CN113735594B - 一种热压烧结制备高导热氮化硅陶瓷的方法 - Google Patents
一种热压烧结制备高导热氮化硅陶瓷的方法 Download PDFInfo
- Publication number
- CN113735594B CN113735594B CN202110982679.9A CN202110982679A CN113735594B CN 113735594 B CN113735594 B CN 113735594B CN 202110982679 A CN202110982679 A CN 202110982679A CN 113735594 B CN113735594 B CN 113735594B
- Authority
- CN
- China
- Prior art keywords
- silicon nitride
- powder
- sintering
- hot
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/443—Nitrates or nitrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/444—Halide containing anions, e.g. bromide, iodate, chlorite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/448—Sulphates or sulphites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
- C04B2235/723—Oxygen content
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Ceramic Products (AREA)
Abstract
本发明属于陶瓷制备领域,具体涉及一种热压烧结制备高导热氮化硅陶瓷的方法。该方法是将氮化硅粉体与烧结助剂按一定比例混合均匀,首先将混合后的粉体在低温、常压、通氮气条件下进行预处理;再经过研磨、过筛;随后在热压炉中进行高温烧结。经过预处理的粉体氧含量有明显降低,热压制备的氮化硅陶瓷热导率沿压力方向大于80W/m·K,垂直于压力方向大于120W/m·K。经过处理后的粉体氧含量低,烧结样品不仅具有高致密度,第二相分布均匀且含量少,可一步得到高导热氮化硅陶瓷。该方法可有效减少陶瓷中第二相含量,降低氧对陶瓷导热性能的影响,制备工艺简单、高效。为高氧含量氮化硅粉体制备导热性能优异的陶瓷提供方向。
Description
技术领域
本发明属于陶瓷材料制备技术领域,涉及一种热压烧结制备高导热氮化硅陶瓷的方法。
背景技术
氮化硅较为常见的两种六方晶型分别为α-Si3N4和β-Si3N4,α相Si3N4高温q且有液相存在会转变为β-Si3N4。因此我们常说的氮化硅陶瓷通常是指β-Si3N4。室温下,β-Si3N4沿a轴和c轴的理论热导分别为170W·m-1·K-1和450W·m-1·K-1。配以氮化硅陶瓷良好的绝缘性能、抗化学腐蚀性、优异的力学性能和抗热震性,其作为半导体器件封装基板备受关注。
热压烧结(hot pressing sintering-HPS)是将原料粉末放于石墨模具中,在轴向压力和高温的共同作用下的一种烧结方式。可快速获得高致密度氮化硅陶瓷,但陶瓷导热性能普遍较差。这是因为为存进氮化硅陶瓷致密度、调节微观组织,需要加入适量烧结助剂,而在压力作用下这些助剂形成的第二相很难去除,高温下晶界相较高氧浓度容易使氧进入到氮化硅晶格中,严重影响陶瓷热导。经过后续长时间高温热处理虽然可以提高导热性能,但制备成本较高,且热处理后第二相挥发会造成气孔,进而降低陶瓷力学性能。因此,如何减少第二相含量提高氮化硅陶瓷综合性能尤其重要。
发明内容
针对现有技术中存在的问题,本发明提供一种热压烧结制备高导热氮化硅陶瓷的方法,采用可溶性盐作为烧结助剂,经过湿法球磨混合后,使烧结助剂阳离子附着在氮化硅粉体颗粒表面;首先在低温下进行热处理,利用烧结助剂阳离子强吸氧能力可有效降低氮化硅粉体表面氧含量,进而减少第二相含量;由于烧结助剂以分子形式与氮化硅粉体混合,经过热处理后氧化物烧结助剂能够原位形成,分布更加均匀。
为解决上述问题,本发明所采用的技术方案如下:
一种热压烧结制备高导热氮化硅陶瓷的方法,包括以下步骤:
将氮化硅粉体与烧结助剂进行湿法球磨混合,所得浆料进行真空烘干;
将混合后的粉体在低温、常压、通氮气条件下预处理;
将预处理后的粉体进行研磨、过筛;
将所述粉体进行热压烧结。
优选地,所述烧结助剂选取La(NO3)3、Yb(NO3)3、Y(NO3)3或Nb(NO3)3的一种,以及Mg(NO3)2、MgCl2或MgSO4的一种。氮化硅粉体与烧结助剂的质量比为95~90:10~5,其中稀土硝酸盐烧结助剂含量是换算为Re2O3、镁盐烧结助剂含量是换算为MgO计算的。
优选地,所述预处理是在1300℃~1550℃、常压下保温1~5h,并伴有流动的氮气。
优选地,所述预处理后的粉体进行研磨,研磨罐和研磨球的材质为碳化钨或氮化硅;研磨后过不低于80目的筛网。
优选地,所述热压烧结温度为1800℃~1950℃;施加压力为30~60MPa,从1500℃开始缓慢增压,至目标温度达到最大值;烧结温度为1~10h,并伴有流动氮气。
本发明技术关键点在于:
1、烧结助剂选取La(NO3)3、Yb(NO3)3、Y(NO3)3或Nb(NO3)3的一种,以及Mg(NO3)2、MgCl2或MgSO4的一种。其氮化硅粉体与烧结助剂(换算为Re2O3和MgO)的质量比为95~90:10~5。能够保证烧结助剂阳离子附着在氮化硅粉体颗粒表面,为后续预处理降低氮化硅粉体氧含量提供保障。
2、粉体在热压烧结前进行低温预处理,利用烧结助剂阳离子强吸氧能力可有效降低氮化硅粉体表面氧含量,进而减少第二相含量,以此提高氮化硅陶瓷综合性能。
3、热压烧结温度为1800℃~1950℃;施加压力为30~60MPa,从1500℃开始缓慢增压,至目标温度达到最大值;烧结温度为1~10h,并伴有流动氮气。能够保证高温下反应气体得到充足释放,且前序烧结助剂充分混合,通过热压烧结后第二相能够均匀分布,获得高性能氮化硅陶瓷。
通过上述方法制备得到高导热氮化硅陶瓷。
本发明的有益效果:1.采用可溶性盐作为烧结助剂,以分子形式与氮化硅粉体混合,经过热处理后氧化物烧结助剂能够原位形成,使得第二相分布更加均匀。2.粉体在热压烧结前进行低温热处理,利用烧结助剂阳离子强吸氧能力可有效降低氮化硅粉体表面氧含量,进而减少第二相含量;3.经过处理后的粉体氧含量低,烧结样品不仅具有高致密度,第二相分布均匀且含量少,可一步得到高导热氮化硅陶瓷。制备工艺简单、高效。
附图说明
图1为实施例1中混合料的扫描电镜图片;
图2为实施例1中经过预处理后的扫描电镜图片;
图3为实施例1中氮化硅陶瓷表面的扫描电镜图片。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合较佳实施例,对依据本发明提出的一种热压烧结制备高导热氮化硅陶瓷的方法其具体实施方式、步骤、特征详细说明如后。
实施例1
1.称取50g氧含量为1.2wt%氮化硅粉体、2.5g La(NO3)3和5.5g Mg(NO3)2,在无水乙醇中进行球磨,混合均匀后获得浆料,随后在真空下80℃烘干;
2.将上述烘干后的混合料在1400℃、常压下预处理2h,氮气流量为1.5L/min;
3.将上述预处理后的粉体在氮化硅罐中球磨,选取氮化硅球,其球料比为50:1;球磨后过80目筛网。
4.称取一定量上述粉体放于石墨模具中,石墨模具内壁以及上下压头垫有喷BN的石墨纸;热压烧结温度为1850℃;施加压力为40MPa,从1500℃开始缓慢增压,至目标温度达到最大值;烧结时间为2h,并伴有流动氮气;
5.将烧结制品进行磨、抛后获得最终氮化硅陶瓷。其陶瓷热导率沿热压方向为86.4W/m·K,垂直于压力方向为121.1W/m·K。
实施例2
1.称取50g氧含量为1.2wt%氮化硅粉体、2.5g La(NO3)3和5.5g Mg(NO3)2,在无水乙醇中进行球磨,混合均匀后获得浆料,随后在真空下80℃烘干;
2.将上述烘干后的混合料在1400℃、常压下预处理4h,氮气流量为1.5L/min;
3.将上述预处理后的粉体在氮化硅罐中球磨,选取氮化硅球,其球料比为50:1;球磨后过80目筛网。
4.称取一定量上述粉体放于石墨模具中,石墨模具内壁以及上下压头垫有喷BN的石墨纸;热压烧结温度为1850℃;施加压力为40MPa,从1500℃开始缓慢增压,至目标温度达到最大值;烧结时间为4h,并伴有流动氮气;
5.将烧结制品进行磨、抛后获得最终氮化硅陶瓷。其陶瓷热导率沿热压方向为91.6W/m·K,垂直于压力方向为129.3W/m·K。
实施例3
1.称取50g氧含量为0.65wt%氮化硅粉体、3.1g Y(NO3)3和5.2g Mg(NO3)2,在无水乙醇中进行球磨,混合均匀后获得浆料,随后在真空下80℃烘干;
2.将上述烘干后的混合料在1400℃、常压下预处理2h,氮气流量为1.5L/min;
3.将上述预处理后的粉体在氮化硅罐中球磨,选取氮化硅球,其球料比为50:1;球磨后过80目筛网。
4.称取一定量上述粉体放于石墨模具中,石墨模具内壁以及上下压头垫有喷BN的石墨纸;热压烧结温度为1850℃;施加压力为40MPa,从1500℃开始缓慢增压,至目标温度达到最大值;烧结时间为3h,并伴有流动氮气;
5.将烧结制品进行磨、抛后获得最终氮化硅陶瓷。其陶瓷热导率沿热压方向为94.8W/m·K,垂直于压力方向为133.5W/m·K。
实施例4
1.称取50g氧含量为0.65wt%氮化硅粉体、3.1g Y(NO3)3和5.2g Mg(NO3)2,在无水乙醇中进行球磨,混合均匀后获得浆料在真空下80℃烘干;
2.将上述烘干后的混合料在1400℃、常压下预处理2h,氮气流量为1.5L/min;
3.将上述预处理后的粉体在氮化硅罐中球磨,选取氮化硅球,其球料比为50:1;球磨后过80目筛网。
4.称取一定量上述粉体放于石墨模具中,石墨模具内壁以及上下压头垫有喷BN的石墨纸;热压烧结温度为1950℃;施加压力为30MPa,从1500℃开始缓慢增压,至目标温度达到最大值;烧结时间为3h,并伴有流动氮气;
5.将烧结制品进行磨、抛后获得最终氮化硅陶瓷。其陶瓷热导率沿热压方向为98.8W/m·K,垂直于压力方向为137.2W/m·K。
对比例1
选取5wt%La2O3-3 wt%MgO为烧结助剂,混合后的粉体直接进行热压烧结。热压烧结温度为1850℃;施加压力为40MPa,从1500℃开始缓慢增压,至目标温度达到最大值;烧结时间为3h,并伴有流动氮气。
不同实施例1-4及对比例1中氮化硅陶瓷的氧含量、致密度和热导率见表1。
表1氮化硅陶瓷的氧含量、致密度和热导率
注:∥为平行于压力方向,⊥垂直于压力方向
从表1可知,本发明所述一种热压烧结制备高导热氮化硅陶瓷的方法,选取可溶性盐作为烧结助剂,粉体经过预处理所制备的氮化硅陶瓷氧含量明显减少,陶瓷热导率有明显提高。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例披露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的方法及技术内容做出些许的更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改、等同变化与修饰,均仍属于本发明技术方案的范围内。
Claims (3)
1.一种热压烧结制备高导热氮化硅陶瓷的方法,其特征在于,包括以下步骤:
将氮化硅粉体与烧结助剂进行湿法球磨混合,所得浆料进行真空烘干;
将混合后的粉体在低温、常压、通氮气条件下预处理;
将预处理后的粉体进行研磨、过筛;
将所述粉体进行热压烧结;
烧结助剂选取La(NO3)3、Yb(NO3)3、Y(NO3)3的一种,以及Mg(NO3)2、MgCl2或MgSO4的一种,氮化硅粉体与烧结助剂的质量比为95~90:10~5,其中稀土硝酸盐烧结助剂含量是换算为Re2O3、镁盐烧结助剂含量是换算为MgO计算的;
预处理是在1300°C~1550°C、常压下保温1~5 h,并伴有流动的氮气。
2.根据权利要求1所述一种热压烧结制备高导热氮化硅陶瓷的方法,其特征在于,预处理后的粉体进行研磨,研磨罐和研磨球的材质为碳化钨或氮化硅;研磨后过不低于80目的筛网。
3.根据权利要求1所述一种热压烧结制备高导热氮化硅陶瓷的方法,其特征在于,热压烧结温度为1800°C~1950°C;施加压力为30~60 MPa,从1500°C开始缓慢增压,至目标温度达到最大值;烧结温度为1~10 h,并伴有流动氮气。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110982679.9A CN113735594B (zh) | 2021-08-25 | 2021-08-25 | 一种热压烧结制备高导热氮化硅陶瓷的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110982679.9A CN113735594B (zh) | 2021-08-25 | 2021-08-25 | 一种热压烧结制备高导热氮化硅陶瓷的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113735594A CN113735594A (zh) | 2021-12-03 |
CN113735594B true CN113735594B (zh) | 2022-11-18 |
Family
ID=78732794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110982679.9A Active CN113735594B (zh) | 2021-08-25 | 2021-08-25 | 一种热压烧结制备高导热氮化硅陶瓷的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113735594B (zh) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0484916A3 (en) * | 1990-11-07 | 1993-06-02 | Sumitomo Electric Industries, Limited | Silicon nitride sintered body |
DE69316118T2 (de) * | 1992-09-08 | 1998-04-23 | Toshiba Kawasaki Kk | Siliciumnitrid-Sinterkörper mit hoher Wärmeleitfähigkeit und Verfahren zu seiner Herstellung |
CN105152655B (zh) * | 2015-07-15 | 2018-01-16 | 东莞华南设计创新院 | 一种陶瓷的织构化方法 |
CN106631041A (zh) * | 2017-01-06 | 2017-05-10 | 张海波 | 一种氮化硅陶瓷微小部件生产制造技术 |
CN108892514A (zh) * | 2018-06-14 | 2018-11-27 | 广东工业大学 | 一种高性能氮化硅陶瓷手机后盖材料及其制备方法和应用 |
CN108585881A (zh) * | 2018-06-14 | 2018-09-28 | 哈尔滨工业大学 | 一种高热导率氮化硅陶瓷及其制备方法 |
CN109400175B (zh) * | 2018-11-15 | 2020-07-31 | 中国科学院上海硅酸盐研究所 | 一种高导热氮化硅陶瓷基片材料的制备方法 |
CN112142476B (zh) * | 2020-09-28 | 2021-10-01 | 中国科学院上海硅酸盐研究所 | 一种提高氮化硅陶瓷基板材料热导率和力学性能的硅热还原方法 |
-
2021
- 2021-08-25 CN CN202110982679.9A patent/CN113735594B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN113735594A (zh) | 2021-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109851369B (zh) | 一种制备高热导率氮化硅陶瓷的方法 | |
CN109305816B (zh) | 一种常压烧结制备高热导率氮化硅陶瓷的方法 | |
CN113045332A (zh) | 一种超高孔隙率的高熵碳化物超高温陶瓷及制备方法 | |
CN108675797B (zh) | 氮化硅基复合陶瓷材料及其微波烧结制备方法 | |
WO2022156637A1 (zh) | 一种氮化硅陶瓷材料的制备方法 | |
CN111196728A (zh) | 一种高强度、高韧性、高热导率氮化硅陶瓷材料及其制备方法 | |
CN108689716A (zh) | 高热导氮化铝陶瓷结构件的制备方法 | |
CN111196727B (zh) | 一种高热导率氮化硅陶瓷材料及其制备方法 | |
CN107285329B (zh) | 一种二硼化钨硬质材料及其制备方法和应用 | |
CN101734920B (zh) | 一种氮化钛多孔陶瓷及其制备方法 | |
CN113354418B (zh) | 一种真空热压烧结法制备的高性能氮化铝陶瓷基板及制备方法 | |
CN108503370A (zh) | 一种单相氮化硅陶瓷及其sps制备工艺 | |
JP3472585B2 (ja) | 窒化アルミニウム焼結体 | |
CN113735594B (zh) | 一种热压烧结制备高导热氮化硅陶瓷的方法 | |
CN110373593B (zh) | 一种碳氮化钛基复合金属陶瓷材料微波烧结工艺 | |
CN114874019B (zh) | 一种立方氮化硼相变增强的氮化铝/氮化硼复合陶瓷及其制备方法 | |
CN114349516A (zh) | 一种低温合成高致密SiC陶瓷的方法 | |
CN115010499A (zh) | 一种稀土氟化物与氧化钪双掺制备高性能氮化铝陶瓷基板的方法 | |
CN110734290A (zh) | 一种氮化硅陶瓷材料及其制备方法 | |
JPH07172921A (ja) | 窒化アルミニウム焼結体およびその製造方法 | |
CN108395257B (zh) | 一种氮化硅基复合材料及其制备方法 | |
CN116425551B (zh) | 一种氮化铝陶瓷材料的低温烧结工艺 | |
CN117229067B (zh) | 一种低压氮化-包埋制备氮化硅陶瓷的方法 | |
CN116005026B (zh) | 一种低温烧结制备高致密度钨/金刚石复合材料的方法 | |
CN114457251B (zh) | GNPs和TiBw协同增强钛基复合材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |