CN106587940A - 一种高纯致密氧化镁靶材及其制备方法 - Google Patents

一种高纯致密氧化镁靶材及其制备方法 Download PDF

Info

Publication number
CN106587940A
CN106587940A CN201611094912.5A CN201611094912A CN106587940A CN 106587940 A CN106587940 A CN 106587940A CN 201611094912 A CN201611094912 A CN 201611094912A CN 106587940 A CN106587940 A CN 106587940A
Authority
CN
China
Prior art keywords
magnesium oxide
purity
sintering
preparation
oxide target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611094912.5A
Other languages
English (en)
Other versions
CN106587940B (zh
Inventor
陈淼琴
何金江
丁照崇
贺昕
熊晓东
万小勇
李勇军
雷继锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRINM ADVANCED MATERIALS Co Ltd
Original Assignee
GRINM ADVANCED MATERIALS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GRINM ADVANCED MATERIALS Co Ltd filed Critical GRINM ADVANCED MATERIALS Co Ltd
Priority to CN201611094912.5A priority Critical patent/CN106587940B/zh
Publication of CN106587940A publication Critical patent/CN106587940A/zh
Application granted granted Critical
Publication of CN106587940B publication Critical patent/CN106587940B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness

Abstract

本发明属于新材料制造及应用技术领域,具体涉及一种高纯致密氧化镁靶材及其制备方法。本发明对行星球磨的氧化镁粉末进行冷等静压成型后真空烧结,得到近净成形高纯致密氧化镁靶材。其中,真空烧结温度为1400~1550℃,保温时间为2~10h,真空度为0.1~1.0Pa。该法制备的高纯致密氧化镁靶材的致密度为98.36%以上,杂质元素总含量为100ppm以下,平均晶粒尺寸为7μm以下,尺寸偏差为3.0μm以下,表面粗糙度Ra低于0.4μm。本发明制备的氧化镁靶材纯度和致密度高、晶粒细小均匀,本发明制备方法生产周期短、生产成本低、生产效率高、可批量生产。

Description

一种高纯致密氧化镁靶材及其制备方法
技术领域
本发明属于新材料制造及应用技术领域,具体涉及一种高纯致密氧化镁靶材及其制备方法。
背景技术
氧化镁(MgO)具有高温稳定性、高介电性、低介电损耗及与多种衬底材料晶格匹配良好等优点,以MgO作为磁隧道结(MTJ)隔离层的阴极源时,MTJ在室温下具有巨大的磁电阻效应。作为磁性存储器(MRAM)的关键组成部分,MTJ的磁电阻效应越高,MRAM的读写速度越快,能耗越低,使用寿命越长。因此,MgO薄膜广泛用于新一代非易失性高密度磁存储器。
MTJ中的MgO薄膜通常采用磁控溅射方法制备,靶材的纯度、致密度、晶粒尺寸及尺寸分布都会极大地影响溅射薄膜的质量与性能。靶材中的杂质元素是溅镀膜的主要污染源,影响薄膜的纯度;靶材的致密度不仅影响溅射时的沉积速率、溅镀膜粒子密度和弧光放电,还影响溅镀膜的电学和光学性能;此外,在其它条件均相同时,靶材的晶粒越细小,溅射速率越快,晶粒尺寸分布越集中,溅镀膜的厚度分布也越均匀。因此,制备高纯致密的MgO靶材对于高质量无缺陷MgO薄膜的制备非常关键。
目前MgO靶材的制备方法主要有无压烧结、热压烧结、热等静压烧结及以上各方法的组合烧结。
MgO的无压及常压烧结需要很高的烧结温度,获得的MgO陶瓷晶粒大,且在烧结末期封闭孔隙形成时,孔隙中总会残留部分气体,随着烧结的进行,封闭孔在表面张力作用下体积逐渐缩小,孔隙中气压逐渐增大,成为阻碍孔隙消失的阻力因素。在不使用添加剂情况下,无压烧结制备的MgO烧结体中总会残留一定量的气孔,无法达到高致密。而使用烧结助剂后,虽然能提高烧结体致密度,但烧结体的机械性能降低,而且无法保证烧结体的纯度。
热压和热等静压烧结工艺中得到的MgO烧结体均容易出现渗碳污染或氧缺失而使烧结体表面呈现灰色或者黑色,通常需要在常压或氧气下进行退火处理。而大气或充氧退火处理过程中烧结体容易出现晶粒粗化、样品开裂等,还会延长产品的生产周期。热压时粉末单向或双向受压成型,烧结过程中MgO烧结体容易出现密度分布不均匀,甚至产生裂纹,且热压烧结产品因粉末成型和烧结为一体,样品表面及边缘较粗糙,光洁度很低,需进行大量的机加工处理。同时,热压和热等静压均存在设备昂贵、制备周期长、工艺复杂、成品率低且无法批量生产等问题。
专利CN102086504A中公开了添加纳米级氧化钇为烧结助剂,添加有机物聚合单体、交联剂、分散剂、甲苯等凝胶注浆成型MgO坯体的致密化方法。实施例中,MgO坯体在1650~1850℃下烧结3~5h,得到MgO靶材的相对密度为99.99%。该MgO靶材主要用于PDP中MgO膜的制备,PDP中MgO介电保护层厚度约为500nm,对靶材的纯度和晶粒尺寸要求都不严格,而用于MTJ中的MgO薄膜层厚度为0.8~2nm,溅射膜必须保证高纯、优异的表面质量和厚度的均匀性,才能保证MTJ在室温下有巨大的磁电阻效应。
专利CN103687977A中提出了一种含导电性物质的溅射用MgO靶材,DC溅射法成膜时能形成(001)取向的MgO膜。实施例中,采用1617~1677℃,25MPa下Ar为保护气体的热压烧结方法制备得到密度为99%以上,含TiC、VC、TiN、WC等导电物质的MgO靶材,未讨论靶材纯度和晶粒尺寸。
专利CN103917587A中公开了纯度为99.995%,相对密度为98%以上,平均晶粒尺寸为8μm以下溅射MgO靶材的热压制备方法。实施例中,MgO粉末在1250~1350℃热压烧结120min后在大气中进行1000~1400℃,120~2880min退火。该制备方法需要热退火,且无法批量生产,生产率低。
发明内容
本发明的目的是提出一种高纯致密氧化镁靶材及其制备方法,具体方案如下:
一种高纯致密氧化镁靶材的制备方法,具体包括如下步骤:
1)以氧化镁粉末为原料,对原料进行行星球磨,球磨转速为150~300r/min,球磨时间为8~32h,球料比为(1.5:1)~(3:1),研磨后的粉末进行200目筛分;
2)步骤1)中筛后粉末进行冷等静压成型,压力为150~350MPa,保压时间为5~20min,得到氧化镁压坯;
3)步骤2)中氧化镁压坯进行真空烧结,烧结温度为1400~1550℃,保温时间为2~10h,真空度为0.1~1.0Pa,真空烧结结束后,根据所需靶材尺寸进行机械加工,得到高纯致密氧化镁靶材。
步骤1)中氧化镁粉末的纯度为99.99%以上,杂质元素总含量为100ppm以下,平均粒径为100~300nm。
步骤1)中球磨介质为氧化锆球,球级差中球:小球为(1:1)~(3:1)。
步骤2)中氧化镁压坯的相对密度为58%~62%,相对密度偏差低于2%。
步骤3)中真空烧结的升温过程分为三个阶段:室温加热到500~1000℃,保温4h~10h,1000℃以下加热速率不超过5℃/min;在温度达到1000℃后开始抽真空,在10min内到烧结真空度;1000℃升温到烧结温度,加热速率不超过2℃/min,保温2~10h。
