KR102382862B1 - 레이저광 조사 장치 - Google Patents

레이저광 조사 장치 Download PDF

Info

Publication number
KR102382862B1
KR102382862B1 KR1020197012339A KR20197012339A KR102382862B1 KR 102382862 B1 KR102382862 B1 KR 102382862B1 KR 1020197012339 A KR1020197012339 A KR 1020197012339A KR 20197012339 A KR20197012339 A KR 20197012339A KR 102382862 B1 KR102382862 B1 KR 102382862B1
Authority
KR
South Korea
Prior art keywords
laser
laser beam
light
pattern
laser light
Prior art date
Application number
KR1020197012339A
Other languages
English (en)
Other versions
KR20190071730A (ko
Inventor
준지 오쿠마
Original Assignee
하마마츠 포토닉스 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 하마마츠 포토닉스 가부시키가이샤 filed Critical 하마마츠 포토닉스 가부시키가이샤
Publication of KR20190071730A publication Critical patent/KR20190071730A/ko
Application granted granted Critical
Publication of KR102382862B1 publication Critical patent/KR102382862B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/147Beam splitting or combining systems operating by reflection only using averaging effects by spatially variable reflectivity on a microscopic level, e.g. polka dots, chequered or discontinuous patterns, or rapidly moving surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136277Active matrix addressed cells formed on a semiconductor substrate, e.g. of silicon

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Laser Beam Processing (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

레이저 광원으로부터 출력된 레이저광을 위상 패턴에 따라 변조하여 출사하는 공간 광 변조기와, 상기 공간 광 변조기로부터 출사된 상기 레이저광을 대상물을 향해서 집광하는 대물 렌즈와, 상기 레이저광의 광로에서의 상기 공간 광 변조기와 상기 대물 렌즈와의 사이에 배치되고, 상기 레이저광을 집속하는 집속 렌즈와, 상기 레이저광의 광로에서의 상기 집속 렌즈의 후측의 초점 위치에 배치되고, 상기 레이저광의 일부를 차단하는 슬릿 부재를 구비하며, 상기 위상 패턴은, 상기 대물 렌즈의 동면에 입사하는 상기 레이저광의 일부를 변조하는 제1 패턴과, 상기 레이저광의 잔부를 변조하는 제2 패턴을 포함하고, 상기 제2 패턴은, 상기 레이저광의 상기 잔부를 복수의 회절광에 분기시키기 위한 회절 격자 패턴을 포함하고, 상기 슬릿 부재는, 슬릿에 의해서 상기 회절광을 차단하는, 레이저광 조사 장치.

Description

레이저광 조사 장치
본 발명의 일 측면은, 레이저광 조사 장치에 관한 것이다.
특허 문헌 1에는, 레이저광을 대상물에 조사하는 레이저광 조사 장치가 기재되어 있다. 이 레이저광 조사 장치에서는, 레이저 광원에서 발생시킨 레이저광은, 공간 광 변조기(變調器)에 의해 변조된 후, 대물 렌즈에 의해서 대상물에 집광된다.
특허 문헌 1 : 일본특허공개 제2011-51011호 공보
그런데, 레이저광이 공간 광 변조기를 거쳐 대물 렌즈에 입사할 때에, 레이저광의 빔 사이즈가 대물 렌즈의 동면(瞳面)의 사이즈(동경(瞳徑))보다도 큰 경우가 있다. 그 경우에는, 레이저광의 일부가 대물 렌즈의 동면에 입사하는 한편으로, 레이저광의 잔부가 대물 렌즈의 홀더와 같은 별도의 부재에 입사한다. 대물 렌즈의 동면에 입사하는 레이저광의 일부는, 대상물에 조사되는 유효 광이며, 별도의 부재에 입사하는 레이저광의 잔부는, 대상물에 조사되지 않는 비유효 광이다. 비유효 광이 별도의 부재에 입사하면, 그 별도의 부재에서 열이 발생한다. 이것에 의해, 레이저광의 집광점의 위치가 변화하는 등, 레이저광의 대상물로의 조사 상태가 변화할 우려가 있다.
본 발명의 일 측면은, 그러한 사정을 감안하여 이루어진 것이며, 레이저광의 대상물로의 조사 상태의 변화를 억제할 수 있는 레이저광 조사 장치를 제공하는 것을 목적으로 한다.
본 발명자들은, 상기 과제를 해결하기 위해서 예의(銳意) 검토를 거듭한 결과, 다음과 같은 지견(知見)을 얻었다. 즉, 상기 과제를 해결하기 위해서는, 대물 렌즈의 전단측에서 비유효 광을 차단하면 되며, 그것을 위해서는, 예를 들면, 공간 광 변조기에 회절 격자 패턴을 포함하는 위상 패턴을 표시하여 비유효 광을 회절에 의해 분기시키고, 분기된 회절광을 슬릿에 의해 차단하면 된다. 본 발명의 일측면은, 그러한 지견에 근거하여 한층 더 연구를 거듭한 결과로 이루어진 것이다.
즉, 본 발명의 일 측면에 관한 레이저광 조사 장치는, 레이저광을 제1 방향을 따라서 대상물에 조사하는 레이저광 조사 장치로서, 레이저광을 출력하는 레이저 광원과, 레이저 광원으로부터 출력된 레이저광을 위상(位相) 패턴에 따라 변조(變調)하여 출사하는 공간 광 변조기(變調器)와, 공간 광 변조기로부터 출사된 레이저광을 대상물을 향해서 집광(集光)하는 대물 렌즈와, 레이저광의 광로에서의 공간 광 변조기와, 대물 렌즈와의 사이에 배치되고, 레이저광을 집속(集束)하는 집속 렌즈와, 레이저광의 광로에서의 집속 렌즈의 후측의 초점 위치에 배치되고, 레이저광의 일부를 차단하는 슬릿 부재를 구비하며, 위상 패턴은, 대물 렌즈의 동면(瞳面)에 입사하는 레이저광의 일부를 변조하는 제1 패턴과, 레이저광의 잔부를 변조하는 제2 패턴을 포함하고, 제2 패턴은, 제1 방향에 교차하는 제2 방향을 따라서 레이저광의 잔부를 복수의 회절광으로 분기시키기 위한 회절 격자 패턴을 포함하며, 슬릿 부재는, 슬릿에 의해서 회절광을 차단한다.
이 레이저광 조사 장치에서는, 레이저 광원으로부터 출력된 레이저광이, 공간 광 변조기의 위상 패턴에 의해 변조된 후에, 대물 렌즈에 의해 대상물을 향해서 집광된다. 공간 광 변조기의 위상 패턴은, 대물 렌즈의 동면에 입사하는 레이저광의 일부(유효 광)를 변조하는 제1 패턴과, 레이저광의 잔부(비유효 광)를 변조하는 제2 패턴을 포함한다. 제2 패턴은, 제1 방향에 교차하는 제2 방향을 따라서 광을 회절하기 위한 회절 격자 패턴을 포함한다. 따라서, 레이저광 중 비유효 광은, 레이저광의 스캔 방향에 교차하는 제2 방향에 대해서, 복수의 회절광으로 분기된다. 그리고, 회절광은, 집속 렌즈의 후측 초점 위치에서, 슬릿 부재의 슬릿에 의해 차단된다. 그 결과, 유효 광이 슬릿을 통과하여 대상물에 조사되는 한편으로, 비유효 광의 회절광이 슬릿에 의해 차단되어, 대물 렌즈에 도달하지 않는다. 따라서, 이 레이저광 조사 장치에 의하면, 레이저광의 대상물로의 조사 상태의 변화를 억제하는 것이 가능하다.
본 발명의 일 측면에 관한 레이저광 조사 장치에서는, 슬릿 부재는, 제2 방향보다도 제1 방향으로 상대적으로 길게 되도록 형성된 슬릿에 의해서, 회절광을 차단해도 괜찮다.
여기서, 레이저광 조사 장치에 있어서는, 레이저광을 복수로 분기시켜 대상물에 조사하는 요구가 있다. 그래서, 본 발명의 일 측면에 관한 레이저광 조사 장치에서는, 제1 패턴은, 제1 방향을 따라서 레이저광의 일부를 복수의 다른 회절광으로 분기시키기 위한 다른 회절 격자 패턴을 포함해도 괜찮다. 이 경우, 레이저광 중 유효 광을, 대상물에 대한 레이저광의 조사 방향(스캔 방향)인 제1 방향에 대해 복수의 다른 회절광으로 분기하여, 대상물에 조사할 수 있다.
또, 이하에서는, 제1 패턴에 포함되는 「다른 회절 격자 패턴」을 「제1 회절 격자 패턴」이라고 칭하고(혹은 병기하고), 그 제1 회절 격자 패턴에 의해 분기 된 「다른 회절광」을 「제1 회절광」이라고 칭하는(혹은 병기하는) 경우가 있다. 또, 제2 패턴에 포함되는 「회절 격자 패턴」을 「제2 회절 격자 패턴」이라고 칭하고(혹은 병기하고), 그 제2 회절 격자 패턴에 의해 분기된 「회절광」을 「제2 회절광」이라고 칭하는(혹은 병기하는) 경우가 있다.
본 발명의 일 측면에 관한 레이저광 조사 장치에서는, 제1 방향에 대한 슬릿의 사이즈는, 초점 위치에서의 제1 회절광(다른 회절광)의 빔 사이즈와, 초점 위치에서의 제1 회절광(다른 회절광)의 분기 간격과의 합계값보다도 크고, 제2 방향에 대한 슬릿의 사이즈는, 초점 위치에서의 제2 회절광(회절광)의 빔 사이즈보다도 커도 좋다. 이 경우, 복수의 제1 회절광을 슬릿에서 차단하지 않고 확실히 대상물에 조사할 수 있다.
본 발명의 일 측면에 관한 레이저광 조사 장치에서는, 분기 간격은, 제1 방향에서의 ±1차의 제1 회절광(다른 회절광)의 간격이라도 좋다. 이 경우, 적어도, 제1 회절광 중 0차 광과 ±1차 광을 대상물에 조사할 수 있다.
본 발명의 일 측면에 관한 레이저광 조사 장치에서는, 제2 방향에 대한 슬릿의 사이즈는, 집속 렌즈의 초점 거리를 f, 레이저광의 파장을 λ, 공간 광 변조기의 화소 사이즈를 xSLM으로 하면, 하기 식 (1)에서 나타내어지는 1차 광의 최대 회절 거리(F)보다도 작아도 좋다. 이 경우, 제2 회절광을 슬릿에 의해 확실히 차단할 수 있다.
[수식 1]
Figure 112019043737783-pct00001
본 발명의 일 측면에 관한 레이저광 조사 장치에서는, 슬릿의 제1 방향에 대한 사이즈는, 초점 위치에서의 ±3차의 제1 회절광(다른 회절광)의 간격보다도 작아도 좋다. 이 경우, 제1 회절광 중 ±3차 이상의 고차(高次) 광을 슬릿에 의해 차단할 수 있다.
본 발명의 일 측면에 관한 레이저광 조사 장치에서는, 제1 회절 격자 패턴(다른 회절 격자 패턴)은, 제2 방향을 따른 복수의 홈 패턴으로 이루어지며, 제2 회절 격자 패턴(회절 격자 패턴)은, 제1 방향을 따른 복수의 홈 패턴으로 이루어져도 괜찮다. 이와 같이, 제1 회절 격자 패턴과 제2 회절 격자 패턴에서 홈 패턴의 방향을 교차하도록 설정함으로써, 제1 회절광의 분기 방향과 제2 회절광의 분기 방향을 다르게 할 수 있다.
본 발명의 일 측면에 관한 레이저광 조사 장치에서는, 공간 광 변조기는, 위상 패턴을 표시하는 액정층을 포함하며, 액정층은, 레이저광이 입사하는 영역 중 원 형상의 유효 영역과 유효 영역의 외측의 원환 형상의 비유효 영역을 포함하며, 제1 패턴은, 유효 영역에 표시되어 레이저광의 일부를 변조하고, 제2 패턴은, 비유효 영역에 표시되어 레이저광의 잔부를 변조해도 괜찮다. 이 경우, 대물 렌즈에 입사하는 빔 프로파일에 따라서, 대상물에 조사되는 빔 형상을 원하는 대로 설정할 수 있어, 미세한 가공 제어(조사 제어)가 가능해진다.
여기서, 본 발명의 일 측면에 관한 레이저광 조사 장치는, 레이저광을 제1 방향을 따라서 대상물에 조사하는 레이저광 조사 장치로서, 레이저광을 출력하는 레이저 광원과, 레이저 광원으로부터 출력된 레이저광을 위상 패턴에 따라 변조하여 출사하는 공간 광 변조기와, 공간 광 변조기로부터 출사된 레이저광을 대상물을 향해서 집광하는 대물 렌즈와, 레이저광의 광로에서의 공간 광 변조기와 대물 렌즈와의 사이에 배치되고, 레이저광을 집속하는 집속 렌즈와, 레이저광의 광로에서의 집속 렌즈의 후측의 초점 위치에 배치되고, 레이저광의 일부를 차단하는 슬릿 부재를 구비하며, 공간 광 변조기는, 위상 패턴을 표시하는 액정층을 포함하고, 액정층은, 대물 렌즈의 동면에 입사하는 레이저광의 일부가 입사하는 유효 영역과, 레이저광의 잔부가 입사하는 비유효 영역을 포함하며, 슬릿 부재는, 비유효 영역에서 변조된 광을 슬릿에 의해 차단한다.
이 레이저광 조사 장치에서는, 레이저 광원으로부터 출력된 레이저광이, 공간 광 변조기의 위상 패턴에 의해 변조된 후에, 대물 렌즈에 의해 대상물을 향해서 집광된다. 공간 광 변조기의 액정층은, 대물 렌즈의 동면에 입사하는 레이저광의 일부(유효 광)가 입사하는 유효 영역과, 레이저광의 잔부(비유효 광)가 입사하는 비유효 영역을 포함한다. 그리고, 비유효 영역에서 변조된 광은, 집속 렌즈의 후측 초점 위치에서, 슬릿 부재의 슬릿에 의해 차단된다. 그 결과, 유효 광이 슬릿을 통과하여 대상물에 조사되는 한편으로, 비유효 광이 슬릿에 의해 차단되어, 대물 렌즈(별도의 부재)에 도달하지 않는다. 따라서, 이 레이저광 조사 장치에 의하면, 레이저광의 대상물로의 조사 상태의 변화를 억제하는 것이 가능하다.
본 발명의 일 측면에 의하면, 레이저광의 대상물로의 조사 상태의 변화를 억제할 수 있는 레이저광 조사 장치를 제공할 수 있다.
도 1은 개질 영역의 형성에 이용되는 레이저 가공 장치의 개략 구성도이다
도 2는 개질 영역의 형성의 대상이 되는 가공 대상물의 평면도이다.
도 3은 도 2의 가공 대상물의 III-III선을 따른 단면도이다.
도 4는 레이저 가공 후의 가공 대상물의 평면도이다.
도 5는 도 4의 가공 대상물의 V-V선을 따른 단면도이다.
도 6은 도 4의 가공 대상물의 VI-VI선을 따른 단면도이다.
도 7은 실시 형태에 관한 레이저 가공 장치의 사시도이다.
도 8은 도 7의 레이저 가공 장치의 지지대에 장착되는 가공 대상물의 사시도이다.
도 9는 도 7의 XY평면을 따른 레이저 출력부의 단면도이다.
도 10은 도 7의 레이저 가공 장치에서의 레이저 출력부 및 레이저 집광부의 일부의 사시도이다.
도 11은 도 7의 XY평면을 따른 레이저 집광부의 단면도이다.
도 12는 도 11의 XII-XII선을 따른 레이저 집광부의 단면도이다.
도 13은 도 12의 XIII-XIII선을 따른 레이저 집광부의 단면도이다.
도 14는 도 7의 레이저 가공 장치에서의 반사형 공간 광 변조기의 부분 단면도이다.
도 15는 도 11의 레이저 집광부에서의 반사형 공간 광 변조기, 4f 렌즈 유닛 및 집광 렌즈 유닛의 광학적 배치 관계를 나타내는 도면이다.
도 16은 제1 실시 형태에 관한 레이저 가공 장치의 요부를 나타내는 개략 구성도이다.
도 17은 도 16에 나타내어진 반사형 공간 광 변조기로부터 가공 대상물에 이르는 레이저광의 광로 및 그 광로 상의 각 광학 요소를 모식적으로 나타내는 도면이다.
도 18은 반사형 공간 광 변조기에 표시되는 위상 패턴의 일 예를 나타내는 도면이다.
도 19는 반사형 공간 광 변조기 상의 레이저광의 강도 분포를 나타내는 화상이다.
도 20은 슬릿 부재 및 회절광의 빔 스폿을 나타내는 도면이다.
도 21은 최대 회절 거리를 설명하기 위한 도면이다.
이하, 본 발명의 일 측면의 일 실시 형태에 대해서, 도면을 참조하여 상세하게 설명한다. 또, 각 도면에서, 서로 동일한 요소 또는 서로 상당하는 요소에는 동일한 부호를 부여하고, 중복하는 설명을 생략하는 경우가 있다.
실시 형태에 관한 레이저 가공 장치에서는, 가공 대상물에 레이저광을 집광(集光)하는 것에 의해, 절단 예정 라인을 따라서 가공 대상물에 개질(改質) 영역을 형성한다. 그러면, 먼저, 개질 영역의 형성에 대해서, 도 1~도 6을 참조하여 설명한다.
도 1에 나타내어지는 바와 같이, 레이저 가공 장치(100)는, 레이저광(L)을 펄스 발진(發振)하는 레이저 광원(101)과, 레이저광(L)의 광축(광로(光路))의 방향을 90°바꾸도록 배치된 다이클로익 미러(103)와, 레이저광(L)을 집광하기 위한 집광용 렌즈(105)를 구비하고 있다. 또, 레이저 가공 장치(100)는, 집광용 렌즈(105)에서 집광된 레이저광(L)이 조사되는 대상물인 가공 대상물(1)을 지지하기 위한 지지대(107)와, 지지대(107)를 이동시키기 위한 이동 기구인 스테이지(111)와, 레이저광(L)의 출력이나 펄스 폭, 펄스 파형(波形) 등을 조절하기 위해서 레이저 광원(101)을 제어하는 레이저 광원 제어부(102)와, 스테이지(111)의 이동을 제어하는 스테이지 제어부(115)를 구비하고 있다.
레이저 가공 장치(100)에서는, 레이저 광원(101)으로부터 출사된 레이저광(L)은, 다이클로익 미러(103)에 의해서 그 광축의 방향이 90°바뀌어지고, 지지대(107) 상에 재치(載置)된 가공 대상물(1)의 내부에 집광용 렌즈(105)에 의해서 집광된다. 이것과 함께, 스테이지(111)가 이동시켜지고, 가공 대상물(1)이 레이저광(L)에 대해서 절단 예정 라인(5)을 따라서 상대 이동시켜진다. 이것에 의해, 절단 예정 라인(5)을 따른 개질 영역이 가공 대상물(1)에 형성된다. 또, 여기에서는, 레이저광(L)을 상대적으로 이동시키기 위해서 스테이지(111)를 이동시켰지만, 집광용 렌즈(105)를 이동시켜도 괜찮고, 혹은 이들 양쪽 모두를 이동시켜도 괜찮다.
가공 대상물(1)로서는, 반도체 재료로 형성된 반도체 기판이나 압전(壓電) 재료로 형성된 압전 기판 등을 포함하는 판 모양의 부재(예를 들면, 기판, 웨이퍼등)가 이용된다. 도 2에 나타내어지는 바와 같이, 가공 대상물(1)에는, 가공 대상물(1)을 절단하기 위한 절단 예정 라인(5)이 설정되어 있다. 절단 예정 라인(5)은, 직선 모양으로 연장된 가상선이다. 가공 대상물(1)의 내부에 개질 영역을 형성하는 경우, 도 3에 나타내어지는 바와 같이, 가공 대상물(1)의 내부에 집광점(집광 위치)(P)을 맞춘 상태에서, 레이저광(L)을 절단 예정 라인(5)을 따라서(즉, 도 2의 화살표 A방향으로) 상대적으로 이동시킨다. 이것에 의해, 도 4, 도 5 및 도 6에 나타내어지는 바와 같이, 개질 영역(7)이 절단 예정 라인(5)을 따라서 가공 대상물(1)에 형성되고, 절단 예정 라인(5)을 따라서 형성된 개질 영역(7)이 절단 기점 영역(8)이 된다. 절단 예정 라인(5)은, 조사 예정 라인에 대응한다.
집광점(P)은, 레이저광(L)이 집광하는 개소이다. 절단 예정 라인(5)은, 직선 모양에 한정하지 않고 곡선 모양이라도 좋고, 이들이 조합된 3차원 모양이라도 좋고, 좌표 지정된 것이라도 괜찮다. 절단 예정 라인(5)은, 가상선에 한정하지 않고 가공 대상물(1)의 표면(3)에 실제로 그은 선이라도 좋다. 개질 영역(7)은, 연속적으로 형성되는 경우도 있고, 단속적으로 형성되는 경우도 있다. 개질 영역(7)은 열 모양이라도 점 모양이라도 좋고, 요점은, 개질 영역(7)은 적어도 가공 대상물(1)의 내부, 표면(3) 또는 이면에 형성되어 있으면 좋다. 개질 영역(7)을 기점(起点)으로 균열이 형성되는 경우가 있으며, 균열 및 개질 영역(7)은, 가공 대상물(1)의 외표면(표면(3), 이면, 혹은 외주면)에 노출하고 있어도 괜찮다. 개질 영역(7)을 형성할 때의 레이저광 입사면은, 가공 대상물(1)의 표면(3)에 한정되는 것이 아니고, 가공 대상물(1)의 이면이라도 좋다.
덧붙여서, 가공 대상물(1)의 내부에 개질 영역(7)을 형성하는 경우에는, 레이저광(L)은, 가공 대상물(1)을 투과함과 아울러, 가공 대상물(1)의 내부에 위치하는 집광점(P) 근방에서 특히 흡수된다. 이것에 의해, 가공 대상물(1)에 개질 영역(7)이 형성된다(즉, 내부 흡수형 레이저 가공). 이 경우, 가공 대상물(1)의 표면(3)에서는 레이저광(L)이 거의 흡수되지 않으므로, 가공 대상물(1)의 표면(3)이 용융하지는 않는다. 한편, 가공 대상물(1)의 표면(3) 또는 이면에 개질 영역(7)을 형성하는 경우에는, 레이저광(L)은, 표면(3) 또는 이면에 위치하는 집광점(P) 근방에서 특히 흡수되고, 표면(3) 또는 이면으로부터 용융되고 제거되어, 구멍이나 홈 등의 제거부가 형성된다(표면 흡수형 레이저 가공).
개질 영역(7)은, 밀도, 굴절률, 기계적 강도나 그 외의 물리적 특성이 주위와는 다른 상태로 된 영역을 말한다. 개질 영역(7)으로서는, 예를 들면, 용융 처리 영역(일단 용융 후 재고체화한 영역, 용융 상태 중의 영역 및 용융으로부터 재고체화하는 상태 중의 영역 중 적어도 어느 하나를 의미함), 크랙 영역, 절연 파괴 영역, 굴절률 변화 영역 등이 있으며, 이들이 혼재한 영역도 있다. 게다가, 개질 영역(7)으로서는, 가공 대상물(1)의 재료에서 개질 영역(7)의 밀도가 비개질 영역의 밀도와 비교하여 변화한 영역이나, 격자 결함이 형성된 영역이 있다. 가공 대상물(1)의 재료가 단결정 실리콘인 경우, 개질 영역(7)은, 고전위 밀도 영역이라고도 할 수 있다.
용융 처리 영역, 굴절률 변화 영역, 개질 영역(7)의 밀도가 비개질 영역의 밀도와 비교하여 변화한 영역 및 격자 결함이 형성된 영역은, 또한, 그들 영역의 내부나 개질 영역(7)과 비개질 영역과의 계면(界面)에 균열(갈라짐, 마이크로 크랙)을 내포하고 있는 경우가 있다. 내포되는 균열은, 개질 영역(7)의 전면(全面)에 걸치는 경우나 일부분만이나 복수 부분에 형성되는 경우가 있다. 가공 대상물(1)은, 결정 구조를 가지는 결정 재료로 이루어지는 기판을 포함한다. 예를 들면 가공 대상물(1)은, 질화 갈륨(GaN), 실리콘(Si), 실리콘카바이드(SiC), LiTaO3 및 사파이어(Al2O3) 중 적어도 어느 하나로 형성된 기판을 포함한다. 환언하면, 가공 대상물(1)은, 예를 들면, 질화 갈륨 기판, 실리콘 기판, SiC 기판, LiTaO3 기판, 또는 사파이어 기판을 포함한다. 결정 재료는, 이방성 결정 및 등방성 결정 중 어느 하나라도 괜찮다. 또, 가공 대상물(1)은, 비결정 구조(비정질 구조)를 가지는 비결정 재료로 이루어지는 기판을 포함하고 있어도 좋고, 예를 들면 유리 기판을 포함하고 있어도 괜찮다.
실시 형태에서는, 절단 예정 라인(5)을 따라서 개질 스폿(가공 흔적)을 복수 형성하는 것에 의해, 개질 영역(7)을 형성할 수 있다. 이 경우, 복수의 개질 스폿이 모이는 것에 의해서 개질 영역(7)이 된다. 개질 스폿은, 펄스 레이저광의 1펄스의 쇼트(즉 1펄스의 레이저 조사:레이저 쇼트)로 형성되는 개질 부분이다. 개질 스폿으로서는, 크랙 스폿, 용융 처리 스폿 혹은 굴절률 변화 스폿, 또는 이들의 적어도 1개가 혼재하는 것 등을 들 수 있다. 개질 스폿에 대해서는, 요구되는 절단 정밀도, 요구되는 절단면의 평탄성, 가공 대상물(1)의 두께, 종류, 결정 방위 등을 고려하여, 그 크기나 발생되는 균열의 길이를 적절히 제어할 수 있다. 또, 실시 형태에서는, 절단 예정 라인(5)을 따라서, 개질 스폿을 개질 영역(7)으로서 형성할 수 있다.
[실시 형태에 관한 레이저 가공 장치]
다음으로, 실시 형태에 관한 레이저 가공 장치에 대해 설명한다. 이하의 설명에서는, 수평면내에서 서로 직교하는 방향을 X축 방향 및 Y축 방향으로 하고, 연직 방향을 Z축 방향으로 한다.
[레이저 가공 장치의 전체 구성]
도 7에 나타내어지는 바와 같이, 레이저 가공 장치(200)는, 장치 프레임(210)과, 제1 이동 기구(이동 기구)(220)와, 지지대(230)와, 제2 이동 기구(240)를 구비하고 있다. 게다가, 레이저 가공 장치(200)는, 레이저 출력부(300)와, 레이저 집광부(400)와, 제어부(500)를 구비하고 있다.
제1 이동 기구(220)는, 장치 프레임(210)에 장착되어 있다. 제1 이동 기구(220)는, 제1 레일 유닛(221)과, 제2 레일 유닛(222)과, 가동 베이스(223)를 가지고 있다. 제1 레일 유닛(221)은, 장치 프레임(210)에 장착되어 있다. 제1 레일 유닛(221)에는, Y축 방향을 따라서 연장되는 한 쌍의 레일(221a, 221b)이 마련되어 있다. 제2 레일 유닛(222)은, Y축 방향을 따라서 이동 가능하게 되도록, 제1 레일 유닛(221)의 한 쌍의 레일(221a, 221b)에 장착되어 있다. 제2 레일 유닛(222)에는, X축 방향을 따라서 연장되는 한 쌍의 레일(222a, 222b)이 마련되어 있다. 가동 베이스(223)는, X축 방향을 따라서 이동 가능하게 되도록, 제2 레일 유닛(222)의 한 쌍의 레일(222a, 222b)에 장착되어 있다. 가동 베이스(223)는, Z축 방향에 평행한 축선을 중심선으로 하여 회전할 수 있다.
지지대(230)는, 가동 베이스(223)에 장착되어 있다. 지지대(230)는, 가공 대상물(1)을 지지한다. 가공 대상물(1)은, 예를 들면, 실리콘 등의 반도체 재료로 이루어지는 기판의 표면측에 복수의 기능 소자(포토 다이오드 등의 수광 소자, 레이저 다이오드 등의 발광 소자, 또는 회로로서 형성된 회로 소자 등)가 매트릭스 모양으로 형성된 것이다. 가공 대상물(1)이 지지대(230)에 지지될 때에는, 도 8에 나타내어지는 바와 같이, 고리 모양의 프레임(11)에 펼쳐진 필름(12) 상에, 예를 들면 가공 대상물(1)의 표면(1a)(복수의 기능 소자측의 면)이 붙여진다. 지지대(230)는, 클램프에 의해서 프레임(11)을 유지함과 아울러 진공 척(chuck) 테이블에 의해서 필름(12)을 흡착함으로써, 가공 대상물(1)을 지지한다. 지지대(230) 상에서, 가공 대상물(1)에는, 서로 평행한 복수의 절단 예정 라인(5a), 및 서로 평행한 복수의 절단 예정 라인(5b)이, 서로 이웃하는 기능 소자의 사이를 통과하도록 격자 모양으로 설정된다.
도 7에 나타내어지는 바와 같이, 지지대(230)는, 제1 이동 기구(220)에서 제2 레일 유닛(222)이 동작함으로써, Y축 방향을 따라서 이동시켜진다. 또, 지지대(230)는, 제1 이동 기구(220)에서 가동 베이스(223)가 동작함으로써, X축 방향을 따라서 이동시켜진다. 게다가, 지지대(230)는, 제1 이동 기구(220)에서 가동 베이스(223)가 동작함으로써, Z축 방향에 평행한 축선을 중심선으로 하여 회전시켜진다. 이와 같이, 지지대(230)는, X축 방향 및 Y축 방향을 따라서 이동 가능하게 되고 또한 Z축 방향에 평행한 축선을 중심선으로 하여 회전 가능하게 되도록, 장치 프레임(210)에 장착되어 있다.
레이저 출력부(300)는, 장치 프레임(210)에 장착되어 있다. 레이저 집광부(400)는, 제2 이동 기구(240)를 매개로 하여 장치 프레임(210)에 장착되어 있다. 레이저 집광부(400)는, 제2 이동 기구(240)가 동작함으로써, Z축 방향을 따라서 이동시켜진다. 이와 같이, 레이저 집광부(400)는, 레이저 출력부(300)에 대해서 Z축 방향을 따라서 이동 가능하게 되도록, 장치 프레임(210)에 장착되어 있다.
제어부(500)는, CPU(Central Processing Unit), ROM(Read Only Memory) 및 RAM(Random Access Memory) 등에 의해서 구성되어 있다. 제어부(500)는, 레이저 가공 장치(200)의 각 부의 동작을 제어한다.
일 예로서, 레이저 가공 장치(200)에서는, 다음과 같이, 각 절단 예정 라인(5a, 5b)(도 8 참조)을 따라서 가공 대상물(1)의 내부에 개질 영역이 형성된다.
먼저, 가공 대상물(1)의 이면(1b)(도 8 참조)이 레이저광 입사면이 되도록, 가공 대상물(1)이 지지대(230)에 지지되고, 가공 대상물(1)의 각 절단 예정 라인(5a)이 X축 방향에 평행한 방향으로 맞추어진다. 이어서, 가공 대상물(1)의 내부에서 가공 대상물(1)의 레이저광 입사면으로부터 소정 거리만큼 이간한 위치에 레이저광(L)의 집광점이 위치하도록, 제2 이동 기구(240)에 의해서 레이저 집광부(400)가 이동시켜진다. 이어서, 가공 대상물(1)의 레이저광 입사면과 레이저광(L)의 집광점과의 거리가 일정하게 유지되면서, 각 절단 예정 라인(5a)을 따라서 레이저광(L)의 집광점이 상대적으로 이동시켜진다. 이것에 의해, 각 절단 예정 라인(5a)을 따라서 가공 대상물(1)의 내부에 개질 영역이 형성된다.
각 절단 예정 라인(5a)을 따른 개질 영역의 형성이 종료되면, 제1 이동 기구(220)에 의해서 지지대(230)가 회전시켜지고, 가공 대상물(1)의 각 절단 예정 라인(5b)이 X축 방향에 평행한 방향으로 맞추어진다. 이어서, 가공 대상물(1)의 내부에서 가공 대상물(1)의 레이저광 입사면으로부터 소정 거리만큼 이간한 위치에 레이저광(L)의 집광점이 위치하도록, 제2 이동 기구(240)에 의해서 레이저 집광부(400)가 이동시켜진다. 이어서, 가공 대상물(1)의 레이저광 입사면과 레이저광(L)의 집광점과의 거리가 일정하게 유지되면서, 각 절단 예정 라인(5b)을 따라서 레이저광(L)의 집광점이 상대적으로 이동시켜진다. 이것에 의해, 각 절단 예정 라인(5b)을 따라서 가공 대상물(1)의 내부에 개질 영역이 형성된다.
이와 같이, 레이저 가공 장치(200)에서는, X축 방향에 평행한 방향이 가공 방향(레이저광(L)의 스캔 방향)으로 되어 있다. 또, 각 절단 예정 라인(5a)을 따른 레이저광(L)의 집광점의 상대적인 이동, 및 각 절단 예정 라인(5b)을 따른 레이저광(L)의 집광점의 상대적인 이동은, 제1 이동 기구(220)에 의해서 지지대(230)가 X축 방향을 따라서 이동시켜짐으로써, 실시된다. 또, 각 절단 예정 라인(5a) 사이에서의 레이저광(L)의 집광점의 상대적인 이동, 및 각 절단 예정 라인(5b) 사이에서의 레이저광(L)의 집광점의 상대적인 이동은, 제1 이동 기구(220)에 의해서 지지대(230)가 Y축 방향을 따라서 이동시켜짐으로써, 실시된다.
도 9에 나타내어지는 바와 같이, 레이저 출력부(300)는, 장착 베이스(301)와, 커버(302)와, 복수의 미러(303, 304)를 가지고 있다. 게다가, 레이저 출력부(300)는, 레이저 발진기(레이저 광원)(310)와, 셔터(320)와, λ/2 파장판 유닛(330)과, 편광판 유닛(340)과, 빔 익스팬더(350)와, 미러 유닛(360)을 가지고 있다.
장착 베이스(301)는, 복수의 미러(303, 304), 레이저 발진기(310), 셔터(320), λ/2 파장판 유닛(330), 편광판 유닛(340), 빔 익스팬더(350) 및 미러 유닛(360)을 지지하고 있다. 복수의 미러(303, 304), 레이저 발진기(310), 셔터(320), λ/2 파장판 유닛(330), 편광판 유닛(340), 빔 익스팬더(350) 및 미러 유닛(360)은, 장착 베이스(301)의 주면(主面)(301a)에 장착되어 있다. 장착 베이스(301)는, 판 모양의 부재이며, 장치 프레임(210)(도 7 참조)에 대해서 착탈 가능하다. 레이저 출력부(300)는, 장착 베이스(301)를 매개로 하여 장치 프레임(210)에 장착되어 있다. 즉, 레이저 출력부(300)는, 장치 프레임(210)에 대해서 착탈 가능하다.
커버(302)는, 장착 베이스(301)의 주면(301a) 상에서, 복수의 미러(303, 304), 레이저 발진기(310), 셔터(320), λ/2 파장판 유닛(330), 편광판 유닛(340), 빔 익스팬더(350) 및 미러 유닛(360)을 덮고 있다. 커버(302)는, 장착 베이스(301)에 대해서 착탈 가능하다.
레이저 발진기(310)는, 직선 편광의 레이저광(L)을 X축 방향을 따라서 펄스 발진한다. 레이저 발진기(310)로부터 출사되는 레이저광(L)의 파장은, 500~550nm, 1000~1150nm 또는 1300~1400nm 중 어느 하나의 파장대에 포함된다. 500~550nm의 파장대의 레이저광(L)은, 예를 들면 사파이어로 이루어지는 기판에 대한 내부 흡수형 레이저 가공에 적절하다. 1000~1150nm 및 1300~1400nm의 각 파장대의 레이저광(L)은, 예를 들면 실리콘으로 이루어지는 기판에 대한 내부 흡수형 레이저 가공에 적합하다. 레이저 발진기(310)로부터 출사되는 레이저광(L)의 편광 방향은, 예를 들면, Y축 방향에 평행한 방향이다. 레이저 발진기(310)로부터 출사된 레이저광(L)은, 미러(303)에 의해서 반사되어, Y축 방향을 따라서 셔터(320)에 입사한다.
레이저 발진기(310)에서는, 다음과 같이, 레이저광(L)의 출력의 ON/OFF가 전환된다. 레이저 발진기(310)가 고체 레이저로 구성되어 있는 경우, 공진기 내에 마련된 Q스위치(AOM(음향 광학 변조기), EOM(전기 광학 변조기) 등)의 ON/OFF가 전환됨으로써, 레이저광(L)의 출력의 ON/OFF가 고속으로 전환된다. 레이저 발진기(310)가 파이버 레이저로 구성되어 있는 경우, 시드(seed) 레이저, 앰프(여기용(勵起用)) 레이저를 구성하는 반도체 레이저의 출력의 ON/OFF가 전환됨으로써, 레이저광(L)의 출력의 ON/OFF가 고속으로 전환된다. 레이저 발진기(310)가 외부 변조 소자를 이용하고 있는 경우, 공진기 밖에 마련된 외부 변조 소자(AOM, EOM 등)의 ON/OFF가 전환됨으로써, 레이저광(L)의 출력의 ON/OFF가 고속으로 전환된다.
셔터(320)는, 기계식의 기구에 의해서 레이저광(L)의 광로를 개폐한다. 레이저 출력부(300)로부터의 레이저광(L)의 출력의 ON/OFF의 전환은, 상술한 바와 같이, 레이저 발진기(310)에서의 레이저광(L)의 출력의 ON/OFF의 전환에 의해서 실시되지만, 셔터(320)가 마련되어 있음으로써, 예를 들면 레이저 출력부(300)로부터 레이저광(L)이 갑자기 출사되는 것이 방지된다. 셔터(320)를 통과한 레이저광(L)은, 미러(304)에 의해서 반사되고, X축 방향을 따라서 λ/2 파장판 유닛(330) 및 편광판 유닛(340)에 순차적으로 입사한다.
 λ/2 파장판 유닛(330) 및 편광판 유닛(340)은, 레이저광(L)의 출력(광 강도)을 조정하는 출력 조정부로서 기능한다. 또, λ/2 파장판 유닛(330) 및 편광판 유닛(340)은, 레이저광(L)의 편광 방향을 조정하는 편광 방향 조정부로서 기능한다. λ/2 파장판 유닛(330) 및 편광판 유닛(340)을 순차적으로 통과한 레이저광(L)은, X축 방향을 따라서 빔 익스팬더(350)에 입사한다.
빔 익스팬더(350)는, 레이저광(L)의 지름을 조정하면서, 레이저광(L)을 평행화한다. 빔 익스팬더(350)를 통과한 레이저광(L)은, X축 방향을 따라서 미러 유닛(360)에 입사한다.
미러 유닛(360)은, 지지 베이스(361)와, 복수의 미러(362, 363)를 가지고 있다. 지지 베이스(361)는, 복수의 미러(362, 363)를 지지하고 있다. 지지 베이스(361)는, X축 방향 및 Y축 방향을 따라서 위치 조정 가능하게 되도록, 장착 베이스(301)에 장착되어 있다. 미러(제1 미러)(362)는, 빔 익스팬더(350)를 통과한 레이저광(L)을 Y축 방향으로 반사한다. 미러(362)는, 그 반사면이 예를 들면 Z축에 평행한 축선 둘레로 각도 조정 가능하게 되도록, 지지 베이스(361)에 장착되어 있다.
미러(제2 미러)(363)는, 미러(362)에 의해서 반사된 레이저광(L)을 Z축 방향으로 반사한다. 미러(363)는, 그 반사면이 예를 들면 X축에 평행한 축선 둘레로 각도 조정 가능하게 되고 또한 Y축 방향을 따라서 위치 조정 가능하게 되도록, 지지 베이스(361)에 장착되어 있다. 미러(363)에 의해서 반사된 레이저광(L)은, 지지 베이스(361)에 형성된 개구(361a)를 통과하고, Z축 방향을 따라서 레이저 집광부(400)(도 7 참조)에 입사한다. 즉, 레이저 출력부(300)에 의한 레이저광(L)의 출사 방향은, 레이저 집광부(400)의 이동 방향에 일치하고 있다. 상술한 바와 같이, 각 미러(362, 363)는, 반사면의 각도를 조정하기 위한 기구를 가지고 있다.
미러 유닛(360)에서는, 장착 베이스(301)에 대한 지지 베이스(361)의 위치 조정, 지지 베이스(361)에 대한 미러(363)의 위치 조정, 및 각 미러(362, 363)의 반사면의 각도 조정이 실시됨으로써, 레이저 출력부(300)로부터 출사되는 레이저광(L)의 광축의 위치 및 각도가 레이저 집광부(400)에 대해서 맞춰진다. 즉, 복수의 미러(362, 363)는, 레이저 출력부(300)로부터 출사되는 레이저광(L)의 광축을 조정하기 위한 구성이다.
도 10에 나타내어지는 바와 같이, 레이저 집광부(400)는, 케이스(401)를 가지고 있다. 케이스(401)는, Y축 방향을 길이 방향으로 하는 직방체 모양의 형상을 나타내고 있다. 케이스(401)의 일방의 측면(401e)에는, 제2 이동 기구(240)가 장착되어 있다(도 11 및 도 13 참조). 케이스(401)에는, 미러 유닛(360)의 개구(361a)와 Z축 방향에서 대향하도록, 원통 모양의 광 입사부(401a)가 마련되어 있다. 광 입사부(401a)는, 레이저 출력부(300)로부터 출사된 레이저광(L)을 케이스(401) 내에 입사시킨다. 미러 유닛(360)과 광 입사부(401a)는, 제2 이동 기구(240)에 의해서 레이저 집광부(400)가 Z축 방향을 따라서 이동시켜졌을 때에 서로 접촉하지 않는 거리만큼, 서로 이간하고 있다.
도 11 및 도 12에 나타내어지는 바와 같이, 레이저 집광부(400)는, 미러(402)와, 다이클로익 미러(403)를 가지고 있다. 게다가, 레이저 집광부(400)는, 반사형 공간 광 변조기(410)와, 4f 렌즈 유닛(420)과, 집광 렌즈 유닛(대물 렌즈)(430)과, 구동 기구(440)와, 한 쌍의 측거(測距) 센서(450)를 가지고 있다.
미러(402)는, 광 입사부(401a)와 Z축 방향에서 대향하도록, 케이스(401)의 저면(401b)에 장착되어 있다. 미러(402)는, 광 입사부(401a)를 거쳐 케이스(401) 내에 입사한 레이저광(L)을 XY평면에 평행한 방향으로 반사한다. 미러(402)에는, 레이저 출력부(300)의 빔 익스팬더(350)에 의해서 평행화된 레이저광(L)이 Z축 방향을 따라서 입사한다. 즉, 미러(402)에는, 레이저광(L)이 평행 광으로서 Z축 방향을 따라서 입사한다. 그 때문에, 제2 이동 기구(240)에 의해서 레이저 집광부(400)가 Z축 방향을 따라서 이동시켜져도, Z축 방향을 따라서 미러(402)에 입사하는 레이저광(L)의 상태는 일정하게 유지된다. 미러(402)에 의해서 반사된 레이저광(L)은, 반사형 공간 광 변조기(410)에 입사한다.
반사형 공간 광 변조기(410)는, 반사면(410a)이 케이스(401) 내에 면한 상태에서, Y축 방향에서의 케이스(401)의 단부(401c)에 장착되어 있다. 반사형 공간 광 변조기(410)는, 예를 들면 반사형 액정(LCOS:Liquid Crystal on Silicon)의 공간 광 변조기(SLM:Spatial Light Modulator)이며, 레이저광(L)을 변조하면서, 레이저광(L)을 Y축 방향으로 반사한다. 반사형 공간 광 변조기(410)에 의해서 변조됨과 아울러 반사된 레이저광(L)은, Y축 방향을 따라서 4f 렌즈 유닛(420)에 입사한다. 여기서, XY평면에 평행한 평면 내에서, 반사형 공간 광 변조기(410)에 입사하는 레이저광(L)의 광축과, 반사형 공간 광 변조기(410)로부터 출사되는 레이저광(L)의 광축이 이루는 각도(α)는, 예각(예를 들면, 10~60°)으로 되어 있다. 즉, 레이저광(L)은, 반사형 공간 광 변조기(410)에서 XY평면을 따라서 예각으로 반사된다. 이것은, 레이저광(L)의 입사각 및 반사각을 억제하여 회절 효율의 저하를 억제하고, 반사형 공간 광 변조기(410)의 성능을 충분히 발휘시키기 때문이다. 또, 반사형 공간 광 변조기(410)에서는, 예를 들면, 액정이 이용된 광 변조층의 두께가 수μm~수십μm 정도로 매우 얇기 때문에, 반사면(410a)은, 광 변조층의 광 입출사면과 실질적으로 동일하다고 파악할 수 있다.
4f 렌즈 유닛(420)은, 홀더(421)와, 반사형 공간 광 변조기(410)측의 렌즈(422)와, 집광 렌즈 유닛(430)측의 렌즈(423)와, 슬릿 부재(424)를 가지고 있다. 홀더(421)는, 한 쌍의 렌즈(422, 423) 및 슬릿 부재(424)를 유지하고 있다. 홀더(421)는, 레이저광(L)의 광축을 따른 방향에서의 한 쌍의 렌즈(422, 423) 및 슬릿 부재(424)의 서로의 위치 관계를 일정하게 유지하고 있다. 한 쌍의 렌즈(422, 423)는, 반사형 공간 광 변조기(410)의 반사면(410a)과 집광 렌즈 유닛(430)의 입사동면(동면)(430a)이 결상 관계에 있는 양측 텔레센트릭 광학계를 구성하고 있다.
이것에 의해, 반사형 공간 광 변조기(410)의 반사면(410a)에서의 레이저광(L)의 상(像)(반사형 공간 광 변조기(410)에서 변조된 레이저광(L)의 상(像))이, 집광 렌즈 유닛(430)의 입사동면(430a)에 전상(輾像)(결상)된다. 슬릿 부재(424)에는, 슬릿(424a)이 형성되어 있다. 슬릿(424a)은, 렌즈(422)와 렌즈(423)와의 사이 로서, 렌즈(422)의 초점면 부근에 위치하고 있다. 반사형 공간 광 변조기(410)에 의해서 변조됨과 아울러 반사된 레이저광(L) 중 불필요한 부분은, 슬릿 부재(424)에 의해서 차단된다. 4f 렌즈 유닛(420)을 통과한 레이저광(L)은, Y축 방향을 따라서 다이클로익 미러(403)에 입사한다.
다이클로익 미러(403)는, 레이저광(L)의 대부분(예를 들면, 95~99.5%)를 Z축 방향으로 반사하고, 레이저광(L)의 일부(예를 들면, 0.5~5%)를 Y축 방향을 따라서 투과시킨다. 레이저광(L)의 대부분은, 다이클로익 미러(403)에서 ZX평면을 따라서 직각으로 반사된다. 다이클로익 미러(403)에 의해서 반사된 레이저광(L)은, Z축 방향을 따라서 집광 렌즈 유닛(430)에 입사한다.
집광 렌즈 유닛(430)은, Y축 방향에서의 케이스(401)의 단부(401d)(단부(401c)의 반대측의 단부)에, 구동 기구(440)를 매개로 하여 장착되어 있다. 집광 렌즈 유닛(430)은, 홀더(431)와, 복수의 렌즈(432)를 가지고 있다. 홀더(431)는, 복수의 렌즈(432)를 유지하고 있다. 복수의 렌즈(432)는, 지지대(230)에 지지된 가공 대상물(1)(도 7 참조)에 대해서 레이저광(L)을 집광한다. 구동 기구(440)는, 압전 소자의 구동력에 의해서, 집광 렌즈 유닛(430)을 Z축 방향을 따라서 이동시킨다.
한 쌍의 측거 센서(450)는, X축 방향에서 집광 렌즈 유닛(430)의 양측에 위치하도록, 케이스(401)의 단부(401d)에 장착되어 있다. 각 측거 센서(450)는, 지지대(230)에 지지된 가공 대상물(1)(도 7 참조)의 레이저광 입사면에 대해서 측거용의 광(예를 들면, 레이저광)을 출사하고, 당해 레이저광 입사면에 의해서 반사된 측거용의 광을 검출함으로써, 가공 대상물(1)의 레이저광 입사면의 변위 데이터를 취득한다. 또, 측거 센서(450)에는, 삼각 측거 방식, 레이저 공초점(共焦点) 방식, 백색 공초점 방식, 분광 간섭 방식, 비점수차(非点收差) 방식 등의 센서를 이용할 수 있다.
레이저 가공 장치(200)에서는, 상술한 바와 같이, X축 방향에 평행한 방향이 가공 방향(레이저광(L)의 스캔 방향)으로 되어 있다. 그 때문에, 각 절단 예정 라인(5a, 5b)을 따라서 레이저광(L)의 집광점이 상대적으로 이동시켜질 때에, 한 쌍의 측거 센서(450) 중 집광 렌즈 유닛(430)에 대해서 상대적으로 선행하는 측거 센서(450)가, 각 절단 예정 라인(5a, 5b)을 따른 가공 대상물(1)의 레이저광 입사면의 변위 데이터를 취득한다. 그리고, 가공 대상물(1)의 레이저광 입사면과 레이저광(L)의 집광점과의 거리가 일정하게 유지되도록, 구동 기구(440)가, 측거 센서(450)에 의해서 취득된 변위 데이터에 근거하여 집광 렌즈 유닛(430)을 Z축 방향을 따라서 이동시킨다.
레이저 집광부(400)는, 빔 스플리터(461)와, 한 쌍의 렌즈(462, 463)와, 프로파일 취득용 카메라(강도 분포 취득부)(464)를 가지고 있다. 빔 스플리터(461)는, 다이클로익 미러(403)를 투과한 레이저광(L)을 반사 성분과 투과 성분으로 나눈다. 빔 스플리터(461)에 의해서 반사된 레이저광(L)은, Z축 방향을 따라서 한 쌍의 렌즈(462, 463) 및 프로파일 취득용 카메라(464)에 순차적으로 입사한다. 한 쌍의 렌즈(462, 463)는, 집광 렌즈 유닛(430)의 입사동면(430a)과 프로파일 취득용 카메라(464)의 촬상면이 결상 관계에 있는 양측 텔레센트릭(telecentric) 광학계를 구성하고 있다. 이것에 의해, 집광 렌즈 유닛(430)의 입사동면(430a)에서의 레이저광(L)의 상이, 프로파일 취득용 카메라(464)의 촬상면에 전상(輾像)(결상)된다. 상술한 바와 같이, 집광 렌즈 유닛(430)의 입사동면(430a)에서의 레이저광(L)의 상은, 반사형 공간 광 변조기(410)에서 변조된 레이저광(L)의 상이다. 따라서, 레이저 가공 장치(200)에서는, 프로파일 취득용 카메라(464)에 의한 촬상 결과를 감시함으로써, 반사형 공간 광 변조기(410)의 동작 상태를 파악할 수 있다.
게다가, 레이저 집광부(400)는, 빔 스플리터(471)와, 렌즈(472)와, 레이저광(L)의 광축 위치 모니터용의 카메라(473)를 가지고 있다. 빔 스플리터(471)는, 빔 스플리터(461)를 투과한 레이저광(L)을 반사 성분과 투과 성분으로 나눈다. 빔 스플리터(471)에 의해서 반사된 레이저광(L)은, Z축 방향을 따라서 렌즈(472) 및 카메라(473)에 순차적으로 입사한다. 렌즈(472)는, 입사한 레이저광(L)을 카메라(473)의 촬상면 상에 집광한다. 레이저 가공 장치(200)에서는, 카메라(464) 및 카메라(473)의 각각에 의한 촬상 결과를 감시하면서, 미러 유닛(360)에서, 장착 베이스(301)에 대한 지지 베이스(361)의 위치 조정, 지지 베이스(361)에 대한 미러(363)의 위치 조정, 및 각 미러(362, 363)의 반사면의 각도 조정을 실시함으로써(도 9 및 도 10 참조), 집광 렌즈 유닛(430)에 입사하는 레이저광(L)의 광축의 어긋남(집광 렌즈 유닛(430)에 대한 레이저광의 강도 분포의 위치 어긋남 및 집광 렌즈 유닛(430)에 대한 레이저광(L)의 광축의 각도 어긋남)을 보정할 수 있다.
복수의 빔 스플리터(461, 471)는, 케이스(401)의 단부(401d)로부터 Y축 방향을 따라서 연장되는 통체(404) 내에 배치되어 있다. 한 쌍의 렌즈(462, 463)는, Z축 방향을 따라서 통체(404) 상에 세워 마련된 통체(405) 내에 배치되어 있고, 프로파일 취득용 카메라(464)는, 통체(405)의 단부에 배치되어 있다. 렌즈(472)는, Z축 방향을 따라서 통체(404) 상에 세워 마련된 통체(406) 내에 배치되어 있으며, 카메라(473)는, 통체(406)의 단부에 배치되어 있다. 통체(405)와 통체(406)는, Y축 방향에서 서로 병설되어 있다. 또, 빔 스플리터(471)를 투과한 레이저광(L)은, 통체(404)의 단부에 마련된 댐퍼 등에 흡수되도록 해도 괜찮고, 혹은, 적절한 용도로 이용되도록 해도 괜찮다.
도 12 및 도 13에 나타내어지는 바와 같이, 레이저 집광부(400)는, 가시 광원(481)과, 복수의 렌즈(482)와, 레티클(reticle)(483)과, 미러(484)와, 하프 미러(485)와, 빔 스플리터(486)와, 렌즈(487)와, 관찰 카메라(488)를 가지고 있다. 가시 광원(481)은, Z축 방향을 따라서 가시광(V)을 출사한다. 복수의 렌즈(482)는, 가시 광원(481)으로부터 출사된 가시광(V)을 평행화한다. 레티클(483)은, 가시광(V)에 눈금선을 부여한다. 미러(484)는, 복수의 렌즈(482)에 의해서 평행화된 가시광(V)을 X축 방향으로 반사한다. 하프 미러(485)는, 미러(484)에 의해서 반사된 가시광(V)을 반사 성분과 투과 성분으로 나눈다. 하프 미러(485)에 의해서 반사된 가시광(V)은, Z축 방향을 따라서 빔 스플리터(486) 및 다이클로익 미러(403)를 순차적으로 투과하고, 집광 렌즈 유닛(430)을 거쳐, 지지대(230)에 지지된 가공 대상물(1)(도 7 참조)에 조사된다.
가공 대상물(1)에 조사된 가시광(V)은, 가공 대상물(1)의 레이저광 입사면에 의해서 반사되고, 집광 렌즈 유닛(430)을 거쳐 다이클로익 미러(403)에 입사하여, Z축 방향을 따라서 다이클로익 미러(403)를 투과한다. 빔 스플리터(486)는, 다이클로익 미러(403)를 투과한 가시광(V)을 반사 성분과 투과 성분으로 나눈다. 빔 스플리터(486)를 투과한 가시광(V)은, 하프 미러(485)를 투과하여, Z축 방향을 따라서 렌즈(487) 및 관찰 카메라(488)에 순차적으로 입사한다. 렌즈(487)는, 입사한 가시광(V)을 관찰 카메라(488)의 촬상면 상에 집광한다. 레이저 가공 장치(200)에서는, 관찰 카메라(488)에 의한 촬상 결과를 관찰함으로써, 가공 대상물(1)의 상태를 파악할 수 있다.
미러(484), 하프 미러(485) 및 빔 스플리터(486)는, 케이스(401)의 단부(401d) 상에 장착된 홀더(407) 내에 배치되어 있다. 복수의 렌즈(482) 및 레티클(483)은, Z축 방향을 따라서 홀더(407) 상에 세워 마련된 통체(408) 내에 배치되어 있고, 가시 광원(481)은, 통체(408)의 단부에 배치되어 있다. 렌즈(487)는, Z축 방향을 따라서 홀더(407) 상에 세워 마련된 통체(409) 내에 배치되어 있고, 관찰 카메라(488)는, 통체(409)의 단부에 배치되어 있다. 통체(408)와 통체(409)는, X축 방향에서 서로 병설되어 있다. 또, X축 방향을 따라서 하프 미러(485)를 투과한 가시광(V), 및 빔 스플리터(486)에 의해서 X축 방향으로 반사된 가시광(V)은, 각각, 홀더(407)의 벽부에 마련된 댐퍼 등에 흡수되도록 해도 괜찮고 또는 적절한 용도로 이용되도록 해도 괜찮다.
레이저 가공 장치(200)에서는, 레이저 출력부(300)의 교환이 상정(想定)되어 있다. 이것은, 가공 대상물(1)의 사양, 가공 조건 등에 따라서, 가공에 적절한 레이저광(L)의 파장이 다르기 때문이다. 그 때문에, 출사하는 레이저광(L)의 파장이 서로 다른 복수의 레이저 출력부(300)가 준비된다. 여기에서는, 출사하는 레이저광(L)의 파장이 500~550nm의 파장대에 포함되는 레이저 출력부(300), 출사하는 레이저광(L)의 파장이 1000~1150nm의 파장대에 포함되는 레이저 출력부(300), 및 출사하는 레이저광(L)의 파장이 1300~1400nm의 파장대에 포함되는 레이저 출력부(300)가 준비된다.
한편, 레이저 가공 장치(200)에서는, 레이저 집광부(400)의 교환이 상정되어 있지 않다. 이것은, 레이저 집광부(400)가 멀티 파장에 대응하고 있기(서로 연속하지 않는 복수의 파장대에 대응하고 있기) 때문이다. 구체적으로는, 미러(402), 반사형 공간 광 변조기(410), 4f 렌즈 유닛(420)의 한 쌍의 렌즈(422, 423), 다이클로익 미러(403), 및 집광 렌즈 유닛(430)의 렌즈(432) 등이 멀티 파장에 대응하고 있다.
여기에서는, 레이저 집광부(400)는, 500~550nm, 1000~1150nm 및 1300~1400nm의 파장대에 대응하고 있다. 이것은, 레이저 집광부(400)의 각 구성에 소정의 유전체 다층막을 코팅하는 것 등, 소망의 광학 성능이 만족되도록 레이저 집광부(400)의 각 구성이 설계됨으로써 실현된다. 또, 레이저 출력부(300)에서, λ/2 파장판 유닛(330)은 λ/2 파장판을 가지고 있고, 편광판 유닛(340)은 편광판을 가지고 있다. λ/2 파장판 및 편광판은, 파장 의존성이 높은 광학 소자이다. 그 때문에, λ/2 파장판 유닛(330) 및 편광판 유닛(340)은, 파장대마다 다른 구성으로서 레이저 출력부(300)에 마련되어 있다.
[레이저 가공 장치에서의 레이저광의 광로 및 편광 방향]
레이저 가공 장치(200)에서는, 지지대(230)에 지지된 가공 대상물(1)에 대해서 집광되는 레이저광(L)의 편광 방향은, 도 11에 나타내어지는 바와 같이, X축 방향에 평행한 방향이며, 가공 방향(레이저광(L)의 스캔 방향)과 일치하고 있다. 여기서, 반사형 공간 광 변조기(410)에서는, 레이저광(L)이 P편광으로서 반사된다. 이것은, 반사형 공간 광 변조기(410)의 광 변조층에 액정이 이용되어 있는 경우에서, 반사형 공간 광 변조기(410)에 대해서 입출사하는 레이저광(L)의 광축을 포함하는 평면에 평행한 면내에서 액정 분자가 경사지도록, 당해 액정이 배향되어 있을 때에는, 편파면(偏波面)의 회전이 억제된 상태에서 레이저광(L)에 위상 변조(phase modulation)가 실시되기 때문이다(예를 들면, 일본특허 제3878758호 공보 참조).
한편, 다이클로익 미러(403)에서는, 레이저광(L)이 S편광으로서 반사된다. 이것은, 레이저광(L)을 P편광으로서 반사시키는 것보다도, 레이저광(L)을 S편광으로서 반사시키는 쪽이, 다이클로익 미러(403)를 멀티 파장에 대응시키기 위한 유전체 다층막의 코팅수가 감소하는 등, 다이클로익 미러(403)의 설계가 용이해지기 때문이다.
따라서, 레이저 집광부(400)에서는, 미러(402)로부터 반사형 공간 광 변조기(410) 및 4f 렌즈 유닛(420)을 거쳐 다이클로익 미러(403)에 이르는 광로가, XY평면을 따르도록 설정되어 있고, 다이클로익 미러(403)로부터 집광 렌즈 유닛(430)에 이르는 광로가, Z축 방향을 따르도록 설정되어 있다.
도 9에 나타내어지는 바와 같이, 레이저 출력부(300)에서는, 레이저광(L)의 광로가 X축 방향 또는 Y축 방향을 따르도록 설정되어 있다. 구체적으로는, 레이저 발진기(310)로부터 미러(303)에 이르는 광로 그리고 미러(304)로부터 λ/2 파장판 유닛(330), 편광판 유닛(340) 및 빔 익스팬더(350)를 거쳐 미러 유닛(360)에 이르는 광로가, X축 방향을 따르도록 설정되어 있으며, 미러(303)으로부터 셔터(320)를 거쳐 미러(304)에 이르는 광로 및 미러 유닛(360)에서 미러(362)로부터 미러(363)에 이르는 광로가, Y축 방향을 따르도록 설정되어 있다.
여기서, Z축 방향을 따라서 레이저 출력부(300)로부터 레이저 집광부(400)로 진행한 레이저광(L)은, 도 11에 나타내어지는 바와 같이, 미러(402)에 의해서 XY평면에 평행한 방향으로 반사되고, 반사형 공간 광 변조기(410)에 입사한다. 이 때, XY평면에 평행한 평면 내에서, 반사형 공간 광 변조기(410)에 입사하는 레이저광(L)의 광축과, 반사형 공간 광 변조기(410)로부터 출사되는 레이저광(L)의 광축은, 예각인 각도(α)를 이루고 있다. 한편, 상술한 바와 같이, 레이저 출력부(300)에서는, 레이저광(L)의 광로가 X축 방향 또는 Y축 방향을 따르도록 설정되어 있다.
따라서, 레이저 출력부(300)에서, λ/2 파장판 유닛(330) 및 편광판 유닛(340)을, 레이저광(L)의 출력을 조정하는 출력 조정부로서 뿐만 아니라, 레이저광(L)의 편광 방향을 조정하는 편광 방향 조정부로서도 기능시킬 필요가 있다.
[반사형 공간 광 변조기]
도 14에 나타내어지는 바와 같이, 반사형 공간 광 변조기(410)는, 실리콘 기판(213), 구동 회로층(914), 복수의 화소 전극(214), 유전체 다층막 미러 등의 반사막(215), 배향막(999a), 액정층(표시부)(216), 배향막(999b), 투명 도전막(217), 및 유리 기판 등의 투명 기판(218)이 이 순서로 적층됨으로써 구성되어 있다.
투명 기판(218)은, 표면(218a)을 가지고 있고, 이 표면(218a)은, 반사형 공간 광 변조기(410)의 반사면(410a)을 구성하고 있다. 투명 기판(218)은, 예를 들면 유리 등의 광 투과성 재료로 이루어지며, 반사형 공간 광 변조기(410)의 표면(218a)으로부터 입사한 소정 파장의 레이저광(L)을, 반사형 공간 광 변조기(410)의 내부로 투과시킨다. 투명 도전막(217)은, 투명 기판(218)의 이면 상에 형성되어 있고, 레이저광(L)을 투과하는 도전성 재료(예를 들면 ITO)로 이루어진다.
복수의 화소 전극(214)은, 투명 도전막(217)을 따라서 실리콘 기판(213) 상에 매트릭스 모양으로 배열되어 있다. 각 화소 전극(214)은, 예를 들면 알루미늄 등의 금속 재료로 이루어지고, 이들 표면(214a)은, 평탄하게 또한 매끄럽게 가공되어 있다. 복수의 화소 전극(214)은, 구동 회로층(914)에 마련된 액티브·매트릭스 회로에 의해서 구동된다.
액티브·매트릭스 회로는, 복수의 화소 전극(214)과 실리콘 기판(213)과의 사이에 마련되어 있고, 반사형 공간 광 변조기(410)로부터 출력하려고 하는 광상(光像)에 따라 각 화소 전극(214)으로의 인가 전압을 제어한다. 이러한 액티브·매트릭스 회로는, 예를 들면 도시하지 않은 X축 방향으로 늘어선 각 화소열의 인가 전압을 제어하는 제1 드라이버 회로와, Y축 방향으로 늘어선 각 화소열의 인가 전압을 제어하는 제2 드라이버 회로를 가지고 있으며, 제어부(500)에서의 후술의 공간 광 변조기 제어부(502)(도 16 참조)에 의해서 쌍방의 드라이버 회로에서 지정된 화소의 화소 전극(214)에 소정 전압이 인가되도록 구성되어 있다.
배향막(999a, 999b)은, 액정층(216)의 양단면(兩端面)에 배치되어 있고, 액정 분자군을 일정 방향으로 배열시킨다. 배향막(999a, 999b)은, 예를 들면 폴리이미드 등의 고분자 재료로 이루어지고, 액정층(216)과의 접촉면에 러빙(rubbing) 처리 등이 실시되어 있다.
액정층(216)은, 복수의 화소 전극(214)과 투명 도전막(217)과의 사이에 배치되어 있고, 각 화소 전극(214)과 투명 도전막(217)에 의해 형성되는 전계에 따라 레이저광(L)을 변조한다. 즉, 구동 회로층(914)의 액티브·매트릭스 회로에 의해서 각 화소 전극(214)에 전압이 인가되면, 투명 도전막(217)과 각 화소 전극(214)과의 사이에 전계가 형성되고, 액정층(216)에 형성된 전계의 크기에 따라 액정 분자(216a)의 배열 방향이 변화한다. 그리고, 레이저광(L)이 투명 기판(218) 및 투명 도전막(217)을 투과하여 액정층(216)에 입사하면, 이 레이저광(L)은, 액정층(216)을 통과하는 동안에 액정 분자(216a)에 의해서 변조되고, 반사막(215)에서 반사한 후, 다시 액정층(216)에 의해 변조되어, 출사한다.
이 때, 후술의 공간 광 변조기 제어부(502)(도 16 참조)에 의해서 각 화소 전극(214)에 인가되는 전압이 제어되고, 그 전압에 따라서, 액정층(216)에서 투명 도전막(217)과 각 화소 전극(214) 사이에 끼워진 부분의 굴절률이 변화한다(각 화소에 대응한 위치의 액정층(216)의 굴절률이 변화한다). 이 굴절률의 변화에 의해, 인가한 전압에 따라서, 레이저광(L)의 위상을 액정층(216)의 화소마다 변화시킬 수 있다. 즉, 홀로그램 패턴에 따른 위상 변조(phase modulation)를 화소마다 액정층(216)에 의해서 부여할 수 있다.
환언하면, 변조를 부여하는 홀로그램 패턴으로서의 변조 패턴을, 반사형 공간 광 변조기(410)의 액정층(216)에 표시시킬 수 있다. 변조 패턴에 입사하고 투과하는 레이저광(L)은, 그 파면이 조정되어, 그 레이저광(L)을 구성하는 각 광선에서 진행 방향에 직교하는 소정 방향의 성분의 위상에 어긋남이 생긴다. 따라서, 반사형 공간 광 변조기(410)에 표시시키는 변조 패턴을 적절히 설정하는 것에 의해, 레이저광(L)이 변조(예를 들면, 레이저광(L)의 강도, 진폭, 위상, 편광 등이 변조) 가능해진다.
[4f 렌즈 유닛]
상술한 바와 같이, 4f 렌즈 유닛(420)의 한 쌍의 렌즈(422, 423)는, 반사형 공간 광 변조기(410)의 반사면(410a)과 집광 렌즈 유닛(430)의 입사동면(430a)이 결상 관계에 있는 양측 텔레센트릭 광학계를 구성하고 있다. 구체적으로는, 도 15에 나타내어지는 바와 같이, 반사형 공간 광 변조기(410)측의 렌즈(422)의 중심과 반사형 공간 광 변조기(410)의 반사면(410a)과의 사이의 광로의 거리가 렌즈(422)의 제1 초점 거리(f1)가 되고, 집광 렌즈 유닛(430)측의 렌즈(423)의 중심과 집광 렌즈 유닛(430)의 입사동면(430a)과의 사이의 광로의 거리가 렌즈(423)의 제2 초점 거리(f2)가 되며, 렌즈(422)의 중심과 렌즈(423)의 중심과의 사이의 광로의 거리가 제1 초점 거리(f1)와 제2 초점 거리(f2)와의 합(즉, f1+f2)으로 되어 있다. 반사형 공간 광 변조기(410)로부터 집광 렌즈 유닛(430)에 이르는 광로 중 한 쌍의 렌즈(422, 423) 사이의 광로는, 일직선이다.
레이저 가공 장치(200)에서는, 반사형 공간 광 변조기(410)의 반사면(410a)에서의 레이저광(L)의 유효 지름을 크게 하는 관점으로부터, 양측 텔레센트릭 광학계의 배율(M)이, 0.5<M<1(축소계)을 만족하고 있다. 반사형 공간 광 변조기(410)의 반사면(410a)에서의 레이저광(L)의 유효 지름이 클수록, 고정밀 위상 패턴으로 레이저광(L)이 변조된다. 반사형 공간 광 변조기(410)로부터 집광 렌즈 유닛(430)에 이르는 레이저광(L)의 광로가 길어지는 것을 억제한다고 하는 관점에서는, 0.6≤M≤0.95로 할 수 있다. 여기서, (양측 텔레센트릭 광학계의 배율(M))=(집광 렌즈 유닛(430)의 입사동면(430a)에서의 상의 크기)/(반사형 공간 광 변조기(410)의 반사면(410a)에서의 물체의 크기)이다. 레이저 가공 장치(200)의 경우, 양측 텔레센트릭 광학계의 배율(M), 렌즈(422)의 제1 초점 거리(f1) 및 렌즈(423)의 제2 초점 거리(f2)가, M=f2/f1를 만족하고 있다.
또, 반사형 공간 광 변조기(410)의 반사면(410a)에서의 레이저광(L)의 유효 지름을 작게 하는 관점으로부터, 양측 텔레센트릭 광학계의 배율(M)이, 1<M<2(확대계)를 만족하고 있어도 괜찮다. 반사형 공간 광 변조기(410)의 반사면(410a)에서의 레이저광(L)의 유효 지름이 작을수록, 빔 익스팬더(350)(도 9 참조)의 배율이 작아져, XY평면에 평행한 평면 내에서, 반사형 공간 광 변조기(410)에 입사하는 레이저광(L)의 광축과, 반사형 공간 광 변조기(410)로부터 출사되는 레이저광(L)의 광축이 이루는 각도(α)(도 11 참조)가 작아진다. 반사형 공간 광 변조기(410)로부터 집광 렌즈 유닛(430)에 이르는 레이저광(L)의 광로가 길어지는 것을 억제한다고 하는 관점에서는, 1.05≤M≤1.7로 할 수 있다.
다음으로, 제1 실시 형태에 관한 레이저 가공 장치(200)의 요부에 대해 상세하게 설명한다.
도 16은, 제1 실시 형태에 관한 레이저 가공 장치(200)의 요부를 나타내는 개략 구성도이다. 도 17은, 도 16에 나타내어진 반사형 공간 광 변조기로부터 가공 대상물에 이르는 레이저광의 광로 및 그 광로 상의 각 광학 요소를 모식적으로 나타내는 도면이다. 도 17에서는, 다이클로익 미러(403)가 생략되어 있다. 레이저광(L)은, 예를 들면, Y축 방향을 따라서 진행한 후에, 위치(Pd)에서 다이클로익 미러(403)에 의해 Z축 방향으로 반사되고. Z축 방향으로 진행히야 집광 렌즈 유닛(430)에 입사한다.
도 16, 17에 나타내어지는 바와 가이, 레이저 출력부(300)(레이저 발진기(310))로부터 출력된 레이저광(L)은, 반사형 공간 광 변조기(410)에 입사한다. 반사형 공간 광 변조기(410)는, 입사된 레이저광(L)을, 액정층(216)에 표시된 위상 패턴에 따라 변조하여 출사한다. 반사형 공간 광 변조기(410)로부터 출사한 레이저광(L)은, 4f 렌즈 유닛(420)의 릴레이 렌즈인 렌즈(집속 렌즈)(422)에서 집속된 후, 4f 렌즈 유닛(420)의 릴레이 렌즈인 렌즈(423)에서 콜리메이트되어, 다이클로익 미러(403)에 입사한다. 다이클로익 미러(403)에 입사한 레이저광(L)은, 반사광과 투과광으로 분기된다. 다이클로익 미러(403)에서 반사한 레이저광(L)은, 집광 렌즈 유닛(430)에 입사한다.
즉, 레이저 가공 장치(200)는, 레이저광(L)의 광로에서의 반사형 공간 광 변조기(410)와 집광 렌즈 유닛(430)과의 사이에 배치된 렌즈(422)를 구비하고 있다. 집광 렌즈 유닛(430)에 입사한 레이저광(L)은, 집광 렌즈 유닛(430)에 의해 가공 대상물(1)을 향하여 집광된다. 한편, 다이클로익 미러(403)를 투과한 레이저광(L)은, 릴레이 렌즈인 상기 렌즈(463)에서 집속되고, 프로파일 취득용 카메라(464)의 촬상면(464a)에 입사한다.
