CN108863393A - 一种高导热和高强度氮化铝陶瓷的制备方法 - Google Patents

一种高导热和高强度氮化铝陶瓷的制备方法 Download PDF

Info

Publication number
CN108863393A
CN108863393A CN201810716797.3A CN201810716797A CN108863393A CN 108863393 A CN108863393 A CN 108863393A CN 201810716797 A CN201810716797 A CN 201810716797A CN 108863393 A CN108863393 A CN 108863393A
Authority
CN
China
Prior art keywords
aluminium nitride
powder
thermal conductivity
less
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810716797.3A
Other languages
English (en)
Other versions
CN108863393B (zh
Inventor
秦明礼
何庆
鲁慧峰
吴昊阳
刘昶
曲选辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201810716797.3A priority Critical patent/CN108863393B/zh
Publication of CN108863393A publication Critical patent/CN108863393A/zh
Application granted granted Critical
Publication of CN108863393B publication Critical patent/CN108863393B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Abstract

本发明公开了一种高导热和高强度氮化铝陶瓷的制备方法,属于陶瓷材料制备技术领域。本发明以一次粒径小于200纳米的氮化铝粉末为原料,添加稀土金属的氧化物或卤化物作为烧结助剂,加入量为1wt%~6wt%。原料粉末经混粉、成形后,在常压含氮还原性气氛中1300℃~1500℃的温度下预烧结1~5小时,再在氮气气氛中1500℃~1800℃的温度下烧结3~10小时。可制备出晶粒尺寸小于3微米,热导率不低于150W/m·K,抗弯强度不低于500MPa,硬度不低于HRC88的氮化铝陶瓷。

Description

一种高导热和高强度氮化铝陶瓷的制备方法
技术领域
本发明属于陶瓷材料制备技术领域,涉及一种高导热和高强度氮化铝陶瓷的制备方法。
背景技术
AlN陶瓷具有高的热导率、相对较低的介电常数和介电损耗、与硅和砷化镓等芯片材料相匹配的热膨胀系数、无毒、绝缘等一系列优异性能,被认为是新一代高性能陶瓷散热器件的首选材料(氮化铝的理论热导率为320W/m·K,是氧化铝陶瓷的十倍左右;热膨胀系数约为3.5~4.8×10-6K-1,20~500℃),已被广泛应用于电子、汽车、航天航空、军事国防等领域。
近几年来,随着科学技术的发展,对所用材料的性能要求越来越高,在某些特定领域,对氮化铝材料要求高导热率的同时还要求其具备高的抗弯强度,这就迫使我们探索新的材料制备方法来满足高的性能要求。中国专利CN 102826853 A公开了一种高强度氮化铝陶瓷基板及其制造方法,该发明以氧化钇作为烧结助剂,添加含硅氧化物及分散剂、粘结剂等有机物,采用高温烧结使得第二相在烧结过程中分布于晶粒三角晶界处,利用三角晶界处的液相加强晶粒间的结合作用,从而获得高导热和高强度氮化铝陶瓷。中国专利CN1689732 B公开了一种制备氮化铝烧结体的方法,其特点是采用包含一种碱土元素和稀土元素的烧结助剂,将氮化铝粉、碳粉和烧结助剂按比例均匀混合,通过控制烧结助剂用量和残留在烧结体中的碳含量,使晶粒生长得到抑制的同时提高氮化铝的抗热震性和强度。中国专利CN 104973865 A公开了一种高导热氮化铝陶瓷的制备方法,其特点是采用稀土金属氟化物或其混合物作为烧结助剂,制备步骤为原料混合、成形、脱脂烧结,其通过在烧结助剂熔点温度处进行保温,促进液相烧结,经过最终烧结后得到烧结致密、晶粒细小、导热率高的氮化铝陶瓷。但是上述发明都只单方面强调高导热或者高强度,没有能同时兼顾两方面性能,本发明以纳米氮化铝粉末为原料,发明一种常压烧结就能制备出同时具有高导热和高强度的氮化铝陶瓷的新方法。
本发明的主要内容是以纳米氮化铝粉末为原料,利用纳米粉末的高烧结活性,在较低温度下获得晶粒细小的氮化铝陶瓷,提高了氮化铝陶瓷的强度,同时在含氮还原性气氛中的预烧结,可有效较低坯体氧含量,从而减少晶界相数量,净化氮化铝晶格,减少铝空位等缺陷对声子的散射,提高了热导率,本发明利用纳米氮化铝粉末,开发出一种可以用于制备高导热和高强度氮化铝陶瓷的新方法。
发明内容
本发明的目的在于提供一种高导热和高强度氮化铝陶瓷的制备方法,获得的氮化铝陶瓷同时具有热导率高、抗弯强度高的特点。
一种高导热和高强度氮化铝陶瓷的制备方法,其具体工艺为:
a.原料粉末:原料为纳米氮化铝粉末,添加稀土金属氧化物或卤化物为烧结助剂,烧结助剂的用量为1wt%~6wt%;
b.将氮化铝粉末与烧结助剂采用湿法球磨进行混合,研磨介质为高纯氧化锆球,溶剂为无水乙醇,重量比为磨球:酒精:原料=2:2:1,加入0.5wt%油酸作为表面活性剂,球磨混合均匀后干燥过筛得到混合粉末;
c.成形和脱脂:将混合粉末经成形及脱脂后得到生坯,成形方式包括干压成形、注射成形、热压注成型等,脱脂方式根据不同成形方式采用溶剂脱脂、虹吸脱脂、热脱脂等中的一种或几种;
d.预烧结和最终烧结:将生坯在常压含氮还原性气氛中1300℃-1500℃温度下预烧结1~5小时,再在1500℃~1800℃的温度下烧结3~10小时。
所述步骤a中的纳米氮化铝粉末的一次粒径小于200纳米,稀土金属的氧化物或卤化物包括氧化钇、氧化镧、氟化钇、氟化镧等。
步骤d中所述含氮还原性气氛为氮气、氨气和氰化氢的混合气,气体流量为0.5~5L/min,混合气体中氮气的体积分数为70%~95%,氨气的体积分数为0~20%,氰化氢的体积分数为0.5%~10%。
通过采用前述技术方案,本发明的有益效果是:1:本发明使用的氮化铝粉末为纳米粉末,具有很高的比表面积和高的烧结活性,能够有效降低致密化温度,获得的氮化铝陶瓷晶粒细小,力学性能优异;2:在含氮还原性气氛中预烧结,可有效较低坯体氧含量,从而减少晶界相数量,净化氮化铝晶格,减少铝空位等缺陷对声子的散射,提高了热导率;3:所制备的氮化铝陶瓷的晶粒尺寸小于3微米,热导率不低于150W/m·K,抗弯强度不低于500MPa,硬度不低于HRC88。
综上所述,本发明提供的一种高导热和高强度氮化铝陶瓷的制备方法,工艺简单,成本较低,更加适于实用,且具有产业上的利用价值。其具有上述诸多的优点及实用价值,并在同类制备方法中未见有类似的设计公开发表或使用而确属创新,其不论在制备方法上或功能上皆有较大的改进,在技术上有较大的进步,诚为一新颖、进步、实用的新设计。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例详细说明如后。
本发明的具体制备方法及其结构由以下实施例详细给出。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合较佳实施例,对依据本发明提出的一种高导热和高强度氮化铝陶瓷的制备方法其具体实施方式、步骤、结构、特征及其功效,详细说明如后。
实施例1:
1.原料粉末:原料为一次粒径100纳米的氮化铝粉末,烧结助剂为氧化钇;
2.混粉:称取1000g纳米氮化铝粉末与50g氧化钇粉末,0.5wt%油酸放入球磨罐中,加入2000g高纯氧化锆磨球,2000ml无水乙醇,球磨混合12h后干燥过筛得到混合粉末;
3.成形和脱脂:将混合粉末加入50g橡胶汽油作为粘结剂,置于模具中进行干压成形,之后在惰性气氛中进行热脱脂得到坯体;
4.预烧结和最终烧结:将坯体在常压含氮还原性气氛中1500℃的温度下预烧结4小时,气体流量为5L/min,其中氮气的体积分数为95%,氨气的体积分数为4%,氰化氢的体积分数为1%,再在氮气气氛中1700℃的温度下烧结6小时。
通过本方案制备得到的氮化铝陶瓷,其热导率为170W/m·K,抗弯强度为530MPa,硬度为HRC90。
实施例2:
1.原料粉末:原料为一次粒径为80纳米的氮化铝粉末,烧结助剂为氧化钇;
2.混粉:将1000g纳米氮化铝粉末与30g氧化钇粉末,0.5wt%油酸放入球磨罐中,加入2000g高纯氧化锆磨球,2000ml无水乙醇,球磨混合12h后干燥过筛得到混合粉末;
3.成形和脱脂:将混合粉末加入180g蜡基粘结剂制成喂料后进行注射成形,然后经溶剂脱脂和热脱脂后得到坯体;
4.预烧结和最终烧结:将坯体在常压含氮还原性气氛中1400℃的温度下预烧结3小时,气体流量为3L/min,其中氮气的体积分数为70%,氨气的体积分数为20%,氰化氢的体积分数为10%。再在氮气气氛中1600℃的温度下烧结5小时。
通过本方案制备得到的氮化铝陶瓷,其热导率为155W/m·K,抗弯强度为540MPa,硬度为HRC92。
实施例3:
1.原料粉末:原料为一次粒径为150纳米的氮化铝粉末,烧结助剂为氟化钇;
2.混粉:将1000g纳米氮化铝粉末与60g氧化镧粉末,0.5wt%油酸放入球磨罐中,加入2000g高纯氧化锆磨球,2000ml无水乙醇,球磨混合12h后干燥过筛得到混合粉末;
3.成形和脱脂:将混合粉末加入160g石蜡经热压注成形后得到生坯;然后经过虹吸脱脂得到坯体;
4.预烧结和最终烧结:将坯体在常压含氮还原性气氛中1300℃的温度下预烧结2小时,气体流量为4L/min,其中氮气的体积分数为90%,氨气的体积分数为3%,氰化氢的体积分数为7%。再在氮气气氛中1800℃的温度下烧结4小时。
通过本方案制备得到的氮化铝陶瓷,其热导率为180W/m·K,抗弯强度为510MPa,硬度为HRC89。
实施例4:
1.原料粉末:原料为一次粒径为50纳米的氮化铝粉末,烧结助剂为氧化镧;
2.混粉:将1000g纳米氮化铝粉末与20g氧化镧粉末,0.5wt%油酸放入球磨罐中,加入2000g高纯氧化锆磨球,2000ml无水乙醇,球磨混合12h后干燥过筛得到混合粉末;
3.成形和脱脂:将混合粉末加入40g橡胶汽油作为粘结剂,置于模具中进行干压成形,之后在惰性气氛中进行热脱脂得到坯体;
4.预烧结和最终烧结:将坯体在常压含氮还原性气氛中1400℃温度下预烧结1小时,气体流量为2L/min,其中氮气的体积分数为80%,氨气的体积分数为10%,氰化氢的体积分数为10%。再在氮气气氛中1500℃的温度下烧结6小时。
通过本方案制备得到的氮化铝陶瓷,其热导率为155W/m·K,抗弯强度为550MPa,硬度为HRC94。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的方法及技术内容作出些许的更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (4)