所述方法制备的高纯致密氧化镁靶材的致密度为98.36%以上,杂质元素总含量为100ppm以下,高纯致密氧化镁靶材的平均晶粒尺寸为7μm以下,尺寸偏差为3.0μm以下,表面粗糙度Ra低于0.4μm。
本发明的有益效果为:本发明通过球磨工艺处理氧化镁粉末,改善了粉末颗粒的粒度分布、颗粒分散性,提高了颗粒内部畸变能;球磨后的粉末在冷等静压成型时,其密度和密度均匀性远高于一般单向受压或双向受压成型坯体;与一般无压烧结相比,冷等静压成型坯体烧结温度更低、致密度更高、晶粒尺寸细小均匀;0.1~1Pa的真空烧结气氛既可避免过高真空度烧结气氛对MgO分解的促进作用,还可消除无添加剂和烧结助剂情况下气孔中阻碍孔隙消除的气体压力,促进致密化,保证了烧结体的密度、纯度和晶粒细小均匀;该制备方法烧结样品尺寸不受限制,最终成品表面光洁度好,近净成形的高纯致密氧化镁靶材几乎不用机械加工。另外,本发明制备方法生产周期短、生产成本低、可批量生产。
具体实施方式
本发明提出了一种高纯致密氧化镁靶材及其制备方法,下面结合实施例对本发明作进一步说明。
实施例1:一种高纯致密氧化镁靶材的制备
(1)向纯度为99.99%以上,平均粒径为100nm左右,杂质元素总含量为100ppm以下的原始MgO粉末中加入氧化锆球,球料比为2:1,球级差中球:小球为1:1,置于聚氨酯球磨罐中,转速为200r/min,研磨16h,得到分散性良好的MgO粉末,再将得到的MgO粉末取出后过200目分度筛;
(2)将步骤(1)中筛分后粉末进行冷等静压(CIP)成型,成型压力为200MPa,保压时间为8min,得到具有一定强度的MgO压坯;
(3)将步骤(2)中MgO压坯在500℃煅烧4h后,以5℃/min速率升温到1000℃开始抽真空,并在10min内使真空度达到0.85Pa;再以2℃/min升温速率加热到烧结温度1400℃,烧结保温时间为4h;真空烧结结束后根据所需靶材尺寸进行适当机械加工,得到高纯致密MgO靶材成品。
其中烧结的升降温过程,因MgO的热导率降低,为避免升降温过快导致样品内部产生残余应力甚至开裂,室温到1000℃升降温速率不超过5℃/min,1000℃到烧结温度升降温速率不超过2℃/min。
实施例2
高纯致密MgO靶材的制备方法同实施例1,不同之处在于,真空烧结温度为1450℃。
实施例3
高纯致密MgO靶材的制备方法同实施例1,不同之处在于,真空烧结温度为1500℃。
实施例4
高纯致密MgO靶材的制备方法同实施例1,不同之处在于,真空烧结温度为1550℃。
对比例1
步骤同实施例1,不同之处在于,真空烧结温度为1500℃,真空烧结保温时间为14h。
对比例2
原始MgO粉末单向压制成型后,在500℃煅烧4h,然后在空气气氛进行如实施例1相同参数的烧结。
对比例3
原始MgO粉末单向压制成型后,在500℃煅烧4h,然后在空气气氛进行如实施例2相同参数的烧结。
对比例4
原始MgO粉末单向压制成型后,在500℃煅烧4h,然后在空气气氛进行如实施例3相同参数的烧结。
对比例5
原始MgO粉末单向压制成型后,在500℃煅烧4h,然后在空气气氛进行如实施例4相同参数的烧结。
对比例6
原始MgO粉末单向压制成型后,在500℃煅烧4h,然后在空气气氛进行如对比例1相同参数的烧结。
按照“十字形”分别测定实施例CIP成型压坯的四周和中心位置的厚度,则压坯不同位置的相对密度可根据以下公式测定:
ρ=ρf(Lf/L)
式中,ρ为压坯相对密度,L为压坯的厚度,ρf、Lf分别为压坯烧结后的相对密度和厚度。测定实施例CIP成型压坯的相对密度分布如表1所示。
实施例和对比例各试样的处理工艺和测定参数如表2所示,表中所有样品外观均为白色。
表1实施例中各CIP成型压坯的相对密度分布
表2实施例和对比例各试样的处理工艺和测定参数
由表1可知,可实施例中CIP成型压坯的相对密度为60±2%,相对密度偏差为2%以下。由表2可知,实施例1~4真空烧结得到的MgO靶材致密度均高于98.36%,晶粒尺寸均小于7μm,尺寸偏差均小于3.0μm,纯度均为99.99%。实施例3和实施例4真空烧结得到的MgO靶材致密度进一步提高,分别为99.07%和99.14%,晶粒尺寸分别为5.19μm和6.63μm,尺寸偏差分别为2.03μm和2.38μm,致密度较高,晶粒也较为细小,其纯度为99.99%,表面粗糙度分别为0.297和0.339;而对比例2~5的MgO靶材致密度较低。由对比例1和对比例6可知,延长保温时间,靶材致密度增加极小,而晶粒尺寸显著增加,因此保温时间不宜过长。
实施例1~4解决了一般无压烧结MgO靶材烧结温度过高,而致密度不高的问题;解决了添加烧结助剂以提高无压烧结MgO靶材致密度而导致纯度不高的问题;解决了热压烧结和热等静压烧结MgO靶材容易渗碳,需要退火处理的问题;提供了一种高纯致密细MgO靶材的制备方法,降低了制备成本,实现了批量生产。

Claims (8)

1.一种高纯致密氧化镁靶材的制备方法,其特征在于,具体包括如下步骤:
1)以氧化镁粉末为原料,对原料进行行星球磨,球磨转速为150~300r/min,球磨时间为8~32h,球料比为(1.5:1)~(3:1),研磨后的粉末进行200目筛分;
2)步骤1)中筛后粉末进行冷等静压成型,压力为150~350MPa,保压时间为5~20min,得到氧化镁压坯;
3)步骤2)中氧化镁压坯进行真空烧结,烧结温度为1400~1550℃,保温时间为2~10h,真空度为0.1~1.0Pa,真空烧结结束后,根据所需靶材尺寸进行机械加工,得到高纯致密氧化镁靶材。
2.根据权利要求1所述的制备方法,其特征在于,步骤1)中氧化镁粉末的纯度为99.99%以上,杂质元素总含量为100ppm以下,平均粒径为100~300nm。
3.根据权利要求1所述的制备方法,其特征在于,步骤1)中球磨介质为氧化锆球,球级差中球:小球为(1:1)~(3:1)。
4.根据权利要求1所述的制备方法,其特征在于,步骤2)中氧化镁压坯的相对密度为58%~62%,相对密度偏差低于2%。
5.根据权利要求1所述的制备方法,其特征在于,步骤3)中真空烧结的升温过程分为三个阶段:室温加热到500~1000℃,保温4~10h,1000℃以下加热速率不超过5℃/min;在温度达到1000℃后开始抽真空,在10min内到烧结真空度0.1~1.0Pa;1000℃升温到烧结温度1400~1550℃,加热速率不超过2℃/min,保温2~10h。
6.根据权利要求1~5任一项所述方法制备的高纯致密氧化镁靶材。
7.根据权利要求6所述的高纯致密氧化镁靶材,其特征在于,高纯致密氧化镁靶材的致密度为98.36%以上,杂质元素总含量为100ppm以下。
8.根据权利要求6所述的高纯致密氧化镁靶材,其特征在于,高纯致密氧化镁靶材的平均晶粒尺寸为7μm以下,尺寸偏差为3.0μm以下,表面粗糙度Ra低于0.4μm。
CN201611094912.5A 2016-12-02 2016-12-02 一种高纯致密氧化镁靶材及其制备方法 Active CN106587940B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611094912.5A CN106587940B (zh) 2016-12-02 2016-12-02 一种高纯致密氧化镁靶材及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611094912.5A CN106587940B (zh) 2016-12-02 2016-12-02 一种高纯致密氧化镁靶材及其制备方法

Publications (2)

Publication Number Publication Date
CN106587940A true CN106587940A (zh) 2017-04-26
CN106587940B CN106587940B (zh) 2020-03-27

Family

ID=58596240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611094912.5A Active CN106587940B (zh) 2016-12-02 2016-12-02 一种高纯致密氧化镁靶材及其制备方法

Country Status (1)

Country Link
CN (1) CN106587940B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019177086A1 (ja) * 2018-03-15 2019-09-19 宇部マテリアルズ株式会社 MgO焼結体及びスパッタリングターゲット
TWI711714B (zh) * 2018-09-13 2020-12-01 日商Jx金屬股份有限公司 MgO燒結體濺鍍靶
CN115246732A (zh) * 2021-04-28 2022-10-28 光洋应用材料科技股份有限公司 复合氧化物靶材及其制法
CN116143512A (zh) * 2023-02-15 2023-05-23 先导薄膜材料(广东)有限公司 一种高纯二氧化钛平面靶材及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103030380A (zh) * 2011-09-30 2013-04-10 沈阳临德陶瓷研发有限公司 一种热压烧结高致密度氧化镁靶材的制备方法
CN103601473A (zh) * 2013-11-04 2014-02-26 中国科学院合肥物质科学研究院 一种高纯度、高致密度氧化镁陶瓷及其制备方法
CN103917687A (zh) * 2011-11-04 2014-07-09 飞罗得陶瓷股份有限公司 溅射靶材及其制造方法
US20140284212A1 (en) * 2011-12-27 2014-09-25 Jx Nippon Mining & Metals Corporation Sintered Compact Magnesium Oxide Target for Sputtering, and Method for Producing Same
CN105272177A (zh) * 2015-11-09 2016-01-27 南京长江工业炉科技有限公司 一种氧化铝烧结体的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103030380A (zh) * 2011-09-30 2013-04-10 沈阳临德陶瓷研发有限公司 一种热压烧结高致密度氧化镁靶材的制备方法
CN103917687A (zh) * 2011-11-04 2014-07-09 飞罗得陶瓷股份有限公司 溅射靶材及其制造方法
US20140318956A1 (en) * 2011-11-04 2014-10-30 Ferrotec Ceramics Corporation Sputtering target and method for producing the same
US20140284212A1 (en) * 2011-12-27 2014-09-25 Jx Nippon Mining & Metals Corporation Sintered Compact Magnesium Oxide Target for Sputtering, and Method for Producing Same
CN103601473A (zh) * 2013-11-04 2014-02-26 中国科学院合肥物质科学研究院 一种高纯度、高致密度氧化镁陶瓷及其制备方法
CN105272177A (zh) * 2015-11-09 2016-01-27 南京长江工业炉科技有限公司 一种氧化铝烧结体的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《科教兴国丛书》编辑委员会: "《中国科教论文选(二)》", 31 December 1997, 红旗出版社 *
韩跃新: "《粉体工程》", 31 December 2011, 中南大学出版社 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019177086A1 (ja) * 2018-03-15 2019-09-19 宇部マテリアルズ株式会社 MgO焼結体及びスパッタリングターゲット
TWI711714B (zh) * 2018-09-13 2020-12-01 日商Jx金屬股份有限公司 MgO燒結體濺鍍靶
CN115246732A (zh) * 2021-04-28 2022-10-28 光洋应用材料科技股份有限公司 复合氧化物靶材及其制法
CN116143512A (zh) * 2023-02-15 2023-05-23 先导薄膜材料(广东)有限公司 一种高纯二氧化钛平面靶材及其制备方法
CN116143512B (zh) * 2023-02-15 2024-02-27 先导薄膜材料(广东)有限公司 一种高纯二氧化钛平面靶材及其制备方法

Also Published As

Publication number Publication date
CN106587940B (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
CN109987941B (zh) 一种具有抗氧化性的高熵陶瓷复合材料及其制备方法和应用
CN106587940A (zh) 一种高纯致密氧化镁靶材及其制备方法
CN111320478B (zh) 一种碳硅陶瓷靶材的制备方法
CN110698205B (zh) 一种石墨烯增韧碳化硅陶瓷的制备方法
CN108907211A (zh) 一种制备大尺寸钼板坯的方法
JP2024503492A (ja) 高性能窒化ケイ素セラミック基板のバッチ焼結方法
CN102875152B (zh) 一种AlON透明陶瓷的低温快速制备方法
CN108640672A (zh) 一种镁铝尖晶石透明陶瓷的制备方法
CN108218419B (zh) 一种铟锡氧化物陶瓷靶材的制备方法
CN106966700A (zh) 一种氧化铟锡烧结体的短流程制备工艺
CN108546109B (zh) 氧空位可控的大尺寸azo磁控溅射靶材制备方法
CN111499371A (zh) 一种镁铝尖晶石透明陶瓷的制备方法
CN108794016A (zh) 一种高红外透过率AlON透明陶瓷的快速制备方法
TW201446705A (zh) 透光性金屬氧化物燒結體之製造方法及透光性金屬氧化物燒結體
CN113200746A (zh) 一种无压快速烧结制备红外透明陶瓷的方法
CN114058893B (zh) 一种AlCoCrFeNi作粘结剂的WC-Y2O3-ZrO2基体硬质合金的制备方法
CN111393170A (zh) 一种通过多因素优化制备高致密度氮化硅陶瓷的方法及制备的氮化硅陶瓷
CN112174645B (zh) 一种制备致密纳米晶粒陶瓷的方法
CN113173788A (zh) 一种红外透明陶瓷的快速烧结制备方法
JP2023512126A (ja) バナジウムタングステン合金ターゲット素材の製造方法
WO2005123626A1 (en) Process for manufacturing high density boron carbide
CN107434406B (zh) 纳米晶α-Al2O3和氮化钛复合材料的制备方法
CN101734920A (zh) 一种氮化钛多孔陶瓷及其制备方法
CN108276001A (zh) 一种超耐磨碳化钨硬质合金放电等离子体烧结方法
CN115353373A (zh) 一种氧化铝靶材及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant