WO2005084874A1 - レーザ加工装置 - Google Patents

レーザ加工装置 Download PDF

Info

Publication number
WO2005084874A1
WO2005084874A1 PCT/JP2005/003507 JP2005003507W WO2005084874A1 WO 2005084874 A1 WO2005084874 A1 WO 2005084874A1 JP 2005003507 W JP2005003507 W JP 2005003507W WO 2005084874 A1 WO2005084874 A1 WO 2005084874A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
spots
processing apparatus
optical system
Prior art date
Application number
PCT/JP2005/003507
Other languages
English (en)
French (fr)
Inventor
Terumasa Morita
Susumu Takahashi
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Priority to EP05719822A priority Critical patent/EP1721695A4/en
Priority to JP2006510691A priority patent/JPWO2005084874A1/ja
Publication of WO2005084874A1 publication Critical patent/WO2005084874A1/ja
Priority to US11/512,550 priority patent/US20060289410A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • B23K26/043Automatically aligning the laser beam along the beam path, i.e. alignment of laser beam axis relative to laser beam apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0613Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis
    • B23K26/0617Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis and with spots spaced along the common axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0652Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • B23K26/0861Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane in at least in three axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/22Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
    • B28D1/221Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising by thermic methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting

Definitions

  • the present invention relates to a semiconductor material substrate such as a silicon wafer for a semiconductor device, and a liquid crystal panel.
  • the present invention relates to a laser processing apparatus used for cutting a large-diameter glass transparent substrate such as a Z plasma display, a semiconductor material substrate, a piezoelectric material substrate, a glass substrate, and the like.
  • a mechanical cutting method using a cutting device or the like has been generally performed.
  • a scribe line is formed in a grid pattern on the surface of a semiconductor substrate, and a knife edge or the like is pressed against the back surface of the semiconductor substrate along the scribe line to cut the semiconductor substrate.
  • This laser processing apparatus includes a mounting table on which a semiconductor substrate to be processed is mounted, a rotation table for rotating the mounting table around the Z axis, and a stage for moving the mounting table in the XYZ axis directions.
  • An XYZ axis stage a stage controller that controls the movement of each of these stages, a laser light source such as an Nd: YAG laser that generates pulsed laser light, and a laser light source that controls the power and repetition frequency of the pulsed laser light.
  • Laser dichroic mirror a dichroic mirror that reflects the laser light so that the direction of the optical axis of the pulsed laser light that also generates the laser light is changed by 90 degrees toward the semiconductor substrate, and a dichroic mirror that reflects the light.
  • a condenser lens for condensing the pulsed laser light on the object to be processed.
  • each stage is operated by the stage control unit, and the semiconductor substrate is moved to a predetermined position so that the focal point of the pulsed laser light is located inside the semiconductor substrate.
  • the laser light source control unit operates the laser light source so as to emit pulse laser light at a predetermined repetition frequency.
  • the pulsed laser light emitted from the laser light source is reflected by a dichroic mirror, then enters a condenser lens, and is focused into a spot inside the semiconductor substrate. As a result, a modified region is formed inside the semiconductor substrate.
  • two spots S arranged in the thickness direction can be simultaneously focused inside the semiconductor substrate 51. It can. That is, a light beam passing through the center of the two-point spot lens 50 and a light beam passing through the outer edge of the two-point spot lens 50 are respectively condensed, so that two spots S in the thickness direction of the semiconductor substrate 51 are formed. Can be collected.
  • laser light is currently applied in various fields.
  • a laser processing apparatus that cuts an object to be processed such as a semiconductor wafer using the laser light is known as one of the methods. (For example, see Patent Documents 2-5).
  • FIG. 35 shows a general configuration of this type of laser camera device.
  • a laser processing apparatus 150 shown in FIG. 35 mounts a wafer 151, which is a processing target, on an upper surface, and moves a stage 152 in X and Y directions parallel to a horizontal plane.
  • a stage controller 153 for controlling the movement, a laser oscillator 154 for vertically irradiating a very short and intense pulsed laser beam having a pulse width of 1 s or less, for example, toward the surface of the wafer 51, and a laser oscillator 154
  • a condensing optical system 155 such as a condensing lens for condensing the pulsed laser light irradiated by the laser beam on the surface or inside of the wafer 151; a laser oscillation control unit 156 for controlling the laser oscillation device 154;
  • a control unit 156 and a system control unit 157 for comprehensively controlling the stage controller 153 are provided.
  • the stage 152 is moved in the X and Y directions by the stage controller 153 to move the wafer 151 to the cutting start position shown in FIG.
  • the laser oscillation device 154 is operated by the laser oscillation control unit 156 to emit pulsed laser light.
  • the oscillation repetition frequency of the pulse laser light is set to a certain limited frequency.
  • the irradiated pulse laser light is condensed by the condensing optical system 155 into the inside of the wafer 151 as shown in FIG. 35, and high-density energy is concentrated at one point. Due to this energy, one point of stress is concentrated in the inside of the antenna 151, and a crack is generated in this portion.
  • the system control unit 157 sends a scan command (signal) to the stage controller 153, and moves the wafer 151 via the stage 152.
  • a scan command signal
  • the system control unit 157 controls the laser oscillation control unit 156 and the stage controller 153 comprehensively, and scans the stage while controlling the oscillation of the laser light.
  • the scanning direction of the wafer 151 in the Y direction is sequentially repeated by changing the moving direction of the stage 152, and the pulse laser is applied to the entire surface area of the wafer 151 in the same manner as described above. Light irradiation is performed. This allows the cracks to mesh in the XY direction Since the wafer 151 is formed, by applying an external force, the wafer 151 can be cut into small chips along the crack.
  • the repetition frequency of the pulsed laser beam is determined by the performance of the laser oscillating device 154 and its value is limited. Therefore, the repetition frequency is determined by multiplying the repetition frequency by the maximum power interval.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-266185 (FIG. 16, etc.)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-205181 (FIGS. 1-6)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-205180 (FIGS. 1-6)
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2002-192371 (FIGS. 1 to 6 etc.)
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2002-192370 (FIGS. 1 to 6 etc.)
  • the repetition frequency of the pulsed laser light and the maximum processing interval between cracks are determined to some extent, so that it is difficult to increase the processing speed and increase the throughput. It was difficult.
  • the present invention has been made in view of such circumstances, and a first object is to improve sharpness by increasing sharpness and easily cut a thick sample.
  • An object of the present invention is to provide a laser processing apparatus capable of performing the above-described operations.
  • a second object is to provide a laser processing apparatus capable of performing high-speed laser power control without changing the repetition frequency of laser light and the maximum processing interval between cracks and improving throughput. It is to be.
  • the present invention provides the following means.
  • the present invention provides a stage on which an object to be processed is placed; irradiation means for emitting laser light toward a surface of the object to be processed; and a step of splitting the laser light into a plurality of light fluxes, and An optical system for converging as a plurality of spots on the surface or inside of the object; and a moving means for moving the plurality of spots relative to the object to be processed in a horizontal direction.
  • a laser processing device is provided.
  • the irradiating means irradiates the irradiating laser light power into an optical system and splits the light into a plurality of light fluxes.
  • a plurality of spots are focused so as to be arranged in a horizontal direction or a thickness (depth) direction. Then, high-density energy is concentrated at each of the plurality of spots, causing cracks. That is, a plurality of cracks can be simultaneously generated in the horizontal direction or the thickness direction.
  • the plurality of cracks are relatively moved in the horizontal direction with respect to the workpiece by the moving means, the plurality of cracks can be formed continuously as indicated by a dotted line, and the cracks can be separated from each other.
  • the workpiece can be cut along the dotted line by being connected. Further, when a plurality of cracks are arranged in the thickness direction, cutting can be performed easily and reliably even for a thick workpiece.
  • the optical system for example, splits the laser light into a plurality of light beams and then focuses the light on a plurality of spots, After focusing, the light is branched into a plurality of spots, so that a large aperture (large NA) can be maintained. Therefore, the spot diameter can be reduced, and the sharpness can be increased. Therefore, the cutting performance can be improved.
  • the distance between the cracks can be reduced.
  • the processing interval can be set within the maximum gap. Therefore, the laser calorie can be performed at a high speed without changing the repetition frequency of the laser beam and the maximum processing interval between cracks, and the throughput can be improved.
  • the optical system splits the laser light into a plurality of light beams, and forms the plurality of spots along a direction orthogonal to the surface of the workpiece. It is desirable that the condensing optical system has a birefringent optical axis direction branching element for converging and arranging the light.
  • the laser beam radiated by the irradiating means is split into a plurality of light beams according to the polarization direction by the optical axis direction branching element, and the object to be processed is condensed by the focusing optical system.
  • the surface force is also collected as a plurality of spots such that the focal positions are aligned at the portion reaching the back surface.
  • high-density energy is concentrated at each of the plurality of spots, and cracks occur in each of the plurality of spots.
  • a plurality of cracks can be simultaneously generated so as to be arranged in the thickness (depth) direction of the workpiece.
  • the plurality of spots are moved in the horizontal direction with respect to the workpiece by the moving means, the plurality of cracks arranged in the thickness direction are drawn in the horizontal direction as indicated by dotted lines. It can be formed continuously. Then, the workpiece can be cut along the dotted line by connecting the cracks. At this time, since a plurality of cracks are generated in the thickness direction, it is possible to easily and surely cut even a thick target object.
  • the focusing optical system is, for example, After the laser beam is split into a plurality of light beams by the optical axis direction branching element, it is focused on a plurality of spots by an objective lens or the like. A large aperture (large NA) can be maintained. Therefore, the spot diameter can be reduced, and the sharpness can be increased. Therefore, the cutting performance can be improved.
  • the condensing optical system has a birefringent horizontal branching element that shifts a relative horizontal position of the plurality of adjacent spots.
  • the relative horizontal direction of the adjacent spot is determined.
  • Direction can be shifted. That is, it is possible to condense the spot in the workpiece in a state where each spot is divided into a depth (up and down) direction and a left and right direction.
  • each spot can be connected at an acute angle like a knife, and the sharpness can be further improved.
  • an observation optical system for observing the surface of the object to be processed is provided, and the moving means moves the plurality of spots to the object to be processed. It is preferable to be able to relatively move in a direction perpendicular to the surface, and to automatically adjust the focus of the surface of the workpiece based on data observed by the observation optical system during this movement. .
  • the moving means relatively moves the plurality of spots in a direction orthogonal to the surface of the workpiece based on the data observed by the observation optical system. Automatically adjusts the focus on the surface of the workpiece.
  • the surface of the object to be processed can always be captured by performing autofocus. This makes it possible to always maintain a constant distance between the surface of the object to be processed and the light collecting optical system. Therefore, when the plurality of spots are relatively moved in the horizontal direction by the moving means, the plurality of spots can be moved while always being condensed from the surface to the same position. Therefore, more accurate laser processing can be performed. It is also possible to perform laser power while observing the surface of the workpiece.
  • the laser light is a pulse laser
  • the optical system is a laser branching element that splits the laser light into a plurality of light fluxes;
  • a light condensing optical system for condensing light as a plurality of spots arranged in a horizontal direction on the surface or inside of the object to be processed.
  • the laser beam emitted from the irradiation unit is split into a plurality of light beams by the laser splitter.
  • the plurality of split light beams are incident on the light collection optical system, and then collected as a plurality of horizontally aligned spots on or on the surface of the workpiece.
  • high-density energy concentrates at each of the plurality of spots, and cracks occur in each of the plurality of spots.
  • a plurality of cracks can be formed continuously as indicated by dotted lines, and the cracks are connected to each other to form the cracks.
  • the workpiece can be cut along the dotted line.
  • each time one pulse of the pulsed laser light is irradiated a plurality of cracks can be generated simultaneously by the laser branching element and the focusing optical system. Even if it moves quickly in the branching direction, the processing interval between cracks can be kept within the maximum gap. Therefore, laser processing can be performed at high speed without changing the repetition frequency of the pulsed laser light and the maximum processing interval between cracks, and the throughput can be improved.
  • the laser branch element branches the laser light so as to spread on a plane, and the condensing optical system directs the plurality of spots in a horizontal direction. U, it is desirable to condense light so that they are aligned in a straight line.
  • the laser beam radiated by the irradiating means is branched so as to spread on a plane by the branching element, and then the surface or inside of the object to be processed is condensed by the condensing optical system. Then, the light is collected as a plurality of spots arranged in a straight line in the horizontal direction, for example, n spots.
  • the processing interval between the cracks is kept within the maximum processing interval even if the moving means is moved n times faster. Can reduce the processing time and improve throughput. Upgrading can be achieved.
  • n spots are moved by the moving means in a direction substantially orthogonal to the direction of the spots, a plurality of lines, that is, n lines, can be formed simultaneously, so that spots can be formed simultaneously.
  • the number of scans can be reduced, and the throughput can be improved.
  • the laser branch element branches the laser light so as to spread on planes orthogonal to each other, and the condensing optical system divides the plurality of spots into a horizontal plane. It is desirable to condense light so that it is arranged in two dimensions.
  • the laser beam radiated by the irradiating means is branched by a branching element so as to spread on a plane orthogonal to the plane, that is, two orthogonal planes, and then condensed by a condensing optical system.
  • the light is condensed on the surface or inside of the object to be processed in two dimensions, that is, a plurality of spots arranged in the XY direction parallel to the horizontal plane, for example, n X m spots. Moving within n times (m times) faster by the moving means while keeping within the maximum processing interval, and the number of scans can be reduced to lZm (lZn) times, further improving throughput. Can be.
  • the laser processing apparatus further includes a rotating unit that rotates the plurality of spots around an axis orthogonal to a surface of the workpiece.
  • the plurality of spots can be rotated around the axis orthogonal to the surface (horizontal plane) of the object to be affected by the rotating means, the directions of the plurality of spots can be changed. It can be performed easily and smoothly.
  • the relation between the moving direction and the arrangement direction of the spots can be made relative to each other, so that the laser camera can be performed at a higher speed, and the throughput can be improved.
  • the laser light is incident on the laser branch element in a parallel light beam state, and the laser branch element converts the laser light into a plurality of light beams having different angles. It is desirable that the angle splitting element be split into a plurality of light fluxes.
  • the laser beam emitted from the irradiating means is incident on an angle branch element such as a diffraction grating in a parallel beam state.
  • angle branch element After being split into a plurality of light fluxes having different angles by the child, the light flux is incident on the light collecting optical system.
  • the angle branch element is a diffraction grating
  • the branch surface is disposed at a pupil position of the light-collecting optical system or at a position optically conjugate with the pupil position. It is desirable.
  • a light beam can be more accurately split and a plurality of light beams can be made incident on the light-collecting optical system.
  • the splitting surface of the diffraction grating is arranged at the pupil position of the condensing optical system or at a position optically conjugate with the pupil position, it is possible to ensure the telecentricity of the condensed light beam to each spot. In addition, the uniformity of the laser can be ensured.
  • the angle branching element is a Nomarski prism
  • the localization surface is disposed at a pupil position of the condensing optical system or at a position optically conjugate with the pupil position. Hope that and.
  • a light beam can be split into a plurality of light beams depending on the difference in polarization direction.
  • the localized surface is arranged at the pupil position of the condensing optical system or at a position optically conjugate with the pupil position, telecentricity can be ensured as in the case of the above-described diffraction configuration.
  • this method has a feature that since the light beam is split in the direction of polarization, it is easy to make the power distribution of the two light beams uniform.
  • the angle branching element has a mirror prism force.
  • the pulse laser light can be surely split into a plurality of light beams and then incident on the condensing optical system.
  • the laser beam is incident on the laser beam splitter in a non-parallel light beam state, and the laser beam splitter moves the laser beam parallel to the optical axis.
  • a parallel-moving branching element that branches into a plurality of light beams. Is desirable.
  • a non-parallel light beam emitted from the irradiating means is incident on a parallel-moving branch element such as a birefringent crystal. Then, after being refracted by the parallel movement branching element in accordance with the polarization direction, the light is branched into a plurality of light beams so as to move in parallel to the optical axis, and is incident on the light collecting optical system.
  • a parallel-moving branch element such as a birefringent crystal.
  • the translational splitting element is a birefringent optical element having birefringence.
  • a plurality of light beams can be easily and reliably obtained by using a birefringent optical element such as quartz or calcite.
  • the parallel-movement-branching element is constituted by a mirror prism.
  • the mirror prism by using the mirror prism, it is possible to surely split the light into a plurality of light fluxes and then make the light flux enter the condensing optical system.
  • a plurality of cracks can be simultaneously generated in the optical axis direction branching element so as to be arranged in the thickness (depth) direction of the object to be processed. Even elephants can be cut easily and reliably.
  • the spot can be focused while maintaining a large aperture (large NA). Therefore, the sharpness can be increased by reducing the spot diameter, and the cutting performance can be improved.
  • each time one pulse of the pulsed laser light is irradiated a plurality of cracks can be simultaneously generated by the laser branch element and the condensing optical system. Therefore, laser processing can be performed at high speed without changing the repetition frequency of the pulsed laser light and the maximum processing interval between cracks, and the throughput can be improved.
  • FIG. 1 is a diagram showing a configuration of a first embodiment of a laser processing apparatus according to the present invention.
  • FIG. 2A is a diagram showing a configuration of an objective lens that splits a pulse laser beam into a plurality of light beams.
  • FIG. 4 is a diagram in which the crystal axis of the birefringent material lens is arranged so as to be orthogonal to the optical axis.
  • FIG. 2B is a diagram showing a configuration of an objective lens that splits a pulse laser beam into a plurality of light beams, in which a crystal axis of a birefringent material lens is arranged parallel to the optical axis.
  • FIG. 3 is a view showing a state where two spots are focused so as to be arranged in the thickness direction inside the wafer.
  • FIG. 4A is a diagram showing a configuration of a condensing optical system, wherein the crystal axis of the birefringent material lens is arranged so as to be orthogonal to the optical axis.
  • FIG. 4B is a diagram showing the configuration of the light-converging optical system, in which the crystal axis of the birefringent material lens is arranged parallel to the optical axis.
  • FIG. 5A is a diagram showing a configuration of a condensing optical system.
  • FIG. 5B is a sectional view taken along the line AA in FIG. 5A.
  • FIG. 5C is a sectional view taken along the line BB in FIG. 5A.
  • FIG. 6 is a diagram showing a state where four spots are focused by the focusing optical system shown in FIG. 5A so as to line up in the thickness direction inside the wafer.
  • FIG. 7 is a diagram showing a configuration of a light collecting optical system.
  • FIG. 8A is a sectional view taken along the line CC shown in FIG. 7.
  • FIG. 8B is a sectional view taken along the line D-D shown in FIG. 7.
  • FIG. 9A is a diagram showing a configuration of a light-converging optical system, in which a crystal axis of a birefringent plate is arranged so as to be inclined at 45 degrees with respect to the optical axis.
  • FIG. 9B is a diagram showing the configuration of the light-converging optical system, wherein the crystal axis of the birefringent plate is arranged so as to be inclined by 60 degrees with respect to the optical axis.
  • FIG. 10 is a diagram showing a state where two spots are focused by the focusing optical system shown in FIG. 9A so as to be arranged in the thickness direction inside the wafer.
  • FIG. 11 is a diagram showing a configuration of a light collecting optical system.
  • FIG. 12A is a sectional view taken along the line E-E shown in FIG. 11.
  • FIG. 12B is a sectional view taken along the line FF shown in FIG. 11.
  • FIG. 13A is a diagram showing a configuration of a condensing optical system, wherein the crystal axes of the birefringent plates are arranged so as to be orthogonal to the optical axis.
  • FIG. 13B is a diagram showing a configuration of a condensing optical system, wherein the crystal axis of the birefringent plate is 4
  • FIG. 14A is a sectional view taken along the line GG shown in FIG. 13A.
  • FIG. 14B is a sectional view taken along the line H—H shown in FIG. 13B.
  • FIG. 15 is a view showing a state where four spots are focused inside the wafer by the focusing optical system shown in FIGS. 13A and 13B.
  • FIG. 16 is a diagram showing a configuration of a light collecting optical system.
  • FIG. 17 is a view showing the configuration of a second embodiment of the laser processing apparatus of the present invention.
  • FIG. 18 is a diagram showing a configuration of a laser processing device.
  • FIG. 19 is a view showing a configuration of a third embodiment of the laser processing apparatus of the present invention.
  • FIG. 20 is a diagram showing a state in which a laser beam is split into a plurality of light beams by a diffraction grating, and a spot is focused inside a wafer by a focusing lens.
  • FIG. 21A is a diagram showing a state where diffraction gratings are arranged so that a plurality of spots are arranged in the X direction of the wafer.
  • FIG. 21B is a diagram showing a state in which a plurality of spots are arranged in the Y direction by rotating the diffraction grating around the Z axis by 90 degrees by the rotation mechanism from the state shown in FIG. 21A.
  • FIG. 22 is a diagram showing a state where scanning is performed in a branching direction of a plurality of spots.
  • FIG. 23 is a top view of the wafer showing a trajectory of scanning the wafer surface in the X direction.
  • FIG. 24 is a diagram showing a state where scanning is performed in a direction orthogonal to the branching direction of a plurality of spots.
  • FIG. 25 is a diagram showing a fourth embodiment of the laser processing apparatus according to the present invention, showing a state where the branch surface of the diffraction grating is arranged at a position conjugate with the pupil position of the condenser lens via a relay lens.