1.一种高导热和高强度氮化铝陶瓷的制备方法,其特征在于具体工艺步骤为:
a.原料粉末:原料为纳米氮化铝粉末,添加稀土金属氧化物或卤化物为烧结助剂,烧结助剂的用量为1wt%~6wt%;
b.混粉:将氮化铝粉末与烧结助剂采用湿法球磨进行混合,研磨介质为高纯氧化锆球,溶剂为无水乙醇,重量比为磨球:酒精:原料=2:2:1,加入0.5wt%油酸作为表面活性剂,球磨混合均匀后干燥过筛得到混合粉末;
c.成形和脱脂:将混合粉末经成形及脱脂后得到生坯,成形方式包括干压成形、注射成形、热压注成型,脱脂方式根据不同成形方式采用溶剂脱脂、虹吸脱脂、热脱脂中的一种或几种;
d.预烧结和最终烧结:将生坯在常压含氮还原性气氛中1300℃-1500℃的温度下预烧结1~5小时,再在氮气气氛中1500℃~1800℃的温度下烧结3~10小时。
2.根据权利要求1所述的一种高导热和高强度氮化铝陶瓷的制备方法,其特征在于:步骤a中所述纳米氮化铝粉末的一次粒径小于200纳米,稀土金属的氧化物或卤化物包括氧化钇、氧化镧、氟化钇、氟化镧。
3.根据权利要求1所述的一种高导热和高强度氮化铝陶瓷的制备方法,其特征在于:步骤d中所述含氮还原性气氛为氮气、氨气和氰化氢的混合气,气体流量为0.5~5L/min,混合气体中氮气的体积分数为70%~95%,氨气的体积分数为0~20%,氰化氢的体积分数为0.5%~10%。
4.根据权利要求1所述的一种高导热和高强度氮化铝陶瓷的制备方法,其特征在于:所制备的氮化铝陶瓷的晶粒尺寸小于3微米,热导率不低于150W/m·K,抗弯强度不低于500MPa,硬度不低于HRC88。
CN201810716797.3A 2018-07-03 2018-07-03 一种高导热和高强度氮化铝陶瓷的制备方法 Active CN108863393B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810716797.3A CN108863393B (zh) 2018-07-03 2018-07-03 一种高导热和高强度氮化铝陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810716797.3A CN108863393B (zh) 2018-07-03 2018-07-03 一种高导热和高强度氮化铝陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN108863393A true CN108863393A (zh) 2018-11-23
CN108863393B CN108863393B (zh) 2021-02-02

Family

ID=64298628

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810716797.3A Active CN108863393B (zh) 2018-07-03 2018-07-03 一种高导热和高强度氮化铝陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN108863393B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110736134A (zh) * 2019-10-22 2020-01-31 中国电子科技集团公司第四十三研究所 一种高强度高导热氮化铝陶瓷基板及其制备方法
CN112759402A (zh) * 2021-03-16 2021-05-07 福建臻璟新材料科技有限公司 一种高强度黑色氮化铝陶瓷的制备工艺
CN112811909A (zh) * 2021-01-06 2021-05-18 北京科技大学 一种热压烧结制备高强度高热导率氮化铝的方法
CN116396081A (zh) * 2023-04-24 2023-07-07 广东工业大学 一种低温烧结制备高强度氮化铝陶瓷的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952535A (en) * 1989-07-19 1990-08-28 Corning Incorporated Aluminum nitride bodies and method
CN101948315A (zh) * 2010-09-21 2011-01-19 上海理工大学 一种高性能氮化铝陶瓷的低温烧结方法
CN102531611A (zh) * 2010-12-24 2012-07-04 成功大学 氮化铝的制备方法
CN104844220A (zh) * 2015-05-26 2015-08-19 北京科技大学 一种纳米氮化铝陶瓷注射成形方法
CN106220186A (zh) * 2016-08-05 2016-12-14 郭迎庆 一种陶瓷基电子基板材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952535A (en) * 1989-07-19 1990-08-28 Corning Incorporated Aluminum nitride bodies and method
CN101948315A (zh) * 2010-09-21 2011-01-19 上海理工大学 一种高性能氮化铝陶瓷的低温烧结方法
CN102531611A (zh) * 2010-12-24 2012-07-04 成功大学 氮化铝的制备方法
CN104844220A (zh) * 2015-05-26 2015-08-19 北京科技大学 一种纳米氮化铝陶瓷注射成形方法
CN106220186A (zh) * 2016-08-05 2016-12-14 郭迎庆 一种陶瓷基电子基板材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李保平: "AlN陶瓷低温烧结制备与性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110736134A (zh) * 2019-10-22 2020-01-31 中国电子科技集团公司第四十三研究所 一种高强度高导热氮化铝陶瓷基板及其制备方法
CN110736134B (zh) * 2019-10-22 2021-10-26 中国电子科技集团公司第四十三研究所 一种高强度高导热氮化铝陶瓷基板及其制备方法
CN112811909A (zh) * 2021-01-06 2021-05-18 北京科技大学 一种热压烧结制备高强度高热导率氮化铝的方法
CN112759402A (zh) * 2021-03-16 2021-05-07 福建臻璟新材料科技有限公司 一种高强度黑色氮化铝陶瓷的制备工艺
CN116396081A (zh) * 2023-04-24 2023-07-07 广东工业大学 一种低温烧结制备高强度氮化铝陶瓷的方法

Also Published As

Publication number Publication date
CN108863393B (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
CN108863393A (zh) 一种高导热和高强度氮化铝陶瓷的制备方法
US7737065B2 (en) Process for producing aluminum nitride sintered compacts
CN108675795B (zh) 一种sps烧结制备高导热和高强度氮化铝陶瓷的方法
CN101734923A (zh) 一种氮化铝多孔陶瓷及其制备方法
JPS6125677B2 (zh)
CN110981510A (zh) 一种氮氧化硅结合碳化硅耐火砖及其制备方法
CN107337453A (zh) 一种结合气固反应法制备重结晶碳化硅多孔陶瓷的方法
CN111470864A (zh) 一种硅基温度稳定型微波介质陶瓷材料及其制备方法
CN108863395B (zh) 一种高热导率、高强度氮化硅陶瓷材料及其制备方法
CN106542828A (zh) 一种低温烧结高热导率的氮化铝陶瓷及其制备方法
KR101355542B1 (ko) 세라믹 복합재료 및 그의 제조방법
CN104230344A (zh) 一种添加多元烧结助剂的AlN陶瓷低温烧结制备方法
CN110937903B (zh) 一种高强度、高导热性的氮化硅陶瓷材料及其制备方法
CN103539457A (zh) 一种微电子封装用AlN陶瓷基板的制备方法
JP2666942B2 (ja) 窒化アルミニウム焼結体
US7314593B2 (en) Process for preparing improved silicon carbide powder
JPS60131865A (ja) 窒化ケイ素セラミツクスの製造方法
JP4958353B2 (ja) 窒化アルミニウム粉末及びその製造方法
CN113121252B (zh) 一种高导热SiC-AlN复合陶瓷的制备方法
JP2587854B2 (ja) 熱伝導度が向上された窒化アルミニウム焼結体の製造方法
JPH075378B2 (ja) 黒色窒化アルミニウム焼結体とその製造方法
CN116854481A (zh) 一种低温快速制备高导热复杂形状氮化铝陶瓷的方法
CN115010499A (zh) 一种稀土氟化物与氧化钪双掺制备高性能氮化铝陶瓷基板的方法
JPH0912370A (ja) 窒化アルミニウム焼結体およびその製造方法
Coutinho et al. Silicon nitride/niobium carbide particulate composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant