CN108689715B - 一种氮化铝粉体及其制备方法 - Google Patents

一种氮化铝粉体及其制备方法 Download PDF

Info

Publication number
CN108689715B
CN108689715B CN201810350588.1A CN201810350588A CN108689715B CN 108689715 B CN108689715 B CN 108689715B CN 201810350588 A CN201810350588 A CN 201810350588A CN 108689715 B CN108689715 B CN 108689715B
Authority
CN
China
Prior art keywords
aluminum nitride
dopamine
slurry
gamma
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810350588.1A
Other languages
English (en)
Other versions
CN108689715A (zh
Inventor
宋锡滨
莫雪魁
潘光军
胡信德
王晓杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Sinocera Functional Material Co Ltd
Original Assignee
Shandong Sinocera Functional Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Sinocera Functional Material Co Ltd filed Critical Shandong Sinocera Functional Material Co Ltd
Priority to CN201810350588.1A priority Critical patent/CN108689715B/zh
Publication of CN108689715A publication Critical patent/CN108689715A/zh
Application granted granted Critical
Publication of CN108689715B publication Critical patent/CN108689715B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62886Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/322Transition aluminas, e.g. delta or gamma aluminas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种氮化铝粉体及其制备方法。所述制备方法的步骤包括:1)取γ‑Al2O3加入到缓冲液中,机械搅拌后,加入多巴胺,使多巴胺自聚合在γ‑Al2O3周围并形成包裹形式,得到悬浊液;2)将所得悬浊液浓缩,得浆料,控制浆料的固含量为20%‑30%;3)将所述浆料以碳热还原氮化工艺制备得到氮化铝。与常规方法制得的氮化铝粉体相比,本发明制备出的氮化铝粒径更细,并可实现颗粒粒径大小的可控制备;同时降低了氮化温度,符合绿色化学的要求;该方法制备过程简单,反应条件温和,反应中所需的化学试剂廉价易得,且原料利用率高。

Description

一种氮化铝粉体及其制备方法
技术领域
本发明涉及到一种氮化铝粉体及其制备方法。
背景技术
随着微电子技术的飞速发展,电子整机和电子元器件正朝微型化、轻型化、集成化,以及高可靠性和大功率输出等方向发展,越来越复杂的器件对基片和封装材料的散热提出了更高要求。氮化铝(AlN)陶瓷的理论热导率为319W/m·K,并具有良好的电绝缘性、低的介电常数和介电损耗、与硅相匹配的热膨胀系数,以及良好的化学稳定性和环保无毒等优点,已成为当今最为理想的基板材料和电子器件封装材料。氮化铝陶瓷的优良性能与其原始粉体的性质有着直接的关系。氮化铝晶粒、粉体粒径的大小及杂质的存在将对陶瓷的强度、韧性和热导率产生一定影响。氮化铝的导热机制是声子传导,晶格的缺陷、气孔、杂质和晶粒大小都会对声子产生散射,从而降低氮化铝陶瓷的热导率。其中晶粒生长的环境是控制以上不足的关键,因此调控氮化铝晶粒的生长环境以制备不同质量、粒径大小的氮化铝,是提高氮化铝陶瓷热导率的首要因素。
目前,制备氮化铝粉体的方法主要有:铝粉直接氮化,高温自蔓延和碳热还原法。铝粉直接氮化方法工艺简单,可在较低温度下反应,但是反应过程放出大量的热而导致铝粉转化率低,产物易结块,产品粒径粗大,质量稳定性差。高温自蔓延工艺反应速度快,不需要外部加热,但是升温和冷却的速度极快易于形成高浓度缺陷和非平衡结构,粉末的晶形不规则,粒径分布不均匀。碳热还原法原料来源广、便宜,工艺设备简单,且合成产品纯度高,尺寸均匀、不易团聚,粒度细但是仍是微米级且合成温度高。
发明内容
本发明的目的在于克服现有氮化铝粉体制备技术中存在的不足,提供一种改良的碳热还原方法制备超细氮化铝粉体,该方法旨在改变传统碳热还原法制备大颗粒氮化铝粉体的陶瓷基板应用形式,制备出高导热的氮化铝基片。其中,采用聚多巴胺(PDA)作为碳源前驱体,调节PDA的浓度以控制其包裹氧化铝的厚度,通过煅烧制得类石墨相结构碳包裹的Al2O3是后续碳热还原法成功制备超细高导热氮化铝的关键工序。
本发明的超细高导热氮化铝粉体制备方法,是将原料按相应质量比混合,再采用减压蒸馏浓缩混合液,首先获得均匀分散于PDA溶液中的Al2O3水性浆料,使用冷冻铸造方法获得PDA包裹的Al2O3生坯。采用碳热还原氮化工艺在石墨氮化炉内氮化,最后于富氧环境中经热处理排碳获得超细氮化铝粉体产物。
本发明所述的超细高导热氮化铝粉体的制备方法,包括:
1)取γ-Al2O3加入到缓冲液中,机械搅拌后,加入多巴胺,使多巴胺自聚合在γ-Al2O3周围并形成包裹形式,得到悬浊液;
2)将所得悬浊液浓缩,得浆料,控制浆料的固含量为20%-30%;
3)将所述浆料以碳热还原氮化工艺制备得到氮化铝。
采用上述制备方法,以多巴胺改性γ-Al2O3,通过控制多巴胺层的厚度以控制不同γ-Al2O3颗粒间距时利用空间限域效应的前提,其中选择γ-Al2O3作为铝源,有粒径小、反应活性高和成本低的优点,采用碳热还原氮化工艺有产品性能好、反应步骤简单及整个工艺中无三废的产生,符合绿色化学的要求。
本发明所述制备方法,步骤1)中,本发明所述的制备方法中,所述γ-Al2O3的粒径为110-150nm。选择特定粒径的γ-Al2O3作为铝源,有易于控制氮化铝产品的粒径、产品易得到和价格低的优点。
优选地,所述γ-Al2O3、多巴胺的质量比为4∶(3.6-7.2)。采用上述质量比,能够有效调控氮化铝产品的粒径。
所述缓冲液优选选用Tris碱分散在去离子水中调节pH值为8-9后得到的。进一步地,所述Tris碱(三羟甲基氨基甲烷)和多巴胺的质量比为1:(1-2.6);更进一步地,质量比为1:(1.4-1.8)。
本发明所述制备方法中,所述步骤3)包括:
3.1)将所述浆料在液氮中急速冷却,并干燥,得到PDA/Al2O3(聚多巴胺包裹的Al2O3);
3.2)将所述PDA/Al2O3经三阶段不同气氛热处理;
制备氮化铝通常需经过惰性气氛热处理,但是发明人创造性地发现,以不同气氛切换进行三阶段不同的热处理,能够缩短生产周期,大大提高生产效率。特别是按照下述的条件控制(不同的惰性气体气氛同时配合工艺),更能够达到最为理想的效果:
所述三阶段不同气氛热处理具体为:
第一阶段煅烧以16-22℃/分钟的升温速率在氩气气氛中由室温升到500℃-600℃,并保持2.5-3小时,获得具有类石墨相结构碳化了的聚多巴胺(C-PDA)包裹的Al2O3
第二阶段将C-PDA/Al2O3在氮气气氛中以8-12℃/分钟的升温速率到1050℃,并保持4.5-5小时,循环水冷却到600℃-700℃;
第三阶段在600℃-700℃温度下保持2.5-3小时,并持续通入压缩空气,随后自然冷却到室温,获得超细氮化铝粉体。
本发明所述的步骤3.1),将得到的浆料倒入自制的聚四氟乙烯容器中,并用放在液氮中急速冷却,随后将盛有冷冻浆料的聚四氟容器,转移到冷冻干燥机中在-60℃,-1atm下进行干燥,得表面包裹PDA的γ-Al2O3粉末,命名为PDA/Al2O3
通过上述制备方法,可以使得制备出的氮化铝热导率高至250W/(m K),且粒径可低至100nm左右,并且,发明人意外地发现,通过条件参数的控制,可以实现粒径大小的控制,以更好的满足工业化的需求。本发明一并提供其技术方案,如下:
当机械搅拌时间为2-2.5小时,所述Tris碱和多巴胺的质量比为1:(2.4-2.8)时,粉体粒径D50在200-220nm之间;
或,所述Tris碱和多巴胺的质量比为1:(1.8-2.2)时,粉体粒径D50在150-180nm之间;
或,所述Tris碱和多巴胺的质量比为1:(1.4-1.7)时,粉体粒径D50在90-110nm之间;
或,所述Tris碱和多巴胺的质量比为1:(1-1.3)时,粉体粒径D50在180-200nm之间;
当机械搅拌时间在1-1.5小时,所述Tris碱和多巴胺的质量比为1:(1.4-1.7)时,粉体粒径D50在120-150nm之间;
当机械搅拌时间在3-3.5小时,所述Tris碱和多巴胺的质量比为1:(1.4-1.7)时,粉体粒径D50在130-160nm之间。
作为本发明的优选技术方案,所述制备方法为:
1)取γ-Al2O3加入到Tris缓冲液中,机械搅拌2-3小时后,加入多巴胺,使多巴胺自聚合在γ-Al2O3周围并形成包裹形式,得到悬浊液,其中,所述γ-Al2O3、Tris碱和多巴胺的质量比为4:3:(4.5-5);
2)将所得悬浊液浓缩,得浆料,控制浆料的固含量为20%-30%;
3)将所述浆料在液氮中急速冷却,并干燥,得到PDA/Al2O3(聚多巴胺包裹的Al2O3);
4)将所述PDA/Al2O3经三阶段不同气氛热处理;所述三阶段不同气氛热处理具体为:
第一阶段煅烧以16-22℃/分钟的升温速率在氩气气氛中由室温升到500℃-600℃,并保持2.5-3小时,获得具有类石墨相结构碳化了的聚多巴胺(C-PDA)包裹的Al2O3
第二阶段将C-PDA/Al2O3在氮气气氛中以8-12℃/分钟的升温速率到1050℃,并保持4.5-5小时,循环水冷却到600℃-700℃;
第三阶段在600℃-700℃温度下保持2.5-3小时,并持续通入压缩空气,随后自然冷却到室温,获得超细氮化铝粉体。
本发明具有以下特点:
(1)与常规方法制得的氮化铝粉体相比,本发明制备出的氮化铝粒径更细,并可通过控制多巴胺的添加量及机械搅拌时间,利用空间限域效应,实现颗粒粒径大小的可控制备。
(2)与传统碳热还原氮化相比,以110-150nm粒径的γ-Al2O3为铝源并与碳化的聚多巴胺以分子形式结合,降低了氮化温度,符合绿色化学的要求。
(3)该方法制备过程简单,反应条件温和,反应中所需的化学试剂廉价易得,且原料利用率高。
附图说明
图1为本发明(实施例3)所制备的超细氮化铝粉末图片;
图2为本发明(实施例3)所制备的超细氮化铝粉末扫描电镜图片。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
本实施例提供一种超细高导热氮化铝粉体及其制备方法,该实施例是依据4g的γ-Al2O3,质量比为1∶2.4的Tris碱和多巴胺的混合液进行配制的,即称取4g的γ-Al2O3、3gTris碱和7.2g多巴胺。
其具体步骤如下:
(1)将3g的Tris碱加入到400ml去离子水中,用稀盐酸将分散液pH值调至8-9,机械搅拌20分钟溶解,得缓冲液。
(2)称取4g的γ-Al2O3分散到步骤(1)得到的缓冲液中,机械搅拌2小时后,加入7.2g的多巴胺,室温下改微波震荡,并保持3.5小时,保证多巴胺自聚合在γ-Al2O3周围形成包裹形式并保证形成均匀混合液。
(3)将步骤(2)得到的均匀混合液进行减压蒸馏浓缩,得到浆料;使其固含量为20%-33%;
(4)将步骤(3)得到的浆料倒入自制的聚四氟乙烯容器中,并用放在液氮中急速冷却,随后将盛有冷冻浆料的聚四氟容器,转移到冷冻干燥机中在-60℃,-1atm下进行干燥,得表面包裹PDA的γ-Al2O3粉末,命名为PDA/Al2O3
(5)PDA/Al2O3经三阶段不同气氛热处理,第一阶段煅烧以16-22℃/分钟的升温速率在氩气气氛中由室温升到500℃-600℃,并保持2.5-3小时,获得具有类石墨相结构碳化了的聚多巴胺(C-PDA)包裹的Al2O3;第二阶段将C-PDA/Al2O3在氮气气氛中以8-12℃/分钟的升温速率到1050℃,并保持4.5-5小时,循环水冷却到600℃-700℃;第三阶段在600℃-700℃温度下保持2.5-3小时,并持续通入压缩空气,随后自然冷却到室温,获得超细灰白色氮化铝粉体。
实施例2
本实施例提供一种超细高导热氮化铝粉体及其制备方法,该实施例是依据4g的γ-Al2O3,质量比为1∶2的Tris碱和多巴胺的混合液进行配制的,其具体步骤与实施例1所不同的是:
称取4g的γ-Al2O3分散到缓冲液中,机械搅拌2小时后,加入6g的多巴胺,室温下改微波震荡,并保持3.5小时,保证多巴胺自聚合在γ-Al2O3周围形成包裹形式并保证形成均匀混合液。
实施例3
本实施例提供一种超细高导热氮化铝粉体及其制备方法,该实施例是依据4g的γ-Al2O3,质量比为1∶1.6的Tris碱和多巴胺的混合液进行配制的,其具体步骤与实施例1所不同的是:
称取4g的γ-Al2O3分散到缓冲液中,机械搅拌2小时后,加入4.8g的多巴胺,室温下改微波震荡,并保持3.5小时,保证多巴胺自聚合在γ-Al2O3周围形成包裹形式并保证形成均匀混合液。
实施例4
本实施例提供一种超细高导热氮化铝粉体及其制备方法,该实施例是依据4g的γ-Al2O3,质量比为1∶1.2的Tris碱和多巴胺的混合液进行配制的,其具体步骤与实施例1所不同的是:
称取4g的γ-Al2O3分散到缓冲液中,机械搅拌2小时后,加入3.6g的多巴胺,室温下改微波震荡,并保持3.5小时,保证多巴胺自聚合在γ-Al2O3周围形成包裹形式并保证形成均匀混合液。
实施例5
本实施例提供一种超细高导热氮化铝粉体及其制备方法,该实施例是依据4g的γ-Al2O3,质量比为1∶1.6的Tris碱和多巴胺的混合液进行配制的,其具体步骤与实施例3所不同的是:
称取4g的γ-Al2O3分散到缓冲液中,机械搅拌1小时后,加入4.8g的多巴胺,室温下改微波震荡,并保持3.5小时,保证多巴胺自聚合在γ-Al2O3周围形成包裹形式并保证形成均匀混合液。
实施例6
本实施例提供一种超细高导热氮化铝粉体及其制备方法,该实施例是依据4g的γ-Al2O3,质量比为1∶1.6的Tris碱和多巴胺的混合液进行配制的,其具体步骤与实施例3所不同的是:
称取4g的γ-Al2O3分散到缓冲液中,机械搅拌3小时后,加入4.8g的多巴胺,室温下改微波震荡,并保持3.5小时,保证多巴胺自聚合在γ-Al2O3周围形成包裹形式并保证形成均匀混合液。
对比例1
本对比例提供一种氮化铝粉体及其制备方法,中国专利公开号CN 103274375 A“一种氮化铝粉体的制备方法”,该专利制备氮化铝的方法中用到大量的氢氟酸和硝酸清洗对人类健康及环境问题存在潜在的威胁,制备过程复杂且制备的氮化铝粒径较大,难以满足高导热性基板的要求。
对比例2
本对比例提供一种氮化铝粉体,购自日本德山株式会社,目前世界公认性能最好的氮化铝粉,用同样烧结工艺制备氮化铝基板,对比导热率。
试验例1
本试验例提供实施例1-6,对比例2所得到的氮化铝粉体烧结成基板后的导热系数测量以及数据。
实验操作如下:首先称取质量比为50∶1∶1的氮化铝(由实施例1-6所提供)、氟化钙(CaF2)和氧化钇(Y2O3),放入球磨罐,加入污水乙醇和磨球,球料质量比为4∶1,球磨12小时,将磨好的浆料在烘箱中80℃干燥。将干燥好的粉体以20MPa压力压制成φ1cm×1cm的圆柱试样。将试样在0.11MPa氮气,1650~1800℃,保温3~6小时烧结,自然冷却到室温后得到所需的氮化铝陶瓷基片。基片热导率采用该LFA447型激光导热系数测量仪测定。
对基板热导率测试实验结果如表1所示:
表1
Figure BDA0001633305040000081
从上表的实验结果不难看出,按照本发明所述制备方法制得的超细氮化铝粉体制得基板具有优良的热导率,其中又以实施例3所述样品的导热效果为最佳,图1、图2给出了实施例3制备的氮化铝粉样品及扫面电镜图片。
虽然,上文中已经用一般性说明、具体实施方式及试验,对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (8)

1.一种氮化铝粉体的制备方法,其特征在于,其步骤包括:
1)取γ-Al2O3加入到缓冲液中,机械搅拌后,加入多巴胺,使多巴胺自聚合在γ-Al2O3周围并形成包裹形式,得到悬浊液;所述γ-Al2O3、多巴胺的质量比为4∶(3.6-7.2);
2)将所得悬浊液浓缩,得浆料,控制浆料的固含量为20%-30%;
3)将所述浆料以碳热还原氮化工艺制备得到氮化铝;
所述步骤3)包括:
3.1)将所述浆料在液氮中急速冷却,并干燥,得到聚多巴胺包裹的Al2O3
3.2)将所述聚多巴胺包裹的Al2O3经三阶段不同气氛热处理;
所述步骤3.2)中的所述三阶段不同气氛热处理包括:
第一阶段煅烧以16-22℃/分钟的升温速率在氩气气氛中由室温升到500℃-600℃,并保持2.5-3小时,获得具有类石墨相结构碳化了的聚多巴胺包裹的Al2O3
第二阶段将具有类石墨相结构碳化了的聚多巴胺包裹的Al2O3在氮气气氛中以8-12℃/分钟的升温速率到1050℃,并保持4.5-5小时,循环水冷却到600℃-700℃;
第三阶段在600℃-700℃温度下保持2.5-3小时,并持续通入压缩空气,随后自然冷却到室温,即得氮化铝粉体。
2.根据权利要求1所述的制备方法,其特征在于,所述缓冲液选用Tris碱分散在去离子水中调节pH值为8-9后得到的。
3.根据权利要求2所述的制备方法,其特征在于,所述Tris碱和多巴胺的质量比为1:(1-2.6)。
4.根据权利要求3所述的制备方法,其特征在于,所述Tris碱和多巴胺的质量比为1:(1.4-1.8)。
5.根据权利要求1-4任一项所述的制备方法,其特征在于,所述γ-Al2O3的粒径为110-150nm。
6.根据权利要求1-4任一项所述的制备方法,其特征在于,所述的步骤3.1),将步骤2)所得浆料急速冷却,随后在-60℃以下冷冻干燥,得到聚多巴胺包裹的Al2O3
7.根据权利要求1-4任一项所述的制备方法,其特征在于,
1)取γ-Al2O3加入到Tris缓冲液中,机械搅拌2-3小时后,加入多巴胺,使多巴胺自聚合在γ-Al2O3周围并形成包裹形式,得到悬浊液,其中,所述γ-Al2O3、Tris碱和多巴胺的质量比为4:3:(4.5-5);
2)将所得悬浊液浓缩,得浆料,控制浆料的固含量为20%-30%;
3)将所述浆料在液氮中急速冷却,并干燥,得到聚多巴胺包裹的Al2O3
4)将所述聚多巴胺包裹的Al2O3经三阶段不同气氛热处理;所述三阶段不同气氛热处理具体为:
第一阶段煅烧以16-22℃/分钟的升温速率在氩气气氛中由室温升到500℃-600℃,并保持2.5-3小时,获得具有类石墨相结构碳化了的聚多巴胺包裹的Al2O3
第二阶段将具有类石墨相结构碳化了的聚多巴胺包裹的Al2O3在氮气气氛中以8-12℃/分钟的升温速率到1050℃,并保持4.5-5小时,循环水冷却到600℃-700℃;
第三阶段在600℃-700℃温度下保持2.5-3小时,并持续通入压缩空气,随后自然冷却到室温,获得超细氮化铝粉体。
8.一种氮化铝粉体,其特征在于,由权利要求1-7任一项所述的制备方法制备得到。
CN201810350588.1A 2018-04-18 2018-04-18 一种氮化铝粉体及其制备方法 Active CN108689715B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810350588.1A CN108689715B (zh) 2018-04-18 2018-04-18 一种氮化铝粉体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810350588.1A CN108689715B (zh) 2018-04-18 2018-04-18 一种氮化铝粉体及其制备方法

Publications (2)

Publication Number Publication Date
CN108689715A CN108689715A (zh) 2018-10-23
CN108689715B true CN108689715B (zh) 2021-01-15

Family

ID=63845033

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810350588.1A Active CN108689715B (zh) 2018-04-18 2018-04-18 一种氮化铝粉体及其制备方法

Country Status (1)

Country Link
CN (1) CN108689715B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110627509B (zh) * 2019-10-11 2022-03-15 航天特种材料及工艺技术研究所 一种氮化铝粉体的制备方法
CN111056846B (zh) * 2019-12-06 2021-04-20 西安交通大学 一种采用冷冻干燥和燃烧合成法快速制备的定向多孔氮化铝蜂窝陶瓷及其方法
CN111875387A (zh) * 2020-06-24 2020-11-03 广东工业大学 一种用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法及其应用
CN114380279A (zh) * 2021-10-29 2022-04-22 江苏悟晴电子新材料有限公司 一种高性能氮化铝材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1435371A (zh) * 2003-03-12 2003-08-13 北京科技大学 一种制备氮化铝粉末的方法
CN105206815A (zh) * 2015-09-28 2015-12-30 清华大学 一种碳包覆Li4Ti5O12-TiO2/Sn纳米复合材料及其制备和应用
CN106099076A (zh) * 2016-08-22 2016-11-09 北京化工大学 一种花状氮掺杂碳包覆铋结构复合材料及其制备方法和应用
CN106431418A (zh) * 2016-09-26 2017-02-22 中国科学院福建物质结构研究所 水热法制备纳米AlN粉体的方法和其中间体及产品
CN107634190A (zh) * 2017-08-14 2018-01-26 天津大学 一种通过高温热处理制备二氧化硅与碳复合材料的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1435371A (zh) * 2003-03-12 2003-08-13 北京科技大学 一种制备氮化铝粉末的方法
CN105206815A (zh) * 2015-09-28 2015-12-30 清华大学 一种碳包覆Li4Ti5O12-TiO2/Sn纳米复合材料及其制备和应用
CN106099076A (zh) * 2016-08-22 2016-11-09 北京化工大学 一种花状氮掺杂碳包覆铋结构复合材料及其制备方法和应用
CN106431418A (zh) * 2016-09-26 2017-02-22 中国科学院福建物质结构研究所 水热法制备纳米AlN粉体的方法和其中间体及产品
CN107634190A (zh) * 2017-08-14 2018-01-26 天津大学 一种通过高温热处理制备二氧化硅与碳复合材料的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AlN陶瓷粉末制备方法特点和进展;林健凉等;《功能材料》;20010630;第576-579页 *
Preparation of aluminium nitride granules by a two-step heat treatment metrod;Kuan-Ting Lai等;《Advanced Powder Technology》;20180117;第849-854页 *
溶胶-凝胶法制备氮化铝粉体;马艳红等;《真空电子技术》;20090831;第78-80页 *

Also Published As

Publication number Publication date
CN108689715A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
CN108689715B (zh) 一种氮化铝粉体及其制备方法
JP6271665B1 (ja) 球状窒化アルミニウム粉末の製造方法
JP6639733B2 (ja) 球状の窒化アルミニウム粉末を製造するための方法
US7737065B2 (en) Process for producing aluminum nitride sintered compacts
CN106744740B (zh) 一种高纯氮化铝粉体及其制备方法
CN108191434A (zh) 一种高热导率、高致密性氮化硅材料的高压快速制备方法
CN106517114A (zh) 一种低温低压制备超细氮化铝粉末的方法
CN115367717B (zh) 一种低团聚氮化铝粉体的制备方法
CN110791810B (zh) 一种碳化硅晶体的制备方法
JP3150606B2 (ja) 炭化珪素焼結体の比抵抗制御方法
CN114455949B (zh) 一种三维氮化铝骨架增强高取向片状石墨复合材料及其制备方法
Wang et al. Carbothermal synthesis of approximately spherical Si3N4 particles with homogeneous size distribution
CN113292053B (zh) 一种基于聚合物分散剂的碳热还原法制备高分散性氮化铝粉体工艺
TW201943642A (zh) 一種製造微細球形氮化鋁粉末的方法
KR101734831B1 (ko) (002) 우선 배향의 판상 질화알루미늄 분말의 제조방법
CN108395257A (zh) 一种氮化硅基复合材料及其制备方法
JP4958353B2 (ja) 窒化アルミニウム粉末及びその製造方法
JP5033948B2 (ja) 窒化アルミニウム粉末の製造方法ならびに窒化アルミニウム焼結体の製造方法
CN111252745A (zh) 一种微米级球形氮化硅及其制备方法
Zhang et al. Sintering performance of aluminum nitride powder prepared by combustion synthesis
CN117720353A (zh) 一种利用可溶性铝源和碳源制备氮化铝粉体的方法
KR20200078835A (ko) 바나듐 도핑된 탄화규소 분말의 제조방법 및 이에 의하여 제조된 탄화규소 분말, 이를 이용한 절연성 방열 필러
KR20200075446A (ko) 구형의 질화알루미늄 분말을 제조하기 위한 방법
KR101517024B1 (ko) 단결정 성장용 질화알루미늄 분말의 제조 방법 및 이를 이용하여 제조한 질화알루미늄 단결정 성장용 분말
CN114605155A (zh) 一种氮化硅镁超长纳米线和纳米带的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Aluminum nitride powder and preparation method thereof

Effective date of registration: 20211227

Granted publication date: 20210115

Pledgee: SHANGHAI GUOCI NEW MATERIAL TECHNOLOGY Co.,Ltd.

Pledgor: SHANDONG SINOCERA FUNCTIONAL MATERIAL Co.,Ltd.

Registration number: Y2021980016312