  • FIG. 25 is a diagram showing a fourth embodiment of the laser processing apparatus according to the present invention, showing a state where the branch surface of the diffraction grating is arranged at a position conjugate with the pupil position of the condenser lens via a relay lens.
  • FIG. 26 is a view showing a fifth embodiment of the laser processing apparatus of the present invention, and is a view showing a state where a pulse laser beam is split into a plurality of light beams by the Nomarski prism.
  • FIG. 27 is a specific design diagram of a Nomarski prism.
  • FIG. 28 is a view showing a sixth embodiment of the laser processing apparatus of the present invention, showing a state where the pulsed laser light is split into a plurality of light beams by a mirror prism.
  • FIG. 29 is a view showing a seventh embodiment of the laser processing apparatus of the present invention, and is a view showing a state in which a pulse laser beam is split into a plurality of light beams by a polarizing beam splitter.
  • FIG. 30 is a view showing an eighth embodiment of the laser processing apparatus of the present invention, and is a view showing a state where the pulse laser light is branched into a plurality of light beams by a birefringent crystal.
  • FIG. 31 is a diagram showing a state in which birefringent crystals are arranged so that the condensing position force is also shifted.
  • FIG. 32 is a diagram showing a state in which birefringent crystals are cascaded.
  • FIG. 33 is a diagram showing a state where a plurality of spots are brought into close proximity and focused on one place.
  • FIG. 34 is a view showing a conventional laser beam source, and shows a state in which two spot light beams are made to line up in the thickness direction inside a semiconductor substrate by a two-point spot lens.
  • FIG. 35 is a diagram showing a configuration of a conventional laser camera device.
  • FIG. 36 is a diagram showing a trajectory obtained by scanning the wafer surface in the X direction.
  • FIG. 37 is a diagram showing a state in which a laser beam is being applied to a wafer.
  • P laser light (pulse laser light), P, multiple light beams, S; spot, 1,40,101; laser calorie device, 2, 102; wafer (target object), 3a; Surface, 3,103; stage, 4,104; illuminating means, 5; birefringent material lens (branching element in the optical axis direction), 6; objective lens (optical system, condensing optics system), 7,107; moving means, 8; observation optics System, 23, 26, 60, 61, 64; birefringent plate (branching element in optical axis direction), 25; concave lens (branching element in optical axis direction), 27, 63; birefringent plate (branching element in horizontal direction), 41 ; First laser oscillation device (irradiation means); 42; second laser oscillation device (irradiation means); 46; focusing optical system; 47; tunable laser oscillation device (irradiation means); 105; diffraction grating (laser Branch element, angle branch element),
  • the laser processing apparatus 1 of the present embodiment has, for example, a thickness of 0.1 mm and is formed in a circular shape. A description will be given as an apparatus for finely cutting a wafer (object to be processed) 2 into chips by laser processing.
  • the laser cassette apparatus 1 includes a stage 3 on which a wafer 2 is mounted on a mounting surface 3a arranged in parallel with a horizontal plane, and a pulsed laser toward a surface 2a of the wafer 2.
  • Irradiating means 4 for emitting light (laser light) P, and splitting pulsed laser light P into a plurality of luminous fluxes P ′ and arranging the plurality of luminous fluxes P ′ in wafer 2 from front surface 2a of wafer 2 to back surface 2b
  • Moving means 7 capable of relatively moving a plurality of spots S in the horizontal direction (XY direction) and vertical direction (Z direction); and an observation optical system 8 for optically observing the surface 2a of the wafer 2. ing.
  • the stage 3 is configured to be movable in the XY direction parallel to the horizontal plane and the Z-axis direction perpendicular to the XY direction. That is, by moving the stage 3, the plurality of spots S can be relatively moved in the horizontal direction with respect to the wafer 2 as described above.
  • the movement of the stage 3 in the XYZ directions is controlled by the stage controller 10. That is, the stage 3 and the stage controller 10 function as the moving means 7.
  • a laser oscillation device 11 such as an Nd: YAG laser that irradiates the pulse laser beam P perpendicularly to the surface 2a of the wafer 2 is provided.
  • the laser oscillation device 11 has a function of emitting a short and intense pulsed laser beam having a pulse width of 1 ⁇ s or less at a repetition frequency of 20 kpps, for example.
  • the laser oscillation device 11 can emit the pulse laser light P in a parallel light beam state, and the laser oscillation control unit 12 controls the emission timing of the pulse laser light P and the like. That is, the laser oscillation device 11 and the laser oscillation control unit 12 function as the irradiation unit 4.
  • the laser oscillation controller 12 and the stage controller 10 are comprehensively controlled by a system controller 13.
  • the objective lens 6 is arranged between the laser oscillation device 11 and the wafer 2, and includes a plurality of lenses 6a as shown in Fig. 2 (A).
  • One of the plurality of lenses 6a is the birefringent material lens 5.
  • the birefringent material lens 5 is limited to one Not something.
  • the crystal axis of the birefringent material lens 5 is arranged in a direction perpendicular to the optical axis (vertical direction with respect to the paper surface).
  • the objective lens 6 splits the pulse laser beam P into two (plural) light beams P ′ by using the difference in the refractive index depending on the polarization direction, and separates the two light beams P ′ from the surface of the wafer 2. It has a function of condensing light as two spots S vertically separated in the direction perpendicular to 2a, that is, in the thickness direction (depth direction) of the wafer 2.
  • the observation optical system 8 includes a light source 15 that irradiates a linearly polarized semiconductor laser light L, and a first lens 16 that converts the semiconductor laser light L radiated from the light source 15 into parallel light.
  • a polarizing beam splitter 17 disposed adjacent to the first lens 16, and a 1Z four-wave plate 18 for rotating the polarization direction of the semiconductor laser light L transmitted through the polarizing beam splitter 17 by 90 degrees in the reciprocation of the optical path.
  • a second lens 21 for condensing the light reflected by the beam splitter 17 on a photodiode 20.
  • the dichroic mirror 19 reflects the semiconductor laser light L and transmits light of other wavelengths, for example, the pulse laser light P irradiated by the laser oscillation device 11.
  • the polarization beam splitter 17 transmits, for example, linearly polarized light of a P component, which is a vibration component parallel to the incident surface, of the linearly polarized light, and light of an S component, which is a vibration component perpendicular to the incident surface. It has the function of reflecting light.
  • the system control unit 13 performs! /, Based on the imaging data received by the photodiode 20.
  • the stage controller 10 is feedback-controlled to move the stage 3 in the Z-axis direction. That is, autofocus is performed.
  • the semiconductor laser light L is adjusted so that the surface 2a of the wafer 2 is always focused.
  • the stage 3 is moved in the XY direction by the stage controller 10, and the wafer 2 is moved to the cutting start position.
  • the laser oscillation device 11 is operated by the control unit 12 to emit the pulsed laser light P in a parallel light beam state.
  • the emitted pulse laser light P passes through the dichroic mirror 19 and then enters the objective lens 6.
  • the pulse laser beam P incident on the objective lens 6 is refracted by the birefringent material lens 5 according to the polarization direction and splits into two light beams P ′ ( Along with a light beam of a polarization component directed in the same direction as the crystal axis and a light beam of a polarization component orthogonal to the crystal axis), and the surface 2a of the wafer 2 along the direction orthogonal to the surface 2a of the wafer 2 (optical axis direction).
  • the light is condensed as two spots S in the wafer 2 along the optical axis at a distance of, for example, 2111-500111.
  • the spot interval is not limited to 2 ⁇ m-500 ⁇ m.
  • the interval is 2 ⁇ m to 50 ⁇ m.
  • the system control unit 13 sends a signal to the stage controller 10 to move the wafer 2 in the X direction via the stage 3.
  • the two upper and lower spots S can be continuously generated in the X direction as indicated by the dotted lines.
  • the above-described scanning in the X direction is sequentially repeated to generate cracks in the X direction over the entire area of the wafer 2. That is, a plurality of dotted lines extending in the X direction are formed.
  • the interval between the cracks is, for example, 10 m, and is set so as to maintain the maximum machining interval necessary for connecting adjacent cracks.
  • the stage controller 10 moves the ueno 2 through the stage 3 in the Y direction, and repeats the scanning in the Y direction in the same manner as described above. Laser force in the Y direction over the entire area of
  • the spot S can be condensed by the entire objective lens 6, so that ⁇ can be made large. Therefore, the spot diameter can be reduced, and the light beam P 'can be condensed at a smaller point to increase sharpness. Therefore, the wafer 2 can be cut more smoothly, and the cutting property can be improved. Further, since each spot S is condensed by using the entire objective lens 6, the intensity of each spot S can be made the same, and processing unevenness can be minimized.
  • the light source 15 irradiates linearly polarized semiconductor laser light L.
  • the irradiated semiconductor laser light L is converted into parallel light by the first lens 16 and then enters the polarization beam splitter 17. Then, the light becomes linearly polarized light having a ⁇ component, which is a vibration component parallel to the incident surface, and enters the 1Z4 wavelength plate 18.
  • the incident light is converted into circularly polarized light by transmitting through the 1Z4 wavelength plate 18 and then reflected by the dichroic mirror 19 to enter the objective lens 6.
  • the light incident on the objective lens 6 illuminates the surface 2a of the wafer 2.
  • the light reflected by the surface 2a of the wafer 2 is condensed by the objective lens 6, then reflected by the dichroic mirror 119, enters the 1Z4 wavelength plate 18, and is a vibration component perpendicular to the incident surface. It becomes polarized light of S component. This light is reflected by the polarizing beam splitter 17 and then imaged on the photodiode 20 by the second lens 21.
  • the imaged data is sent to the system control unit 13.
  • the system control unit 13 controls the stage controller 10 to move the stage 3 in the Z direction so that the semiconductor laser light L is focused on the surface 2a of the wafer 2 based on the transmitted data. That is, the automatic focusing is performed, and the surface 2a of the wafer 2 is always imaged.
  • scanning can be performed while always maintaining the distance between the objective lens 6 and the surface 2a of the wafer 2 at a constant distance. Therefore, since scanning can be performed while collecting a plurality of spots S at the same position from the surface 2a, laser processing with higher precision can be performed. Also, ⁇ It is also possible to perform the laser beam cleaning while checking the surface 2a of the wafer 2.
  • a plurality of cracks are simultaneously generated by the birefringent material lens 5 so as to be arranged in the thickness (depth) direction of the wafer 2. Can be done. Therefore, even a thick wafer 2 can be cut easily and reliably.
  • the NA can be made large, the light flux P 'can be focused on a smaller point. Accordingly, the spot diameter can be reduced to increase the sharpness, and the Ueno 2 can be cut more smoothly.
  • the force in which the crystal axis of the birefringent material lens 5 is arranged in a direction orthogonal to the optical axis is not limited to this. More preferably, the force is as shown in FIG. As shown, a crystal axis is preferably provided so as to be parallel to the optical axis.
  • the force using the objective lens 6 in which one of the plurality of lenses 6a is a birefringent material lens 5 is not limited to this, as the light-collecting optical system.
  • a condensing optical system in which a birefringent birefringent plate (optical axis direction branching element) 23 is inserted at the tip of the objective lens 6 may be adopted.
  • the birefringent plate 23 for example, a plate having a crystal axis in a direction perpendicular to the optical axis (vertical direction with respect to the paper surface) may be used. In this case, light may be incident on the birefringent plate 23 in a non-parallel light beam state.
  • a material of the birefringent plate for example, ⁇ -BBO, quartz, calcite, LiNBO, YVO, or the like can be used.
  • the crystal axis of the birefringent plate 23 may be configured to be parallel to the optical axis.
  • the light beam emitted from the objective lens 6 has a certain angle (having an angle of NA 0.2-0.8, etc.) with respect to the optical axis, it is separated into a plane component including the optical axis and a polarized light component orthogonal to it.
  • the optical axis advances laterally and forms two focal points.
  • the shape becomes a deformed circular shape because the separation ratio of both polarized light components on the pupil plane differs at the pupil position. For this reason, in order to further equalize the light amount ratio between the two points, it is preferable that the light is incident as circularly polarized light.
  • FIG. 4 shows a configuration in which the birefringent plate 23 is inserted at the tip of the objective lens 6.
  • the configuration is not limited to this, and a condensing optical system in which a birefringent plate is inserted in front of the objective lens 6 may be used. It may be configured.
  • a part of the optical system for condensing the pulsed laser light P incident on the objective lens 6 may be a birefringent plate so that the substantial light source position differs depending on the polarization direction. By doing so, a plurality of spots divided along the thickness direction can be focused inside the wafer 2.
  • the pulse laser beam P may be incident in a non-parallel beam state.
  • the pulse laser beam P is configured to be split into two light beams P ′ and to be focused as two spots vertically separated in the optical axis direction.
  • the spot S is not limited to two.
  • the objective lens 6 is combined with a birefringent concave lens (optical axis direction branching element) 25 arranged on the morning side of the objective lens 6 shown in FIG. 5 and a birefringent plate (optical axis direction branching element) 26.
  • a birefringent concave lens optical axis direction branching element 25
  • a birefringent plate optical axis direction branching element 26
  • the crystal axis of the concave lens 25 and the crystal axis of the birefringent plate 26 are both arranged in a direction perpendicular to the optical axis (left-right direction with respect to the plane of the paper) and when viewed from the optical axis direction. Are arranged to have a relative angle of 45 degrees.
  • the pulse laser beam P may be incident on the birefringent plate 26 so as to be in a non-parallel beam state.
  • the light may be incident on the concave lens 25 in a parallel light beam state.
  • the focal position is branched into two depending on the polarization direction (the same as the crystal axis).
  • the two light beams incident on the birefringent plate 26 are further focused according to the polarization components because the crystal axis of the birefringent plate 26 viewed from the optical axis direction is rotated by 45 degrees with respect to the concave lens 25. Branch so that the position is split into two. That is, as shown in FIG. 6, the light can be collected as four spots S arranged in the optical axis direction of the wafer 2.
  • the condensing optical system described above has a configuration in which one birefringent plate and a concave lens are combined.
  • the separation distances in the optical axis direction are different (the thickness is different).
  • Different birefringent plates Two birefringent plates (branching elements in the optical axis direction) 60 and 61 and the objective lens 6 may constitute a condensing optical system.
  • the crystal axes of the two birefringent plates 60 and 61 are arranged so as to have a relative angle of 45 degrees when viewing the optical axis direction force.
  • a 1Z4 wavelength plate 62 is inserted in front of the objective lens 6 so that the pulse laser beam P is incident on the objective lens 6 in a linearly polarized light or a circularly polarized state.
  • the pulse laser beam P passing through the 1Z4 wavelength plate 62 and the objective lens 6 The first birefringent plate 60 has linear polarized light of 45 ° azimuth, or , Incident with circularly polarized light.
  • the incident laser beam P is split by the birefringent plate 60 into two luminous fluxes P ′ with the same amount of light as the polarization components orthogonal to each other, and then enters the second (next) birefringent plate 61. Then, the two light beams P ′ incident on the second birefringent plate 61 are further separated into two light beams by polarization components orthogonal to each other.
  • the four spots S can be condensed in a state where the four spots S are adjacent to each other in the optical axis directions of the laser 2.
  • the intensity ratio of the four spots S can be changed by changing the orthogonal component ratio depending on the polarization state of the pulsed laser light P to be incident. Also, by changing the angle between the crystal axes of the two birefringent plates 60 and 61, the intensity ratio of the four spots S can be changed.
  • the pulse laser beam P was separated into four spots S using the two birefringent plates 60 and 61.However, if three birefringent plates were used, it could be separated into eight spots S. If four birefringent plates are used, 16 spots S can be separated. In this way, the number of birefringent plates may be increased if necessary.
  • the two spots S are vertically condensed in a direction perpendicular to the surface of the wafer 2 and on the same optical axis. It is not necessary to collect light on the same optical axis.
  • the condensing optical system may be configured such that the objective lens 6 and the relative horizontal A birefringent birefringent plate (horizontal branching element) 27 shown in FIG. 9A and a concave lens 28 arranged adjacent to the birefringent plate 27 may be used.
  • the birefringent plate 27 has a crystal axis inclined at 45 degrees to the optical axis, and the concave lens 28 has Have.
  • the condensing optical system is configured as described above, first, when the pulsed laser beam P is incident on the concave lens 28, the light is branched so that the focal position is divided into two vertically depending on the polarization direction. Then, when light is incident on the next birefringent plate 27, the focus position divided into two in the vertical direction can be shifted in the horizontal direction (lateral shift).
  • two spots S ⁇ can be emitted inside the wafer 2 in a state of being divided in the vertical and horizontal directions.
  • stress in the scanning direction can be generated in the wafer 2, thereby further improving the cutting performance. Can be improved.
  • the force is such that the crystal axis of the birefringent plate 27 is inclined at 45 degrees with respect to the optical axis. This is not limited to this case. As shown in FIG. It may be a birefringent folded plate 27a inclined 60 degrees to the axis. In this case, the lateral displacement and the displacement in the depth direction can be simultaneously generated by one of the birefringent plates 27a.
  • a force obtained by combining one birefringent plate 27 and a concave lens 28 is, for example, two flat plates having different thicknesses as shown in FIG.
  • a light collecting optical system may be configured using a birefringent folding plate (horizontal branching element) 63 and a birefringent plate (optical axis branching element) 64. As shown in FIG. 12, the crystal axes of the two birefringent plates 63 and 64 are orthogonal to the optical axis (left and right directions with respect to the paper surface).
  • the pulse laser beam P is horizontally separated by the first birefringent plate 63 into two light beams P ′. That is, the focus position is divided into two on the left and right. Then, the two light beams P ′ are respectively shifted in the vertical direction by the second birefringent plate 64. In other words, the focus position divided into two in the left and right direction can be shifted in the vertical direction (vertical shift).
  • the wafer 2 is divided inside the wafer 2 in the vertical and horizontal directions. In two spots light can be.
  • the modified layer can be provided diagonally, in addition to the distortion in the height direction, the distortion in the cutting direction can be applied, so that the scanning time in the scanning direction can be shortened and the sharpness can be improved. It comes out.
  • a condensing optical system may be configured by arranging the birefringent plate 66 having a crystal axis in a 45-degree direction. In this case, as shown in FIG. 15, it is possible to emit four spots S ⁇ which are shifted in the vertical and horizontal directions inside the wafer 2.
  • the condensing optical system may be configured as shown in Fig. 16. That is, the condensing optical system includes a first lens group 30 having a positive refractive power for making the light beam of the pulsed laser light P emitted from the laser oscillation device 11 almost parallel, and a light beam from the first lens group 30.
  • a polarizing beam splitter 31 for separating light into reflected light and transmitted light; a first concave mirror 32 and a second concave mirror 33 for reflecting and condensing the reflected light and transmitted light separated by the polarized beam splitter 31, respectively;
  • a first 1Z4 wave plate 34 disposed between the beam splitter 31 and the first concave mirror 32, and a second 1Z4 wave plate 35 disposed between the polarizing beam splitter 31 and the second concave mirror 33;
  • a positive refracting power for condensing the light beam transmitted through the first 1Z4 wavelength plate 34 and the second 1Z4 wavelength plate 35 and passing through the polarization beam splitter 31 into the inside of the wafer 2 via the third 1Z4 wavelength plate 36.
  • a second lens group 37 having
  • a first optical system 38 composed of a first lens group 30, a second lens group 37, and a first concave mirror 32, a first lens group 30, a second lens group 37,
  • the second optical system 39 is configured to have a different imaging characteristic from the second optical system 39 including the second concave mirror 33. That is, the light beam reflected by the first concave mirror 32 and the light beam reflected by the second concave mirror 33 have different convergence states.
  • the laser beam P emitted from the laser oscillation device 11 becomes parallel light by the first lens group 30 and enters the polarization beam splitter 31. At this time, the laser oscillation device 11 Irradiates an unpolarized pulsed laser beam P.
  • the pulsed laser beam P that has entered the polarization beam splitter 31 is converted into circularly polarized light after the P-polarized light flux P ′ of the linearly polarized light is turned by 90 degrees and is incident on the first 1Z4 wave plate 34 to be circularly polarized. Incident on the concave mirror 32. Then, the light is reflected while being converged by the first concave mirror 32. The reflected light flux P 'is incident again on the first 1Z4 wavelength plate 34 and becomes an S-polarized light flux. Therefore, this light beam P ′ transmits through the polarization beam splitter 31. Then, after being transmitted, the light is converted into circularly polarized light by the third 1Z4 wavelength plate 36 and enters the second lens group 37.
  • the S-polarized light flux P after passing through the polarization beam splitter 31, is incident on the second 1Z4 wavelength plate 35 and becomes circularly polarized light.
  • the light enters the second concave mirror 33.
  • the light is converged and reflected by the second concave mirror 33.
  • the reflected light beam P ' is incident on the second 1Z4 wavelength plate 35 again and becomes a P-polarized light beam P'. Therefore, this light beam P ′ is reflected by the polarization beam splitter 31 such that the direction of the optical axis changes by 90 degrees.
  • the light After being reflected, the light is circularly polarized by the third 1Z4 wavelength plate 36 and enters the second lens group 37.
  • the pulse laser beam P can be split into two light beams P and incident on the second lens group 37, respectively. Then, each light beam P ′ can be converged as two spots S inside the wafer 2 by the second lens group 37.
  • the polarization beam splitter 31 when the polarization beam splitter 31 is irradiated with the P-polarized or S-polarized pulse laser light P by the laser oscillation device 11, the normal light can be made incident on the second lens group 37. Because it is possible, it is also possible to use the luminous flux properly according to the situation.
  • the first concave mirror 32 and the second concave mirror 33 are slightly decentered from each other, so that the spot S shifted in the left-right direction in addition to the shift in the vertical direction is distorted. It is also possible to condense light inside c2.
  • semiconductor devices such as ICs and LSIs, imaging devices such as CCDs, display devices such as liquid crystal panels, and devices such as magnetic heads can be cut more accurately.
  • the difference between the second embodiment and the first embodiment is that, in the first embodiment, the pulse laser light P is split into two light beams P 'and two
  • the laser processing device 40 according to the second embodiment focuses the pulse laser light P as two spots S using the difference in wavelength.
  • the laser processing apparatus 40 of the present embodiment comprises a first laser oscillation device (irradiation means) 41 and a second laser oscillation device (irradiation means) 42 for irradiating pulse laser light P having different wavelengths, A half mirror 43 that combines the pulsed laser beams P emitted from both laser oscillators 41 and 42 on the same optical axis, and a chromatic aberration generating lens 44 that changes the focal position of both pulsed laser beams P according to the wavelength And an objective lens 45 that focuses the pulsed laser light P as two spots S in the wafer 2 having two focal positions aligned in an optical axis direction orthogonal to the surface.
  • the chromatic aberration generating lens 44 and the objective lens 45 constitute a condensing optical system 46.
  • the pulsed laser light P emitted by the first laser oscillator 41 passes through the half mirror 43 and enters the chromatic aberration generating lens 44. Further, the pulsed laser light P irradiated by the second laser oscillation device 42 is reflected by the half mirror 43 and enters the chromatic aberration generating lens 44. Then, each pulsed laser beam P incident on the chromatic aberration generating lens 44 is emitted so that the focal position is different according to the wavelength, and the objective lens 45 enters the inside of the wafer 2 in the depth direction (thickness direction). It is collected as two separate spots S.
  • two spots S can be easily generated by using the difference in the wavelength of the pulse laser beam P.
  • a desired number of the plurality of spots S can be generated by irradiating a plurality of pulse laser beams P having different power wavelengths into two spots S.
  • the first laser oscillation device 41 and the second laser oscillation device 42 are configured to irradiate the laser beams P having different wavelengths, respectively.
  • a tunable laser oscillation device (irradiation means) 47 capable of arbitrarily selecting a wavelength and simultaneously irradiating a plurality of lights of the selected wavelength may be used. By doing so, the configuration can be further simplified.
  • a plurality of spots S are focused inside the wafer 2 in the thickness direction, but may be focused not only on the inside but also on the front and back surfaces. Further, the plurality of spots S are moved relative to the wafer 2 by moving the stage 3 in the XY direction. However, the irradiation means 4 and the like are moved in the XY direction by moving the stage 3 in the XY direction. No., the plurality of spots S may be moved relative to 2.
  • the laser processing apparatus 101 of the present embodiment will be described as an apparatus that finely cuts a wafer (workpiece) 102 formed in a circular shape into chips by laser processing.
  • the laser cassette 101 includes a stage 103 for mounting a wafer 102 on a mounting surface 103a arranged in parallel with a horizontal plane, and a surface 102a or an inner portion of the wafer 102.
  • Irradiating means 104 for emitting pulsed laser light P, diffraction grating (laser splitting element, angle splitting element) 105 for splitting pulsed laser light P into a plurality of light beams P ', and a plurality of light beams P'
  • a condensing lens (condensing optical system) 106 for converging the plurality of spots S into a plurality of spots S
  • a moving unit 107 for moving the plurality of spots S relative to the wafer 102 in a horizontal direction.
  • the diffraction grating 105 and the condenser lens 106 constitute an optical system that divides the pulsed laser beam P into a plurality of high-speed P's and condenses them as a plurality of spots S on the surface 102a or inside the wafer 102. I do.
  • the stage 103 is configured to be movable in the XY direction parallel to the horizontal plane. By the movement of the stage 103, it is possible to relatively move the plurality of spots S relative to the wafer 102 in the horizontal direction as described above.
  • the movement of the stage 103 in the X and Y directions is controlled by the stage controller 110. That is, the stage 103 and the stage controller 110 function as the moving means 107.
  • the pulsed laser light P is applied vertically to the surface 102a of the wafer 102.
  • a laser oscillation device 111 for irradiating is provided.
  • the laser oscillation device 111 has a function of emitting a short and strong pulsed laser beam having a pulse width of 1 ⁇ s or less at a limited repetition frequency, for example. Further, the laser oscillation device 111 is configured to emit the pulse laser beam in a parallel light beam state.
  • the emission timing of the pulse laser beam and the like are controlled by the laser oscillation control unit 112. That is, the laser oscillation device 111 and the laser oscillation control unit 112 function as the irradiation unit 104.
  • the laser oscillation control unit 112 and the stage controller 110 are comprehensively controlled by the system control unit 113.
  • the diffraction grating 105 is a transmission type diffraction grating that branches the pulsed laser beam ⁇ ⁇ emitted from the laser oscillation device 111 into a plurality of light beams P ′ having different angles.
  • the laser 105 is disposed between the wafer 102 and the laser oscillation device 111 so that 105a substantially coincides with the pupil position of the condenser lens 106.
  • this diffraction grating 105 can control the diffraction efficiency according to the diffraction order to make the split light amount ratio of each light beam P 'approximately the same as in a CGH (Computer Generated Hologram). I have.
  • the diffraction grating 105 splits the pulse laser beam P in a plane (linear shape) (in the left-right direction with respect to the paper surface).
  • the diffraction grating 105 is rotatable around a Z-axis orthogonal to the surface of the wafer 102 by a rotation mechanism (rotation means) 114.
  • the condenser lens 106 is disposed between the diffraction grating 105 and the wafer 102, and the plurality of light beams P 'branched by the diffraction grating 105 so as to spread on a plane are shown in Figs. As shown, a function of condensing light so that a plurality of spots S are arranged linearly in the horizontal direction! In the present embodiment, the number of spots S will be described as five.
  • the stage controller 110 moves the stage 103 in the X and Y directions, as shown in FIG.
  • the wafer 102 is moved to the cutting start position.
  • the laser oscillation device 111 is operated by the laser oscillation control unit 112 to emit the pulse laser beam P in a parallel light beam state.
  • the emitted pulsed laser light P enters the diffraction grating 105 as shown in FIG. 20, and a plurality of light fluxes P ′, that is, five light fluxes P ′ (—secondary light, ⁇ first-order light, zero-order light) Light, primary light and secondary light).
  • the split light amount ratio of each light flux P ' is substantially the same as described above.
  • Each of these light fluxes P enters the condenser lens 106 and is condensed as a plurality of spots S inside the wafer 102. That is, as shown in FIG. 22, the light is condensed in a state where five spots S are linearly arranged in the X direction of the wafer 102. Then, high-density energy is concentrated on each of the spots S, and cracks occur. In this way, every time the pulsed laser beam P is irradiated by one pulse, five linearly arranged cracks can be generated inside the wafer 102 at the same time.
  • the branch surface 105a of the diffraction grating 105 is arranged at the pupil position of the condenser lens 106, it is possible to ensure the telecentricity of the light flux P 'condensed on each spot S, and to achieve uniform processing. Sex can be obtained.
  • the system control unit 113 sends a signal to the stage controller 110 to move the wafer 102 via the stage 103 in the X direction as shown in FIG. That is, the stage 103 is moved in the branching direction of the spot S.
  • the cracks can be generated simultaneously one after another in the moving direction (scanning direction). Therefore, even if the stage 103 is moved at a speed, for example, five times faster than the conventional moving speed, the cracks are continuously generated in the moving direction as indicated by the dotted line while maintaining the maximum processing interval between the cracks. Can be done.
  • the cracks arranged in a dotted line serve as guide lines when the wafer 102 is cut later.
  • the diffraction grating 105 is rotated by 90 degrees around the Z axis to align the plurality of spots S linearly in the Y direction of the wafer 102.
  • the stage controller 110 moves the wafer 102 in the ⁇ direction via the stage 103, and sequentially repeats the scanning in the ⁇ direction as described above to cover the entire area of the wafer 102.
  • a laser beam is applied in the ⁇ direction over the whole area.
  • the stage 2 can be moved at a speed five times faster than before while maintaining the maximum processing interval between cracks, thereby reducing the time required for laser processing. Can be.
  • the inside of the wafer 102 is in a state where cracks are continuously generated in the 102 direction like a mesh while maintaining the maximum processing interval. ing.
  • the wafer 102 can be cut along cracks arranged in a dotted line, and a chip-shaped wafer 102 can be obtained.
  • the stage 2 while maintaining the maximum processing interval between the cracks without changing the repetition frequency of the pulsed laser beam, the stage 2 is maintained at the maximum. Since it can be moved in the direction at a speed five times faster than before, it is possible to reduce the time required for laser processing and improve throughput. In addition, the direction of the plurality of spots S can be easily and smoothly changed by rotating the diffraction grating 105 by the rotating mechanism 114, so that laser processing can be performed at a higher speed in combination with the movement of the stage 103.
  • the pulsed laser beam can be surely branched into a plurality of desired light beams P 'by the diffraction grating 105.
  • the branch surface 105a is arranged at the pupil position of the condenser lens 106, it is possible to secure the telecentricity of the condensed light beam to each spot S, and to ensure uniformity during laser beam slewing. can do. The effect is obtained even when the branch surface 105a is not always placed at the pupil position of the condenser lens 106.
  • the number of spots S is five.
  • the number of spots S is not limited to five and may be a plurality.
  • the moving speed of the stage 103 can be increased in proportion to the number of spots S.
  • the stage 103 can be made n times faster than the conventional speed.
  • the force for moving the stage 103 in the branching direction of the spot S is not limited to this.
  • the stage 103 may be moved in a direction substantially perpendicular to the branching direction of the spot S as shown in FIG.
  • the spot S can be formed by a plurality of lines at a time, and the number of scans can be reduced. Therefore, the time required for laser irradiation can be reduced, and the throughput can be improved.
  • the diffraction grating 105 was rotated, but this method is not always necessary.For example, by rotating the wafer 102 by 90 degrees, the branching direction of the spot S and the scanning It is also possible to match the direction.
  • a force configured so that the spots S are arranged in a straight line is not limited thereto.
  • a plurality of luminous fluxes such that the pulsed laser light P is spread by a diffraction grating 105 to two orthogonal planes Branched into P ', and then a plurality of spots S (n spots in the X direction and m spots in the Y direction) arranged two-dimensionally, ie, in the XY direction, inside the wafer 102 by the condenser lens 106 It may be configured to condense as.
  • the stage 103 can be moved in the X direction n times faster than the conventional speed while keeping the processing interval between cracks within the maximum gap, and the number of scans must be reduced to 1Z m. Therefore, the throughput can be further improved.
  • the difference between the fourth embodiment and the third embodiment is that, in the third embodiment, the force that is obtained by arranging the splitting surface 105a of the diffraction grating 105 at the pupil position of the condenser lens 106 is used in the fourth embodiment.
  • the branch surface 105a of the grating 105 is disposed at a position optically conjugate with the pupil position of the condenser lens 106.
  • the first relay lens 120 and the second relay lens 121 are arranged between the diffraction grating 105 and the condenser lens 106. ing.
  • the diffraction grating 105 has the branch surface 105a located at a position conjugate with the pupil position of the condenser lens 106 via the relay lenses 120 and 121.
  • the pupil position force of the condenser lens 106 can be set inside the lens, Even when the diffraction grating 105 cannot be arranged directly at the pupil position, it is possible to cope with the situation, so that the degree of freedom in design can be improved.
  • the pulse laser beam P is split into a plurality of light beams P ′ by using the diffraction grating 105 which is a laser splitting element.
  • a Nomarski prism 125 is used as a laser branch element (angle branch element).
  • the Nomarski prism 125 is configured by combining crystal axes of crystals having birefringence such as quartz.
  • the crystal axis of the laser oscillation device 111 side is orthogonal to the optical axis ( It is designed so that the crystal axis on the side of the condenser lens 106 has an inclination of 45 degrees with respect to the optical axis.
  • the localized surface (branch surface) 125a of the Nomarski prism 125 is configured to coincide with the pupil position inside the condenser lens 106.
  • the laser processing apparatus of the present embodiment is configured so that circularly polarized pulse laser light P is incident on the Nomarski prism 125 using a 1Z4 wavelength plate (not shown). That is, when the laser oscillation device 111 that irradiates the pulsed laser light P in a linearly polarized state in advance is used, the light may be converted into circularly polarized light using a 1Z4 wavelength plate. Thus, it is sufficient that the laser oscillation device 111 can irradiate the pulsed laser light P regardless of the polarization state.
  • the pulse laser beam P emitted from the laser oscillator 111 is The light enters the Nomarski prism 125 in a polarized or circularly polarized state.
  • the incident laser light P is split into two linearly polarized light beams orthogonal to each other, refracted, and split into two light beams P '.
  • the split light flux P is collected as two spots S inside the wafer 102 by the condenser lens 106.
  • the localized surface 125a coincides with the pupil position of the condenser lens 106, good luminous flux branching becomes possible.
  • the pulse laser beam P is Since the light or circularly polarized light enters the Nomarski prism 125, the branching ratio becomes uniform, and the light amount ratio between the two spots can be made equal.
  • the pulse laser beam P can be easily split into two light beams P using the Nomarski prism 125 without using a special optical system.
  • the Nomarski prism 125 when the Nomarski prism 125 is configured as shown in FIG. 27, immediately, the first crystal having a crystal axis in a direction orthogonal to the optical axis (perpendicular to the plane of the paper) is used. 1 25b and the second crystal 125c having a crystal axis in a direction of 45 degrees with respect to the optical axis are joined together so that the apex angle is 16 ° 20 ′.
  • the pulse laser beam P is incident on the position at a distance of 3 mm from, two luminous fluxes P 'branched at an angle of 4 mrad at a position 15 mm away from the second crystal 125c can be obtained.
  • a 1Z4 wavelength plate may be arranged between the Nomarski prism 125 and the condenser lens 106.
  • the two light beams P ′ can be made to enter the condenser lens 106 in a circularly polarized state, and the polarization components of each spot S can be made uniform. Therefore, it is possible to minimize the influence of workability due to the difference in polarization components.
  • the pulse laser beam P is split into a plurality of light beams P ′ using the diffraction grating 105 which is a laser splitting element.
  • the sixth embodiment is characterized in that the pulse laser light P is split into two (plural) light fluxes P ′ using a mirror prism (laser splitting element, angle splitting element) 127.
  • a half mirror 128 is arranged between the laser oscillation device 111 and the condenser lens 106 on the optical axis of the pulsed laser light P.
  • the half mirror 128 has a function of transmitting the pulse laser beam P by 50% and reflecting by 50%.
  • the pulse laser beam P reflected by the half mirror 128 is reflected by the mirror 129.
  • the light is reflected toward the pupil position of the condenser lens 106. That is, the pulse laser beam P is split into two light beams P by the half mirror 128 and the mirror 129.
  • the half mirror 128 and the mirror 129 function as the mirror prism 127.
  • the pulse laser beam P can be easily split into two light beams P and two using the mirror prism 127 without using a special optical system. Note that it is also possible to split the pulse laser beam P into two or more light beams P ′ by combining the force half mirror 128 and the mirror 129 that split the pulse laser beam P into two light beams P.
  • this method can generate a large angle branch as compared with a diffraction grating and a Nomarski prism.
  • this method is suitable for branching the spot S at right angles to the moving direction of the stage 102 and simultaneously processing two or more lines.
  • a laser processing apparatus according to a seventh embodiment of the present invention will be described with reference to FIG.
  • the same components as those in the third embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the difference between the seventh embodiment and the third embodiment is that, in the third embodiment, the pulse laser beam P is split into a plurality of light beams P ′ using the diffraction grating 105 which is a laser splitting element.
  • the point is that the pulse laser beam P is split into two (plural) light fluxes P ′ using a polarizing beam splitter (laser splitting element, angle splitting element) 130.
  • a polarized beam splitter (PBS) 130 is disposed between the laser oscillation device 111 and the condenser lens 106, and the incident laser beam P is split into two light beams P 'according to the polarization.
  • the polarizing beam splitter 130 transmits the light flux P ′ (P) having the linear polarization of the P component, which is a vibration component parallel to the incident surface, and also converts the linearly polarized light of the S component, which is a vibration component perpendicular to the incident surface. It has a function of reflecting the light beam P '(s) that it has, thereby splitting the pulse laser beam P into two light beams P'.
  • a first 1Z4 wave plate 131 is arranged, and a first mirror 132 is arranged adjacent to the first 1Z4 wave plate 131. .
  • the first mirror 132 reflects the light beam P ′ (s) reflected by the polarization beam splitter 130 while slightly changing the angle of the optical axis.
  • a second 1Z4 wavelength plate 133 and a second mirror 134 are arranged on the other side of the polarizing beam splitter 130.
  • the second mirror 134 reflects the light beam reflected by the first mirror 31 while slightly changing the angle of the optical axis.
  • the pulse laser beam P is branched into two light beams P by the laser camera configured as above!
  • the pulsed laser light P emitted from the laser oscillation device 111 enters the polarization beam splitter 130 in a parallel light flux state.
  • the P-component linearly polarized light flux P ′ (P) passes through the polarization beam splitter 130 and enters the condenser lens 106.
  • the linearly polarized light flux P ′ (s) of the S component is reflected by the reflection surface of the polarization beam splitter 130, and changes the direction of the optical axis by 90 degrees to form the first 1Z4
  • the light enters the wavelength plate 131.
  • the incident light flux P ′ (s) is converted into circularly polarized light by the first 1Z4 wavelength plate 131 and is incident on the first mirror 132. Then, the light is reflected by the first mirror 132 and again enters the first 1Z4 wavelength plate 131.
  • the circularly polarized light becomes a linearly polarized light of the P component rotated by 90 degrees from the polarization of the original S component in the first 1Z4 wavelength plate 131.
  • the optical axis of the light beam P ' is reflected with its angle slightly changed.
  • the light that has returned to the polarization beam splitter 130 becomes a P-component light, passes through the polarization beam splitter 130, and enters the second 1Z4 wavelength plate 133.
  • the incident light flux P ′ (p) becomes circularly polarized light by the second 1Z4 wavelength plate 133 and is incident on the second mirror 134, and is reflected in a state where the angle of the optical axis is slightly changed.
  • the circularly polarized light becomes the linearly polarized light of the S component rotated by 90 degrees from the original P component, and enters the polarization beam splitter 130.
  • the light beam P '(s) that has entered the polarizing beam splitter 130 is reflected by the reflecting surface of the polarizing beam splitter 130 because it is an S component, and changes the direction of the optical axis by 90 degrees to enter the condenser lens 106. I do.
  • the condenser lens 106 receives two luminous fluxes P ′, that is, the luminous flux P of the P component originally passing through the polarizing beam splitter 130 and the luminous flux of the S component reflected twice by the left and right mirrors 132 and 134. I do.
  • the angle of the light beam of the S component with respect to the light beam of the P component can be arbitrarily adjusted.
  • These two different luminous flux Accordingly, the two spots S can be focused on the inside of the wafer 102.
  • the pulse laser light P can be easily converted into two arbitrary angles. It can be split into a luminous flux P.
  • a 1Z4 wavelength plate may be provided.
  • the two light beams P ' can be made to enter the condenser lens 106 in a circularly polarized state, and the polarization components of each spot S can be made uniform. Therefore, it is possible to minimize the influence of the workability due to the difference in the polarization components.
  • the mirrors 132 and 134 can be tilted in a plane perpendicular to the plane of the drawing with a force tilted in a plane parallel to the plane of the drawing. For this reason, it is possible to give a tilt in both the X and Y directions to the polarized light of the P component that has passed through the polarizing beam splitter 130. In addition, branching of spot S becomes possible.
  • the pulse laser beam P is split into a plurality of light beams having different angles by the diffraction grating 105.
  • a birefringent crystal such as quartz having birefringence (parallel movement branching element, birefringent optical element) 140 as the branching element, the pulse laser beam P is branched into plural parts so as to move in parallel with the optical axis. And two (plural) light fluxes P ′.
  • birefringent crystal 140 is arranged between laser oscillation device 111 and condenser lens 106.
  • the birefringent crystal 140 is disposed between the converging optical system 141, that is, the first convex lens 142 and the second convex lens 143.
  • the pulsed laser beam P enters the birefringent crystal 140 in a non-parallel beam state.
  • the pulse laser beam P is split into two light beams P by the laser camera device configured as described above.
  • the laser beam P emitted from the laser oscillating device 111 is converged by the first convex lens 142 and becomes birefringent in a non-parallel beam state. It is incident on the crystal 140.
  • the pulse laser beam P incident on the birefringent crystal 140 is refracted according to the polarization direction, and splits into two light beams P ′ so that the optical axis moves in parallel.
  • each of these light beams P ′ becomes a parallel light beam state again by the second convex lens 143 and enters the condenser lens 106.
  • the birefringent crystal 140 is used as the laser branch element, but a mirror prism may be used. .
  • the light beam can be split into two while the optical axis is translated by about lmm.
  • a condensing optical system composed of the objective lens 106 and the convex lens 143 with a coupling magnification of 100 ⁇ (100 times) is reduced and projected, spots S at intervals of 10 m are obtained.
  • the birefringent crystal 140 is arranged at the image-side condensing position.
  • the birefringent crystal 140 may be arranged at a position shifted from the condensing position force.
  • the birefringent crystal 140 may be cascaded to split the pulse laser beam P into a plurality of light beams P ′ by 2 n . That is, birefringent crystals 140 having different thicknesses are arranged so as to sandwich the 1Z4 wavelength plate 144. By doing so, first, the first birefringent crystal 140 splits the pulsed laser beam P into a luminous flux P '(s) of linearly polarized light of S component and a luminous flux P' (P) of linearly polarized light of P component. Let it.
  • the light is converted into circularly polarized light by the 1Z4 wavelength plate 144, and this light can be branched by the next birefringent crystal 140 into a light beam P '(p) (s) having linearly polarized light of S component and P component, respectively. is there.
  • the pulse laser beam P can be easily split into a desired number of light beams.
  • a single spot S can only produce an isotropic layer, but if multiple spots S are used in close proximity, the processing point will have anisotropy depending on the direction and amount of shift of the spot S. It becomes possible. Due to this anisotropy, distortions and cracks that are Direction can be given to the workpiece, improving the connection between adjacent machining points.
  • this has the effect of facilitating the cutting (cutting) of the wafer 102.
  • the spot S may be condensed on the surface 102a of the force wafer 102 condensed inside the wafer 102. What is necessary is just to select suitably according to the thickness of the wafer 102.
  • the stage 103 by moving the stage 103 in the X and Y directions, the plurality of spots S were moved relatively to the wafer 102, but the irradiation means 104, the laser branch element such as the diffraction grating 105, and the condenser lens were used.
  • the irradiation means 104 By configuring to move in the XY direction, a plurality of spots S may be relatively moved with respect to the wafer 102.
  • the force stage 103 in which the plurality of spots S are rotated may be configured to be rotatable.
  • the present invention also includes the following.
  • a laser camera device according to the present invention
  • the focus positions of the plurality of light beams are relatively shifted in the optical axis direction, and the light-collecting optical system is A laser processing apparatus for condensing the light beam on the surface or inside of the object to be processed as a plurality of spots arranged in a direction orthogonal to the horizontal and horizontal directions.
  • the object to be processed having a large thickness can be obtained. However, it can be easily cut.
  • the present invention provides a stage on which a workpiece is mounted, and a stage which faces the surface of the workpiece.
  • An irradiating means for emitting a laser beam through the laser beam, an optical system for splitting the laser beam into a plurality of light beams, and condensing the laser beam as a plurality of spots on the surface or inside of the workpiece;
  • a moving means for moving the plurality of spots relatively to an object in a horizontal direction.
  • ADVANTAGE OF THE INVENTION According to the laser processing apparatus of this invention, while sharpness can be increased and cutability can be improved, a thick sample can be cut easily.
  • laser processing can be performed at high speed without changing the repetition frequency of laser light and the maximum processing interval between cracks, and the throughput can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)
  • Dicing (AREA)

