上記の X線回折により測定した面間隔 d 及び結晶子の大きさ Lc としては、炭素
002 004
材料学会の学振法に従って測定される値を用いることができる。なお、学振法におい ては lOOnm (1000 A)以上の値は区別されず、全て「 > 1000 (A)」と記述される。
[0048] (電極を形成したときの活物質配向比)
本発明の黒鉛材料を活物質として、電極密度が 1. 63±0. 05g/cm3、即ち、 1. 58gZcm3以上 1. 68gZcm3の範囲内となるように形成した電極の活物質配向比は 、通常 0. 02以上、好ましく ίま 0. 03以上、更に好ましく ίま 0. 04以上、また、通常 0. 0 9以下、好ましくは 0. 08以下の範囲である。この範囲を下回ると、電池を作製したと きの電池充電時の電極膨張が大きくなり、電極の単位体積当たりの電池容量を大き くできない虞がある。一方、この範囲を上回ると、活物質の結晶性が低くなり、電極形 成時のプレス荷重が大きくなり易ぐプレス後の電極の充填密度を上げにくい。
[0049] ここで、電極の活物質配向比とは、電極の厚み方向に対する、黒鉛結晶六角網面 の配向の程度を表す指標である。配向比が大きいほど、粒子の黒鉛結晶六角網面 の方向が揃って 、な 、状態を表わす。
電極の活物質配向比を測定する具体的な手順は、次のようになる。
[0050] (1)電極の形成:
黒鉛材料と、増粘剤として CMC (カルボキシメチルセルロース)水溶液と、バインダ 榭脂として SBR (スチレン 'ブタジエンゴム)水溶液とを、黒鉛材料と CMCと SBRとの 混合物の乾燥後の総重量に対して、 CMC及び SBRがそれぞれ 1重量%になるよう に混合撹拌し、スラリーとする。次いで、ドクターブレードを用いて 18 m厚さの銅箔 上にスラリーを塗布する。塗布厚さは、乾燥後の電極目付 (銅箔を除く)が lOmgZc m2になるようにギャップを選択する。この電極を 80°Cで乾燥した後、電極密度 (銅箔 を除く)力 S1. 63 ±0. 05g/cm3になるようにプレスを行なう。
[0051] (2)活物質配向比の測定:
プレス後の電極について、 X線回折により電極の活物質配向比を測定する。具体 的手法は特に制限されないが、標準的な方法としては、 X線回折により黒鉛材料の( 110)面と(004)面とのチャートを測定し、測定したチャートについて、プロファイル関 数として非対称ピアソン VIIを用いてフィッティングすることによりピーク分離を行な ヽ 、(110)面と (004)面のピークの積分強度を算出する。得られた積分強度から、 (11 0)面積分強度 Z (004)面積分強度で表わされる比率を算出し、電極の活物質配向 比と定義する。
[0052] ここでの X線回折測定条件は次の通りである。なお、以下の記載にお!、て、 2 Θは 回折角を示す。
'ターゲット: Cu (K a線)グラフアイトモノクロメーター
'スリット : 発散スリット = 1度、受光スリット =0. lmm、散乱スリット = 1度'測定範 囲、及び、ステップ角度 Z計測時間:
(110)面 : 76. 5度≤2 0≤78. 5度 0. 01度 Z3秒
(004)面 : 53. 5度≤2 0≤56. 0度 0. 01度 Z3秒
'試料調製 : 硝子板に 0. 1mm厚さの両面テープで電極を固定
上記の方法により、電極密度 1. 63±0. 05g/cm3となるように形成した電極につ V、て、 X線回折による活物質配向比を求めることができる。
[0053] (放電容量)
<リチウム二次電池としたときの放電容量 >
本発明の黒鉛材料は、これを活物質として集電体上に活物質層を形成し、リチウム 二次電池用負極として使用した場合に、そのリチウム二次電池の放電容量力 例え ば 355mAhZg以上、さらには 360mAhZg以上の範囲となる。放電容量がこの範 囲を下回ると、電池容量の向上が望み難くなる。また、放電容量は高ければ高い方 が好まし!/、が、その上限は通常 370mAhZg程度である。 [0054] 具体的な放電容量の測定方法について特に制限はないが、標準的な測定方法を 示すと、次の通りである。
[0055] まず、黒鉛材料を用いた電極を作製する。電極は、集電体として銅箔を用い、この 集電体に活物質層を形成することにより作製する。活物質層は、黒鉛材料と、バイン ダ榭脂としてスチレンブタジエンゴム(SBR)とを混合したものを用いる。ノインダ榭脂 の量は、電極の重量に対して 1重量%とする。また、電極密度は 1. 45gZcm3以上、 1. 95gZcm3以下の範囲とする。
[0056] 放電容量の評価は、この作製した電極にっ 、て、対極に金属リチウムを用いた 2極 式コインセルを作製し、その充放電試験をすることにより行なう。
[0057] 2極式コインセルの電解液は任意である力 例えば、エチレンカーボネート (EC)と ジェチルカーボネート (DEC)とを、体積比で DEC/EC= 1/1〜7/3となるように 混合した混合液、又は、エチレンカーボネートとェチルメチルカーボネート(EMC)と を、体積比で EMCZEC = 1Z1〜7Z3となるように混合した混合液を用いることが できる。
また、 2極式コインセルに用いるセパレータも任意である力 例えば、厚さ 15 μ m〜 35 μ mのポリエチレンシートを用いることができる。
[0058] こうして作製した 2極式コインセルを用いて充放電試験を行な 、、放電容量を求め る。具体的には、 0. 2mAZcm2の電流密度で、リチウム対極に対して 5mVまで充電 し、更に、 5mVの一定電圧で電流値が 0. 02mAになるまで充電し、負極中にリチウ ムをドープした後、 0. 4mAZcm2の電流密度でリチウム対極に対して 1. 5Vまで放 電を行なう、という充放電サイクルを 3サイクル繰り返し、 3サイクル目の放電値を放電 容量とする。
[0059] [1 - 2.黒鉛粉末の製造方法〕
上述の黒鉛粉末 (A) (本発明の黒鉛材料)を製造する方法は特に制限されないが 、好ましい例としては、以下に挙げる方法が挙げられる。
[0060] 即ち、本発明のリチウム二次電池用負極材料の製造方法 (以下適宜「本発明の製 造方法」と略称する。)は、タップ密度が 0. 8gZcm3以上、 1. 35gZcm3以下であり 、 BET比表面積が 3. 5m2Zg以上、 11. 0m2Zg以下であり、真密度が 2. 25g/c m3以上である天然黒鉛を、 1600°C以上、 3200°C以下で熱処理することにより、熱 処理後の黒鈴粉末の表面官能基量 OZC値を 0. 01以下とするものである。ここで、 原料とする天然黒鉛は、球形化処理された黒鉛粉末であることが好ま ヽ。
[0061] (出発物質)
本発明の製造方法において、出発物質としては天然黒鉛を用いる。
具体的に、天然黒鉛は、その性状に依って、鱗片状黒鉛 (Flake Graphite)、鱗状 黒鉛(Crystalline (Vein) Graphite)、土壌黒鉛 (Amorphous Graphite)に分類される(「 粉粒体プロセス技術集成」(株)産業技術センター、昭和 49年発行の黒鉛の項、及 び「HAND BOOK OF CARBON,GRAPHITE,DIAMOND AND FULLERENES」、 Noy es Publications発行参照)。黒鉛化度は、鱗状黒鉛が 100%で最も高ぐこれに次い で鱗片状黒鉛が 99. 9%で、土壌黒鉛は 28%と低い。天然黒鉛の品質は、主に産 地や鉱脈により定まる。鱗片状黒鉛は、マダガスカル、中国、ブラジル、ウクライナ、力 ナダ等に産し、鱗状黒鉛は主にスリランカに産する。土壌黒鉛は、朝鮮半島、中国、 メキシコ等を主な産地としている。これら天然黒鉛の中で、鱗片状黒鉛や鱗状黒鉛は 、黒鉛ィ匕度が高ぐ不純物量が少ない等の長所があるため、本発明の原料として好 ましい。
[0062] (出発物質の灰分)
本発明の製造方法の出発物質としては、上述の天然黒鉛を、塩酸や弗酸等の酸 処理及び Z又は 2000°C以上での加熱処理により灰分除去を行なう高純度化処理さ れたものを用いると、不純物が殆ど無くなるため、本発明の原料として更に好ましい。
[0063] また、上述の灰分除去を行なった天然黒鉛の灰分は、特に制限されないが、通常 0 . 00重量%以上、また、通常 0. 20重量%以下、好ましくは 0. 15重量%以下の範囲 である。灰分力 Sこの範囲を上回ると、自己放電により保存特性が悪くなる虞がある。な お、灰分の測定方法としては、例え «JIS M8812に規定された方法を用いることが できる。
[0064] (熱処理前の天然黒鉛の真密度)
熱処理前の天然黒鉛の真密度は、通常 2. 25gZcm3以上の範囲である。真密度 は後述する熱処理によりほとんど変化しない。この範囲を下回ると熱処理後に黒鉛の 結晶性が向上せず、電極を製造したときに活物質の単位重量当たりの放電容量が 小さくなる虞があり好ましくない。一方、前記の真密度の上限は、理論的限界として通 常 2. 27gZcm3以下である。
[0065] (熱処理前の天然黒鉛のタップ密度)
熱処理前の天然黒鉛のタップ密度は、通常 0. 8gZcm3以上、好ましくは 0. 9g/c m3以上、更に好ましくは 0. 95gZcm3以上、また、通常 1. 35gZcm3以下、好ましく は 1. 2gZcm3以下の範囲である。タップ密度は、後述する熱処理により変化する場 合があるが、この範囲のタップ密度を持つ天然黒鉛を使用して、熱処理後の天然黒 鉛のタップ密度を先に規定した範囲内とすることが可能である。熱処理前の天然黒 鉛のタップ密度がこの範囲を下回ると、熱処理後の黒鉛材料を活物質とした場合の 充填密度が上がり難ぐ高容量の電池が得難い。一方、この範囲を上回ると、熱処理 後の黒鉛材料を活物質とした場合の電極中の粒子間の空隙が多くなり過ぎ、粒子間 の導電性が確保され難くなり、好ましい電池特性が得られにくい。
なお、タップ密度の測定方法は上記記載に依る。
[0066] (熱処理前の天然黒鉛の BET比表面積)
熱処理前の天然黒鉛の BET比表面積は、通常 3. 5m2Zg以上、好ましくは 4. 5m 2Zg以上、また、通常 11. 0m2Zg以下、好ましくは 9. 0m2Zg以下、更に好ましくは 7. 0m2Zg以下の範囲である。 BET比表面積は、後述する熱処理により低下するの で、この範囲の BET比表面積を持つ天然黒鉛を使用することにより、熱処理後の天 然黒鉛の BET比表面積を先に規定した範囲内とすることが可能である。熱処理前の 天然黒鉛の比表面積の値がこの範囲の下限を下回ると、熱処理後の黒鉛材料を負 極材料とした時、充電時にリチウムの受け入れ性が悪くなり易ぐリチウムが電極表面 で析出し易くなるため、安全上好ましくない。一方、前記範囲の上限を上回ると、熱 処理後の黒船材料を負極材料とした時に、電解液との反応性が増加し、ガス発生が 多くなり易ぐ好ましい電池が得にくい。
なお、 BET比表面積の測定方法は上記記載に依る。
[0067] (熱処理前の天然黒鉛のラマン R値、ラマン半値幅)
熱処理前の天然黒鉛のラマン R値は特に制限されないが、通常 0. 10以上、好まし くは 0. 20以上、また、通常 0. 35以下、好ましくは 0. 30以下の範囲である。 R値がこ の範囲を下回ると、熱処理後に黒鉛材料の粒子表面の結晶性が高くなり過ぎて、高 密度化した場合に電極板と平行方向に結晶が配向し易くなり、負荷特性の低下を招 く虞がある。一方、この範囲を上回ると、熱処理後における黒鉛材料の粒子表面の結 晶修復が不十分であり、電解液との反応性が増し、効率の低下やガス発生の増加を 招く虞がある。
[0068] また、熱処理前の天然黒鉛のラマン半値幅は特に制限されないが、通常 21. 0以 上、好ましくは 21. 5以上、また、通常 26. 0以下、好ましくは 24. 0以下の範囲である 。半値幅がこの範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、高密度化した 場合に電極板と平行方向に結晶が配向し易くなり、負荷特性の低下を招く虞がある。 一方、この範囲を上回ると、後の熱処理工程で粒子表面の結晶修復が十分に行な われず、乱れたままの結晶が残存し、電解液との反応性が増し、効率の低下やガス 発生の増加を招く虞がある。
なお、ラマン R値及びラマン半値幅の測定方法は上記記載に依る。
[0069] (熱処理前の天然黒鉛の面間隔)
熱処理前の天然黒鉛の X線回折により測定した (002)面の面間隔 d は、特に限
002 定されないが、通常 0. 3357nm以下、好ましくは 0. 3355nm以下の範囲である。こ の範囲を上回る場合、即ち、結晶性が劣る場合には、後の熱処理工程で粒子の結 晶修復が十分に行なわれず、電極を製造したときに活物質の単位重量当たりの放電 容量が小さくなる虞がある。一方、前記の面間隔 d の下限は、理論的限界として通
002
常 0. 3354nm以上である。
[0070] 熱処理前の天然黒鉛の X線回折により測定した c軸方向の結晶子の大きさ Lc は
004
、特に限定されないが、通常 90nm以上、好ましくは lOOnm以上の範囲である。この 範囲を下回ると、後の熱処理工程で粒子の結晶修復が十分に行なわれず、電極を 製造したときの活物質重量当たりの放電容量が小さくなる虞がある。
なお、面間隔の測定方法は上記記載に依る。
[0071] (熱処理前の天然黒鉛の円形度)
熱処理前の天然黒鉛の円形度は、特に制限されないが、通常 0. 90以上、好ましく は 0. 92以上、また、通常 0. 96以下、好ましくは 0. 95以下の範囲である。円形度が この範囲を下回ると、熱処理後の黒鉛材料を負極材料とした時に、粒子間の空隙が 小さくなり、負荷特性が低下する虞がある。一方、この範囲を上回るためには、球形 化処理などの処理を強く若しくは長時間行なう必要性があり、球形ィヒ時に副生する 微粉を多く取り除力なければならず、製造コストが高くなり好ましくない。
なお、円形度の測定方法は上記記載に依る。
[0072] (熱処理前の天然黒鉛の製造)
上記範囲のタップ密度を有する熱処理前の天然黒鉛を得る方法は特に限定されな いが、球形化処理により球形化された天然黒鉛が好ましい。例えば、衝撃力を主体 に粒子の相互作用も含めた圧縮、摩擦、せん断力等の機械的作用を繰り返し粒子に 与える装置を用いることができる。具体的には、ケーシング内部に多数のブレードを 設置したローターを有し、そのローターが高速回転することによって、内部に導入さ れた炭素材料に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、表面処 理を行なう装置が好ましい。また、炭素材料を循環させることによって機械的作用を 繰り返して与える機構を有するものであるのが好ま 、。好ま 、装置の一例として、 (株)奈良機械製作所製のハイブリダィゼーシヨンシステムを挙げることができる。
[0073] (天然黒鉛の熱処理)
上記範囲のタップ密度を有する天然黒鉛に対して、以下の条件で熱処理を行なう。 天然黒鉛の粒子表面の結晶は乱れて 、る場合があり、上述の球形化処理を施す場 合には特にその乱れが顕著であるが、熱処理を行なうことによって、乱された黒鉛粒 子表面の結晶を修復し、ラマン R値と BET比表面積を下げることができる。
[0074] 熱処理時の温度条件は特に制限されないが、通常 1600°C以上、好ましくは 2000 °C以上、更に好ましくは 2500°C以上、また、通常 3200°C以下、好ましくは 3100°C 以下の範囲である。温度条件がこの範囲を下回ると、球形化処理などにより乱された 黒鉛粒子表面の結晶修復が不十分であり、ラマン R値と BET比表面積力 S小さくなら ず好ましくない。一方、前記範囲を上回ると、黒鉛の昇華量が多くなり易ぐやはり好 ましくない。
熱処理を行なう時に、温度条件を上記範囲に保持する保持時間は特に制限されな いが、通常 10秒より長時間であり、 72時間以下である。
[0075] 熱処理は、窒素ガス等の不活性ガス雰囲気下、又は、原料黒鉛から発生するガス による非酸ィ匕性雰囲気下で行なう。熱処理に用いる装置としては特に制限はないが 、例えば、シャトル炉、トンネル炉、電気炉、リードハンマー炉、ロータリーキルン、直 接通電炉、アチソン炉、抵抗加熱炉、誘導加熱炉等を用いることができる。
[0076] (黒鉛の表面官能基制御)
黒鉛の表面官能基量 OZC値の制御方法は、例えば、熱処理時の雰囲気酸素濃 度を制御することにより行なうことができる。また、熱処理後の黒鉛粉末に酸化処理等 の表面解質を行なう場合は、例えば、雰囲気酸素濃度、処理温度、処理時間の制御 を行なうことにより、表面官能基量 OZC値を 0. 01以下の範囲とする。
[0077] 熱処理前の天然黒鉛の表面官能基量 OZC値は、特に制限されないが、通常 0. 0 7以下、好ましくは 0. 04以下の範囲である。表面官能基量 OZC値がこの範囲を上 回ると、熱処理後の表面官能基量 OZC値が先に規定した範囲に入りにくい。
熱処理後の黒鉛粉末の表面官能基量 OZC値は特に制限されないが、通常 0. 01 以下、好ましくは 0. 004以下の範囲である。表面官能基量 OZC値がこの範囲を上 回ると、粒子表面の官能基量が増え、電解液との反応性が増し、ガス発生量の増加 を招く虞がある。
[0078] (その他の処理)
その他、発明の効果が妨げられない限りにおいて、上記の各処理に加え、分級処 理等の各種の処理を行なうことができる。分級処理は、黒鉛化処理後の粒度を目的 の粒径にするベぐ粗粉や微粉を除去するためのものである。
[0079] 分級処理に用いる装置としては特に制限はないが、例えば、乾式篩い分けの場合
:回転式篩い、動揺式篩い、旋動式篩い、振動式篩い等を、乾式気流式分級の場合
:重力式分級機、慣性力式分級機、遠心力式分級機 (クラシファイア、サイクロン等) 等を、湿式篩い分けの場合:機械的湿式分級機、水力分級機、沈降分級機、遠心式 湿式分級機等を、それぞれ用いることができる。
[0080] 分級処理は、熱処理前に行なうこともできるし、その他のタイミング、例えば、熱処理 後に行なってもよい。更には、分級処理自体を省略することも可能である。但し、黒鉛 粉末負極材料の生産性の点からは、球形化処理のすぐ後に続けて熱処理前に分級 処理を行なうことが好まし 、。
[0081] [1 - 3.黒鉛粉末と他の炭素材料との混合〕
上述の黒鉛粉末 (A) (又は、上述した本発明の製造方法により得られた熱処理後 の黒鉛粉末。これを黒鉛粉末 (C)とする。)は、このまま負極材料として用いることが できる。この場合、何れか一種の黒鉛粉末 (A) (又は黒鉛粉末 (C) )を単独で用いて も良ぐ二種以上の黒鉛粉末 (A) (又は黒鉛粉末 (C) )を任意の組み合わせ及び組 成で併用しても良い。更には、この負極材料、即ち黒鉛粉末 (A) (又は黒鉛粉末 (C) )一種又は二種以上を、他の一種又は二種以上の炭素材料 (B)と混合し、これを負 極材料として用いてもょ 、。
[0082] 上述の黒鉛粉末 (A) (又は黒鉛粉末 (C) )に炭素材料 (B)を混合する場合、 (A)及 び (B)の総量 (又は、 (C)及び (B)の総量)に対する(B)の混合割合は、通常 5重量 %以上、好ましくは 20%以上、また、通常 95重量%以下、好ましくは 80重量%以下 の範囲である。炭素材料 (B)の混合割合が前記範囲を下回ると、(B)を添加した効 果が現れ難く好ましくない。一方、前記範囲を上回ると、黒鉛粉末 (A) (又は黒鉛粉 末 (C) )の特性が損なわれるのでやはり好ましくな 、。
[0083] 炭素材料 (B)としては、天然黒鉛、人造黒鉛、非晶質被覆黒鉛、榭脂被覆黒鉛、 非晶質炭素の中から選ばれる材料を用いる。これらの材料は、何れか一種を単独で 用いても良ぐ二種以上を任意の組み合わせ及び組成で併用しても良 ヽ。
[0084] 天然黒鉛としては、例えば、高純度化した鱗片状黒鉛や球形ィ匕した黒鉛を用いるこ とができる。天然黒鉛の体積基準平均粒径は、通常 8 m以上、好ましくは 12 m以 上、また、通常 60 μ m以下、好ましくは 40 μ m以下の範囲である。天然黒鉛の BET 比表面積は、通常 4m2Zg以上、好ましくは 4. 5m2Zg以上、通常 7m2Zg以下、好 ましくは 5. 5m2Zg以下の範囲である。
[0085] 人造黒鉛としては、例えば、コータス粉や天然黒鉛をバインダで複合ィ匕した粒子、 単一の黒船前駆体粒子を粉状のまま焼成、黒鉛ィ匕した粒子等を用いることができる。
[0086] 非晶質被覆黒鉛としては、例えば、天然黒鉛や人造黒鉛に非晶質前駆体を被覆、 焼成した粒子や、天然黒鉛や人造黒鉛に非晶質を CVDにより被覆した粒子を用い ることがでさる。
[0087] 榭脂被覆黒鉛としては、例えば、天然黒鉛や人造黒鉛に高分子材料を被覆、乾燥 して得た粒子等を用いることができる。
[0088] 非晶質炭素としては、例えば、ノ レクメソフェーズを焼成した粒子や、炭素前駆体 を不融化処理し焼成した粒子を用いることができる。
[0089] 中でも、炭素材料 (B)としては、人造黒鉛であって、
(i)天然黒鉛粒子を、黒鉛ィ匕可能な炭素質であるバインダが熱処理されたものにより 一部ないし全てが被覆された炭素材料、及び、
(ii)黒鉛ィ匕可能な炭素質であるバインダが熱処理されたものにより天然黒鉛粒子同 士が結合されて 、る炭素材料
からなる群から選ばれる少なくとも一つ以上の炭素材料 (以下「炭素材料 (b)」と ヽぅ。 )を用いることが好ましい。
[0090] 炭素材料 (b)を構成するバインダとしては、黒鉛ィ匕が可能な炭素質であればよぐ 軟ピッチ力も硬ピッチまでの石油系及び石炭系の縮合多環芳香族類が好ましいが、 特に限定されるものではない。
[0091] 炭素材料 (b)を構成する天然黒鉛粒子としては、例えば、高純度化した鱗片状黒 鉛や球形ィ匕した黒鉛を用いることができる。天然黒鉛の体積基準平均粒径は、通常 10 μ m以上、好ましく ίま 12 μ m以上、また、通常 50 μ m以下、好ましく ίま 30 μ m以 下の範囲である。天然黒鉛の BET比表面積は、通常 4m2Zg以上、好ましくは 4. 5 m2/g以上、また、通常 10m2/g以下、好ましくは 6m2/g以下の範囲である。
[0092] 炭素材料 (B)が上述の炭素材料 (b)である場合、黒鉛粉末 (A) (又は黒鉛粉末 (C ) )及び炭素材料 (b)の総量に対する炭素材料 (b)の割合は、通常 10重量%以上、 好ましくは 30重量%以上、より好ましくは 50重量%以上、最も好ましくは 60重量%以 上、また、通常 90重量%以下、より好ましくは 80重量%以下である。二種以上の炭 素材料 (b)を併用する場合は、それらの合計が上記範囲を満たすようにする。
[0093] 黒鉛粉末 (A) (又は黒鉛粉末 (C) )に炭素材料 (B)を混合するに際して、炭素材料
(B)の選択に特に制限は無いが、例えば、混合することによって、導電性の向上によ るサイクル特性の向上や充電受入性の向上、不可逆容量の低減、また、プレス性の 向上ができるような炭素材料 (B)を場合に応じて選択することが可能である。
[0094] 黒鉛粉末 (A) (又は黒鉛粉末 (C) )と炭素材料 (B)との混合に用いる装置としては 特に制限はないが、例えば、回転型混合機の場合:円筒型混合機、双子円筒型混 合機、二重円錐型混合機、正立方型混合機、鍬型混合機、固定型混合機の場合:ら せん型混合機、リボン型混合機、 Muller型混合機、 HelicalFlight型混合機、 Pug mill型混合機、流動化型混合機等を用いることができる。
[0095] [1 -4.その他〕
以上説明した本発明の負極材料 (黒鉛粉末 (A)若しくは黒鉛粉末 (C)、又はこれら の黒鉛粉末と炭素材料 (B)とを混合したもの。)は、リチウムイオンを吸蔵'放出可能 な正極及び負極、並びに電解液を備えたリチウム二次電池において、負極の材料と して好適に用いられる。本発明の負極材料によれば、高い電極密度で使用した場合 でも、電極形成時のプレス荷重が小さぐ放電容量が高ぐ充放電効率が高ぐ負荷 特性に優れ、電池充電時の膨張が抑制され、ガス発生量が少ない等、各種の電池 性能にバランスよく優れたリチウム二次電池を得ることができる。また、本発明の負極 材料の製造方法によれば、所定範囲の物性を有する天然黒鉛を原料として熱処理 するため、工程数が少なくて済み、上述の負極材料を高い収率で効率的且つ安価 に製造でき、工業上非常に有用である。
[0096] 本発明の負極材料を用いてリチウム二次電池用負極を作製する際の方法及びそ の他の材料の選択、並びに、リチウム二次電池を構成する正極、電解液等の電池構 成上必要な部材の選択については、特に制限されない。以下において、本発明の負 極材料を用いたリチウム二次電池用負極及びリチウム二次電池の詳細を例示するが 、使用し得る材料や作製の方法等は以下の具体例に限定されるものではな 、。
[0097] [2.リチウム二次電池用負極]
本発明の負極材料を活物質として含有する層 (負極層)を集電体上に形成すること により、リチウム二次電池用負極を作製することができる。
[0098] 負極の製造は常法に従って行なえばよい。例えば、負極活物質 (本発明の負極材 料)に結着剤、増粘剤、導電材、溶媒等を加えてスラリー状とし、集電体に塗布し、乾 燥した後にプレスして高密度化する方法が挙げられる。負極活物質としては、本発明 の負極材料を単独で用いても良いが、これにカ卩えて他の活物質を併用することもでき る。
[0099] 活物質層の密度は、通常 1. 40gZcm3以上、好ましくは 1. 50gZcm3以上、より好 ましくは 1. 60gZcm3以上の範囲とすると、電池の容量が増加するので好ましい。な お、活物質層とは集電体上の活物質、結着剤、導電剤などよりなる層をいい、その密 度とは電池に組立てる時点での密度をいう。
[0100] 結着剤としては、電極製造時に使用する溶媒や電解液に対して安定な材料であれ ば、任意のものを使用することができる。例えば、ポリフッ化ビ-リデン、ポリテトラフル ォロエチレン、ポリエチレン、ポリプロピレン、スチレン 'ブタジエンゴム(SBR)、イソプ レンゴム、ブタジエンゴム、エチレン アクリル酸共重合体及びエチレンーメタクリル 酸共重合体等が挙げられる。なお、これらは 1種を単独で用いてもよぐ 2種以上を任 意の組み合わせ及び比率で併用しても良 、。
[0101] 増粘剤としては公知のものを任意に選択して用いることができる力 例えば、カルボ キシノレメチノレセノレロース(CMC)、メチノレセノレロース、ヒドロキシメチノレセノレロース、ェ チルセルロース、ポリビュルアルコール、酸化スターチ、リン酸化スターチ及びガゼィ ン等が挙げられる。なお、これらは 1種を単独で用いてもよぐ 2種以上を任意の組み 合わせ及び比率で併用しても良 ヽ。
[0102] 導電材としては、銅又はニッケル等の金属材料;グラフアイト又はカーボンブラック 等の炭素材料などが挙げられる。なお、これらは 1種を単独で用いてもよぐ 2種以上 を任意の組み合わせ及び比率で併用しても良!、。
[0103] 負極用の集電体の材質としては、銅、ニッケル又はステンレス等が挙げられる。これ らのうち、薄膜に加工し易いという点及びコストの点から銅箔が好ましい。なお、これら は 1種を単独で用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用しても良 い。
[0104] [3.リチウム二次電池]
上述のリチウム二次電池用負極を、リチウムを吸蔵'放出可能な正極、及び電解質 と組み合わせることにより、リチウム二次電池とすることができる。
[0105] 正極の製造方法は特に制限されず、上記の負極の製造方法と同様の方法で、集 電体上に正極活物質を含有する層(正極層)を形成することにより、製造することがで きる。
[0106] 正極活物質の材料としては、例えば、リチウムコノ レト酸ィ匕物、リチウムニッケル酸 化物、リチウムマンガン酸ィ匕物等のリチウム遷移金属複合酸ィ匕物材料;二酸ィ匕マンガ ン等の遷移金属酸化物材料;フッ化黒鉛等の炭素質材料などのリチウムを吸蔵 ·放 出可能な材料を使用することができる。具体的には、 LiFeO、 LiCoO、 LiNiO、 Li
2 2 2
Mn O及びこれらの非定比化合物、 MnO、 TiS、 FeS、 Nb S 、 Mo S、 CoS、
2 4 2 2 2 3 4 3 4 2
V O、 P O、 CrO、 V O、 TeO、 GeO等を用いることができる。
2 5 2 5 3 3 3 2 2
[0107] 正極の集電体としては、例えば、電解液中での陽極酸ィ匕によって表面に不動態皮 膜を形成する弁金属又はその合金を用いるのが好ましい。弁金属としては、 IIIb、 IV a、 Va族(3B、 4A、 5A族)に属する金属及びこれらの合金を例示することができる。 具体的には、 Al、 Ti、 Zr、 Hf、 Nb、 Ta及びこれらの金属を含む合金などを例示する ことができ、 Al、 Ti、 Ta及びこれらの金属を含む合金を好ましく使用することができる 。特に A1及びその合金は軽量であるためエネルギー密度が高くて望ま 、。
[0108] 電解質としては、電解液や固体電解質など、任意の電解質を用いることができる。
なおここで電解質とはイオン導電体全てのことを!ヽ!ヽ、電解液及び固体電解質は共 に電解質に含まれるものとする。
[0109] 電解液としては、例えば、非水系溶媒に溶質を溶解したものを用いることができる。
溶質としては、アルカリ金属塩や 4級アンモ-ゥム塩などを用いることができる。具体 的には、 LiCIO、 LiPF、 LiBF、 LiCF SO、 LiN (CF SO ) 、 LiN (CF CF SO
4 6 4 3 3 3 2 2 3 2 2
) 、 LiN (CF SO ) (C F SO )、 LiC (CF SO ) 力 なる群から選択される 1以上の
2 3 2 4 9 2 3 2 3
化合物を用いるのが好まし 、。
[0110] 非水系溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブ チレンカーボネート、ビ-レンカーボネート等の環状カーボネート、 y ブチロラクト ンなどの環状エステルイ匕合物;1, 2—ジメトキシェタン等の鎖状エーテル;クラウンェ 一テル、 2—メチルテトラヒドロフラン、 1, 2 ジメチルテトラヒドロフラン、 1, 3 ジォキ ソラン、テトラヒドロフラン等の環状エーテル;ジェチルカーボネート、ェチルメチルカ ーボネート、ジメチルカーボネート等の鎖状カーボネートなどを用いることができる。 溶質及び溶媒はそれぞれ 1種類を選択して使用してもよいし、 2種以上を混合して使 用してもよい。これらの中でも、環状カーボネートと鎖状カーボネートを含有する非水 系溶媒が好ましい。
[0111] また、非水系電解液は、電解液中に有機高分子化合物を含ませ、ゲル状又はゴム 状、或いは固体シート状の固体電解質としてもよい。有機高分子化合物の具体例と しては、ポリエチレンォキシド、ポリプロピレンォキシド等のポリエーテル系高分子化 合物;ポリエーテル系高分子化合物の架橋体高分子;ポリビニルアルコール、ポリビ -ルブチラールなどのビュルアルコール系高分子化合物;ビュルアルコール系高分 子化合物の不溶化物;ポリェピクロルヒドリン;ポリフォスファゼン;ポリシロキサン;ポリ ビュルピロリドン、ポリビ-リデンカーボネート、ポリアクリロニトリルなどのビュル系高 分子化合物;ポリ( ω—メトキシォリゴォキシエチレンメタタリレート)、ポリ( ω—メトキシ オリゴォキシエチレンメタタリレート メチルメタタリレート)等のポリマー共重合体 などが挙げられる。
[0112] リチウム二次電池には、これらの電解液、負極、正極の他に、必要に応じて、外缶、 セパレータ、ガスケット、封口板、セルケースなどを用いることもできる。
[0113] セパレータの材質や形状は特に制限されない。セパレータは正極と負極が物理的 に接触しないように分離するものであり、イオン透過性が高ぐ電気抵抗が低いもので あるのが好ま ヽ。セパレータは電解液に対して安定で保液性が優れた材料の中か ら選択するのが好ましい。具体例としては、ポリエチレン、ポリプロピレン等のポリオレ フィンを原料とする多孔性シート又は不織布を用いて、上記電解液を含浸させること ができる。
[0114] リチウム二次電池の製造方法の例を挙げると、外缶上に負極を載せ、その上に電 解液とセパレータを設け、さらに負極と対向するように正極を載せて、ガスケット、封 口板と共に力しめて電池にすることができる。
[0115] 電池の形状は特に制限されず、例えば、シート電極及びセパレータをスパイラル状 にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト 構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ等にす ることがでさる。 実施例
[0116] 次に、実施例により本発明を更に詳細に説明するが、本発明はその要旨を越えな い限り、これらの実施例によってなんら限定されるものではない。
[0117] [実施例 1]
高純度化処理された粒径約 150 /z mの鱗片状天然黒鉛 (灰分 0. 05重量%)を、 球形化処理装置 (奈良機械製作所製ハイブリダィゼーシヨンシステム)を用いて、回 転数 6500rpmで 5分間球形化処理し、更に風力式分級機 (セイシン企業社製 OMC — 100)を用いて 45重量%微粉を除去し、体積基準平均粒径(=メジアン径) 17 μ m、タップ密度 1. 0g/cm3、 BET比表面積 7. 5m2/gの球形化黒鉛粉末を得た。 なお、体積基準平均粒径(=メジアン径)、タップ密度、 BET比表面積の値は、前記 記載の手法にて測定した値を用いた。
[0118] 上記分級した球形化黒鉛粉末を黒鉛坩堝に詰め、直接通電炉を用いて不活性雰 囲気下で 3000°Cで 5時間かけて黒鉛ィ匕し、黒鉛粉末 (実施例 1の負極材料)を得た
[0119] 得られた実施例 1の負極材料の物性を測定したところ、メジアン径 17 m、 d /ά
90 1
=2. 5、タップ密度 1. 0gZcm3、表面官能基量 OZC値く 0. 001、 BET比表面積
0
5. 4m2Zg、ラマン R値。. 03、ラマン半値幅 20.
Figure imgf000025_0001
円形度。. 94であった。な お、表面官能基量 OZC値、ラマン R値、ラマン半値幅、円形度は、前記記載の手法 にて測定した値を用いた。
[0120] また、実施例 1の負極材料の結晶性を X線回折法にて測定したところ、 d =0. 33
002
54nm、 Lc 〉 )であった。
004 1000A (100nm
[0121] 更に、実施例 1の負極材料を用いて、下記の方法に従って電極密度 1. 63 ±0. 05 gZcm3の電極を作製し、電極の活物質配向比を求めたところ、 0. 05であった。また 、電極形成時のプレス荷重は 60kgであった。
[0122] 実施例 1の負極材料の各物性の評価結果を表 1に示す。
また、実施例 1の負極材料を用いて、下記の方法に従ってリチウム二次電池を作製 し、放電容量、充放電効率、負荷特性の測定を行なった。また、同様にリチウム二次 電池を作製し、充電状態で解体して電極の厚みを測定することにより、充電膨張率の 測定を行なった。
[0123] <電極作製方法 >
黒鉛材料と、増粘剤として CMC水溶液と、ノ インダ榭脂として SBR水溶液とを、乾 燥後の黒鉛材料に対して CMC及び SBRがそれぞれ 1重量%になるように混合撹拌 してスラリーとし、ドクターブレードを用いて銅箔上にこのスラリーを塗布した。塗布厚 さは、乾燥後の電極目付 (銅箔除く)が lOmgZcm2になるようにギャップを選択した。
[0124] この電極を 80°Cで乾燥した後、電極密度 (銅箔除く)が 1. 63±0. 05gZcm3にな るようにプレスを行なった。また、プレス後の電極から 12mm φの電極を打ち抜き、重 量に基づ 、て下式より負極活物質重量を求めた。
(負極活物質重量) = (電極重量) (銅箔重量) (バインダ重量)
[0125] <電極形成時のプレス荷重測定方法 >
直径 20cmのロールプレスを用いて、電極密度(銅箔除く)が 1. 63±0. 05g/cm 3になるようにプレスを行った時のプレス荷重 (線圧)をロードセルカゝら読み取り、電極 形成時のプレス荷重(電極 lcm幅当たりの荷重)を求めた。
[0126] <リチウム二次電池の作製方法 >
上記の電極作製方法で作製した電極を 110°Cで真空乾燥した後、グローブボック スへ移し、アルゴン雰囲気下で、電解液としてエチレンカーボネート(EC) Zジェチ ルカーボネート(DEC) = 1Z1の混合液を溶媒とした 1M— LiPF電解液と、セパレ
6
ータとしてポリエチレンセパレータと、対極としてリチウム金属対極とを用い、コイン電 池 (リチウム二次電池)を作製した。
[0127] <放電容量の測定方法 >
0. 2mAZcm2の電流密度でリチウム対極に対して 5mVまで充電し、更に、 5mV の一定電圧で電流値が 0. 02mAになるまで充電し、負極中にリチウムをドープした 後、 0. 4mAZcm2の電流密度でリチウム対極に対して 1. 5Vまで放電を行なう充放 電サイクルを 3サイクル繰り返し、 3サイクル目の放電値を放電容量として測定した。
[0128] <充放電効率の計算方法 >
放電容量の測定時に、以下に従って計算した。
充放電効率 (%) = {初回放電容量 (mAhZg)Z初回充電容量 (mAhZg) } X 100
[0129] <負荷特性の計算方法 >
放電容量の測定に続き、同様に充電した後、 6. OmAZcm2の電流密度で放電し 、以下に従って計算した。
•2C放電容量 (mAhZg) :
6. OmAZcm2の電流密度で放電した時の放電容量
•0. 2C放電容量 (mAhZg) :
0. 6mAZcm2の電流密度で放電した時の放電容量
•負荷特性 (%) =
{ 2C放電容量 (mAhZg) /0. 2C放電容量 (mAhZg) } X 100
[0130] <充電膨張率の測定方法 >
放電容量の測定において 3サイクル充放電後、 4サイクル目の充電終止条件を 300 mAhZgの定容量充電で行なった。充電状態のコイン電池をアルゴングローブボック ス中で短絡させないように解体し、電極を取り出して、充電時の電極の厚み (銅箔除 く)を測定した。電池作製前のプレス電極の厚み (銅箔除く)を基準として、次式に基 づいて充電膨張率を求めた。
充電膨張率 (%) =
{ (充電電極厚み) (プレス電極厚み) }Z (プレス電極厚み) X 100
[0131] また、実施例 1の負極材料を用いて、下記の方法に従ってリチウム二次電池を作製 し、ガス発生量の測定を行なった。
[0132] <ガス発生量の測定用の電極作製方法 >
前記の電極作製方法と同様にドクターブレードを用いて銅箔上にこのスラリーを塗 布した。塗布厚さは、乾燥後の電極目付 (銅箔除く)が 15mg/cm2になるようにギヤ ップを選択した。
[0133] この電極を 80°Cで乾燥した後、電極密度 (銅箔除く)が 1. 80±0. 05gZcm3にな るようにプレスを行なった。また、プレス後の電極から 12mm φの電極を打ち抜き、そ
Figure imgf000027_0001
、て下式より負極活物質重量を求めた。
(負極活物質重量) = (電極重量) (銅箔重量) (バインダ重量) [0134] <ガス発生量の測定用のリチウム二次電池作成方法 >
前記のリチウム二次電池の作製方法にお!、て、コイン電池の代わりにバルブ付きの 一定なセル容積を持つ組立型セルを用いた他は、同様の手順に従ってリチウム二次 電池を作製した。
[0135] <ガス発生量の測定方法 >
0. 2mAZcm2の電流密度でリチウム対極に対して OmVまで充電し、負極中にリチ ゥムをドープした後、 0. 5mAZcm2の電流密度でリチウム対極に対して 1. 5Vまで 放電を行ない、発生したガス量をガスクロマトグラフィーから求めた。ガスクロマトダラ フィ一はヘリウムガスをキヤリヤーに用い、モレキュラーシーブで水素、一酸化炭素、 メタンガスを分離分析し、プロットカラム Qで二酸ィ匕炭素、 C2〜C4の飽和、不飽和炭 化水素を分離分析しガス発生量 (濃度)を求めた。
実施例 1の負極材料の各物性の評価結果を表 1に示す。
[0136] [実施例 2]
高純度化処理された粒径約 150 /z mの鱗片状天然黒鉛 (灰分 0. 03重量%)を、 実施例 1と同じ球形化処理装置を用い回転数 5000rpmで 3分間球形化処理し、更 に風力式分級機 (セイシン企業社製 OMC— 100)を用いて 15重量%微粉を除去し 、メジアン径 23 m、タップ密度 1. 0gZcm3、 BET比表面積 6m2Zgの球形ィ匕黒鉛 粉末を得た。なお、メジアン径、タップ密度、 BET比表面積の値は、前記記載の手法 にて測定した値を用いた。
[0137] 上記分級した球形化黒鉛粉末を実施例 1と同様に熱処理し、得られた実施例 2の 負極材料の物性を測定したところ、メジアン径 23 /z m d /ά = 2. 5、タップ密度 1
90 10
. 0gZcm3、表面官能基量 OZC値 < 0. 001、 BET比表面積 4. 5m2Zg、ラマン R 値 0. 03、ラマン半値幅 20.
Figure imgf000028_0001
円形度 0. 93であった。なお、表面官能基量 O ZC値、ラマン R値、ラマン半値幅、円形度は、前記記載の手法にて測定した値を用 いた。
[0138] また、実施例 2の負極材料の結晶性を X線回折法にて測定したところ、 d =0. 33
002
54nm、 Lc 〉1000A (100nm)であった。
004
[0139] 更に、実施例 2の負極材料を用いて、電極の活物質配向比を求めたところ、 0. 05 であった。また、電極形成時のプレス荷重は 40kgであった。
また、実施例 2の負極材料を用いて、実施例 1と同様の手順でリチウム二次電池を 作製し、放電容量、充放電効率、負荷特性、充電膨張率、ガス発生量の測定を行な つた o
実施例 2の負極材料の各物性の評価結果を表 1に示す。
[0140] [実施例 3]
高純度化処理された粒径約 160 /z mの鱗片状天然黒鉛 (灰分 0. 1重量%)を、実 施例 1と同じ粉砕機を用い、回転数 5000rpmで 3分間粉砕し、更に風力式分級機( セイシン企業社製 OMC— 100)を用いて 20重量%微粉を除去し、メジアン径 22 m、タップ密度 0. 9gZcm3、 BET比表面積 5. 8m2Zgの球形化黒鉛粉末を得た。 なお、メジアン径、タップ密度、 BET比表面積の値は、前記記載の手法にて測定した 値を用いた。
[0141] 上記分級した球形化黒鉛粉末を実施例 1と同様に熱処理し、得られた実施例 3の 負極材料の物性を測定したところ、メジアン径 22 /z m d /ά =2. 7、タップ密度 0
90 10
. 9gZcm3、表面官能基量 OZC値 <0. 001、 BET比表面積 4. 5m2Zg、ラマン R 値 0. 03、ラマン半値幅 20.
Figure imgf000029_0001
円形度 0. 92であった。なお、表面官能基量 O ZC値、ラマン R値、ラマン半値幅、円形度は、前記記載の手法にて測定した値を用 いた。
[0142] また、実施例 3の負極材料の結晶性を X線回折法にて測定したところ、 d =0. 33
002
54nm、 Lc 〉1000A (100nm)であった。
004
[0143] 更に、実施例 3の負極材料を用いて、電極の活物質配向比を求めたところ、 0. 03 であった。また、電極形成時のプレス荷重は 36kgであった。
また、実施例 3の負極材料を用いて、実施例 1と同様の手順でリチウム二次電池を 作製し、放電容量、充放電効率、負荷特性、充電膨張率、ガス発生量の測定を行な つた o
実施例 3の負極材料の各物性の評価結果を表 1に示す。
[0144] [実施例 4]
球形化黒鉛粉末の熱処理温度を 2000°Cとした以外は実施例 1と同じ処理を行な つた。得られた実施例 4の負極材料の物性を測定したところ、メジアン径 17 m、 d
90
/ά = 2. 5、タップ密度 1. 0gZcm3、表面官能基量 OZC値く 0. 001、 BET比表
10
面積 5. 7m2Zg、ラマン R値 0. 04、ラマン半値幅 21.
Figure imgf000030_0001
円形度 0. 94であつ た。なお、メジアン径、タップ密度、 BET比表面積、表面官能基量 OZC値、ラマン R 値、ラマン半値幅、円形度は、前記記載の手法にて測定した値を用いた。
[0145] また、実施例 4の負極材料の結晶性を X線回折法にて測定したところ、 d =0. 33
002
54nm、 Lc 〉1000A (100nm)であった。
004
[0146] 更に、実施例 4の負極材料を用いて、電極の活物質配向比を求めたところ、 0. 05 であった。また、電極形成時のプレス荷重は 62kgであった。
更に、実施例 4の負極材料を用いて、実施例 1と同様にリチウム二次電池を作製し、 放電容量、充放電効率、負荷特性、充電膨張率、ガス発生量の測定を行なった。 実施例 4の負極材料の各物性の評価結果を表 1に示す。
[0147] [実施例 5]
実施例 1で得られた熱処理した球形化黒鉛粉末 50重量%と、メジアン径 21 μ m、 タップ密度 0. 9gZcm3、表面官能基量 OZC値 0. 030、 BET比表面積 6. OmVg 、ラマン R値 0. 18、ラマン半値幅 22.
Figure imgf000030_0002
円形度 0. 92である球形化天然黒鉛 粉末 50重量%とを、回転式混合機を用いて 30分間混合した。
[0148] 混合により得られた実施例 5の負極材料の物性を測定したところ、メジアン径 19 m、 d /ά = 2. 5、タップ密度 1. 0gZcm3、表面官能基量 OZC値 0. 015、 BET
90 10
比表面積 5. 7m2Zg、ラマン R値 0. 011、ラマン半値幅 21.
Figure imgf000030_0003
円形度 0. 94 であった。なお、メジアン径、タップ密度、 BET比表面積、表面官能基量 OZC値、ラ マン R値、ラマン半値幅、円形度は、前記記載の手法にて測定した値を用いた。
[0149] また、実施例 5の負極材料の結晶性を X線回折法にて測定したところ、 d =0. 33
002
54nm、 Lc 〉1000A (100nm)であった。
004
[0150] 更に、実施例 5の負極材料を用いて、電極の活物質配向比を求めたところ、 0. 04 であった。また、電極形成時のプレス荷重は 48kgであった。
更に、実施例 5の負極材料を用いて、実施例 1と同様にリチウム二次電池を作製し 、放電容量、充放電効率、負荷特性、充電膨張率、ガス発生量の測定を行なった。 実施例 5の負極材料の各物性の評価結果を表 1に示す。
[0151] [実施例 6]
実施例 2の負極材料 40重量0 /0と、メジアン径 13 m、タップ密度 1. Og/cm3, BE T比表面積 7. 5m2Zgである球形化天然黒鉛粉末が石油系軟ピッチを熱処理したも のでその全面又は一部が被覆されたものカゝらなる炭素材料 (b) 60重量%を混合した ものを実施例 6の負極材料とした。
[0152] 得られた実施例 6の負極材料の物性を測定したところ、メジアン径 18 m、 d /ά
90 1
= 2. 6、タップ密度 1. 16gZcm3、表面官能基量 OZC値 < 0. 001、 BET比表面
0
積 2. 6m2Zg、ラマン R値 0. 09、ラマン半値幅 21. 5cm_1であった。なお、メジアン 径、タップ密度、 BET比表面積、表面官能基量 OZC値、ラマン R値、ラマン半値幅 、円形度は、前記記載の手法にて測定した値を用いた。
[0153] また、実施例 6の負極材料の結晶性を X線回折法にて測定したところ、 d =0. 33
002
54nm、 Lc 〉1000A (100nm)であった。
004
[0154] 更に、実施例 6の負極材料を用いて、電極の活物質配向比を求めたところ、 0. 05 であった。また、電極形成時のプレス荷重は 70kgであった。
[0155] 更に、実施例 6の負極材料を用いて、実施例 1と同様にリチウム二次電池を作製し
、放電容量、充放電効率、負荷特性、充電膨張率、ガス発生量の測定を行なった。 実施例 6の負極材料の各物性の評価結果を表 1に示す。
[0156] [比較例 1]
高純度化処理されたメジアン径 17 m、タップ密度 0. 5gZcm3、 BET比表面積 6 m2Zgの鱗片状天然黒鉛 (灰分 0. 1重量%)を、球形化処理せずにそのまま実施例 1と同様に熱処理した。得られた比較例 1の負極材料の物性を測定したところ、メジァ ン径 17 /ζ πι、(1 /ά =4. 5、タップ密度 0. 3gZcm3、表面官能基量 OZC値 < 0
90 10
. 001、 BET比表面積 4. 7m2Zg、ラマン R値。. 04、ラマン半値幅 25.
Figure imgf000031_0001
円 形度 0. 82であった。なお、メジアン径、タップ密度、 BET比表面積、表面官能基量 OZC値、ラマン R値、ラマン半値幅、円形度は、前記記載の手法にて測定した値を 用いた。
[0157] また、比較例 1の負極材料の結晶性を X線回折法にて測定したところ、 d =0. 33 54nm、 Lc 1000 A ( lOOnm)であった。
004 >
[0158] 更に、比較例 1の負極材料を用いて、電極作製を行なったが、塗工時に不均一な 膜となり、且つ、プレス後に銅箔より剥離してしまい電池特性を求めることは不可能で めつに。
比較例 1の負極材料の各物性の評価結果を表 1に示す。
[0159] [比較例 2]
高純度化処理されたメジアン径 20 m、タップ密度 0. 75gZcm3、 BET比表面積 3m2Zgの天然黒鉛 (灰分 0. 5重量%)を、球形化処理せずにそのまま実施例 1と同 様に熱処理した。得られた比較例 2の負極材料の物性を測定したところ、メジアン径 2 O /z m d /ά = 7. 7、タップ密度 0. 7gZcm3、表面官能基量 OZC値 < 0. 001
90 10
、 BET比表面積 4m2Zg、ラマン R値 0. 03、ラマン半値幅 20.
Figure imgf000032_0001
円形度 0. 8 6であった。なお、メジアン径、タップ密度、 BET比表面積、表面官能基量 OZC値、 ラマン R値、ラマン半値幅、円形度は、前記記載の手法にて測定した値を用いた。
[0160] また、比較例 2の負極材料の結晶性を X線回折法にて測定したところ、 d = 0. 33
002
54nm、 Lc 〉1000A ( 100nm)であった。
004
[0161] 更に、比較例 2の負極材料を用いて、電極の活物質配向比を求めたところ、 0. 02 であった。また、電極形成時のプレス荷重は 30kgであった。
また、比較例 2の負極材料を用いて、実施例 1と同様の手順にてリチウム二次電池 を作製し、放電容量、充放電効率、負荷特性、充電膨張率、ガス発生量の測定を行 なった。
比較例 2の負極材料の各物性の評価結果を表 1に示す。
[0162] [比較例 3]
球形化黒鉛粉末の熱処理温度を 1200°Cとした以外は、実施例 1と同じ処理を行な つた。得られた比較例 3の負極材料の物性を測定したところ、メジアン径 17 m、 d
90
/ά = 2. 5、タップ密度 1. 0gZcm3、表面官能基量 OZC値く 0. 001、 BET比表
10
面積 6. 5m2Zg、ラマン R値 0. 14、ラマン半値幅 22.
Figure imgf000032_0002
円形度 0. 94であつ た。なお、メジアン径、タップ密度、 BET比表面積、表面官能基量 OZC値、ラマン R 値、ラマン半値幅、円形度は、前記記載の手法で測定した値を用いた。 [0163] また、比較例 3の負極材料の結晶性を X線回折法にて測定したところ、 d =0. 33
002
54nm、 Lc 〉
004 1000A (100nm)であった。
[0164] 更に、比較例 3の負極材料を用いて、電極の活物質配向比を求めたところ、 0. 05 であった。また、電極形成時のプレス荷重は 58kgであった。
また、比較例 3の負極材料を用いて、実施例 1と同様の手順でリチウム二次電池を 作製し、放電容量、充放電効率、負荷特性、充電膨張率、ガス発生量の測定を行な つた o
比較例 3の負極材料の各物性の評価結果を表 1に示す。
[0165] [比較例 4]
球形化黒鉛粉末の熱処理を行なわない以外は、実施例 1と同じ処理を行なった。 得られた比較例 4の負極材料の物性を測定したところ、メジアン径 17 m、 d /ά
90 10
=2. 5、タップ密度 1. 0gZcm3、表面官能基量 OZC値 0. 032、 BET比表面積 7. 5m2/g、ラマン R値 0. 27、ラマン半値幅 23.
Figure imgf000033_0001
円形度 0. 94であった。なお 、メジアン径、タップ密度、 BET比表面積、表面官能基量 OZC値、ラマン R値、ラマ ン半値幅、円形度は、前記記載の手法にて測定した値を用いた。
[0166] また、比較例 4の負極材料の結晶性を X線回折法にて測定したところ、 d =0. 33
002
54nm、 Lc 〉
004 1000A (100nm)であった。
[0167] 更に、比較例 4の負極材料を用いて、電極の活物質配向比を求めたところ、 0. 05 であった。また、電極形成時のプレス荷重は 56kgであった。
更に、比較例 4の負極材料を用いて、実施例 1と同様の手順でリチウム二次電池を 作製し、放電容量、充放電効率、負荷特性、充電膨張率、ガス発生量の測定を行な つた o
比較例 4の負極材料の各物性の評価結果を表 1に示す。
[0168] [比較例 5]
鱗片状天然黒鉛を球形化処理した黒鉛粉末の代わりに、球状の人造黒鉛 (メソ力 一ボンマイクロビーズ)を、実施例 1と同様に熱処理した。得られた比較例 5の負極材 料の物性を測定したところ、メジアン径 17 /ζ πι、 d /ά =3. 5、タップ密度 1. 45g
90 10
/cm3,表面官能基量 OZC値 0. 002、 BET比表面積 1. lm2Zg、ラマン R値 0. 2 5、ラマン半値幅 24.
Figure imgf000034_0001
円形度 0. 96であった。なお、メジアン径、タップ密度、 BET比表面積、表面官能基量 OZC値、ラマン R値、ラマン半値幅、円形度は、前記 記載の手法にて測定した値を用いた。
[0169] また、比較例 5の負極材料の結晶性を X線回折法にて測定したところ、 d =0. 33
002
60nm、 Lc =690nmであった。
004
[0170] 更に、比較例 5の負極材料を用いて、電極の活物質配向比を求めたところ、 0. 12 であった。また、電極形成時のプレス荷重は 400kgであった。
更に、比較例 5の負極材料を用いて、実施例 1と同様にリチウム二次電池を作製し 、放電容量、充放電効率、負荷特性、充電膨張率、ガス発生量の測定を行なった。 比較例 5の負極材料の各物性の評価結果を表 1に示す。
[0171] [比較例 6]
実施例 1で得られた熱処理した球形化黒鉛粉末にオゾンガスによる酸化処理を施 し、比較例 6の負極材料とした。得られた比較例 6の負極材料の物性を測定したとこ ろ、メジアン径 17 m、 d /ά = 2. 5、タップ密度 1. 0gZcm3、表面官能基量 O
90 10
ZC値。. 045、 BET比表面積 5. 5m2Zg、ラマン R値。. 03、ラマン半値幅 20. 6c 円形度 0. 94であった。
なお、メジアン径、タップ密度、 BET比表面積、表面官能基量 OZC値、ラマン R値 、ラマン半値幅、円形度は、前記記載の手法にて測定した値を用いた。
[0172] また、比較例 6の負極材料の結晶性を X線回折法にて測定したところ、 d =0. 33
002
54nm、 Lc 〉1000A (100nm)であった。
004
[0173] 更に、比較例 6の負極材料を用いて、電極の活物質配向比を求めたところ、 0. 05 であった。また、電極形成時のプレス荷重は 58kgであった。
更に、比較例 6の負極材料を用いて、実施例 1と同様の手順でリチウム二次電池を 作製し、放電容量、充放電効率、負荷特性、充電膨張率、ガス発生量の測定を行な つた o
比較例 6の負極材料の各物性の評価結果を表 1に示す。
[0174] [表 1] 表 1
Figure imgf000035_0001
[0175] 表 1の結果をみると、比較例 1の負極材料では、表面官能基量 OZC値、 BET比表 面積、ラマン R値は本発明の規定範囲に含まれるが、タップ密度が本発明の規定範 囲を大きく下回っており、その結果、電極塗工時に不均一な膜となり、プレス時に銅 箔カも剥離してしま 、、電池特性を求めることはできな力つた。
[0176] 比較例 2の負極材料では、表面官能基量 OZC値、 BET比表面積、ラマン R値は 本発明の規定範囲に含まれるが、タップ密度が本発明の規定範囲を下回っており、 その結果、負荷特性が低ぐ充電膨張率も大きい。
[0177] 比較例 3の負極材料では、タップ密度、表面官能基量 OZC値、 BET比表面積は 本発明の規定範囲に含まれる力 熱処理温度が低いためにラマン R値が本発明の 規定範囲を上回っており、その結果、ガス発生量が多い。
[0178] 比較例 4の負極材料では、タップ密度のみ本発明の規定範囲に含まれる力 熱処 理をしていないために表面官能基量 OZC値、 BET比表面積、ラマン R値が本発明 の規定範囲を上回っており、その結果、充放電効率が低ぐガス発生量が多ぐ且つ 、負荷特性も低くなつている。
[0179] 比較例 5の負極材料では、人造黒鉛を熱処理して!/、るため、表面官能基量 OZC 値のみ本発明の規定範囲に含まれる力 タップ密度、 BET比表面積、ラマン R値の 要項が本発明の規定範囲を外れており、その結果、電極形成時のプレス荷重が大き ぐ放電容量も小さい。
[0180] 比較例 6の負極材料では、タップ密度、 BET比表面積、ラマン R値が本発明の規定 範囲に含まれが、表面官能基量 OZC値が本発明の規定範囲を上回っており、その 結果、ガス発生量が多い。
[0181] これらに対して、実施例 1〜4の負極材料では、タップ密度、ラマン R値、表面官能 基量 OZC値、及び BET比表面積の全てが本発明の規定範囲を満たしている。そし て、これらの負極材料を用いると電極形成時のプレス荷重が小さぐ作製した電池は 高い放電容量を示しており、充放電効率と負荷特性も高ぐ電極の充電膨張率とガス 発生量も低く抑えられて 、る。
[0182] また、実施例 5及び実施例 6の負極材料では、本発明の規定範囲を満たしている黒 鉛粉末を、規定した範囲量含有しているため、電極形成時のプレス荷重が小さぐ作 製した電池は高い放電容量を示しており、充放電効率と負荷特性も高ぐ電極の充 電膨張率とガス発生量も低く抑えられて ヽる。
産業上の利用可能性
[0183] 本発明のリチウム二次電池用負極材料によれば、高い電極密度で使用した場合で も、電極形成時のプレス荷重が小さぐ放電容量が高ぐ充放電効率が高ぐ負荷特 性に優れ、電池充電時の膨張が抑制され、ガス発生量が少ない等、各種の電池性 能にバランス良く優れたリチウム二次電池を実現することができるため、リチウム二次 電池が用いられる電子機器等の各種の分野において好適に利用できる。
[0184] また、本発明のリチウム二次電池用負極材料の製造方法によれば、上記のリチウム 二次電池用負極材料を安定して効率的且つ安価に製造できるため、リチウム二次電 池の工業生産分野にお!、てその価値は大き 、。
[0185] 以上、本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離 れることなく様々な変更が可能であることは当業者に明らかである。
なお、本出願は、 2004年 6月 30日付で出願された特願 2004— 193359号明細 書、及び、 2005年 6月 24日付で出願された特願 2005— 184856号明細書に基づ いており、その全体が引用により援用される。

Claims

請求の範囲
[1] 黒鉛粉末 (A)力もなるリチウム二次電池用負極材料であって、
該黒鉛粉末 (A)のタップ密度が 0. 8g/cm3以上、 1. 35g/cm3以下であり、表面 官能基量 OZC値が 0以上、 0. 01以下であり、 BET比表面積が 2. 5m2Zg以上、 7
. 0m2Zg以下であり、ラマン R値が 0. 02以上、 0. 05以下である
ことを特徴とする、リチウム二次電池用負極材料。
•表面官能基量 OZC値:
X線光電子分光法分析に於いて、 Clsと Olsのスペクトルのピーク面積を求め、こ れに基づいて cと oの原子濃度比 oZc(o原子濃度 Zc原子濃度)を算出し、この 値を表面官能基量 ozc値とする。
'ラマン R値:
ラマンスペクトル分析に於いて、 1580cm_1付近のピーク Pの強度 Iと、 1360cm
A A
1付近のピーク P
Bの強度 I
Bを測定し、その強度比 R(R=I
B Λ A )を算出し、この値を ラマン R値とする。
[2] 該黒鉛粉末 (A)の体積基準平均粒径が 10 m以上、 50 /z m以下であり、体積基 準における 90%粒径と 10%粒径との比(d /ά )が 1. 5以上、 4. 0以下であること
90 10
を特徴とする、請求項 1記載のリチウム二次電池用負極材料。
[3] 該黒鉛粉末 (Α)が、天然黒鉛を処理して得られる
ことを特徴とする、請求項 1又は請求項 2に記載のリチウム二次電池用負極材料。
[4] 請求項 1〜3の何れか一項に記載の負極材料に、天然黒鉛、人造黒鉛、非晶質被 覆黒鉛、榭脂被覆黒鉛、及び非晶質炭素の中から選ばれる一種以上の炭素材料 (Β
)を混合してなる、リチウム二次電池用負極材料であって、
黒鉛粉末 (Α)及び炭素材料 (Β)の総量に対する炭素材料 (Β)の割合が 5重量% 以上、 95重量%以下である
ことを特徴とする、リチウム二次電池用負極材料。
[5] 炭素材料 (Β)が、
(i)天然黒鉛粒子を黒鉛ィ匕可能な炭素質であるバインダが熱処理されたものにより一 部ないし全てが被覆された炭素材料、及び、 (ii)黒鉛ィ匕可能な炭素質であるバインダが熱処理されたものにより天然黒鉛粒子同 士が結合された炭素材料
力もなる群より選ばれる少なくとも一つ以上の炭素材料であるとともに、
黒鉛粉末 (A)及び炭素材料 (B)の総量に対する炭素材料 (B)の割合が 10重量% 以上、 90重量%以下である
ことを特徴とする、請求項 4記載のリチウム二次電池用負極材料の製造方法。
[6] リチウム二次電池用負極材料を製造する方法であって、
タップ密度が 0. 8gZcm3以上、 1. 35gZcm3以下であり、 BET比表面積が 3. 5m 2Zg以上、 11. 0m2Zg以下であり、真密度が 2. 25gZcm3以上である天然黒鉛を 、 1600°C以上、 3200°C以下で熱処理することにより、表面官能基量 OZC値が 0. 01以下の黒鉛粉末 (C)を得る
ことを特徴とする、リチウム二次電池用負極材料の製造方法。
[7] 該天然黒鉛が、球形化処理された黒鉛粉末である
ことを特徴とする、請求項 6記載のリチウム二次電池用負極材料の製造方法。
[8] 該熱処理後の黒鉛粉末 (C)と、天然黒鉛、人造黒鉛、非晶質被覆黒鉛、樹脂被覆 黒鉛、及び非晶質炭素の中から選ばれる少なくとも一つ以上の炭素材料 (B)とを、 (
C)及び (B)の総量に対して (B)の割合が 5重量%以上、 95重量%以下となるように 混合する
ことを特徴とする、請求項 6又は請求項 7に記載のリチウム二次電池用負極材料の製 造方法。
[9] 炭素材料 (B)が、
(i)天然黒鉛粒子を黒鉛ィ匕可能な炭素質であるバインダが熱処理されたものにより一 部ないし全てが被覆された炭素材料、及び、
(ii)黒鉛ィ匕可能な炭素質であるバインダが熱処理されたものにより天然黒鉛粒子同 士が結合された炭素材料
力もなる群より選ばれる少なくとも一つ以上の炭素材料であるとともに、
黒鉛粉末 (C)及び炭素材料 (B)の総量に対する炭素材料 (B)の割合が 10重量% 以上、 90重量%以下となるように混合する ことを特徴とする、請求項 8記載のリチウム二次電池用負極材料の製造方法。
[10] 集電体と、該集電体上に形成された活物質層とを備えると共に、
該活物質層が、請求項 1〜5の何れか一項に記載のリチウム二次電池用負極材料 を含有する
ことを特徴とする、リチウム二次電池用負極。
[11] 集電体と、該集電体上に形成された活物質層とを備えると共に、
該活物質層が、請求項 6〜9の何れか一項に記載の方法によって製造されたリチウ ムニ次電池用負極材料を含有する
ことを特徴とする、リチウム二次電池用負極。
[12] リチウムイオンを吸蔵 ·放出可能な正極及び負極、並びに電解質を備えると共に、 該負極が、請求項 10又は請求項 11に記載のリチウム二次電池用負極である ことを特徴とする、リチウム二次電池。
PCT/JP2005/011641 2004-06-30 2005-06-24 リチウム二次電池用負極材料及びその製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池 WO2006003849A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/630,470 US8637187B2 (en) 2004-06-30 2005-06-24 Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
EP05765121.8A EP1775785B1 (en) 2004-06-30 2005-06-24 Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-193359 2004-06-30
JP2004193359 2004-06-30

Publications (1)

Publication Number Publication Date
WO2006003849A1 true WO2006003849A1 (ja) 2006-01-12

Family

ID=35782660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011641 WO2006003849A1 (ja) 2004-06-30 2005-06-24 リチウム二次電池用負極材料及びその製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池

Country Status (6)

Country Link
US (1) US8637187B2 (ja)
EP (1) EP1775785B1 (ja)
JP (2) JP5082207B2 (ja)
KR (1) KR100826890B1 (ja)
CN (1) CN100464446C (ja)
WO (1) WO2006003849A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2128916A4 (en) * 2006-12-26 2016-11-30 Mitsubishi Chem Corp COMPOSITE GRAPHITE PARTICLES FOR NONAQUEOUS SECONDARY BATTERIES, NEGATIVE ELECTRODE MATERIAL CONTAINING THE SAME, NEGATIVE ELECTRODES, AND NONAQUEOUS SECONDARY BATTERIES
CN111732096A (zh) * 2019-03-25 2020-10-02 中信国安盟固利动力科技有限公司 一种高功率锂离子电池的负极材料及其制备方法
CN114572978A (zh) * 2022-03-16 2022-06-03 江西紫宸科技有限公司 一种高倍率石墨负极材料的制备方法、负极材料和锂电池

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1775785B1 (en) * 2004-06-30 2013-08-21 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
EP1801903B1 (en) * 2004-08-30 2012-09-26 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell
CN101501899B (zh) * 2006-08-17 2012-05-30 三菱化学株式会社 锂离子二次电池用负极活性物质及其制造方法以及使用该活性物质的锂离子二次电池用负极及锂离子二次电池
KR100938058B1 (ko) * 2007-10-23 2010-01-21 삼성에스디아이 주식회사 리튬 이차전지용 음극 및 이를 이용한 리튬 이차 전지
JP5064195B2 (ja) * 2007-12-07 2012-10-31 株式会社ミツバ ブラシのカーボン特定方法
CN101939865B (zh) * 2008-02-04 2013-10-16 三菱化学株式会社 多层结构碳质物及其制造方法以及使用该多层结构碳质物的非水系二次电池
KR101600108B1 (ko) * 2008-02-28 2016-03-04 바스프 에스이 흑연 나노판 및 조성물
JP5429168B2 (ja) 2008-07-17 2014-02-26 中央電気工業株式会社 混合炭素材料および非水系二次電池用負極
JP5440099B2 (ja) 2008-10-31 2014-03-12 三菱化学株式会社 非水系二次電池用負極材料
JP2010176973A (ja) * 2009-01-28 2010-08-12 Sanyo Electric Co Ltd 非水電解質二次電池
JP5625381B2 (ja) * 2009-02-20 2014-11-19 三菱化学株式会社 リチウムイオン二次電池用炭素材料
WO2010113783A1 (ja) 2009-03-30 2010-10-07 住友金属工業株式会社 混合炭素材料および非水系二次電池用負極
SG178262A1 (en) * 2009-08-27 2012-03-29 Eveready Battery Inc Lithium-iron disulfide cathode formulation having high pyrite content and low conductive additives
JP5754098B2 (ja) * 2009-09-15 2015-07-22 三菱化学株式会社 リチウムイオン二次電池用炭素材料
JP2011076897A (ja) * 2009-09-30 2011-04-14 Kansai Coke & Chem Co Ltd リチウムイオン二次電池用負極材料
KR20110039809A (ko) * 2009-10-12 2011-04-20 삼성에스디아이 주식회사 리튬 이차 전지 음극 활물질용 리튬 티탄 산화물, 이의 제조 방법 및 이를 구비한 리튬 이차 전지
JP5540805B2 (ja) * 2010-03-23 2014-07-02 三菱化学株式会社 非水系二次電池用炭素材料、負極材及び非水系二次電池
JP5765162B2 (ja) * 2010-09-27 2015-08-19 三菱化学株式会社 非水系二次電池用負極材及びこれを用いた負極並びに非水系二次電池
JP5517009B2 (ja) * 2010-10-27 2014-06-11 トヨタ自動車株式会社 リチウムイオン二次電池製造方法
KR102020753B1 (ko) * 2010-10-29 2019-09-11 미쯔비시 케미컬 주식회사 비수 전해액 2 차 전지 부극용 복층 구조 탄소재, 비수계 2 차 전지용 부극, 리튬 이온 2 차 전지 및 비수 전해액 2 차 전지 부극용 복층 구조 탄소재의 제조 방법
CN103477476B (zh) * 2011-03-29 2017-09-08 三菱化学株式会社 非水系二次电池用负极碳材料、负极以及非水系二次电池
JP2012221951A (ja) * 2011-04-01 2012-11-12 Hitachi Chem Co Ltd リチウム二次電池用負極材及びその製造方法、リチウム二次電池用負極、並びにリチウム二次電池
JP2013001582A (ja) * 2011-06-13 2013-01-07 Kansai Coke & Chem Co Ltd 等方性黒鉛材料及びその製造方法
KR20140041883A (ko) * 2011-07-29 2014-04-04 도요타지도샤가부시키가이샤 리튬 이온 2차 전지
JP5783433B2 (ja) * 2011-07-29 2015-09-24 トヨタ自動車株式会社 リチウムイオン二次電池
JP5783432B2 (ja) * 2011-07-29 2015-09-24 トヨタ自動車株式会社 リチウムイオン二次電池およびその製造方法
JPWO2013018181A1 (ja) * 2011-07-29 2015-03-02 トヨタ自動車株式会社 リチウムイオン二次電池
JP5743150B2 (ja) * 2011-08-25 2015-07-01 トヨタ自動車株式会社 非水二次電池製造方法
KR20130037091A (ko) * 2011-10-05 2013-04-15 삼성에스디아이 주식회사 음극 활물질 및 이를 채용한 리튬 전지
WO2013058349A1 (ja) * 2011-10-21 2013-04-25 昭和電工株式会社 黒鉛材料、電池電極用炭素材料、及び電池
TWI457278B (zh) * 2011-10-21 2014-10-21 昭和電工股份有限公司 Production method of electrode material for lithium ion battery
KR101325555B1 (ko) * 2011-12-09 2013-11-05 주식회사 엘지화학 구형화 천연 흑연을 음극 활물질로 포함하는 리튬 이차전지
US8914176B2 (en) * 2012-01-23 2014-12-16 Nanotek Instruments, Inc. Surface-mediated cell-powered vehicles and methods of operating same
JP5461746B1 (ja) * 2012-06-29 2014-04-02 昭和電工株式会社 炭素材料、電池電極用炭素材料、及び電池
KR101582718B1 (ko) 2013-02-04 2016-01-06 주식회사 엘지화학 구형 천연 흑연을 포함하는 음극 및 이를 포함하는 리튬 이차 전지
JP6091602B2 (ja) * 2013-03-25 2017-03-08 Jsr株式会社 電極活物質、電極及び蓄電デバイス
KR101522166B1 (ko) * 2013-06-05 2015-05-22 주식회사 엘지화학 신규한 이차전지
JP6409377B2 (ja) * 2013-07-18 2018-10-24 三菱ケミカル株式会社 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池
US9991507B2 (en) 2013-07-26 2018-06-05 Lg Chem, Ltd. Electrode for secondary battery having improved energy density and lithium secondary battery including the same
KR101618736B1 (ko) * 2013-12-24 2016-05-10 주식회사 포스코 등방흑연 성형체 및 그 제조 방법
US11283066B2 (en) 2014-03-12 2022-03-22 Sanyo Chemical Industries, Ltd. Coated negative-electrode active material for use in lithium-ion battery, slurry for use in lithium-ion battery, negative electrode for use in lithium-ion battery, lithium-ion battery, and method for manufacturing coated negative-electrode active material for use in lithium-ion battery
CN106463727B (zh) * 2014-03-31 2019-03-15 Nec 能源元器件株式会社 基于石墨的负电极活性材料、负电极和锂离子二次电池
KR102581549B1 (ko) 2014-07-07 2023-09-21 미쯔비시 케미컬 주식회사 탄소재, 탄소재의 제조 방법 및 탄소재를 사용한 비수계 2 차 전지
TWI565654B (zh) 2014-08-08 2017-01-11 Kureha Corp Production method of carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery and carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery
TWI599092B (zh) 2014-08-08 2017-09-11 Kureha Corp Non-Aqueous Electrolyte Secondary Battery Negative Carbonaceous Material
TWI604655B (zh) * 2014-08-08 2017-11-01 Kureha Corp Non-aqueous electrolyte secondary battery negative carbonaceous material
CN109314239A (zh) * 2016-06-23 2019-02-05 昭和电工株式会社 石墨材料及使用其的二次电池用电极
JP6763550B2 (ja) * 2016-07-04 2020-09-30 エルジー・ケム・リミテッド 負極および前記負極を含む二次電池
JP6916793B2 (ja) * 2016-08-10 2021-08-11 株式会社エンビジョンAescジャパン リチウムイオン電池用電極およびリチウムイオン電池
KR101966144B1 (ko) * 2016-09-29 2019-04-05 주식회사 엘지화학 천연 흑연 및 인조 흑연을 포함하는 다층 음극 및 이를 포함하는 리튬 이차전지
KR102053843B1 (ko) 2016-11-08 2019-12-09 주식회사 엘지화학 음극 및 상기 음극의 제조방법
WO2018110645A1 (ja) * 2016-12-14 2018-06-21 昭和電工株式会社 黒鉛材料及びその製造方法
WO2019107054A1 (ja) * 2017-11-29 2019-06-06 Necエナジーデバイス株式会社 負極製造用ペーストの製造方法、電池用負極電極、電池および電池用負極電極の製造方法
US11646406B2 (en) * 2017-12-22 2023-05-09 Tokai Carbon Co., Ltd. Negative electrode material for lithium-ion secondary battery and method for producing negative electrode material for lithium-ion secondary battery
CN109962235B (zh) * 2018-04-28 2020-07-17 宁德时代新能源科技股份有限公司 二次电池
CN108807848B (zh) * 2018-05-11 2019-10-08 宁德时代新能源科技股份有限公司 负极极片及含有它的二次电池
US20210184218A1 (en) * 2018-05-25 2021-06-17 Lg Chem, Ltd. Complex Particles for Negative Electrode Active Material and Negative Electrode for All-Solid Type Battery Comprising the Same
CN108808072A (zh) * 2018-06-29 2018-11-13 宁德时代新能源科技股份有限公司 锂离子电池
CN111244398A (zh) * 2018-11-28 2020-06-05 上海杉杉科技有限公司 一种复合石墨负极材料、锂离子电池、制备方法和应用
CN109888284B (zh) * 2018-12-29 2020-05-01 湖南晋烨高科股份有限公司 锂离子电池负极材料、锂离子电池负极、锂离子电池、电池组及电池动力车
EP3890061A4 (en) * 2019-01-14 2021-12-29 Lg Energy Solution, Ltd. Anode and secondary battery comprising said anode
EP3893297A4 (en) * 2019-01-17 2022-03-23 Lg Energy Solution, Ltd. ANODE, AND AUXILIARY BATTERY INCLUDING ANODE
EP3863093B1 (en) 2019-04-02 2023-04-26 LG Energy Solution, Ltd. Anode active material, method for manufacturing same, and anode and secondary battery each comprising same
CN110190252B (zh) * 2019-05-09 2022-04-01 河南电池研究院有限公司 一种金属锂碳复合材料及其制备方法
CN113346076B (zh) * 2021-05-14 2023-01-24 沁新集团(天津)新能源技术研究院有限公司 一种锂离子电池表面改性石墨负极材料及其制备方法
JP7434218B2 (ja) 2021-06-30 2024-02-20 プライムアースEvエナジー株式会社 非水二次電池の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245098A (ja) * 1994-03-02 1995-09-19 Hitachi Maxell Ltd 非水二次電池
JPH10334915A (ja) * 1997-05-30 1998-12-18 Mitsubishi Chem Corp 非水系二次電池用電極
US20020061445A1 (en) 1997-05-30 2002-05-23 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary cell
JP2002222650A (ja) 2001-01-25 2002-08-09 Hitachi Chem Co Ltd 非水電解液二次電池負極用黒鉛質粒子及びその製造法、非水電解液二次電池負極並びに非水電解液二次電池
JP2003168433A (ja) * 2001-12-03 2003-06-13 Hitachi Powdered Metals Co Ltd 非水系二次電池の負極用黒鉛粒子

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2845528B2 (ja) 1989-12-15 1999-01-13 三井化学株式会社 プロピレンの製造方法
JP3188032B2 (ja) 1993-03-30 2001-07-16 三洋電機株式会社 リチウム二次電池
JP3642433B2 (ja) * 1994-03-08 2005-04-27 ソニー株式会社 着脱式電池ユニット
JPH1125979A (ja) 1997-07-08 1999-01-29 Mitsubishi Chem Corp リチウムイオン二次電池
US6632569B1 (en) 1998-11-27 2003-10-14 Mitsubishi Chemical Corporation Carbonaceous material for electrode and non-aqueous solvent secondary battery using this material
JP3945928B2 (ja) 1998-11-27 2007-07-18 三菱化学株式会社 リチウムイオン二次電池負極用炭素材料の製造方法
US7829222B2 (en) 2001-01-25 2010-11-09 Hitachi Chemical Company, Ltd. Artificial graphite particles and method for manufacturing same, nonaqueous electrolyte secondary cell, negative electrode and method for manufacturing same, and lithium secondary cell
JP4666876B2 (ja) 2001-09-26 2011-04-06 Jfeケミカル株式会社 複合黒鉛質材料およびその製造方法、ならびにリチウムイオン二次電池用負極材料およびリチウムイオン二次電池
JP3642487B2 (ja) * 2001-12-10 2005-04-27 ソニー株式会社 二次電池およびそれに用いる電解質
KR100477970B1 (ko) * 2002-12-26 2005-03-23 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 그의 제조 방법
JP2005353345A (ja) * 2004-06-09 2005-12-22 Mitsui Mining Co Ltd 天然黒鉛負極材及びその製造方法
EP1775785B1 (en) * 2004-06-30 2013-08-21 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245098A (ja) * 1994-03-02 1995-09-19 Hitachi Maxell Ltd 非水二次電池
JPH10334915A (ja) * 1997-05-30 1998-12-18 Mitsubishi Chem Corp 非水系二次電池用電極
US20020061445A1 (en) 1997-05-30 2002-05-23 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary cell
JP2002222650A (ja) 2001-01-25 2002-08-09 Hitachi Chem Co Ltd 非水電解液二次電池負極用黒鉛質粒子及びその製造法、非水電解液二次電池負極並びに非水電解液二次電池
JP2003168433A (ja) * 2001-12-03 2003-06-13 Hitachi Powdered Metals Co Ltd 非水系二次電池の負極用黒鉛粒子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1775785A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2128916A4 (en) * 2006-12-26 2016-11-30 Mitsubishi Chem Corp COMPOSITE GRAPHITE PARTICLES FOR NONAQUEOUS SECONDARY BATTERIES, NEGATIVE ELECTRODE MATERIAL CONTAINING THE SAME, NEGATIVE ELECTRODES, AND NONAQUEOUS SECONDARY BATTERIES
CN111732096A (zh) * 2019-03-25 2020-10-02 中信国安盟固利动力科技有限公司 一种高功率锂离子电池的负极材料及其制备方法
CN114572978A (zh) * 2022-03-16 2022-06-03 江西紫宸科技有限公司 一种高倍率石墨负极材料的制备方法、负极材料和锂电池
CN114572978B (zh) * 2022-03-16 2024-01-26 江西紫宸科技有限公司 一种高倍率石墨负极材料的制备方法、负极材料和锂电池

Also Published As

Publication number Publication date
CN100464446C (zh) 2009-02-25
CN1981393A (zh) 2007-06-13
EP1775785B1 (en) 2013-08-21
JP5082207B2 (ja) 2012-11-28
US8637187B2 (en) 2014-01-28
JP2011181505A (ja) 2011-09-15
EP1775785A4 (en) 2011-11-09
JP2006049288A (ja) 2006-02-16
JP5561232B2 (ja) 2014-07-30
EP1775785A1 (en) 2007-04-18
KR20070026786A (ko) 2007-03-08
US20080274406A1 (en) 2008-11-06
KR100826890B1 (ko) 2008-05-06

Similar Documents

Publication Publication Date Title
WO2006003849A1 (ja) リチウム二次電池用負極材料及びその製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池
JP5268018B2 (ja) 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
JP6138960B2 (ja) 負極活物質及びこの製造方法
KR100597065B1 (ko) 인조흑연질 입자 및 그 제조방법, 비수전해액 2차전지음극 및 그 제조방법, 및 리튬 2차전지
WO2012133788A1 (ja) 非水系二次電池用黒鉛粒子及びその製造方法、負極並びに非水系二次電池
WO2014002602A1 (ja) 二次電池用負極活物質及びその製造方法、それを用いた負極並びにリチウムイオン電池
JP3803866B2 (ja) 二次電池用の二層炭素材料及びそれを用いたリチウム二次電池
WO2005098999A1 (ja) 大電流入出力非水電解質二次電池用負極材料、その製造方法および負極材料を用いる電池
JP7447865B2 (ja) シリコンナノ粒子及びそれを用いた非水二次電池負極用活物質並びに二次電池
WO1997018160A1 (fr) Materiau de cathode pour accumulateur au lithium, procede de fabrication associe et accumulateur utilisant ledit materiau
JP2010009951A (ja) 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
KR20220093133A (ko) 난층 탄소 코팅을 포함하는 열적으로 불균등화된 애노드 활물질
CA2790582C (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
US20040151837A1 (en) Material for negative electrode of lithium secondary battery, method for production thereof and lithium secondary battery using the same
JP4045438B2 (ja) 二次電池用の二層炭素材料及びそれを用いたリチウム二次電池
JP5182498B2 (ja) 非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタ
JP6620812B2 (ja) リチウムイオン二次電池用負極活物質およびその製造方法
JP5394721B2 (ja) リチウムイオン二次電池、そのための負極材料および負極
JP4672958B2 (ja) 黒鉛質粒子、リチウムイオン二次電池、そのための負極材料および負極
JP2003263982A (ja) 黒鉛質粒子の製造方法およびリチウムイオン二次電池用負極材料
JP2018170247A (ja) リチウム二次電池用複合活物質およびその製造方法
JP7424555B1 (ja) 負極活物質および二次電池
JP6070016B2 (ja) 非水系二次電池用複合炭素材及びその製造方法、負極並びに非水系二次電池
WO2023017694A1 (ja) 二次電池用材料、負極活物質および二次電池
JP2017224446A (ja) リチウムイオン二次電池用材料、リチウムイオン二次電池負極形成用組成物、リチウムイオン二次電池正極形成用組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極、及びリチウムイオン二次電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 200580022371.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077000313

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005765121

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11630470

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020077000313

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005765121

Country of ref document: EP