CN110950665A - 一种氮化铝-铝复合材料的制备方法 - Google Patents

一种氮化铝-铝复合材料的制备方法 Download PDF

Info

Publication number
CN110950665A
CN110950665A CN201910969952.7A CN201910969952A CN110950665A CN 110950665 A CN110950665 A CN 110950665A CN 201910969952 A CN201910969952 A CN 201910969952A CN 110950665 A CN110950665 A CN 110950665A
Authority
CN
China
Prior art keywords
composite material
aluminum
aluminum nitride
aluminum composite
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201910969952.7A
Other languages
English (en)
Inventor
孙卫康
刘素冰
李庆春
汤志强
茹红强
王春华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Dongtao New Material Co Ltd
Shandong Dongda New Materials Research Institute Co Ltd
Original Assignee
Shenzhen Dongtao New Material Co Ltd
Shandong Dongda New Materials Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Dongtao New Material Co Ltd, Shandong Dongda New Materials Research Institute Co Ltd filed Critical Shenzhen Dongtao New Material Co Ltd
Priority to CN201910969952.7A priority Critical patent/CN110950665A/zh
Publication of CN110950665A publication Critical patent/CN110950665A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • C04B38/085Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances of micro- or nanosize
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • C04B41/5155Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种氮化铝‑铝复合材料的制备方法,属电子封装材料领域,所述方法包括离子碳氮共渗处理、清洗、混合、烧结和气态渗铝,本发明采用离子渗碳氮工艺将空心氧化铝微珠变成壳壁具有纳米级穿孔的空心氮化铝微珠,真空离子碳氮共渗热处理的温度为1200‑1450℃,升温速率为5‑20℃/min,保温时间30‑60min,在不添加任何造孔剂、发泡剂的前提下获得多孔氮化铝坯体,再经气态渗铝工艺获得高致密度、高导热率、高综合力学强度的氮化铝‑铝复合材料。该复合材料在高温散热元件、大功率微波集成电路、电力电子器件、大功率激光或LED照明电子封装方面具有广泛应用。

Description

一种氮化铝-铝复合材料的制备方法
技术领域
本发明属于电子封装材料的技术领域,特别涉及一种氮化铝-铝复合材料的制备方法。
背景技术
氮化铝陶瓷因具有优异的力学性能、抗氧化腐蚀、高导热、低热膨胀系数等特点,在工业领域具有良好的应用前景。氮化铝-铝复合材料不仅拥有上述氮化铝陶瓷的特性,还具有金属铝的高导热、高韧性、低密度的属性,是优异的散热材料,在高温散热电子元件、大功率微波集成电路、电力电子器件、大功率激光或LED照明电子封装方面具有广泛应用。
目前,行业普遍使用造孔剂、发泡剂等添加剂制备多孔氮化铝陶瓷预制体,然后在使用气态渗铝工艺将其致密化,从而获得氮化铝-铝复合材料。但是,造孔剂、发泡剂极易导致多孔陶瓷基体内部孔分布不均匀,有大量的大孔和小闭孔,孔隙率较低;不仅降低复合材料的导热性能和力学强度,且造孔剂和发泡剂的价格高昂导致生产成本居高不下。这些问题导致氮化铝-铝复合材料良品率低且难以发挥较高的实用价值。
申请号为98101296.5的中国发明专利涉及一种陶瓷-镍铝金属间化合物复合材料的制备方法,该方法的渗铝反应采用的是液态铝,液态渗铝时,必须把预制体完全浸没在铝液中,等渗铝结束时,再把预制件从铝液中取出,此时,可定有大量的铝液附在预制体表面,冷却后与预制体形成一体,必须经过大量的打磨,才能去除掉多余的铝。而本发明采用气态渗铝时,由于没有和液态铝直接接触,而是和铝蒸气(即气态铝)接触,渗铝结束时,所以只有少量的铝蒸气附在预制体表层,虽然冷却后与预制体形成一体,但只需极少量的打磨即可除掉多余的铝。本操作能节省大量的加工打磨时间,效率提高。
而且,该专利在液态渗铝时,并未对铝液施加压力,这导致多孔预制体内大量的空气在浸没铝液过程中,并不能完全排除,体内存在大量空气,使铝液无法填充,导致获得的复合材料致密度低,体内存在大量的气孔,从而严重影响复合材料的性能,如热导率、弯曲强度、断裂韧性、摩擦磨损性能。而本发明采用真空渗铝工艺,在铝蒸气进入预制体内前,孔隙内的空气早已抽走,有利于气态铝顺利地填充孔隙,从而得到致密度非常高的复合材料,进而提高性能。
申请号为201710741697.1的中国发明专利涉及一种氮化铝_铝复合材料的制备方法,其中虽然也采用了气态渗铝工艺,但其中的多孔AlN坯体是通过使用造孔剂来获得其多孔特性的,则必定伴生着造孔剂的缺陷,即孔的形态并不稳定,随机性非常大,并非人能随意改造;其所制备的多孔陶瓷中,有的孔呈闭合状态,有的呈开孔状态,有的孔径尺寸较大,有的较小,且无法获知孔的分布状态,孔径一般不统一,且随机分散。所以在气态渗铝时,若孔处于闭合状态,则气态铝无法填充,则造成复合材料基体内部存在气孔,导致复合材料热导率下降;若孔径尺寸不一,则孔大的地方铝填充的多,孔小的地方铝填充的少,由于孔随机分散,则会造成在复合材料基体中铝分布不均,导致力学性能下降。而本发明没有使用任何造孔剂,则会完全避免上述问题,从而使获得的复合材料综合性能优异。
综上所述,现有的氮化铝-铝复合陶瓷材料存在以下缺陷:(1)操作流程复杂、对设备的要求高,使用造孔剂、发泡剂,生产成本高;(2)孔隙率低,且孔径尺寸不均一,大孔很大,小孔很小、甚至闭孔;(3)孔的形态不是空心微珠结构,高温力学强度低;(4)导热性能和力学性能不足,良品率低。因而,应用受到限制。
发明内容
本发明的目的是针对现有本发明的目的是针对现有造孔剂、发泡剂引起多孔氮化铝陶瓷预制体基体内部孔分布不均匀,有大量的大孔和小闭孔,孔隙率较低,进一步导致氮化铝-铝复合材料的导热性能和力学强度低、生产成本高、良品率低的问题,提供了一种氮化铝-铝复合材料的制备方法,以实现以下发明目的:
(1)本发明的氮化铝-铝复合材料的制备方法所制备的多孔氮化铝陶瓷预制体,孔隙率高,基体孔径尺寸均一且均匀分布;
(2)本发明的氮化铝-铝复合材料的制备方法,得到的氮化铝-铝复合材料,具有异的高温力学强度;
(3)本发明氮化铝-铝复合材料的制备方法得到的多孔氮化铝陶瓷材料,具有优异的导热性能,且生产成本低、良品率高。
为实现上述目的,本发明采取的技术方案如下:
一种氮化铝-铝复合材料的制备方法,其特征在于,包括离子碳氮共渗处理、清洗、混合、烧结和气态渗铝步骤。
以下是对本发明技术方案的进一步优化:
本发明的一种氮化铝-铝复合材料的制备方法,包括离子碳氮共渗处理、清洗、混合、烘干、过筛造粒、模压、烧结和气态渗铝步骤。
本发明的一种氮化铝-铝复合材料的制备方法,步骤如下:
(1)离子碳氮共渗处理:将空心Al2O3微珠放入真空离子碳氮共渗炉中,通入碳源、氮源气体进行热处理;
(2)清洗:将热处理后的微珠用无水乙醇超声清洗,并离心沉降后干燥;
(3)混合:将干燥后的微珠与MgO粉、SiO2粉、Al粉、PVA溶液搅拌混合均匀;
(4)烘干:将混合浆料放入干燥箱中烘干;
(5)过筛造粒:将烘干的混合料研磨成粉末,并过筛造粒;
(6)模压:将混合颗粒模压成型,获得生坯;
(7)烧结:将坯体放入真空烧结炉中,950-1150℃下烧结获得多孔AlN陶瓷预制体。
(8)气态渗铝:将多孔AlN陶瓷预制体放入真空渗铝炉中,1000-1200℃下气态渗铝,即获得氮化铝-铝复合材料。
上述的步骤(1)中,空心Al2O3微珠粒径为100-200μm,壳壁厚为15-25μm,纯度大于99.9%。
上述的步骤(1)中,真空离子碳氮共渗热处理的温度为1200-1450℃,升温速率为5-20℃/min,保温时间30-60min。
上述的步骤(1)中,碳源气体为甲烷、丙烷、乙炔,氮源为氮气,碳源与氮源的质量配比为1:(6-12),混合气源的气压为460-1280Pa。
上述的步骤(2)中,超声清洗的次数为1-5次,干燥温度为50-120℃,时间为6-12h。
上述的步骤(3)中,MgO粉平均粒度为20nm、纯度大于99.9%;SiO2粉平均粒度为30nm,纯度大于99.9%;Al粉粉平均粒度为15nm,纯度大于99.9%;PVA溶液的浓度0.5-1.5%。
上述的步骤(3)中,AlN微珠、MgO粉、SiO2粉、Al粉的质量配比为(95-98):(2-5):(4-8):(2-6)。
上述的步骤(3)中,搅拌时间12-24h,温度为室温。
上述的步骤(4)中,干燥温度为75-150℃,干燥时间为18-36h。
上述的步骤(5)中,过筛造粒中筛网规格为20-100目。
上述的步骤(6)中,模压成型的压力为5-15MPa,保压时间为5~10s。
上述的步骤(7)中,升温速率的3-8℃/min,最高温度保温时间为20-60min。
上述的步骤(7)中,所述多孔AlN陶瓷预制体,孔隙率为78.2-87.5%,比表面积为2.26-4.18m2/g。
上述的步骤(8)中,升温速率的5-15℃/min,最高温度渗铝时间为30-60min。
上述的步骤(8)中,所得到的氮化铝-铝复合材料,热导率为236.3-287.5W/m·K,弯曲强度为236.4-323.6MPa,断裂韧性为3.7-5.5MPa·m1/2
本发明的氮化铝-铝复合材料的制备方法,通过将空心氧化铝微珠放入真空离子碳氮共渗炉中,通过加热、高压放电将碳源、氮源电离,碳原子先与Al2O3中的氧离子发生反应生CO气体,随后氮原子与铝离子结合生成AlN,从而将空心Al2O3微珠转化成空心AlN微珠,将AlN微珠超声清洗、干燥后,与MgO粉、SiO2粉、Al粉、PVA溶液搅拌混合均匀,并干燥粉碎、过筛造粒,经模压成型后,真空烧结获得具有极高的孔隙率、基体孔径尺寸均一且分布均匀、力学强度优异的多孔氮化铝陶瓷坯体,然后,经气体渗铝致密化后获得的氮化铝-铝复合材料。
与现有技术相比,本发明的优点在于:
(1)本发明的氮化铝-铝复合材料的制备方法,采用具有空心结构的Al2O3微珠作为AlN源,通过加热、高压放电将碳源、氮源电离,碳原子先与Al2O3中的氧离子发生反应生CO气体,随后氮原子与铝离子结合生成AlN,从而将空心Al2O3微珠转化成空心SiC微珠,而不破坏其宏观空心结构;有以下反应方程式:
Figure DEST_PATH_IMAGE002
可以获知:由Al2O3转变成AlN,是质量减少的过程,且有反应气体CO排出,这必将导致原空心微珠的壳壁产生连续的二级穿孔,且成纳米尺寸;该形貌结构与传统的AlN实心颗粒结构有显著区别;
(2)本发明的氮化铝-铝复合材料的制备方法,通过具有一级孔空心结构、壳壁上有二级纳米尺寸穿孔的AlN微珠制备的多孔AlN陶瓷材料,展现基体孔径尺寸均一且均匀分布,几乎不含有尺寸较大的大孔和尺寸较小的闭孔,避免了使用造孔剂、发泡剂产生的负面影响;孔的形态不仅保留原空心微珠的结构,且在壳壁上具有纳米尺寸的连续的二级穿孔,这极大地提高了孔隙率;制备的多孔氮化铝陶瓷预制体具有极高的孔隙率,孔隙率为78.2-87.5%,比表面积为2.26-4.18m2/g;
(3)本发明的氮化铝-铝复合材料的制备方法,不使用造孔剂、发泡剂,不仅降低了生产成本,更提高了复合材料的导热性能、力学强度和良品率;
(4)本发明的氮化铝-铝复合材料的制备方法得到的氮化铝-铝复合材料,经气体渗铝致密化后,获得的氮化铝-铝复合材料不仅具有优异的导热性能和力学性能,且生产成本低、良品率高;热导率为236.3-287.5W/m·K,弯曲强度为236.4-323.6MPa,断裂韧性为3.7-5.5MPa·m1/2
(5)本发明的氮化铝-铝复合材料的制备方法,操作流程简单、设备要求度低,不添加造孔剂、发泡剂,可大幅度降低生产成本,便于批量化生产,具有非常大的工业实用价值;
(6)本发明氮化铝-铝复合材料的制备方法得到的多孔氮化铝陶瓷材料,非常适合作为高温散热电子元件、大功率微波集成电路、电力电子器件、大功率激光或LED照明电子封装散热部件。
附图说明
图1为本发明实施例中多孔AlN陶瓷预制体的制备步骤流程图;
图2为本发明实施例中离子碳氮共渗过程中,碳原子、氮原子与Al2O3反应生成AlN的示意图;
图3为本发明实施例中真空气态渗铝过程中,气态铝填充孔隙,将多孔AlN陶瓷预制体致密化获得氮化铝-铝复合材料的示意图。
具体实施方式
以下结合具体实施例,对本发明做进一步说明。应理解,以下实施例仅用于说明本发明而非用于限制本发明的范围。
实施例1
一种氮化铝-铝复合材料的制备方法,包括以下步骤:
(1) 将粒径为100μm、壳壁厚为20μm的空心Al2O3微珠放入真空离子碳氮共渗炉中,以5℃/min、真空升温至1350℃,然后,按质量比为1:6,通入甲烷、氮气混合气体进行热处理,保持气压为1250Pa,并保温30min;
(2)将热处理后得到的AlN微珠用无水乙醇超声清洗5次,并离心沉降,然后将微珠放入80℃干燥箱中烘干12h;
(3)按质量比,将干燥后的AlN微珠与MgO粉、SiO2粉、Al粉=98:2:4:5混合,与浓度为1.0%的PVA溶液按100:100的比例混合成浆料搅拌24h至混合均匀;所述1.0%的PVA溶液是由PVA粘结剂和溶剂水配置成的溶液,PVA的质量分数为1.0%;
(4)将混合浆料放入100℃干燥箱中干燥25h;
(5)将烘干的混合料研磨成粉末,并过100目筛造粒;;
(6)将混合颗粒倒入模具中,经压力机模压成型,压力15MPa,保压10s,获得生坯;
(7)将生坯放入真空烧结炉中,以3℃/min的速率升温至1150℃,并在1150℃保温20min,从而获得多孔AlN陶瓷预制体。
(8)将多孔AlN陶瓷预制体放入真空渗铝炉中,以5℃/min的速率升温至1200℃时,开始气态渗铝,渗铝时间为30min,即获得氮化铝-铝复合材料。
经测试,该多孔AlN陶瓷预制体孔隙率为87.5%,比表面积为4.18m2/g,复合材料的弯曲强度为323.6MPa,断裂韧性为5.5MPa·m1/2,热导率为287.5W/m·K。
实施例2
一种氮化铝-铝复合材料的制备方法,包括以下步骤:
(1)将粒径为200μm、壳壁厚为45μm的空心Al2O3微珠放入真空离子碳氮共渗炉中,以10℃/min、真空升温至1450℃,然后,按质量比为1:9,通入丙烷、氮气混合气体进行热处理,保持气压为950Pa,并保温60min;
(2)将热处理后得到的AlN微珠用无水乙醇超声清洗3次,并离心沉降,然后将微珠放入120℃干燥箱中烘干6h;
(3)按质量比,将干燥后的AlN微珠与MgO粉、SiO2粉、Al粉=95:5:8:5混合均匀,与浓度为1.5%的PVA溶液按100:150的比例混合成浆料搅拌24h至混合均匀;
(4)将混合浆料放入80℃干燥箱中干燥36h;
(5)将烘干的混合料研磨成粉末,并过50目筛造粒;;
(6)将混合颗粒倒入模具中,经压力机模压成型,压力5MPa,保压5s,获得生坯;
(7)将生坯放入真空烧结炉中,以8℃/min的速率升温至950℃,并在950℃保温60min,从而获得多孔AlN陶瓷预制体。
(8)将多孔AlN陶瓷预制体放入真空渗铝炉中,以15℃/min的速率升温至1000℃时,开始气态渗铝,渗铝时间为60min,即获得氮化铝-铝复合材料。
经测试,该多孔AlN陶瓷预制体孔隙率为78.2%,比表面积为2.26m2/g,复合材料的弯曲强度为289.5MPa,断裂韧性为3.7MPa·m1/2,热导率为236.3W/m·K。
实施例3
(1)将粒径为150μm、壳壁厚为30μm的空心Al2O3微珠放入真空离子碳氮共渗炉中,以20℃/min、真空升温至1200℃,然后,按质量比为1:9,通入丙烷、氮气混合气体进行热处理,保持气压为1100Pa,并保温45min;
(2)将热处理后得到的AlN微珠用无水乙醇超声清洗5次,并离心沉降,然后将微珠放入100℃干燥箱中烘干8h;
(3)按质量比,将干燥后的AlN微珠与MgO粉、SiO2粉、Al粉=97:2:4:6混合,与浓度为0.5%的PVA溶液按100:120的比例混合成浆料搅拌15h至混合均匀;
(4)将混合浆料放入150℃干燥箱中干燥18h;
(5)将烘干的混合料研磨成粉末,并过60目筛造粒;
(6)将混合颗粒倒入模具中,经压力机模压成型,压力10MPa,保压7s,获得生坯;
(7)将生坯放入真空烧结炉中,以5℃/min的速率升温至1050℃,并在1050℃保温40min,从而获得多孔AlN陶瓷预制体。
(8)将多孔AlN陶瓷预制体放入真空渗铝炉中,以10℃/min的速率升温至1100℃时,开始气态渗铝,渗铝时间为40min,即获得氮化铝-铝复合材料。
经测试,该多孔AlN陶瓷预制体孔隙率为81.4%,比表面积为2.83m2/g,复合材料的弯曲强度为236.4MPa,断裂韧性为4.2MPa·m1/2,热导率为252.7W/m·K。
以上所述,仅为本发明的实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化。凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。本发明未详尽描述的均为常规技术内容。

Claims (10)

1.一种氮化铝-铝复合材料的制备方法,其特征在于,
所述方法,包括离子碳氮共渗处理、清洗、混合、烧结和气态渗铝步骤。
2.根据权利要求1所述的一种氮化铝-铝复合材料的制备方法,其特征在于,
所述的离子碳氮共渗处理中,真空离子碳氮共渗热处理的温度为1200-1450℃,升温速率为5-20℃/min。
3.根据权利要求1所述的一种氮化铝-铝复合材料的制备方法,其特征在于,
所述的离子碳氮共渗处理中,空心Al2O3微珠粒径为100-200μm,壳壁厚为15-25μm,纯度大于99.9%。
4.根据权利要求1所述的一种氮化铝-铝复合材料的制备方法,其特征在于,
所述的气态渗铝中,升温速率的5-15℃/min,最高温度渗铝时间为30-60min。
5.根据权利要求1所述的一种氮化铝-铝复合材料的制备方法,其特征在于,
所述的混合中,MgO粉平均粒度为20nm、纯度大于99.9%;SiO2粉平均粒度为30nm,纯度大于99.9%;Al粉粉平均粒度为15nm,纯度大于99.9%;PVA溶液的浓度0.5-1.5%。
6.根据权利要求1所述的一种氮化铝-铝复合材料的制备方法,其特征在于,
所述的混合中,AlN微珠、MgO粉、SiO2粉、Al粉的质量配比为(95-98):(2-5):(4-8):(2-6)。
7.根据权利要求1所述的一种氮化铝-铝复合材料的制备方法,其特征在于,
所述的烧结中,升温速率的3-8℃/min,最高温度保温时间为20-60min,烧结获得多孔AlN陶瓷预制体。
8.根据权利要求1或7所述的一种氮化铝-铝复合材料的制备方法,其特征在于,
所述多孔AlN陶瓷预制体,孔隙率为78.2-87.5%,比表面积为2.26-4.18m2/g。
9.根据权利要求1所述的一种氮化铝-铝复合材料的制备方法,其特征在于,
所述的清洗中,超声清洗的次数为1-5次,干燥温度为50-120℃,时间为6-12h。
10.根据权利要求1所述的一种氮化铝-铝复合材料的制备方法,其特征在于,
所得到的氮化铝-铝复合材料,热导率为236.3-287.5W/m·K,弯曲强度为236.4-323.6MPa,断裂韧性为3.7-5.5MPa·m1/2
CN201910969952.7A 2019-10-12 2019-10-12 一种氮化铝-铝复合材料的制备方法 Withdrawn CN110950665A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910969952.7A CN110950665A (zh) 2019-10-12 2019-10-12 一种氮化铝-铝复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910969952.7A CN110950665A (zh) 2019-10-12 2019-10-12 一种氮化铝-铝复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN110950665A true CN110950665A (zh) 2020-04-03

Family

ID=69975588

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910969952.7A Withdrawn CN110950665A (zh) 2019-10-12 2019-10-12 一种氮化铝-铝复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN110950665A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111876625A (zh) * 2020-07-16 2020-11-03 陕西迈特瑞科技有限公司 一种AlNMg复合材料及其制备方法
CN115478187A (zh) * 2021-06-15 2022-12-16 北京新烯旺碳谷科技有限公司 石墨烯增强铝合金基复合材料的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111876625A (zh) * 2020-07-16 2020-11-03 陕西迈特瑞科技有限公司 一种AlNMg复合材料及其制备方法
CN115478187A (zh) * 2021-06-15 2022-12-16 北京新烯旺碳谷科技有限公司 石墨烯增强铝合金基复合材料的制备方法
CN115478187B (zh) * 2021-06-15 2023-08-22 北京新烯旺碳谷科技有限公司 石墨烯增强铝合金基复合材料的制备方法

Similar Documents

Publication Publication Date Title
CN107200588B (zh) 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN110950665A (zh) 一种氮化铝-铝复合材料的制备方法
CN109868118B (zh) 一种具有高热导率的氮化铝-氧化铝核壳结构的制备方法
CN105503254A (zh) 一种钛酸钡泡沫陶瓷及其制备方法
CN108675795A (zh) 一种sps烧结制备高导热和高强度氮化铝陶瓷的方法
CN107337453A (zh) 一种结合气固反应法制备重结晶碳化硅多孔陶瓷的方法
CN108689716A (zh) 高热导氮化铝陶瓷结构件的制备方法
TW201235329A (en) Heat sink and manufacturing method of porous graphite
CN108863393A (zh) 一种高导热和高强度氮化铝陶瓷的制备方法
CN109320257B (zh) 一种高强度高孔隙率多孔氮化硅陶瓷的制备方法
CN113480828B (zh) 一种氮化铝纳米花/聚合物复合材料及其制备方法
CN105084364B (zh) 一种多孔碳化硅球形粉末的制备工艺
CN113735569B (zh) 一种氧化镁氮化硼复合微球的制备方法
CN109133986A (zh) 一种基于发泡法的AlN-SiC多孔复合陶瓷及其制备方法
CN112209722A (zh) 氮化硅复合材料及其制备方法、发热体
CN114085082B (zh) 一种碳化硅/黑滑石复合陶瓷膜支撑体及其制备方法
CN110845241A (zh) 一种多孔氮化铝陶瓷材料的制备方法
CN113264778B (zh) 一种氮化硼复合陶瓷及其制备方法和用途
CN109020555A (zh) 一种在微正压流动氮气气氛下燃烧合成氮化铝粉体的方法
JP2004250307A (ja) アルミナ多孔質セラミックス及びその製造方法
CN112279628A (zh) 一种氧化铝复合陶瓷及其制备方法和应用
CN113735594B (zh) 一种热压烧结制备高导热氮化硅陶瓷的方法
CN110845242A (zh) 一种多孔氮化硅陶瓷材料的制备方法
CN117418312B (zh) 一种大单晶类球形α氧化铝及其制备方法
CN116639998B (zh) 一种多孔碳化硅陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20200403