CN108892514A - 一种高性能氮化硅陶瓷手机后盖材料及其制备方法和应用 - Google Patents
一种高性能氮化硅陶瓷手机后盖材料及其制备方法和应用 Download PDFInfo
- Publication number
- CN108892514A CN108892514A CN201810613246.4A CN201810613246A CN108892514A CN 108892514 A CN108892514 A CN 108892514A CN 201810613246 A CN201810613246 A CN 201810613246A CN 108892514 A CN108892514 A CN 108892514A
- Authority
- CN
- China
- Prior art keywords
- powder
- mgo
- rear cover
- cell phone
- phone rear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
本发明属于非氧化物陶瓷材料领域,公开了一种高性能氮化硅陶瓷手机后盖材料及其制备方法和应用。本发明将Si3N4和MgO‑Re2O3经混料、干燥后得到粉体A;纯Si3N4粉进行相同混料工艺、干燥后得到粉体记为粉体B,将粉体A和粉体B依次装入烧结炉中,在氮气气氛下制备表硬里韧的高性能Si3N4陶瓷梯度材料,氮气压力为负压;制备得到Si3N4陶瓷的相对密度高于95%,表层硬度为18~30GPa,里层断裂韧性为10~20MPa·m1/2,整体抗弯强度为1200~1500Mpa;本发明实现了高性能Si3N4梯度陶瓷的制备。最后经切割、粗磨、精磨和抛光工序后得到所述的高性能氮化硅陶瓷手机后盖产品。
Description
技术领域
本发明属于非氧化物陶瓷材料领域,具体公开了一种高性能氮化硅陶瓷手机后盖材料及其制备方法和应用。
背景技术
目前智能手机成为人们生活当中不可或缺的一部分,人们对手机的保护和优化也越来越重视,手机外壳在手机的保护当中充当一个相当重要的角色,防止手机摔落受到损害以及磨损等是最直接方式。同时,手机后盖还影响到散热、轻质、美观等重要因素。因此,对用于手机后盖的材料需要具有高强度、耐热、耐磨损、外观漂亮等特点。在现有市场上手机后盖采用的材料主要有金属、玻璃、工程塑料等,然而,以上材料存在硬度低、易划伤、褪色、易变形等缺点;而且,作为目前市场上最流行的金属外壳,因为其对电磁信号有干扰这一缺点,对于通信时代5G信号的普及是致命打击,因此急需寻找一种既具有电磁屏蔽性,又能满足以上其他要求材料。Si3N4陶瓷材料作为一种结构材料,具有优异的力学性能,例如高硬度、高强、耐磨、耐高温等优异性能;并且作为一种电磁屏蔽性材料的同时,还兼具外观靓丽、玉质感、不变色等优异特点,可作为手机后盖的极佳候选材料。
然而,Si3N4陶瓷材料应用于手机后盖急需解决的是陶瓷材料的脆性问题。目前,通过对陶瓷材料进行增韧,用于制作手机后盖的陶瓷材料有氧化铝、氧化锆、碳化硅等结构材料。然而,这些材料都是通过提高手机后盖整体的韧性,过分地提高其韧性将极有可能降低其强度、耐磨、外观等。Si3N4作为一种高温易分解的物质,使得人们对于Si3N4烧结致密研究主要集中于高压防止分解,同时进行机械加压促进致密,然而并没有任何报道关于Si3N4陶瓷负压甚至高真空烧结的研究。
发明内容
为了解决现有技术中存在的缺点和不足之处,本发明的首要目的在于提供一种高性能氮化硅陶瓷手机后盖材料的制备方法;该方法通过负压条件下制备高性能Si3N4梯度陶瓷材料,实现了高性能Si3N4陶瓷手机后盖的快速制备。
本发明的再一目的在于提供上述制备方法制备得到的高性能氮化硅陶瓷手机后盖材料。
本发明的又一目的在于提供上述高性能氮化硅陶瓷手机后盖材料的应用。
本发明目的通过以下技术方案实现:
一种高性能氮化硅陶瓷手机后盖材料,包括以下步骤:
(1)以Si3N4粉为原料,以MgO-Re2O3为烧结助剂,将Si3N4和MgO-Re2O3按质量分数比为60~99%:1~40%的配比经混料、干燥后,得到Si3N4-MgO-Re2O3混合粉体记为粉体A,其中Re为Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu;所述的MgO-Re2O3中的MgO:Re2O3质量分数比为1~99%:99~1%;将Si3N4粉经过与前述相同的混料和干燥工艺得到的粉体记为粉体B;
(2)将粉体A:粉体B按50~80vol%:50~20vol%比例,依次加入烧结炉中,在氮气环境下进行烧结,氮气压力为负压;最后烧结得到高性能氮化硅陶瓷手机后盖材料。
步骤(1)中所述的Si3N4粉纯度为95~100%,粒径为<10μm;MgO粉纯度为95~100%,Re2O3纯度为99.9%。
步骤(1)中所述Si3N4-MgO-Re2O3混合粉体是将Si3N4和MgO-Re2O3按配比进行混料,以乙醇为溶剂,以Si3N4球为球磨介质,在行星式球磨机上混合4~18h,干燥后得到Si3N4-MgO-Re2O3混合粉体。
步骤(2)中所述粉体A:粉体B的比例为80vol%:20vol%。
所述球磨是在行星式球磨机上混合8h。
步骤(1)中所述Si3N4和MgO-Re2O3的质量分数比为90%:10%,其中MgO-Re2O3的MgO:Re2O3质量分数比为55%:45%,Re为Y。
步骤(2)中所述的烧结具体按照以下步骤:在1000~1500℃保温1~240min,整个过程烧结气氛为氮气,氮气压力为10-4~1bar,制备得到高性能氮化硅陶瓷手机后盖材料。
一种由上述制备方法制备得到的高性能氮化硅陶瓷手机后盖材料,该材料的相对密度大于95%,表层硬度为18~30GPa,断裂韧性为10~20MPa·m1/2,抗弯强度为1200~1500Mpa。
上述的高性能氮化硅陶瓷手机后盖材料在制备手机后盖中的应用,所述应用是将高性能氮化硅陶瓷手机后盖材料经切割、粗磨、精磨和抛光工序后得到手机后盖产品。
本发明的原理:
本发明采用低温下进行负压烧结,在防止Si3N4分解的同时,也降低烧结过程中烧结助剂所形成液相的黏度,促进里层晶粒长大。并且,使得液相在压力作用下扩散到外层纯Si3N4,使得外层保持原有的细小颗粒,而内部在烧结助剂和压力作用下发生长棒状晶长大,从而制备表层和里层不同的晶粒分布,在保证Si3N4陶瓷具有较高韧性的同时,又可以加强其硬度可抗弯强度等性能。
本发明是在负压低温的条件下,实现Si3N4梯度材料的制备,与现有技术相比具有以下优点和有益效果:
(1)本发明在负压作用下,极大降低了Si3N4陶瓷的烧结温度;
(2)采用负压烧结有利于清除陶瓷内部气孔等缺陷,可进一步提高Si3N4陶瓷性能;
(3)通过液相扩散形成Si3N4梯度陶瓷,梯度层之间结合力强,实现表硬里韧Si3N4梯度陶瓷制备。
具体实施方法
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
一种高性能氮化硅陶瓷手机后盖的制备,具体方法如下:
(1)以Si3N4粉为原料,Si3N4粉纯度为99%,粒径为0.1μm;以MgO-Y2O3为烧结助剂,MgO粉纯度为99.9%,Y2O3纯度为99.9%。按Si3N4:MgO-Y2O3的质量分数比为90%:10%的配比混合,以乙醇为溶剂,以Si3N4球为球磨介质,在行星球磨机上混合8h,干燥后,得到Si3N4-MgO-Y2O3混合粉体记为粉体A;所述的MgO-Y2O3中的MgO:Y2O3质量分数比为55%:45%;纯Si3N4粉进行与前述相同的混料和干燥工艺得到的粉体记为粉体B。
(2)将粉体A:粉体B按80vol%:20vol%比例,依次加入热压烧结炉中,在1300℃保温60min,机械加压30MPa,氮气压力为4×104Pa;最后烧结得到高性能氮化硅陶瓷手机后盖材料。
本实施例制备得到高性能氮化硅陶瓷手机后盖材料相对密度达到98%,表层硬度为25GPa,断裂韧性为12MPa·m1/2,抗弯强度为1300Mpa;最后经切割、粗磨、精磨和抛光工序后得到所述的高性能氮化硅陶瓷手机后盖产品。
实施例2
按照Si3N4:MgO-Yb2O3的质量分数比为80%:20%进行配料,其中Si3N4粉的粒径为30nm,MgO:Yb2O3质量分数比为60%:40%,粉体A:粉体B的比例为90vol%:10vol%。按照实施例1方法制备Si3N4梯度陶瓷,其中烧结工艺为:在放电等离子烧结炉中加热到1200℃保温5min,机械加压为50MPa,氮气压力为103Pa。本实施例制备得到高性能氮化硅陶瓷手机后盖材料相对密度达到99%,表层硬度为26GPa,断裂韧性为10MPa·m1/2,抗弯强度为1400Mpa;最后经切割、粗磨、精磨和抛光工序后得到所述的高性能氮化硅陶瓷手机后盖产品。
实施例3
按照Si3N4:MgO-La2O3的质量分数比为90%:10%进行配料,其中Si3N4粉的粒径为10nm,MgO:Yb2O3质量分数比为60%:40%,粉体A:粉体B的比例为90vol%:10vol%。按照实施例1方法制备Si3N4梯度陶瓷,其中烧结工艺为:在放电等离子烧结炉中加热到1000℃保温5min,机械加压为50MPa,氮气压力为102Pa。本实施例制备得到高性能氮化硅陶瓷手机后盖材料相对密度达到99%,表层硬度为28GPa,断裂韧性为12MPa·m1/2,抗弯强度为1500Mpa;最后经切割、粗磨、精磨和抛光工序后得到所述的高性能氮化硅陶瓷手机后盖产品。
实施例4
按照Si3N4:MgO-Lu2O3的质量分数比为85%:15%进行配料,其中Si3N4粉的粒径为30nm,MgO:Lu2O3质量分数比为55%:45%,粉体A:粉体B的比例为70vol%:30vol%。按照实施例1方法制备Si3N4梯度陶瓷,其中烧结工艺为:在放电等离子烧结炉中加热到1100℃保温5min,机械加压为60MPa,氮气压力为103Pa。本实施例制备得到高性能氮化硅陶瓷手机后盖材料相对密度达到99%,表层硬度为27GPa,断裂韧性为10MPa·m1/2,抗弯强度为1400Mpa;最后经切割、粗磨、精磨和抛光工序后得到所述的高性能氮化硅陶瓷手机后盖产品。
实施例5
按照Si3N4:MgO-Gd2O3的质量分数比为80%:20%进行配料,其中Si3N4粉的粒径为100nm,MgO:Gd2O3质量分数比为60%:40%,粉体A:粉体B的比例为70vol%:30vol%。按照实施例1方法制备Si3N4梯度陶瓷,其中烧结工艺为:在热压烧结炉中加热到1450℃保温5min,机械加压为50MPa,氮气压力为103Pa。本实施例制备得到高性能氮化硅陶瓷手机后盖材料相对密度达到99%,表层硬度为26GPa,断裂韧性为13MPa·m1/2,抗弯强度为1200Mpa;最后经切割、粗磨、精磨和抛光工序后得到所述的高性能氮化硅陶瓷手机后盖产品。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (9)
1.一种高性能氮化硅陶瓷手机后盖材料的制备方法,其特征在于包括以下步骤:
(1)以Si3N4粉为原料,以MgO-Re2O3为烧结助剂,将Si3N4和MgO-Re2O3按质量分数比为60~99%:1~40%的配比经混料、干燥后,得到Si3N4-MgO-Re2O3混合粉体记为粉体A,其中Re为Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu;所述的MgO-Re2O3中的MgO:Re2O3质量分数比为1~99%:99~1%;将Si3N4粉经过与前述相同的混料和干燥工艺得到的粉体记为粉体B;
(2)将粉体A:粉体B按50~80vol%:50~20vol%比例,依次加入烧结炉中,在氮气环境下进行烧结,氮气压力为负压;最后烧结得到高性能氮化硅陶瓷手机后盖材料。
2.根据权利要求1所述的制备方法,其特征在于:步骤(1)中所述的Si3N4粉纯度为95~100%,粒径为<10μm;MgO粉纯度为95~100%,Re2O3纯度为99.9%。
3.根据权利要求1所述的制备方法,其特征在于:步骤(1)中所述Si3N4-MgO-Re2O3混合粉体是将Si3N4和MgO-Re2O3按配比进行混料,以乙醇为溶剂,以Si3N4球为球磨介质,在行星式球磨机上混合4~18h,干燥后得到Si3N4-MgO-Re2O3混合粉体。
4.根据权利要求1所述的制备方法,其特征在于:步骤(2)中所述粉体A:粉体B的比例为80vol%:20vol%。
5.根据权利要求3所述的制备方法,其特征在于:所述球磨是在行星式球磨机上混合8h。
6.根据权利要求1所述的制备方法,其特征在于:步骤(1)中所述Si3N4和MgO-Re2O3的质量分数比为90%:10%,其中MgO-Re2O3的MgO:Re2O3质量分数比为55%:45%,Re为Y。
7.根据权利要求1所述的制备方法,其特征在于:步骤(2)中所述的烧结具体按照以下步骤:在1000~1500℃保温1~240min,整个过程烧结气氛为氮气,氮气压力为10-4~1bar,制备得到高性能氮化硅陶瓷手机后盖材料。
8.一种由权利要求1~7任一项所述制备方法制备得到的高性能氮化硅陶瓷手机后盖材料,其特征在于:该材料的相对密度大于95%,表层硬度为18~30GPa,断裂韧性为10~20MPa·m1/2,抗弯强度为1200~1500Mpa。
9.根据权利要求8所述的高性能氮化硅陶瓷手机后盖材料在制备手机后盖中的应用,其特征在于:所述应用是将高性能氮化硅陶瓷手机后盖材料经切割、粗磨、精磨和抛光工序后得到手机后盖产品。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810613246.4A CN108892514A (zh) | 2018-06-14 | 2018-06-14 | 一种高性能氮化硅陶瓷手机后盖材料及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810613246.4A CN108892514A (zh) | 2018-06-14 | 2018-06-14 | 一种高性能氮化硅陶瓷手机后盖材料及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108892514A true CN108892514A (zh) | 2018-11-27 |
Family
ID=64344824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810613246.4A Withdrawn CN108892514A (zh) | 2018-06-14 | 2018-06-14 | 一种高性能氮化硅陶瓷手机后盖材料及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108892514A (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110981497A (zh) * | 2019-12-23 | 2020-04-10 | 广东工业大学 | 一种高导热高耐磨的氮化硅陶瓷及其制备方法和应用 |
CN112209725A (zh) * | 2020-10-15 | 2021-01-12 | 郑州航空工业管理学院 | 一种氮化硅陶瓷烧结的前处理方法、氮化硅陶瓷及其制备方法 |
CN113735594A (zh) * | 2021-08-25 | 2021-12-03 | 北京科技大学 | 一种热压烧结制备高导热氮化硅陶瓷的方法 |
CN113880592A (zh) * | 2021-11-08 | 2022-01-04 | 北京理工大学 | 一种高硬高韧氮化硅陶瓷复杂结构件制备工艺 |
CN115215667A (zh) * | 2022-07-28 | 2022-10-21 | 山东工业陶瓷研究设计院有限公司 | 一种铅基压电陶瓷及其制备方法 |
-
2018
- 2018-06-14 CN CN201810613246.4A patent/CN108892514A/zh not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110981497A (zh) * | 2019-12-23 | 2020-04-10 | 广东工业大学 | 一种高导热高耐磨的氮化硅陶瓷及其制备方法和应用 |
CN112209725A (zh) * | 2020-10-15 | 2021-01-12 | 郑州航空工业管理学院 | 一种氮化硅陶瓷烧结的前处理方法、氮化硅陶瓷及其制备方法 |
CN113735594A (zh) * | 2021-08-25 | 2021-12-03 | 北京科技大学 | 一种热压烧结制备高导热氮化硅陶瓷的方法 |
CN113880592A (zh) * | 2021-11-08 | 2022-01-04 | 北京理工大学 | 一种高硬高韧氮化硅陶瓷复杂结构件制备工艺 |
CN113880592B (zh) * | 2021-11-08 | 2022-07-05 | 北京理工大学 | 一种高硬高韧氮化硅陶瓷复杂结构件制备工艺 |
CN115215667A (zh) * | 2022-07-28 | 2022-10-21 | 山东工业陶瓷研究设计院有限公司 | 一种铅基压电陶瓷及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108892514A (zh) | 一种高性能氮化硅陶瓷手机后盖材料及其制备方法和应用 | |
Sahin et al. | Spark plasma sintering of B4C–SiC composites | |
Feng et al. | A new and highly active sintering additive: SiO2 for highly-transparent AlON ceramic | |
WO2020052453A1 (zh) | 一种用于手机背板的氮化硅陶瓷材料及其制备方法 | |
CN112299861B (zh) | 一种AlON透明陶瓷伪烧结剂与应用及透明陶瓷的制备方法 | |
CN110330318A (zh) | 一种微纳复合陶瓷刀具材料及其制备方法 | |
CN110272282B (zh) | AlON透明陶瓷的低温制备方法 | |
CN108640672A (zh) | 一种镁铝尖晶石透明陶瓷的制备方法 | |
JPS63201061A (ja) | 透光性酸化イットリウム | |
CN113121237A (zh) | 一种碳化硼基复合陶瓷及其制备工艺 | |
CN110156476A (zh) | 一种高硬高韧氮化硅基陶瓷及其制备方法和应用 | |
CN104131208A (zh) | 一种氧化铝-碳化钛微米复合陶瓷刀具材料及其微波烧结方法 | |
CN109320249B (zh) | 一种含氧化硼的碳化钨复合材料及其制备方法 | |
Xu et al. | Fabrication and characterization of highly transparent ZrO2-doped Tm2O3 ceramics | |
CN106587940A (zh) | 一种高纯致密氧化镁靶材及其制备方法 | |
Gan et al. | The effects of the temperature and pressure on ZrO2-doped transparent yttria ceramics fabricated by a hot-pressing method | |
CN103613402A (zh) | 凝胶注模制备O-Sialon多孔材料及制备方法 | |
Sun et al. | Gelcasting and vacuum sintering of translucent alumina ceramics with high transparency | |
CN109437916B (zh) | 高透明LiAlON陶瓷的制备方法 | |
CN109400176A (zh) | 一种高性能氮化硅陶瓷及其制备方法和应用 | |
Gan et al. | Fabrication of submicron-grained IR-transparent Y2O3 ceramics from commercial nano-raw powders | |
CN108299000A (zh) | 一种低温制备高致密ZrB2-ZrSi2-Cf超高温陶瓷复合材料的方法 | |
TW201309618A (zh) | 陶瓷體及其製備方法及應用該陶瓷體的電子裝置 | |
CN107200589B (zh) | 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷 | |
Qi et al. | Reaction sintering of transparent aluminum oxynitride (AlON) ceramics using MgO and Y2O3 as co-additives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20181127 |
|
WW01 | Invention patent application withdrawn after publication |