CN116854481A - 一种低温快速制备高导热复杂形状氮化铝陶瓷的方法 - Google Patents

一种低温快速制备高导热复杂形状氮化铝陶瓷的方法 Download PDF

Info

Publication number
CN116854481A
CN116854481A CN202310784245.7A CN202310784245A CN116854481A CN 116854481 A CN116854481 A CN 116854481A CN 202310784245 A CN202310784245 A CN 202310784245A CN 116854481 A CN116854481 A CN 116854481A
Authority
CN
China
Prior art keywords
aluminum nitride
sintering
low temperature
complex shape
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310784245.7A
Other languages
English (en)
Inventor
秦明礼
张智睿
吴昊阳
李涛
张泽鹏
高际航
贾宝瑞
曲选辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202310784245.7A priority Critical patent/CN116854481A/zh
Publication of CN116854481A publication Critical patent/CN116854481A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提供了一种低温快速制备高导热复杂形状氮化铝陶瓷的方法,属于陶瓷材料制备技术领域。所述方法利用Y‑Ca‑Si三元助剂与微波烧结工艺,能够将使烧结温度降低至1600℃以下。混合浆料采用多粒度粉末复配的方式,以大颗粒氮化铝粉末为烧结与导热的骨架材料,利用纳米颗粒提供的高活性促进烧结,煅烧后的坯体具有90%的相对密度,有利于进一步缩短烧结时间。利用硅橡胶固化前的可流动的特点,具有填充复杂形状模具的特点,做到成形的任意性。此方法获得的氮化铝陶瓷兼具了低能耗、快速制备、复杂形状成形性与高导热(150~175W/m·k)的特点。

Description

一种低温快速制备高导热复杂形状氮化铝陶瓷的方法
技术领域
本发明属于陶瓷材料制备工艺技术领域,具体涉及一种低温烧结制备高导热复杂形状氮化铝陶瓷的方法。
背景技术
随着大规模集成电路快速发展,电子设备正逐步走向高功率、微型化和集成化。氮化铝(AlN)陶瓷结合了低介电常数、高的理论热导率、良好的机械强度和与硅类似的热膨胀系数等优点,被广泛用于散热基材和电子封装材料。
但氮化铝依靠共价键结合,熔点高,自扩散系数小,通常需要较高的烧结温度实现致密化。同时,氧杂质被认为是影响导热的关键因素之一,也需要高温使晶格内的氧杂质迁移到晶界,从而获得高导热性。因此在具体的生产过程中烧结或热压烧结温度往往高达1800℃以上,需要高温设备并持续保温,造成了较高的能源消耗。同时,由于烧结后的氮化铝陶瓷自身硬度大脆性大,不易加工,限制了氮化铝陶瓷在复杂零部件领域的应用。
发明内容
本发明的目的是提供一种低温快速制备高导热复杂形状氮化铝陶瓷的方法,该方法显著降低了烧结能耗,同时可以制备复杂形状并兼顾高导热性的氮化铝陶瓷,具体制备方法包括如下步骤:
(1)烧结助剂预混合:将纳米级分析纯氧化钇、氧化钙粉末与分散剂放入砂磨机中,以水为研磨介质进行预混合,得到烧结助剂;
(2)混合浆料制备:将80~100份氮化铝、3份烧结助剂、5~8份液态的商用双组份加成型硅橡胶加入球磨罐中,球磨后得到混合浆料;
(3)充型与固化:将步骤(2)制备的混合浆料倒入模具中,真空脱泡后进行固化,得到成型坯体;
(4)煅烧:取步骤(3)得到的成形坯体脱模取出,放入脱脂炉中煅烧获得煅烧坯体;
(5)微波低温烧结:将步骤(4)制备的煅烧坯体放入微波烧结炉中,在流动氮气中进行烧结。
进一步地,步骤(1)中所述的氧化钇为60~70份,氧化钙为28~39份,分散剂为硬脂酸1~2份。获得的复合烧结助剂的D50<100nm。
进一步地,步骤(2)中所述的氮化铝包括50~53份D50为50~100μm的大颗粒氮化铝粉体、33~37份D50为1~5μm的中颗粒氮化铝粉末,以及5~6份D50为0.1~0.5μm的细颗粒氮化铝粉末。
进一步地,步骤(2)中所述的大颗粒氮化铝粉体为烧结与导热的骨架材料,其晶格内氧含量<0.02wt%,中颗粒与纳米氮化铝粉末为近球形。
进一步地,步骤(2)中所述的商用双组份加成型硅橡胶为以含乙烯基的聚二有机基硅氧烷作为基础聚合物,低分子量的含氢硅油作为交联剂,在铂催化剂存在下加热交联成网状结构。实施例中使用的为深圳市红叶杰科技有限公司生产的成型硅橡胶,型号HY-E600#。
进一步地,步骤(2)中所述球磨转速为600~1000r/min,球磨时间为3~5min。
进一步地,步骤(3)中所述模具具有特定形状,所述真空脱泡时间为20~30min,固化条件为100℃保温2~3小时。
进一步地,步骤(4)中所述煅烧温度为650~800℃,升温速率2~3℃/min,保温时间为10h,采用氮气气氛保护。
进一步地,步骤(4)中所述的煅烧坯体密度高于2.95g/cm3。通常希望该数值能越高越好,但一般不会超过3.1g/cm3
进一步地,步骤(4)中所述的煅烧坯体中硅元素含量为1.5wt%~2.5wt%,钇元素含量为1.4wt%~1.7wt%,钙元素含量为0.5wt%~0.7wt%。
进一步地,步骤(5)中的烧结温度为1550~1600℃,微波频率为2.45GHz,烧结时间为1~3h。
通过采用前述技术方案,本发明的有益效果:
1.利用Y-Ca-Si三元助剂与微波烧结工艺,能够将使烧结温度降低至1600℃以下。氧化钇与氧化钙为复合粉末中填充的细颗粒,氧化硅为硅橡胶热分解产生,三种助剂均匀混合降低了烧结助剂熔点,促进液相生成,降低了氮化铝陶瓷的烧结温度。
2.步骤(1)先将氧化钇、氧化钙与分散剂混合得到烧结助剂,然后在步骤(2)将烧结助剂与氮化铝和硅橡胶混合。原因是在颗粒级配中,需要小颗粒填充到大颗粒中,实验发现粒径相差一个数量级(10倍关系)填充密度更大。本发明中氮化铝的D50粒径依次为50~100μm、1~5μm、0.1~0.5μm,复合烧结助剂的D50<100nm,刚好符合上述粒径差值。同时希望烧结助剂的颗粒细小,比表面积大,这样可以与氮化铝表面充分接触,有利于烧结过程液相形成与组织的均匀性。
3.步骤(2)制备混合浆料采用多粒度粉末复配的方式,以大颗粒氮化铝粉末为烧结与导热的骨架材料,利用细颗粒提供的高活性促进烧结,煅烧后的坯体的相对密度由常见压制坯体的60%提高至90%以上,有利于缩短后续完全致密化时间。
4.利用硅橡胶固化前的可流动的特点,在交联前硅橡胶具有一定的流动性,具有填充复杂形状模具的能力。液态硅橡胶过少则流动性差,不易充形;过多则影响煅烧坯体的密度,造成后续的烧结不致密。本申请需要采用特定的硅橡胶加入量,使产物兼具成形性和良好的烧结特性,此方法获得的氮化铝陶瓷热导率150~175W/m·k。
综上所述,本发明提供了一种低温快速制备高导热复杂形状氮化铝陶瓷的方法,在保证热导率的基础上,降低了烧结温度,缩短了烧结时间,同时具有成形的任意性,具有高的实用价值和市场竞争力。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1制备的氮化铝陶瓷照片。
具体实施方式
为了使本发明的发明目的、技术方案和有益技术效果更加清晰,以下结合具体实施例对本发明进行详细说明。应当理解的是,本说明书中描述的实施例仅仅是为了解释本发明,并非为了限定本发明。
实施例1
称取70g氧化钇、28g氧化钙、2g硬脂酸放入砂磨机混合研磨,研磨后D50为65.8nm。将研磨后的30g复合烧结助剂、530g大颗粒、340g中颗粒、50g细颗粒的氮化铝粉末和50g的成型硅橡胶(硅橡胶购自深圳市红叶杰科技有限公司,型号HY-E600#)进行球磨混合,将混合产物倒入特定形状的模具中,真空脱泡20min后放入鼓风干燥器中固化,固化条件为100℃保温2小时。将固化产物放入管式炉中氮气氛围下煅烧,以2℃/min的升温速率升至800℃,保温10h后随炉冷却,得到密度为2.98g/cm3煅烧坯。将煅烧坯放入微波炉中进行烧结,微波频率为2.45GHz,烧结温度为1600℃,保温时间为1h。获得热导率为164W/m·k,抗弯强度为332MPa的氮化铝陶瓷。
图1为实施例制备的氮化铝陶瓷照片,说明采用本申请的方法可以得到任意结构外形的氮化铝陶瓷。
实施例2
称取60g氧化钇,39g氧化钙,1g硬脂酸放入砂磨机混合研磨,研磨后D50为73.4nm,将研磨后的30g复合烧结助剂、520g大颗粒、340g中颗粒、60g细颗粒的氮化铝粉末和50g成型硅橡胶进行球磨混合,将混合产物倒入特定形状的模具中,真空脱泡20min后放入鼓风干燥器中固化,固化条件为100℃保温2小时。将固化产物放入管式炉中氮气氛围下煅烧,以3℃/min的升温速率升至800℃,保温10h后随炉冷却,得到密度为2.99g/cm3煅烧坯。将煅烧坯放入微波炉中进行烧结,微波频率为2.45GHz,烧结温度为1570℃,保温时间为3h。获得热导率为174W/m·k,抗弯强度为328MPa的氮化铝陶瓷。
实施例3
称取65g氧化钇,34g氧化钙,1g硬脂酸放入砂磨机混合研磨,研磨后D50为89.3nm,将研磨后的30g复合烧结助剂、500g大颗粒、350g中颗粒、50g细颗粒的氮化铝粉末和70g成型硅橡胶进行球磨混合,将混合产物倒入特定形状的模具中,真空脱泡20min后放入鼓风干燥器中固化,固化条件为100℃保温2小时。将固化产物放入管式炉中氮气氛围下煅烧,以2℃/min的升温速率升至800℃,保温10h后随炉冷却,得到密度为3.02g/cm3煅烧坯。将煅烧坯放入微波炉中进行烧结,微波频率为2.45GHz,烧结温度为1580℃,保温时间为2h。获得热导率为159W/m·k,抗弯强度为316MPa的氮化铝陶瓷。
实施例4
称取67g氧化钇,31g氧化钙,2g硬脂酸放入砂磨机混合研磨,研磨后D50为76.7nm,将研磨后的30g复合烧结助剂、510g大颗粒、350g中颗粒、60g细颗粒的氮化铝粉末和50g成型硅橡胶进行球磨混合,将混合产物倒入特定形状的模具中,真空脱泡20min后放入鼓风干燥器中固化,固化条件为100℃保温3小时。将固化产物放入管式炉中氮气氛围下煅烧,以2℃/min的升温速率升至800℃,保温10h后随炉冷却,得到密度为2.96g/cm3煅烧坯。将煅烧坯放入微波炉中进行烧结,微波频率为2.45GHz,烧结温度为1550℃,保温时间为3h。获得热导率为152W/m·k,抗弯强度为325MPa的氮化铝陶瓷。
实施例5
称取62g氧化钇,37g氧化钙,1g硬脂酸放入砂磨机混合研磨,研磨后D50为81.5nm,将研磨后的30g复合烧结助剂、530g大颗粒、340g中颗粒、50g细颗粒的氮化铝粉末和50g成型硅橡胶进行球磨混合,将混合产物倒入特定形状的模具中,真空脱泡30min后放入鼓风干燥器中固化,固化条件为100℃保温2小时。将固化产物放入管式炉中氮气氛围下煅烧,以2℃/min的升温速率升至800℃,保温10h后随炉冷却,得到密度为3.01g/cm3煅烧坯。将煅烧坯放入微波炉中进行烧结,微波频率为2.45GHz,烧结温度为1560℃,保温时间为3h。获得热导率为173W/m·k,抗弯强度为313MPa的氮化铝陶瓷。
实施例6
称取64g氧化钇,35g氧化钙,1g硬脂酸放入砂磨机混合研磨,研磨后D50为84.6nm,将研磨后的30g复合烧结助剂、510g大颗粒、330g中颗粒、50g细颗粒的氮化铝粉末和80g成型硅橡胶进行球磨混合,将混合产物倒入特定形状的模具中,真空脱泡20min后放入鼓风干燥器中固化,固化条件为100℃保温2小时。将固化产物放入管式炉中氮气氛围下煅烧,以2.5℃/min的升温速率升至800℃,保温10h后随炉冷却,得到密度为2.99g/cm3煅烧坯。将煅烧坯放入微波炉中进行烧结,微波频率为2.45GHz,烧结温度为1590℃,保温时间为2h。获得热导率为169W/m·k,抗弯强度为309MPa的氮化铝陶瓷。
实施例7
称取65g氧化钇,39g氧化钙,1g硬脂酸放入砂磨机混合研磨,研磨后D50为71.3nm,将研磨后的30g复合烧结助剂、530g大颗粒、320g中颗粒、60g细颗粒的氮化铝粉末和60g成型硅橡胶进行球磨混合,将混合产物倒入特定形状的模具中,真空脱泡20min后放入鼓风干燥器中固化,固化条件为100℃保温2小时。将固化产物放入管式炉中氮气氛围下煅烧,以2℃/min的升温速率升至800℃,保温10h后随炉冷却,得到密度为2.98g/cm3煅烧坯。将煅烧坯放入微波炉中进行烧结,微波频率为2.45GHz,烧结温度为1550℃,保温时间为3h。获得热导率为171W/m·k,抗弯强度为321MPa的氮化铝陶瓷。
对比例1
称取70g氧化钇、28g氧化钙、2g硬脂酸,与530g大颗粒、340g中颗粒、50g细颗粒的氮化铝粉末和50g的商用双组份加成型硅橡胶进行球磨混合,将混合产物倒入特定形状的模具中,真空脱泡20min后放入鼓风干燥器中固化,固化条件为100℃保温2小时。将固化产物放入管式炉中氮气氛围下煅烧,以2℃/min的升温速率升至800℃,保温10h后随炉冷却,得到密度为2.87g/cm3煅烧坯。将煅烧坯放入微波炉中进行烧结,微波频率为2.45GHz,烧结温度为1600℃,保温时间为1h。获得热导率为142W/m·k,抗弯强度为321MPa的氮化铝陶瓷。
对比例1将烧结助剂直接与氮化铝和硅橡胶混合制备浆料球磨,其它步骤同实施例1。说明未进行预混合,原料颗粒混合不均匀,颗粒粒径搭配不理想,煅烧后密度降低;同时烧结助剂与氮化铝表面接触面积减少,影响了后续的烧结性能,制备氮化铝陶瓷的热导率较低。
对比例2
称取98g氧化钇和2g硬脂酸,放入砂磨机混合研磨,研磨后D50为65.8nm。将研磨后的30g烧结助剂、530g大颗粒、340g中颗粒、50g细颗粒的氮化铝粉末和50g的商用双组份加成型硅橡胶进行球磨混合,将混合产物倒入特定形状的模具中,真空脱泡20min后放入鼓风干燥器中固化,固化条件为100℃保温2小时。将固化产物放入管式炉中氮气氛围下煅烧,以2℃/min的升温速率升至800℃,保温10h后随炉冷却,得到密度为2.96g/cm3煅烧坯。将煅烧坯放入微波炉中进行烧结,微波频率为2.45GHz,烧结温度为1600℃,保温时间为1h。获得氮化铝陶瓷相对密度低为94%,热导率低为76W/m·k。
对比例2烧结助剂采用单一氧化钇和硬脂酸,其它步骤同实施例1。说明采用单一稀土氧化物,熔点高,烧结过程未完全促进氮化铝陶瓷实现致密化,陶瓷内部仍存在气孔,导致热导率低,无法正常使用。
对比例3
称取70g氧化钇、28g氧化钙、2g硬脂酸放入砂磨机混合研磨,研磨后D50为65.8nm。将研磨后的30g复合烧结助剂、920g大颗粒氮化铝粉末和50g的商用双组份加成型硅橡胶进行球磨混合,混合后样品呈沙状,不具有流动性。
对比例3采用单一颗粒的氧化铝,其它步骤同实施例1。说明液态硅橡胶的量不足以填充到单粒径分布的氮化铝颗粒孔隙中。表现为填充时粉末与液态硅橡胶两相分离,此时产品不具有成形能力,无法继续使用。
对比例4
称取70g氧化钇、28g氧化钙、2g硬脂酸放入砂磨机混合研磨,研磨后D50为65.8nm。将研磨后的30g复合烧结助剂、530g大颗粒、340g中颗粒、50g细颗粒的氮化铝粉末和100g的商用双组份加成型硅橡胶进行球磨混合,将混合产物倒入特定形状的模具中,真空脱泡20min后放入鼓风干燥器中固化,固化条件为100℃保温2小时。将固化产物放入管式炉中氮气氛围下煅烧,以2℃/min的升温速率升至800℃,保温10h后随炉冷却,得到密度为2.84g/cm3煅烧坯。将煅烧坯放入微波炉中进行烧结,微波频率为2.45GHz,烧结温度为1600℃,保温时间为1h。获得氮化铝陶瓷相对密度低为91%,热导率低为52W/m·k。
对比例4增加了成型硅橡胶的加入量,其它步骤同实施例1。说明硅橡胶含量增加,导致固化后粉末含量低,煅烧后坯体密度下降。这影响了后续的烧结性能,造成氮化铝陶瓷致密度下降,无法正常使用。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此。任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求确定的保护范围为准。

Claims (10)

1.一种低温快速制备高导热复杂形状氮化铝陶瓷的方法,其特征在于,包括如下步骤:
(1)烧结助剂预混合:将纳米级分析纯氧化钇、氧化钙粉末与分散剂放入砂磨机中,以水为研磨介质进行预混合,得到烧结助剂;
(2)混合浆料制备:将80~100份氮化铝、3份烧结助剂、5~8份液态的商用双组份加成型硅橡胶加入球磨罐中,球磨后得到混合浆料;
(3)充型与固化:将步骤(2)制备的混合浆料倒入模具中,真空脱泡后进行固化,得到成型坯体;
(4)煅烧:取步骤(3)得到的成形坯体脱模取出,放入脱脂炉中煅烧获得煅烧坯体;
(5)微波低温烧结:将步骤(4)制备的煅烧坯体放入微波烧结炉中,在流动氮气中进行烧结。
2.根据权利要求1所述的低温快速制备高导热复杂形状氮化铝陶瓷的方法,其特征在于,步骤(1)中所述的氧化钇为60~70份,氧化钙为28~39份,分散剂为硬脂酸1~2份,获得的复合烧结助剂的D50<100nm。
3.根据权利要求1所述的低温快速制备高导热复杂形状氮化铝陶瓷的方法,其特征在于,步骤(2)中所述的氮化铝包括50~53份D50为50~100μm的大颗粒氮化铝粉体、33~37份D50为1~5μm的中颗粒氮化铝粉末,以及5~6份D50为0.1~0.5μm的细颗粒氮化铝粉末。
4.根据权利要求1所述的低温快速制备高导热复杂形状氮化铝陶瓷的方法,其特征在于,步骤(2)中所述的大颗粒氮化铝粉体为烧结与导热的骨架材料,其晶格内氧含量<0.02wt%,中颗粒与纳米氮化铝粉末为近球形。
5.根据权利要求1所述的低温快速制备高导热复杂形状氮化铝陶瓷的方法,其特征在于,步骤(2)中所述的商用双组份加成型硅橡胶型号为HY-E600#。
6.根据权利要求1所述的低温快速制备高导热复杂形状氮化铝陶瓷的方法,其特征在于,步骤(2)中所述球磨转速为600~1000r/min,球磨时间为3~5min。
7.根据权利要求1所述的低温快速制备高导热复杂形状氮化铝陶瓷的方法,其特征在于,步骤(3)中所述模具具有特定形状,所述真空脱泡时间为20~30min,固化条件为100℃保温2~3小时。
8.根据权利要求1所述的低温快速制备高导热复杂形状氮化铝陶瓷的方法,其特征在于,步骤(4)中所述煅烧温度为650~800℃,升温速率2~3℃/min,保温时间为10h,采用氮气气氛保护。
9.根据权利要求1所述的低温快速制备高导热复杂形状氮化铝陶瓷的方法,其特征在于,步骤(4)中所述的煅烧坯体密度高于2.95g/cm3
10.根据权利要求1所述的低温快速制备高导热复杂形状氮化铝陶瓷的方法,其特征在于,步骤(5)中的烧结温度为1550~1600℃,微波频率为2.45GHz,烧结时间为1~3h。
CN202310784245.7A 2023-06-29 2023-06-29 一种低温快速制备高导热复杂形状氮化铝陶瓷的方法 Pending CN116854481A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310784245.7A CN116854481A (zh) 2023-06-29 2023-06-29 一种低温快速制备高导热复杂形状氮化铝陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310784245.7A CN116854481A (zh) 2023-06-29 2023-06-29 一种低温快速制备高导热复杂形状氮化铝陶瓷的方法

Publications (1)

Publication Number Publication Date
CN116854481A true CN116854481A (zh) 2023-10-10

Family

ID=88227906

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310784245.7A Pending CN116854481A (zh) 2023-06-29 2023-06-29 一种低温快速制备高导热复杂形状氮化铝陶瓷的方法

Country Status (1)

Country Link
CN (1) CN116854481A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1142813A (zh) * 1993-12-22 1997-02-12 金刚砂公司 制造氮化铝陶瓷的低温烧结方案
CN104072158A (zh) * 2014-06-12 2014-10-01 浙江长兴电子厂有限公司 氮化铝烧结助剂和制备方法及氮化铝陶瓷基片的制备方法
CN108689716A (zh) * 2018-04-23 2018-10-23 宁夏艾森达新材料科技有限公司 高热导氮化铝陶瓷结构件的制备方法
CN110436896A (zh) * 2019-08-21 2019-11-12 上海利物盛企业集团有限公司 一种热裂解硅胶和无机填料复合物制备高强韧陶瓷材料的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1142813A (zh) * 1993-12-22 1997-02-12 金刚砂公司 制造氮化铝陶瓷的低温烧结方案
CN104072158A (zh) * 2014-06-12 2014-10-01 浙江长兴电子厂有限公司 氮化铝烧结助剂和制备方法及氮化铝陶瓷基片的制备方法
CN108689716A (zh) * 2018-04-23 2018-10-23 宁夏艾森达新材料科技有限公司 高热导氮化铝陶瓷结构件的制备方法
CN110436896A (zh) * 2019-08-21 2019-11-12 上海利物盛企业集团有限公司 一种热裂解硅胶和无机填料复合物制备高强韧陶瓷材料的方法

Similar Documents

Publication Publication Date Title
CN103981392B (zh) 一种高体积分数金刚石/金属基复合材料的制备方法
CN110451936B (zh) 一种复相陶瓷及其制备方法和应用
CN110093588B (zh) 一种细晶粒铝钪合金靶材及其制备方法和应用
CN113200747A (zh) 一种低温烧结的氮化铝陶瓷材料、氮化铝流延浆料及应用
CN101734923A (zh) 一种氮化铝多孔陶瓷及其制备方法
CN110079708B (zh) 一种纳米石墨片/Al合金基复合材料的粉末冶金制备方法
CN111635222B (zh) 一种基于单斜相的低介微波介质陶瓷材料及其制备方法
CN109415265B (zh) 一种介质陶瓷材料及其制备方法
CN108863393A (zh) 一种高导热和高强度氮化铝陶瓷的制备方法
CN112028636A (zh) 一种高导热氮化铝/石墨烯复合陶瓷器件的制备方法
CN108516836A (zh) 一种氮化铝陶瓷基板的制备方法及封装材料
CN111470864A (zh) 一种硅基温度稳定型微波介质陶瓷材料及其制备方法
CN113248263B (zh) Si3N4w/Si预制体及利用该预制体制备Si3N4w/Si3N4复合材料的方法
CN109133986B (zh) 一种基于发泡法的AlN-SiC多孔复合陶瓷及其制备方法
CN107619282B (zh) 一种高韧性钛碳化硅-碳化硅复相陶瓷异形件的制备方法
CN105367061A (zh) 一种纳米二硅化钼增强的高导热碳化硅基陶瓷电路板基板材料及其制备方法
KR101355542B1 (ko) 세라믹 복합재료 및 그의 제조방법
CN109053161B (zh) 一种直接发泡Al2O3-AlN多孔复合材料及其制备方法
CN104230344A (zh) 一种添加多元烧结助剂的AlN陶瓷低温烧结制备方法
CN116854481A (zh) 一种低温快速制备高导热复杂形状氮化铝陶瓷的方法
CN110950665A (zh) 一种氮化铝-铝复合材料的制备方法
CN105967692A (zh) 氮化硅结合碳化硅陶瓷坩埚的制作方法
CN113735569B (zh) 一种氧化镁氮化硼复合微球的制备方法
CN115010499A (zh) 一种稀土氟化物与氧化钪双掺制备高性能氮化铝陶瓷基板的方法
CN114349516A (zh) 一种低温合成高致密SiC陶瓷的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination