CN113045332A - 一种超高孔隙率的高熵碳化物超高温陶瓷及制备方法 - Google Patents

一种超高孔隙率的高熵碳化物超高温陶瓷及制备方法 Download PDF

Info

Publication number
CN113045332A
CN113045332A CN202110172684.3A CN202110172684A CN113045332A CN 113045332 A CN113045332 A CN 113045332A CN 202110172684 A CN202110172684 A CN 202110172684A CN 113045332 A CN113045332 A CN 113045332A
Authority
CN
China
Prior art keywords
ultrahigh
entropy
temperature
temperature ceramic
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110172684.3A
Other languages
English (en)
Other versions
CN113045332B (zh
Inventor
王京阳
邵卓杰
吴贞
孙鲁超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN202110172684.3A priority Critical patent/CN113045332B/zh
Publication of CN113045332A publication Critical patent/CN113045332A/zh
Application granted granted Critical
Publication of CN113045332B publication Critical patent/CN113045332B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉多孔高熵超高温陶瓷隔热材料领域,具体为一种超高孔隙率的高熵碳化物超高温陶瓷及制备方法。多孔(ZraHfbNbcTadXe)C陶瓷的骨架基体材料为面心立方结构的单相高熵超高温陶瓷;按原子百分比计,a、b、c、d和e的取值范围为10%~35%,且a+b+c+d+e=1,X为Ti、W、V、Cr或Mo。以五种碳化物的混合物粉末作为原料,配制混合物粉末的浆料,加入发泡剂进行发泡,加入凝胶剂进行注模,随后进行冷冻和干燥。经1300~1550℃预烧结以及1750~2000℃高温无压原位反应烧结,制备出多孔高熵超高温陶瓷隔热材料。本发明所合成的超高温隔热材料具有超高孔隙率(83%~96%)、低密度(0.25~1.90g/cm3)、高强度(0.21~16.92MPa)、低热导率(0.10~0.35W/(m·K))和耐超高温(>2000℃)的优点,在航天航空热防护领域具有广阔的应用前景。

Description

一种超高孔隙率的高熵碳化物超高温陶瓷及制备方法
技术领域
本发明涉多孔高熵超高温陶瓷隔热材料领域,具体为一种超高孔隙率的高熵碳化物超高温陶瓷及制备方法。
背景技术
由于航天航空事业的快速发展,高超声速飞行器的飞行速度越来越快,从而带来更加严重的气动加热效应,造成飞行器表面温度可达2000℃以上。常规氧化物体系隔热材料的熔点相对较低,在大于2000℃的超高温条件下无法保持热稳定性,传统的隔热材料遇到耐温瓶颈。因此,亟需发展新型耐超高温的隔热材料,以满足国家战略发展需求。碳化物超高温陶瓷具有超高熔点,且具有优异的耐高温和热化学稳定性,以及高的强度和抗烧蚀性能,是性能优异的超高温隔热材料的候选体系。但是碳化物的本征热导率一般相对较高,需要采取有效措施降低其热导率以满足航天航空隔热材料的使用要求。
目前可有效降低材料热导率的主要方法有:(1)利用高熵效应降低基体材料的本征热导率;(2)提高材料的孔隙率。研究表明采用五种主元的碳化物为原料,通过高熵效应引入晶格畸变,有效抑制了热传输,从而制备出具有极低热导率的高熵(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C材料,其室温热导率仅为6.45W/(m·K),远低于五种主元碳化物的平均热导率24.96W/(m·K)(Xueliang Yan et al.J.Am.Ceram.Soc.(美国陶瓷学会杂志)2018;101:4486-4491.)。而且,由于多主元造成的高熵效应不仅可以显著降低材料的热导率,还可以提升其热学稳定性和力学性能。此外,由于空气热导率(0.023W/(m·K))远低于固体材料的热导率,因此引入多孔结构并达到超高孔隙率(>90%)也可获得具有极低热导率的隔热材料(L.Gong et al.Int.J.Heat Mass Tran.(国际传热与传质杂志)2013;67:253-259.)。
发明内容
本发明的目的在于提供一种超高孔隙率的高熵碳化物超高温陶瓷及其制备方法,采用发泡-凝注-冷冻干燥技术,并通过无压原位反应烧结,制备出具有岩盐结构的单相多孔高熵碳化物超高温陶瓷,而且还有低密度、高强度和低热导率的特点。
本发明的技术方案如下:
一种超高孔隙率的高熵碳化物超高温陶瓷,高熵碳化物超高温陶瓷为多孔(ZraHfbNbcTadXe)C陶瓷,多孔(ZraHfbNbcTadXe)C陶瓷的骨架基体材料为面心立方结构的单相高熵超高温陶瓷;按原子百分比计,a、b、c、d和e的取值范围为10%~35%,且a+b+c+d+e=1,X为Ti、W、V、Cr或Mo;高熵碳化物超高温陶瓷材料的孔隙率范围为83%~96%,密度0.25~1.90g/cm3,室温压缩强度0.21~16.92MPa,室温热导率0.10~0.35W/(m·K)。
所述超高孔隙率的高熵碳化物超高温陶瓷,材料呈现典型的多级孔结构,宏观孔的孔径范围为20~600μm,连通宏观孔的孔窗尺寸分布在20~200μm,孔壁上的微米孔孔径范围为0.2~7μm。
所述的超高孔隙率的高熵碳化物超高温陶瓷的制备方法,具体步骤如下:
(1)称取ZrC、HfC、NbC、TaC和XC粉末的摩尔比a:b:c:d:e的粉末,加入无水乙醇后进行球磨,干燥后得到成分和粒度均匀的混合物粉末;
(2)称取步骤(1)得到的混合物粉末为原料,加入去离子水、分散剂、烧结助剂,进行混合,搅拌1~4h后形成浆料;
(3)在步骤(2)所得到的浆料中加入发泡剂,快速搅拌15~30min进行发泡,接着加入凝胶剂,搅拌10~20min后注模,然后进行冷冻干燥,得到坯体;
(4)将步骤(3)得到的坯体在烘箱中60~90℃干燥12~24h,在保护气氛下1300~1550℃进行预烧结,裂解除去制备过程中添加的有机物;经1750~2000℃高温无压原位反应烧结,最终得到兼具宏观孔和微米孔的单相多孔(ZraHfbNbcTadXe)C高熵超高温陶瓷。
所述的超高孔隙率的高熵碳化物超高温陶瓷的制备方法,ZrC、HfC、NbC、TaC和XC的混合物粉末的粒度尺寸范围为0.5~3μm。
所述的超高孔隙率的高熵碳化物超高温陶瓷的制备方法,烧结助剂为石墨、碳化硼、碳化硅、硅化钼、硅化锆、氮化硅、氮化锆或氮化铝,添加量为原料总重量的0.1~5%。
所述的超高孔隙率的高熵碳化物超高温陶瓷的制备方法,分散剂为聚乙烯亚胺或柠檬酸铵,添加量为原料总重量的1~6%;发泡剂为十二烷基硫酸钠或者十二烷基磺酸钠,添加量为原料总重量的0.5~5%;凝胶剂为明胶,添加量为水重量的2~10%;浆料中的固含量为35~80wt%。
所述的超高孔隙率的高熵碳化物超高温陶瓷的制备方法,高温无压原位反应烧结的升温速率为3~10℃/min,保温时间为1~3.5h。
本发明的设计思想是:
本发明选取具有较低热导率的高熵碳化物超高温陶瓷为基体,通过发泡-注凝-冷冻干燥技术实现材料的超高孔隙率,然后经高温原位反应烧结制备出低热导率的多孔高熵碳化物超高温陶瓷隔热材料。为航空航天的热防护系统提供潜在的支撑材料,并满足国家战略需求。
本发明的优点及有益效果是:
1.本发明通过发泡-注凝-冷冻干燥工艺制备超高孔隙率、高强度和低热导率高熵碳化物超高温陶瓷,该方法制备的多孔材料呈现各向同性的多级孔结构,此外孔隙率高(83%~96%)且可控。
2.本发明通过混合物粉末高温原位反应烧结直接生成单相的多孔高熵碳化物材料,具有面心立方的晶体结构,成分均匀,热、力学性能稳定。
3.本发明操作方便,高温烧结为保护气氛下的无压烧结,且烧结温度低于大多数文献中的制备温度(2200℃)。
附图说明
图1为实施例1中所制备的多孔(Zr0.2Hf0.2Nb0.2Ta0.2Ti0.2)C高熵超高温陶瓷的XRD谱图。
图2(a)-图2(c)为实施例2中多孔(Zr0.2Hf0.1Nb0.3Ta0.3V0.1)C高熵超高温陶瓷的扫描电镜照片及相应各元素的EDS图谱。其中,图2(a)为宏观孔形貌,图2(b)为多孔骨架形貌图,图2(c)为对应各元素的EDS图谱。
具体实施方式
在具体实施过程中,本发明以ZrC、HfC、NbC、TaC和XC的混合物粉末作为原料,水为分散介质,加入分散剂、烧结助剂,先配制混合物粉末的浆料,然后加入发泡剂进行发泡,加入凝胶剂后进行注模,随后进行冷冻和干燥。最后经1300~1550℃预烧结,以及1750~2000℃高温原位反应烧结制备出多孔高熵碳化物超高温陶瓷隔热材料。
下面通过实施例详述本发明,但本发明的保护范围及实施方式不限于此。
实施例1
本实施例中,超高孔隙率的高熵碳化物超高温陶瓷及制备方法如下:
称取7.93g ZrC、14.62g HfC、8.05g NbC、14.81g TaC和4.60g TiC粉末,倒入Si3N4球磨罐中,加入30ml无水乙醇后进行球磨,其中球料质量比为4:1,用行星式球磨机以350rpm的转速球磨12h,混合均匀的悬浮液在烘箱中90℃干燥,干燥后的粉末过200目筛,得到均匀的混合物粉末。
将经球磨后的混合物粉末和30g去离子水、0.5g分散剂柠檬酸铵、1g烧结助剂石墨加入烧杯并不断搅拌,搅拌2h后形成浆料;所得到的浆料中加入0.3g发泡剂十二烷基磺酸钠,快速搅拌15min进行发泡,接着加入1.8g凝胶剂明胶,搅拌10min后注模,然后进行冷冻干燥,干燥24h后得到坯体;
接着将坯体在烘箱中60℃下干燥24h,然后在保护气氛下1400℃下进行预烧结;最后以3℃/min的升温速率1800℃下保温3.5h进行原位反应烧结,最终得到单相的多孔(Zr0.2Hf0.2Nb0.2Ta0.2Ti0.2)C高熵超高温陶瓷。
本实施例中,所制备材料的孔隙率为96.3%,密度0.37g/cm3,样品的宏观孔孔径分布为42~573μm,连通宏观孔的孔窗尺寸分布在27~186μm,连通宏观孔的孔窗是指宏观孔的球形孔壁上贯通相邻两个宏观孔的孔眼,微米孔孔径分布为0.3~6.9μm;室温压缩强度0.25MPa,室温热导率0.14W/(m·K),其相组成如图1中的XRD谱所示,从图中可以看出,所制备的多孔材料为纯净的单相(Zr0.2Hf0.2Nb0.2Ta0.2Ti0.2)C高熵碳化物。
实施例2
本实施例中,超高孔隙率的高熵碳化物超高温陶瓷及制备方法如下:
称取13.7g ZrC、12.6g HfC、20.9g NbC、38.5g TaC和4.2g VC粉末,倒入Si3N4球磨罐中,加入35ml无水乙醇后进行球磨,其中球料质量比为3:1,用行星式球磨机以260rpm的转速球磨28h,混合均匀的悬浮液在烘箱中60℃干燥,干燥后的粉末过200目筛,得到均匀的混合物粉末。
将经球磨后的混合物粉末和45g去离子水、5.4g分散剂聚乙烯亚胺、0.5g氮化铝加入烧杯并不断搅拌,搅拌1h后形成浆料;所得到的浆料中加入4.5g发泡剂十二烷基硫酸钠,快速搅拌25min进行发泡,接着加入4.5g凝胶剂明胶,搅拌20min后注模,然后进行冷冻干燥,干燥24h后得到坯体;
接着将坯体在烘箱中90℃下干燥12h,然后在保护气氛下1300℃下进行预烧结;最后以7℃/min的升温速率1900℃下保温2h进行原位反应烧结,最终得到单相的多孔(Zr0.2Hf0.1Nb0.3Ta0.3V0.1)C高熵超高温陶瓷。
本实施例中,多孔(Zr0.2Hf0.1Nb0.3Ta0.3V0.1)C高熵超高温陶瓷的孔隙率为92.4%,密度0.82g/cm3,其室温压缩强度和热导率分别为3.15MPa和0.19W/(m·K)。图2(a)-图2(c)为本实施例中所制备样品的SEM照片以及相应各元素EDS图谱,由图2(a)-图2(b)可看出,样品的宏观孔孔径分布为24~461μm,连通宏观孔的孔窗尺寸分布在34~169μm,微米孔孔径分布为0.25~4.5μm,该条件下合成的多孔(Zr0.2Hf0.1Nb0.3Ta0.3V0.1)C高熵超高温陶瓷材料具有典型的多级孔结构。从图2(c)看出各金属元素在样品中的分布是均匀的,表明所制备的样品为成分均匀的单相多孔高熵陶瓷。
实施例3
本实施例中,超高孔隙率的高熵碳化物超高温陶瓷及制备方法如下:
称取4.1g ZrC、15.1g HfC、4.2g NbC、23.0g TaC和23.4g WC粉末,倒入Si3N4球磨罐中,加入40ml无水乙醇后进行球磨,其中球料质量比为6:1,用行星式球磨机以310rpm的转速球磨20h,混合均匀的悬浮液在烘箱中75℃干燥,干燥后的粉末过200目筛,得到均匀的混合物粉末。
将球磨后混合物粉末和30g去离子水、2.5g分散剂聚乙烯亚胺、0.7g钼化硅加入烧杯并不断搅拌,搅拌4h后形成浆料;所得到的浆料中加入2.5g发泡剂十二烷基磺酸钠,快速搅拌30min进行发泡,接着加入0.6g凝胶剂明胶,搅拌15min后注模,然后进行冷冻干燥,干燥24h后得到坯体;
接着将坯体在烘箱中80℃下干燥16h,在保护气氛下1550℃下进行预烧结;然后以10℃/min的升温速率2000℃下保温1h进行原位反应反应烧结,最终得到单相的多孔(Zr0.1Hf0.2Nb0.1Ta0.3W0.3)C高熵超高温陶瓷。
本实施例中,多孔(Zr0.1Hf0.2Nb0.1Ta0.3W0.3)C高熵超高温陶瓷的孔隙率为85.1%,密度1.78g/cm3,样品的宏观孔孔径分布为27~445μm,连通宏观孔的孔窗尺寸分布在22~149μm,微米孔孔径分布为0.3~2.3μm;室温压缩强度13.2MPa,室温热导率0.33W/(m·K)。
实施例结果表明,本发明通过发泡-注凝-冷冻干燥工艺结合高温无压原位反应烧结技术制备超高孔隙率和高强度的高熵碳化物超高温陶瓷隔热材料。本发明所合成的超高温隔热材料具有超高孔隙率(83%~96%)、低密度(0.25~1.90g/cm3)、高强度(0.21~16.92MPa)、低热导率(0.10~0.35W/(m·K))和耐超高温(>2000℃)的优点,在航天航空热防护领域具有广阔的应用前景。

Claims (7)

1.一种超高孔隙率的高熵碳化物超高温陶瓷,其特征在于,高熵碳化物超高温陶瓷为多孔(ZraHfbNbcTadXe)C陶瓷,多孔(ZraHfbNbcTadXe)C陶瓷的骨架基体材料为面心立方结构的单相高熵超高温陶瓷;按原子百分比计,a、b、c、d和e的取值范围为10%~35%,且a+b+c+d+e=1,X为Ti、W、V、Cr或Mo;高熵碳化物超高温陶瓷材料的孔隙率范围为83%~96%,密度0.25~1.90g/cm3,室温压缩强度0.21~16.92MPa,室温热导率0.10~0.35W/(m·K)。
2.按照权利要求1所述超高孔隙率的高熵碳化物超高温陶瓷,其特征在于,材料呈现典型的多级孔结构,宏观孔的孔径范围为20~600μm,连通宏观孔的孔窗尺寸分布在20~200μm,孔壁上的微米孔孔径范围为0.2~7μm。
3.一种权利要求1或2所述的超高孔隙率的高熵碳化物超高温陶瓷的制备方法,其特征在于,具体步骤如下:
(1)称取ZrC、HfC、NbC、TaC和XC粉末的摩尔比a:b:c:d:e的粉末,加入无水乙醇后进行球磨,干燥后得到成分和粒度均匀的混合物粉末;
(2)称取步骤(1)得到的混合物粉末为原料,加入去离子水、分散剂、烧结助剂,进行混合,搅拌1~4h后形成浆料;
(3)在步骤(2)所得到的浆料中加入发泡剂,快速搅拌15~30min进行发泡,接着加入凝胶剂,搅拌10~20min后注模,然后进行冷冻干燥,得到坯体;
(4)将步骤(3)得到的坯体在烘箱中60~90℃干燥12~24h,在保护气氛下1300~1550℃进行预烧结,裂解除去制备过程中添加的有机物;经1750~2000℃高温无压原位反应烧结,最终得到兼具宏观孔和微米孔的单相多孔(ZraHfbNbcTadXe)C高熵超高温陶瓷。
4.按照权利要求3所述的超高孔隙率的高熵碳化物超高温陶瓷的制备方法,其特征在于,ZrC、HfC、NbC、TaC和XC的混合物粉末的粒度尺寸范围为0.5~3μm。
5.按照权利要求3所述的超高孔隙率的高熵碳化物超高温陶瓷的制备方法,其特征在于,烧结助剂为石墨、碳化硼、碳化硅、硅化钼、硅化锆、氮化硅、氮化锆或氮化铝,添加量为原料总重量的0.1~5%。
6.按照权利要求3所述的超高孔隙率的高熵碳化物超高温陶瓷的制备方法,其特征在于,分散剂为聚乙烯亚胺或柠檬酸铵,添加量为原料总重量的1~6%;发泡剂为十二烷基硫酸钠或者十二烷基磺酸钠,添加量为原料总重量的0.5~5%;凝胶剂为明胶,添加量为水重量的2~10%;浆料中的固含量为35~80wt%。
7.按照权利要求3所述的超高孔隙率的高熵碳化物超高温陶瓷的制备方法,其特征在于,高温无压原位反应烧结的升温速率为3~10℃/min,保温时间为1~3.5h。
CN202110172684.3A 2021-02-08 2021-02-08 一种超高孔隙率的高熵碳化物超高温陶瓷及制备方法 Active CN113045332B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110172684.3A CN113045332B (zh) 2021-02-08 2021-02-08 一种超高孔隙率的高熵碳化物超高温陶瓷及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110172684.3A CN113045332B (zh) 2021-02-08 2021-02-08 一种超高孔隙率的高熵碳化物超高温陶瓷及制备方法

Publications (2)

Publication Number Publication Date
CN113045332A true CN113045332A (zh) 2021-06-29
CN113045332B CN113045332B (zh) 2022-05-31

Family

ID=76508964

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110172684.3A Active CN113045332B (zh) 2021-02-08 2021-02-08 一种超高孔隙率的高熵碳化物超高温陶瓷及制备方法

Country Status (1)

Country Link
CN (1) CN113045332B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113401939A (zh) * 2021-07-14 2021-09-17 太原理工大学 一种低热导率的萤石结构高熵陶瓷气凝胶粉体及其制备方法
CN113716944A (zh) * 2021-09-01 2021-11-30 中国科学院金属研究所 一种Al2O3/RE3Al5O12高熵共晶陶瓷材料及光悬浮区熔定向凝固制备方法
CN114455573A (zh) * 2022-02-17 2022-05-10 天津海特热管理科技有限公司 一种超低密度固体材料、制备方法及其用途
CN115057715A (zh) * 2022-06-17 2022-09-16 中广核研究院有限公司 碳化硅包壳连接材料、碳化硅陶瓷连接件及其制作方法和应用
CN115057706A (zh) * 2022-05-09 2022-09-16 中国科学院金属研究所 一种超高孔隙率的复相高熵超高温陶瓷材料及制备方法
CN115215677A (zh) * 2022-05-12 2022-10-21 中国科学院金属研究所 一种孔结构均匀的多孔高熵碳化物超高温隔热材料及制备方法
CN115368163A (zh) * 2022-08-11 2022-11-22 中国科学院金属研究所 一种超轻质中熵碳化物超高温隔热材料及其制备方法
CN115385692A (zh) * 2022-08-03 2022-11-25 浙江师范大学 一种多尺度孔结构的高熵碳化物陶瓷及其制备方法
CN115386774A (zh) * 2021-09-30 2022-11-25 北京理工大学 一种兼具高强度和高均匀延伸率的难熔高熵合金及其制备方法
CN115595463A (zh) * 2022-10-26 2023-01-13 山东大学(Cn) 一种高熵硬质合金刀具材料及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105985131A (zh) * 2015-02-12 2016-10-05 中国科学院金属研究所 耐高温低热导的Y2SiO5多孔材料的制备方法
KR20170124441A (ko) * 2016-05-02 2017-11-10 한국과학기술원 고강도 초내열 고엔트로피 합금기지 복합소재 및 이의 제조방법
CN108218467A (zh) * 2016-12-14 2018-06-29 中国科学院金属研究所 一种高孔隙率及低热导率多孔纳米碳化硅陶瓷的制备方法
CN108911751A (zh) * 2018-06-30 2018-11-30 华南理工大学 一种ZrHfTaNbTiC超高温高熵陶瓷材料及其制备方法
CN110078512A (zh) * 2019-05-17 2019-08-02 淄博星澳新材料研究院有限公司 超高温高熵碳化物粉体及其制备方法
CN110563482A (zh) * 2019-10-17 2019-12-13 北京交通大学 一种发泡注凝成型-碳热还原反应烧结制备铁尾矿多孔陶瓷的方法
CN110615681A (zh) * 2019-09-23 2019-12-27 航天材料及工艺研究所 一种多孔高熵六硼化物陶瓷及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105985131A (zh) * 2015-02-12 2016-10-05 中国科学院金属研究所 耐高温低热导的Y2SiO5多孔材料的制备方法
KR20170124441A (ko) * 2016-05-02 2017-11-10 한국과학기술원 고강도 초내열 고엔트로피 합금기지 복합소재 및 이의 제조방법
CN108218467A (zh) * 2016-12-14 2018-06-29 中国科学院金属研究所 一种高孔隙率及低热导率多孔纳米碳化硅陶瓷的制备方法
CN108911751A (zh) * 2018-06-30 2018-11-30 华南理工大学 一种ZrHfTaNbTiC超高温高熵陶瓷材料及其制备方法
CN110078512A (zh) * 2019-05-17 2019-08-02 淄博星澳新材料研究院有限公司 超高温高熵碳化物粉体及其制备方法
CN110615681A (zh) * 2019-09-23 2019-12-27 航天材料及工艺研究所 一种多孔高熵六硼化物陶瓷及其制备方法
CN110563482A (zh) * 2019-10-17 2019-12-13 北京交通大学 一种发泡注凝成型-碳热还原反应烧结制备铁尾矿多孔陶瓷的方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113401939B (zh) * 2021-07-14 2022-09-06 太原理工大学 一种低热导率的萤石结构高熵陶瓷气凝胶粉体及其制备方法
CN113401939A (zh) * 2021-07-14 2021-09-17 太原理工大学 一种低热导率的萤石结构高熵陶瓷气凝胶粉体及其制备方法
CN113716944A (zh) * 2021-09-01 2021-11-30 中国科学院金属研究所 一种Al2O3/RE3Al5O12高熵共晶陶瓷材料及光悬浮区熔定向凝固制备方法
CN115386774A (zh) * 2021-09-30 2022-11-25 北京理工大学 一种兼具高强度和高均匀延伸率的难熔高熵合金及其制备方法
CN115386774B (zh) * 2021-09-30 2023-10-13 北京理工大学 一种兼具高强度和高均匀延伸率的难熔高熵合金及其制备方法
CN114455573A (zh) * 2022-02-17 2022-05-10 天津海特热管理科技有限公司 一种超低密度固体材料、制备方法及其用途
CN115057706A (zh) * 2022-05-09 2022-09-16 中国科学院金属研究所 一种超高孔隙率的复相高熵超高温陶瓷材料及制备方法
CN115057706B (zh) * 2022-05-09 2023-10-10 中国科学院金属研究所 一种超高孔隙率的复相高熵超高温陶瓷材料及制备方法
CN115215677A (zh) * 2022-05-12 2022-10-21 中国科学院金属研究所 一种孔结构均匀的多孔高熵碳化物超高温隔热材料及制备方法
CN115057715A (zh) * 2022-06-17 2022-09-16 中广核研究院有限公司 碳化硅包壳连接材料、碳化硅陶瓷连接件及其制作方法和应用
WO2023241059A1 (zh) * 2022-06-17 2023-12-21 中广核研究院有限公司 碳化硅包壳连接材料、碳化硅陶瓷连接件及其制作方法和器件包壳
CN115385692A (zh) * 2022-08-03 2022-11-25 浙江师范大学 一种多尺度孔结构的高熵碳化物陶瓷及其制备方法
CN115385692B (zh) * 2022-08-03 2023-10-17 浙江师范大学 一种多尺度孔结构的高熵碳化物陶瓷及其制备方法
CN115368163A (zh) * 2022-08-11 2022-11-22 中国科学院金属研究所 一种超轻质中熵碳化物超高温隔热材料及其制备方法
CN115595463A (zh) * 2022-10-26 2023-01-13 山东大学(Cn) 一种高熵硬质合金刀具材料及其制备方法与应用

Also Published As

Publication number Publication date
CN113045332B (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
CN113045332B (zh) 一种超高孔隙率的高熵碳化物超高温陶瓷及制备方法
CN107739950B (zh) 一种WC-Co-cBN复合硬质合金及其制备方法
CN109180188B (zh) 一种高熵含硼碳化物超高温陶瓷粉体及其制备方法
CN109180189A (zh) 一种高熵碳化物超高温陶瓷粉体及其制备方法
CN103145422B (zh) 一种碳化硼-硼化钛-碳化硅高硬陶瓷复合材料及其制备方法
CN110615681A (zh) 一种多孔高熵六硼化物陶瓷及其制备方法
CN112921265B (zh) 一种高温抗氧化耐烧蚀硼化锆基致密涂层的制备方法
CN115057706B (zh) 一种超高孔隙率的复相高熵超高温陶瓷材料及制备方法
CN110396632A (zh) 一种具有均质环芯结构的Ti(C,N)基金属陶瓷及其制备方法
CN104926309B (zh) 一种无硼或稀土元素的致密碳化硅陶瓷的制备方法
CN110002873B (zh) 一种多孔钽酸盐陶瓷及其制备方法
CN112125653A (zh) 一种基于3d打印制备的石墨烯陶瓷复合材料及其制备方法
CN105884358B (zh) 一种以单质粉体为起始原料的碳化硼-碳化硅复合陶瓷及其制备方法
CN111778424A (zh) 一种有效可控的具有多极孔结构的骨架的制备方法
CN108218467A (zh) 一种高孔隙率及低热导率多孔纳米碳化硅陶瓷的制备方法
CN112830810B (zh) 一种超高孔隙率铪钽铌三元碳化物超高温隔热材料及制备方法
CN116396089B (zh) 一种三维碳化硅/碳化钼陶瓷骨架增强碳基复合材料及其制备方法和应用
CN111484330A (zh) 金刚石增强碳化硅基板及其制备方法和电子产品
CN116217233A (zh) 一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用
CN115215677A (zh) 一种孔结构均匀的多孔高熵碳化物超高温隔热材料及制备方法
CN114349516A (zh) 一种低温合成高致密SiC陶瓷的方法
CN104163628B (zh) 一种制备HfC-SiC复相陶瓷的方法
JP2829724B2 (ja) 窒化珪素系複合セラミックス及びその製造方法
CN113735594B (zh) 一种热压烧结制备高导热氮化硅陶瓷的方法
CN115368163A (zh) 一种超轻质中熵碳化物超高温隔热材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant