WO2009099029A1 - 複層構造炭素質物及びその製造方法並びにそれを用いた非水系二次電池 - Google Patents

複層構造炭素質物及びその製造方法並びにそれを用いた非水系二次電池 Download PDF

Info

Publication number
WO2009099029A1
WO2009099029A1 PCT/JP2009/051707 JP2009051707W WO2009099029A1 WO 2009099029 A1 WO2009099029 A1 WO 2009099029A1 JP 2009051707 W JP2009051707 W JP 2009051707W WO 2009099029 A1 WO2009099029 A1 WO 2009099029A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonaceous material
electrode
organic compound
carbon particles
less
Prior art date
Application number
PCT/JP2009/051707
Other languages
English (en)
French (fr)
Inventor
Tomiyuki Kamada
Kengo Okanishi
Keita Yamaguchi
Hideharu Satou
Hiroyuki Uono
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to EP09708756.3A priority Critical patent/EP2242133B1/en
Priority to US12/865,929 priority patent/US20110059371A1/en
Priority to EP21167374.4A priority patent/EP3866230B1/en
Priority to CN2009801040925A priority patent/CN101939865B/zh
Publication of WO2009099029A1 publication Critical patent/WO2009099029A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a multilayered carbonaceous material and a method for producing the same, and more particularly to a negative electrode for a non-aqueous secondary battery and a non-aqueous secondary battery using the carbonaceous material as a negative electrode material. More specifically, the present invention relates to an electrode material, preferably a carbon material for a negative electrode, which can constitute a non-aqueous secondary battery having a high capacity, a low irreversible capacity during initial charge / discharge, and good cycle characteristics.
  • lithium ion secondary batteries with higher energy density are attracting attention as compared to nickel / cadmium batteries and nickel / hydrogen batteries.
  • a non-aqueous secondary battery using a carbon material As a non-aqueous secondary battery using a carbon material, a battery using a non-graphite carbon material having a low crystallinity as a negative electrode material was first put on the market. Subsequently, batteries using graphites with a high degree of crystallinity have been put on the market and have reached the present day.
  • the theoretical electric capacity of graphite is 372 mAh / g in theory, and a battery with a high charge / discharge capacity can be obtained if the electrolyte is selected appropriately.
  • Patent Document 1 and Patent Document 2 are also being studied. This is because of the advantage of graphite with high crystallinity (high capacity and low irreversible capacity) and the advantage of carbonaceous material with low crystallinity (since the graphene layer in the carbonaceous material is wide, the insertion and release of lithium is smooth, Taking advantage of high output and difficulty in reacting with electrolyte solution, it complements the disadvantages of graphite with high crystallinity (decomposes propylene carbonate electrolyte) and carbonaceous materials with low crystallinity (large irreversible capacity). It is based on the idea of doing.
  • the present invention has been made in view of the above-described background art, and its object is to provide a negative electrode material for a non-aqueous secondary battery having a high capacity, a low irreversible capacity during initial charge / discharge, and good cycle characteristics.
  • another object is to provide a non-aqueous secondary battery using the same.
  • the present inventor mixed the multilayer carbonaceous material as described above with a thickener and a binder, and added a dispersion medium. After preparing the slurry and applying and drying it onto a copper foil as a current collector to produce an electrode, when the electrode is pressed to a specified electrode density, a large load is applied to the electrode, which is harder than graphite. It was found that the brittle, low crystalline surface carbonaceous material was destroyed and peeled, and the graphite in the inside came into direct contact with the electrolyte. For this reason, the inventors have found that the above-mentioned concept inherently having a multilayer structure is difficult to be exhibited, and that an increase in irreversible capacity during initial charge / discharge and a decrease in cycle characteristics are remarkably caused.
  • the present inventors have mixed a graphitic carbon particle and an organic compound, and in the multilayered carbonaceous material obtained by heat treatment, a loop structure exists at the edge of the graphitic carbon particle, and the loop structure is maintained. It was found that the following effects that could not be achieved even when the electrodes were densified by using a carbonaceous material having a multi-layer structure in which the carbonized product of the organic compound was attached to the surface as it was.
  • the multilayered carbonaceous material of the present invention is less likely to cause destruction or peeling of low crystalline carbon existing on the surface of the multilayered carbonaceous material at the time of electrode preparation.
  • the press load can be kept low.
  • the present inventors have found that a non-aqueous secondary battery having a high capacity, a low irreversible capacity at the time of initial charge / discharge, good cycle characteristics, and extremely good battery characteristics can be obtained.
  • the present invention is a multilayer carbonaceous material obtained by mixing graphite carbon particles and an organic compound and heat-treating, wherein a loop structure is present at the edge of the graphite carbon particles, and the loop structure is A carbonaceous material having a multilayer structure in which a carbonized product of an organic compound is attached to the surface of the carbonaceous material while being held is provided.
  • this invention provides said multilayer structure carbonaceous material characterized by satisfy
  • the R value which is the ratio of the scattering intensity of 1360 cm ⁇ 1 to the scattering intensity, is 0.15 or more.
  • the present invention is also a multilayer carbonaceous material obtained by mixing graphitic carbon particles and an organic compound and heat-treating, and satisfies all the following requirements (b) to (f):
  • the multi-layer structure carbonaceous material is provided.
  • the R value which is the ratio of the scattering intensity of 1360 cm ⁇ 1 to the scattering intensity, is 0.15 or more.
  • the present invention also provides a multilayer carbonaceous material obtained by mixing graphitic carbon particles and an organic compound and heat-treating, and satisfying all of the following requirements (a) to (e): It is to provide.
  • (A) A carbonized product of an organic compound having a residual carbon content of 0.1 parts by weight or more and 4 parts by weight or less based on 100 parts by weight of spheroidized graphitic carbon particles is added.
  • the present invention is a method for producing the above-mentioned multilayer structure carbonaceous material, which is obtained through a step of mixing graphitic carbon particles and an organic compound or a solution of an organic compound, and then a step of heat treatment.
  • a multi-layer structure carbonaceous material characterized in that the graphitic carbon particles as a raw material are spheroidized highly crystalline graphite satisfying all the following requirements (1a) to (1f)
  • a method for producing a carbonaceous material is provided.
  • the present invention also provides a negative electrode for a non-aqueous secondary battery, characterized in that the multilayer carbonaceous material described above is used as a negative electrode material.
  • the present invention also relates to a negative electrode including a carbonaceous material capable of inserting and extracting lithium, a positive electrode, and a nonaqueous secondary battery comprising a solute and a nonaqueous solvent, the negative electrode for a nonaqueous secondary battery described above
  • a non-aqueous secondary battery is provided.
  • the low crystalline carbon existing on the surface of the multi-layered carbonaceous material is hardly broken or peeled off at the time of producing the electrode, and the press load can be kept low.
  • a negative electrode material for a non-aqueous secondary battery that has excellent battery characteristics, such as maintaining a high discharge capacity comparable to graphite, reducing the irreversible capacity during initial charge / discharge, and having good cycle characteristics.
  • FIG. 10 is a view showing a transmission electron microscope (hereinafter abbreviated as “TEM”) photograph (magnified 300000 times) of the multilayer structure carbonaceous material of Example 9.
  • TEM transmission electron microscope
  • FIG. It is a figure which shows the TEM photograph (4000000 times) of the multilayer structure carbonaceous material of Example 2.
  • FIG. It is a figure which shows the TEM photograph (4000000 times) of the multilayer structure carbonaceous material of Example 3.
  • FIG. It is a figure which shows the TEM photograph (2000000 times) of the multilayer structure carbonaceous material of Example 7.
  • FIG. It is a figure which shows the TEM photograph (4000000 times) of the multilayer structure carbonaceous material of the comparative example 2.
  • the multi-layer structure carbonaceous material of the present invention (hereinafter sometimes referred to as “the carbonaceous material of the present invention”) is obtained by mixing graphite carbon particles and an organic compound and heat-treating them, and satisfying specific requirements. It is. That is, the present invention relates to a multilayered carbonaceous material obtained by attaching a carbonized product of an organic compound to the surface of graphitic carbon particles.
  • the carbonaceous material of the present invention is characterized in that a loop structure is present at the edge portion of the graphitic carbon particles, and a carbonized organic compound is attached to the surface while maintaining the loop structure.
  • the loop structure of the edge portion of the graphitic carbon particles can be actually confirmed by a transmission electron microscope (TEM) photograph as described later.
  • TEM transmission electron microscope
  • the edge portion of the graphite c-axis plane layer composed mainly of a network structure in which carbon 6-membered rings are connected in a plane is overlapped on the surface of the graphite carbon particle powder.
  • a closed loop structure exists, and the carbonized compound of the organic compound is attached to the surface while maintaining the loop structure.
  • this loop structure does not exist, or even if it exists, most of the loop structure collapses and the edge portion is exposed as it is, even if a carbonized organic compound adheres to the surface, this The effect of the invention cannot be obtained.
  • the loop structure as described above is present at the edge of the graphitic carbon particles, and the reason why the carbonaceous material formed by attaching a carbonized organic compound on the surface is not clear, is not clear, It is considered as follows. That is, since the edge portion of the graphitic carbon particle is an end portion where the SEI film is easily formed at the portion where the electrolytic solution and the negative electrode are in contact, the edge portion of the graphite carbon particle, particularly the edge portion of the c-axis plane layer is It is considered that the above-described SEI film is formed thinner by forming a loop structure that overlaps and is closed, and the irreversible capacity is reduced accordingly.
  • raw material for carbonaceous material of the present invention (A) Graphite carbon particles (nuclear material N)
  • the graphitic carbon particles in the present invention are used as a core material of the carbonaceous material of the present invention.
  • Such graphitic carbon particles are hereinafter simply referred to as “nuclear material N”.
  • the core material N in the present invention preferably has a volume average particle size in the range of 5 to 50 ⁇ m, more preferably in the range of 7 to 35 ⁇ m, and still more preferably in the range of 8 to 27 ⁇ m.
  • the range described by “to” indicates a range including numerical values described before and after “to”. If the volume average particle size is too large, the smoothness of the negative electrode surface is impaired. On the other hand, if the volume average particle size is too small, the specific surface area increases excessively, which may not be preferable.
  • the volume average particle diameter is measured by the method described later and is defined as that measured.
  • the core material N as a raw material has a high filling property, that is, a high tap density.
  • the “tap density” in this specification means the bulk density after tapping 500 times, and is represented by the following formula.
  • Nuclear material N in the present invention preferably has a tap density of 0.70 g / cm 3 or more, and particularly preferably 0.75 g / cm 3 or more.
  • the upper limit is preferably 1.40 g / cm 3 or less, more preferably 1.20 g / cm 3 or less.
  • the packing structure of powder particles depends on the size, shape, degree of interaction force between particles, etc., but in this specification, tap density is used as an index to quantitatively discuss the packing structure.
  • the core material N having a tap density of 0.70 g / cm 3 or more indicates that the filling rate of the electrode is high and the particle shape is spherical or an ellipsoidal shape equivalent thereto.
  • the BET specific surface area is less than 18m 2 / g, still more 15 m 2 / g or less, and particularly preferably not more than 13m 2 / g. If the BET specific surface area is larger than this range, the low crystalline carbon coating may be incomplete.
  • the (002) plane spacing (d002) determined by the X-ray wide angle diffraction method is preferably 0.345 nm or less, more preferably 0.340 nm or less, and particularly preferably less than 0.337 nm.
  • the crystallite size Lc in the c-axis direction is preferably 15 nm or more, more preferably 50 nm or more, and particularly preferably 90 nm or more.
  • the interplanar spacing (d002) and the crystallite size (Lc) are values indicating the crystallinity of the carbon material bulk. The smaller the (002) plane spacing (d002) value, the larger the crystallite size.
  • a larger (Lc) indicates that the carbon material has higher crystallinity, and the capacity increases because the amount of lithium entering the graphite layer approaches the theoretical value.
  • the crystallinity of the core material N is low, excellent battery characteristics (high capacity and low irreversible capacity) when high crystalline graphite is used for the electrode are not exhibited. It is particularly preferable that the above-mentioned ranges are combined for the interplanar spacing (d002) and the crystallite size (Lc).
  • the scattering intensity ratio of 1360 cm -1 relative scattering intensity 1580 cm -1 in the argon ion laser spectrum is 0.10 or more Is preferable, 0.13 or more is more preferable, and 0.15 or more is particularly preferable.
  • the upper limit of R value should just be 0.90 or less, Preferably it is 0.70 or less, Especially 0.50 or less is preferable.
  • the R value is an index indicating the crystallinity in the vicinity of the surface of the carbon particle (from the particle surface to about 100 °), and the larger the R value, the lower the crystallinity of the surface and the disordered crystal structure. Since the core material N that has been spheroidized generally has a rough particle surface and a larger R value than graphite before the treatment, the effect of increasing the binding property with the coated carbon material when used in a multi-layered carbonaceous material described later. There is also. If the R value is too small, the binding force between the highly crystalline graphitic carbon particles and the low crystalline carbonaceous material may be reduced, and may be easily peeled off. On the other hand, if the R value is too large, the bulk crystallinity tends to decrease, which may be undesirable.
  • the half width of the peak of 1580 cm -1 in an argon laser Raman spectrum is usually 17cm -1 or more, preferably 19cm -1 or more, more preferably 21cm -1 or more, and particularly preferably 23cm -1 or more
  • the upper limit is usually 33 cm ⁇ 1 or less, preferably 31 cm ⁇ 1 or less, more preferably 29 cm ⁇ 1 or less, and particularly preferably 27 cm ⁇ 1 or less.
  • a core material N having an (002) plane spacing (d002) of 0.345 nm or less, a crystallite size (Lc) of 90 nm or more, and an R value of 0.10 or more by wide-angle X-ray diffraction is Although the entire crystallinity is high, the vicinity of the surface of the particle is rough, showing a large strain and a large number of edge portions.
  • Nuclear material N in the present invention preferably has a true density of 2.21 g / cm 3 or more, more preferably 2.22 g / cm 3 or more, in particular not less 2.24 g / cm 3 or more preferable.
  • the upper limit is 2.26 g / cm 3 , which is the theoretical density of graphite.
  • the true density is related to the crystallinity of graphite, and if it is smaller than this range, the crystallinity is lowered and the charge / discharge capacity may be lowered.
  • the core material N in the present invention preferably satisfies the above conditions, but (1a) the volume average particle size is 5 to 50 ⁇ m, (1b) the tap density is 0.70 g / cm 3 or more, and (1c) is measured by the BET method. Specific surface area less than 18 m 2 / g, (1d) (002) plane spacing (d002) is 0.345 nm or less, crystallite size (Lc) is 90 nm or more, and (1e) R value is 0.10. Above all, and (1f) the true specific gravity is particularly preferably 2.21 g / cm 3 or more. Other physical properties are not particularly limited.
  • the raw material of the core material N in the present invention is not particularly limited, such as natural graphite, artificial graphite, pitch-based, polyacrylonitrile-based, mesophase pitch-based, vapor phase-grown, and those obtained by processing each carbon fiber into a powder form, etc.
  • Graphite carbon particles can be used.
  • scaly or scaly natural graphite having the highest crystallinity is used as a raw material. These may be used alone or in combination of two or more.
  • the method for producing the core material N in the present invention is not particularly limited.
  • commercially available natural graphite or artificial graphite can be screened and N having the above characteristics can be selected and obtained using a sorting means such as air classification.
  • a preferred production method is to spheroidize a specific pulverizer as disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-340232 with respect to graphitic carbon particles produced from nature or artificially produced graphitic carbon particles.
  • the core material N is manufactured by applying (dynamic energy treatment) and modifying it into a spherical shape or an ellipsoidal shape equivalent thereto. More preferably, it is desirable to remove coarse particles and fine particles from the graphitic carbon particles that have been subjected to spheroidizing treatment, using a classification means such as air classification.
  • the R value of the graphitic carbon particles after the treatment is usually 1.5 times or more, preferably 2 times or more, and the upper limit is not particularly limited, but usually 10 times or less.
  • the core material N is preferably increased to 7 times or less, and the R value is usually 0.10 or more, preferably 0.13 or more, particularly preferably 0.15 or more, and the tap density is 0.70 g / cm 3. This can be done.
  • the (002) plane spacing (d002) by the wide-angle X-ray diffraction method is 0.345 nm or less and the crystallite size (Lc) is 90 nm or more so that there is almost no change before and after this treatment.
  • the graphitic carbon particles as described above may be mixed with the organic compound as it is, but it is preferable to mix with the organic compound after heat treatment. Furthermore, it is more preferable to heat-treat the graphitic carbon particles after the spheronization treatment as described above. It is particularly preferable to use a spheroidized graphite carbon particle that has been heat-treated in a continuous heating furnace or the like in a nitrogen atmosphere or the like.
  • heat treatment refers to heating the graphitic carbon particles at 500 ° C. or more and 2000 ° C. or less using a heating furnace or the like.
  • the heat-treated graphite carbon particles may be abbreviated as “heat treated product P”.
  • the heat-treated product P preferably has three or more loop structures on the surface in 5 nm in the TEM image.
  • the core material N includes the heat-treated product P unless otherwise specified.
  • Carbonized product S The precursor of the carbonized product of an organic compound (hereinafter, abbreviated as “carbonized product S”) attached to the surface of the carbonaceous material of the present invention and covering the core material N is a liquid such as heavy oil.
  • An organic compound such as an organic substance with a phase carbonization reaction, an organic compound with a solid phase carbonization reaction such as a thermosetting resin, or a mixture thereof is used.
  • the organic compound those described in “Chemicals and Industry of Carbon Materials” by Isao Mochida, published by Asakura Shoten are suitably used.
  • the organic compound is not particularly limited as long as it is carbonized by firing.
  • Liquid phase carbonization of carbonized product S As an organic compound that promotes carbonization in the liquid phase, coal tar pitch from soft pitch to hard pitch; DC heavy oil such as coal liquefied oil; petroleum heavy oil such as asphalten; thermal decomposition of crude oil, naphtha, etc. Petroleum heavy oils such as naphthatal and other cracked heavy oils sometimes produced as by-products; Heat treated pitches such as ethylene tar pitch, FCC dentant oil, and Ashland pitch obtained by heat treating cracked heavy oils; Can be used.
  • vinyl polymers such as polyvinyl chloride, polyvinyl acetate, polyvinyl butyral, and polyvinyl alcohol; substituted phenol resins such as 3-methylphenol formaldehyde resin and 3,5-dimethylphenol formaldehyde resin; aromas such as acenaphthylene, decacyclene, and anthracene Group hydrocarbons; nitrogen ring compounds such as phenazine and acridine; sulfur ring compounds such as thiophene; and the like.
  • substituted phenol resins such as 3-methylphenol formaldehyde resin and 3,5-dimethylphenol formaldehyde resin
  • aromas such as acenaphthylene, decacyclene, and anthracene Group hydrocarbons
  • nitrogen ring compounds such as phenazine and acridine
  • sulfur ring compounds such as thiophene; and the like.
  • organic compounds can be used by adhering to the surface of the core material N by appropriately selecting a solvent and diluting if necessary.
  • the selection of the organic compound is preferably as low as possible because it is necessary to apply the organic compound while keeping the loop structure on the surface of the core material N.
  • Organic compounds that promote carbonization in the solid phase include natural polymers such as cellulose; chain vinyl resins such as polyvinylidene chloride and polyacrylonitrile; aromatic polymers such as polyphenylene; furfuryl alcohol resins, phenols And thermosetting resins such as formaldehyde resin and imide resin. Moreover, these organic compounds can be used by attaching to the surface of the core material N by appropriately selecting a solvent and dissolving and diluting them as necessary.
  • Such a carbonized product S is hard and difficult to be deformed due to poor crystallinity, in contrast to the highly crystalline graphite that is easily deformed when a load is applied because the core material N is flexible. When applied, it has the mechanical property of being brittle and easily broken.
  • the whole manufacturing process of the carbonaceous material of this invention The manufacturing method for obtaining the carbonaceous material in this invention is demonstrated below.
  • the method for producing a carbonaceous material of the present invention mainly comprises the following steps.
  • C A powder processing step for processing the powder obtained above.
  • the core material N is heated under a flow of an inert gas such as nitrogen gas, carbon dioxide gas, or argon gas.
  • an inert gas such as nitrogen gas, carbon dioxide gas, or argon gas.
  • the edge surfaces of the graphitic carbon particles are inactivated, and a loop-shaped structure is formed on the surface layer.
  • the lower limit of the temperature is usually 500 ° C. or higher, preferably 600 ° C. or higher, more preferably 800 ° C. or higher, more preferably 850 ° C. or higher. At temperatures lower than this, a loop-like structure is not formed on the edge surface of the core material N.
  • the upper limit temperature is usually 2000 ° C. or less, at which the edge surface of the core material N is normally sufficiently inactivated. Preferably it is 1500 degrees C or less. Heat treatment at a temperature higher than this is likely to change the structure of the edge surface of the core material N, and the cost of the heat treatment may increase.
  • (A) Mixing step In the mixing step, the core material N and an organic compound or a solution thereof are mixed. You may perform a mixing process with either a batch type or a continuous type apparatus. Moreover, you may carry out at room temperature and you may carry out by heating a reaction tank. When the reaction vessel is heated, the viscosity of the mixture can be reduced, the load on the apparatus can be reduced, and the mixing efficiency can be increased. Furthermore, by reducing the internal pressure of the tank during mixing, the effect of defoaming from the fine powder can be enhanced and the dispersibility can be improved.
  • the mixing device may be composed of one mixer equipped with stirring blades or may be composed of a plurality of units to improve the dispersibility sequentially.
  • a mixer having a structure in which two frame-type blades rotate while performing planetary motion in a fixed tank, a dissolver that is a high-speed high-shear mixer, and a high-viscosity butterfly mixer 1
  • a trimix type apparatus using a shaft, a so-called bead mill type apparatus having a rotating disk and a dispersion medium in a dispersion tank, and the like can be used. Which apparatus is used is determined in consideration of the visco
  • a pipeline mixer may be used, or a continuous bead mill (medium classifier) may be used.
  • a mixer used for ordinary resin processing or the like may be used with countermeasures against liquid leakage.
  • Example of specific mixing method (3) there is a reaction chamber in which a plurality of saddle-shaped or saw-toothed paddles fixed inside the shaft and a plurality of paddles with different phases are arranged inside, the inner wall surface of which is the outermost line of rotation of the paddle If an externally heated reactor with a structure in which a plurality of paddles are aligned in the axial direction of the shaft is used, the mixing process and the volatile matter are unified in the same apparatus. And a low-temperature heat treatment step for removing a part.
  • the paddle has a structure in which a plurality of pairs are arranged in the axial direction of the shaft so as to slidably engage the mutually facing side surfaces, and (b) one shaft inside A plurality of bowl-shaped or saw-toothed paddles fixed to the shaft have a plurality of reaction chambers arranged in different phases, the inner wall surface of which is substantially along the outermost line of rotation of the paddles, preferably a cylinder A (external heat type) reactor having a structure in which a plurality of paddles are arranged in the axial direction of the shaft can be exemplified by minimizing the gap formed in the mold.
  • a reactor having such a structure a negative electrode material for a non-aqueous secondary battery with good quality in which the pores of the core material N are also filled with the carbonized product S can be obtained.
  • Examples of the above-mentioned (a) type reaction apparatus include, for example, “KRC reactor” and “SC processor” manufactured by Kurimoto Iron Works, “TEM” manufactured by Toshiba Machine Celmac, and Nippon Steel Works, Ltd. There are “TEX-K” and the like.
  • examples of the (b) type reaction apparatus include “Ladige Mixer” manufactured by Matsubo Co., Ltd., “Pro-Share Mixer” manufactured by Taiheiyo Kiko Co., Ltd., “DT Dryer” manufactured by Tsukishima Kikai Co., Ltd. is there.
  • the core material N and the organic compound or the solution thereof are very well dispersed in the mixing step, and the reaction material can be stirred even after the reactants no longer exhibit fluidity. It is possible to obtain a uniformly heat-treated product that is dispersed in the pores, is filled with the organic compound or a solution thereof to the inside of the pores, and is not biased depending on the location in the reaction vessel.
  • the mixing step and the step of obtaining the intermediate substance can be performed simultaneously.
  • the core material N is preferably “in an organic compound or a solution of an organic compound” having a kinematic viscosity at 50 ° C. of 25 to 75 cst, and particularly preferably “an organic compound having a kinematic viscosity at 50 ° C. of 30 to 50 cst”.
  • the polycyclic aromatic molecule contained in the organic compound or a solution thereof, particularly heavy oil or a solution thereof preferably by mixing and dispersing in contact with the organic compound or a solution thereof, preferably Performs an operation of substituting the surface of the core material N and the inside of the pores with a polycyclic aromatic oligomer having a higher molecular weight.
  • a solvent such as toluene, xylene
  • an aromatic hydrocarbon organic solvent such as alkylbenzene and / or a heterocyclic organic solvent such as quinoline or pyridine
  • An aromatic hydrocarbon organic solvent is preferred for the present invention.
  • a batch-type mixing device is used in this mixing step while mixing with the core material N while mixing.
  • the organic compound or its solution is usually divided into 2 or more times, preferably 3 to 10 times, more preferably 3 to 5 times, and / or (of the total mixing time It is preferable to continuously charge in small portions, preferably 1/10, particularly preferably 1/5 of the time.
  • “and” means that a small amount of each of the divided additions is continuously added.
  • the total mixing time is usually 3 to 10 minutes, preferably 3 to 8 minutes, more preferably 3 to 6 minutes. This is because the organic compound or the solution thereof can be uniformly applied to the surface of the core material N by adding the organic compound or the solution thereof little by little.
  • the organic compound When the organic compound is a solid, it is dissolved by a solvent, and when it is a liquid, it is necessary to adjust the viscosity by dilution.
  • dissolving an organic compound all the components do not necessarily need to melt
  • the electrode performance may vary if the kinematic viscosity at 50 ° C. exceeds 75 cst. This is presumably because the organic compound or a solution thereof is difficult to fill the pores of the core material N.
  • the atmosphere in the reaction apparatus is preferably an inert atmosphere or a non-oxidizing atmosphere.
  • the atmosphere is not particularly limited as long as the intermediate material does not deteriorate due to oxidation.
  • the heat treatment temperature in this mixing step varies depending on the type of organic compound or its solution, but is not less than the boiling point of the solvent, usually in the range of 50 to 600 ° C., preferably in the range of 60 to 500 ° C.
  • (B) Heat treatment step In the heat treatment step, an intermediate substance composed of an organic compound obtained by removing a part of volatile components in the mixing step and polycondensed or a solution thereof and the core material N is nitrogen gas, carbon dioxide gas, argon gas, etc. It is heated under an inert gas flow. In this heat treatment process, the thermochemical reaction of the carbon precursor proceeds, oxygen, nitrogen, hydrogen, etc. remaining in the precursor composition are discharged out of the system, and structural defects are removed depending on the degree of heat treatment. Increase the degree of conversion.
  • the highest temperature is important as the heat treatment condition for this heat treatment process.
  • the lower temperature limit varies slightly depending on the type of aromatized heavy oil and the heat history, but is usually 600 ° C. or higher, preferably 800 ° C. or higher, more preferably 850 ° C. or higher. At temperatures lower than this, hydrogen and the like remain, and carbonization may be insufficient.
  • the upper limit temperature can be raised to a temperature that basically does not have a structural order exceeding the crystal structure of the core material N. Therefore, the upper limit temperature of the heat treatment is usually 3000 ° C. or lower, preferably 2500 ° C. or lower, more preferably 2000 ° C. or lower, and particularly preferably 1500 ° C. or lower. Higher temperatures may increase the cost of heat treatment. Under such heat treatment conditions, the heating rate, cooling rate, heat treatment time, etc. can be arbitrarily set according to the purpose. Further, after heat treatment in a relatively low temperature region, the temperature can be raised to a predetermined temperature.
  • the step of heat-treating the mixture heat treating the mixture containing a volatile component in a continuous heating furnace, and attaching a carbonized compound of an organic compound substantially free of a volatile component to the surface of the graphitic carbon particles, This is preferable in that the carbonized material S is more uniformly attached to the core material N.
  • the apparatus suitable for this heat treatment step is not particularly limited, but for example, the heated object moves in the furnace, and the pre-stage furnace that removes volatile components contained by heating the heated object, It consists of at least two furnaces, a post-stage furnace that raises the degree of carbonization by heating the object to be heated that has passed through the pre-stage furnace, and an intermediate chamber interposed between them, and both the pre-stage furnace and the post-stage furnace generate heat internally.
  • a door is installed between the inlet of the pre-stage furnace and the outlet of the post-stage furnace, between the pre-stage furnace and the intermediate chamber, and between the post-stage furnace and the intermediate chamber, and the atmosphere in the furnace Examples thereof include a continuous heating furnace characterized in that it can be controlled.
  • the pre-stage furnace is equipped with a shield made of a good thermal conductor that isolates the heating element and the object to be heated inside, in the vicinity of the entrance of the pre-stage furnace and near the floor surface, A gas outlet from the pre-stage furnace is provided, and a gas flow in the pre-stage furnace is preferably directed from the outlet to the inlet.
  • the heating furnace used for this process may be a batch type or a continuous type, and may be one or more.
  • (C) Powder processing step Multi-layer structure carbonaceous material that is compounded in a state where the carbonized material S covers a part or the whole of the surface of the core material N in the heat treatment step is pulverized as necessary in the powder processing step.
  • the powder is subjected to powder processing such as crushing and classification, and becomes a negative electrode material for a non-aqueous secondary battery.
  • the powder processing step can be inserted between the (A) mixing step and the (B) heat treatment step.
  • Multi-layer structure carbonaceous material In the present invention, the core material N and the organic compound that is the precursor of the carbonized product S are mixed, and the mixture is carbonized, baked and pulverized. It is possible to obtain a multi-layered carbonaceous material in which a carbonized product S obtained by carbonizing an organic compound is attached to the surface of a certain core material N.
  • the present invention is a multilayer carbonaceous material obtained by mixing graphite carbon particles and an organic compound and heat-treating, and has a loop structure at the edge portion of the graphite carbon particles, and the loop structure is retained. It is a multi-layered carbonaceous material having a carbonized organic compound attached to its surface as it is. Accordingly, the graphitic carbon particles in the multilayered carbonaceous material of the present invention obtained by heat treatment retain the loop structure of the above-mentioned “nuclear material N including heat-treated product P”.
  • the heat-treated product P preferably has three or more loop structures on the surface in 5 nm in the TEM image
  • the heat-treated product P in the multilayer structure carbonaceous material of the present invention obtained by heat treatment
  • the graphitic carbon particles preferably have three or more loop structures on the surface in 5 nm. If the structure and physical properties of the core material N, which is the above-described raw material, are observed in the graphitic carbon particles in a certain multilayered carbonaceous material, the multilayered carbonaceous material is included in the multilayered carbonaceous material of the present invention. May be included.
  • the amount of carbonized organic compounds on the surface of the core material N is preferably the minimum necessary. That is, it is preferable to add a carbonized organic compound so that the amount of residual carbon with respect to 100 parts by weight of the core material N is 0.1 parts by weight or more and 4 parts by weight or less. More preferably, the carbonized product of the organic compound is added so as to be 0.5 to 3 parts by weight, particularly preferably 0.65 to 2 parts by weight.
  • the type and mixing amount of the organic compound so that the amount of carbonized product obtained by multiplying the weight of the organic compound used is 0.1 to 4 parts by weight with respect to 100 parts by weight of the core material N. To decide.
  • the filling of the organic compound into the pores of the core material N becomes insufficient, and graphite is easily exposed on the surface of the multilayer carbonaceous material.
  • the core material N is left in a state in which pores remain, the multi-layer structure carbonaceous material, which is the active material, becomes insufficiently wetted with the electrolyte solution. There may be a problem that the surface state of the core material N to be discharged deteriorates.
  • the carbon material of the excess organic compound is attached to the surface of the core material N, so that the electrode coated with the multi-layered carbonaceous material powder has a high density.
  • the carbonized material is easily broken and peeled off when the entire particle is deformed.
  • graphite crystals of the core material N are exposed on the surface of the multi-layer structure carbonaceous material, and the reactivity with the electrolytic solution may increase. This phenomenon becomes more prominent as the packing density increases for higher capacity. From the above results, it is considered that problems such as an increase in irreversible capacity during initial charge / discharge and a decrease in cycle characteristics have occurred in the past.
  • the carbonaceous material of the present invention can take an arbitrary shape such as granular or fibrous as a whole, but is preferably spherical or an ellipsoidal shape equivalent thereto.
  • the volume average particle size is essentially 2 to 70 ⁇ m, preferably 4 to 40 ⁇ m, more preferably 5 to 35 ⁇ m, and still more preferably 7 to 30 ⁇ m. If it is larger than this range, the smoothness of the electrode surface may be lost. On the other hand, if it is smaller than this range, the specific surface area increases and the irreversible capacity may increase.
  • the tap density of the carbonaceous material of the present invention must be 0.80 g / cm 3 or more as a lower limit, preferably 0.85 g / cm 3 or more, more preferably 0.90 g / cm 3 or more, and the upper limit is uniform particles. It is desirable to control the tap density of the spherical particles having a diameter of 1.40 g / cm 3 .
  • the multi-layer structure may improve the tap density and may have the effect of introducing further roundness into the shape. If the tap density is smaller than this, it may be difficult to produce a high-density electrode.
  • the carbonaceous material of the present invention uses a flow type particle image analyzer capable of photographing thousands of particles dispersed in a liquid one by one with a CCD camera and calculating an average shape parameter thereof.
  • the ratio of the circumference of the equivalent circle of the particle area to the circumference of the projected particle image is “average circularity” (1 as the particle image is closer to a perfect circle, The more complicated the shape, the smaller the value) is preferably 0.94 or more.
  • the average circularity correlates with the tap density described above. If the circularity of the multi-layered carbonaceous material is smaller than this, it may be difficult to produce a uniform electrode.
  • R value is the ratio of the scattering intensity of 1360 cm -1 relative scattering intensity of 1580 cm -1 is 0.15 or more Is essential. Moreover, it is preferable that it is smaller than R value of the core material N within the range whose residual carbon amount of the carbonized substance S with respect to 100 weight part of core material N is 4 weight part or less. Moreover, 0.2 or more and 0.4 or less are preferable, and it is more preferable that they are 0.25 or more and 0.35 or less. Such a range is desirable for obtaining good battery characteristics.
  • the specific surface area of the carbonaceous material of the present invention measured by BET method is preferably 10 m 2 / g or less, more preferably 1 to 9 m 2 / g, more preferably 1.5 to 7 m 2 / g, particularly The range is preferably 2 to 6 m 2 / g. If the specific surface area is larger than this range, the initial irreversible capacity may increase when applied to a battery. Further, the ratio of the BET specific surface area of the carbonaceous material to the BET specific surface area of the core material N is usually 0.40 or more and within 1.00, preferably 0.40 or more and less than 0.90, and the lower limit is 0.45 or more. Is more preferably 0.60 or more.
  • this ratio is less than 0.40, it indicates that a relatively large amount (thickness) of the carbonized product S is attached, and the effect of the present invention may not be sufficiently exhibited. It is particularly preferable that the above range of specific surface area and the above range of specific surface area ratio are combined to satisfy both.
  • the crystallinity of the carbonized product S is remarkably lowered, so that the battery characteristics may be reduced in capacity.
  • the half width of the peak of 1580 cm -1 in an argon laser Raman spectrum is usually 19cm -1 or more, preferably 20 cm -1 or more, more preferably 22 cm -1 or more, and particularly preferably 24cm -1 or more, the upper limit is 31cm -1 or less, preferably 30 cm -1 or less, more preferably 28cm -1 or less, particularly preferably 26cm -1 or less.
  • the full width at half maximum ( ⁇ ) is too small or too large, it may not be preferable for the same reason as when the R value or G value is too small or too large.
  • the crystallinity of the carbonaceous material of the present invention is almost the same as the crystallinity of the core material N. That is, the interplanar spacing d002 of the (002) plane and the crystallite size Lc in the c-axis direction of the carbonaceous material obtained by X-ray wide angle diffraction using CuK ⁇ rays as the radiation source are almost the same as those of the core material N. Therefore, regarding the carbonaceous material of the present invention, the range described above in the section of the core material N is preferable.
  • Negative electrode for non-aqueous secondary battery The carbonaceous material can be suitably used as a negative electrode for a non-aqueous secondary battery, particularly a lithium ion secondary battery, after being formed into an electrode shape according to a known method.
  • the negative electrode constituting the non-aqueous secondary battery is formed by forming an active material layer containing a negative electrode material, an electrode plate-forming binder, a thickener and a conductive material on a current collector.
  • the active material layer is usually obtained by preparing a slurry containing a negative electrode material, an electrode plate forming binder, a thickener, a conductive material and a solvent, and applying, drying and pressing the slurry on a current collector. It is done.
  • any material can be used as long as it is a material that is stable with respect to the solvent and electrolyte used during electrode production.
  • examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, styrene butadiene rubber, isoprene rubber, butadiene rubber, ethylene-acrylic acid copolymer, and ethylene-methacrylic acid copolymer.
  • the electrode plate-forming binder is usually 90/10 or more, preferably 95/5 or more, and usually 99.9 / 0.1 or less, preferably 99, in a weight ratio of negative electrode material / electrode plate-forming binder. It is used in the range of 0.5 / 0.5 or less. If the amount of the binder used at the time of forming the electrode plate is too small, the strength of the electrode plate will decrease. And cycle characteristics may be deteriorated.
  • thickener examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein.
  • Examples of the conductive material include metal materials such as copper and nickel; carbon materials such as graphite and carbon black.
  • Examples of the current collector material include copper, nickel, and stainless steel. Of these, copper foil is preferred from the viewpoint of easy processing into a thin film and cost.
  • Density of the negative electrode made of carbonaceous material of the present invention varies depending on the application, the application that emphasizes capacity is usually 1.45 g / cm 3 or more, 1.50 g / cm 3 or more preferably, 1.55 g / cm 3 or more is more preferable, and 1.60 g / cm 3 or more is particularly preferable. Moreover, it is 2.00 g / cm ⁇ 3 > or less normally, and 1.85 g / cm ⁇ 3 > or less is preferable. If the density is too low, the capacity of the battery per unit volume may not always be sufficient, and if the density is too high, the charge / discharge high load characteristics deteriorate, so 1.80 g / cm 3 or less is preferable.
  • the “active material layer” means a mixture layer made of an active material on a current collector, a binder for forming an electrode plate, a thickener, a conductive material, etc., and its density means when it is assembled into a battery.
  • the bulk density of the active material layer means a mixture layer made of an active material on a current collector, a binder for forming an electrode plate, a thickener, a conductive material, etc.
  • the press load (linear pressure) reaching the electrode density of 1.60 g / cm 3 is preferably 200 kg / 5 cm or more and 550 kg / 5 cm or less, more preferably 200 kg / 5 cm or more and 500 kg / 5 cm or less, and 200 kg / 5 cm or more and 400 kg / 5 cm or less. More preferred.
  • the load (press load) applied to the negative electrode at this time is larger than this, it means that the carbonized substance S particles adhering to the surface are so large that the particles of the multi-layer structure carbonaceous substance are hard. Is easily broken and peeled off, which exposes the surface of the core material N, increases the reactivity with the electrolyte as described later, and greatly affects the battery performance. That is, the irreversible capacity at the time of initial charge / discharge may be increased, and the cycle characteristics may be deteriorated. If the press load is too small, the carbonized product S will not be destroyed or peeled off, but the carbonized product S is insufficient and the surface of the core material that is not covered is present. And the battery performance is greatly affected. That is, in the same manner as described above, the irreversible capacity during the initial charge / discharge may be increased, and the cycle characteristics may be further deteriorated.
  • the coated and dried electrode plate was cut into a size of 5 cm in length ⁇ 7 cm in width, pretreated under predetermined conditions, and then the specific surface area was measured by the BET method.
  • the specific surface area at this time is A.
  • the specific surface area was measured by the same method.
  • B be the specific surface area at this time.
  • C When C is 1.2 or more, it means that the carbonized material S attached to the surface of the core material N is destroyed and the surface of the core material is exposed. The closer this value is to 1.0, the more the carbonized material S is not destroyed by the press. In order to exhibit the above-described effect of the present invention, the closer C is to 1.0, the better. This is more preferable as it is closer to 1.0 even when it is less than 1.0.
  • Nonaqueous secondary battery The negative electrode for nonaqueous secondary batteries manufactured using the carbonaceous material of the present invention is extremely useful as a negative electrode for nonaqueous secondary batteries such as lithium ion secondary batteries.
  • the non-aqueous secondary battery of the present invention usually has at least the above-described negative electrode, positive electrode and electrolyte of the present invention.
  • the positive electrode is formed by forming an active material layer containing a positive electrode active material, a conductive agent and an electrode plate forming binder on a positive electrode current collector.
  • the active material layer is usually obtained by preparing a slurry containing a positive electrode active material, a conductive agent and an electrode plate forming binder, and applying and drying the slurry on a current collector.
  • Examples of the positive electrode active material include lithium transition metal composite oxide materials such as lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide; transition metal oxide materials such as manganese dioxide; carbonaceous materials such as graphite fluoride A material capable of inserting and extracting lithium, such as lithium, can be used.
  • LiFePO 4 , LiFeO 2 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and non-stoichiometric compounds thereof, MnO 2 , TiS 2 , FeS 2 , Nb 3 S 4 , Mo 3 S 4 can be used CoS 2, V 2 O 5, P 2 O 5, CrO 3, V 3 O 3, TeO 2, GeO 2, LiNi 0.33 Mn 0.33 Co 0.33 O 2 and the like.
  • the positive electrode current collector it is preferable to use a metal or an alloy thereof that forms a passive film on the surface by anodic oxidation in an electrolytic solution, and belongs to IIIa, IVa, and Va groups (3B, 4B, and 5B groups). And alloys thereof. Specifically, for example, Al, Ti, Zr, Hf, Nb, Ta and alloys containing these metals can be exemplified, and Al, Ti, Ta and alloys containing these metals are preferably used. Can do. In particular, Al and its alloys are desirable because of their light weight and high energy density.
  • the electrolyte examples include an electrolytic solution, a solid electrolyte, a gel electrolyte, and the like, and among them, an electrolytic solution, particularly a non-aqueous electrolytic solution is preferable.
  • an electrolytic solution particularly a non-aqueous electrolytic solution is preferable.
  • a non-aqueous electrolyte solution a solution obtained by dissolving a solute in a non-aqueous solvent can be used.
  • an alkali metal salt, a quaternary ammonium salt, or the like can be used.
  • LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 3 ) 3 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C) It is preferable to use one or more compounds selected from the group consisting of 4 F 9 SO 2 ) and LiC (CF 3 SO 2 ) 3 .
  • a combination of these solutes and those containing a cyclic carbonate and a chain carbonate, which will be described later as a non-aqueous solvent is particularly preferable.
  • non-aqueous solvent examples include cyclic carbonates such as ethylene carbonate and butylene carbonate; cyclic ester compounds such as ⁇ -butyrolactone; chain ethers such as 1,2-dimethoxyethane; crown ethers, 2-methyltetrahydrofuran, 1,2 -Cyclic ethers such as dimethyltetrahydrofuran, 1,3-dioxolane and tetrahydrofuran; chain carbonates such as diethyl carbonate, ethylmethyl carbonate and dimethyl carbonate can be used.
  • cyclic carbonates such as ethylene carbonate and butylene carbonate
  • cyclic ester compounds such as ⁇ -butyrolactone
  • chain ethers such as 1,2-dimethoxyethane
  • crown ethers 2-methyltetrahydrofuran
  • 1,2 -Cyclic ethers such as dimethyltetrahydrofuran, 1,3-dioxolane and tetrahydr
  • the non-aqueous solvent preferably contains a cyclic carbonate and a chain carbonate.
  • compounds such as vinylene carbonate, vinyl ethylene carbonate, succinic anhydride, maleic anhydride, propane sultone, diethyl sulfone and the like may be added.
  • a suitable example is a difluorophosphate such as lithium difluorophosphate.
  • the solute content in the electrolytic solution is preferably 0.2 mol / L or more, particularly preferably 0.5 mol / L or more, preferably 2.0 mol / L or less, and particularly preferably 1.5 mol / L or less.
  • An excessive solute may cause a decrease in the transport number of lithium ions in the electrolytic solution and may decrease the conductivity of the entire battery system.
  • the non-aqueous secondary battery prepared by combining the negative electrode of the present invention, the metal chalcogenide-based positive electrode, and the organic electrolyte mainly composed of a carbonate-based solvent has a large capacity and is irreversible that is recognized in the initial cycle. Small capacity, high rapid charge / discharge capacity (good rate characteristics), excellent cycle characteristics, high battery storage and reliability when left at high temperature, extremely efficient discharge characteristics and low temperature discharge characteristics It is excellent.
  • a separator is usually provided between the positive electrode and the negative electrode so that the positive electrode and the negative electrode are not in physical contact.
  • the separator preferably has high ion permeability and low electrical resistance.
  • the material and shape of the separator are not particularly limited, but those that are stable with respect to the electrolyte and excellent in liquid retention are preferable. Specifically, a porous sheet or a non-woven fabric made of a polyolefin such as polyethylene or polypropylene is used.
  • the shape of the non-aqueous secondary battery of the present invention is not particularly limited, and a cylindrical type in which a sheet electrode and a separator are spiral, a cylindrical type having an inside-out structure in which a pellet electrode and a separator are combined, a pellet electrode and a separator are laminated. Examples include coin type.
  • R value which is the ratio of the scattering intensity peak value near 1360 cm ⁇ 1 to the scattering intensity peak value near 1580 cm ⁇ 1 in the argon laser Raman spectrum, and the integral value Ya of the spectral intensity in the wavelength region near 1360 ⁇ 100 cm ⁇ 1 .
  • SBR Styrene butadiene rubber
  • CMC carboxymethylcellulose
  • This slurry was applied to a width of 5 cm by a doctor blade method so that the negative electrode material was attached to 11.0 ⁇ 0.1 mg / cm 2 on a 18 ⁇ m thick copper foil as a current collector, and air-dried at room temperature. . Further, after drying at 110 ° C. for 30 minutes, roll pressing was performed using a roller having a diameter of 20 cm. The negative electrode sheet was obtained by adjusting the density of the active material layer 24 hours after the press molding to 1.60 g / cm 3 . The press load at the time of roll pressing was measured.
  • Method for producing non-aqueous secondary battery evaluation method
  • a 2016 coin-type cell ( ⁇ 20 mm, thickness 1.6 mm) with a lithium metal electrode facing each other through a separator impregnated with an electrolyte using the above electrode was subjected to a charge / discharge test.
  • the electrolytic solution a solution obtained by dissolving LiPF6 in a mixed solvent of ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate was used.
  • the charge / discharge test was performed in an open circuit state for 24 hours, and then charging was performed by constant current-constant voltage charging and discharging was performed by constant current discharging.
  • the current value was set to 0.2 mA / cm 2 (0.05 C), charging was performed until the potential difference between both electrodes became 0 V, and discharging was performed to 1.5 V. Charging / discharging was performed for a total of 3 cycles, and only when the charging was performed for the first time under the condition that charging stopped when the charging capacity reached 350 mAh / g.
  • the irreversible capacity in the table is a value obtained by subtracting the value of the discharge capacity from the charge capacity
  • the charge / discharge efficiency is a value obtained by dividing the discharge capacity by the charge capacity.
  • the discharge capacity at the third cycle is preferably 350 mAh / g or more
  • the initial irreversible capacity is preferably 40 mAh / g or less, more preferably 35 mAh / g or less, and particularly preferably 33 mAh / g or less.
  • the cylindrical battery was maintained at 45 ° C. for 7 days with a battery potential of 4.05 V, and then charged and discharged at 25 ° C. for 300 cycles.
  • Charging / discharging was performed by constant current-constant voltage charging at 0.7 C and constant current discharging at 1.0 C.
  • the termination conditions were 100 mA during charging and 4.2 V during discharging.
  • Table 2 shows the discharge capacity retention rates at 50 cycles and 100 cycles in this evaluation.
  • the discharge capacity maintenance rate at 50 cycles at 25 ° C. and 1 C is preferably 88% or more, and more preferably 90% or more.
  • the discharge capacity retention rate at the same 100 cycles is preferably 85% or more, and more preferably 88% or more.
  • Example 1 (A) Mixing process Natural graphite (volume average particle diameter) that has been spheroidized as graphitic carbon particles (nuclear material N) from a raw material inlet into an FKM300D-type readyge mixer (internal volume 300 L) manufactured by Matsubo Co., Ltd. 16.3 ⁇ m, tap density 0.99 g / cm 3 , BET specific surface area 7.3 m 2 / g, (002) plane spacing (d002) 0.3345 nm, crystallite size (Lc) 1000 nm or more, R value 0. No.
  • the operating conditions were as follows: the rotational speed of the vertical stirring blade was 200 rpm, the rotational speed of the crushing blade was 2000 rpm, and the temperature in the apparatus was room temperature. This operation was performed for 10 minutes. Furthermore, warm water was poured into the jacket of the mixer and heated at 60 ° C. Next, the inside of the apparatus is gradually depressurized to finally make the inside 13.33 ⁇ 10 3 Pa (100 Torr), the degassing and devolatilizing components are advanced, and the ethylene heavy end tar light fraction and diluent are removed. Was done. Thereafter, the temperature was lowered to room temperature, and a precursor of a multi-layer structure carbonaceous material in which the core material N was impregnated with and impregnated with ethylene heavy end tar was obtained in powder form.
  • the multi-layered carbonaceous precursor powder was heat-treated in a batch heating furnace.
  • the powder was put in a continuous heating furnace in a graphite container, and nitrogen gas was heated to 1200 ° C. over 3 hours under a flow rate of 5 L / min and held for 1 hour. Then, it cooled to room temperature and the multilayer structure carbonaceous material with which the coating phase was carbonized was obtained.
  • the multi-layered carbonaceous material obtained in the heat treatment process could be crushed lightly by hand. After crushing with an impact pulverizer to remove coarse powder and fine powder, a multi-layered carbonaceous powder having a predetermined average particle diameter was obtained.
  • Table 1 shows the press load when the electrode density was pressed to 1.60 g / cm 3 after being applied to the copper foil.
  • Table 1 shows the results of coin cell evaluation (discharge capacity, initial irreversible capacity) when the multilayered carbonaceous powder was used for the negative electrode. Moreover, the cylindrical battery evaluation results are shown in Table 2. The battery evaluation results (discharge capacity, initial irreversible capacity) were all good. Moreover, the discharge capacity maintenance rate was large.
  • Example 2 The same operation as in Example 1 was performed except that 30 kg of spheroidized natural graphite was added. Tables 1 and 2 show the physical properties and shape of the obtained carbonaceous material, the coin battery evaluation results, and the cylindrical battery evaluation results. The battery evaluation results (discharge capacity, initial irreversible capacity) were all good. Moreover, the discharge capacity maintenance rate was large. Further, a TEM photograph of the obtained carbonaceous material is shown in FIG. It can be seen that a loop structure is present at the edge portion of the graphitic carbon particles, and the carbonized compound of the organic compound is attached to the surface of the graphitic carbon particle while maintaining the loop structure.
  • Example 3 The same operation as in Example 1 was performed except that 15 kg of spheroidized natural graphite was added.
  • Tables 1 and 2 show the physical properties and shape of the obtained carbonaceous material, the coin battery evaluation results, and the cylindrical battery evaluation results.
  • the battery evaluation results (discharge capacity, initial irreversible capacity) were all good. Moreover, the discharge capacity maintenance rate was large.
  • a TEM photograph of the obtained carbonaceous material is shown in FIG. It can be seen that a loop structure is present at the edge portion of the graphitic carbon particles, and the carbonized compound of the organic compound is attached to the surface of the graphitic carbon particle while maintaining the loop structure.
  • Example 4 The same operation as in Example 1 was performed except that 10 kg of spheroidized natural graphite was added. Tables 1 and 2 show physical properties and shapes of the obtained carbonaceous materials and battery evaluation results. The battery evaluation results (discharge capacity, initial irreversible capacity) were all good. Moreover, the discharge capacity maintenance rate was large.
  • Example 5 The same operation as in Example 1 was performed except that 7.5 kg of spheroidized natural graphite was added. Tables 1 and 2 show physical properties and shapes of the obtained carbonaceous materials and battery evaluation results. The battery evaluation results (discharge capacity, initial irreversible capacity) were all good. Moreover, the discharge capacity maintenance rate was large.
  • Example 6 The same operation as in Example 1 was performed except that 6 kg of spheroidized natural graphite was added. Tables 1 and 2 show physical properties and shapes of the obtained carbonaceous materials and battery evaluation results. The battery evaluation results (discharge capacity, initial irreversible capacity) were all good. Moreover, the discharge capacity maintenance rate was large.
  • Example 7 The same operation as in Example 1 was performed except that 5 kg of spheroidized natural graphite was added. Tables 1 and 2 show physical properties and shapes of the obtained carbonaceous materials and battery evaluation results. The battery evaluation results (discharge capacity, initial irreversible capacity) were all good. Moreover, the discharge capacity maintenance rate was large. Further, a TEM photograph of the obtained carbonaceous material is shown in FIG. It can be seen that a loop structure is present at the edge portion of the graphitic carbon particles, and the carbonized compound of the organic compound is attached to the surface of the graphitic carbon particle while maintaining the loop structure.
  • Example 8 The same operation as in Example 1 was performed except that 3.8 kg of spheroidized natural graphite was added. Tables 1 and 2 show physical properties and shapes of the obtained carbonaceous materials and battery evaluation results. The battery evaluation results (discharge capacity, initial irreversible capacity) were all good. Moreover, the discharge capacity maintenance rate was large.
  • Example 9 As described below, a heat-treated product of the core material N was manufactured, and the same operation as in Example 1 was performed except that the heat-treated product was used as the core material N.
  • Tables 1 and 2 show physical properties and shapes of the obtained carbonaceous materials and battery evaluation results. The battery evaluation results (discharge capacity, initial irreversible capacity) were all good. Moreover, the discharge capacity maintenance rate was large. Furthermore, the TEM photograph of the obtained multilayer structure carbonaceous material was shown in FIG. It can be seen that a loop structure exists at the edge of the graphitic carbon particles.
  • the heat treatment product of the core material N (volume average particle size 16.6 ⁇ m, tap density 1.10 g / cm 3 , BET specific surface area 6.1 m 2 / g, (002) plane spacing ( d002) 0.3345 nm, crystallite size (Lc) 1000 nm or more, R value 0.19, true specific gravity 2.26 g / cm 3 ).
  • Example 10 The same operation as in Example 3 was performed except that a heat-treated product of the core material N was used as a raw material.
  • Tables 1 and 2 show physical properties and shapes of the obtained carbonaceous materials and battery evaluation results.
  • the battery evaluation results (discharge capacity, initial irreversible capacity) were the best. Moreover, the discharge capacity maintenance rate was large.
  • Comparative Example 2 The same operation as in Example 1 was performed except that 3 kg of spheroidized natural graphite was added. Tables 1 and 2 show physical properties and shapes of the obtained carbonaceous materials and battery evaluation results. At the time of initial charge / discharge, compared with the case where carbonized material S is added so that the amount of residual carbon is 0.1 to 4 parts by weight with respect to 100 parts by weight of graphitic carbon particles (nuclear material N). The irreversible capacity (initial irreversible capacity) was large. Moreover, the discharge capacity maintenance rate was small. A TEM photograph of the obtained carbonaceous material is shown in FIG. It can be seen that the loop structure of the edge portion of the graphitic carbon particles is broken.
  • Comparative Example 3 The same operation as in Example 1 was performed except that 2 kg of spheroidized natural graphite was added. Tables 1 and 2 show physical properties and shapes of the obtained carbonaceous materials and battery evaluation results. At the time of initial charge / discharge, compared with the case where carbonized material S is added so that the amount of residual carbon is 0.1 to 4 parts by weight with respect to 100 parts by weight of graphitic carbon particles (nuclear material N). The irreversible capacity (initial irreversible capacity) was large. Moreover, the discharge capacity maintenance rate was small.
  • Comparative Example 4 Except for adding 3.8 kg of flake shaped natural graphite (volume average particle diameter 27.1 ⁇ m, tap density 0.55 g / cm 3 , BET specific surface area 4.7 m 2 / g, true specific gravity 2.26 g / cm 3 ) The same operation as in Example 1 was performed. Tables 1 and 2 show physical properties and shapes of the obtained carbonaceous materials and battery evaluation results. The obtained carbonaceous material had an average circularity of 0.86. The irreversible capacity (initial irreversible capacity) at the time of initial charge / discharge was larger than that of a carbonaceous material having an average circularity of 0.94 or more. Moreover, the discharge capacity maintenance rate was small.
  • the non-aqueous secondary battery using the multi-layer structure carbonaceous material of the present invention as a negative electrode material has a high capacity, a low irreversible capacity during initial charge / discharge, and good cycle characteristics. Is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

 高容量で初期充放電時の不可逆容量が低く、良好なサイクル特性を有する非水系二次電池用の負極材料を提供すること、またそれを用いた非水系二次電池を提供することを課題とし、黒鉛質炭素粒子と有機化合物とを混合し、熱処理して得られる複層構造炭素質物であって、黒鉛質炭素粒子のエッジ部にループ構造が存在し、当該ループ構造を保持したままでその表面に有機化合物の炭素化物が添着している複層構造炭素質物、またそれを用いた非水系二次電池により課題を解決した。

Description

複層構造炭素質物及びその製造方法並びにそれを用いた非水系二次電池
 本発明は複層構造炭素質物及びその製造方法に関し、詳しくは、それを負極材料に用いた非水系二次電池用負極及び非水系二次電池に関する。更に詳しくは、高容量で初期充放電時の不可逆容量が低く、良好なサイクル特性を有する非水系二次電池を構成し得る電極材料、好ましくは負極用の炭素材料に関する。
 近年、電子機器の小型化に伴い二次電池の高容量化が望まれている。そのため、ニッケル・カドミウム電池やニッケル・水素電池に比べ、よりエネルギー密度の高いリチウムイオン二次電池が注目されている。
 リチウムイオン二次電池の負極材料としては、最初にリチウム金属を用いることが試みられたが、充放電を繰り返すうちにデンドライト状のリチウムが析出してセパレータを貫通して、正極にまで達し、短絡して発火事故を起こす可能性があることが判明した。そのため、現在では、充放電過程における非水溶媒の出入りを層間でおこない、リチウム金属の析出を防止できる炭素材料を負極材料として使用することが注目されている。
 炭素材料を使用した非水系二次電池としては、結晶化度の低い難黒鉛質炭素材料を負極材料に採用した電池がまず上市された。続いて、結晶化度の高い黒鉛類を用いた電池が上市されて現在に至っている。
 黒鉛の電気容量は、理論上372mAh/gが最大であり、電解液の選択を適切に行なえば、高い充放電容量の電池を得ることが可能である。
 更に、特許文献1や特許文献2に示されるような、複層構造を有する炭素質物を用いることも検討されている。これは、結晶性の高い黒鉛の長所(高容量、且つ不可逆容量が低い)と、結晶性の低い炭素質物の長所(炭素質物内のグラフェン層間が広いためにリチウムの吸蔵・放出がスムーズで、高出力、且つ電解液と反応し難い)とを活かし、結晶性の高い黒鉛の短所(プロピレンカーボネート系電解液を分解する)と結晶性の低い炭素質物の短所(不可逆容量が大きい)とを補完するという考えに基づくものである。
 しかしながら、かかる複層構造を有する炭素質物を用いることによって、ある程度は問題点を解決できるものの、高容量で初期充放電時の不可逆容量が充分低く、良好なサイクル特性を有する非水系二次電池を得るには更なる発展が望まれていた。
特開平4-171677号公報 特開平4-370662号公報
 本発明は上記背景技術に鑑みてなされたものであり、その課題は、高容量で初期充放電時の不可逆容量が低く、良好なサイクル特性を有する非水系二次電池用の負極材料を提供することにあり、またそれを用いた非水系二次電池を提供することにある。
 本発明者は、各種物性の電極材料について鋭意検討を重ねた結果、従来の技術では、上記のような複層構造炭素質物と増粘剤、結着剤とを混合し、分散媒を加えたスラリーを調製し、集電体である銅箔上に塗布・乾燥して電極を作製した後、規定の電極密度まで電極をプレスすると、多大な荷重(負荷)が電極にかかり、黒鉛より硬くて脆い低結晶性の表層炭素質物質の破壊と剥離を招き、内部の黒鉛が直接電解液に接触するようになることを見出した。そして、そのために本来複層構造の持つ前述のコンセプトが発現しにくくなり、初期充放電時の不可逆容量の増加、サイクル特性の低下等が顕著に引き起こされることを見出した。
 そこで、本発明者は、黒鉛質炭素粒子と有機化合物とを混合し、熱処理して得られる複層構造炭素質物において、黒鉛質炭素粒子のエッジ部にループ構造が存在し、当該ループ構造を保持したままでその表面に有機化合物の炭素化物が添着している複層構造炭素質物を用いることで、電極を高密度化した場合でも、従来達成できなかった以下の効果があることを見出した。
 すなわち、黒鉛単独や従来の複層構造炭素質物に比べて、本発明の複層構造炭素質物は、電極作製時に複層構造炭素質物の表面に存在する低結晶性炭素の破壊・剥離が起こり難く、且つ、プレス荷重が低く抑えられる。その結果、高容量で初期充放電時の不可逆容量が低く、サイクル特性が良好となって、極めて良好な電池特性を有する非水系二次電池が得られることを見出し本発明に到達した。
 すなわち、本発明は、黒鉛質炭素粒子と有機化合物とを混合し、熱処理して得られる複層構造炭素質物であって、黒鉛質炭素粒子のエッジ部にループ構造が存在し、当該ループ構造を保持したままでその表面に有機化合物の炭素化物が添着している複層構造炭素質物を提供するものである。
 また、本発明は、以下の要件の全てを満たすことを特徴とする上記の複層構造炭素質物を提供するものである。
(b)体積平均粒径が2~70μm
(c)タップ密度が0.80g/cm以上
(d)平均円形度が0.94以上
(e)波長514.5nmのアルゴンイオンレーザー光を用いたアルゴンイオンレーザーラマンスペクトルにおける、1580cm-1の散乱強度に対する1360cm-1の散乱強度の比であるR値が0.15以上である
 また、本発明は、黒鉛質炭素粒子と有機化合物とを混合し、熱処理して得られる複層構造炭素質物であって、以下の(b)~(f)の要件の全てを満たすことを特徴とする複層構造炭素質物を提供するものである。
(b)体積平均粒径が2~70μm
(c)タップ密度が0.80g/cm以上
(d)平均円形度が0.94以上
(e)波長514.5nmのアルゴンイオンレーザー光を用いたアルゴンイオンレーザーラマンスペクトルにおける、1580cm-1の散乱強度に対する1360cm-1の散乱強度の比であるR値が0.15以上である
(f)複層構造炭素質物を用いてスラリーとし、集電体上に塗布、乾燥して電極を作製後、プレス荷重(線圧)200kg/5cm以上550kg/5cm以下で、電極密度1.60g/cmにロールプレスした場合、プレス前の電極比表面積に対するプレス後の電極比表面積の比が0.90以上1.2以下である
 また、本発明は、黒鉛質炭素粒子と有機化合物とを混合し、熱処理して得られ、以下の(a)~(e)の要件の全てを満たすことを特徴とする複層構造炭素質物を提供するものである。
(a)球形化処理された黒鉛質炭素粒子100重量部に対する残炭量が0.1重量部以上4重量部以下である有機化合物の炭素化物を添着させてなるもの
(b)体積平均粒径が2~70μm
(c)タップ密度が0.80g/cm以上
(d)平均円形度が0.94以上
(e)波長514.5nmのアルゴンイオンレーザー光を用いたアルゴンイオンレーザーラマンスペクトルにおける、1580cm-1の散乱強度に対する1360cm-1の散乱強度の比であるR値が0.15以上である
 また、本発明は、上記の複層構造炭素質物を製造する方法であって、黒鉛質炭素粒子と、有機化合物又は有機化合物の溶液とを混合する工程と、次いで、熱処理する工程を経て得られる複層構造炭素質物であって、原料となる黒鉛質炭素粒子が以下の(1a)~(1f)の要件を全て満たす球形化処理された高結晶性黒鉛であることを特徴とする複層構造炭素質物の製造方法を提供するものである。
(1a)体積平均粒径が5~50μm
(1b)タップ密度が0.70g/cm以上
(1c)BET法により測定される比表面積が18m/g未満
(1d)広角X線回折法による当該黒鉛質炭素粒子の(002)面の面間隔(d002)が0.345nm以下、且つ結晶子サイズ(Lc)が90nm以上
(1e)波長514.5nmのアルゴンイオンレーザー光を用いた、アルゴンイオンレーザースペクトルにおける1580cm-1の散乱強度に対する1360cm-1の散乱強度比であるR値が0.10以上
(1f)真比重が2.21g/cm以上
 また、本発明は、上記の複層構造炭素質物を負極材料に用いたことを特徴とする非水系二次電池用負極を提供するものである。
 また、本発明は、リチウムを吸蔵・放出することが可能な炭素質物を含む負極、正極、及び溶質と非水系溶媒からなる非水系二次電池であって、上記の非水系二次電池用負極であることを特徴とする非水系二次電池を提供するものである。
 本発明によれば、電極作製時に複層構造炭素質物の表面に存在する低結晶性炭素の破壊・剥離が起こり難く、プレス荷重が低く抑えられる。その結果、黒鉛並の高い放電容量を保持し、初期充放電時の不可逆容量を低くでき、良好なサイクル特性を有する等、電池特性に優れた非水系二次電池用の負極材料を提供できる。
実施例9の複層構造炭素質物の透過型電子顕微鏡(以下、「TEM」と略記する)写真(3200000倍)を示す図である。 実施例2の複層構造炭素質物のTEM写真(4000000倍)を示す図である。 実施例3の複層構造炭素質物のTEM写真(4000000倍)を示す図である。 実施例7の複層構造炭素質物のTEM写真(2000000倍)を示す図である。 比較例2の複層構造炭素質物のTEM写真(4000000倍)を示す図である。
 以下、本発明について説明するが、本発明は、以下の具体的形態に限定されるものではなく、技術的思想の範囲内で任意に変形することができる。
 本発明の複層構造炭素質物(以下、「本発明の炭素質物」と称することもある)は、黒鉛質炭素粒子と有機化合物とを混合し、熱処理して得られ、特定の要件を満たすものである。すなわち、本発明は、黒鉛質炭素粒子の表面に有機化合物の炭素化物が添着してなる複層構造炭素質物に関するものである。
 そして、本発明の炭素質物は、黒鉛質炭素粒子のエッジ部にループ構造が存在し、当該ループ構造を保持したままでその表面に有機化合物の炭素化物が添着していることを特徴とする。ここで、黒鉛質炭素粒子のエッジ部のループ構造は、後述するような透過型電子顕微鏡(TEM)写真により実際に確認することができる。本発明の炭素質物は、TEMで観察した際に、黒鉛質炭素粒子の粉末表面において、主として炭素6員環が平面内で連結した網目構造からなるグラファイトc軸面層のエッジ部が、重なりあって閉じたループ構造が存在し、当該ループ構造を保持したままでその表面に有機化合物の炭素化物が添着している。一方、このループ構造が存在しないか、または、存在してもほとんどのループ構造が崩れエッジ部がそのまま剥き出しとなっている場合には、その表面に有機化合物の炭素化物が添着しても、本発明の効果は得られない。
 本発明において、黒鉛質炭素粒子のエッジ部に上記のようなループ構造が存在し、かつ、その表面に有機化合物の炭素化物が添着してなる炭素質物が効果を奏する理由は定かではないが、以下のように考えられる。すなわち、黒鉛質炭素粒子のエッジ部は、電解液と負極が接している部分でSEI膜が形成されやすい端部であるため、黒鉛質炭素粒子のエッジ部、特にc軸面層のエッジ部が、重なりあって閉じたループ構造を形成し不活性化されることにより、前述のSEI膜がより薄く形成され、その分、不可逆容量が低減されるためと考えられる。
(1)本発明の炭素質物の原料
(A)黒鉛質炭素粒子(核材N)
 本発明における黒鉛質炭素粒子は、本発明の炭素質物の核材として用いられる。かかる黒鉛質炭素粒子を、以下単に、「核材N」と略記する。
<黒鉛質炭素粒子(核材N)の物性>
 本発明における核材Nは、体積平均粒径が5~50μmの範囲内が好ましく、7~35μmの範囲内であることがより好ましく、8~27μmの範囲内であることが更に好ましい。なお、本明細書において「~」で記載される範囲は、「~」の前後に記載される数値を含む範囲を示す。体積平均粒径が大きすぎると負極の表面の平滑性が損なわれ、一方、体積平均粒径が小さすぎると比表面積が増加しすぎるので好ましくない場合がある。体積平均粒径は、後述の方法で測定され、そのように測定したものとして定義される。
 高密度の負極を得るためには、原料である核材Nの充填性が高い、すなわちタップ密度が高いことが好ましい。本明細書における「タップ密度」とは、500回タップした後の嵩密度を意味しており、以下の式で表される。
   [タップ密度]=[充填粉体の質量]/[粉体の充填体積]
 本発明における核材Nは、タップ密度が0.70g/cm以上であることが好ましく、0.75g/cm以上であることが特に好ましい。また上限は、好ましくは1.40g/cm以下、より好ましくは1.20g/cm以下である。粉体粒子の充填構造は、粒子の大きさ、形状、粒子間の相互作用力の程度等によって左右されるが、本明細書では充填構造を定量的に議論する指標としてタップ密度を用いており、タップ密度が0.70g/cm以上である核材Nとは、電極の充填率が高く、粒子形状が球状若しくはそれに準ずる楕円体状であることを示している。タップ密度が小さい核材Nは、所定の密度にプレスされ負極とした時に板状の黒鉛結晶の配向が著しく、高速でのリチウムイオンの移動が必要な、高負荷での充放電が妨げられる場合がある。
 本発明における核材Nは、BET比表面積が18m/g未満、更には15m/g以下、特には13m/g以下であることが好ましい。BET比表面積がこの範囲より大きすぎると、低結晶性の炭素の被覆が不完全になる場合がある。
 X線広角回折法によって求められる(002)面の面間隔(d002)が好ましくは0.345nm以下、より好ましくは0.340nm以下、特に好ましくは0.337nm未満である。また、c軸方向の結晶子の大きさLcが15nm以上好ましく、50nm以上がより好ましく、90nm以上が特に好ましい。面間隔(d002)及び結晶子の大きさ(Lc)は、炭素材料バルクの結晶性を示す値であり、(002)面の面間隔(d002)の値が小さいほど、また結晶子の大きさ(Lc)が大きいほど、結晶性が高い炭素材料であることを示し、黒鉛層間に入るリチウムの量が理論値に近づくので容量が増加する。核材Nの結晶性が低いと高結晶性黒鉛を電極に用いた場合の優れた電池特性(高容量で、且つ不可逆容量が低い)が発現されない。面間隔(d002)と結晶子サイズ(Lc)は、上記範囲が組み合わされていることが特に好ましい。
 本発明における核材Nは、波長514.5nmのアルゴンイオンレーザー光を用いた、アルゴンイオンレーザースペクトルにおける1580cm-1の散乱強度に対する1360cm-1の散乱強度比であるR値が0.10以上のものが好ましく、0.13以上がより好ましく、0.15以上が特に好ましい。R値の上限は0.90以下であればよく、好ましくは0.70以下、特に0.50以下が好ましい。
 R値は、炭素粒子の表面近傍(粒子表面から100Å位まで)の結晶性を示す指標であり、R値が大きいほど表面の結晶性が低く、結晶構造が乱れていることを示す。球形化処理した核材Nは一般に粒子表面が荒れて処理前の黒鉛よりR値が大きいので、後述の複層構造炭素質物に用いた場合に、被覆した炭素材料との結着性が高まる効果もある。R値が小さすぎると高結晶性の黒鉛質炭素粒子と低結晶性の炭素質との結着力が低下し、剥離しやすくなる場合がある。一方、R値が大きすぎるとバルクの結晶性も低下する傾向にあり好ましくない場合がある。
 また、アルゴンレーザーラマンスペクトルにおける1580cm-1のピークの半値幅(Δν)は通常17cm-1以上であり、好ましくは19cm-1以上、更に好ましくは21cm-1以上、特に好ましくは23cm-1以上、上限は通常33cm-1以下、好ましくは31cm-1以下、更に好ましくは29cm-1以下、特に好ましくは27cm-1以下である。半値幅(Δν)が小さすぎる場合と大きすぎる場合は、R値が小さすぎる場合と大きすぎる場合と同様の理由で好ましくない場合がある。
 広角X線回折法による(002)面の面間隔(d002)が0.345nm以下、結晶子サイズ(Lc)が90nm以上であり、且つR値が0.10以上である核材Nは、粒子全体の結晶性は高いにも関わらず、粒子の表面近傍は荒れて歪が大きくエッジ部分が多く存在している状態を示している。
 本発明における核材Nは、真密度が2.21g/cm以上であることが好ましく、2.22g/cm以上であることがより好ましく、2.24g/cm以上であることが特に好ましい。上限は黒鉛の理論密度である2.26g/cmである。真密度は黒鉛の結晶性と関連しており、この範囲より小さいと結晶性が低下し充放電容量の低下を招く場合がある。
 本発明における核材Nは以上の条件を満たすものが好ましいが、(1a)体積平均粒径が5~50μm、(1b)タップ密度が0.70g/cm以上、(1c)BET法により測定される比表面積が18m/g未満、(1d)(002)面の面間隔(d002)が0.345nm以下、且つ結晶子サイズ(Lc)が90nm以上、(1e)R値が0.10以上、且つ(1f)真比重が2.21g/cm以上、であるものが特に好ましい。なお、その他の物性は特に限定されない。
<核材Nの原料>
 本発明における核材Nの原料は、特に限定されず、天然黒鉛、人造黒鉛、ピッチ系、ポリアクリロニトリル系、メソフェーズピッチ系、気相成長系、それぞれの炭素繊維を粉末状に加工したもの等の黒鉛質炭素粒子を用いることができる。好ましくは、最も結晶性の高い鱗状若しくは鱗片状の天然黒鉛を原料とすることが好ましい。なお、これらは単体でも、またこれら2種以上を混合してもよい。
<核材Nの製造法>
 本発明における核材Nの製造方法は特に制限されない。例えば、市販の天然黒鉛若しくは人造黒鉛の篩い分けや、風力分級等の分別手段を用いて上記特性を有するNを選別して取得することもできる。好ましい製造方法は、天然から産出する黒鉛質炭素粒子や人工的に製造された黒鉛質炭素粒子に対して、例えば、特開2000-340232号公報に示されるような特定の粉砕機による球形化処理(力学的なエネルギー処理)を施し、球状若しくはそれに準ずる楕円体状に改質して核材Nを製造する方法である。更に好ましくは、球形化処理を施した黒鉛質炭素粒子を、風力分級等の分別手段を用いて粗大粒子及び微粒子を除去することが望ましい。
<核材Nに必要な物性の達成>
 上述の球形化処理を行なうことにより、処理後の黒鉛質炭素粒子のR値を処理前に比べて通常1.5倍以上、好ましくは2倍以上、上限は特に限定されないが、通常10倍以下、好ましくは7倍以下に増加させ、R値が通常0.10以上、好ましくは0.13以上、特に好ましくは0.15以上の核材Nとし、また、タップ密度が0.70g/cm以上とすることができる。広角X線回折法による(002)面の面間隔(d002)が0.345nm以下、結晶子サイズ(Lc)が90nm以上であることは、本処理の前後で殆ど変化しないことが好ましい。
(B)核材Nの熱処理品P
 本発明においては、前記したような黒鉛質炭素粒子をそのまま有機化合物と混合してもよいが、加熱処理をしてから有機化合物と混合することが好ましい。更に、上記のように球形化処理後の黒鉛質炭素粒子を加熱処理することがより好ましい。球形化処理後の黒鉛質炭素粒子を連続式加熱炉等にて窒素雰囲気下等で加熱処理したものを使用することが特に好ましい。ここで、「加熱処理」とは、該黒鉛質炭素粒子を500℃以上2000℃以下で加熱炉等を用いて加熱することをいう。以下、黒鉛質炭素粒子を加熱処理したものを「熱処理品P」と略記することがある。
 熱処理品Pは、TEM像において表面にループ構造が5nm中に3個以上存在していることが好ましい。なお、本発明においては、特に言及しない限り、核材Nには上記熱処理品Pも含むものとする。
(C)炭素化物S
 本発明の炭素質物の表面に付着されており、核材Nを被覆する有機化合物の炭素化物(以下、これを「炭素化物S」と略記する)の前駆体には、重質油等の液相炭化反応を伴う有機物、熱硬化性樹脂等の固相炭化反応を伴う有機化合物等又はそれらの混合物等の有機化合物が用いられる。有機化合物としては、「『炭素材の化学と工業』持田勲著、朝倉書店発行」に記載のものが好適に用いられる。この有機化合物は、焼成することによって炭素化するものであれば特にその種類は制限されない。
<炭素化物Sの液相炭素化>
 液相で炭素化を進行させる有機化合物として、軟ピッチから硬ピッチまでのコールタールピッチ;石炭液化油等の直流系重質油;アスファルテン等の石油系重質油;原油、ナフサ等の熱分解時に副生するナフサタール等分解系重質油等の石油系重質油;分解系重質油を熱処理することにより得られるエチレンタールピッチ、FCCデンカントオイル、アシュランドピッチ等の熱処理ピッチ;等を用いることができる。
 更に、ポリ塩化ビニル、ポリビニルアセテート、ポリビニルブチラール、ポリビニルアルコール等のビニル系高分子;3-メチルフェノールホルムアルデヒド樹脂、3,5-ジメチルフェノールホルムアルデヒド樹脂等の置換フェノール樹脂;アセナフチレン、デカシクレン、アントラセン等の芳香族炭化水素;フェナジンやアクリジン等の窒素環化合物;チオフェン等のイオウ環化合物;等を挙げることができる。
 これらの有機化合物を必要に応じて、適宜溶媒を選択して溶解希釈することにより、核材Nの表面に添着させて使用することができる。該有機化合物の選択としては、核材Nの表面にそのループ構造を保持したままで添着させる必要性から、低粘度であればある程好ましい。
<炭素化物Sの固相炭素化>
 また、固相で炭素化を進行させる有機化合物としては、セルロース等の天然高分子;ポリ塩化ビニリデン、ポリアクリロニトリル等の鎖状ビニル樹脂;ポリフェニレン等の芳香族系ポリマー;フルフリルアルコール樹脂、フェノール-ホルムアルデヒド樹脂、イミド樹脂等の熱硬化性樹脂等;を挙げることができる。また、これらの有機化合物を必要に応じて、適宜溶媒を選択して溶解希釈することにより、核材Nの表面に添着させて使用することができる。
<炭素化物Sの特徴>
 このような炭素化物Sは、核材Nに可撓性があるために荷重をかけると変形し易い高結晶性の黒鉛に対して、逆に結晶性が乏しいために硬くて変形し難く、荷重をかけると脆く破壊され易いという力学的性質を有する。
(2)本発明の炭素質物の製造工程全体
 本発明における炭素質物を得るための製造方法について以下に説明する。本発明の炭素物の製造方法は主に次の工程からなる。
(A)核材Nと、有機化合物若しくはその溶液とを混合し、混合物を得る混合工程。
 本工程の後半では、揮発分の一部を除去し、有機化合物に熱処理が施された中間生成物として回収されることが好ましい。
(B)上記混合物を加熱し、炭素化物を得る熱処理工程。
 好ましくは不活性ガス雰囲気下で、好ましくは600℃以上3000℃以下で加熱することが望ましい。
(C)上記で得られたものの粉体加工を行なう粉体加工工程。
 なお、核材Nとして、熱処理品Pを用いる場合には、上記工程(A)の前工程として、以下の工程が含まれる。
(A’)核材Nを加熱し熱処理品Pを得る加熱処理工程。
 好ましくは不活性ガス雰囲気下で、好ましくは600℃以上1500℃以下で加熱する。
 以下、各工程について説明する。
(A’)核材Nの加熱処理工程
 加熱処理工程では、核材Nを、窒素ガス、炭酸ガス、アルゴンガス等の不活性ガス流通下で加熱される。本加熱処理工程においては、黒鉛質炭素粒子のエッジ面が不活性化されて、表層にループ状の構造物が形成される。
 本加熱処理工程の加熱処理条件としては、最高到達温度が重要である。その温度下限は、通常500℃以上、好ましくは600℃以上、更に好ましくは800℃以上、より好ましくは850℃以上である。これより低い温度では、核材Nのエッジ面にループ状の構造物は形成されず、一方、上限温度については、通常核材Nのエッジ面が十分に不活性化される2000℃以下、特に好ましくは1500℃以下である。これより高い温度での加熱処理は、核材Nのエッジ面の構造を変えてしまう可能性が高く、加熱処理のコストが高くなる場合がある。
(A)混合工程
 混合工程では、核材Nと有機化合物若しくはその溶液とを混合する。混合工程は回分式又は連続式の何れの装置で行なってもよい。また、室温で行ってもよいし、反応槽を加温して行なってもよい。反応槽を加温して行なう場合は、混合物の粘度を低下させ、装置に掛かる負荷を低減し、混合効率を高めることができる。更に、混合時の槽内圧力を減圧にすることで、微小粉末からの脱泡効果を高め、分散性の向上を図ることもできる。
<具体的な混合法の例(1)>
 回分式の場合、混合装置は攪拌翼を備えた混合機1機で構成しても、複数台で構成して順次分散度を向上させてもよい。回分式混合装置としては、2本の枠型ブレードが固定式タンク内で遊星運動を行ないながら回転する構造を有する混合機、高速高剪断ミキサーであるディゾルバーや高粘度用のバタフライミキサーのような1枚のブレードがタンク内を攪拌・分散を行なう形態の装置、半円筒状混合槽の側面に沿ってシグマ型等の攪拌翼が回転する構造を有する、いわゆるニーダー形式の装置、攪拌翼を合計3軸にしたトリミックスタイプの装置、分散槽内に回転ディスクと分散媒体を有するいわゆるビーズミル形式の装置等を用いることができる。何れの装置を用いるかは、核材Nと有機物とを混合した際の粘度を考慮して決定する。
<具体的な混合法の例(2)>
 一方、連続式の装置を用いる場合には、パイプラインミキサーを用いてもよいし、連続式ビーズミル(媒体分級機)を用いてもよい。更に、通常の樹脂加工等に用いられる混合機に、液漏れ対策を施して用いてもよい。混合装置と次工程を受け持つ装置が別個の場合は、連続式混合機を用いることにより、次工程を受け持つ装置への輸送を混合と同時に行なうことができ、製造工程をより効率化することができる。
<具体的な混合法の例(3)>
 また、内部に1本のシャフトとシャフトに固定された複数の鋤状又は鋸歯状のパドルが位相を変えて複数配置された反応室を有し、その内壁面は、パドルの回転の最外線に沿った円筒型に形成され、その隙間を最小限とし、パドルはシャフトの軸方向に複数枚整列された構造の外熱式反応装置を用いれば、同一装置で、混合工程と、揮発分を一部除去するための低温熱処理工程とを行なうことができる。
<具体的な混合法の例(4)>
 本工程においては、常に攪拌しながら加熱することが重要な点である。本工程に適した装置としては、例えば、(a)内部にシャフトによって回転されるパドルが内装された反応室を有し、反応室内壁面はパドルの回転の最外線に実質的に沿って、好ましくは長い双胴型に形成され、パドルは互いに対向する側面を摺動可能に咬合するようにシャフトの軸方向に多数対配列された構造を有する反応機、(b)内部に1本のシャフトとシャフトに固定された複数の鋤状又は鋸歯状のパドルが位相を変えて複数配置された反応室を有し、その内壁面は、パドルの回転の最外線に実質的に沿って、好ましくは円筒型に形成されたその隙間を最小限とし、パドルはシャフトの軸方向に複数枚配列された構造の(外熱式)反応装置等を挙げることができる。このような構造を有する反応装置を用いることにより、核材Nの細孔部分にも炭素化物Sが充填された、品質の良好な非水系二次電池用負極材料を得ることができる。
 上述の(a)タイプの反応装置としては、例えば、栗本鉄工所(株)製の「KRCリアクタ」や「SCプロセッサ」、(株)東芝機械セルマック製の「TEM」、(株)日本製鋼所製の「TEX-K」等がある。また、(b)タイプの反応装置としては、例えば、(株)マツボー製の「レディゲミキサー」、太平洋機工社製の「プロシェアミキサー」、月島機械(株)製の「DTドライヤー」等がある。
 更に上述の(b)タイプの装置において、反応室内壁面に高速で回転するスクリュー型解砕翼を、一段若しくは多段に、1個若しくは複数個設置することは、混合操作、或いはその後の反応操作において凝集体の発生を防ぐことをより確実とし、より均一な中間物質を得られるため好ましい。
 このような反応装置を用いることにより、
(イ)本発明の炭素質物のように、黒鉛質炭素粒子の表面に極薄い有機化合物又はその溶液を付着させることができる。
(ロ)炭素材料の製造には必要不可欠である、有機化合物又はその溶液が十分に芳香族化した構造に変化するまでの熱処理工程を連続的に行なうことができる。
(ハ)有機化合物又はその溶液の反応槽内壁への固着を、攪拌翼により抑制することができる。
(ニ)攪拌翼の回転が遠心渦流を起こし、原料の精密な混合が可能な上、ダマの発生を防ぐ。これにより、混合工程においては核材Nと有機化合物又はその溶液とが非常によく分散され、反応工程においては反応物が流動性を示さなくなった後でも攪拌が可能であり、核材Nが均一に分散し、細孔内部まで有機化合物又はその溶液が充填され、且つ、反応槽内での場所による偏りのない、均一に熱処理された製品を得ることができる。
(ホ)特に(b)タイプの反応装置を用いた場合は、混合工程と中間物質を得る工程を同時に行なうことが可能である。
等の利点がある。
<本発明の効果の達成手段の例(1)(低粘度化、溶媒希釈)>
 本発明の効果を達成するために、炭素化物Sを核材Nの細孔を含む全表面に、均一に、かつ、ループ構造を保持したままで添着させることが必要である。そのために、核材Nを、好ましくは50℃における動粘度が25~75cstの「有機化合物中又は有機化合物の溶液中」に、特に好ましくは、50℃における動粘度が30~50cstの「有機化合物中又は有機化合物の溶液中」に、混合・分散し、有機化合物又はその溶液と接触させることで、有機化合物又はその溶液、特に重質油又はその溶液中に含まれる多環芳香族分子、好ましくはより分子量の大きな多環芳香族オリゴマーによって、核材Nの表面及び細孔内を置換する操作を行なう。
 特に、50℃における動粘度が200cstを越える重質油を用いる場合は、有機化合物又はその溶液の均一で効率的な核材Nへの吸着・含浸を行なうために、溶媒、例えばトルエン、キシレン、アルキルベンゼン等の芳香族炭化水素系有機溶媒、及び/又は、キノリン、ピリジン等の複素環式有機溶媒を、核材Nと、有機化合物又はその溶液との混合体に添加することが好ましい。なお、芳香族炭化水素系有機溶媒の方が、本発明には好ましい。
<本発明の効果の達成手段の例(2)(分割投入)>
 本発明のような、核材Nの表面上のループ構造を保持した複層構造炭素質物を得るためには、この混合工程で回分式混合装置を用い、混合しながら、核材Nに対し有機化合物又はその溶液の偏在を避けるために、有機化合物又はその溶液を、通常2回以上、好ましくは3乃至10回、更に好ましくは3乃至5回に分割し、且つ/又は、(全混合時間の好ましくは1/10、特に好ましくは1/5の時間で)、少量ずつ連続して投入することが好ましい。ここで、「且つ」は、分割添加するそのそれぞれを少量ずつ連続して投入することを意味する。
 全混合時間は、通常3分以上10分以下、好ましくは3分以上8分以下、更に好ましくは3分以上6分以下とすることが望ましい。この理由は、少量ずつ有機化合物又はその溶液を投入することで、核材Nの表面により均一に有機化合物又はその溶液を添着させることができるためである。
<本発明の効果の達成手段の例(3)(予備溶媒処理)>
 更に本発明では、核材Nを予め溶媒処理しておくことも有用である。核材Nを芳香族系溶媒に浸漬し、表面及び細孔中を溶媒により置換しておき、しかる後に過剰な溶媒から分離しておいた核材Nを用いることで、核材Nの有機化合物又はその溶液に対する濡れ性を向上させる効果が得られる。有機溶媒の添加割合としては、核材Nと有機化合物又はその溶液との混合体に溶媒を加えた状態がスラリー状になることが望ましい。有機化合物が固体である場合は溶媒により溶解し、液体である場合は希釈により粘度を調整する必要がある。なお、有機化合物を溶解する際に、その全成分が必ずしも全て溶解する必要はなく、特定の粘度範囲で液状化していればよい。特に有機化合物に重質油を用いる場合は、50℃における動粘度が75cstを越えると電極性能にバラツキが生じる場合がある。これは有機化合物又はその溶液が核材Nの細孔へ充填され難くなるためと考えられる。
<混合雰囲気>
 本混合工程において、反応装置内の雰囲気は不活性雰囲気又は非酸化性雰囲気が好ましいが、中間物質が酸化による劣化を伴わない条件であれば特に雰囲気を限定しなくてもよい。更に、反応槽内圧力を減圧状態にすることで、微小粉末からの脱泡効果を高めて、分散性の向上を図り、核材Nと有機化合物又はその溶液の混合スラリーからの揮発分除去効果を高めることもできる。本混合工程における熱処理温度は、有機化合物又はその溶液の種類により最適温度が異なるが、溶媒の沸点以上、通常50~600℃の範囲、好ましくは60~500℃の範囲である。
<混合工程後半の脱溶媒>
 混合工程で核材Nが十分均一に分散し、また、核材Nの細孔にも有機化合物又はその溶液が十分充填された混合物は、本混合工程で混練(攪拌)されながら加熱され、核材Nと有機化合物又はその溶液が高度に分散し、且つ有機化合物又はその溶液に一定の揮発分の除去と加熱が施された中間生成物として回収され、熱処理工程(炭素化工程)に供される。
(B)熱処理工程
 混合工程で揮発分を一部除去し、重縮合した有機化合物又はその溶液と、核材Nとからなる中間物質は、本熱処理工程において、窒素ガス、炭酸ガス、アルゴンガス等の不活性ガス流通下で加熱される。本熱処理工程においては炭素前駆体の熱化学反応が進行し、前駆体の組成中に残留した酸素、窒素、水素等が系外へ排出されると共に、構造欠陥が熱処理の度合いによって除去され、黒鉛化の度合いを高める。
 本熱処理工程の熱処理条件としては、最高到達温度が重要である。その温度下限は芳香族化した重質油の種類や熱履歴によっても若干異なるが、通常600℃以上、好ましくは800℃以上、更に好ましくは850℃以上である。これより低い温度では、水素等が残留しており、炭素化が不十分となる場合がある。一方、上限温度については、基本的に核材Nの結晶構造を上回る構造秩序を有しない温度まで上げることができる。従って熱処理の上限温度としては、通常3000℃以下、好ましくは2500℃以下、更に好ましくは2000℃以下、特に好ましくは1500℃以下である。これより高い温度は熱処理のコストが高くなる場合がある。このような熱処理条件において、昇温速度、冷却速度、熱処理時間等は目的に応じて任意に設定できる。また、比較的低温領域で熱処理した後、所定の温度まで昇温することもできる。
 混合物を熱処理する工程において、揮発性成分を含む混合物を連続式加熱炉にて熱処理し、揮発性成分を実質的に含まない有機化合物の炭素化物を黒鉛質炭素粒子の表面に添着させることが、核材Nに対し炭素化物Sをより均一に添着させる点で好ましい。
<具体的な炭素化法の例>
 本熱処理工程に適した装置は特に制限されないが、例えば、被加熱物が炉の内部を移動する形式であり、被加熱物を加熱して含まれている揮発性成分を除去する前段炉と、前段炉を通過した被加熱物を更に高温に加熱して炭化度を向上させる後段炉との少なくとも2つの炉と、両者の間に介在する中間室から成り、前段炉も後段炉も内部に発熱体を備えており、前段炉の入口及び後段炉の出口、並びに前段炉と中間室との間及び後段炉と中間室との間には扉が設置せれており、且つ、炉内の雰囲気を制御し得るようになっていることを特徴とする連続式加熱炉が挙げられる。
 前述の連続式加熱炉は、前段炉が、その内部に、発熱体と被加熱物を隔離する熱良導体製の遮蔽体を備えており、前段炉の入口近傍で且つ床面に近い部分に、前段炉からのガス抜出口が設けられ、前段炉におけるガスの流れが出口から入口に向かうようになっていることを特徴とするものが好ましい。なお、本工程に用いる加熱炉は回分式でも連続式でも、また、1基でも複数基でもよい。
(C)粉体加工工程
 熱処理工程において炭素化物Sが核材N表面の一部あるいは全体を被覆する状態で複合化した複層構造炭素質物は、本粉体加工工程において、必要に応じて粉砕、解砕、分級処理等の粉体加工処理を施され、非水系二次電池用負極材料となる。
 なお、粉体加工工程は、(A)混合工程と(B)熱処理工程との間に挿入することもできる。
(3)複層構造炭素質物
 本発明において、核材Nと炭素化物Sの前駆体である有機化合物とを混合し、混合物を炭化焼成・粉砕することにより、最終的に、黒鉛質炭素粒子である核材Nの表面に有機化合物の炭化した炭素化物Sが添着した複層構造炭素質物を得ることができる。
 本発明は、黒鉛質炭素粒子と有機化合物とを混合し、熱処理して得られる複層構造炭素質物であって、黒鉛質炭素粒子のエッジ部にループ構造が存在し、当該ループ構造を保持したままでその表面に有機化合物の炭素化物が添着している複層構造炭素質物である。従って、熱処理して得られた本発明の複層構造炭素質物中の黒鉛質炭素粒子は、前記した「熱処理品Pも含む核材N」のループ構造を保持している。例えば、熱処理品Pは、前記したように、TEM像において表面にループ構造が5nm中に3個以上存在していることが好ましいので、熱処理して得られた本発明の複層構造炭素質物中の黒鉛質炭素粒子も、表面にループ構造が5nm中に3個以上存在していることが好ましい。前記した原料である核材Nの構造や物性が、ある複層構造炭素質物中の黒鉛質炭素粒子で見られたならば、その複層構造炭素質物は、本発明の複層構造炭素質物に含まれ得る。
 本発明においては、核材N表面上の有機化合物の炭素化物量が必要最小限であることが好ましい。すなわち、核材N 100重量部に対する残炭量として、0.1重量部以上4重量部以下となるように有機化合物の炭素化物を添着させることが好ましい。より好ましくは0.5重量部以上3重量部以下、特に好ましくは0.65重量部以上2重量部以下となるように有機化合物の炭素化物を添着させる。
 「核材N 100重量部に対する残炭量」は、有機化合物の種類と混合割合により左右されるものであり、予めJISK2270により定められた試験方法の内、ミクロ法に従って求められた「有機化合物の残炭率」を測定しておき、下記式により求められる。
 [核材N 100重量部に対する有機化合物炭素化物の残炭量]
   =100×[有機化合物の残炭率]×([有機化合物重量]/[核材N重量])
 実際には、使用する有機化合物重量を乗じて得られる炭素化物量が、核材N 100重量部に対して0.1重量部以上4重量部以下となるように、有機化合物の種類と混合量を決定する。
 本発明において、かかる残炭率が少なすぎると、核材Nの細孔への有機化合物の充填が不十分になり、複層構造炭素質物の表面に黒鉛が露出し易くなるため、電解液との反応性が高くなり、核材Nに細孔が残ったままの状態だと活物質である複層構造炭素質物の電解液に対する濡れが不十分となったりするために、リチウムイオンの吸蔵・放出が行なわれる核材Nの表面状態が悪化する等の問題が生じる場合がある。
 一方、残炭量が4重量部を超えて多すぎる場合は、核材Nの表面に過剰な有機化合物の炭素化物が添着しているので、複層構造炭素質物粉末を塗布した電極を高密度化するためにプレスする際に、粒子全体が変形する時に該炭素化物が破壊、剥離し易い。それによって複層構造炭素質物の表面に核材Nの黒鉛結晶が露出し、電解液との反応性が高くなる場合がある。この現象は、高容量化のために高充填密度化するほど顕著になる。以上の結果から、初期充放電時の不可逆容量が増加し、サイクル特性低下を招く等の問題が従来は生じていたと考えられる。
 上記したような残炭量に調整することによって、核材Nのエッジ部のループ構造を好適に保持したままでその表面に有機化合物の炭素化物を添着させることがより容易になる。
 また、黒鉛質炭素粒子の表面に薄く、有機化合物の炭化物を添着させることで粉体加工工程において、複層構造炭素質物の粉砕処理が不要となり、複層構造炭素質物の表面で、粉砕によるダメージを受け難くなると考えられる。これにより、優れた電池特性が発現される(特に不可逆容量を低減できる)ものと考えられる。また、粉砕処理が不要となることで、生産性を大きく向上できる可能性が高い。
 本発明の炭素質物は、全体として、粒状、繊維状等の任意の形状を取り得るが、球状若しくはそれに準ずる楕円体状であることが好ましい。体積平均粒径は2~70μmが必須であり、好ましくは4~40μm、より好ましくは5~35μm、更に好ましくは7~30μmである。この範囲より大きいと、電極の表面の平滑性がなくなる場合がある。一方、この範囲より小さいと比表面積が大きくなり、不可逆容量が増加する場合がある。
 本発明の炭素質物のタップ密度は、下限として0.80g/cm以上が必須であり、好ましくは0.85g/cm以上、より好ましくは0.90g/cm以上、上限として、均一粒径の球状粒子のタップ密度1.40g/cmの範囲に制御することが望ましい。複層構造化により、タップ密度が向上することもあり、また、その形状に更に丸みを導入する効果が現れることもある。タップ密度がこれより小さいと高密度の電極を作製するのが困難になる場合がある。
 本発明の炭素質物は、液中に分散させた数千個の粒子をCCDカメラにて1個ずつ撮影し、その平均的な形状パラメーターを算出することが可能なフロー式粒子像解析装置を用いて撮影された、平均粒子径10~40μmの粒子について、粒子投影像の周囲長に対する粒子面積相当円の周囲長の比である「平均円形度」(粒子像が真円に近いほど1となり、複雑な形状ほど小さい値になる)が0.94以上であることが好ましい。平均円形度は前述のタップ密度と相関しており、複層構造炭素質物の円形度がこれより小さいと均一な電極を作製するのが困難となる場合がある。
 本発明の炭素質物の、波長514.5nmのアルゴンイオンレーザー光を用いたアルゴンイオンレーザーラマンスペクトルにおける、1580cm-1の散乱強度に対する1360cm-1の散乱強度の比であるR値は0.15以上が必須である。また、核材N 100重量部に対する炭素化物Sの残炭量が4重量部以下の範囲内では、核材NのR値よりも小さいことが好ましい。また、0.2以上0.4以下が好ましく、0.25以上0.35以下であることがより好ましい。かかる範囲であることが、良好な電池特性を得る上で望ましい。
 また、本発明の炭素質物のBET法を用いて測定した比表面積は、10m/g以下が好ましく、より好ましくは1~9m/g、より好ましくは1.5~7m/g、特に好ましくは2~6m/gの範囲である。比表面積がこの範囲より大きいと電池に適用した際、初期不可逆容量が増加する場合がある。また、核材NのBET比表面積に対する炭素質物のBET比表面積の比は、通常0.40以上1.00以内、0.40以上0.90未満が好ましく、下限は0.45以上であることがより好ましく、0.60以上であることが更に好ましい。この比が0.40未満の場合は、炭素化物Sが比較的多く(厚く)添着していることを示し、本発明における効果が十分に発現しない場合がある。比表面積の上記範囲と比表面積の比の上記範囲は組み合わされて両方満たしていることが特に好ましい。
 また、1360±100cm-1付近の波長域にあるスペクトル強度の積分値Ya、1580±100cm-1付近の波長域にあるスペクトル強度の積分値をYbとした時、Yaに対するYbの比、すなわちG=Yb/Yaの値は、核材NのG値よりも小さく、且つ3.0以下であることが好ましく、より好ましくは1.2~2.5、特に好ましくは1.4~2.1の範囲である。R値又はG値が上記範囲を越えると、炭素化物Sの結晶性が著しく低下するため、電池特性において容量低下を招く場合がある。
 また、アルゴンレーザーラマンスペクトルにおける1580cm-1のピークの半値幅(Δν)は通常19cm-1以上であり、好ましくは20cm-1以上、更に好ましくは22cm-1以上、特に好ましくは24cm-1以上、上限は31cm-1以下、好ましくは30cm-1以下、更に好ましくは28cm-1以下、特に好ましくは26cm-1以下である。半値幅(Δν)が小さすぎる場合と大きすぎる場合は、R値やG値が小さすぎる場合と大きすぎる場合と同様の理由で好ましくない場合がある。
 本発明の炭素質物の結晶化度は、核材Nの結晶化度と殆ど変わらない。すなわち、CuKα線を線源とするX線広角回折によって求められる炭素質物の(002)面の面間隔d002とc軸方向の結晶子の大きさLcは核材Nのそれと殆ど変わらない。従って、それらに関しては、本発明の炭素質物についても、核材Nの項で前記した範囲が好ましい。
(4)非水系二次電池用負極
 上記炭素質物は公知の方法に従い、電極の形状に成形して非水系二次電池、特にリチウムイオン二次電池の負極として好適に用いることができる。
 非水系二次電池を構成する負極は、負極材料、極板成形用結着剤、増粘剤及び導電材を含有する活物質層を集電体上に形成してなる。活物質層は、通常、負極材料、極板成形用結着剤、増粘剤、導電材及び溶媒を含有するスラリーを調製し、これを集電体上に塗布、乾燥、プレスすることにより得られる。
 極板成形用結着剤としては、電極製造時に使用する溶媒や電解液に対して安定な材料であれば、任意のものを使用することができる。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン-アクリル酸共重合体及びエチレン-メタクリル酸共重合体等が挙げられる。極板成形用結着剤は、負極材料/極板成形用結着剤の重量比で、通常90/10以上、好ましくは95/5以上、通常99.9/0.1以下、好ましくは99.5/0.5以下の範囲で用いられる。極板成形時に用いる結着剤は、少なすぎると極板強度の低下を招き、また多すぎると電極内部で抵抗成分となり、リチウムの吸蔵・放出がスムーズに行なわれず、充電容量の低下、負荷特性の低下、サイクル特性の低下を招く場合がある。
 増粘剤としては、カルボキシルメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。
 導電材としては、銅、ニッケル等の金属材料;グラファイト、カーボンブラック等の炭素材料等が挙げられる。
 集電体の材質としては、銅、ニッケル、ステンレス等が挙げられる。これらのうち、薄膜に加工し易いという点及びコストの点から銅箔が好ましい。
 本発明の炭素質物からなる負極の密度は、用途により異なるが、容量を重視する用途では、通常1.45g/cm以上であり、1.50g/cm以上が好ましく、1.55g/cm以上がより好ましく、1.60g/cm以上が特に好ましい。また通常2.00g/cm以下であり、1.85g/cm以下が好ましい。密度が低すぎると、単位体積あたりの電池の容量が必ずしも十分ではない場合があり、また密度が高すぎると、充放電高負荷特性が低下するので1.80g/cm以下が好ましい。なお、ここで、「活物質層」とは集電体上の活物質、極板成形用バインダー、増粘剤、導電材等よりなる合剤層をいい、その密度とは電池に組み立てる時点での活物質層の嵩密度をいう。
 本発明における負極を作製する際に、前述の手法により塗布・乾燥した後、所定の密度に達するまで、ロールプレス機にてプレスを行う。電極密度1.60g/cmに達するプレス荷重(線圧)は、200kg/5cm以上550kg/5cm以下が好ましく、200kg/5cm以上500kg/5cm以下が更に好ましく、200kg/5cm以上400kg/5cm以下がより好ましい。
 そのときに負極に掛かる荷重(プレス荷重)がこれより大きい場合は、表面に付着した炭素化物Sの量が多いために複層構造炭素質物の粒子が硬いことを意味し、プレスによって炭素化物Sが破壊・剥離しやすく、それにより核材Nの表面がむき出しになり、後述するような電解液との反応性が高まり、電池性能に大きな影響を与える。すなわち、特に初期充放電時の不可逆容量を増大させ、更にはサイクル特性の低下を招く場合がある。プレス荷重がこれよりも小さすぎる場合は、炭素化物Sの破壊や剥離は生じないが、炭素化物Sが不足して被覆されない核材の表面が存在していることを意味しており、電解液との反応性が高まり、電池性能に大きな影響を与える。すなわち、上記と同様に、特に初期充放電時の不可逆容量を増大させ、更にはサイクル特性の低下を招く場合がある。
 塗布・乾燥した極板を、縦5cm×横7cmの大きさに切断し、所定の条件にて前処理した後、BET法にて比表面積を測定した。この時の比表面積をAとする。また、同じ極板を電極密度1.60g/cmに達するようにロールプレス機にてプレスした後、同様の方法で比表面積を測定した。この時の比表面積をBとする。ここで、プレス前の電極比表面積に対する、プレス後の電極比表面積の比C(C=B/A)が、0.90以上1.2以下が好ましく、1.0を超えて1.15以下がより好ましく、1.1以下が更に好ましく、1.05以下がより好ましい。Cが1.2以上の場合は、核材Nの表面に添着されている炭素化物Sが破壊されて核材の表面が露出している状態を意味する。この値が1.0に近いほど炭素化物Sがプレスによって破壊されないことを示しており、本発明の前記の効果が発現されるためには、Cが1.0に近ければ近い程好ましい。このことは1.0未満の場合でも1.0に近いほど好ましい。
(5)非水系二次電池
 本発明の炭素質物を用いて製造された非水系二次電池用負極は、特にリチウムイオン二次電池等の非水系二次電池の負極として極めて有用である。
 このような非水系二次電池を構成する正極、電解液等の電池構成上必要な部材の選択については特に制限されない。以下において、非水系二次電池を構成する部材の材料等を例示するが、使用し得る材料はこれらの具体例に限定されるものではない。
 本発明の非水系二次電池は、通常、少なくとも、上記の本発明の負極、正極及び電解質を有する。
 正極は、正極集電体上に、正極活物質、導電剤及び極板成形用バインダーを含有する活物質層を形成してなる。活物質層は、通常正極活物質、導電剤及び極板成形用バインダーを含有するスラリーを調製し、これを集電体上に塗布、乾燥することにより得られる。
 正極活物質としては、例えば、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物等のリチウム遷移金属複合酸化物材料;二酸化マンガン等の遷移金属酸化物材料;フッ化黒鉛等の炭素質材料等のリチウムを吸蔵・放出可能な材料を使用することができる。具体的には、例えば、LiFePO、LiFeO、LiCoO、LiNiO、LiMn及びこれらの非定比化合物、MnO、TiS、FeS、Nb、Mo、CoS、V、P、CrO、V、TeO、GeO、LiNi0.33Mn0.33Co0.33等を用いることができる。
 正極集電体としては、電解液中での陽極酸化によって表面に不動態皮膜を形成する金属又はその合金を用いることが好ましく、IIIa、IVa、Va族(3B、4B、5B族)に属する金属及びこれらの合金を例示することができる。具体的には、例えば、Al、Ti、Zr、Hf、Nb、Ta及びこれらの金属を含む合金等を例示することができ、Al、Ti、Ta及びこれらの金属を含む合金を好ましく使用することができる。特に、Al及びその合金は軽量であるためエネルギー密度が高いため望ましい。
 電解質としては、電解液、固体電解質、ゲル状電解質等が挙げられるが、なかでも電解液、特に非水系電解液が好ましい。非水系電解液は、非水系溶媒に溶質を溶解したものを用いることができる。
 溶質としては、アルカリ金属塩や4級アンモニウム塩等を用いることができる。具体的には、例えば、LiClO、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)及びLiC(CFSOからなる群から選択される1以上の化合物を用いることが好ましい。更に、これらの溶質と、非水系溶媒として後述する環状カーボネートと鎖状カーボネートを含有するものとの組み合わせが特に好ましい。
 非水系溶媒としては、例えば、エチレンカーボネート、ブチレンカーボネート等の環状カーボネート;γ-ブチロラクトン等の環状エステル化合物;1,2-ジメトキシエタン等の鎖状エーテル;クラウンエーテル、2-メチルテトラヒドロフラン、1,2-ジメチルテトラヒドロフラン、1,3-ジオキソラン、テトラヒドロフラン等の環状エーテル;ジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネート等の鎖状カーボネート等を用いることができる。溶質及び溶媒はそれぞれ1種類を選択して使用してもよいし、2種以上を混合して使用してもよい。これらの中でも非水系溶媒が、環状カーボネートと鎖状カーボネートを含有するものが好ましい。またビニレンカーボネート、ビニルエチレンカーボネート、無水コハク酸、無水マレイン酸、プロパンスルトン、ジエチルスルホン等の化合物が添加されていてもよい。更に、ジフルオロリン酸リチウムのようなジフルオロリン酸塩等も好適な例として挙げられる。
 電解液中のこれらの溶質含有量は、0.2mol/L以上が好ましく、0.5mol/L以上が特に好ましく、2.0mol/L以下が好ましく、1.5mol/L以下が特に好ましい。過剰な溶質は、電解液中のリチウムイオンの輸率低下を招き、電池系全体の導電性を低下させる場合がある。
 これらのなかでも、本発明の負極と、金属カルコゲナイド系正極と、カーボネート系溶媒を主体とする有機電解液とを組み合わせて作成した非水系二次電池は、容量が大きく、初期サイクルに認められる不可逆容量が小さく、急速充放電容量が高く(レート特性が良好)、またサイクル特性が優れ、高温下での放置における電池の保存性及び信頼性も高く、高効率放電特性及び低温における放電特性に極めて優れたものである。
 正極と負極の間には、通常正極と負極が物理的に接触しないようにするためにセパレータが設けられる。セパレータはイオン透過性が高く、電気抵抗が低いものであるのが好ましい。セパレータの材質及び形状は、特に限定されないが、電解液に対して安定で、保液性が優れたものが好ましい。具体的には、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布が挙げられる。
 本発明の非水系二次電池の形状は、特に制限されず、シート電極及びセパレータをスパイラル状にした円筒タイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造の円筒タイプ、ペレット電極及びセパレータを積層したコインタイプ等が挙げられる。
 次に実施例により、本発明の具体的態様を更に詳細に説明するが、本発明はこれらの例によって限定されるものではない。
<粉体物性及び電極若しくは電池の分析・評価方法>
[(002)面の面間隔(d002)、結晶子の大きさ(Lc)]
 広角X線回折の測定及び解析は、日本学術振興会で制定された方法(通称学振法)に拠った。核材N若しくは、複層構造炭素質物の粉末に対して20質量%のX線標準高純度シリコン粉末を加えて混合し、試料セルに詰め、グラファイトモノクロメーターで単色化したCuKα線を線源とし、反射式ディフラクトメーター法によって広角X線回折曲線を測定した。
[ラマンスペクトル分析]
 ラマン分光器「日本分光社製ラマン分光器」を用い、試料を測定セル内へ自然落下させることで充填し、測定セル内にアルゴンイオンレーザー光を照射しながら、測定セルをレーザー光と垂直な面内で回転させながら測定を行なった。測定条件は以下の通りとした。
 アルゴンイオンレーザー光の波長  :514.5nm
 試料上のレーザーパワー      :15~25mW
 分解能              :4cm-1
 測定範囲             :1100~1730cm-1
 ピーク強度測定、ピーク半値幅測定 :バックグラウンド処理、スムージング処理
                   (単純平均、コンボリューション5ポイント)
 アルゴンレーザーラマンスペクトルにおける1580cm-1近傍の散乱強度のピーク値に対する1360cm-1近傍の散乱強度ピーク値の比であるR値、1360±100cm-1付近の波長域にあるスペクトル強度の積分値Yaに対する1580±100cm-1付近の波長域にあるスペクトル強度の積分値Ybの比であるG値=Yb/Ya、1580cm-1付近のピーク半値幅(Δν)を測定した。
[体積平均粒径の測定]
 界面活性剤であるポリオキシエチレンソルビタンモノラウレート(例として、Tween20(登録商標))の0.2質量%水溶液10mLに、黒鉛質複合粒子0.01gを懸濁させ、市販のレーザー回折/散乱式粒度分布測定装置、HORIBA製、「LA-920」に導入し、28kHzの超音波を出力60Wで1分間照射した後、測定装置における体積基準平均粒径(メジアン径)を測定し、それを「体積平均粒径」とした。
[タップ密度の測定]
 粉体密度測定器である(株)セイシン企業社製「タップデンサーKYT-4000」を用い、内径1.6cm、容積20cmの円筒状タップセルに、目開き355μmの篩を通して落下させて、セルに満杯に充填した後、粉体の重量を測定し、次いでストローク長10mmのタップを500回行った後、粉体の容積を測定し、重量/容積として求めた。
[BET比表面積の測定]
 (株)島津製作所社製、比表面積測定装置「ジェミニ2360」を用いて、窒素ガス吸着流通法により、BET6点法にて測定した。試料1.0gをセルに充填し、真空下350℃にて15分間加熱して前処理を行った後、液体窒素温度まで冷却して、窒素30%、He70%のガスを飽和吸着させ、その後室温まで加熱して脱着したガス量を計測し、得られた結果から、通常のBET6点法により比表面積を算出した。
[平均円形度の測定]
 試料0.2gを界面活性剤であるポリオキシエチレンソルビタンモノラウレート(例として、Tween20(登録商標))の0.2体積%水溶液50mLに懸濁させ、フロー式粒子像分析装置「シスメックスインダストリアル社製、FPIA-2000」を用い、28kHzの超音波を出力60Wで1分間照射した後、測定を行なった。検出範囲を0.6~400μmに指定し、平均粒子径10~40μmの範囲の粒子について測定した下記式で与えられる円形度の値の平均値として求めた。
  円形度=粒子投影面積と同じ面積の円の周長/粒子投影像の周長
[透過型電子顕微鏡(TEM)での表面観察]
 バイアル瓶に入れた黒鉛粉体にエタノールを注ぎ、超音波洗浄器内にて15秒間分散させた後、マイクログリッド上に滴下後乾燥させたものを観察試料とし、透過型電子顕微鏡「日本電子株式会社製、JEM-2010」を用い、加速電圧200kVにて観察を行った。
[負極の作製方法及びプレス荷重の測定]
 複層構造炭素質物を20.00±0.02g、1質量%カルボキシメチルセルロース(CMC)水溶液を20.00±0.02g、及び重量平均分子量27万のスチレンブタジエンゴム(SBR)水性ディスパージョン0.25±0.02gを、キーエンス社製ハイブリッドミキサーで5間撹拌してスラリーを得た。このスラリーを集電体である厚さ18μmの銅箔上に、負極材料が11.0±0.1mg/cm付着するように、ドクターブレード法で、幅5cmに塗布し、室温で風乾した。更に110℃で30分乾燥後、直径20cmのローラを用いてロールプレスした。プレス成形した後24時間後の活物質層の密度が1.60g/cmになるよう調整し負極シートを得た。ロールプレスをする際のプレス荷重を測定した。
[非水系二次電池の作製方法(1) コイン電池の作製方法、評価方法]
 上記電極を用いて、電解液を含浸させたセパレータを介して、リチウム金属電極を対向させた2016コイン型セル(φ20mm、厚さ1.6mm)を作製し、充放電試験を行なった。電解液としては、エチレンカーボネート、エチルメチルカーボネート、ジメチルカーボネートの混合溶媒に、LiPF6を溶解させたものを用いた。充放電試験は24時間開回路状態で置いた後、充電は定電流-定電圧充電、放電は定電流放電にて実施した。電流値を0.2mA/cm(0.05C)とし、両電極間の電位差が0Vになるまで充電を行ない、1.5Vまで放電を行なった。充放電は全部で3サイクル実施し、初回の充電時のみ、充電容量が350mAh/gになった時点で充電が終止する条件にて行なった。
 2サイクル目以降、充電は電流値が0.02mAに達した時点、放電は電圧が1.5Vに達した時点で終止する条件にて行なった。3サイクル目の放電容量の結果を表1に示した。表中の不可逆容量は、充電容量から放電容量の値を差し引いて求めた値であり、充放電効率は放電容量を充電容量で除した値である。3サイクル目の放電容量は350mAh/g以上となるのが好ましく、初期不可逆容量は40mAh/g以下が好ましく、35mAh/g以下がより好ましく、33mAh/g以下が特に好ましい。
[非水系二次電池の作製方法(2) 18円筒電池の作製方法、評価方法]
 該複層構造炭素質物とカルボキシメチルセルロース(CMC)水溶液、スチレンブタジエンゴム(SBR)水性ディスパージョンとを市販のプラネタリーミキサーにて混練・分散させてスラリーを調製した。このスラリーを厚さ10μmの圧延銅箔に塗布・乾燥させた後、電極密度1.75g/cmになるようロールプレスし、切断して電極を作製した。この電極を負極とし、アルミ箔上にコバルト酸リチウムを塗布・乾燥させた後、ロールプレスした電極を正極とし、これらをニッケルめっきした鉄製の円筒型金属缶(φ18mm、長さ650mm)中にセパレータと共に捲回封入し、2016コイン型電池評価の時に用いた電解液と同じ電解液を注入した後、金属缶を封口して円筒型電池を作製した。
 この円筒型電池を、45℃7日間電池電位が4.05Vの状態で維持させた後、25℃にて300サイクルまで充放電させた。充放電は充電を0.7Cにて定電流-定電圧充電、放電を1.0Cにて定電流放電にて実施した。終止条件は充電時が100mA、放電時は4.2Vとした。この評価における50サイクル時と100サイクル時の放電容量維持率を表2に示した。25℃1Cでの50サイクル時における放電容量維持率は88%以上が好ましく、90%以上が更に好ましい。また同100サイクル時における放電容量維持率は85%以上が好ましく、88%以上が更に好ましい。
実施例1
(A)混合工程
 (株)マツボー製のFKM300D型レディゲミキサー(内容積300L)に、原料投入口より、黒鉛質炭素粒子(核材N)として、球形化処理した天然黒鉛(体積平均粒径16.3μm、タップ密度0.99g/cm、BET比表面積7.3m/g、(002)面の面間隔(d002)0.3345nm、結晶子サイズ(Lc)1000nm以上、R値0.26、真比重2.26g/cm)を150kg投入し、炭素化物Sの原料としてナフサ分解時に得られるエチレンヘビーエンドタール(三菱化学(株)社製:50℃における動粘度50cst)を1kg投入して運転を開始した。この黒鉛質炭素粒子(核材N)の粒子のエッジ部にはループ構造が存在していた。
 運転条件は、鋤型攪拌翼の回転数が200rpm、解砕翼の回転数が2000rpmであり、装置内温度は室温であった。この操作を10分間行なった。更に、ミキサーのジャケットに温水を流し60℃で加温した。次に装置内部を徐々に減圧して最終的に内部を13.33×10Pa(100Torr)とし、脱気及び脱揮発成分を進行させ、エチレンヘビーエンドタールの軽質留分と希釈材の除去を行なった。しかる後に温度を室温まで下げて、核材Nにエチレンヘビーエンドタールが添着・含浸された複層構造炭素質物の前駆体を粉末状で得た。
(B)熱処理工程及び粉体加工工程
 上記複層構造炭素質の前駆体粉末を回分式加熱炉で熱処理した。この粉末を黒鉛容器に入れた状態で連続式加熱炉に入れて、窒素ガスを5L/分の流量下で3時間かけて1200度まで昇温して1時間保持した。その後、室温まで冷却し被覆相が炭素化した複層構造炭素質物を得た。熱処理工程で得られた複層構造炭素質物は手で軽く解砕することが可能であった。衝撃式粉砕機にて解砕して粗粉と微粉を除去した後、所定の平均粒子径を持った複層構造炭素質粉末を得た。
 黒鉛質炭素粒子(核材N)100重量部に対する有機物の炭素化物Sの残炭量(重量部)、並びに該複層構造炭素質粉末(複層構造炭素質物)の体積平均粒径、タップ密度、BET比表面積、ラマン(R値、G値、半値幅)、平均円形度、核材NのBET比表面積に対する複層構造炭素質粉末のBET比表面積の比、該複層構造炭素質粉末を銅箔に塗布後電極密度1.60g/cmにプレスした際のプレス荷重を表1に示した。更に、上記コインタイプの電池を作製するために、電極密度1.60g/cmとなるようにプレスした際の極板のBET比表面積の比C(=B/A)の値を表2に示した。
 負極に該複層構造炭素質粉末を用いた際のコイン電池評価結果(放電容量、初期不可逆容量)を表1に示した。また、円筒電池評価結果を表2に示した。電池評価結果(放電容量、初期不可逆容量)は全て良好であった。また、放電容量維持率が大きかった。
実施例2
 球形化処理した天然黒鉛を30kg投入した以外は実施例1と同様の操作を行なった。得られた炭素質物の物性及び形状並びにコイン電池評価結果及び円筒電池評価結果を表1、表2に示した。電池評価結果(放電容量、初期不可逆容量)は全て良好であった。また、放電容量維持率が大きかった。更に、得られた炭素質物のTEM写真を図2に示した。黒鉛質炭素粒子のエッジ部にループ構造が存在し、当該ループ構造を保持したままでその表面に有機化合物の炭素化物が添着していることが分かる。
実施例3
 球形化処理した天然黒鉛を15kg投入した以外は実施例1と同様の操作を行なった。得られた炭素質物の物性及び形状並びにコイン電池評価結果及び円筒電池評価結果を表1、表2に示した。電池評価結果(放電容量、初期不可逆容量)は全て良好であった。また、放電容量維持率が大きかった。更に、得られた炭素質物のTEM写真を図3に示した。黒鉛質炭素粒子のエッジ部にループ構造が存在し、当該ループ構造を保持したままでその表面に有機化合物の炭素化物が添着していることが分かる。
実施例4
 球形化処理した天然黒鉛を10kg投入した以外は実施例1と同様の操作を行なった。得られた炭素質物の物性及び形状並びに電池評価結果を表1、表2に示した。電池評価結果(放電容量、初期不可逆容量)は全て良好であった。また、放電容量維持率が大きかった。
実施例5
 球形化処理した天然黒鉛を7.5kg投入した以外は実施例1と同様の操作を行なった。得られた炭素質物の物性及び形状並びに電池評価結果を表1、表2に示した。電池評価結果(放電容量、初期不可逆容量)は全て良好であった。また、放電容量維持率が大きかった。
実施例6
 球形化処理した天然黒鉛を6kg投入した以外は実施例1と同様の操作を行なった。得られた炭素質物の物性及び形状並びに電池評価結果を表1、表2に示した。電池評価結果(放電容量、初期不可逆容量)は全て良好であった。また、放電容量維持率が大きかった。
実施例7
 球形化処理した天然黒鉛を5kg投入した以外は実施例1と同様の操作を行なった。得られた炭素質物の物性及び形状並びに電池評価結果を表1、表2に示した。電池評価結果(放電容量、初期不可逆容量)は全て良好であった。また、放電容量維持率が大きかった。更に、得られた炭素質物のTEM写真を図4に示した。黒鉛質炭素粒子のエッジ部にループ構造が存在し、当該ループ構造を保持したままでその表面に有機化合物の炭素化物が添着していることが分かる。
実施例8
 球形化処理した天然黒鉛を3.8kg投入した以外は実施例1と同様の操作を行なった。得られた炭素質物の物性及び形状並びに電池評価結果を表1、表2に示した。電池評価結果(放電容量、初期不可逆容量)は全て良好であった。また、放電容量維持率が大きかった。
実施例9
 以下の通り、核材Nの加熱処理品を製造し、当該加熱処理品を核材Nとして使用した以外は実施例1と同様の操作を行った。得られた炭素質物の物性及び形状並びに電池評価結果を表1、表2に示した。電池評価結果(放電容量、初期不可逆容量)は全て良好であった。また、放電容量維持率が大きかった。更に、得られた複層構造炭素質物のTEM写真を図1に示した。黒鉛質炭素粒子のエッジ部にループ構造が存在していることが分かる。
(A’)核材Nの加熱処理工程
 黒鉛質炭素粒子(核材N)として球形化処理した天然黒鉛(体積平均粒径16.3μm、タップ密度0.99g/cm、BET比表面積7.3m/g、(002)面の面間隔(d002)0.3345nm、結晶子サイズ(Lc)1000nm以上、R値0.26、真比重2.26g/cm)を黒鉛容器に入れた状態で連続式加熱炉に入れて、窒素ガスを5L/分の流量下で3時間かけて1200度まで昇温して1時間保持した。その後、室温まで冷却し、核材Nの加熱処理品(体積平均粒径16.6μm、タップ密度1.10g/cm、BET比表面積6.1m/g、(002)面の面間隔(d002)0.3345nm、結晶子サイズ(Lc)1000nm以上、R値0.19、真比重2.26g/cm)を得た。
実施例10
 原料に核材Nの加熱処理品を用いた以外は実施例3と同様の操作を行なった。得られた炭素質物の物性及び形状並びに電池評価結果を表1、表2に示した。電池評価結果(放電容量、初期不可逆容量)は最も良好であった。また、放電容量維持率が大きかった。
比較例1
 黒鉛質炭素粒子(核材N)に実施例1と同様の球形化処理した天然黒鉛を用い、炭素化物Sは添着させなかった。使用した黒鉛質炭素粒子(核材N)の物性及び形状並びに電池評価結果を表1、表2に示した。核材Nに炭素化物Sを添着させた場合に比べて、初期充放電時の不可逆容量(初期不可逆容量)が10mAh/g近く大きかった。また、放電容量維持率が小さかった。
比較例2
 球形化処理した天然黒鉛を3kg投入した以外は実施例1と同様の操作を行なった。得られた炭素質物の物性及び形状並びに電池評価結果を表1、表2に示した。黒鉛質炭素粒子(核材N)100重量部に対して、残炭量が0.1重量部以上4重量部以下となるように炭素化物Sを添着させた場合に比べて、初期充放電時の不可逆容量(初期不可逆容量)が大きかった。また、放電容量維持率が小さかった。得られた炭素質物のTEM写真を図5に示した。黒鉛質炭素粒子のエッジ部のループ構造が崩れていることが分かる。
比較例3
 球形化処理した天然黒鉛を2kg投入した以外は実施例1と同様の操作を行なった。得られた炭素質物の物性及び形状並びに電池評価結果を表1、表2に示した。黒鉛質炭素粒子(核材N)100重量部に対して、残炭量が0.1重量部以上4重量部以下となるように炭素化物Sを添着させた場合に比べて、初期充放電時の不可逆容量(初期不可逆容量)が大きかった。また、放電容量維持率が小さかった。
比較例4
 麟片状天然黒鉛(体積平均粒径27.1μm、タップ密度0.55g/cm、BET比表面積4.7m/g、真比重2.26g/cm)を3.8kg投入した以外は実施例1と同様の操作を行なった。得られた炭素質物の物性及び形状並びに電池評価結果を表1、表2に示した。得られた炭素質物の平均円形度は0.86であった。平均円形度が0.94以上の炭素質物の場合に比べて、初期充放電時の不可逆容量(初期不可逆容量)が大きかった。また、放電容量維持率が小さかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明の複層構造炭素質物を負極材料として用いた非水系二次電池は、高容量で初期充放電時の不可逆容量が低く、良好なサイクル特性を有するので、電子機器分野等に広く利用されるものである。
 本願は、2008年2月4日に出願した日本の特許出願である特願2008-023527に基づくものであり、その出願の全ての内容はここに引用し、本願発明の明細書の開示として取り込まれるものである。
 

Claims (30)

  1.  黒鉛質炭素粒子と有機化合物とを混合し、熱処理して得られる複層構造炭素質物であって、黒鉛質炭素粒子のエッジ部にループ構造が存在し、当該ループ構造を保持したままでその表面に有機化合物の炭素化物が添着している複層構造炭素質物。
  2.  黒鉛質炭素粒子のエッジ部が、黒鉛質炭素粒子のc軸面層のエッジ部である請求項1記載の複層構造炭素質物。
  3.  以下の要件の全てを満たすことを特徴とする請求項1または2に記載の複層構造炭素質物。
    (b)体積平均粒径が2~70μm
    (c)タップ密度が0.80g/cm以上
    (d)平均円形度が0.94以上
    (e)波長514.5nmのアルゴンイオンレーザー光を用いたアルゴンイオンレーザーラマンスペクトルにおける、1580cm-1の散乱強度に対する1360cm-1の散乱強度の比であるR値が0.15以上である
  4.  BET法にて測定した比表面積が10m/g以下であって、且つ、該黒鉛質炭素粒子のBET比表面積に対する比が0.40以上1.00以内である請求項1から3のいずれかに記載の複層構造炭素質物。
  5.  波長514.5nmのアルゴンイオンレーザー光を用いたアルゴンイオンレーザーラマンスペクトルにおける、1360±100cm-1付近の波長域にあるスペクトル強度の積分値Yaに対する、1580±100cm-1付近の波長域にあるスペクトル強度の積分値Ybの比であるG値=Yb/Yaが該黒鉛質炭素粒子のG値よりも小さく、且つ、3.0以下であることを特徴とする請求項1から4のいずれかに記載の複層構造炭素質物。
  6.  複層構造炭素質物を用いてスラリーとし、集電体上に塗布、乾燥して電極を作製後、プレス荷重(線圧)200kg/5cm以上550kg/5cm以下で、電極密度1.60g/cmとなるようにロールプレスし、プレス前の電極比表面積に対するプレス後の電極比表面積の比が0.90以上1.2以下となるように電極を作製後、この電極を負極として用い、正極活物質、電解質及びセパレータを用いてコインタイプ電池を組み立て3サイクルまで充放電試験を行なった時、3サイクル目の放電容量が350mAh/g以上、1サイクル目の不可逆容量(1サイクル目の放電容量と充電容量の差)が40mAh/g以下であることを特徴とする請求項1から5のいずれかに記載の複層構造炭素質物。
  7.  複層構造炭素質物を用いて電極を作製して電極密度1.75g/cmにロールプレスした負極、正極活物質、電解質及びセパレータを用いて円筒タイプ電池を組み立てて、25℃にて300サイクルまで充放電試験を行なった時、100サイクル時の放電容量維持率が85%以上であることを特徴とする請求項1から6のいずれかに記載の複層構造炭素質物。
  8.  黒鉛質炭素粒子と有機化合物とを混合し、熱処理して得られる複層構造炭素質物であって、以下の(b)~(f)の要件の全てを満たすことを特徴とする複層構造炭素質物。
    (b)体積平均粒径が2~70μm
    (c)タップ密度が0.80g/cm以上
    (d)平均円形度が0.94以上
    (e)波長514.5nmのアルゴンイオンレーザー光を用いたアルゴンイオンレーザーラマンスペクトルにおける、1580cm-1の散乱強度に対する1360cm-1の散乱強度の比であるR値が0.15以上である
    (f)複層構造炭素質物を用いてスラリーとし、集電体上に塗布、乾燥して電極を作製後、プレス荷重(線圧)200kg/5cm以上550kg/5cm以下で、電極密度1.60g/cmにロールプレスした場合、プレス前の電極比表面積に対するプレス後の電極比表面積の比が0.90以上1.2以下である
  9.  BET法にて測定したBET比表面積が10m/g以下であって、且つ、該黒鉛質炭素粒子のBET比表面積に対する比が0.40以上1.00以内である請求項8に記載の複層構造炭素質物。
  10.  波長514.5nmのアルゴンイオンレーザー光を用いたアルゴンイオンレーザーラマンスペクトルにおける、1360±100cm-1付近の波長域にあるスペクトル強度の積分値Yaに対する、1580±100cm-1付近の波長域にあるスペクトル強度の積分値Ybの比であるG値=Yb/Yaが該黒鉛質炭素粒子のG値よりも小さく、且つ、3.0以下であることを特徴とする請求項8または9に記載の複層構造炭素質物。
  11.  複層構造炭素質物を用いてスラリーとし、集電体上に塗布、乾燥して電極を作製後、プレス荷重(線圧)200kg/5cm以上550kg/5cm以下で、電極密度1.60g/cmとなるようにロールプレスし、プレス前の電極比表面積に対するプレス後の電極比表面積の比が0.90以上1.2以下となるように電極を作製後、この電極を負極として用い、正極活物質、電解質及びセパレータを用いてコインタイプ電池を組み立て3サイクルまで充放電試験を行なった時、3サイクル目の放電容量が350mAh/g以上、1サイクル目の不可逆容量(1サイクル目の放電容量と充電容量の差)が40mAh/g以下であることを特徴とする請求項8から10のいずれかに記載の複層構造炭素質物。
  12.  複層構造炭素質物を用いて電極を作製して電極密度1.75g/cmにロールプレスした負極、正極活物質、電解質及びセパレータを用いて円筒タイプ電池を組み立てて、25℃にて300サイクルまで充放電試験を行なった時、100サイクル時の放電容量維持率が85%以上であることを特徴とする請求項8から11のいずれかに記載の複層構造炭素質物。
  13.  黒鉛質炭素粒子と有機化合物とを混合し、熱処理して得られ、以下の(a)~(e)の要件の全てを満たすことを特徴とする複層構造炭素質物。
    (a)球形化処理された黒鉛質炭素粒子100重量部に対する残炭量が0.1重量部以上4重量部以下である有機化合物の炭素化物を添着させてなるもの
    (b)体積平均粒径が2~70μm
    (c)タップ密度が0.80g/cm以上
    (d)平均円形度が0.94以上
    (e)波長514.5nmのアルゴンイオンレーザー光を用いたアルゴンイオンレーザーラマンスペクトルにおける、1580cm-1の散乱強度に対する1360cm-1の散乱強度の比であるR値が0.15以上である
  14.  BET法にて測定した比表面積が10m/g以下であって、且つ、該黒鉛質炭素粒子のBET比表面積に対する比が0.40以上1.00以内である請求項13に記載の複層構造炭素質物。
  15.  波長514.5nmのアルゴンイオンレーザー光を用いたアルゴンイオンレーザーラマンスペクトルにおける、1360±100cm-1付近の波長域にあるスペクトル強度の積分値Yaに対する、1580±100cm-1付近の波長域にあるスペクトル強度の積分値Ybの比であるG値=Yb/Yaが該黒鉛質炭素粒子のG値よりも小さく、且つ、3.0以下であることを特徴とする請求項13又は請求項14に記載の複層構造炭素質物。
  16.  複層構造炭素質物を用いてスラリーとし、集電体上に塗布、乾燥して電極を作製後、プレス荷重(線圧)200kg/5cm以上550kg/5cm以下で、電極密度1.60g/cmにロールプレスした場合、プレス前の電極比表面積に対するプレス後の電極比表面積の比が0.90以上1.2以下であることを特徴とする請求項13から15のいずれかに記載の複層構造炭素質物。
  17.  複層構造炭素質物を用いてスラリーとし、集電体上に塗布、乾燥して電極を作製後、プレス荷重(線圧)200kg/5cm以上550kg/5cm以下で、電極密度1.60g/cmとなるようにロールプレスし、プレス前の電極比表面積に対するプレス後の電極比表面積の比が0.90以上1.2以下となるように電極を作製後、この電極を負極として用い、正極活物質、電解質及びセパレータを用いてコインタイプ電池を組み立て3サイクルまで充放電試験を行なった時、3サイクル目の放電容量が350mAh/g以上、1サイクル目の不可逆容量(1サイクル目の放電容量と充電容量の差)が40mAh/g以下であることを特徴とする請求項13から16のいずれかに記載の複層構造炭素質物。
  18.  複層構造炭素質物を用いて電極を作製して電極密度1.75g/cmにロールプレスした負極、正極活物質、電解質及びセパレータを用いて円筒タイプ電池を組み立てて、25℃にて300サイクルまで充放電試験を行なった時、100サイクル時の放電容量維持率が85%以上であることを特徴とする請求項13から17のいずれかに記載の複層構造炭素質物。
  19.  請求項1から18のいずれかに記載の複層構造炭素質物を製造する方法であって、黒鉛質炭素粒子と、有機化合物又は有機化合物の溶液とを混合する工程と、次いで、熱処理する工程を経て得られる複層構造炭素質物であって、原料となる黒鉛質炭素粒子が以下の(1a)~(1f)の要件を全て満たす球形化処理された高結晶性黒鉛であることを特徴とする複層構造炭素質物の製造方法。
    (1a)体積平均粒径が5~50μm
    (1b)タップ密度が0.70g/cm以上
    (1c)BET法により測定される比表面積が18m/g未満
    (1d)広角X線回折法による当該黒鉛質炭素粒子の(002)面の面間隔(d002)が0.345nm以下、且つ結晶子サイズ(Lc)が90nm以上
    (1e)波長514.5nmのアルゴンイオンレーザー光を用いた、アルゴンイオンレーザースペクトルにおける1580cm-1の散乱強度に対する1360cm-1の散乱強度比であるR値が0.10以上
    (1f)真比重が2.21g/cm以上
  20.  該黒鉛質炭素粒子と有機化合物との混合物に溶媒を含むことを特徴とする請求項19に記載の複層構造炭素質物の製造方法。
  21.  上記溶媒が、芳香族炭化水素系有機溶媒及び/又は複素環式有機溶媒を含有することを特徴とする請求項20に記載の複層構造炭素質物の製造方法。
  22.  黒鉛質炭素粒子と有機化合物とを混合する工程において、有機化合物又は有機化合物の溶液の50℃における動粘度を25~75cstに調整することを特徴とする請求項19から21のいずれかに記載の複層構造炭素質物の製造方法。
  23.  黒鉛質炭素粒子と有機化合物とを混合する工程において、混合しながら、有機化合物又は有機化合物の溶液を、2回以上に分割して且つ/又は少量ずつ連続して投入し、有機化合物又は有機化合物の溶液を黒鉛質炭素粒子に均一に添着させることを特徴とする請求項19から22のいずれかに記載の複層構造炭素質物の製造方法。
  24.  上記有機化合物が重質油であることを特徴とする請求項19から23のいずれかに記載の複層構造炭素質物の製造方法。
  25.  混合物を熱処理する工程において、揮発性成分を含む混合物を連続式加熱炉にて熱処理し、揮発性成分を実質的に含まない有機化合物の炭素化物を黒鉛質炭素粒子の表面に添着させることを特徴とする請求項19から24のいずれかに記載の複層構造炭素質物の製造方法。
  26.  上記黒鉛質炭素粒子が、黒鉛質炭素粒子を加熱処理したものであることを特徴とする請求項19から25のいずれかに記載の複層構造炭素質物の製造方法。
  27.  請求項19から26のいずれかに記載の複層構造炭素質物の製造方法で製造されたものであることを特徴とする複層構造炭素質物。
  28.  請求項1から18のいずれか又は請求項27に記載の複層構造炭素質物を負極材料に用いたことを特徴とする非水系二次電池用負極。
  29.  リチウムを吸蔵・放出することが可能な炭素質物を含む負極、正極、及び溶質と非水系溶媒からなる非水系二次電池であって、該負極が請求項28に記載の非水系二次電池用負極であることを特徴とする非水系二次電池。
  30.  上記溶質が、LiClO、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)及びLiC(CFSOからなる群より選択される1以上の化合物であり、上記非水系溶媒が環状カーボネートと鎖状カーボネートを含有することを特徴とする請求項29に記載の非水系二次電池。
PCT/JP2009/051707 2008-02-04 2009-02-02 複層構造炭素質物及びその製造方法並びにそれを用いた非水系二次電池 WO2009099029A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09708756.3A EP2242133B1 (en) 2008-02-04 2009-02-02 Multi-layer structured carbonaceous material, process for producing the same, and nonaqueous secondary battery adopting the same
US12/865,929 US20110059371A1 (en) 2008-02-04 2009-02-02 Multi-layer structured carbonaceous material, process for producing the same, and nonaqueous secondary battery adopting the same
EP21167374.4A EP3866230B1 (en) 2008-02-04 2009-02-02 Multi-layer structured carbonaceous material, process for producing the same, and nonaqueous secondary battery adopting the same
CN2009801040925A CN101939865B (zh) 2008-02-04 2009-02-02 多层结构碳质物及其制造方法以及使用该多层结构碳质物的非水系二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008023527 2008-02-04
JP2008-023527 2008-02-04

Publications (1)

Publication Number Publication Date
WO2009099029A1 true WO2009099029A1 (ja) 2009-08-13

Family

ID=40952104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051707 WO2009099029A1 (ja) 2008-02-04 2009-02-02 複層構造炭素質物及びその製造方法並びにそれを用いた非水系二次電池

Country Status (8)

Country Link
US (1) US20110059371A1 (ja)
EP (2) EP3866230B1 (ja)
JP (1) JP5326609B2 (ja)
KR (1) KR101538191B1 (ja)
CN (1) CN101939865B (ja)
HU (1) HUE061738T2 (ja)
PL (1) PL3866230T3 (ja)
WO (1) WO2009099029A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011238476A (ja) * 2010-05-11 2011-11-24 Toppan Printing Co Ltd 積層体、非水電解質二次電池及び積層体の製造方法
EP2624345B1 (en) * 2010-09-29 2020-10-21 Mitsubishi Chemical Corporation Carbon material for negative electrode of nonaqueous electrolyte secondary battery, method for producing same, negative electrode of nonaqueous secondary battery using same, and nonaqueous electrolyte secondary battery
JP5617744B2 (ja) * 2011-03-31 2014-11-05 Tdk株式会社 活物質粒子、活物質、電極及びリチウムイオン二次電池
KR101562724B1 (ko) * 2011-04-08 2015-10-22 쥬오 덴끼 고교 가부시키가이샤 개질 천연 흑연 입자
CN102347481A (zh) * 2011-10-14 2012-02-08 黑龙江省牡丹江农垦奥宇石墨深加工有限公司 超细球形石墨及其制备方法和应用
JP6251964B2 (ja) * 2012-02-24 2017-12-27 三菱ケミカル株式会社 非水系二次電池用複層構造炭素材、及びそれを用いた非水系二次電池用負極並びに非水系二次電池
CN102593438B (zh) * 2012-03-01 2014-07-02 合肥国轩高科动力能源股份公司 一种锂离子二次电池石墨负极材料碳包覆和表面预成膜共改性制备方法
JP5994571B2 (ja) * 2012-10-30 2016-09-21 日立化成株式会社 リチウムイオン二次電池用負極材及びリチウムイオン二次電池
US10128540B2 (en) * 2012-11-22 2018-11-13 Lg Chem, Ltd. Lithium secondary battery
CN104662728A (zh) * 2012-11-22 2015-05-27 株式会社Lg化学 锂二次电池
KR101541473B1 (ko) 2012-11-30 2015-08-05 주식회사 엘지화학 표면 특성이 다른 무기물 입자의 이중 다공성 코팅층을 포함하는 이차전지용 분리막, 이를 포함하는 이차전지, 및 상기 분리막의 제조방법
KR101582718B1 (ko) * 2013-02-04 2016-01-06 주식회사 엘지화학 구형 천연 흑연을 포함하는 음극 및 이를 포함하는 리튬 이차 전지
EP3731316A1 (en) 2014-07-07 2020-10-28 Mitsubishi Chemical Corporation Carbon material, method for producing carbon material, and non-aqueous secondary battery using carbon material
JP7099005B2 (ja) * 2018-03-29 2022-07-12 三菱ケミカル株式会社 非水系二次電池用負極材及びその製造方法、非水系二次電池用負極並びに非水系二次電池
KR102334493B1 (ko) * 2020-02-19 2021-12-02 제이에프이 케미칼 가부시키가이샤 리튬 이온 이차 전지의 음극용 탄소 재료 및 그의 제조 방법, 및 그것을 이용한 음극 및 리튬 이온 이차 전지
CN111474163B (zh) * 2020-04-08 2021-09-03 广东电网有限责任公司电力科学研究院 一种超级电容器用石墨烯材料的评估方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171677A (ja) 1990-11-06 1992-06-18 Moli Energ Ltd 再充電式電池とその製法
JPH04370662A (ja) 1991-06-20 1992-12-24 Mitsubishi Petrochem Co Ltd 二次電池用電極
JPH10226506A (ja) * 1997-02-13 1998-08-25 Sumitomo Metal Ind Ltd リチウム二次電池の負極材料に適したグラファイト粉末
JPH10226505A (ja) * 1997-02-13 1998-08-25 Sumitomo Metal Ind Ltd リチウム二次電池用グラファイト粉末とその製造方法
JP2000340232A (ja) 1998-11-27 2000-12-08 Mitsubishi Chemicals Corp 電極用炭素材料及びそれを使用した非水系二次電池
JP2004063456A (ja) * 2002-06-05 2004-02-26 Mitsubishi Chemicals Corp 電極用炭素材料の製造方法
JP2004063457A (ja) * 2002-06-05 2004-02-26 Mitsubishi Chemicals Corp 電極用炭素材料の製造方法
JP2004196609A (ja) * 2002-12-19 2004-07-15 Jfe Chemical Corp 複合黒鉛質粒子の製造方法、複合黒鉛質粒子、リチウムイオン二次電池負極材及びリチウムイオン二次電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5686138A (en) * 1991-11-12 1997-11-11 Sanyo Electric Co., Ltd. Lithium secondary battery
JP3581631B2 (ja) * 1992-04-07 2004-10-27 三菱化学株式会社 非水溶媒二次電池用負極材料
JP3460742B2 (ja) * 1994-08-04 2003-10-27 三菱化学株式会社 非水溶媒二次電池電極材料の製造方法
US5639550A (en) 1995-06-21 1997-06-17 Specialty Media Corporation Composite particulate material and process for preparing same
JP3803866B2 (ja) * 1995-11-14 2006-08-02 大阪瓦斯株式会社 二次電池用の二層炭素材料及びそれを用いたリチウム二次電池
WO1998054779A1 (fr) * 1997-05-30 1998-12-03 Matsushita Electric Industrial Co., Ltd. Batterie secondaire electrolytique non aqueuse
JP4379925B2 (ja) * 1998-04-21 2009-12-09 住友金属工業株式会社 リチウムイオン二次電池の負極材料に適したグラファイト粉末
JP2000133267A (ja) * 1998-10-28 2000-05-12 Toyota Central Res & Dev Lab Inc リチウム二次電池用負極活物質材料およびこれを用いたリチウム二次電池
JP2004207252A (ja) * 2004-03-05 2004-07-22 Mitsubishi Chemicals Corp 非水溶媒二次電池用負極材料
CN100464446C (zh) * 2004-06-30 2009-02-25 三菱化学株式会社 锂二次电池用负极材料及其制备方法和使用该材料的锂二次电池用负极和锂二次电池
EP1798790A4 (en) * 2004-08-30 2009-07-15 Mitsubishi Chem Corp NEGATIVE ELECTRODE MATERIAL FOR NONAQUEOUS SECONDARY CELLS, NEGATIVE ELECTRODE FOR NONAQUEOUS SECONDARY CELLS, AND NONAQUEOUS SECONDARY CELL
JP4994677B2 (ja) * 2006-02-28 2012-08-08 パナソニック株式会社 非水電解液二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171677A (ja) 1990-11-06 1992-06-18 Moli Energ Ltd 再充電式電池とその製法
JPH04370662A (ja) 1991-06-20 1992-12-24 Mitsubishi Petrochem Co Ltd 二次電池用電極
JPH10226506A (ja) * 1997-02-13 1998-08-25 Sumitomo Metal Ind Ltd リチウム二次電池の負極材料に適したグラファイト粉末
JPH10226505A (ja) * 1997-02-13 1998-08-25 Sumitomo Metal Ind Ltd リチウム二次電池用グラファイト粉末とその製造方法
JP2000340232A (ja) 1998-11-27 2000-12-08 Mitsubishi Chemicals Corp 電極用炭素材料及びそれを使用した非水系二次電池
JP2004063456A (ja) * 2002-06-05 2004-02-26 Mitsubishi Chemicals Corp 電極用炭素材料の製造方法
JP2004063457A (ja) * 2002-06-05 2004-02-26 Mitsubishi Chemicals Corp 電極用炭素材料の製造方法
JP2004196609A (ja) * 2002-12-19 2004-07-15 Jfe Chemical Corp 複合黒鉛質粒子の製造方法、複合黒鉛質粒子、リチウムイオン二次電池負極材及びリチウムイオン二次電池

Also Published As

Publication number Publication date
JP5326609B2 (ja) 2013-10-30
EP3866230B1 (en) 2023-03-22
PL3866230T3 (pl) 2023-09-18
CN101939865B (zh) 2013-10-16
EP3866230A1 (en) 2021-08-18
EP2242133B1 (en) 2021-05-19
HUE061738T2 (hu) 2023-08-28
KR20100120137A (ko) 2010-11-12
JP2009209035A (ja) 2009-09-17
KR101538191B1 (ko) 2015-07-20
EP2242133A4 (en) 2016-12-21
EP2242133A1 (en) 2010-10-20
US20110059371A1 (en) 2011-03-10
CN101939865A (zh) 2011-01-05

Similar Documents

Publication Publication Date Title
JP5326609B2 (ja) 複層構造炭素質物及びその製造方法並びにそれを用いた非水系二次電池
JP6432519B2 (ja) 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
JP5476411B2 (ja) 非水系二次電池用黒鉛質複合粒子、それを含有する負極活物質材料、負極及び非水系二次電池
JP5268018B2 (ja) 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
US20150194668A1 (en) Composite graphite particle for nonaqueous-secondary-battery negative electrode, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
WO2012133788A1 (ja) 非水系二次電池用黒鉛粒子及びその製造方法、負極並びに非水系二次電池
JP6476814B2 (ja) 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池
JP2015164127A (ja) 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
JP6561790B2 (ja) 非水系二次電池用炭素材及び非水系二次電池
JP2014060124A (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP6409377B2 (ja) 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池
JP2010251126A (ja) 非水電解質二次電池用負極材、並びにそれを用いた負極及び非水電解質二次電池
JP2014067680A (ja) 非水系二次電池用黒鉛粒子及び、それを用いた非水系二次電池用負極並びに非水系二次電池
JP2010165580A (ja) 非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池用負極活物質及び負極並びに非水電解質二次電池
JP2015026579A (ja) 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
JP2022095866A (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP6379565B2 (ja) 非水系二次電池負極用炭素材、及び、非水系二次電池
JP2017126425A (ja) 非水系二次電池用炭素材、及び、リチウムイオン二次電池
JP6422208B2 (ja) 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池
JP7192932B2 (ja) 炭素材、及び、非水系二次電池
JP2004063456A (ja) 電極用炭素材料の製造方法
JP6070016B2 (ja) 非水系二次電池用複合炭素材及びその製造方法、負極並びに非水系二次電池
JP2004063457A (ja) 電極用炭素材料の製造方法
WO2023037841A1 (ja) 炭素材、炭素材の製造方法、球状炭素材の製造方法、複合炭素材の製造方法及び二次電池の製造方法
JP7099005B2 (ja) 非水系二次電池用負極材及びその製造方法、非水系二次電池用負極並びに非水系二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980104092.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09708756

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107017227

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009708756

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12865929

Country of ref document: US