Description

明 細 書
レーザ加工装置
技術分野
[0001] 本発明は、半導体デバイス用のシリコンウェハ等の半導体材料基板、液晶パネル
Zプラズマディスプレイ等の大口径ガラスの透明基板、半導体材料基板、圧電材料 基板、ガラス基板等の切断に使用されるレーザ加工装置に関する。
本願は、 2004年 3月 5日に出願された特願 2004— 062225号及び特願 2004— 06 2226号について優先権を主張し、その内容をここに援用する。
背景技術
[0002] 従来、シリコンウェハ等の半導体基板を格子状 (チップ状)に切断して半導体チップ を得るには、切断装置等による機械的な切断方法が一般的に行われていた。この方 法は、半導体基板の表面に格子状にスクライブラインを形成し、このスクライブライン に沿うように半導体基板の裏面にナイフエッジ等を押し当てて、半導体基板を切断す る方法である。
また、近年、レーザ光の発達に伴って様々な分野でレーザ光を利用した装置が開 発され始めている。例えば、その 1つとして半導体基板等の被カ卩ェ対象物を、レーザ 光を利用して切断するレーザ加工装置が知られている (例えば、特許文献 1参照)。
[0003] このレーザ加工装置は、被加工対象物である半導体基板が載置される載置台と、 載置台を Z軸回りに回転させる Θステージと、載置台を XYZ軸方向にそれぞれ移動 させる各 XYZ軸ステージと、これら各ステージの移動を制御するステージ制御部と、 パルスレーザ光を発生する Nd:YAGレーザ等のレーザ光源と、レーザ光源を制御し て、パルスレーザ光のパワーや繰り返し周波数等を調整するレーザ光源制御部と、レ 一ザ光源力も発生されたパルスレーザ光の光軸の向きを、半導体基板に向けて 90 度変えるように反射するダイクロイツクミラーと、ダイクロイツクミラーで反射されたパル スレーザ光を被加工対象物に集光する集光レンズとを備えている。
[0004] このように構成されたレーザ加工装置により、半導体基板を切断する場合について 説明する。 まず、ステージ制御部により、各ステージを作動させて、パルスレーザ光の集光点 が半導体基板の内部に位置するように、半導体基板を所定位置に移動させる。そし て、レーザ光源制御部は、所定の繰り返し周波数でパルスレーザ光を照射するように レーザ光源を作動させる。レーザ光源から照射されたパルスレーザ光は、ダイクロイツ クミラーで反射された後、集光レンズに入射し、半導体基板の内部にスポット状に集 光する。これにより、半導体基板の内部に改質領域が形成される。
[0005] また、 XY軸ステージにより半導体基板を XY方向に移動させることで、半導体基板 の内部に平行切断予定部及び垂直切断予定部をそれぞれ複数形成する。その後、 半導体基板の裏面にナイフエッジを押し当てることで、半導体基板を平行切断予定 部及び垂直切断予定部に沿って切断することができる。
[0006] 特に、図 34に示すように、集光レンズとして 2点スポットレンズ 50を使用することで、 半導体基板 51の内部に、厚さ方向に並ぶ 2つのスポット Sを同時に集光させることが できる。即ち、 2点スポットレンズ 50の中心部を通る光線と、 2点スポットレンズ 50の外 縁部を通る光線とを、それぞれ集光することで、半導体基板 51の厚さ方向に 2つのス ポット Sを集光することができる。
これにより、半導体基板 51の内部に、改質領域を厚さ方向に 2列同時に形成するこ とでき、厚みのある半導体基板 51にも対応することができる。
[0007] また、レーザ光を利用した場合には、切断後のチッビングが生じ難 、ので洗浄等が 不要であると共に、切断した!/、領域にのみレーザ光を集光させて被加工対象物を変 質させるので、それ以外の領域に与える熱的な影響を極力抑えることができる。その ため、レーザ光を利用した被加工対象物の切断方法は、上述した機械的な切断に 変わる新たな方法として注目されて 、る。
[0008] 一方、現在、様々な分野でレーザ光が応用されており、例えば、その 1つとして半導 体ウェハ等の加工対象物を、レーザ光を利用して切断するレーザ加工装置が知られ ている(例えば、特許文献 2— 5参照)。
[0009] この種のレーザカ卩ェ装置の一般的な構成を図 35に示す。図 35に示すレーザ加工 装置 150は、加工対象物であるウェハ 151を上面に載置すると共に、水平面に平行 な X方向及び Y方向に向けて移動するステージ 152と、ステージ 152の XY方向への 移動を制御するステージコントローラ 153と、ウェハ 51の表面に向けて、例えば、パ ルス幅が 1 s以下の非常に短ぐ強いパルスレーザ光を垂直に照射するレーザ発振 装置 154と、レーザ発振装置 154により照射されたパルスレーザ光を集光すると共に ウェハ 151の表面又は内部に集光させる集光レンズ等の集光光学系 155と、レーザ 発振装置 154を制御するレーザ発振制御部 156と、レーザ発振制御部 156及びステ ージコントローラ 153を総合的に制御するシステム制御部 157とを備えて 、る。
ウェハ 51は、図 36に示すように、例えば、円状に形成されている場合を例にする。
[0010] このように構成されたレーザカ卩ェ装置 150により、ウェハ 151をレーザカ卩ェによりチ ップ状に切断する場合にっ 、て説明する。
まず、ステージコントローラ 153によりステージ 152を XY方向に移動させて、ウェハ 151を図 36に示す切断開始位置まで移動させる。そして、レーザ発振制御部 156よ りレーザ発振装置 154を作動させ、パルスレーザ光を照射させる。この際、パルスレ 一ザ光の発振繰り返し周波数は、ある限られた周波数に設定されている。照射された パルスレーザ光は、集光光学系 155によって、図 35に示すように、ウェハ 151の内部 に集光されて密度の高いエネルギーが 1点に集中する。このエネルギーにより、ゥェ ノ、 151の内部に応力が 1点集中し、この部分にクラックが生じる。
[0011] また、パルスレーザ光の照射と同時に、システム制御部 157は、ステージコントロー ラ 153に走査指令 (信号)を送り、ステージ 152を介してウェハ 151を移動させる。こ の際、図 36に示すように、まずウェハ 151の X方向への走査を順次繰り返して、ゥェ ノ、 151の全面領域にパルスレーザ光の照射を行う。つまり、システム制御部 157は、 レーザ発振制御部 156及びステージコントローラ 153を総合的に制御して、ノ レスレ 一ザ光の発振をコントロールしながらステージの走査を行う。
これにより、ウェハ 151の内部には、図 37に示すように、 X方向に向けて点線のよう に一定の間隔を空けた状態でクラックが連続的に生じる。この動作を所定の回数繰り 返し、複数本の点線を生じさせ、 X方向のクラック生成を行う。
[0012] X方向へのクラック生成が終了した後に、ステージ 152の移動方向を変えて、ゥェ ハ 151の Y方向への走査を順次繰り返し、上述したと同様にウェハ 151の全面領域 にパルスレーザ光の照射を行う。これにより、クラックが XY方向に向けて網の目状に 形成されるので、外力を加えることにより、クラックに沿ってウェハ 151を小さなチップ 状に切断することができる。
[0013] ここで、ウェハ 151を切断するには、点線のように形成された各クラック同士を連結 させる必要があるので、クラック間の間隔は、ある規定値より大きくすることができない 。つまり、クラック間の間隔が大きいと、クラック同士を連結することが困難となり、ゥェ ノ、 151を円滑に切断することが困難となってしまう。そのため、クラック間の最大加工 間隔が決まっていた。
[0014] また、パルスレーザ光の繰り返し周波数は、レーザ発振装置 154の性能により決定 されるものであると共にその値に限界があるので、この繰り返し周波数と最大力卩ェ間 隔との乗算で決定する加工速度の最大値が決まってしまうものであった。例えば、パ ルスレーザ光の発振周波数を 20kppsとし、最大カ卩ェ間隔を 10 mとすると、最大カロ ェ速度は、 10 111 (最大カ卩ェ間隔) 201^ 3 (発振繰り返し周波数)= 2001111117 秒となる。この加工速度は、レーザカ卩ェ装置 150のスループットを決定する大きな要 素となっている。
特許文献 1 :特開 2003— 266185号公報(図 16等)
特許文献 2 :特開 2002-205181号公報(図 1—図 6等)
特許文献 3:特開 2002— 205180号公報(図 1—図 6等)
特許文献 4:特開 2002— 192371号公報(図 1—図 6等)
特許文献 5:特開 2002— 192370号公報(図 1—図 6等)
発明の開示
発明が解決しょうとする課題
[0015] ところで、図 34に示すレーザカ卩ェ装置では、半導体基板 51の厚さ方向に並ぶよう に 2つのスポット Sを同時に集光させることができる力 2点スポットレンズ 50の中心部 を通る光線と、 2点スポットレンズ 50の外縁部を通る光線とをそれぞれ集光するので、 2点スポットレンズ 50の全体で光線を集めることができず、大開口(大 NA)が得られ なかった。従って、スポット径が広がるので切れ味が劣り、切断性に影響を与える恐 れがあった。
また、焦点を 2つ、即ち、スポットを 2つ以上集光させることが困難であるので、厚み のある半導体基板への適用が難しかった。
[0016] 一方、図 35に示すレーザカ卩ェ装置 150は、パルスレーザ光の繰り返し周波数及び クラック間の最大加工間隔がある程度決められてしまうので、加工速度を上げること が困難であり、スループットを上げることが難しいものであった。
[0017] この発明は、このような事情を考慮してなされたもので、第 1の目的は、切れ味を増 して切断性の向上を図ることができると共に、厚みのある試料を容易に切断すること ができるレーザ加工装置を提供することである。
[0018] また、第 2の目的は、レーザ光の繰り返し周波数及びクラック間の最大加工間隔を 変えることなぐ高速にレーザ力卩ェが行えると共にスループットの向上を図ることがで きるレーザ加工装置を提供することである。
課題を解決するための手段
[0019] 上記目的を達成するために、本発明は、以下の手段を提供する。
本発明は、被加工対象物を載置するステージと;前記被加工対象物の表面に向け てレーザ光を出射する照射手段と;前記レーザ光を、複数の光束に分岐させると共に 、前記被加工対象物の表面又は内部に複数のスポットとして集光させる光学系と;前 記被加工対象物に対して前記複数のスポットを、水平方向に向けて相対的に移動さ せる移動手段と;を備えるレーザ加工装置を提供する。
[0020] 本発明のレーザ加工装置においては、照射手段力 照射されたレーザ光力 光学 系により複数の光束に分岐されると共に、被加工対象物の表面又は内部に複数のス ポットとして集光される。例えば、水平方向又は厚さ(深さ)方向に並ぶように、複数の スポットを集光させる。そして、複数のスポットのそれぞれの箇所で密度の高いエネル ギ一が集中し、クラックが生じる。つまり、複数のクラックを、水平方向又は厚さ方向に 向けて同時に生じさせることができる。
また、移動手段により、被加工対象物に対して複数のクラックを水平方向に向けて 相対的に移動させるので、複数のクラックを点線のように連続的に形成することがで き、クラック同士を連結させて被加工対象物を点線に沿って切断することができる。ま た、複数のクラックが、厚さ方向に並ぶ場合には、厚みのある被加工対象物であって も、容易且つ確実に切断を行うことができる。 [0021] 特に、従来の 2点スポットレンズを使用したものとは異なり、光学系が、例えば、レー ザ光を複数の光束に分岐させた後に、複数のスポットに集光させたり、レーザ光を集 光させた後に複数のスポットに分岐させたりするので、大開口(大 NA)を維持すること ができる。よって、スポット径を小さくでき、切れ味を増すことができる。従って、切断性 の向上を図ることができる。
[0022] また、レーザ光を照射する毎に、複数のクラックを同時に生じさせることができるの で、移動手段により複数のスポットを、スポットの分岐方向に速く移動させたとしても、 各クラック間の加工間隔を最大カ卩ェ間隔内に納めることができる。従って、レーザ光 の繰り返し周波数及びクラック間の最大加工間隔を変えることなぐ高速にレーザカロ ェを行うことができ、スループットの向上化を図ることができる。
[0023] 本発明のレーザ加工装置においては、前記光学系が、前記レーザ光を複数の光 束に分岐させると共に、前記被加工対象物の表面に直交する方向に沿って前記複 数のスポットを並べて集光させる複屈折性の光軸方向分岐素子を有する集光光学系 であることが望ましい。
[0024] 本発明のレーザ加工装置においては、照射手段により照射されたレーザ光力 光 軸方向分岐素子により偏光方向に応じて複数の光束に分岐されると共に、集光光学 系により被加工対象物内で、表面に直交する方向、即ち、光軸方向に沿って、表面 力も裏面に達する部分に焦点位置が並ぶよう複数のスポットとして集光される。そして 、複数のスポットのそれぞれの箇所で密度の高いエネルギーが集中し、複数のスポッ トのそれぞれにクラックが生じる。これにより、被加工対象物の厚さ (深さ)方向に並ぶ ように、複数のクラックを同時〖こ生じさせることができる。
[0025] また、移動手段により、被加工対象物に対してこれら複数のスポットを水平方向に 向けて移動させるので、厚さ方向に並んだ複数のクラックを、水平方向に向けて点線 のように連続的に形成することができる。そして、クラック同士を連結させて被加工対 象物を点線に沿って切断することができる。この際、厚さ方向に複数のクラックが生じ ているので、厚みのある被カ卩ェ対象物であっても、容易且つ確実に切断することがで きる。
[0026] 特に、従来の 2点スポットレンズを利用したものとは異なり、集光光学系が、例えば、 レーザ光を光軸方向分岐素子により複数の光束に分岐させた後に、対物レンズ等に より複数のスポットに集光させたり、レーザ光を対物レンズ等により集光させた後に光 軸分岐素子により複数の光束に分岐させるので、大開口(大 NA)を維持することが できる。よって、スポット径を小さくでき、切れ味を増すことができる。従って、切断性の 向上を図ることができる。
[0027] 本発明のレーザ加工装置においては、前記集光光学系が、隣接する前記複数の スポットの相対的な水平方向の位置をずらす複屈折性の水平方向分岐素子を有す ることが望ましい。
[0028] 本発明のレーザカ卩ェ装置においては、水平方向分岐素子を有しているので、被カロ ェ対象物の厚さ方向に並んだ各スポットのうち、隣接するスポットの相対的な水平方 向の位置をずらすことができる。つまり、各スポットを深さ(上下)方向と左右方向とに 分けた状態で被加工対象物内に集光させることができる。
従って、各スポットをナイフのように鋭角な角度で連結させることができ、さらなる切 れ味の向上化を図ることができる。
[0029] また、本発明のレーザ加工装置においては、前記被加工対象物の表面を観察する 観察光学系を備え、前記移動手段が、前記被加工対象物に対して前記複数のスポ ットを前記表面に直交する方向に相対的に移動でき、この移動時に、前記観察光学 系により観察されたデータに基づ 、て、前記被加工対象物の表面の合焦を自動調 整することが望ましい。
[0030] 本発明のレーザ加工装置においては、観察光学系で観察されたデータに基づい て、移動手段が複数のスポットを被加工対象物の表面に直交する方向に相対的に 移動させて、被加工対象物の表面の合焦を自動調整する。つまり、オートフォーカス を行って、被加工対象物の表面を常に捉えることができる。これにより、被加工対象 物の表面と集光光学系との距離を常に一定の距離に維持することが可能である。 よって、移動手段により、複数のスポットを水平方向に相対的に移動させる際、複数 のスポットを表面から常に同一の位置に集光させながら移動を行わせることできる。 従って、より高精度なレーザ加工を行うことができる。また、被加工対象物の表面を観 察しながらレーザ力卩ェを行うことも可能である。 [0031] また、本発明のレーザカ卩ェ装置においては、前記レーザ光が、パルスレーザであり 、前記光学系が、前記レーザ光を複数の光束に分岐させるレーザ分岐素子と;前記 複数の光束を、前記被加工対象物の表面又は内部に水平方向に並んだ複数のスポ ットとして集光させる集光光学系と;を備えることが望ま 、。
[0032] 本発明のレーザ加工装置においては、照射手段により出射されたノ ルスレーザ光 力 レーザ分岐素子により複数の光束に分岐される。分岐された複数の光束は、集 光光学系に入射した後、被加工対象物の表面又は内部に水平方向に並んだ複数の スポットとして集光される。これにより、複数のスポットのそれぞれの個所で密度の高 いエネルギーが集中し、複数のスポットのそれぞれにクラックが生じる。
また、移動手段により、被加工対象物に対して複数のスポットを水平方向に向けて 移動させるので、複数のクラックを点線のように連続的に形成することができ、クラック 同士を連結させて被加工対象物を点線に沿って切断することができる。
[0033] 特に、パルスレーザ光を 1パルス照射する毎に、レーザ分岐素子及び集光光学系 により複数のクラックを同時に生じさせることができるので、例えば、移動手段により複 数のスポットを、スポットの分岐方向に速く移動させたとしても各クラック間の加工間隔 を最大カ卩ェ間隔内に収めることができる。従って、パルスレーザ光の繰り返し周波数 及びクラック間の最大加工間隔を変えることなぐ高速にレーザ加工を行うことができ 、スループットの向上化を図ることができる。
[0034] また、本発明のレーザカ卩ェ装置においては、前記レーザ分岐素子が、前記レーザ 光を平面上に拡がるように分岐させ、前記集光光学系が、前記複数のスポットを水平 方向に向けて直線状に並ぶように集光させることが望ま U、。
[0035] 本発明のレーザ加工装置においては、照射手段により照射されたノ ルスレーザ光 力 分岐素子により平面上に拡がるように分岐された後、集光光学系により被加工対 象物の表面又は内部に、水平方向に直線状に並んだ複数のスポット、例えば、 n個 のスポットとして集光される。
ここで、移動手段により n個のスポットを、スポットの向きと同一方向に移動させた場 合には、移動手段を n倍速く移動させたとしても各クラック間の加工間隔を最大加工 間隔内に収めることができるので、加工時間を短縮することができ、スループットの向 上化を図ることができる。
また、移動手段により n個のスポットを、スポットの向きと略直交する方向に移動させ た場合には、同時に複数のライン、即ち、 n本のラインでスポットを同時に形成するこ とができるので、走査回数を短縮でき、スループットの向上化を図ることができる。
[0036] また、本発明のレーザカ卩ェ装置においては、前記レーザ分岐素子が、前記レーザ 光を互いに直交する平面上に拡がるように分岐させ、前記集光光学系が、前記複数 のスポットを水平面に対して 2次元状に並ぶように集光させることが望ま 、。
[0037] 本発明のレーザ加工装置においては、照射手段により照射されたノ ルスレーザ光 力 分岐素子により直交する平面上、即ち、直交する 2平面に拡がるように分岐され た後、集光光学系により被加工対象物の表面又は内部に、 2次元、即ち、水平面に 平行な XY方向に並んだ複数のスポット、例えば、 n X m個のスポットとして集光される 従って、各クラック間の加工間隔を最大加工間隔内に収めながら、移動手段により n倍 (m倍)速く移動させることができると共に、走査回数を lZm ( lZn)回に短縮す ることもできるので、さらなるスループットの向上化を図ることができる。
[0038] また、本発明のレーザ加工装置にぉ 、ては、前記複数のスポットを、前記被加工対 象物の表面に直交する軸回りに回転させる回転手段を備えることが望ま 、。
[0039] 本発明のレーザカ卩ェ装置においては、回転手段により複数のスポットを被力卩ェ対 象物の表面 (水平面)に直交する軸回りに回転できるので、複数のスポットの方向転 換を容易且つ円滑に行うことができる。特に、移動手段と組み合わせることで、移動 方向とスポットの並び方向との関係を相対付けられ、レーザカ卩ェをより高速に行うこと ができ、スループットの向上化を図ることことができる。
[0040] また、本発明のレーザカ卩ェ装置においては、前記レーザ光が、前記レーザ分岐素 子に平行光束状態で入射し、前記レーザ分岐素子が、前記レーザ光を角度の異な る複数の光束に分岐させて前記複数の光束とする角度分岐素子であることが望まし い。
[0041] 本発明のレーザ加工装置においては、照射手段により出射されたノ ルスレーザ光 力 平行光束状態で、回折格子等の角度分岐素子に入射する。そして、角度分岐素 子により、角度の異なる複数の光束に分岐された後、集光光学系に入射する。このよ うに、 1つの光束を確実に複数の光束に分岐させ、被加工対象物の異なる点に集光 させられるので、容易に複数のスポットを得ることができる。
[0042] 本発明のレーザ加工装置においては、前記角度分岐素子が、回折格子であり、そ の分岐面が前記集光光学系の瞳位置又は瞳位置と光学的に共役な位置に配置さ れることが望ましい。
[0043] 本発明のレーザ加工装置においては、回折格子を利用することで、より正確に光束 を分岐させて複数の光束を集光光学系に入射させることができる。また、回折格子の 分岐面が、集光光学系の瞳位置又は瞳位置と光学的に共役な位置に配されている ので、各スポットへの集光光束のテレセントリック性を確保することが可能となり、レー ザカ卩ェ時の均一性を確保することができる。
[0044] 本発明のレーザカ卩ェ装置においては、前記角度分岐素子が、ノマルスキープリズ ムであり、ローカラィズ面が前記集光光学系の瞳位置又は瞳位置と光学的に共役な 位置に配置されることが望まし 、。
[0045] 本発明のレーザカ卩ェ装置においては、ノマルスキープリズムを利用することで、光 束を偏光方向の違いにより複数の光束に分岐させることができる。また、ローカラィズ 面が、集光光学系の瞳位置又は瞳位置と光学的に共役な位置に配されているので 、上述した回折構成の場合と同様にテレセントリック性を確保できる。また、この方法 は、偏光の方向で光束を分岐しているので、 2つの光束のパワー配分を均一にする ことが容易である特徴を持つ。
[0046] 本発明のレーザ加工装置においては、前記角度分岐素子が、ミラープリズム力 構 成されることが望ましい。
[0047] 本発明のレーザカ卩ェ装置においては、ミラープリズムを利用することで、パルスレー ザ光を確実に複数の光束に分岐させた後に、集光光学系に入射させることができる
[0048] 本発明のレーザ加工装置においては、前記レーザ光が、前記レーザ分岐素子に 非平行光束状態で入射し、前記レーザ分岐素子が、前記レーザ光を光軸に対して 平行移動するよう複数に分岐させて、前記複数の光束とする平行移動分岐素子であ ることが望ましい。
[0049] 本発明のレーザ加工装置においては、照射手段により出射されたノ ルスレーザ光 力 非平行光束状態で複屈折結晶等の平行移動分岐素子に入射する。そして、平 行移動分岐素子により、偏光方向に応じて屈折された後、光軸に対して平行移動す るように複数の光束に分岐されて集光光学系に入射する。このように、 1つの光束を 確実に複数の光束に分岐でき、容易に複数のスポットを得ることができる。
[0050] 本発明のレーザ加工装置においては、前記平行移動分岐素子が、複屈折性を有 する複屈折光学素子であることが望まし 、。
[0051] 本発明のレーザ加工装置においては、水晶や方解石等の複屈折光学素子を利用 することで、容易且つ確実に複数の光束を得ることができる。
[0052] 本発明のレーザ加工装置においては、前記平行移動分岐素子が、ミラープリズム 力 構成されることが望まし ヽ。
[0053] 本発明のレーザカ卩ェ装置においては、ミラープリズムを利用することで、確実に複 数の光束に分岐させた後に、集光光学系に入射させることができる。
発明の効果
[0054] この発明によれば、光軸方向分岐素子により、被加工対象物の厚さ (深さ)方向に 並ぶように複数のクラックを同時に生じさせることができるので、厚みのある被加工対 象物であっても、容易且つ確実に切断することができる。
特に、従来の 2点スポットレンズを利用したものとは異なり、大開口(大 NA)を維持し た状態でスポットを集光させることができる。従って、スポット径を小さくして切れ味を 増すことができ、切断性の向上化を図ることができる。
[0055] また、パルスレーザ光を 1パルス照射する毎に、レーザ分岐素子及び集光光学系 により複数のクラックを同時に生じさせることができる。従って、パルスレーザ光の繰り 返し周波数及びクラック間の最大加工間隔を変えることなぐ高速にレーザ加工を行 うことができ、スループットの向上化を図ることができる。
図面の簡単な説明
[0056] [図 1]本発明のレーザ加工装置の第 1実施形態の構成を示す図である。
[図 2A]パルスレーザ光を複数の光束に分岐させる対物レンズの構成を示す図であつ て、複屈折素材レンズの結晶軸が光軸と直交するように配されている図である。
[図 2B]パルスレーザ光を複数の光束に分岐させる対物レンズの構成を示す図であつ て、複屈折素材レンズの結晶軸が光軸と平行に配されている図である。
[図 3]ウェハの内部に厚さ方向に向けて並ぶように 2つのスポットを集光させた状態を 示す図である。
[図 4A]集光光学系の構成を示す図であって、複屈折素材レンズの結晶軸が光軸と 直交するように配されて 、る図である。
圆 4B]集光光学系の構成を示す図であって、複屈折素材レンズの結晶軸が光軸と 平行に配されている図である。
[図 5A]集光光学系の構成を示す図である。
[図 5B]図 5Aに示す断面矢視 A— A図である。
[図 5C]図 5Aに示す断面矢視 B-B図である。
[図 6]図 5Aに示す集光光学系により、ウェハの内部に厚さ方向に向けて並ぶように 4 つのスポットを集光させた状態を示す図である。
[図 7]集光光学系の構成を示す図である。
[図 8A]図 7に示す断面矢視 C-C図である。
[図 8B]図 7に示す断面矢視 D-D図である。
[図 9A]集光光学系の構成を示す図であって、複屈折板の結晶軸が光軸に対して 45 度傾くように配されて 、る図である。
圆 9B]集光光学系の構成を示す図であって、複屈折板の結晶軸が光軸に対して 60 度傾くように配されて 、る図である。
[図 10]図 9Aに示す集光光学系により、ウェハの内部に厚さ方向に向けて並ぶように 2つのスポットを集光させた状態を示す図である。
[図 11]集光光学系の構成を示す図である。
[図 12A]図 11に示す断面矢視 E-E図である。
[図 12B]図 11に示す断面矢視 F— F図である。
[図 13A]集光光学系の構成を示す図であって、複屈折板の結晶軸が光軸に対して直 交するように配されて 、る図である。 圆 13B]集光光学系の構成を示す図であって、複屈折板の結晶軸が光軸に対して 4
5度傾くように配されて 、る図である。
[図 14A]図 13Aに示す断面矢視 G— G図である。
[図 14B]図 13Bに示す断面矢視 H— H図である。
[図 15]図 13A及び図 13Bに示す集光光学系により、ウェハの内部に 4つのスポットを 集光させた状態を示す図である。
[図 16]集光光学系の構成を示す図である。
圆 17]本発明のレーザ加工装置の第 2実施形態の構成を示す図である。
[図 18]レーザ加工装置の構成を示す図である。
圆 19]本発明のレーザ加工装置の第 3実施形態の構成を示す図である。
圆 20]回折格子により、ノ ルスレーザ光を複数の光束に分岐させると共に、集光レン ズによりウェハの内部にスポットを集光させた状態を示す図である。
[図 21A]複数のスポットがウェハの X方向に並ぶように回折格子を配置した状態を示 す図である。
圆 21B]図 21Aに示す状態から、回転機構により回折格子を Z軸回りに 90度回転さ せて、複数のスポットが Y方向に並んだ状態を示す図である。
[図 22]複数のスポットの分岐方向に向けて走査を行った状態を示す図である。
[図 23]ウェハ表面を X方向に走査した軌跡を示すウェハの上面図である。
[図 24]複数のスポットの分岐方向と直交する方向に走査を行った状態を示す図であ る。
圆 25]本発明のレーザ加工装置の第 4実施形態を示す図であって、回折格子の分 岐面を、リレーレンズを介して集光レンズの瞳位置と共役な位置に配置した状態を示 す図である。
[図 26]本発明のレーザ加工装置の第 5実施形態を示す図であって、ノマルスキープリ ズムにより、パルスレーザ光を複数の光束に分岐した状態を示す図である。
[図 27]ノマルスキープリズムの具体的な設計図である。
[図 28]本発明のレーザ加工装置の第 6実施形態を示す図であって、ミラープリズムに より、パルスレーザ光を複数の光束に分岐した状態を示す図である。 [図 29]本発明のレーザ加工装置の第 7実施形態を示す図であって、偏光ビームスプ リツタにより、パルスレーザ光を複数の光束に分岐した状態を示す図である。
[図 30]本発明のレーザ加工装置の第 8実施形態を示す図であって、複屈折性結晶 により、パルスレーザ光を複数の光束に分岐した状態を示す図である。
[図 31]複屈折性結晶を、集光位置力もずれるように配した状態を示す図である。
[図 32]複屈折性結晶を、カスケード接続した状態を示す図である。
[図 33]複数のスポットを近接させた状態で 1箇所に集光させた状態を示す図である。
[図 34]従来のレーザ力卩ェを示す図であって、 2点スポットレンズにより半導体基板内 部に、厚さ方向に並ぶように 2つのスポット魏光させた状態を示す図である。
[図 35]従来のレーザカ卩ェ装置の構成を示す図である。
[図 36]ウェハ表面を X方向に走査した軌跡を示す図である。
[図 37]ウェハにレーザ力卩ェを行っている状態を示す図である。
符号の説明
[0057] P ;レーザ光(パルスレーザ光)、 P,;複数の光束、 S ;スポット、 1,40,101 ;レーザカロ ェ装置、 2, 102 ;ウェハ(被カ卩ェ対象物)、 3a ;載置面、 3,103 ;ステージ、 4,104 ;照 射手段、 5 ;複屈折素材レンズ (光軸方向分岐素子)、 6 ;対物レンズ (光学系,集光光 学系)、 7,107 ;移動手段、 8 ;観察光学系、 23,26,60,61,64 ;複屈折板 (光軸方向 分岐素子)、 25 ;凹レンズ (光軸方向分岐素子)、 27,63 ;複屈折板 (水平方向分岐素 子)、 41 ;第 1のレーザ発振装置 (照射手段)、 42 ;第 2のレーザ発振装置 (照射手段 )、 46 ;集光光学系、 47 ;チューナブルレーザ発振装置 (照射手段)、 105 ;回折格子 (レーザ分岐素子,角度分岐素子)、 106 ;集光レンズ (集光光学系)、 125 ;ノマルス キープリズム(レーザ分岐素子,角度分岐素子)、 125a ;ローカラィズ面、 127 ;ミラー プリズム、 130 ;偏光ビームスプリッタ(レーザ分岐素子,角度分岐素子)、 140 ;複屈 折性結晶 (レーザ分岐素子,平行移動分岐素子,複屈折光学素子)
発明を実施するための最良の形態
[0058] 以下、図面を参照しつつ、本発明の好適な実施の形態について説明する。
本発明のレーザ加工装置の第 i実施形態について、図 1から図 3を参照して説明す る。本実施形態のレーザ加工装置 1は、例えば、厚さが 0. 1mmで円状に形成された ウェハ (被加工対象物) 2を、レーザ加工によりチップ状に細力べ切断する装置として 説明する。
このレーザカ卩ェ装置 1は、図 1に示すように、ウェハ 2を水平面に対して平行に配さ れた載置面 3aに載置するステージ 3と、ウェハ 2の表面 2aに向けてパルスレーザ光( レーザ光) Pを出射する照射手段 4と、パルスレーザ光 Pを複数の光束 P'に分岐させ ると共に複数の光束 P'をウェハ 2内で、ウェハ 2の表面 2aから裏面 2bに達する部分 に焦点位置が並ぶ複数のスポット Sとして集光させる複屈折性の複屈折素材レンズ( 光軸方向分岐素子) 5を有する対物レンズ (光学系、集光光学系) 6と、ウェハ 2に対 して複数のスポット Sを水平方向(XY方向)及び鉛直方向(Z方向)に相対的に移動 可能な移動手段 7と、ウェハ 2の表面 2aを光学的に観察する観察光学系 8とを備えて いる。
[0059] ステージ 3は、水平面に平行な XY方向及び XY方向に垂直な Z軸方向に移動可能 に構成されている。つまり、ステージ 3を移動させることで、上述したように、ウェハ 2に 対して複数のスポット Sを水平方向に向けて相対的に移動させることができる。このス テージ 3は、ステージコントローラ 10によって XYZ方向への移動が制御されている。 即ち、ステージ 3及びステージコントローラ 10は、上記移動手段 7として機能する。
[0060] ウェハ 2の上方には、パルスレーザ光 Pをウェハ 2の表面 2a対して垂直に照射する Nd: YAGレーザ等のレーザ発振装置 11が配されて 、る。このレーザ発振装置 11は 、例えば、パルス幅が 1 μ s以下の短く強いパルスレーザ光 Ρを、 20kppsの繰り返し 周波数で出射する機能を有している。また、レーザ発振装置 11は、パルスレーザ光 Pを平行光束状態で出射でき、レーザ発振制御部 12により、パルスレーザ光 Pの出 射タイミング等が制御されている。即ち、これらレーザ発振装置 11及びレーザ発振制 御部 12は、上記照射手段 4として機能する。
レーザ発振制御部 12及び上記ステージコントローラ 10は、システム制御部 13によ つて総合的に制御されている。
[0061] 対物レンズ 6は、レーザ発振装置 11とウェハ 2との間に配されており、図 2 (A)に示 すように、複数枚のレンズ 6aにより構成されている。これら複数枚のレンズ 6aの 1枚が 、上記複屈折素材レンズ 5とされている。なお、複屈折素材レンズ 5は、 1枚に限られ るものではない。
この複屈折素材レンズ 5は、光軸に対して直交する方向(紙面に対して上下方向) に結晶軸が配されている。これにより、対物レンズ 6は、パルスレーザ光 Pを偏光方向 による屈折率の違いを利用して 2つ (複数)の光束 P'に分岐させると共に、これら 2つ の光束 P'をウェハ 2の表面 2aに直行する方向、即ち、ウェハ 2の厚さ方向(深さ方向 )に沿って上下に分かれた 2つのスポット Sとして集光する機能を有している。
[0062] 観察光学系 8は、図 1に示すように、直線偏光の半導体レーザ光 Lを照射する光源 15と、光源 15から照射された半導体レーザ光 Lを平行光にする第 1のレンズ 16と、 第 1のレンズ 16に隣接配置された偏光ビームスプリッタ 17と、偏光ビームスプリッタ 1 7を透過した半導体レーザ光 Lの偏光の方位を、光路の往復で 90度回転させる 1Z 4波長板 18と、 1Z4波長板 18を透過した半導体レーザ光 Lを、光軸の向きを 90度 変えるように反射させて対物レンズ 6に入射させるダイクロイツクミラー 19と、対物レン ズ 6からの戻り光のうち偏光ビームスプリッタ 17で反射された光をフォトダイオード 20 に集光させる第 2のレンズ 21とを有している。
なお、ダイクロイツクミラー 19は、半導体レーザ光 Lを反射すると共に、それ以外の 波長の光、例えば、レーザ発振装置 11で照射されたパルスレーザ光 Pを透過させる
[0063] 偏光ビームスプリッタ 17は、直線偏光のうち、例えば、入射面に平行な振動成分で ある P成分の直線偏光の光を透過させると共に、入射面に垂直な振動成分である S 成分の光を反射させる機能を有して ヽる。
システム制御部 13は、フォトダイオード 20により受光された撮像データに基づ!/、て
、ステージコントローラ 10をフィードバック制御して、ステージ 3を Z軸方向に移動させ る。即ち、オートフォーカスする。これにより、半導体レーザ光 Lは、常にウェハ 2の表 面 2aに焦点が合うように調整される。
[0064] このように構成されたレーザカ卩ェ装置 1により、ウェハ 2をチップ状に切断する場合 について以下に説明する。
まず、ステージコントローラ 10によりステージ 3を XY方向に方向に移動させて、ゥェ ハ 2を切断開始位置まで移動させる。切断開始位置に移動させた後、レーザ発振制 御部 12によりレーザ発振装置 11を作動させて、パルスレーザ光 Pを平行光束状態で 出射させる。出射されたパルスレーザ光 Pは、ダイクロイツクミラー 19を透過した後、 対物レンズ 6に入射する。
[0065] 対物レンズ 6に入射したパルスレーザ光 Pは、図 2 (A)に示すように、複屈折素材レ ンズ 5により、偏光方向に応じて屈折して 2つの光束 P'に分岐する(結晶軸と同一の 方向に向いた偏光成分の光束と、それに直交した偏光成分の光束とに分岐)と共に 、ウェハ 2の表面 2aに直交する方向(光軸方向)に沿ってウェハ 2の表面 2aから裏面 2bに達する部分に焦点位置が並ぶ 2つのスポット Sとして集光される。例えば、図 3に 示すように、ウェハ 2の内部に、光軸方向に沿って、例えば、 2 111ー500 111の距 離を空けた 2つのスポット Sとして集光される。
なお、スポット間隔は、 2 μ m— 500 μ mに限られるものではない。好ましくは、 2 μ m— 50 μ mの間隔にすることが好ましい。
[0066] そして、各スポット Sのそれぞれに、密度の高いエネルギーが集中してクラックが生 じる。このように、パルスレーザ光 Pを 1パルス照射する毎に、ウェハ 2内部に光軸 (厚 さ方向)に沿って上下に並んだ 2つのクラックを同時に生じさせることができる。この 2 つのクラックにより、ウェハ 2の深さ方向(厚さ方向)への応力集中が発生する。
また、上述したノ ルスレーザ光 Pの照射と同時に、システム制御部 13は、ステージ コントローラ 10に信号を送りステージ 3を介してウェハ 2を、 X方向に移動させる。これ により、上下 2つのスポット Sを X方向に向けて点線のように連続的に生じさせることが できる。
[0067] 上述した X方向への走査を順次繰り返し、ウェハ 2の全面積に亘つて X方向へのク ラックを生じさせる。即ち、 X方向へ向かう点線が複数本形成された状態となる。なお 、各クラック間の間隔は、例えば、 10 mであり、隣接するクラック同士を連結するた めに必要な最大加工間隔が維持されるよう設定されて 、る。
X方向へのレーザ力卩ェが終了した後に、ステージコントローラ 10によりステージ 3を 介してウエノ、 2を Y方向に移動させて、上述したと同様に Y方向への走査を順次繰り 返し、ウェハ 2の全面積に亘つて Y方向へのレーザ力卩ェを行う。
[0068] 上述した XY方向への走査が終了すると、ウェハ 2内部には最大加工間隔が維持さ れた状態で、クラックが XY方向に向けて網の目の如く連続的に生じた状態となって いる。これにより、各クラックは、点線に沿って格子状に連結する。従って、ウェハ 2を チップ状に切断することができる。また、ウェハ 2の深さ方向に 2つのクラックを同時に 生じさせて、深さ方向に向けて応力を集中させるので、厚いウェハ 2でも容易且つ確 実に切断することができる。
[0069] 特に、従来の 2点スポットレンズを利用したものとは異なり、対物レンズ 6の全体でス ポット Sを集光させることができるので、 ΝΑを大きく取ることができる。従って、スポット 径を小さくでき、光束 P'をより小さな一点に集光させて、切れ味を増すことができる。 よって、ウェハ 2をより円滑に切断することができ、切断'性の向上を図ることができる。 また、対物レンズ 6の全体を使用して各スポット Sを集光させるので、各スポット Sの強 度を同一にでき、加工のむらを極力無くすことができる。
[0070] 更に、上述したレーザ加工の際、光源 15は、直線偏光の半導体レーザ光 Lの照射 を行う。照射された半導体レーザ光 Lは、第 1のレンズ 16により平行光となった後、偏 光ビームスプリッタ 17に入射する。そして、入射面に平行な振動成分である Ρ成分の 直線偏光の光となって 1Z4波長板 18に入射する。入射した光は、 1Z4波長板 18を 透過することで円偏光となった後、ダイクロイツクミラー 19で反射されて対物レンズ 6 に入射する。対物レンズ 6に入射した光は、ウェハ 2の表面 2aに照明される。
[0071] ウェハ 2の表面 2aで反射した光は、対物レンズ 6で集光された後、ダイクロイツクミラ 一 19で反射されて 1Z4波長板 18に入射し、入射面に垂直な振動成分である S成分 の偏光となる。この光は、偏光ビームスプリッタ 17により反射された後、第 2のレンズ 2 1によりフォトダイオード 20上に結像される。この結像されたデータは、システム制御 部 13に送られる。システム制御部 13は、送られてきたデータに基づいて半導体レー ザ光 Lの焦点がウェハ 2の表面 2aに合うように、ステージコントローラ 10を制御してス テージ 3を Z方向に移動させる。即ち、自動的にオートフォーカスを行って、ウェハ 2 の表面 2aを常に撮像する。
[0072] これにより、対物レンズ 6とウェハ 2の表面 2aとの距離を、常に一定の距離に維持し ながら走査を行うことができる。従って、複数のスポット Sを表面 2aから同じ位置に集 光させながら走査を行えるので、より高精度なレーザ加工を行うことができる。また、ゥ ェハ 2の表面 2aを確認しながらレーザ力卩ェを行うことも可能である。
[0073] 上述したように、本実施形態のレーザ加工装置 1によれば、複屈折素材レンズ 5に より、ウェハ 2の厚さ(深さ)方向に並ぶように複数のクラックを同時に生じさせることが できる。従って、厚みのあるウェハ 2であっても、容易且つ確実に切断することができ る。
特に、 NAを大きく取ることができるので、光束 P'をより小さな一点に集光可能であ る。従って、スポット径を小さくして切れ味を増し、ウエノ、 2をより円滑に切断することが できる。
なお、上記第 1実施形態では、複屈折素材レンズ 5の結晶軸を光軸に対して直交 する方向に配した構成にした力 これに限られるものではなぐより好ましくは、図 2 (B )に示すように、光軸に対して平行になるように結晶軸を設けると良い。
[0074] なお、上記第 1実施形態では、集光光学系として、複数枚のレンズ 6aのうちの 1枚 を複屈折素材レンズ 5とする対物レンズ 6を採用した力 これに限られるものではない 。例えば、図 4 (A)に示すように、対物レンズ 6の先端に複屈折性の複屈折板 (光軸 方向分岐素子) 23を挿入した集光光学系を採用しても構わない。複屈折板 23として は、例えば、光軸に対して直交する方向(紙面に対して上下方向)に結晶軸を有して いるものを用いれば良い。この場合には、複屈折板 23に、光を非平行光束状態で入 射させれば良い。また、複屈折板の素材としては、例えば、 α— BBO、水晶、方解石 、 LiNBOや YVO等を用いることができる。
3 4
[0075] また、図 4 (B)に示すように、複屈折板 23の結晶軸を、光軸に対して平行になるよう に構成しても構わない。
対物レンズ 6の射出光束は、光軸に対してある角度 (NA0. 2-0. 8等の角度を有 する)を有するため、光学軸を含む面成分と、それに直交する偏光成分とに分離する 。両偏光成分では、光軸が横ずれして進み、 2焦点を結ぶ。但し、直線偏光を入射さ せると、瞳面上での両偏光成分の分離比率が瞳位置で異なるため、変形した円形状 となる。このため、より 2点の光量比を均等化させるには、円偏光として入射すると良 い。また、この場合も複屈折板 23の光軸方向と同方向の光学軸を有する複屈折材料 を組み合わせ、その間に偏光解消板を入れることで、さらに多点への分離が可能で ある。
[0076] また、対物レンズ 6の先端に複屈折板 23を挿入した構成を、図 4に示したが、これ に限られず、対物レンズ 6の手前に複屈折板を挿入した集光光学系を構成しても構 わない。例えば、対物レンズ 6に入射させるパルスレーザ光 Pの集光光学系の一部を 複屈折板とし、実質的な光源位置が偏光方向によって異なるように構成しても良い。 こうすることで、ウェハ 2内部に、厚さ方向に沿って分かれた複数のスポットを集光さ せることができる。この場合も上述した場合と同様に、パルスレーザ光 Pを非平行光束 状態で入射させれば良い。
[0077] また、上記第 1実施形態では、パルスレーザ光 Pを 2つの光束 P'に分岐させると共 に、光軸方向に向けて上下に分かれた 2つのスポットとして集光するよう構成したが、 スポット Sは 2つに限られるものではない。
例えば、対物レンズ 6と、図 5に示す対物レンズ 6の午前側に配された複屈折性の 凹レンズ (光軸方向分岐素子) 25と、複屈折板 (光軸方向分岐素子) 26とを組み合わ せて集光光学系を構成しても構わない。こうすることで、スポット Sを 4つにすることが 可能である。
この際、凹レンズ 25の結晶軸及び複屈折板 26の結晶軸は、共に光軸に対して直 交する方向(紙面に対して左右方向)に配されていると共に、光軸方向から見たとき に 45度の相対角度を有するように配されている。この場合には、パルスレーザ光 Pを 複屈折板 26で非平行光束状態となるよう入射させれば良い。例えば、平行光束状態 で凹レンズ 25に入射させれば良い。
[0078] このように集光光学系を構成した場合には、まず、凹レンズ 25にパルスレーザ光 P が入射すると、偏光方向によって焦点位置が 2つに分かれるように分岐 (結晶軸と同 一の方向に向いた偏光成分の光束と、それに直交した偏光成分の光束とに分岐)す る。そして、複屈折板 26に入射した 2つの光束は、光軸方向から見た複屈折板 26の 結晶軸が凹レンズ 25に対して 45度回転しているので、偏光成分に応じて、それぞれ さらに焦点位置が 2つに分かれるように分岐する。つまり、図 6に示すように、ウェハ 2 の光軸方向に 4つに並んだスポット Sとして集光させることができる。
従って、特に厚みのあるウェハ 2に好適に使用することができ、厚みのあるウェハ 2 を容易且つ確実に切断することができる。
[0079] また、上述した集光光学系は、 1つの複屈折板と凹レンズとを組み合わせた構成に したが、例えば、図 7に示すように、光軸方向の分離距離の異なる (厚さが異なる平面 板) 2枚の複屈折板 (光軸方向分岐素子) 60、 61と対物レンズ 6とで集光光学系を構 成しても構わない。 2枚の複屈折板 60、 61の結晶軸は、図 8に示すように、光軸方向 力も見たときに、 45度の相対角度を有するように配されている。
この場合には、対物レンズ 6の手前側に 1Z4波長板 62を入れて、パルスレーザ光 Pを対物レンズ 6に直線偏光又は円偏光状態で入射するように構成する。
[0080] このように集光光学系を構成した場合には、 1Z4波長板 62及び対物レンズ 6を通 過したパルスレーザ光 P力 最初の複屈折板 60に 45度の方位の直線偏光、又は、 円偏光で入射する。入射したノ スルレーザ光 Pは、複屈折板 60により、直交する偏 光成分に等光量で 2つの光束 P'に分離され、その後、 2枚目の (次の)複屈折板 61 に入射する。そして、 2枚目の複屈折板 61に入射した 2つの光束 P'は、さらにそれぞ れが互いに直交する偏光成分で 2つの光束に分離される。
[0081] その結果、 2枚目の複屈折板 61から 4つの光束 P'が出射される。これにより、ゥェ ノ、 2の光軸方向に 4つのスポット Sを隣接させた状態で集光させることができる。
また、入射させるパルスレーザ光 Pの偏光状態により直交する成分比を変えることで 、 4つのスポット Sの強度比を変更することができる。また、 2枚の複屈折板 60、 61の、 互いの結晶軸のなす角度を変えることで、 4つのスポット Sの強度比を変更することも できる。
上述したように、 2枚の複屈折板 60、 61を用いて、パルスレーザ光 Pを 4つのスポッ ト Sに分離させたが、複屈折板を 3枚使用すれば 8つのスポット Sに分離でき、複屈折 板を 4枚使用すれば 16のスポット Sに分離することができる。このように、必要に応じ て複屈折板の数を増カロさせて構わな 、。
[0082] また、上記第 1実施形態では、ウェハ 2の表面に直交する方向であって、且つ、同 一の光軸上に位置するように 2つのスポット Sを上下に集光させたが、同一の光軸上 に集光させなくても構わな 、。
例えば、集光光学系を、対物レンズ 6と、隣接する複数のスポット Sの相対的な水平 方向の位置をずらす、図 9 (A)に示す複屈折性の複屈折板 (水平方向分岐素子) 27 と、複屈折板 27に隣接配置された凹レンズ 28とで構成しても構わない。複屈折板 27 は、光軸に対して 45度の傾きを持った結晶軸を有しており、凹レンズ 28は、光軸に 対して直交 (紙面に対して左右方向)する方向に結晶軸を有して 、る。
[0083] このように集光光学系を構成した場合には、まず、凹レンズ 28にパルスレーザ光 P が入射すると、偏光方向によって焦点位置が上下に 2つ分かれるように分岐する。そ して、次の複屈折板 27に光が入射することで、上下方向に 2つに分かれた焦点位置 を水平方向にずらす (横ずらし)ことができる。
従って、図 10に示すように、ウェハ 2内部に上下方向及び左右方向に分かれた状 態で 2つのスポット S ^^光させることができる。特に、 2つのスポット Sを、ウェハ 2の 走査方向に水平方向横ずらしを生じさせることで、ウェハ 2内に走査方向(切断方向 )への応力をあわせて生じさせることができるため、さらなる切断性の向上を図ること ができる。
[0084] また、複屈折板 27の結晶軸を、光軸に対して 45度の傾きを持つように構成した力 この場合に限られず、図 9 (B)に示すように、結晶軸を光軸に対して 60度傾けた複屈 折板 27aとしても構わない。この場合には、複屈折板 27aの 1枚で、横ずれと、深さ方 向のずれと、を同時に生じさせることができる。
[0085] また、上述した集光光学系では、 1つの複屈折板 27と凹レンズ 28とを組み合わせ た構成にした力 例えば、図 11に示すように、厚さが異なる 2枚の平面板である複屈 折板 (水平方向分岐素子) 63及び複屈折板 (光軸方向分岐素子) 64を利用して集 光光学系を構成しても構わない。 2枚の複屈折板 63、 64の結晶軸は、図 12に示す ように、光軸に対して直交 (紙面に対して左右方向)である。
このように集光光学系を構成した場合には、パルスレーザ光 Pは、最初の複屈折板 63により、水平方向に分離されて 2つの光束 P'となる。即ち、焦点位置が左右に 2つ 分かれる。そして、 2枚目の複屈折板 64により、 2つの光束 P'は、それぞれ垂直方向 にずれる。即ち、左右方向に 2つに分かれた焦点位置を、垂直方向にずらす (縦ずら し)ことがでさる。
従って、図 10と同様に、ウェハ 2内部に、上下方向及び左右方向に分かれた状態 で 2つのスポット 光することができる。
特に、斜めに改質層を設けることができるので、高さ方向の歪に加え、切断方向へ の歪も加えることができるので、走査方向の走査時間の短縮もでき、切れ味も改善す ることがでさる。
[0086] 更に、図 13及び図 14に示すように、光軸に対して直交 (紙面に対して左右方向) する結晶軸を有する複屈折板 65と、光軸に対して 45度の傾いた結晶軸を有する複 屈折板 66とを、 45度方位に配置して集光光学系を構成しても構わない。この場合に は、図 15に示すように、ウェハ 2の内部に垂直方向及び水平方向にそれぞれずれた 4つのスポット S ^^光することができる。
[0087] また、集光光学系を、図 16に示すように構成しても構わない。即ち、集光光学系は 、レーザ発振装置 11から照射されたパルスレーザ光 Pの光束をほぼ平行にする正の 屈折力を有する第 1のレンズ群 30と、第 1のレンズ群 30からの光束を反射光と透過 光とに分離する偏光ビームスプリッタ 31と、偏光ビームスプリッタ 31により分離された 反射光と透過光とをそれぞれ反射集光する第 1の凹面鏡 32及び第 2の凹面鏡 33と、 偏光ビームスプリッタ 31と第 1の凹面鏡 32との間に配された第 1の 1Z4波長板 34と 、偏光ビームスプリッタ 31と第 2の凹面鏡 33との間に配された第 2の 1Z4波長板 35 と、第 1の 1Z4波長板 34及び第 2の 1Z4波長板 35を透過し偏光ビームスプリッタ 31 を経由した光束を第 3の 1Z4波長板 36を介してウェハ 2の内部に集光する正の屈折 力を有する第 2のレンズ群 37、とを備えている。
[0088] また、第 1のレンズ群 30、第 2のレンズ群 37及び第 1の凹面鏡 32により構成される 第 1の光学系 38と、第 1のレンズ群 30、第 2のレンズ群 37及び第 2の凹面鏡 33により 構成される第 2の光学系 39との間で結像特性に差をつけるように構成されている。即 ち、第 1の凹面鏡 32により反射された光束と、第 2の凹面鏡 33により反射された光束 とは、収束状態が異なる。
[0089] このように構成された集光光学系によりウェハ 2内部に光軸方向に沿って 2つのス ポット Sを集光させる場合にっ ヽて説明する。
まず、レーザ発振装置 11から照射されたノ ルスレーザ光 Pは、第 1のレンズ群 30に より平行光となって偏光ビームスプリッタ 31に入射する。この際、レーザ発振装置 11 は、無偏光のパルスレーザ光 Pを照射する。
偏光ビームスプリッタ 31に入射したパルスレーザ光 Pは、直線偏光のうち P偏光の 光束 P'が 90度向きを変えて第 1の 1Z4波長板 34に入射して、円偏光となった後に 第 1の凹面鏡 32に入射する。そして、第 1の凹面鏡 32により収束しながら反射される 。反射された光束 P'は、再度第 1の 1Z4波長板 34に入射して S偏光の光束となる。 よって、この光束 P'は、偏光ビームスプリッタ 31を透過する。そして、透過した後、第 3の 1Z4波長板 36により円偏光とされて第 2のレンズ群 37に入射する。
[0090] 一方、偏光ビームスプリッタ 31に入射したパルスレーザ光 Pのうち、 S偏光の光束 P ,は偏光ビームスプリッタ 31を透過した後、第 2の 1Z4波長板 35に入射して円偏光と なり第 2の凹面鏡 33に入射する。そして、第 2の凹面鏡 33により収束しながら反射さ れる。反射された光束 P'は、再度第 2の 1Z4波長板 35に入射して P偏光の光束 P' となる。よって、この光束 P'は、偏光ビームスプリッタ 31により、光軸の向きが 90度変 わるように反射される。反射された後、第 3の 1Z4波長板 36により円偏光とされて第 2のレンズ群 37に入射する。
[0091] このように、パルスレーザ光 Pを 2つの光束 P,に分岐させて第 2のレンズ群 37にそ れぞれ入射させることができる。そして、第 2のレンズ群 37により、それぞれの光束 P' をウェハ 2の内部に 2つのスポット Sとして集光させることができる。
また、この集光光学系において、レーザ発振装置 11により P偏光又は S偏光のパル スレーザ光 Pを偏光ビームスプリッタ 31に照射した場合には、通常光を第 2のレンズ 群 37に入射させることができるので、状況に応じた光束の使い分けを行うことも可能 である。
[0092] 更に、上記集光光学系において、第 1の凹面鏡 32及び第 2の凹面鏡 33を互いに 僅かに偏芯させることで、上下方向のずれに加えて左右方向にずれたスポット Sをゥ ェハ 2の内部に集光させることも可能である。
特に、この集光光学系を利用することで、 ICや LSI等の半導体デバイス、 CCD等 の撮像デバイス、液晶パネル等の表示デバイス、磁気ヘッド等のデバイスをより正確 に切断することができる。
[0093] 次に、本発明のレーザ加工装置の第 2実施形態を、図 17を参照して説明する。な お、この第 2実施形態においては、第 1実施形態における構成要素と同一の部分に ついては、同一の符号を付しその説明を省略する。
第 2実施形態と第 1実施形態との異なる点は、第 1実施形態では、パルスレーザ光 Pの偏光の違いを利用して、パルスレーザ光 Pを 2つの光束 P'に分岐すると共に 2つ のスポット Sとして集光させたが、第 2実施形態のレーザ加工装置 40は、波長の違い を利用してパルスレーザ光 Pを 2つのスポット Sとして集光させる点である。
[0094] 即ち、本実施形態のレーザ加工装置 40は、波長の異なるパルスレーザ光 Pを照射 する第 1のレーザ発振装置 (照射手段) 41及び第 2のレーザ発振装置 (照射手段) 42 と、両レーザ発振装置 41、 42から照射されたパルスレーザ光 Pを同一の光軸上に結 合させるハーフミラー 43と、両パルスレーザ光 Pを波長に応じて焦点位置を変化させ る色収差発生レンズ 44と、パルスレーザ光 Pをウェハ 2の内部で、表面に直交する光 軸方向に 2つの焦点位置が並ぶ 2つのスポット Sとして集光させる対物レンズ 45とを 備えている。
なお、色収差発生レンズ 44及び対物レンズ 45は、集光光学系 46を構成している。
[0095] このように構成されたレーザカ卩ェ装置 40では、第 1のレーザ発振装置 41により照射 されたパルスレーザ光 Pは、ハーフミラー 43を透過して色収差発生レンズ 44に入射 する。また、第 2のレーザ発振装置 42により照射されたパルスレーザ光 Pは、ハーフミ ラー 43で反射されて色収差発生レンズ 44に入射する。そして、色収差発生レンズ 44 に入射したそれぞれのパルスレーザ光 Pは、波長に応じて焦点位置が異なるように出 射すると共に、対物レンズ 45によりウェハ 2内部に、深さ方向(厚さ方向)に分かれた 2つのスポット Sとして集光される。
このように、パルスレーザ光 Pの波長の違 、を利用して 2つのスポット Sを容易に生じ させることがでさる。
なお、本実施形態においては、 2つのスポット Sとした力 波長の異なる複数のパル スレーザ光 Pを照射させることで、所望する数の複数のスポット Sを生じさせることがで きる。
[0096] なお、第 2実施形態では、第 1のレーザ発振装置 41及び第 2のレーザ発振装置 42 により、波長の異なるノ ルスレーザ光 Pをそれぞれ照射するように構成したが、例え ば、図 18に示すように、波長を任意に選択できると共に選択した波長の光を同時に 複数照射することができるチューナブルレーザ発振装置 (照射手段) 47を利用しても 構わない。こうすることで、より構成をシンプルにすることができる。
[0097] なお、上記各実施形態において、スポット Sをウェハ 2の内部に厚さ方向に向けて 複数集光させたが、内部だけではなぐ表面及び裏面に集光させても構わない。また 、ステージ 3を XY方向に移動させることで、ウェハ 2に対して複数のスポット Sを相対 的に移動させたが、照射手段 4等を XY方向に移動させるように構成することで、ゥェ ノ、 2に対して複数のスポット Sを相対的に移動させても構わない。
[0098] 次に、本発明のレーザ加工装置の第 3実施形態について、図 19から図 24を参照し て説明する。なお、本実施形態のレーザ加工装置 101は、円状に形成されたウェハ (被加工対象物) 102を、レーザ加工によりチップ状に細力べ切断する装置として説明 する。
このレーザカ卩ェ装置 101は、図 19に示すように、ウェハ 102を水平面に対して平行 に配された載置面 103aに載置するステージ 103と、ウェハ 102の表面 102a又は内 部に向けてパルスレーザ光 Pを出射する照射手段 104と、パルスレーザ光 Pを複数の 光束 P'に分岐させる回折格子 (レーザ分岐素子、角度分岐素子) 105と、複数の光 束 P'をウェハ 102の内部に複数のスポット Sとして集光させる集光レンズ (集光光学 系) 106と、ウェハ 102に対して複数のスポット Sを、水平方向に向けて相対的に移動 させる移動手段 107とを備えて ヽる。
なお、回折格子 105と集光レンズ 106とで、パルスレーザ光 Pを複数の高速 P'に分 岐させると共に、ウェハ 102の表面 102a又は内部に複数のスポット Sとして集光させ る光学系を構成する。
[0099] ステージ 103は、水平面に平行な XY方向に移動可能に構成されている。このステ ージ 103の移動により、上述したように、ウェハ 102に対して複数のスポット Sを水平 方向に向けて相対的に移動させることが可能である。また、ステージ 103は、ステー ジコントローラ 110によって XY方向への移動が制御されている。即ち、これらステー ジ 103及びステージコントローラ 110は、上記移動手段 107として機能する。
[0100] ウェハ 102の上方には、パルスレーザ光 Pをウェハ 102の表面 102a対して垂直に 照射するレーザ発振装置 111が配されている。このレーザ発振装置 111は、例えば 、 ノ ルス幅が 1 μ s以下の短く強いパルスレーザ光 Ρを、ある限られた繰り返し周波数 で出射する機能を有している。また、レーザ発振装置 111は、パルスレーザ光 Ρを平 行光束状態で出射するように構成されている。このレーザ発振装置 111は、レーザ発 振制御部 112により、パルスレーザ光 Ρの出射タイミング等が制御されている。即ち、 これらレーザ発振装置 111及びレーザ発振制御部 112は、上記照射手段 104として 機能する。
また、レーザ発振制御部 112及びステージコントローラ 110は、システム制御部 11 3によって総合的に制御されて 、る。
[0101] 回折格子 105は、図 20に示すように、レーザ発振装置 111から出射されたパルス レーザ光 Ρを角度の異なる複数の光束 P'に分岐させる透過型の回折格子であり、分 岐面 105aが上記集光レンズ 106の瞳位置にほぼ一致するようにウェハ 102とレーザ 発振装置 111との間に配されている。また、この回折格子 105は、 CGH (Computer Generated Hologram)のように、回折次数に応じた回折効率をコントロールして、各光 束 P'の分岐光量比を略同一にすることが可能とされている。更に、回折格子 105は 、パルスレーザ光 Pを複数の光束 P'に分岐させる際に、平面上 (線状)に拡がるよう( 紙面に対して左右方向)に分岐させている。
また、回折格子 105は、図 21に示すように、回転機構(回転手段) 114によりウェハ 102の表面に直交する Z軸回りに回転可能とされて 、る。
[0102] 集光レンズ 106は、回折格子 105とウェハ 102との間に配され、回折格子 105によ り平面上に拡がるように分岐された複数の光束 P'を、図 20及び図 22に示すように、 水平方向に向けて直線状に複数のスポット Sが並ぶように集光させる機能を有して!/ヽ る。なお、本実施形態では、スポット S数を 5つとして説明する。
[0103] このように構成されたレーザカ卩ェ装置 101により、ウェハ 102をチップ状に切断する 場合について、以下に説明する。なお、初期状態として、図 21 (A)に示すように、ゥ エノ、 102の X方向に向けてスポット Sが並ぶように回折格子 105の向きが回転機構 1 14により設定されている。
まず、ステージコントローラ 110によりステージ 103を XY方向に移動させて、図 23 に示すように、ウェハ 102を切断開始位置まで移動させる。切断開始位置に移動さ せた後、レーザ発振制御部 112によりレーザ発振装置 111を作動させて、パルスレ 一ザ光 Pを平行光束状態で出射させる。出射されたパルスレーザ光 Pは、図 20に示 すように、回折格子 105に入射して、複数の光束 P'、即ち 5つの光束 P' (— 2次光、 - 1次光、 0次光、 1次光及び 2次光)に分岐される。この際、各光束 P'の分岐光量比は 、上述したように略同一となっている。
[0104] これら各光束 P,は、集光レンズ 106に入射してウェハ 102の内部に複数のスポット Sとして集光される。つまり、図 22に示すように、ウェハ 102の X方向に向けて直線状 に 5つのスポット Sが並んだ状態で集光される。そして、各スポット Sのそれぞれに、密 度の高いエネルギーが集中してクラックが生じる。このように、パルスレーザ光 Pを 1パ ルス照射する毎に、ウェハ 102内部に直線状に並んだ 5つのクラックを同時に生じさ せることができる。特に、回折格子 105の分岐面 105aは、集光レンズ 106の瞳位置 に配されているので、各スポット Sに集光する光束 P'のテレセントリック性を確保する ことが可能であり、加工の均一性を得ることができる。
[0105] また、上述したノ ルスレーザ光 Pの照射と同時に、システム制御部 113は、ステージ コントローラ 110に信号を送りステージ 103を介してウェハ 102を、図 21に示すように X方向に移動させる。即ち、スポット Sの分岐方向に向けてステージ 103を移動させる 。これにより、移動方向(走査方向)に向けて 5つのクラックを次々と同時に生じさせる ことができる。従って、ステージ 103を従来の移動速度より、例えば、 5倍速い速度で 移動させたとしても、各クラック間の最大加工間隔を維持した状態で、クラックを移動 方向に点線のように連続的に生じさせることができる。なお、この点線状に並んだクラ ックは、後にウェハ 102を切断する際の案内線となる。
[0106] そして、図 23に示すように、 X方向への走査を順次繰り返し、ウェハ 102の全面積 に亘つて X方向へのクラックを生じさせる。即ち、 X方向へ向力 点線力 複数本形成 された状態となる。ここで、上述したように、各クラック間の最大加工間隔を維持した 状態で、ステージ 2を従来より 5倍速い速度で移動させることができるので、レーザカロ ェにかける時間を短縮することができる。
X方向へのレーザ力卩ェが終了した後、図 21 (B)に示すように、回転機構 114により 回折格子 105を Z軸回りに 90度回転させて、複数のスポット Sをウェハ 102の Y方向 に直線状に並ばせる。複数のスポット Sを回転させた後、ステージコントローラ 110に よりステージ 103を介してウェハ 102を Υ方向に移動させ、上述したと同様に Υ方向 への走査を順次繰り返して、ウェハ 102の全面積に亘つて Υ方向へのレーザ力卩ェを 行う。この Υ方向への走査も同様に、各クラック間の最大加工間隔を維持した状態で 、ステージ 2を従来より 5倍速い速度で移動させることができるので、レーザ加工にか ける時間を短縮することができる。
[0107] 上述した ΧΥ方向への走査が終了すると、ウェハ 102内部には、最大加工間隔が 維持された状態で、クラックが ΧΥ方向に向けて網の目の如く連続的に生じた状態と なっている。ここで、若干の外力をウェハ 102にカ卩えることで、ウェハ 102を点線状に 並んだクラックに沿って切断することができ、チップ状のウェハ 102を得ることができる
[0108] 上述したように、本実施形態のレーザカ卩ェ装置 101によれば、パルスレーザ光 Ρの 繰り返し周波数を変えることなぐ各クラック間の最大加工間隔を維持した状態で、ス テージ 2を ΧΥ方向に向けて従来より 5倍速い速度で移動させることができるので、レ 一ザカ卩ェにかける時間を短縮することができ、スループットの向上化を図ることができ る。また、回転機構 114により、回折格子 105を回転させることで、複数のスポット Sの 方向転換を容易且つ円滑に行えるので、ステージ 103の移動と組み合わせてレーザ 加工をより高速に行い易い。
[0109] また、回折格子 105により、パルスレーザ光 Ρを確実に所望する複数の光束 P'に分 岐させることができる。更に、分岐面 105aが、集光レンズ 106の瞳位置に配されてい るので、各スポット Sへの集光光束のテレセントリック性を確保することが可能であり、 レーザカ卩ェ時の均一性を確保することができる。なお、分岐面 105aを必ずしも集光 レンズ 106の瞳位置に置かない場合でも効果はある。
[0110] なお、上記第 3実施形態では、スポット Sを 5つとして説明したが、これに限らず、複 数であれば構わない。また、ステージ 103の移動速度は、スポット Sの数に比例して 速くすることができる。例えば、 n個のスポット Sを集光するように構成した場合には、 ステージ 103を従来の速度よりも n倍速くすることができる。 また、スポット Sの分岐方向にステージ 103を移動させた力 これに限らず、図 24に 示すように、スポット Sの分岐方向と略直交する方向にステージ 103を移動させても構 わない。この場合には、ステージ 103の速度が従来のままでも、一度に複数のライン でスポット Sを形成することができ、走査回数の短縮を図ることができる。従って、レー ザカ卩ェにかける時間を短縮でき、スループットの向上化を図ることができる。
また、ステージ 2の移動方向を X方向から Y方向に切り替える際に、回折格子 105を 回転させたが、必ずしもこの方法でなぐ例えば、ウェハ 102を 90度回転させることで スポット Sの分岐方向と走査方向とを一致させることも可能である。
[0111] 更に、第 3実施形態では、スポット Sが直線状に並ぶように構成した力 これに限ら ず、例えば、パルスレーザ光 Pを回折格子 105により直交する 2平面に拡がるように 複数の光束 P'に分岐させ、その後、集光レンズ 106によりウェハ 102の内部に 2次 元的、即ち、 XY方向に並んだ複数のスポット S (X方向に n個、 Y方向に m個のスポッ ト)として集光させるように構成しても構わな 、。
この場合には、各クラック間の加工間隔を最大カ卩ェ間隔内に収めながら、ステージ 103を X方向に従来速度より n倍速く移動させることができると共に、走査回数を 1Z mに短縮することができるので、さらなるスループットの向上化を図ることができる。
[0112] 次に、本発明のレーザ加工装置の第 4実施形態を、図 25を参照して説明する。な お、この第 4実施形態においては、第 3実施形態における構成要素と同一の部分に ついては、同一の符号を付しその説明を省略する。
第 4実施形態と第 3実施形態との異なる点は、第 3実施形態では、回折格子 105の 分岐面 105aを集光レンズ 106の瞳位置に配した構成とした力 第 4実施形態では、 回折格子 105の分岐面 105aを集光レンズ 106の瞳位置と光学的に共役な位置に 配している点である。
[0113] 即ち、本実施形態のレーザ加工装置は、図 25に示すように、回折格子 105と集光 レンズ 106との間に、第 1のリレーレンズ 120及び第 2のリレーレンズ 121が配されて いる。回折格子 105は、この両リレーレンズ 120、 121を介することで、分岐面 105a を集光レンズ 106の瞳位置と共役な位置に配されている。
このように構成することで、集光レンズ 106の瞳位置力 レンズの内部にある場合や 、瞳位置に直接回折格子 105を配置できない場合であっても、対応することができる ので、設計の自由度を向上することができる。
[0114] 次に、本発明のレーザ加工装置の第 5実施形態を、図 26及び図 27を参照して説 明する。なお、この第 5実施形態においては、第 3実施形態における構成要素と同一 の部分については、同一の符号を付しその説明を省略する。
第 5実施形態と第 3実施形態との異なる点は、第 3実施形態では、パルスレーザ光 Pをレーザ分岐素子である回折格子 105を利用して複数の光束 P'に分岐させたが、 第 5実施形態では、レーザ分岐素子 (角度分岐素子)としてノマルスキープリズム 125 を用いた点である。
[0115] ノマルスキープリズム 125は、水晶等の複屈折性を有する結晶の結晶軸を組み合 わせて構成されており、例えば、レーザ発振装置 111側の結晶軸は光軸に対して直 交方向(紙面に対して垂直方向)とされ、集光レンズ 106側の結晶軸は光軸に対して 45度の傾きを持つように設計されて!、る。
また、ノマルスキープリズム 125のローカラィズ面(分岐面) 125aは、集光レンズ 10 6の内部にある瞳位置に一致するよう構成されている。
なお、本実施形態のレーザ加工装置は、ノマルスキープリズム 125に無偏光又は 図示しな!、 1Z4波長板を利用して円偏光のパルスレーザ光 Pが入射するよう構成さ れている。即ち、予め直線偏光状態のパルスレーザ光 Pを照射するレーザ発振装置 111を採用した場合には、 1Z4波長板を利用して円偏光に変換すれば良い。このよ うに、レーザ発振装置 111は、偏光状態に関係なくパルスレーザ光 Pを照射できれば 良い。
[0116] このように構成されたレーザカ卩ェ装置により、パルスレーザ光 Pを 2つ(複数)の光束 P'に分岐させる場合、まずレーザ発振装置 111から出射されたパルスレーザ光 Pは 、無偏光又は円偏光状態でノマルスキープリズム 125に入射する。入射したノ ルスレ 一ザ光 Pは、互いに直交する 2つの直線偏光に分かれて屈折し、 2つの光束 P'に分 岐する。分岐された光束 P,は、集光レンズ 106によりウェハ 102の内部に 2つのスポ ット Sとして集光される。この際、ローカラィズ面 125aが、集光レンズ 106の瞳位置に 一致しているので、良好な光束分岐が可能となる。また、パルスレーザ光 Pは、無偏 光又は円偏光状態でノマルスキープリズム 125に入射するので、分岐比が均等となり 2つのスポットでの光量比を等しくすることができる。
このように、特別な光学系を用いずに、ノマルスキープリズム 125を利用して、パル スレーザ光 Pを容易に 2つの光束 P,に分岐することができる。
[0117] ここで、例えば、図 27に示すように、ノマルスキープリズム 125を構成した場合、即 ち、光軸に対して直交方向(紙面に対して垂直方向)に結晶軸を有する第 1の水晶 1 25bと、光軸に対して 45度の方向に結晶軸を有する第 2の水晶 125cとを、それぞれ 頂角が 16° 20 'となるように接合して構成した場合には、接合面 125dからの距離が 3mmとなる位置にパルスレーザ光 Pを入射すると、第 2の水晶 125cから 15mm離れ た位置で 4mradの角度で分岐する 2つの光束 P 'を得ることができる。そして、このノ マルスキープリズム 125に、焦点距離 1. 8mmの集光レンズ(100X対物レンズ) 106 を組み合わせて使用した場合には、 7. 2 μ χη { 1. 8mm X 4mrad)間隔となる 2つの スポット Sを得ることができる。
[0118] なお、ノマルスキープリズム 125と集光レンズ 106との間に、 1Z4波長板を配置して も構わない。こうすることで、集光レンズ 106に 2つの光束 P 'を円偏光状態で入射さ せることができ、各スポット Sの偏光成分を均一にすることができる。従って、偏光成分 の違いによる加工性の影響を極力なくすことが可能である。
[0119] 次に、本発明のレーザ加工装置の第 6実施形態を、図 28を参照して説明する。な お、この第 6実施形態においては、第 3実施形態における構成要素と同一の部分に ついては、同一の符号を付しその説明を省略する。
第 6実施形態と第 3実施形態との異なる点は、第 3実施形態では、パルスレーザ光 Pをレーザ分岐素子である回折格子 105を利用して複数の光束 P 'に分岐させたが、 第 6実施形態では、ミラープリズム (レーザ分岐素子、角度分岐素子) 127を利用して パルスレーザ光 Pを 2つ (複数)の光束 P 'に分岐する点である。
[0120] 即ち、図 28に示すように、レーザ発振装置 111と集光レンズ 106との間であって、 パルスレーザ光 Pの光軸上にハーフミラー 128が配されている。このハーフミラー 128 は、パルスレーザ光 Pを 50%透過させると共に、 50%反射させる機能を有している。 また、ハーフミラー 128によって反射されたパルスレーザ光 Pは、ミラー 129によって 集光レンズ 106の瞳位置に向けて反射される。つまり、パルスレーザ光 Pは、ハーフミ ラー 128及びミラー 129〖こよって、 2つの光束 P,に分岐される。これらハーフミラー 12 8及びミラー 129は、上記ミラープリズム 127として機能する。
[0121] 本実施形態のレーザ加工装置によれば、特別な光学系を用いずに、ミラープリズム 127を利用して容易にパルスレーザ光 Pを 2つの光束 P,〖こ分岐させることができる。 なお、パルスレーザ光 Pを 2つの光束 P,に分岐させた力 ハーフミラー 128及びミラ 一 129の組み合わせにより、 2以上の光束 P'に分岐させることも可能である。
また、この方法では、回折格子、ノマルスキープリズムに比べ大きな角度分岐を発 生させることができる。特に、ステージ 102の移動方向に直角にスポット Sを分岐させ 、 2本以上のラインを同時に加工するのに適した方法となる。
[0122] 次に、本発明のレーザ加工装置の第 7実施形態を、図 29を参照して説明する。な お、この第 7実施形態においては、第 3実施形態における構成要素と同一の部分に ついては、同一の符号を付しその説明を省略する。
第 7実施形態と第 3実施形態との異なる点は、第 3実施形態では、パルスレーザ光 Pをレーザ分岐素子である回折格子 105を利用して複数の光束 P'に分岐させたが、 第 7実施形態では、偏光ビームスプリッタ(レーザ分岐素子、角度分岐素子) 130を 利用してパルスレーザ光 Pを 2つ (複数)の光束 P'に分岐する点である。
[0123] 即ち、偏光ビームスプリッタ(PBS : Polarized Beam Splitter) 130は、図 29に示すよ うに、レーザ発振装置 111と集光レンズ 106との間に配されており、入射されたノ ル スレーザ光 Pを偏光に応じて 2つの光束 P'に分岐させている。つまり、偏光ビームス プリッタ 130は、入射面に平行な振動成分である P成分の直線偏光を有する光束 P' (P)を透過させると共に、入射面に垂直な振動成分である S成分の直線偏光を有す る光束 P' (s)を反射させる機能を有しており、これによりパルスレーザ光 Pを 2つの光 束 P 'に分岐している。
[0124] また、偏光ビームスプリッタ 130の一方の側には、第 1の 1Z4波長板 131が配され ており、第 1の 1Z4波長板 131に隣接して第 1のミラー 132が配されている。この第 1 のミラー 132は、偏光ビームスプリッタ 130により反射されてきた光束 P' (s)を、若干 光軸の角度を変えて反射する。 また、偏光ビームスプリッタ 130の他方の側にも同様に、第 2の 1Z4波長板 133及 び第 2のミラー 134が配されている。この第 2のミラー 134は、第 1のミラー 31により反 射されてきた光束を、若干光軸の角度を変えて反射する。
[0125] このように構成されたレーザカ卩ェ装置によりパルスレーザ光 Pを 2つの光束 P,に分 岐させる場合つ!/ヽて説明する。レーザ発振装置 111により出射されたパルスレーザ 光 Pは、平行光束状態で偏光ビームスプリッタ 130に入射する。入射したパルスレー ザ光 Pのうち、 P成分の直線偏光の光束 P' (P)は偏光ビームスプリッタ 130を透過し て集光レンズ 106に入射する。
一方、入射したパルスレーザ光 Pのうち、 S成分の直線偏光の光束 P' (s)は、偏光 ビームスプリッタ 130の反射面にて反射し、 90度光軸の向きを変えて第 1の 1Z4波 長板 131に入射する。入射した光束 P' (s)は、第 1の 1Z4波長板 131により円偏光 となって第 1のミラー 132に入射する。そして、第 1のミラー 132により反射されて再度 第 1の 1Z4波長板 131に入射する。この際、円偏光は、第 1の 1Z4波長板 131でも との S成分の偏光とは 90度回転した P成分の直線偏光光となる。また、光束 P'の光 軸は、若干角度が変更された状態で反射される。
[0126] 再び、偏光ビームスプリッタ 130に戻ってきた光は、 P成分の光となるため、偏光ビ 一ムスプリッタ 130を通過し、第 2の 1Z4波長板 133に入射する。そして、入射した光 束 P' (p)は、第 2の 1Z4波長板 133により円偏光となって第 2のミラー 134に入射す ると共に、若干光軸の角度が変更された状態で反射される。反射された後、再度第 2 の 1Z4波長板 133によって、円偏光がもとの P成分とは 90度回転した S成分の直線 偏光となり、偏光ビームスプリッタ 130に入射する。
[0127] 偏光ビームスプリッタ 130に入射した光束 P' (s)は、 S成分であるため偏光ビームス プリッタ 130の反射面により反射され、 90度光軸の向きを変えて集光レンズ 106に入 射する。つまり、集光レンズ 106には、もともと偏光ビームスプリッタ 130を通過してき た P成分の光束 Pと、左右のミラー 132、 134で 2回反射してきた S成分の光束との 2 つの光束 P'が入射する。
また、左右のミラー 132、 134の傾きを調整することにより、 P成分の光束に対し S成 分の光束の角度を任意に調整することが可能である。この 2つの角度の異なる光束 により、 2つのスポット Sをウェハ 102の内部に集光させることができる。
このように、特別な光学系を用いずに、偏光ビームスプリッタ 130、両 1Z4波長板 1 31、 133及び両ミラー 132、 134を組み合わせることで、パルスレーザ光 Pを容易に 2 つの任意の角度をもった光束 P,に分岐させることができる。
[0128] なお、本実施形態において、偏光ビームスプリッタ 130と集光レンズ 106との間に、
1Z4波長板を配置しても構わない。こうすることで、集光レンズ 106に 2つの光束 P' を円偏光状態で入射させることができ、各スポット Sの偏光成分を均一にすることがで きる。従って、偏光成分の違いによる加工性の影響を極力なくすことが可能である。 また、この方法では、ミラー 132、 134の傾きを紙面に平行な面で傾けた力 紙面に 垂直な面内で傾けることも可能である。このため、偏光ビームスプリッタ 130を通過し た P成分の偏光光光に対して、 XY両方向での傾きを与えることが可能であり、図示 のように紙面に平行のみならず、垂直又はその組み合わせ方向にも、スポット Sの分 岐が可能となる。
[0129] 次に、本発明のレーザ加工装置の第 8実施形態を、図 30を参照して説明する。な お、この第 8実施形態においては、第 1実施形態における構成要素と同一の部分に ついては、同一の符号を付しその説明を省略する。
第 8実施形態と第 3実施形態との異なる点は、第 3実施形態では、パルスレーザ光 Pを回折格子 105により角度の異なる複数の光束に分岐させたが、第 8実施形態で は、レーザ分岐素子として複屈折性を有する水晶等の複屈折性結晶 (平行移動分岐 素子、複屈折光学素子) 140を利用し、パルスレーザ光 Pを光軸に対して平行移動 するように複数分岐させて、 2つ (複数)の光束 P'とする点である。
[0130] 即ち、図 30に示すように、レーザ発振装置 111と集光レンズ 106との間に、複屈折 性結晶 140が配されている。この複屈折性結晶 140は、収束光学系 141、即ち、第 1 の凸レンズ 142及び第 2の凸レンズ 143間に配されている。これにより、パルスレーザ 光 Pは、非平行光束状態で複屈折性結晶 140に入射する。
[0131] このように構成されたレーザカ卩ェ装置によりパルスレーザ光 Pを 2つの光束 P,に分 岐させる場合ついて説明する。まず、レーザ発振装置 111により出射されたノ ルスレ 一ザ光 Pは、第 1の凸レンズ 142により収束光となって、非平行光束状態で複屈折性 結晶 140に入射する。複屈折性結晶 140に入射したパルスレーザ光 Pは、偏光方向 に応じて屈折し、光軸が平行移動するように 2つの光束 P'に分岐する。そして、これ ら各光束 P'は、第 2の凸レンズ 143により再び平行光束状態となって集光レンズ 106 に入射する。これにより、ウェハ 102内部に複数のスポット Sを集光させることができる なお、本実施形態においては、レーザ分岐素子として複屈折性結晶 140を採用し たが、ミラープリズムを採用しても構わない。
[0132] ここで、複屈折性結晶 140として、例えば、 10mm厚さの方解石を利用した場合、 光軸を約 lmm平行移動させた状態で光束を 2つに分岐させることができる。この場 合には、結合倍率 100X(100倍)の集光光学系(対物レンズ 106と凸レンズ 143とに より構成される)縮小投影を行うと、 10 m間隔のスポット Sとなる。
また、本実施形態においては、複屈折性結晶 140を像側集光位置に配した構成に したが、図 31に示すように、集光位置力 ずれた位置に配しても構わない。
[0133] 更に、図 32に示すように、複屈折性結晶 140をカスケード接続して、パルスレーザ 光 Pを複数の光束 P'に 2n分岐させても構わない。即ち、 1Z4波長板 144を挟むよう に厚さの異なる複屈折性結晶 140を配置させる。こうすることで、まず、最初の複屈折 性結晶 140により、パルスレーザ光 Pを S成分の直線偏光の光束 P' (s)と P成分の直 線偏光の光束 P' (P)とに分岐させる。その後、 1Z4波長板 144により円偏光にさせ、 これを次の複屈折性結晶 140によりそれぞれ S成分及び P成分の直線偏光を持つ光 束 P' (p) (s)に分岐させることが可能である。
このように、複屈折性結晶 140をカスケード接続することで、パルスレーザ光 Pを容 易に所望する数の光束に分岐させることができる。
[0134] また、上記各実施形態において、スポット Sを複数に分離する例を示したが、全く同 じ構成のもとで、スポット Sの分岐量を小さくすることで、図 33に示すように、近接した 複数のスポット Sで 1箇所を加工することができる。
1個のスポット Sでは、等方性を持ったカ卩ェしかできないが、近接した複数のスポット Sを利用すると、スポット Sをずらす方向やずらし量により、加工点に異方性を持たせ ることが可能となる。この異方性により、意図的にウェハ 102内にできる歪みやクラッ クに方向性を持たせることが可能となり、隣り合った加工ポイントとのつながりを良くし
、その結果、ウェハ 102の分断 (切断)を容易にする効果を持つことになる。
[0135] また、上記各実施形態において、スポット Sをウェハ 102の内部に集光させた力 ゥ ェハ 102の表面 102aに集光するように構成しても構わない。ウェハ 102の厚さに応 じて適宜選択すれば良い。
また、ステージ 103を XY方向に移動させることで、ウェハ 102に対して複数のスポ ット Sを相対的に移動させたが、照射手段 104、回折格子 105等のレーザ分岐素子 及び集光レンズを XY方向に移動させるように構成することで、ウェハ 102に対して複 数のスポット Sを相対的に移動させても構わない。
また、回折格子 105を回転させることで、複数のスポット Sを回転させた力 ステージ 103を回転可能に構成しても構わな 、。
[0136] 更に、本発明には以下も含まれる。
〔付記項 1〕
本発明のレーザカ卩ェ装置であって、
前記レーザ分岐素子力 前記パルスレーザを水平方向に向けて複数の光束に分 岐させた後に、複数の光束の焦点位置をそれぞれ光軸方向に相対的にずらし、 前記集光光学系が、前記複数の光束を前記被加工対象物の表面又は内部に、水 平方向及び水平方向に直交する方向に並んだ複数のスポットとして集光させるレー ザ加工装置。
[0137] このレーザ加工装置においては、複数のスポットを被加工対象物の水平方向及び 深さ方向(厚さ方向)に並ぶように集光させることができるので、厚みのある被加工対 象物であっても容易に切断することができる。
[0138] 以上、本発明の好ましい実施形態を説明したが、本発明は上記の実施形態に限定 されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、お よびその他の変更が可能である。本発明は前述した説明によって限定されることはな く、添付のクレームの範囲によってのみ限定される。
産業上の利用可能性
[0139] 本発明は、被加工対象物を載置するステージと、前記被加工対象物の表面に向け てレーザ光を出射する照射手段と、前記レーザ光を、複数の光束に分岐させると共 に、前記被加工対象物の表面又は内部に複数のスポットとして集光させる光学系と、 前記被加工対象物に対して前記複数のスポットを、水平方向に向けて相対的に移動 させる移動手段と、を備えるレーザ加工装置に関する。
本発明のレーザ加工装置によれば、切れ味を増して切断性の向上を図ることがで きると共に、厚みのある試料を容易に切断することができる。また、レーザ光の繰り返 し周波数及びクラック間の最大加工間隔を変えることなぐ高速にレーザ加工が行え ると共にスループットの向上を図ることができる。

Claims

請求の範囲
[1] 被加工対象物を載置するステージと;
前記被加工対象物の表面に向けてレーザ光を出射する照射手段と;
前記レーザ光を、複数の光束に分岐させると共に、前記被加工対象物の表面又は 内部に複数のスポットとして集光させる光学系と;
前記被加工対象物に対して前記複数のスポットを、水平方向に向けて相対的に移 動させる移動手段と;を備えるレーザ加工装置。
[2] 請求項 1に記載のレーザカ卩ェ装置であって、
前記光学系は、前記レーザ光を複数の光束に分岐させると共に、前記被加工対象 物の表面に直交する方向に沿って前記複数のスポットを並べて集光させる複屈折性 の光軸方向分岐素子を有する集光光学系であるレーザ加工装置。
[3] 請求項 2に記載のレーザカ卩ェ装置であって、
前記集光光学系が、隣接する前記複数のスポットの相対的な水平方向の位置をず らす複屈折性の水平方向分岐素子を有するレーザ加工装置。
[4] 請求項 2に記載のレーザカ卩ェ装置であって、
前記被加工対象物の表面を観察する観察光学系を備え、
前記移動手段は、前記被加工対象物に対して前記複数のスポットを前記表面に直 交する方向に相対的に移動でき、この移動時に、前記観察光学系により観察された データに基づ 、て、前記被加工対象物の表面の合焦を自動調整するレーザ加工装 置。
[5] 請求項 1に記載のレーザカ卩ェ装置であって、
前記レーザ光が、パノレスレーザ光であり、
前記光学系が、前記レーザ光を複数の光束に分岐させるレーザ分岐素子と;前記 複数の光束を、前記被加工対象物の表面又は内部に水平方向に並んだ複数のスポ ットとして集光させる集光光学系と;を備えるレーザ加工装置。
[6] 請求項 5に記載のレーザカ卩ェ装置であって、
前記レーザ分岐素子が、前記レーザ光を平面上に拡がるように分岐させ、 前記集光光学系が、前記複数のスポットを水平方向に向けて直線状に並ぶように 集光させるレーザ加工装置。
[7] 請求項 5に記載のレーザカ卩ェ装置であって、
前記レーザ分岐素子が、前記レーザ光を互いに直交する平面上に拡がるように分 岐させ、
前記集光光学系が、前記複数のスポットを水平面に対して 2次元状に並ぶように集 光させるレーザ加工装置。
[8] 請求項 5に記載のレーザカ卩ェ装置であって、
前記複数のスポットを、前記被加工対象物の表面に直交する軸回りに回転させる 回転手段を備えるレーザ加工装置。
[9] 請求項 5に記載のレーザカ卩ェ装置であって、
前記レーザ光が、前記レーザ分岐素子に平行光束状態で入射し、
前記レーザ分岐素子が、前記レーザ光を角度の異なる複数の光束に分岐させて前 記複数の光束とする角度分岐素子であるレーザ加工装置。
[10] 請求項 5に記載のレーザ加工装置であって、
前記角度分岐素子が、回折格子であり、その分岐面が前記集光光学系の瞳位置 又は瞳位置と光学的に共役な位置に配置されるレーザ加工装置。
[11] 請求項 5に記載のレーザ加工装置であって、
前記角度分岐素子が、ノマルスキープリズムであり、ローカラィズ面が前記集光光 学系の瞳位置又は瞳位置と光学的に共役な位置に配置されるレーザ加工装置。
[12] 請求項 5に記載のレーザ加工装置であって、
前記角度分岐素子が、ミラープリズム力 構成されるレーザ加工装置。
[13] 請求項 5に記載のレーザ加工装置であって、
前記レーザ光は、前記レーザ分岐素子に非平行光束状態で入射し、
前記レーザ分岐素子が、前記レーザ光を光軸に対して平行移動するよう複数に分 岐させて、前記複数の光束とする平行移動分岐素子であるレーザ加工装置。
[14] 請求項 13に記載のレーザカ卩ェ装置であって、
前記平行移動分岐素子が、複屈折性を有する複屈折光学素子であるレーザ加工 装置。 請求項 13に記載のレーザカ卩ェ装置であって、
前記平行移動分岐素子が、ミラープリズムカゝら構成されるレーザ加工装置。
PCT/JP2005/003507 2004-03-05 2005-03-02 レーザ加工装置 WO2005084874A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05719822A EP1721695A4 (en) 2004-03-05 2005-03-02 LASER PROCESSING FACILITY
JP2006510691A JPWO2005084874A1 (ja) 2004-03-05 2005-03-02 レーザ加工装置
US11/512,550 US20060289410A1 (en) 2004-03-05 2006-08-30 Laser machining apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-062226 2004-03-05
JP2004062225 2004-03-05
JP2004062226 2004-03-05
JP2004-062225 2004-03-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/512,550 Continuation US20060289410A1 (en) 2004-03-05 2006-08-30 Laser machining apparatus

Publications (1)

Publication Number Publication Date
WO2005084874A1 true WO2005084874A1 (ja) 2005-09-15

Family

ID=34921703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003507 WO2005084874A1 (ja) 2004-03-05 2005-03-02 レーザ加工装置

Country Status (7)

Country Link
US (1) US20060289410A1 (ja)
EP (1) EP1721695A4 (ja)
JP (1) JPWO2005084874A1 (ja)
KR (1) KR100813350B1 (ja)
CN (1) CN1925945A (ja)
TW (1) TWI250910B (ja)
WO (1) WO2005084874A1 (ja)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130675A (ja) * 2005-11-11 2007-05-31 Seiko Epson Corp レーザスクライブ加工方法
JP2007167875A (ja) * 2005-12-20 2007-07-05 Seiko Epson Corp レーザ内部スクライブ方法
WO2007149208A2 (en) * 2006-06-19 2007-12-27 Eastman Kodak Company Direct engraving of flexographic printing plates
JP2008016486A (ja) * 2006-07-03 2008-01-24 Hamamatsu Photonics Kk レーザ加工方法
JP2008036641A (ja) * 2006-08-01 2008-02-21 Laser System:Kk レーザ加工装置およびレーザ加工方法
JP2008057011A (ja) * 2006-08-31 2008-03-13 National Univ Corp Shizuoka Univ 成膜装置及び成膜方法
KR100825884B1 (ko) 2005-11-16 2008-04-28 가부시키가이샤 덴소 레이저 가공장치 및 레이저 가공방법
JP2008290086A (ja) * 2007-05-22 2008-12-04 Disco Abrasive Syst Ltd レーザー加工装置
JP2008296254A (ja) * 2007-05-31 2008-12-11 Disco Abrasive Syst Ltd レーザー加工装置
JP2010036196A (ja) * 2008-07-31 2010-02-18 Seishin Shoji Kk レーザスクライブ方法および装置
JP2012110905A (ja) * 2010-11-22 2012-06-14 Panasonic Corp 溶接方法および溶接装置
WO2012108503A1 (ja) * 2011-02-09 2012-08-16 住友電気工業株式会社 レーザ加工方法
JP2012528012A (ja) * 2009-05-28 2012-11-12 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド レーザビームと対象機能部とのレンズを通した位置合わせを用いるレーザ加工システム
JP2013033155A (ja) * 2011-08-02 2013-02-14 Sumitomo Electric Hardmetal Corp レーザ用光学部品
US8450638B2 (en) 2010-01-28 2013-05-28 Seishin Trading Co., Ltd. Laser scribing method and apparatus
JP2014039949A (ja) * 2012-08-22 2014-03-06 Disco Abrasive Syst Ltd レーザー加工装置
JP2014138956A (ja) * 2009-08-03 2014-07-31 Hamamatsu Photonics Kk レーザ加工方法及び半導体装置の製造方法
JP2015030022A (ja) * 2013-08-05 2015-02-16 株式会社ディスコ レーザー加工装置
JP2015083320A (ja) * 2013-10-25 2015-04-30 ロフィン−ジナール テクノロジーズ インコーポレイテッド バースト超高速レーザーパルスによるフィラメンテーションを使用してガラス製磁気ハードドライブディスクプラッタを作成する方法
JP2015110248A (ja) * 2013-12-03 2015-06-18 ロフィン−ジナール テクノロジーズ インコーポレイテッド バースト超高速レーザーパルスのフィラメンテーションによりシリコンをレーザー加工する方法および装置
WO2018193972A1 (ja) * 2017-04-17 2018-10-25 浜松ホトニクス株式会社 加工対象物切断方法
WO2018193971A1 (ja) * 2017-04-17 2018-10-25 浜松ホトニクス株式会社 加工対象物切断方法
JPWO2018012379A1 (ja) * 2016-07-14 2018-11-08 三菱電機株式会社 レーザ加工ヘッド及びレーザ加工装置
JP2018182137A (ja) * 2017-04-17 2018-11-15 浜松ホトニクス株式会社 加工対象物切断方法及び半導体チップ
JP2020523058A (ja) * 2017-06-15 2020-08-06 アルコン インコーポレイティド レーザ光線放出用の複屈折レンズ
JP2021136253A (ja) * 2020-02-25 2021-09-13 株式会社ディスコ チップの製造方法
WO2022091253A1 (ja) * 2020-10-28 2022-05-05 株式会社ニコン 光加工装置
WO2022186121A1 (ja) * 2021-03-02 2022-09-09 浜松ホトニクス株式会社 基板製造装置
CN115609767A (zh) * 2022-11-03 2023-01-17 华中科技大学 一种多模式激光辅助超精密切削装置
JP2023501641A (ja) * 2019-11-14 2023-01-18 トルンプフ レーザー- ウント ジュステームテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング ワークピースのレーザ加工の方法、加工光学ユニット及びレーザ加工装置

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4354376B2 (ja) * 2004-09-28 2009-10-28 株式会社ディスコ レーザ加工装置
JP2006145810A (ja) * 2004-11-19 2006-06-08 Canon Inc 自動焦点装置、レーザ加工装置およびレーザ割断装置
US9138913B2 (en) * 2005-09-08 2015-09-22 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
JP4960043B2 (ja) * 2006-08-31 2012-06-27 日立ビアメカニクス株式会社 レーザ加工方法およびレーザ加工装置
EP2081728B1 (en) * 2006-10-30 2012-06-13 Flemming Ove Elholm Olsen Method and system for laser processing
JP2009095876A (ja) * 2007-10-18 2009-05-07 Olympus Corp レーザ加工装置、レーザ加工方法およびレーザ加工プログラム
TW201009525A (en) * 2008-08-18 2010-03-01 Ind Tech Res Inst Laser marking method and laser marking system
JP5241527B2 (ja) * 2009-01-09 2013-07-17 浜松ホトニクス株式会社 レーザ加工装置
JP5241525B2 (ja) * 2009-01-09 2013-07-17 浜松ホトニクス株式会社 レーザ加工装置
JP4611431B1 (ja) * 2009-06-29 2011-01-12 西進商事株式会社 レーザー照射装置及びレーザー加工方法
JP4651731B2 (ja) 2009-07-29 2011-03-16 西進商事株式会社 レーザースクライブ加工方法
JP5451238B2 (ja) * 2009-08-03 2014-03-26 浜松ホトニクス株式会社 レーザ加工方法
JP5446631B2 (ja) * 2009-09-10 2014-03-19 アイシン精機株式会社 レーザ加工方法及びレーザ加工装置
JP5410250B2 (ja) 2009-11-25 2014-02-05 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
TWI409121B (zh) * 2010-01-25 2013-09-21 Seishin Trading Co Ltd Method and device for mine clearance
CN102139484B (zh) * 2010-01-29 2015-05-20 西进商事股份有限公司 激光划线方法以及装置
JP2011161491A (ja) * 2010-02-10 2011-08-25 Disco Abrasive Syst Ltd レーザー加工装置
JP2011229625A (ja) * 2010-04-26 2011-11-17 Fujifilm Corp 内視鏡装置
JP2011229603A (ja) * 2010-04-26 2011-11-17 Fujifilm Corp 内視鏡装置
JP5770436B2 (ja) * 2010-07-08 2015-08-26 株式会社ディスコ レーザー加工装置およびレーザー加工方法
JP5518612B2 (ja) * 2010-07-20 2014-06-11 株式会社ディスコ 光学装置およびこれを備えるレーザー加工装置
KR102253017B1 (ko) 2010-10-22 2021-05-20 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 빔 디더링 및 스카이빙을 위한 레이저 처리 시스템 및 방법
JP2012096274A (ja) * 2010-11-04 2012-05-24 Disco Corp レーザー加工装置
JP5788749B2 (ja) * 2011-09-15 2015-10-07 株式会社ディスコ レーザー加工装置
JP2013180298A (ja) * 2012-02-29 2013-09-12 Mitsuboshi Diamond Industrial Co Ltd レーザ加工装置
JP2013188785A (ja) * 2012-03-15 2013-09-26 Mitsuboshi Diamond Industrial Co Ltd 被加工物の加工方法および分割方法
TWI490068B (zh) * 2012-06-04 2015-07-01 Nat Univ Tsing Hua 用於雷射加工之多階諧波合成雷射系統及應用多階諧波合成雷射之雷射加工方法
DE102012209837A1 (de) * 2012-06-12 2013-12-12 Trumpf Laser- Und Systemtechnik Gmbh EUV-Anregungslichtquelle mit einer Laserstrahlquelle und einer Strahlführungsvorrichtung zum Manipulieren des Laserstrahls
TW201417928A (zh) * 2012-07-30 2014-05-16 Raydiance Inc 具訂製邊形及粗糙度之脆性材料切割
JP5965239B2 (ja) * 2012-07-31 2016-08-03 三星ダイヤモンド工業株式会社 貼り合わせ基板の加工方法並びに加工装置
JP6034097B2 (ja) * 2012-08-28 2016-11-30 株式会社ディスコ レーザー加工装置
JP6068882B2 (ja) * 2012-09-05 2017-01-25 株式会社ディスコ レーザー加工装置
KR102096048B1 (ko) * 2012-10-10 2020-04-02 삼성디스플레이 주식회사 레이저 가공장치
WO2014079478A1 (en) 2012-11-20 2014-05-30 Light In Light Srl High speed laser processing of transparent materials
EP2754524B1 (de) 2013-01-15 2015-11-25 Corning Laser Technologies GmbH Verfahren und Vorrichtung zum laserbasierten Bearbeiten von flächigen Substraten, d.h. Wafer oder Glaselement, unter Verwendung einer Laserstrahlbrennlinie
EP2781296B1 (de) 2013-03-21 2020-10-21 Corning Laser Technologies GmbH Vorrichtung und verfahren zum ausschneiden von konturen aus flächigen substraten mittels laser
JP6101569B2 (ja) * 2013-05-31 2017-03-22 株式会社ディスコ レーザー加工装置
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
US20150165560A1 (en) 2013-12-17 2015-06-18 Corning Incorporated Laser processing of slots and holes
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US9517963B2 (en) 2013-12-17 2016-12-13 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US10388098B2 (en) 2014-02-07 2019-08-20 Korea Institute Of Machinery & Materials Apparatus and method of processing anti-counterfeiting pattern, and apparatus and method of detecting anti-counterfeiting pattern
RU2580180C2 (ru) * 2014-03-06 2016-04-10 Юрий Александрович Чивель Способ лазерной наплавки и устройство для его осуществления
KR20160005802A (ko) * 2014-07-03 2016-01-18 마이크로 인스펙션 주식회사 레이저 가공장치
US9815144B2 (en) 2014-07-08 2017-11-14 Corning Incorporated Methods and apparatuses for laser processing materials
CN107073642B (zh) * 2014-07-14 2020-07-28 康宁股份有限公司 使用长度和直径可调的激光束焦线来加工透明材料的系统和方法
EP3536440A1 (en) 2014-07-14 2019-09-11 Corning Incorporated Glass article with a defect pattern
EP3169476A1 (en) 2014-07-14 2017-05-24 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
WO2016010949A1 (en) 2014-07-14 2016-01-21 Corning Incorporated Method and system for forming perforations
TWI574767B (zh) * 2014-07-29 2017-03-21 Improved laser structure
CN111843191A (zh) * 2014-11-10 2020-10-30 康宁股份有限公司 使用多个焦点来进行对透明制品的激光加工
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
JP6391471B2 (ja) * 2015-01-06 2018-09-19 株式会社ディスコ ウエーハの生成方法
JP2018507154A (ja) 2015-01-12 2018-03-15 コーニング インコーポレイテッド マルチフォトン吸収方法を用いた熱強化基板のレーザー切断
HUE055461T2 (hu) 2015-03-24 2021-11-29 Corning Inc Kijelzõ üveg kompozíciók lézeres vágása és feldolgozása
KR20170131638A (ko) 2015-03-27 2017-11-29 코닝 인코포레이티드 가스 투과성 유리창 및 이의 제작방법
US11186060B2 (en) 2015-07-10 2021-11-30 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
CN104972222B (zh) * 2015-07-14 2017-01-18 中国工程物理研究院激光聚变研究中心 一种激光加工系统及其进行激光加工的方法
CN105033457B (zh) * 2015-08-03 2017-07-21 东莞市德瑞精密设备有限公司 电池模组激光分时焊接机
CN105345256B (zh) * 2015-10-09 2017-09-29 江苏大金激光科技有限公司 自动对中激光切割头
US10518358B1 (en) * 2016-01-28 2019-12-31 AdlOptica Optical Systems GmbH Multi-focus optics
KR20220078719A (ko) 2016-05-06 2022-06-10 코닝 인코포레이티드 투명 기판들로부터의 윤곽 형상들의 레이저 절단 및 제거
US10410883B2 (en) 2016-06-01 2019-09-10 Corning Incorporated Articles and methods of forming vias in substrates
US10794679B2 (en) 2016-06-29 2020-10-06 Corning Incorporated Method and system for measuring geometric parameters of through holes
EP3490945B1 (en) 2016-07-29 2020-10-14 Corning Incorporated Methods for laser processing
JP2019532908A (ja) 2016-08-30 2019-11-14 コーニング インコーポレイテッド 強度マッピング光学システムによる材料のレーザー切断
WO2018064409A1 (en) 2016-09-30 2018-04-05 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
WO2018081031A1 (en) 2016-10-24 2018-05-03 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
JP6795811B2 (ja) * 2017-02-16 2020-12-02 国立大学法人埼玉大学 剥離基板製造方法
JP6802093B2 (ja) * 2017-03-13 2020-12-16 株式会社ディスコ レーザー加工方法およびレーザー加工装置
JP6935126B2 (ja) * 2017-04-05 2021-09-15 株式会社ディスコ ウェーハのレーザ加工方法
DE102017208290A1 (de) * 2017-05-17 2018-11-22 Schott Ag Vorrichtung und Verfahren zum Bearbeiten eines Werkstücks entlang einer vorbestimmten Bearbeitungslinie
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US10580725B2 (en) 2017-05-25 2020-03-03 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
DE102017208979A1 (de) 2017-05-29 2018-11-29 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Tiefschweißen eines Werkstücks, mit Verteilung der Laserleistung auf mehrere Foki
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
DE102017116110A1 (de) * 2017-07-18 2019-01-24 ConsultEngineerIP AG Optikkopf
JP6959073B2 (ja) * 2017-08-30 2021-11-02 株式会社ディスコ レーザー加工装置
CN111093886B (zh) * 2017-09-11 2023-04-28 松下知识产权经营株式会社 激光加工头、光纤检查装置及光纤检查方法
CN107504898A (zh) * 2017-09-25 2017-12-22 成都光博创科技有限公司 一种激光扫描仪
TWI648524B (zh) * 2017-10-03 2019-01-21 財團法人工業技術研究院 多層材料加工裝置及其方法
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
JP7136602B2 (ja) * 2018-06-25 2022-09-13 川崎重工業株式会社 導光装置及びレーザ加工装置
DE102018218064B4 (de) * 2018-10-22 2024-01-18 Carl Zeiss Smt Gmbh Optisches System, insbesondere für die Mikrolithographie
US10814433B2 (en) * 2018-11-13 2020-10-27 Vertiled Co. Limited Laser based system for cutting transparent and semi-transparent substrates
WO2020163995A1 (zh) * 2019-02-12 2020-08-20 大族激光科技产业集团股份有限公司 一种硬脆性产品的加工方法、装置以及系统
DE102019205394A1 (de) * 2019-04-15 2020-10-15 Trumpf Laser- Und Systemtechnik Gmbh Bearbeitungsoptik, Laserbearbeitungsvorrichtung und Verfahren zur Laserbearbeitung
WO2021010284A1 (ja) * 2019-07-18 2021-01-21 東京エレクトロン株式会社 処理装置及び処理方法
CN110405361A (zh) * 2019-08-05 2019-11-05 深圳泰研半导体装备有限公司 一种晶圆激光开槽装置及其工作方法
KR20210144982A (ko) * 2020-05-21 2021-12-01 삼성디스플레이 주식회사 레이저 장치
CN115026412A (zh) * 2021-02-25 2022-09-09 深圳市大族半导体装备科技有限公司 一种用于脆性产品的激光加工装置及方法
CN113787722A (zh) * 2021-07-21 2021-12-14 武汉锐科光纤激光技术股份有限公司 封装装置及封装方法
DE102021123962A1 (de) * 2021-09-16 2023-03-16 Trumpf Laser- Und Systemtechnik Gmbh Verfahren und Vorrichtung zur Laserbearbeitung eines Werkstücks
CN113634874B (zh) * 2021-09-23 2023-03-14 山东理工大学 多聚焦点透镜大功率水导激光水光耦合装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636611A (en) 1985-04-15 1987-01-13 General Electric Company Quiescent circle and arc generator
US5055653A (en) 1989-05-08 1991-10-08 Matsushita Electric Industrial Co., Ltd. Laser beam machining device
US5410375A (en) 1990-03-15 1995-04-25 Fiala; Werner J. Multifocal birefrigent lens with adjusted birefringence
US5690845A (en) 1994-10-07 1997-11-25 Sumitomo Electric Industries, Ltd. Optical device for laser machining
US6031201A (en) 1993-06-04 2000-02-29 Seiko Epson Corporation Laser machining apparatus with rotatable phase grating
US6037564A (en) 1998-03-31 2000-03-14 Matsushita Electric Industrial Co., Ltd. Method for scanning a beam and an apparatus therefor
US6057970A (en) 1998-05-28 2000-05-02 Electronics And Telecommunications Research Institute Apparatus for enhancing depth of focus using birefringent material
JP2000301372A (ja) * 1999-04-23 2000-10-31 Seiko Epson Corp 透明材料のレーザ加工方法
EP1067593A2 (en) 1999-07-08 2001-01-10 Nec Corporation Semiconductor thin film forming system
WO2002022301A1 (fr) * 2000-09-13 2002-03-21 Hamamatsu Photonics K.K. Procede et dispositif d'usinage par rayonnement laser
JP2005028438A (ja) * 2003-07-11 2005-02-03 Disco Abrasive Syst Ltd レーザ光線を利用する加工装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3180216A (en) * 1962-08-13 1965-04-27 American Optical Corp System and apparatus for variable phase microscopy
US3520592A (en) * 1967-09-14 1970-07-14 Grumman Corp Optical focusing system utilizing birefringent lenses
US3944640A (en) * 1970-09-02 1976-03-16 Arthur D. Little, Inc. Method for forming refractory fibers by laser energy
JPH0489192A (ja) * 1990-07-31 1992-03-23 Sigma Koki Kk レーザ加工装置
JP2579394B2 (ja) * 1991-09-13 1997-02-05 日本電信電話株式会社 波長多重型モード同期レーザ装置
US5748222A (en) * 1992-06-11 1998-05-05 Zed Instruments Ltd. Laser angroxing head employing acousto-optic modulator
DE19513354A1 (de) * 1994-04-14 1995-12-14 Zeiss Carl Materialbearbeitungseinrichtung
EP0753372B1 (en) * 1995-01-13 2002-04-17 Tokai Kogyo Mishin Kabushiki Kaisha Laser processing machine and sewing machine with laser processing function
US5916461A (en) * 1997-02-19 1999-06-29 Technolines, Llc System and method for processing surfaces by a laser
US6881925B1 (en) * 1997-12-09 2005-04-19 Kabushiki Kaisha Toshiba Laser emission head, laser beam transmission device, laser beam transmission device adjustment method and preventive maintenance/repair device of structure in nuclear reactor
US6331177B1 (en) * 1998-04-17 2001-12-18 Visx, Incorporated Multiple beam laser sculpting system and method
CA2353338A1 (en) * 2000-07-21 2002-01-21 Ats Automation Tooling Systems Inc. Folded-fin heat sink manufacturing method and apparatus
US6625181B1 (en) * 2000-10-23 2003-09-23 U.C. Laser Ltd. Method and apparatus for multi-beam laser machining
GB0118307D0 (en) * 2001-07-26 2001-09-19 Gsi Lumonics Ltd Automated energy beam positioning
US6965434B2 (en) * 2002-09-13 2005-11-15 Centre National De La Recherche Scientifiques (C.N.R.S.) Method and device for photothermal imaging tiny metal particles immersed in a given medium

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636611A (en) 1985-04-15 1987-01-13 General Electric Company Quiescent circle and arc generator
US5055653A (en) 1989-05-08 1991-10-08 Matsushita Electric Industrial Co., Ltd. Laser beam machining device
US5410375A (en) 1990-03-15 1995-04-25 Fiala; Werner J. Multifocal birefrigent lens with adjusted birefringence
US6031201A (en) 1993-06-04 2000-02-29 Seiko Epson Corporation Laser machining apparatus with rotatable phase grating
US5690845A (en) 1994-10-07 1997-11-25 Sumitomo Electric Industries, Ltd. Optical device for laser machining
US6037564A (en) 1998-03-31 2000-03-14 Matsushita Electric Industrial Co., Ltd. Method for scanning a beam and an apparatus therefor
US6057970A (en) 1998-05-28 2000-05-02 Electronics And Telecommunications Research Institute Apparatus for enhancing depth of focus using birefringent material
JP2000301372A (ja) * 1999-04-23 2000-10-31 Seiko Epson Corp 透明材料のレーザ加工方法
EP1067593A2 (en) 1999-07-08 2001-01-10 Nec Corporation Semiconductor thin film forming system
WO2002022301A1 (fr) * 2000-09-13 2002-03-21 Hamamatsu Photonics K.K. Procede et dispositif d'usinage par rayonnement laser
JP2005028438A (ja) * 2003-07-11 2005-02-03 Disco Abrasive Syst Ltd レーザ光線を利用する加工装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1721695A4 *

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130675A (ja) * 2005-11-11 2007-05-31 Seiko Epson Corp レーザスクライブ加工方法
KR100825884B1 (ko) 2005-11-16 2008-04-28 가부시키가이샤 덴소 레이저 가공장치 및 레이저 가공방법
JP2007167875A (ja) * 2005-12-20 2007-07-05 Seiko Epson Corp レーザ内部スクライブ方法
WO2007149208A3 (en) * 2006-06-19 2008-04-03 Eastman Kodak Co Direct engraving of flexographic printing plates
WO2007149208A2 (en) * 2006-06-19 2007-12-27 Eastman Kodak Company Direct engraving of flexographic printing plates
JP2008016486A (ja) * 2006-07-03 2008-01-24 Hamamatsu Photonics Kk レーザ加工方法
US8431467B2 (en) 2006-07-03 2013-04-30 Hamamatsu Photonics K.K. Laser working method
JP2008036641A (ja) * 2006-08-01 2008-02-21 Laser System:Kk レーザ加工装置およびレーザ加工方法
JP2008057011A (ja) * 2006-08-31 2008-03-13 National Univ Corp Shizuoka Univ 成膜装置及び成膜方法
JP2008290086A (ja) * 2007-05-22 2008-12-04 Disco Abrasive Syst Ltd レーザー加工装置
JP2008296254A (ja) * 2007-05-31 2008-12-11 Disco Abrasive Syst Ltd レーザー加工装置
JP2010036196A (ja) * 2008-07-31 2010-02-18 Seishin Shoji Kk レーザスクライブ方法および装置
US11738405B2 (en) 2009-05-28 2023-08-29 Electro Scientific Industries, Inc. Acousto-optic deflector applications in laser processing of dielectric or other materials
JP2012528012A (ja) * 2009-05-28 2012-11-12 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド レーザビームと対象機能部とのレンズを通した位置合わせを用いるレーザ加工システム
US10391585B2 (en) 2009-05-28 2019-08-27 Electro Scientific Industries, Inc Acousto-optic deflector applications in laser processing of dielectric or other materials
JP2014138956A (ja) * 2009-08-03 2014-07-31 Hamamatsu Photonics Kk レーザ加工方法及び半導体装置の製造方法
US8450638B2 (en) 2010-01-28 2013-05-28 Seishin Trading Co., Ltd. Laser scribing method and apparatus
JP2012110905A (ja) * 2010-11-22 2012-06-14 Panasonic Corp 溶接方法および溶接装置
US8933367B2 (en) 2011-02-09 2015-01-13 Sumitomo Electric Industries, Ltd. Laser processing method
WO2012108503A1 (ja) * 2011-02-09 2012-08-16 住友電気工業株式会社 レーザ加工方法
JP2013033155A (ja) * 2011-08-02 2013-02-14 Sumitomo Electric Hardmetal Corp レーザ用光学部品
JP2014039949A (ja) * 2012-08-22 2014-03-06 Disco Abrasive Syst Ltd レーザー加工装置
JP2015030022A (ja) * 2013-08-05 2015-02-16 株式会社ディスコ レーザー加工装置
JP2015083320A (ja) * 2013-10-25 2015-04-30 ロフィン−ジナール テクノロジーズ インコーポレイテッド バースト超高速レーザーパルスによるフィラメンテーションを使用してガラス製磁気ハードドライブディスクプラッタを作成する方法
JP2015110248A (ja) * 2013-12-03 2015-06-18 ロフィン−ジナール テクノロジーズ インコーポレイテッド バースト超高速レーザーパルスのフィラメンテーションによりシリコンをレーザー加工する方法および装置
US11179802B2 (en) 2016-07-14 2021-11-23 Mitsubishi Electric Corporation Laser machining head and laser machining apparatus
JPWO2018012379A1 (ja) * 2016-07-14 2018-11-08 三菱電機株式会社 レーザ加工ヘッド及びレーザ加工装置
TWI808081B (zh) * 2017-04-17 2023-07-11 日商濱松赫德尼古斯股份有限公司 加工對象物切斷方法及半導體晶片
JP2018182142A (ja) * 2017-04-17 2018-11-15 浜松ホトニクス株式会社 加工対象物切断方法
WO2018193971A1 (ja) * 2017-04-17 2018-10-25 浜松ホトニクス株式会社 加工対象物切断方法
CN110537247A (zh) * 2017-04-17 2019-12-03 浜松光子学株式会社 加工对象物切断方法
JP2018182137A (ja) * 2017-04-17 2018-11-15 浜松ホトニクス株式会社 加工対象物切断方法及び半導体チップ
JP2018182141A (ja) * 2017-04-17 2018-11-15 浜松ホトニクス株式会社 加工対象物切断方法
US11270915B2 (en) 2017-04-17 2022-03-08 Hamamatsu Photonics K.K. Workpiece cutting method and semiconductor chip
WO2018193972A1 (ja) * 2017-04-17 2018-10-25 浜松ホトニクス株式会社 加工対象物切断方法
JP2020523058A (ja) * 2017-06-15 2020-08-06 アルコン インコーポレイティド レーザ光線放出用の複屈折レンズ
AU2018284307B2 (en) * 2017-06-15 2023-12-21 Alcon Inc. Birefringent lens for laser beam delivery
JP7161498B2 (ja) 2017-06-15 2022-10-26 アルコン インコーポレイティド レーザ光線放出用の複屈折レンズ
JP7420937B2 (ja) 2019-11-14 2024-01-23 トルンプフ レーザー- ウント ジュステームテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング ワークピースのレーザ加工の方法、加工光学ユニット及びレーザ加工装置
JP2023501641A (ja) * 2019-11-14 2023-01-18 トルンプフ レーザー- ウント ジュステームテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング ワークピースのレーザ加工の方法、加工光学ユニット及びレーザ加工装置
JP2021136253A (ja) * 2020-02-25 2021-09-13 株式会社ディスコ チップの製造方法
JP7479755B2 (ja) 2020-02-25 2024-05-09 株式会社ディスコ チップの製造方法
WO2022091253A1 (ja) * 2020-10-28 2022-05-05 株式会社ニコン 光加工装置
JP7505573B2 (ja) 2020-10-28 2024-06-25 株式会社ニコン 光加工装置
WO2022186121A1 (ja) * 2021-03-02 2022-09-09 浜松ホトニクス株式会社 基板製造装置
CN115609767A (zh) * 2022-11-03 2023-01-17 华中科技大学 一种多模式激光辅助超精密切削装置

Also Published As

Publication number Publication date
EP1721695A4 (en) 2009-04-01
JPWO2005084874A1 (ja) 2008-01-17
CN1925945A (zh) 2007-03-07
TW200533451A (en) 2005-10-16
KR100813350B1 (ko) 2008-03-12
US20060289410A1 (en) 2006-12-28
TWI250910B (en) 2006-03-11
KR20060126799A (ko) 2006-12-08
EP1721695A1 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
WO2005084874A1 (ja) レーザ加工装置
JP5580826B2 (ja) レーザ加工装置及びレーザ加工方法
JP4640029B2 (ja) 波長変換光学系、レーザ光源、露光装置、被検物検査装置、及び高分子結晶の加工装置
JP4636020B2 (ja) 波長変換光学系、レーザ光源、露光装置、マスク検査装置、及び高分子結晶の加工装置
JP5770436B2 (ja) レーザー加工装置およびレーザー加工方法
JP4736633B2 (ja) レーザ照射装置
JP5670647B2 (ja) 加工対象物切断方法
JP4429974B2 (ja) レーザ加工方法および装置
KR20110099091A (ko) 레이저 가공장치
KR20190097033A (ko) 레이저 가공 장치 및 레이저 가공 방법
KR102382862B1 (ko) 레이저광 조사 장치
JP7034621B2 (ja) レーザ加工装置
TW200307322A (en) Semiconductor substrate, semiconductor chip and production method for a semiconductor device
JP2011110591A (ja) レーザ加工装置
JP6587115B1 (ja) レーザー加工装置及びレーザー加工方法
JP7088761B2 (ja) レーザ加工装置
WO2021199874A1 (ja) レーザ加工装置、レーザ加工方法及びウェハ
JP2004306101A (ja) レーザ加工装置及びレーザ加工方法
JP3955587B2 (ja) レーザ照射装置
WO2021153317A1 (ja) レーザ加工装置及びレーザ加工方法
KR100862522B1 (ko) 레이저가공 장치 및 기판 절단 방법
JPH11267873A (ja) レーザ光の走査光学系及びレーザ加工装置
JP2007279084A (ja) 波長変換光学系、レーザ光源、露光装置、被検物検査装置、及び高分子結晶の加工装置
JP2007021556A (ja) レーザ照射装置、レーザスクライブ方法
JP6710891B2 (ja) 光変調装置及び光変調方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510691

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005719822

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11512550

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067017593

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580006674.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005719822

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067017593

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11512550

Country of ref document: US