WO2005092789A1 - 窒化アルミニウム粉末及び窒化アルミニウム焼結体 - Google Patents

窒化アルミニウム粉末及び窒化アルミニウム焼結体 Download PDF

Info

Publication number
WO2005092789A1
WO2005092789A1 PCT/JP2005/005863 JP2005005863W WO2005092789A1 WO 2005092789 A1 WO2005092789 A1 WO 2005092789A1 JP 2005005863 W JP2005005863 W JP 2005005863W WO 2005092789 A1 WO2005092789 A1 WO 2005092789A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum nitride
powder
mass
nitride powder
sintered body
Prior art date
Application number
PCT/JP2005/005863
Other languages
English (en)
French (fr)
Inventor
Takeshi Gotoh
Hiroshi Murata
Kohki Ichikawa
Original Assignee
Denki Kagaku Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kabushiki Kaisha filed Critical Denki Kagaku Kogyo Kabushiki Kaisha
Priority to KR1020067017654A priority Critical patent/KR101160109B1/ko
Priority to JP2006511576A priority patent/JP4939932B2/ja
Priority to US10/590,942 priority patent/US7553469B2/en
Priority to EP05727549.7A priority patent/EP1731482B1/en
Publication of WO2005092789A1 publication Critical patent/WO2005092789A1/ja
Priority to US12/105,907 priority patent/US20080200326A1/en
Priority to US12/538,671 priority patent/US7737065B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0722Preparation by direct nitridation of aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass

Definitions

  • the present invention relates to an aluminum nitride powder and an aluminum nitride sintered body.
  • a circuit board used for a power module or the like tends to increase heat generated from a semiconductor element with high integration.
  • ceramics such as alumina, beryllia, silicon nitride, and aluminum nitride have been used.
  • aluminum nitride is a suitable material in terms of high thermal conductivity, high insulation, harmlessness, etc., and recently has a plasma resistance and a thermal expansion coefficient close to that of silicon. Attention is also paid to this fact, and it is used as various jigs for semiconductor manufacturing equipment, such as a single unit, embedded in a metal heater, and fixed to metal.
  • an aluminum nitride sintered body having high parallelism and low warpage is desired.
  • sintering shrinkage is a phenomenon in which the dimensions of the sintered body after sintering become smaller than the dimensions of the molded body before sintering. , Sintering shrinkage is inevitably reduced.
  • an alumina reduction method and a direct nitriding method of a metal aluminum powder have been generally used, but they have advantages and disadvantages.
  • Aluminum nitride powder obtained by the alumina reduction method has a uniform particle size and low oxygen content compared to the direct nitridation method, so it is easy to sinter and a sintered body with high thermal conductivity is easily obtained, but shrinkage during sintering Warpage or deformation with a high rate is likely to occur, resulting in high costs.
  • the direct nitridation method is easy and inexpensive to manufacture, but because of the pulverization process, impurities such as oxygen increase in the obtained aluminum nitride powder, and the thermal conductivity is lower than that of the alumina reduction method. Is also difficult to increase.
  • the aluminum nitride powder obtained by any of the production methods a force that could sufficiently achieve both higher thermal conductivity of the aluminum nitride sintered body and reduction of the shrinkage rate during sintering was sufficient.
  • the present applicant has previously proposed that several kinds of aluminum nitride powders having different amounts and particle sizes can be produced and prepared by appropriately combining them (Patent Document 1).
  • Patent Document 1 Japanese Patent No. 3403500
  • An object of the present invention is to provide an aluminum nitride powder and an aluminum nitride sintered body capable of further achieving both a high thermal conductivity of an aluminum nitride sintered body and a reduction in shrinkage during sintering.
  • an object of the present invention is to provide an aluminum nitride sintered body having a thermal conductivity of 190 WZm'K or more and a shrinkage rate at the time of sintering of 15% or less.
  • the inventors of the present invention have made intensive studies and found an aluminum nitride powder and an aluminum nitride sintered body that achieve the above-mentioned object, and have developed an aluminum nitride powder used for producing a strong aluminum nitride sintered body. A manufacturing method was found.
  • the present invention has the gist of the following features.
  • An unfired aluminum nitride compact comprising a compact of the mixed powder containing the aluminum nitride powder described in (1) and a sintering aid.
  • the generated aluminum nitride powder has a BET specific surface area of 10 m 2 Zg or more, and a value of oxygen content (mass%) Z specific surface area (m 2 Zg) of 0.1 to 0.2.
  • the method according to (6) above which is characterized by:
  • an aluminum nitride sintered body having a thermal conductivity of 190 WZm'K or more and a shrinkage rate of 15% or less during sintering is provided.
  • a novel method for producing aluminum nitride powder used for producing an aluminum nitride sintered body is provided.
  • FIG. 1 is an explanatory view showing one example of an apparatus for producing aluminum nitride powder.
  • the inventors of the present invention have proposed a particle size composition of aluminum nitride powder for manufacturing an aluminum nitride sintered body having a thermal conductivity of 190 WZm'K or more and a shrinkage rate of 15% or less during sintering, and oxygen.
  • metal aluminum powder was sprayed into a high-temperature furnace in a nitrogen atmosphere to be nitrided, and the obtained aluminum nitride powder was classified without grinding.
  • the aluminum nitride powder used in the present invention is preferably an aluminum nitride powder produced by spraying a metal aluminum powder in a high-temperature furnace in a nitrogen atmosphere and nitriding, particularly at 1850 ° C or higher. It is preferably manufactured by injecting and nitriding metallic aluminum powder from the top of a reaction tube having a heated nitrogen atmosphere.
  • the aluminum nitride powder produced by this method is changed, for example, by changing the setting conditions of a centrifugal air classifier, several types of aluminum nitride powders having different particle sizes and oxygen contents can be obtained. And the amount of oxygen in consideration of the amount, the aluminum nitride powder of the present invention can be obtained.
  • the alumina reduction method requires 10 m or more. It is difficult to produce particles of However, the aluminum nitride powder of the present invention cannot be produced by itself because of an increase in the amount of oxygen or the like.
  • the particle size distribution can be measured by a laser diffraction method capable of measuring the frequency and cumulative value of the volume distribution.
  • the aluminum nitride powder of the present invention has a particle size of 3 to 15 / ⁇ (hereinafter also referred to as “coarse powder”), 0.5 to 1. (hereinafter also referred to as “medium powder”), 0. Below, also referred to as “fines”). These maxima can be determined by the frequency of the volume distribution, and the particle content can be determined by the cumulative value in each region.
  • the maximum value of the coarse powder exceeds 15 m, the sinterability is adversely affected, and the thermal conductivity does not improve. Conversely, if the strength is smaller than 3 m, the sinterability is good, but the shrinkage during sintering increases. If the proportion of the coarse powder is less than 40%, the shrinkage ratio during sintering increases, and if it exceeds 70%, the sinterability is adversely affected, so that the thermal conductivity does not improve. Particularly preferably, the maximum value of the coarse powder is 5 to 10 ⁇ m, and the particle content thereof is 50 to 65%.
  • the maximum power of the medium powder is larger than 1.5 ⁇ m, the maximum value of the coarse powder is close to the particle size, so that the sinterability is adversely affected and the thermal conductivity is not improved.
  • the maximum value is smaller than 0, the particle size becomes close to the maximum value of the fine powder, so that the shrinkage ratio at the time of sintering increases, and the increase in oxygen content adversely affects the development of high thermal conductivity.
  • the ratio of the medium powder is less than 25%, the sinterability is adversely affected, and if it exceeds 40%, the shrinkage ratio during sintering increases.
  • the maximum value of the medium powder is 1.3 to 0.8 m, and the particle content thereof is 25 to 35%.
  • the shrinkage ratio during sintering increases because the maximum value of the medium powder and the particle size become close to each other. If the proportion of fines exceeds 20%, the amount of oxygen increases and adversely affects the thermal conductivity. If it is less than 0.5%, the effect of the presence of the fine powder is reduced, and the shrinkage during sintering is increased.
  • the maximum value of the fine powder is 0.25 to 0.05 m, and the particle content is 5 to 15%.
  • the total of the coarse powder, the medium powder, and the fine powder is 100%, but it is not always necessary to do so.
  • an aluminum nitride powder other than these may be contained.
  • the aluminum nitride powder of the present invention has an oxygen content of 0.5 to 1.5% by mass. If the content is more than 1.5% by mass, sinterability is adversely affected and thermal conductivity does not improve. Further, even if it is less than 0.5% by mass, sinterability is adversely affected.
  • the oxygen content is preferably 0.8 to 1.3% by mass.
  • the aluminum nitride green compact of the present invention is obtained by molding a mixed powder containing the aluminum nitride powder of the present invention and a sintering aid. Further, the aluminum nitride sintered body of the present invention is obtained by sintering the aluminum nitride green compact.
  • Preferred examples of the sintering aid used in the present invention include alkaline earth metal compounds and transition metal compounds. Specifically, oxides, fluorides, chlorides, nitric acids of alkaline earth metals (Ca, Ba, Sr, etc.) or transition metals (Y, La, Sc, Pr, Ce, Nd, Gd, etc.) Salts, sulfates or carbonates.
  • yttrium oxide and calcium oxide are preferred. These sintering aids react with the oxygen of the aluminum nitride powder, ie, the aluminum oxide, and react with the liquid phase of the composite oxide (eg, 2YO ⁇ 1O, YO ⁇ 1O, 3YO ⁇ 5 ⁇ 1
  • the amount of the sintering aid used is preferably 1 to 5 parts by mass per 100 parts by mass of the aluminum nitride powder.
  • the mixed powder may be molded as it is, or may be granulated by, for example, a spray dryer method, a tumbling granulation method or the like and force-molded.
  • the molding can be performed alone or in combination, for example, by a dry press molding method or a cold isostatic press molding method (CIP method).
  • the press pressure in dry press molding is preferably from 50 to 300 MPa, particularly preferably from 100 to 250 MPa. In both the dry press molding method and the CIP method, use an organic binder as necessary.
  • aluminum nitride powder, a sintering aid, an organic binder, and if necessary, a plasticizer, a dispersant, and the like are mixed, and this mixture can be also subjected to extrusion molding or doctor blade molding.
  • organic binder for example, polyvinyl butyral, polyatalylate, polymethyl methacrylate, methyl cellulose, polyethylene, wax, and the like can be used.
  • organic binder for example, polyvinyl butyral, polyatalylate, polymethyl methacrylate, methyl cellulose, polyethylene, wax, and the like.
  • the molded body is fired in the following manner.
  • the firing is preferably carried out in a non-oxidizing atmosphere such as nitrogen gas or argon gas at a temperature range of 1600 to 1900 ° C. for 1 to 10 hours, particularly 2 to 7 hours. If the firing temperature is lower than 1600 ° C, sintering becomes insufficient, and it becomes difficult to produce an aluminum nitride sintered body having a thermal conductivity of 190 WZmK or more. On the other hand, if the firing temperature exceeds 1900 ° C, the vapor pressure of aluminum nitride in the furnace increases, making it difficult to densify.
  • the holding time is preferably the shortest time within which the sintered body density can be 98% or more within the above temperature range.
  • the sintered body is fired for a long time in a temperature region where the density of the sintered body is 98% or more, the A1N particles grow unnecessarily into coarse particles, and the volume at the interface between the two particles is relatively large compared to the triple point.
  • the grain boundary phase is more biased toward the triple point than the two-particle interface of A1N, and the liquid phase of the aluminum complex oxide oozes out on the surface of the sintered body. is there.
  • the aluminum nitride powder used for producing the aluminum nitride sintered body is preferably produced by a production method described below. This method involves diluting an aluminum-powder powder having a low oxygen content to a low concentration with nitrogen gas, spraying it into a reaction tube in which the oxygen concentration is controlled, and nitriding the same. The point is to collect in the collection system.
  • this manufacturing method will be described in more detail with reference to the drawings showing one example.
  • FIG. 1 is an explanatory view showing one example of an apparatus for producing aluminum nitride powder.
  • the raw aluminum-powder powder is supplied to the mixer 2 in a fixed amount by the aluminum powder feeder 1 such as a table feeder or a screw feeder. There, it is mixed with nitrogen gas and sprayed from a nozzle 3 to a reaction tube 4 made of boron nitride.
  • the nozzle for example, a ring nozzle or the like is used.
  • a graphite heating element 6 is arranged around the reaction tube in order to maintain a predetermined temperature, and is heated by a high-frequency power supply 5.
  • the graphite heating element is kept warm by a porous carbon bead heat insulator 7 and supported by a quartz tube 8.
  • the reaction temperature is measured by an optical thermometer using a glassy carbon thermometer 11 provided at the center of the heating element.
  • the product (aluminum nitride powder) is passed through closed nitrogen circulation line 14 from the bottom of the furnace. It is sucked by the blower 10 together with the circulating nitrogen gas and collected by the bag filter 9.
  • the amount of oxygen in the reaction tube and in the trapping system is monitored by oxygen analyzers 12 and 13 installed downstream of the reaction tube and a closed nitrogen circulation line. Nitrogen purity, air tightness of reaction tube and bag filter, control of internal pressure of reaction tube by balance of circulating nitrogen gas amount and blower suction force, specifically, pressurizing internal pressure slightly (5 to: LOmmAq) By keeping the temperature, the invasion of air from the outside is prevented, and the amount of oxygen in the reaction tube and the trapping system is controlled.
  • the closed nitrogen circulation line refers to the entire collection system including the bag filter and the blower.
  • the average particle size of the raw aluminum powder used in the present invention is large, aluminum is not sufficiently evaporated and unreacted aluminum may remain, so that the average particle size is 40 ⁇ m or less, particularly 30 m or less.
  • the oxygen content of the raw aluminum powder is 0.5% by mass or less, preferably 0.4% by mass or less.
  • atomized powder having a low risk of explosion is preferred.
  • the concentration of the aluminum powder in the nitrogen gas is high, the spatial dispersion of the aluminum particles is inferior, and the probability of coalescence between the particles becomes high, which may hinder the production of fine aluminum nitride powder. lOOg less per gas INm 3, preferably with 50 to 80 g.
  • the temperature of the reaction tube is preferably set to 1900 to 2200 ° C. If the temperature is lower than 1900 ° C, it is difficult to evaporate aluminum powder. If the temperature is higher than 2200 ° C, aluminum nitride is used. It is not preferable because the formation of the pummel fiber takes precedence.
  • the produced aluminum nitride powder is conveyed by unreacted nitrogen gas and nitrogen gas hermetically closed and circulated by a blower in a closed nitrogen circulation line 14, and collected by a collecting device such as a bag filter 9 .
  • a collecting device such as a bag filter 9 .
  • an aluminum nitride powder having a BET specific surface area of 10 m 2 / g or more and an oxygen content (mass%) Z specific surface area (m 2 Zg) value of 0.1 to 0.2 when the BET specific surface area is 10 m 2 Zg or more, the oxygen content (mass%) Z specific surface area (m 2).
  • the aluminum nitride powder having a Zg value of 0.1 to 0.2 is a finely powdered powder (that is, an increase in specific surface area) required for high-filling molding, and the force is also increased with the fine powder. It is a powder in which the amount of oxygen that increases and adversely affects thermal conductivity is suppressed.
  • An example of a method for preparing an aluminum nitride powder capable of manufacturing an aluminum nitride sintered body having both high thermal conductivity and low sintering shrinkage using the aluminum nitride powder manufactured according to the present invention is as follows. It is as follows. That is, the aluminum nitride powder A produced according to the present invention (BET specific surface area is 20 m 2 Zg, oxygen content is 2.2 mass%, oxygen content (mass%) Z specific surface area (m 2 Zg) value is 0.11 ), Other aluminum nitride powder B (BET specific surface area 5 m 2 Zg, oxygen content 0.8 mass%), and other aluminum nitride powder C (BET specific surface area lm 2 Zg, oxygen content 0.
  • the aluminum nitride powder thus prepared has a molding density of 70% or more, and when sintered at 1750 to 1850 ° C, (dimensions of the compact before sintering)
  • the shrinkage, expressed as a percentage of the compact size before compaction, is significantly lower at 12% (usually 16%).
  • the oxygen content can be kept at 1.0% by mass, it is extremely easy to achieve a thermal conductivity of 190 WZm'K.
  • the aluminum nitride powder was classified by a centrifugal air classifier to obtain various aluminum nitride powders having different particle sizes and different oxygen contents. That is, various kinds of coarse powder (classification yield: 10 to 20%) having an oxygen content of 0.4 to 0.8 mass% and a particle size of 3 to 15 / ⁇ , and an oxygen content of 0.9 to 1.8 mass % Of various medium powders with a particle size of 0.5 to 1.5111 (classification yield 50 to 70%), oxygen content of 1.8 to 2.6% by mass and particle size of 0.3 m or less. A variety of fines were produced. These powders are appropriately combined, and as shown in Tables 1 and 2, ⁇ ! ⁇ ! ⁇ Maximum value! ⁇ , 0.5 to 1.5 / ⁇ 3 ⁇ 4 ⁇ ⁇ 2, various types of aluminum nitride powders having a maximum value P3 of 0.3 m or less and different amounts of oxygen were prepared.
  • each part by mass of a sintering aid (reagent 1 grade, average particle size of about 0.7 / zm) shown in Tables 1 and 2 was added to an organic binder.
  • Relative density of green compact of aluminum nitride The total mass of aluminum nitride powder and sintering aid is divided by the volume of the aluminum nitride compact, The content was determined by dividing by the theoretical density of the aluminum nitride sintered body in consideration of the content. The masses of the aluminum nitride powder and the sintering aid were determined from the amounts used when adjusting the raw materials.
  • Relative density of aluminum nitride sintered body The relative density was obtained by dividing the sintered density obtained by the Archimedes method by the theoretical density of the aluminum nitride sintered body taking into account the content of the sintering aid.
  • Shrinkage ratio during sintering of aluminum nitride Measure the longest direction (for example, the diagonal direction for a rectangular shape or the long axis direction for an elliptical shape) of the compact and sintered body, and measure the length in any four directions. The average value was determined, and the shrinkage (%) was calculated as follows: (dimensions of the compact before sintering, dimensions of the sintered compact after sintering) ⁇ 10 OZ (dimensions of the compact before sintering).
  • the particle size distribution was measured using a laser diffraction / scattering spectrometer ("LS-230" manufactured by Beckman Coulter), and the oxygen amount was measured using an oxygen-Z nitrogen simultaneous analyzer manufactured by HORIBA.
  • Example 1 (1 m ⁇ %%% by mass% by mass%%% W / mK Example 1 15 1 0.1 0.1 60 30 10 0.87 ⁇ 203 3 70 100 12 205
  • Example 2 10 1 0.1 60 30 10 0. 96 ⁇ 203 3 68 100 13 202
  • Example 3 1 0.1 60 30 10 1.1 1 ⁇ 203 3 66 100 14 200
  • Example 4 10 1 0.1 70 25 5 0.80 ⁇ 203 3 69 100 12 205
  • Example 5 10 1 0.1 40 40 20 1.26 ⁇ 203 3 66 100 15 200
  • Example 6 10 0.5 0.1 60 30 10 1.09 ⁇ 203 3 69 100 12 201
  • Example 7 10 1 0.1 60 30 10 0.96 ⁇ 203 3 71 100 12 205
  • Example 8 10 1.5 0.1 60 30 10 0.82 ⁇ 203 3 70 100 13 207
  • Example 9 10 1 0.1 59.5 40 0.5 0.5.81 ⁇ 203 3 69 100 14
  • Example 10 10 1 0.1 55 25 20 1.15 ⁇ 203 3 68 100 15 205
  • aluminum nitride powder was produced under the conditions shown in Table 1.
  • the reactor capacity is 170 kVA and the output is 100 kW.
  • the reaction tube 4 made of boron nitride has an inner diameter of 200 mm and an overall length of 3000 mm, and the quartz tube 8 has an inner diameter of 450 mm and an overall length of 3000 mm.
  • a screw feeder 1 was used as the feeder 1 for the aluminum powder.
  • the internal pressure of the reaction tube by balancing the nitrogen purity, the airtightness of the reaction tube and bag filter, and the amount of circulating nitrogen gas and the blower suction force, the intrusion of air from the outside is prevented, and the oxygen amount in the system is reduced to less than 10 ppm. Controlled below.
  • the product was taken out while the temperature inside the bag filter was kept below 100 ° C.
  • the aluminum nitride powder of the present invention is a raw material for producing an aluminum nitride sintered body, Is used as a filler for rubber. Further, the unfired aluminum nitride compact of the present invention is used for producing an aluminum nitride sintered compact. Further, the aluminum nitride sintered body of the present invention is used as a structural member, a heat dissipation substrate, a ceramic substrate of a circuit board, and the like. In particular, it is suitable as a ceramic substrate for modules for electric vehicles and the like.
  • the aluminum nitride powder produced according to the present invention can be used, for example, as a raw material for preparing an aluminum nitride sintered body having both high thermal conductivity and low sintering shrinkage of the aluminum nitride sintered body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Ceramic Products (AREA)

Abstract

 窒化アルミニウム焼結体の高熱伝導率化と焼結時の収縮率の低減化とを両立させることができる窒化アルミニウム粉末と窒化アルミニウム焼結体を提供する。  3~15μm、0.5~1.5μm、0.3μm以下のそれぞれの領域に極大値を有し、各々の領域の粒子含有率が、体積基準でそれぞれ40~70%、25~40%、0.5~20%であり、酸素量が0.5~1.5質量%であることを特徴とする窒化アルミニウム粉末。上記窒化アルミニウム粉末と焼結助剤を含む混合粉末の焼結体からなり、熱伝導率が190W/m・K以上、(焼結前の成形体寸法-焼結後の焼結体寸法)/(焼結前の成形体寸法)の百分率で示される収縮率が15%以下であることを特徴とする窒化アルミニウム焼結体。

Description

明 細 書
窒化アルミニウム粉末及び窒化アルミニウム焼結体
技術分野
[0001] 本発明は、窒化アルミニウム粉末及び窒化アルミニウム焼結体に関する。
背景技術
[0002] 従来、パワーモジュール等に利用される回路基板は高集積ィ匕に伴い半導体素子 から発生する熱も増加する傾向にある。これを効率よく放散させるため、様々な方法 が検討され、アルミナ、ベリリア、窒化珪素、窒化アルミニウム等のセラミックスが利用 されてきた。その中で、窒化アルミニウムは、高熱伝導率、高絶縁性、無害性などの 点で好適な材料であることに加え、最近では耐プラズマ性やシリコンに近 ヽ熱膨張係 数を有していることにも注目され、半導体製造装置の各種治具などとして、単体、金 属ヒーターへの埋め込み、金属への固定などの形態で使用されている。これらのい ずれの使用形態にあっても、平行度が高ぐ反りの少ない窒化アルミニウム焼結体が 望まれて 、る。これらを改善するためには焼結収縮の小さ 、窒化アルミニウム焼結体 を製造することが重要となる。ここでいう、焼結収縮とは焼結後の焼結体の寸法が焼 結前の成型体の寸法よりも小さくなる現象であり、粉末が高充填でき焼結前の成型体 密度を高くできれば、焼結収縮は必然的に小さくなる。
[0003] 従来、窒化アルミニウム焼結体製造用窒化アルミニウム粉末としては、アルミナ還元 法、金属アルミニウム粉末の直接窒化法が一般的に使用されているが、一長一短が ある。アルミナ還元法で得られる窒化アルミニウム粉末は、直接窒化法に比べ粒径が 均一であり酸素量も低いため、焼結し易く高熱伝導率の焼結体が得られやすいが、 焼結時の収縮率が大きぐ反りや変形を引き起こし易くコスト高となる。これに対し、直 接窒化法は、製造が容易で安価であるが、粉砕工程を経るため、得られた窒化アル ミニゥム粉末には酸素などの不純物が増加し、熱伝導率はアルミナ還元法よりも高く することが難しい。また、いずれの製造法で得られた窒化アルミニウム粉末であっても 、窒化アルミニウム焼結体の更なる高熱伝導率化と焼結時の収縮率の低減化を十分 に両立できな力つた。 高熱伝導率と低焼結収縮を両立させた窒化アルミニウム焼結体を製造するには、 特定粒子径と特定酸素量を持った窒化アルミニウム粉末を用いればよぐそのような 窒化アルミニウム粉末は、酸素量と粒径の異なる窒化アルミニウム粉末を数種製造し ておき、それらを適宜組み合わせれば調製できることを本出願人は先に提案した (特 許文献 1)。
特許文献 1:特許第 3403500号公報
発明の開示
発明が解決しょうとする課題
[0004] 本発明の目的は、窒化アルミニウム焼結体の高熱伝導率化と焼結時の収縮率の低 減ィ匕とを更に両立させることができる窒化アルミニウム粉末と窒化アルミニウム焼結体 を提供することであり、例えば熱伝導率が 190WZm'K以上であり、焼結時の収縮率 が 15%以下である窒化アルミニウム焼結体を提供することである。
課題を解決するための手段
[0005] 本発明者は鋭意研究をしたところ、上記目的を達成する窒化アルミニウム粉末及び 窒化アルミニウム焼結体を見出し、また、力かる窒化アルミニウム焼結体の製造に使 用される窒化アルミニウム粉末の製造方法を見出した。
[0006] 力べして、本発明は下記を特徴とする要旨を有するものである。
(1) 3〜15 /ζ πι、 0. 5〜1. 5 /ζ πι、0. 3 m以下のそれぞれの領域に極大値を有し、 各々の領域の粒子含有率力 体積基準でそれぞれ 40〜70%、 25〜40%、 0. 5〜 20%であり、酸素量が 0. 5〜1. 5質量%であることを特徴とする窒化アルミニウム粉 末。
(2)上記(1)に記載の窒化アルミニウム粉末と焼結助剤を含む混合粉末の成形体か らなることを特徴とする窒化アルミニウム未焼成成形体。
(3)上記(2)に記載の窒化アルミニウム未焼成成形体の焼結体からなり、熱伝導率 が 190W/m · K以上であり、(焼結前の成形体寸法 焼結後の焼結体寸法) / (焼 結前の成形体寸法)の百分率で示される収縮率が 15%以下であることを特徴とする 窒化アルミニウム焼結体。
(4)窒化アルミニウム粉末 100質量部あたり焼結助剤を 1〜5質量部含まれる上記(3 )に記載の窒化アルミニウム焼結体。
(5)焼結助剤が、酸化イットリウム又は酸ィ匕カルシウムである上記(3)又は (4)に記載 の窒化アルミニウム焼結体。
(6)上記(1)に記載の窒化アルミニウム粉末の製造方法であり、平均粒径 40 μ m以 下、酸素量 0. 5質量%以下である原料アルミニウム粉末を、窒素ガス INm3あたり 10 Og以下の比率で分散混合させて反応管内に噴霧 ·窒化し、生成物を捕集系で捕集 する方法において、反応管内及び捕集系の 100°C以上となる部分の酸素濃度を 10 Oppm以下に制御するとともに、生成物の取り出しを 100°C以下で行うことを特徴とす る製造方法。
(7)生成した窒化アルミニウム粉末力 BET比表面積 10m2Zg以上を有し、かつ、 酸素量 (質量%) Z比表面積 (m2Zg)の値が 0. 1〜0. 2を有することを特徴とする上 記 (6)に記載の製造方法。
発明の効果
[0007] 本発明によれば、窒化アルミニウム焼結体の高熱伝導率化と焼結時の収縮率の低 減ィ匕とが!、ずれも優れた、窒化アルミニウム粉末と窒化アルミニウム焼結体が提供さ れる。特に、熱伝導率が 190WZm'K以上であり、焼結時の収縮率が 15%以下であ る窒化アルミニウム焼結体が提供される。更に、本発明によれば、窒化アルミニウム 焼結体の製造に使用される窒化アルミニウム粉末の新規な製造方法が提供される。 図面の簡単な説明
[0008] [図 1]窒化アルミニウム粉末の製造装置の一例を示す説明図である。
符号の説明
[0009] 1 アルミニウム粉末の供給機
2 混合器
3 ノズル
4 窒化ホウ素製反応管
5 高周波電源
6 黒鉛発熱体
7 多孔質カーボンビーズ断熱材 8 石英管
9 バグフィルター
10 ブロワ一
11 グラッシ一カーボン製測温体
12 酸素計
13 酸素計
14 密閉窒素循環ライン
15 流動十
発明を実施するための最良の形態
[0010] 本発明者らは、熱伝導率が 190WZm'K以上であり、焼結時の収縮率が 15%以下 である窒化アルミニウム焼結体を製造するための窒化アルミニウム粉末の粒度構成と 酸素量について種々検討したところ、例えば上記直接窒化法において、金属アルミ ニゥム粉末を窒素雰囲気中の高温の炉内に噴霧して窒化させ、得られた窒化アルミ -ゥム粉末を粉砕することなく分級して種々の粒度分布を持った窒化アルミニウム粉 末を製造しておき、それらを適宜組み合わせて特定の粒度構成にすると、熱伝導率 が高まり、し力も焼結時の収縮率が小さくなることを見いだしたものである。
[0011] 本発明で使用される窒化アルミニウム粉末は、金属アルミニウム粉末を窒素雰囲気 中の高温の炉内に噴霧し窒化して製造された窒化アルミニウム粉末であることが好ま しぐ特に 1850°C以上に加熱された窒素雰囲気を有する反応管の頂部から、金属 アルミニウム粉末を噴射し窒化して製造されたものであることが好まし 、。この詳細は
、例えば特開 2003— 119010号公報に記載されている。この方法で製造された窒 化アルミニウム粉末を、例えば遠心力式風力分級機の設定条件を変更すると、粒度 構成と酸素量の異なる数種の窒化アルミニウム粉末を得ることができるので、これらを 粒度構成と酸素量を考慮して適宜配合すれば、本発明の窒化アルミニウム粉末を得 ることがでさる。
[0012] 従来のアルミナ還元法又は直接窒化法で製造された窒化アルミニウム粉末は、本 発明の窒化アルミニウム粉末を調製するための一成分として使用することができても 、アルミナ還元法では 10 m以上の粒子を製造することは困難であり、直接窒化法 では酸素量が高くなるなどの理由によって、それ単独では本発明の窒化アルミニウム 粉末を製造することができな 、。
[0013] 本発明において、粒度分布は体積分布の頻度と累積値を測定できるレーザー回折 法によって測定することができる。本発明の窒化アルミニウム粉末は、 3〜15 /ζ πι (以 下、「粗粉」ともいう。)、 0. 5〜1. (以下、「中粉」ともいう。)、 0. 以下(以 下、「微粉」ともいう。)の領域に極大値を有している。これらの極大値は体積分布の 頻度によって求めることができ、また粒子含有率はそれぞれの領域における累積値 によって求めることができる。
粗粉の極大値が、 15 mを超えると焼結性に悪影響するため、熱伝導率が向上し ない。逆に 3 mより細力べなると焼結性は良いが、焼結時の収縮率が大きくなる。粗 粉の割合が、 40%未満では焼結時の収縮率が大きくなり、 70%を超えると焼結性に 悪影響を及ぼすため、熱伝導率が向上しない。特に好ましくは、粗粉の極大値が 5〜 10 μ mであり、その粒子含有率が 50〜65%である。
[0014] 中粉の極大値力 1. 5 μ mより大きくなると、粗粉の極大値と粒径が近くなるため、 焼結性に悪影響して熱伝導率が向上しない。また極大値が 0. より小さくなると 、微粉の極大値と粒径が近くなるため、焼結時の収縮率が大きくなり、しかも酸素量 の増大によって高熱伝導性の発現に悪影響する。中粉の割合が、 25%未満では焼 結性に悪影響を及ぼし、 40%を超えると焼結時の収縮率が大きくなる。特に好ましく は、中粉の極大値が 1. 3〜0. 8 mであり、その粒子含有率が 25〜35%である。 微粉の極大値が 0. 3 mより大きくなると、中粉の極大値と粒径が近くなるため、焼 結時の収縮率が大きくなる。微粉の割合が、 20%を超えると酸素量が増大し熱伝導 率に悪影響を及ぼす。 0. 5%未満では微粉を存在させる効果が小さくなり、焼結時 の収縮率が大きくなる。特に好ましくは、微粉の極大値が 0. 25〜0. 05 mであり、 その粒子含有率が 5〜 15%である。
上記粗粉、中粉、微粉の合計は 100%であることが好ましいが、必ずしもそのように する必要はなぐ上記粒子含有率を満たす限り、これら以外の窒化アルミニウム粉末 を含有させることもできる。本発明の窒化アルミニウム粉末は、酸素量が 0. 5〜1. 5 質量%である。 1. 5質量%よりも多いと、焼結性に悪影響して熱伝導率が向上せず、 また 0. 5質量%よりも少なくても焼結性に悪影響を及ぼす。なかでも、酸素量が 0. 8 〜1. 3質量%が好ましい。
[0015] 本発明の窒化アルミニウム未焼成成形体は、本発明の窒化アルミニウム粉末と焼 結助剤を含む混合粉末を成形したものである。また、本発明の窒化アルミニウム焼結 体は、この窒化アルミニウム未焼成成形体を焼結したものである。本発明で使用され る焼結助剤としては、例えばアルカリ土類金属の化合物、又は遷移金属の化合物を 好適例としてあげることができる。具体的には、アルカリ土類金属(Ca、 Ba、 Sr等)若 しくは遷移金属(Y、 La、 Sc、 Pr、 Ce、 Nd、 Gd等)の酸化物、フッ化物、塩化物、硝 酸塩、硫酸塩、又は炭酸塩等である。なかでも酸化イットリウム、酸ィ匕カルシウムが好 ましい。これらの焼結助剤は、窒化アルミニウム粉末の酸素、すなわちアルミニウム酸 化物と反応し複合酸化物の液相(例えば 2Y O ·Α1 O、 Y O ·Α1 O、 3Y O · 5Α1
2 3 2 3 2 3 2 3 2 3
Ο等)を形成し、この液相が焼結体の高密度化をもたらし、同時に窒化アルミニウム
2 3
粒子中の不純物である酸素等を抽出し、結晶粒界の酸化物相として偏祈させること によって高熱伝導ィヒをもたらす。焼結助剤の使用量が少ないと液相焼結が不十分で あり、逆に多いと結晶粒界の割合が多くなり、いずれの場合も熱伝導率が増大しない 。本発明においては、焼結助剤の使用量は、窒化アルミニウム粉末 100質量部あた り 1〜5質量部であることが好まし 、。
[0016] 窒化アルミニウム粉末と焼結助剤の混合には、例えばボールミル、ロッドミル等が使 用される。混合粉末はそのまま成形してもよぐまた例えばスプレードライヤー法、転 動造粒法等によって造粒して力 成形してもよい。成形は、例えば乾式プレス成形法 、冷間等方圧プレス成形法 (CIP法)等の単独又は組み合わせて行うことができる。 乾式プレス成形のプレス圧は 50〜300MPaが好ましぐ特に 100〜250MPaである ことが好ましい。乾式プレス成形法、 CIP法のいずれの場合においても、必要に応じ て有機ノ インダーを使用する。さら〖こは、窒化アルミニウム粉末、焼結助剤、有機バ インダー、必要に応じて可塑剤、分散剤等を混合し、この混合物を押出成形又はドク ターブレード成形等によっても行うことができる。
[0017] 有機ノインダ一としては、例えばポリビニルブチラール、ポリアタリレート、ポリメチル メタタリレート、メチルセルロース、ポリエチレン、ワックス等を用いることができる。有機 バインダーを用いたときは、焼結する前に、窒素ガスや空気等の気流中、 350-700 °Cで 1〜10時間加熱し、成形体からそれを除去 (脱脂)する。
[0018] 成形体は、次 、で焼成される。焼成は、例えば窒素ガス、アルゴンガス等の非酸ィ匕 性雰囲気中、 1600〜1900°Cの温度域で、 1〜10時間、特に 2〜7時間、保持して 行われることが好ましい。焼成温度が 1600°C未満であると、焼結不足となり熱伝導 率 190WZmK以上の窒化アルミニウム焼結体を製造することが困難となる。また、 焼成温度が 1900°Cを超えると、炉内での窒化アルミニウムの蒸気圧が高くなり緻密 化が困難となる。保持時間は、上記温度範囲内において、焼結体密度を 98%以上 にすることができる最も短い時間であることが好ましい。これは、焼結体密度が 98% 以上となる温度領域にて長時間焼成すると、 A1N粒子が必要以上に粒成長して粗大 粒子となり、これにより 2粒子界面の体積が 3重点に比べて相対的に小さくなり、粒界 相が A1Nの 2粒子界面よりも 3重点に多く偏祈してしまい、更には焼結体表面にアル ミニゥム複合酸ィ匕物の液相が染み出してしまうからである。
[0019] 上記窒化アルミニウム焼結体の製造に使用される窒化アルミニウム粉末は、好まし くは以下に記載する製造方法により製造される。この方法は、含有酸素量の低いァ ルミ-ゥム粉末を窒素ガスにより低濃度に希釈し、それを酸素濃度の管理された反応 管へ噴霧 '窒化し、同様に酸素濃度の管理された捕集系で捕集することを要旨とす る。以下、この製造方法について、その 1例を示す図面に基づいて更に詳しく説明す る。
[0020] 図 1は、窒化アルミニウム粉末の製造装置の一例を示す説明図である。原料アルミ -ゥム粉末は、テーブルフィーダ一、スクリューフィーダ一等のアルミニウム粉末の供 給機 1によって混合器 2に一定量供給される。そこで窒素ガスと混合されてノズル 3か ら窒化ホウ素製反応管 4に噴霧される。ノズルとしては、例えばリングノズル等が用い られる。反応管の周囲には、所定温度に保持するために、黒鉛発熱体 6が配置され、 高周波電源 5により加熱されている。黒鉛発熱体は、多孔質カーボンビーズ断熱体 7 により保温され、石英管 8によって支持されている。反応温度は、発熱体中央部に設 置したグラッシ一カーボン製測温体 11を光温度計によって測定される。
[0021] 生成物(窒化アルミニウム粉末)は、密閉窒素循環ライン 14において、炉底部から 循環窒素ガスとともにブロワ一 10で吸引され、バグフィルター 9で捕集される。反応管 内及び捕集系の酸素量は、反応管下流部と密閉窒素循環ラインとに設置された酸 素計 12、 13によって監視される。窒素純度、反応管及びバグフィルターの気密度、 循環窒素ガス量とブロア一吸弓 I力とのバランスによる反応管内圧制御、具体的には 内圧をやや加圧状態に(5〜: LOmmAq程度)に保つこと、によって、外部からの空気 侵入を防ぎ、反応管内と捕集系の酸素量を制御する。ここで、密閉窒素循環ラインと は、バグフィルター、ブロア一を含む捕集系全体を指す。
[0022] 本発明で用いる原料アルミニウム粉末の平均粒径が大きいと、アルミニウムの蒸発 が充分行われず、未反応アルミニウムが残存する恐れがあるので、平均粒径が 40 μ m以下、特に 30 m以下とする。また、表面酸ィ匕膜は生成物である窒化アルミニウム 粉内に取り込まれてしまうため、原料アルミニウム粉末の酸素量は 0. 5質量%以下、 好ましくは 0. 4質量%以下とする。これには、爆発の危険性が小さいアトマイズ粉が 好ましい。さらには、窒素ガス中のアルミニウム粉末の濃度が大きいと、アルミニウム 粒子の空間分散が劣り、粒子間の合着確率が高くなつて微粉末の窒化アルミニウム 粉末の生成を阻害する恐れがあるので、窒素ガス INm3あたり lOOg以下、好ましくは 50〜80gとする。
[0023] 反応管の温度は、 1900〜2200°Cとするの力好ましく、 1900°Cよりも低温であると 、アルミニウム粉末を蒸発させることが難しぐまた 2200°Cよりも高温では窒化アルミ -ゥムのファイバーの形成が優先してしまうので好ましくはな 、。
[0024] 生成した窒化アルミニウム粉末は、密閉窒素循環ライン 14において、未反応窒素 ガスとブロワ一により密閉循環される窒素ガスにより搬送され、バグフィルター 9等の 捕集装置で捕集される。ここで重要なことは、温度 100°C以上の全ての部分の酸素 濃度を lOOppm以下にすることであり、生成物の取り出しを 100°C以下の温度で行う ことである。これらの条件の一つでも欠けると、上記の特定粒子径と特定酸素量を持 つた窒化アルミニウム粉末の調製に使用することのできる窒化アルミニウム粉末を製 造することが困難となる。とくに、 BET比表面積が 10m2/g以上で、酸素量 (質量%) Z比表面積 (m2Zg)の値が 0. 1〜0. 2である窒化アルミニウム粉末の製造ができな くなる。ここで、 BET比表面積が 10m2Zg以上で、酸素量 (質量%) Z比表面積 (m2 Zg)の値が 0. 1〜0. 2である窒化アルミニウム粉末とは、高充填成型に必要となる 微粉ィヒ (つまり比表面積の増加)された粉末であり、し力も微粉ィヒに伴って増加し熱 伝導率に悪影響を及ぼす酸素量が抑制された粉末である。
[0025] 常温で空気中に取り出した際に必ず生成する"自然酸ィ匕膜"を除き、過度な酸ィ匕層 を粒子表面に形成させないため、本発明では、酸ィ匕反応が起りうる 100°C以上の温 度領域となる全ての部分を、酸素濃度を lOOppm以下、好ましくは lOppm以下にす ることが必要である。この観点から、バグフィルタ一等の捕集装置の内温度を 100°C 以下に保持して生成物を取り出すことが肝要となる。なお、生成物の取り出し時に空 気がバグフィルタ一等の捕集装置内に侵入しないために、二重ダンパー構造等を取 り出し機構に採用することが好ま ヽ。
[0026] 本発明によって製造された窒化アルミニウム粉末を用い、高熱伝導と低焼結収縮を 両立させた窒化アルミニウム焼結体を製造することができる窒化アルミニウム粉末の 調製方法の一例を示せば、以下のとおりである。すなわち、本発明によって製造され た窒化アルミニウム粉末 A (BET比表面積が20m2Zg、酸素量が 2. 2質量%、酸素 量 (質量%) Z比表面積 (m2Zg)の値が 0. 11)と、他の窒化アルミニウム粉末 B (BE T比表面積が 5m2Zg、酸素量が 0. 8質量%)と、他の窒化アルミニウム粉末 C (BET 比表面積が lm2Zg、酸素量が 0. 6質量%)とを、質量比で 10 : 30 : 60で混合する。 このように調製された窒化アルミニウム粉末は成型密度が 70%以上となり、 1750〜 1 850°Cで焼結した場合、(焼結前の成形体寸法 焼結後の焼結体寸法) / (焼結前 の成形体寸法)の百分率で示される収縮率は 12% (通常は 16%)と著しく低くなる。 また酸素量も 1. 0質量%に留めることができるため、熱伝導率 190WZm'Kの実現 が極めて容易となる。
実施例
[0027] 実施例 1〜16 比較例 1〜13
1950°Cに保持された窒素ガス雰囲気の反応管の頂部から、原料アルミニウム粉末 (純度 99. 97質量%、平均粒径 25 /z m)を 2kgZhrの条件にて、窒素ガスをキャリア ガスとし噴霧する。一方、反応ガスとしての窒素ガス量を、上記キャリアガスの窒素ガ ス量との合計量で 200lZmin供給し、窒化アルミニウム粉末を合成し、それを炉体下 部よりブロワ一で吸引し、バグフィルターによって捕集した。
[0028] この窒化アルミニウム粉末を遠心力式風力分級機により分級し、粒度構成と酸素量 の異なる種々の窒化アルミニウム粉末を得た。すなわち、酸素量が 0. 4〜0. 8質量 %で粒度が 3〜15 /ζ πιである種々の粗粉(分級収率 10〜20%、)、酸素量 0. 9〜1 . 8質量%で粒度が 0. 5〜1. 5 111でぁる種々の中粉(分級収率50〜70%)、酸素 量が 1. 8〜2. 6質量%で粒度が 0. 3 m以下である種々の微粉を製造した。これら の粉末を適宜組み合わせ、表 1、表 2に示すように、 〜!^ !^こ極大値!^、 0. 5〜 1. 5 /ζ πι ¾± Ρ2、 0. 3 m以下に極大値 P3有し、酸素量の異なる窒化アルミ- ゥム粉末を種々調製した。
[0029] 得られた窒化アルミニウム粉末 100質量部に対し、表 1、表 2に示す焼結助剤 (試 薬 1級、平均粒径約 0. 7 /z m)を各質量部、有機系バインダー(ポリアタリレート系) 3 質量部を加え、メタノールを分散媒とした湿式ボールミルで 3時間混合し、ろ過'乾燥 した。その後、 200MPaの圧力でプレス成型して 50mm X 50mm X 5mmの窒化ァ ルミ二ゥム未焼成成形体の形体とし、以下に従い、(1)成形体の相対密度を測定した 。次いで、それを窒化硼素(BN)製の坩堝に入れ、窒素ガス中で 600°C X 2時間加 熱して脱脂した後、焼成炉に移し、窒素ガス雰囲気中で 1780°C X 6時間の常圧焼 結を行って窒化アルミニウム焼結体を製造した。これについて、(2)焼結体の相対密 度、(3)熱伝導率を測定し、更に (4)焼結時の収縮率を以下に従って測定した。それ らの結果を表 1、表 2に示す。
[0030] (1)窒化アルミニウム未焼成成形体の相対密度:窒化アルミニウム粉末と焼結助剤 との合計質量を、窒化アルミニウム成形体の体積で除し、更にこの値を、焼結助剤の 含有量を加味した窒化アルミニウム焼結体の理論密度で除して求めた。なお、窒化 アルミニウム粉末と焼結助剤の質量は、原料調整時の使用量から求めた。
(2)窒化アルミニウム焼結体の相対密度:アルキメデス法により求めた焼結体密度 から、焼結助剤の含有量を加味した窒化アルミニウム焼結体の理論密度で除して求 めた。
(3)窒化アルミニウム焼結体の熱伝導率:円板試験体(直径 25mm X 1. 5mm)を 作製し、レーザーフラッシュ法熱定数測定装置 (真空理工社製「TC - 7000」を用 ヽ て測定した。
(4)窒化アルミニウム焼結時の収縮率:成形体及び焼結体の最長方向(例えば、矩 形であれば対角線方向、楕円形であれば長軸方向)を測定し、任意 4方向の長さの 平均値を求め、収縮率(%) = (焼結前の成形体寸法 焼結後の焼結体寸法) X 10 OZ (焼結前の成形体寸法)、により算出した。
[0031] なお、粒度分布は、レーザー回折散乱法測定装置 (ベックマンコールター社製「LS — 230」)を用い、また酸素量は、 HORIBA社製酸素 Z窒素同時分析装置を用いて 測定した。
[0032] [表 1]
Figure imgf000014_0001
窒化アルミニウム
窒化アルミニウム粉末 焼結助剤 窒化アルミニウム焼結体 未焼成成形体
極大値 P 1 極大値 P 2 極大値 P 3 極大値 Ρ 1 極大値 Ρ 2 極大値 Ρ 3 酸素量 種類 添加量 相対密度 相対密度 収縮率 熱伝導率
{1 m τη % % % 質量% 質量部 % % % W/m-K 実施例 1 15 1 0. 1 60 30 10 0. 87 Υ203 3 70 100 12 205 実施例 2 10 1 0. 1 60 30 10 0. 96 Υ203 3 68 100 13 202 実施例 3 3 1 0. 1 60 30 10 1. 1 1 Υ203 3 66 100 14 200 実施例 4 10 1 0. 1 70 25 5 0. 80 Υ203 3 69 100 12 205 実施例 5 10 1 0. 1 40 40 20 1. 26 Υ203 3 66 100 15 200 実施例 6 10 0. 5 0. 1 60 30 10 1. 09 Υ203 3 69 100 12 201 実施例 7 10 1 0. 1 60 30 10 0. 96 Υ203 3 71 100 12 205 実施例 8 10 1. 5 0. 1 60 30 10 0. 82 Υ203 3 70 100 13 207 実施例 9 10 1 0. 1 59. 5 40 0. 5 0. 81 Υ203 3 69 100 14 210 実施例 10 10 1 0. 1 55 25 20 1. 15 Υ203 3 68 100 15 205 実施例 1 1 10 1 0. 3 60 30 10 0. 86 Υ203 3 69 100 13 206 実施例 12 10 1 0. 15 60 30 10 0. 94 Υ203 3 71 100 12 200 実施例 13 3 0. 5 0. 15 40 40 20 1. 50 Υ203 5 65 100 15 195 実施例 14 15 1. 5 0. 3 70 29 1. 0 0. 50 Υ203 1 70 100 12 21 1 実施例 15 3 0. 5 0. 15 40 40 20 1. 50 C a〇 5 65 100 15 195 実施例 16 15 1. 5 0. 3 70 29 1. 0 0. 50 C aO 1 70 100 12 209
室室 ¾ϋ it003417181415〜〜 窒化アルミニウム
窒化アルミニウム粉末 焼結助剤 窒化アルミニウム焼結体 未焼成成形体
極大値 P 1 極大値 P 2 極大値 P 3 極大値 p l 極大値 P 2 極大値 P 3 酸素量 種類 添加量 相対密度 相対密度 収縮率 熱伝導率 μ m m U m % ¾ % 質量% 質量部 % % % W/m-K 比較例 1 20 1 0. 1 60 30 10 0. 88 Y203 3 73 90 - - 比蛟例 2 2 1 0. 1 60 30 10 1. 12 Y 2 O 3 3 58 99 16 187 比較例 3 10 1 0. 1 80 15 5 0. 73 Y 2 O 3 3 67 95 - - 比較例 4 10 1 0. 1 30 60 10 1. 18 Y 203 3 65 99 16 187 比較例 5 10 2 0. 1 60 30 10 0. 81 Y 203 3 70 97 - 一 比較例 6 10 0. 3 0. 1 60 30 10 1. 12 Y 203 3 69 99 16 185 比較例 7 10 1 0. 1 70 20 10 0. 88 Y 203 3 69 97 - - 比較例 8 10 1 0. 1 40 50 10 1. 11 Y 2 O 3 3 68 99 16 18 8 比較例 9 10 1 0. 4 60 30 10 0. 85 Y203 3 69 99 16 1 89 比較例 10 10 1 0. 1 70 29. 8 0. 2 0. 73 Y203 3 70 99 16 187 比較例 1 1 10 1 0. 1 45 25 30 1. 38 Y203 3 68 99 17 189 比較例 12 3 0. 5 0. 15 35 40 25 1. 59 Y 203 5 63 99 16 180 比較例 13 15 1. 5 0. 3 85 14. 8 0. 2 0. 42 Y203 1 68 89 - -
図 1に示される装置を用い、表 1に示される条件で窒化アルミニウム粉末を製造した 。反応炉の容量は 170kVA、出力は lOOkWである。窒化ホウ素製反応管 4は内径 2 OOmm,全長 3000mmであり、石英管 8は内径 450mm、全長 3000mmである。ァ ルミ-ゥム粉末の供給機 1としてはスクリューフィーダ一を用いた。なお、窒素純度、 反応管及びバグフィルターの気密性、循環窒素ガス量とブロア一吸弓 I力とのバランス による反応管内圧制御により、外部からの空気侵入を防ぎ、系内酸素量を lOppm以 下に制御した。また、バグフィルター内温度を 100°C以下に保持して生成物を取り出 した。
[0035] 得られた窒化アルミニウム粉末について、 BET比表面積「湯浅アイォ-タス社製 Q S 16装置」と、酸素量「HORIBA社製酸素 Z窒素同時分析装置」型式 EMGA620 Wを測定し、酸素量 (質量%) Z比表面積 (m2Zg)の比率を算出した。それらの結果 を表 3に示す。
[0036] [表 3]
Figure imgf000017_0001
産業上の利用可能性
本発明の窒化アルミニウム粉末は、窒化アルミニウム焼結体製造用原料、榭脂又 はゴムの充填材などとして使用される。また、本発明の窒化アルミニウム未焼成成形 体は窒化アルミニウム焼結体の製造に用いられる。また、本発明の窒化アルミニウム 焼結体は、構造部材、放熱基板、回路基板のセラミックス基板などとして使用される。 特に、電気自動車用途等のモジュールのセラミックス基板として好適である。
本発明によって製造された窒化アルミニウム粉末は、例えば窒化アルミニウム焼結 体の高熱伝導と低焼結収縮を両立する窒化アルミニウム焼結体を調製するための一 原料などとして使用することができる。 なお、本出願の優先権主張の基礎となる日本特許願 2004— 94567号(2004年 3 月 29日に日本特許庁に出願)の全明細書の内容をここに引用し、本発明の明細書 の開示として、取り入れるものである。

Claims

請求の範囲
[1] 3〜15 /z m、 0. 5〜1. m、 0. 3 /z m以下のそれぞれの領域【こ極大値を有し、各 々の領域の粒子含有率が、体積基準でそれぞれ 40〜70%、 25〜40%、 0. 5〜20 %であり、酸素量が 0. 5〜1. 5質量%であることを特徴とする窒化アルミニウム粉末
[2] 請求項 1に記載の窒化アルミニウム粉末と焼結助剤を含む混合粉末の成形体から なることを特徴とする窒化アルミニウム未焼成成形体。
[3] 請求項 2に記載の窒化アルミニウム未焼成成形体の焼結体力 なり、熱伝導率が 1
90WZm'K以上、(焼結前の成形体寸法 焼結後の焼結体寸法) / (焼結前の成 形体寸法)の百分率で示される収縮率が 15%以下であることを特徴とする窒化アル ミニゥム焼結体。
[4] 窒化アルミニウム粉末 100質量部あたり焼結助剤を 1〜5質量部含まれる請求項 3 に記載の窒化アルミニウム焼結体。
[5] 焼結助剤が、酸化イットリウム又は酸ィ匕カルシウムである請求項 3又は 4に記載の窒 化アルミニウム焼結体。
[6] 請求項 1に記載の窒化アルミニウム粉末の製造方法であり、平均粒径 40 μ m以下 、酸素量 0. 5質量%以下である原料アルミニウム粉末を、窒素ガス INm3あたり 100 g以下の比率で分散混合させて反応管内に噴霧 ·窒化し、生成物を捕集系で捕集す る方法において、反応管内及び捕集系の 100°C以上となる部分の酸素濃度を ΙΟΟρ pm以下に制御するとともに、生成物の取り出しを 100°C以下で行うことを特徴とする 製造方法。
[7] 生成した窒化アルミニウム粉末力 BET比表面積 10m2Zg以上を有し、かつ、酸 素量 (質量%) Z比表面積 (m2Zg)の値が 0. 1〜0. 2を有することを特徴とする請求 項 6に記載の製造方法。
PCT/JP2005/005863 2004-03-29 2005-03-29 窒化アルミニウム粉末及び窒化アルミニウム焼結体 WO2005092789A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020067017654A KR101160109B1 (ko) 2004-03-29 2005-03-29 질화알루미늄 분말 및 질화알루미늄 소결체
JP2006511576A JP4939932B2 (ja) 2004-03-29 2005-03-29 窒化アルミニウム粉末及びその製造方法
US10/590,942 US7553469B2 (en) 2004-03-29 2005-03-29 Aluminum nitride powder and aluminum nitride sintered compact
EP05727549.7A EP1731482B1 (en) 2004-03-29 2005-03-29 Aluminum nitride powder and aluminum nitride sintered compact
US12/105,907 US20080200326A1 (en) 2004-03-29 2008-04-18 Aluminum nitride powder and aluminum nitride sintered compact
US12/538,671 US7737065B2 (en) 2004-03-29 2009-08-10 Process for producing aluminum nitride sintered compacts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004094567 2004-03-29
JP2004-094567 2004-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/105,907 Division US20080200326A1 (en) 2004-03-29 2008-04-18 Aluminum nitride powder and aluminum nitride sintered compact

Publications (1)

Publication Number Publication Date
WO2005092789A1 true WO2005092789A1 (ja) 2005-10-06

Family

ID=35056105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005863 WO2005092789A1 (ja) 2004-03-29 2005-03-29 窒化アルミニウム粉末及び窒化アルミニウム焼結体

Country Status (6)

Country Link
US (3) US7553469B2 (ja)
EP (1) EP1731482B1 (ja)
JP (1) JP4939932B2 (ja)
KR (1) KR101160109B1 (ja)
CN (1) CN100545082C (ja)
WO (1) WO2005092789A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051403A (ja) * 2012-09-06 2014-03-20 Denki Kagaku Kogyo Kk 窒化アルミニウム粉末の製造方法
JP2016175830A (ja) * 2015-03-20 2016-10-06 オーシーアイ カンパニー リミテッドOCI Company Ltd. 窒化アルミニウム粉末の製造装置、製造方法及びそれにより製造された窒化アルミニウム
JP2020526939A (ja) * 2017-07-10 2020-08-31 ケーエスエム・コンポーネント・カンパニー・リミテッド 静電チャック

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101198566A (zh) * 2005-06-15 2008-06-11 德山株式会社 氮化铝烧结体、浆料、生坯及脱脂体
KR101191590B1 (ko) * 2007-10-11 2012-10-15 덴끼 가가꾸 고교 가부시키가이샤 알루미나질 섬유 집합체, 그 제조 방법 및 용도
RU2485219C1 (ru) * 2009-04-24 2013-06-20 Нэшнл Инститьют Оф Эдванст Индастриал Сайенс Энд Текнолоджи Устройство для производства монокристаллического нитрида алюминия, способ производства монокристаллического нитрида алюминия и монокристаллический нитрид алюминия
CN102686511B (zh) 2010-01-29 2014-11-19 株式会社德山 球形氮化铝粉末的制造方法及通过该方法获得的球形氮化铝粉末
JP5500508B2 (ja) * 2010-03-31 2014-05-21 三菱マテリアル株式会社 微粒多結晶ダイヤモンド焼結体の製造法
CN101948315A (zh) * 2010-09-21 2011-01-19 上海理工大学 一种高性能氮化铝陶瓷的低温烧结方法
TWI450855B (zh) * 2011-08-04 2014-09-01 高純度氮化鋁製造方法
RU2500653C1 (ru) * 2012-07-12 2013-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ получения нанодисперсной шихты для изготовления нитридной керамики
KR101974114B1 (ko) * 2013-02-04 2019-04-30 가부시키가이샤 도쿠야마 질화 알루미늄 소결 과립의 제조 방법
CN103539457A (zh) * 2013-09-29 2014-01-29 合肥工业大学 一种微电子封装用AlN陶瓷基板的制备方法
CN104926314B8 (zh) * 2015-06-17 2017-02-22 甘肃荣宝科技股份有限公司 一种led用陶瓷基板
WO2018164123A1 (ja) * 2017-03-07 2018-09-13 株式会社トクヤマ 粗大粒子を含まない窒化アルミニウム粉末
CN107663092B (zh) * 2017-09-26 2019-12-31 上海东洋炭素有限公司 一种AlN粉体的制备方法
CN108706980A (zh) * 2018-06-27 2018-10-26 深圳市商德先进陶瓷股份有限公司 氮化铝陶瓷及其制备方法、静电卡盘和应用
CN109369191B (zh) * 2019-01-02 2021-08-03 山东博奥新材料技术有限公司 含钇的氮化硼-氮化铝复合粉体的制备方法
CN111470481B (zh) * 2020-05-19 2023-09-19 四川大学 一种等离子体反应雾化制备高纯氮化铝球形粉末的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139709A (ja) * 1991-11-20 1993-06-08 Tokuyama Soda Co Ltd 窒化アルミニウム粉末
JPH05238830A (ja) * 1992-02-21 1993-09-17 Toshiba Corp 窒化アルミニウム焼結体およびその製造方法
JPH07330315A (ja) * 1994-06-08 1995-12-19 Denki Kagaku Kogyo Kk 窒化アルミニウム粉末及び窒化アルミニウム焼結体の製造法
JP2000086213A (ja) * 1998-09-16 2000-03-28 Toyo Alum Kk 窒化アルミニウム系粉末
JP2001139378A (ja) * 1999-11-09 2001-05-22 Bridgestone Corp 窒化アルミニウム焼結体

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3307908A (en) * 1965-08-16 1967-03-07 Union Carbide Corp Preparation of aluminum nitride
EP0087798B1 (en) * 1982-03-01 1987-05-06 Toyota Jidosha Kabushiki Kaisha A method and apparatus for making a fine powder compound of a metal and another element
US5242872A (en) * 1986-07-18 1993-09-07 Tokuyama Soda Kabushiki Kaisha Process for producing aluminum nitride sintered body
US5061663A (en) * 1986-09-04 1991-10-29 E. I. Du Pont De Nemours And Company AlN and AlN-containing composites
DE3871013D1 (de) * 1987-07-29 1992-06-17 Mitsui Toatsu Chemicals Verfahren zur gewinnung von aluminiumnitrid und daraus hergestelltes sinterprodukt.
JPH01100066A (ja) 1987-10-10 1989-04-18 Nippon Chemicon Corp 窒化アルミニウム焼結体の製造方法
JPH01203270A (ja) * 1988-02-08 1989-08-16 Sumitomo Electric Ind Ltd 高熱伝導性窒化アルミニウム焼結体及びその製造法
JP2661113B2 (ja) 1988-03-11 1997-10-08 旭硝子株式会社 窒化アルミニウム焼結体の製造方法
US5264388A (en) * 1988-05-16 1993-11-23 Sumitomo Electric Industries, Inc. Sintered body of aluminum nitride
JP2742599B2 (ja) 1989-04-18 1998-04-22 京セラ株式会社 窒化アルミニウム質焼結体およびその製造方法
JPH03197366A (ja) 1989-12-26 1991-08-28 Kawasaki Steel Corp 窒化アルミニウム焼結体の製造方法
JPH03228809A (ja) * 1990-02-01 1991-10-09 Showa Alum Corp 窒化アルミニウム粉末の製造方法
JPH03261664A (ja) 1990-03-12 1991-11-21 Kawasaki Steel Corp 窒化アルミニウム焼結体の製造方法
JP2567491B2 (ja) * 1990-04-17 1996-12-25 住友電気工業株式会社 高熱伝導性着色窒化アルミニウム焼結体およびその製造方法
JPH0431366A (ja) 1990-05-25 1992-02-03 Sumitomo Chem Co Ltd 窒化アルミニウム質粉末の製造方法
JP2943275B2 (ja) * 1990-08-07 1999-08-30 住友電気工業株式会社 高熱伝導性着色窒化アルミニウム焼結体およびその製造方法
JPH04104961A (ja) 1990-08-24 1992-04-07 Toshiba Corp 黒色窒化アルミニウム焼結体の製造方法
US5126121A (en) * 1991-05-03 1992-06-30 The Dow Chemical Company Process for preparing aluminum nitride powder via controlled combustion nitridation
US5320990A (en) * 1993-03-30 1994-06-14 The Dow Chemical Company Process for sintering aluminum nitride to a high thermal conductivity and resultant sintered bodies
JP3457495B2 (ja) * 1996-03-29 2003-10-20 日本碍子株式会社 窒化アルミニウム焼結体、金属埋設品、電子機能材料および静電チャック
US6294275B1 (en) * 1998-05-06 2001-09-25 Sumitomo Electric Industries, Ltd. Aluminum-nitride sintered body, method for fabricating the same, and semiconductor substrate comprising the same
JP4812144B2 (ja) * 1998-07-22 2011-11-09 住友電気工業株式会社 窒化アルミニウム焼結体及びその製造方法
US6383962B1 (en) * 1999-03-17 2002-05-07 Asahi Techno Glass Corporation Aluminum nitride sintered product
JP3764083B2 (ja) * 2001-10-16 2006-04-05 電気化学工業株式会社 窒化アルミニウム粉末の製造方法
US6953761B2 (en) * 2002-12-27 2005-10-11 Hitachi, Ltd. Aluminum nitride sintered body and substrate for electronic devices
TW200521103A (en) * 2003-11-21 2005-07-01 Toshiba Kk High thermally conductive aluminum nitride sintered product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139709A (ja) * 1991-11-20 1993-06-08 Tokuyama Soda Co Ltd 窒化アルミニウム粉末
JPH05238830A (ja) * 1992-02-21 1993-09-17 Toshiba Corp 窒化アルミニウム焼結体およびその製造方法
JPH07330315A (ja) * 1994-06-08 1995-12-19 Denki Kagaku Kogyo Kk 窒化アルミニウム粉末及び窒化アルミニウム焼結体の製造法
JP2000086213A (ja) * 1998-09-16 2000-03-28 Toyo Alum Kk 窒化アルミニウム系粉末
JP2001139378A (ja) * 1999-11-09 2001-05-22 Bridgestone Corp 窒化アルミニウム焼結体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1731482A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051403A (ja) * 2012-09-06 2014-03-20 Denki Kagaku Kogyo Kk 窒化アルミニウム粉末の製造方法
JP2016175830A (ja) * 2015-03-20 2016-10-06 オーシーアイ カンパニー リミテッドOCI Company Ltd. 窒化アルミニウム粉末の製造装置、製造方法及びそれにより製造された窒化アルミニウム
JP2020526939A (ja) * 2017-07-10 2020-08-31 ケーエスエム・コンポーネント・カンパニー・リミテッド 静電チャック
US11355377B2 (en) 2017-07-10 2022-06-07 Ksm Component Co., Ltd. Electrostatic chuck

Also Published As

Publication number Publication date
CN1938221A (zh) 2007-03-28
JPWO2005092789A1 (ja) 2008-02-14
US20080200326A1 (en) 2008-08-21
CN100545082C (zh) 2009-09-30
US20070184966A1 (en) 2007-08-09
US20090295046A1 (en) 2009-12-03
KR20070003891A (ko) 2007-01-05
US7737065B2 (en) 2010-06-15
US7553469B2 (en) 2009-06-30
JP4939932B2 (ja) 2012-05-30
KR101160109B1 (ko) 2012-06-26
EP1731482A1 (en) 2006-12-13
EP1731482B1 (en) 2017-01-25
EP1731482A4 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
WO2005092789A1 (ja) 窒化アルミニウム粉末及び窒化アルミニウム焼結体
WO2019031697A1 (ko) 구형의 질화알루미늄 분말을 제조하기 위한 방법
CN108689715B (zh) 一种氮化铝粉体及其制备方法
JP7317737B2 (ja) 六方晶窒化ホウ素粉末、及び焼結体原料組成物
CN108863393A (zh) 一种高导热和高强度氮化铝陶瓷的制备方法
JP2013095637A (ja) 球状α型炭化ケイ素、その製造方法、及び、該炭化ケイ素を原料としてなる焼結体又は有機樹脂複合体
WO2005049525A1 (ja) 高熱伝導性窒化アルミニウム焼結体
JP3533532B2 (ja) 大粒径の窒化アルミニウム粉末およびその製造方法
JP2006256940A (ja) 窒化アルミニウム粉末の製造法
US6143677A (en) Silicon nitride sinter having high thermal conductivity and process for preparing the same
CN104016316B (zh) 一种氮化铝粉连续制备方法及其设备
JPH11269302A (ja) 樹脂製品の熱伝導性向上用充填剤及びその製造方法
CN103539457A (zh) 一种微电子封装用AlN陶瓷基板的制备方法
JP4533994B2 (ja) プラズマ耐食材料、その製造方法及びその部材
JP3814842B2 (ja) 窒化アルミニウム粉末、その製造方法及びその用途
JP2003226580A (ja) 窒化アルミニウム質セラミックスおよび半導体製造用部材
JP3106160B2 (ja) 窒化アルミニウム焼結体及びその製造方法
JP4958353B2 (ja) 窒化アルミニウム粉末及びその製造方法
JPH05117039A (ja) 窒化アルミニウム質粉末およびその製造法
JP3141505B2 (ja) 窒化アルミニウム焼結体およびその製造方法
KR101483540B1 (ko) 질화알루미늄 분말의 과립화 및 그 응용
JPS60186479A (ja) 高熱伝導性窒化アルミニウム焼結体の製造方法
JP2006016214A (ja) 窒化アルミニウム粉末の製造方法
KR100779033B1 (ko) W-Cu계 복합분말의 제조방법
JP2007182340A (ja) 窒化アルミニウム粉末およびその製造方法ならびにその用途

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511576

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2005727549

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005727549

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10590942

Country of ref document: US

Ref document number: 2007184966

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067017654

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580009999.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005727549

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067017654

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10590942

Country of ref document: US