한 쌍의 렌즈(422, 423)는, 반사형 공간 광 변조기(410)의 반사면(410a)에서의 레이저광(L)의 파면(波面)을, 집광 렌즈 유닛(430)의 입사동면(430a)과, 다이클로익 미러(403)의 하류측(후단)의 공역면(491)에 릴레이한다. 렌즈(463)는, 한 쌍의 렌즈(422, 423)에 의해서 공역면(491)에 릴레이된 레이저광(L)의 파면(액정층(216)에서의 실상)을, 프로파일 취득용 카메라(464)의 촬상면(464a)에 릴레이(결상)한다. 이것에 의해, 액정층(216)과, 집광 렌즈 유닛(430)의 입사동면(430a)과, 공역면(491)과, 프로파일 취득용 카메라(464)의 촬상면(464a)은, 서로 공역의 관계를 구성한다.
프로파일 취득용 카메라(464)는, 다이클로익 미러(403)에서 분기된 레이저광(L)의 강도 분포를 취득하는 촬상 장치이다. 구체적으로는, 프로파일 취득용 카메라(464)는, 반사형 공간 광 변조기(410)로부터 출사되어 집광 렌즈 유닛(430)에 입사하기 전의 레이저광(L)에 대한 빔 단면의 강도 분포에 관한 화상(강도 분포 화상)을 정지 화상으로서 촬상한다. 촬상한 강도 분포 화상을 제어부(500)로 출력한다. 프로파일 취득용 카메라(464)로서는, 예를 들면, CMOS(Complementar Metal Oxide Semiconductor) 이미지 센서가 이용된다.
제어부(500)는, 상기 레이저 광원 제어부(102)와, 공간 광 변조기 제어부(제어부)(502), 카메라 제어부(504) 및 기억부(510)를 가지고 있다. 레이저 광원 제어부(102)는, 레이저 발진기(310)의 동작을 제어한다. 또, 레이저 광원 제어부(102)는, 1개의 절단 예정 라인(5)을 따르는 레이저 가공마다, 가공 조건(조사 조건)에 근거하여, 레이저 발진기(310)에서 발생시키는 레이저광(L)의 출력을 결정하여 설정한다. 가공 조건은, 예를 들면 터치 패널 등의 입력부에 의해 오퍼레이터로부터 입력된다. 가공 조건으로서는, 예를 들면, 가공 대상물(1)에서의 개질 영역(7)을 형성하는 깊이 위치, 레이저 출력 등이다.
공간 광 변조기 제어부(502)는, 반사형 공간 광 변조기(410)의 액정층(216)에 표시하는 위상 패턴을 제어한다. 도 18은, 반사형 공간 광 변조기(410)에 표시되는 위상 패턴의 일례를 나타내는 도면이다. 도 18의 (a)는, 위상 패턴의 전체를 나타내고, 도 18의 (b)는, 도 18의 (a)의 영역(RA)의 확대도이다. 도 18에 나타내어지는 바와 같이, 반사형 공간 광 변조기(410)에 표시되는 위상 패턴(P0)은, 제1 패턴(P1)과 제2 패턴(P2)을 포함한다. 제1 패턴(P1)은, 레이저광(L) 중 집광 렌즈 유닛(430)의 입사동면(430a)에 입사하는 일부를 변조한다. 제2 패턴(P2)은, 레이저광(L) 중 잔부, 즉, 입사동면(430a)에 입사하지 않는(예를 들면 입사동면(430a)의 둘레 가장자리부에 입사하는) 부분을 변조한다. 이 점에 대해서, 보다 구체적으로 설명한다.
도 19는, 반사형 공간 광 변조기 상의 레이저광의 강도 분포를 나타내는 화상이다. 도 19에 나타내어지는 바와 같이, 액정층(216)은, 레이저광(L)이 입사하는 영역(HA)을 포함한다. 영역(HA)은, 원형의 유효 영역(AC)과, 유효 영역(AC)의 외측의 원환 형상의 비유효 영역(AB)을 포함한다. 유효 영역(AC)에 입사하는 레이저광(L)의 일부는, 집광 렌즈 유닛(430)의 입사동면(430a)에 입사하여 가공 대상물(1)에 조사되는 유효 광이다. 즉, 유효 영역(AC)은, 유효 광(레이저광(L)의 일부)을 변조하기 위한 영역이다. 유효 영역(AC)은, 예를 들면, 레이저광(L)이 가우시안 빔(Gaussian beam)의 경우, 레이저광(L)의 강도가 피크의 13.5(1/e^2)%가 되는 가우시안 빔 반경(w)을 이용하면, 가우시안 빔 반경(w)을 반경 w로 한 원형 영역이다.
비유효 영역(AB)에 입사하는 레이저광(L)의 잔부는, 집광 렌즈 유닛(430)의 입사동면(430a)에 입사하지 않고 가공 대상물(1)에 조사되지 않는 비유효 광이다. 즉, 비유효 영역(AB)은, 비유효 광(레이저광(L)의 잔부)을 변조하기 위한 영역이다. 비유효 영역(AB)은, 예를 들면, 가우시안 빔 반경(w)을 내측 반경으로 하고, 가우시안 빔 반경(w)의 1.22배(=1.22w)를 외측 반경으로 하는 원환 영역이다. 가우시안 빔 반경(w)의 1.22배의 위치는, 레이저광(L)의 강도가 피크의 약 5%가 되는 위치이다.
또, 액정층(216)은, 영역(HA)의 외측의 영역(AA)을 포함한다. 영역(AA)은, 실질적으로 레이저광(L)이 입사하지 않는 영역이다. 일예로서, 영역(AA)은, 레이저광(L)이 가우시안 빔인 경우에는, 레이저광의 강도가 피크의 5%보다도 작게 되는 영역이다.
도 18에 나타내어지는 제1 패턴(P1)은, 액정층(216)의 유효 영역(AC)에 표시된다. 따라서, 제1 패턴(P1)은, 레이저광(L) 중 유효 광을 변조한다. 제2 패턴(P2)은, 액정층(216)의 비유효 영역(AB) 및 영역(AA)에 표시된다. 따라서, 제2 패턴(P2)은, 레이저광(L) 중 비유효 광을 변조한다.
제1 패턴(P1)은, 제1 방향(여기에서는 X축 방향:레이저광(L)의 스캔 방향:레이저광(L)의 집광점의 가공 대상물(1)에 대한 상대적인 이동 방향)을 따라서 레이저광(L)의 일부(유효 광)를 복수의 제1 회절광(다른 회절광)(DL1)으로 분기시키기 위한 제1 회절 격자 패턴(다른 회절 격자 패턴)(G1)을 포함한다(도 17, 20 참조). 여기에서는, 제1 패턴(P1)은, 회절 격자 패턴이지만, 수차 보정 패턴 등의 다른 위상 패턴을 포함해도 괜찮다(즉, 회절 격자 패턴에 다른 위상 패턴이 중첩되어 구성되어도 괜찮다). 제1 회절 격자 패턴(G1)은, 제1 방향 및 광축 방향에 교차(직교)하는 제2 방향(여기에서는 Z축 방향)을 따른 직선 모양의 복수의 홈 패턴이 제1 방향으로 배열되어 구성되어 있다. 따라서, 렌즈(422)의 후측의 초점 위치에서는, 제1 방향을 따라서 분기된 복수의 제1 회절광(DL1)의 빔 스폿(SP1)이 형성된다(도 20 참조).
제2 패턴(P2)은, 제2 방향을 따라서 레이저광(L)의 잔부(비유효 광)를 복수의 제2 회절광(회절광)(DL2)으로 분기시키기 위한 제2 회절 격자 패턴(회절 격자 패턴)(G2)을 포함한다(도 20 참조). 여기에서는, 제2 패턴(P2)은, 회절 격자 패턴이지만, 수차 보정 패턴 등의 다른 위상 패턴을 포함해도 괜찮다(즉, 회절 격자 패턴에 다른 위상 패턴이 중첩되어 구성되어도 괜찮다). 제2 회절 격자 패턴(G2)은, 제1 방향을 따른 직선 모양의 복수의 홈 패턴이 제2 방향으로 배열되어 구성되어 있다. 따라서, 렌즈(422)의 후측의 초점 위치에서는, 제2 방향을 따라서 분기된 복수의 제2 회절광(DL2)의 빔 스폿(SP2)이 형성된다(도 20 참조).
여기서, 도 16, 17에 나타내어지는 바와 같이, 레이저광(L)의 광로에서의 렌즈(422)의 후측의 초점 위치에는, 슬릿 부재(424)가 배치되어 있다. 슬릿 부재(424)는, 레이저광(L)의 위상 변조에서의 일정값 이상의 공간 주파수 성분(광각 회절광)을 차광함과 아울러, 레이저광(L)의 위상 변조에서의 일정값 미만의 공간 주파수 성분을 통과시킨다. 예를 들면 슬릿 부재(424)에서는, 일정값 이상의 공간 주파수 성분을 차광하도록, 개구의 크기가 설정되어 있다. 예를 들면, 반사형 공간 광 변조기(410)(액정층(216))에 회절 격자 패턴을 포함하는 위상 패턴이 표시되어 있을 때에는, 슬릿 부재(424)는, 당해 회절 격자 패턴에 따라 회절된 레이저광(L)의 회절광의 적어도 일부를 차단한다.
특히, 슬릿 부재(424)에는, 도 20에 나타내어지는 바와 같이, 제2 방향보다도 제1 방향으로 상대적으로 긴 직사각 형상의 슬릿(424a)이 마련되어 있다. 슬릿 부재(424)는, 슬릿(424a)에 의해서, 저차(低次)의 제1 회절광(DL1)을 통과시킴과 아울러, 고차의 제1 회절광(DL1) 및 제2 회절광(DL2)을 차단한다. 그 때문에, 여기에서는, 다음과 같이 슬릿(424a)의 사이즈가 규정되어 있다.
즉, 제1 방향에 대한 슬릿(424a)의 사이즈는, 렌즈(422)의 후측의 초점 위치에서의 제1 회절광(DL1)의 빔 사이즈(스폿(SP1)의 직경)(S1)와, 렌즈(422)의 후측의 초점 위치에서의 제1 회절광(DL1)의 분기 간격(S2)과의 합계값보다도 크다. 분기 간격(S2)은, 여기에서는, 렌즈(422)의 후측의 초점 위치에서의 제1 방향에 대한 ±1차의 제1 회절광(DL1)의 중심끼리의 간격이다. 또, 여기에서는, 제1 방향에 대한 슬릿(424a)의 사이즈는, 렌즈(422)의 후측의 초점 위치에서의 ±2차의 제1 회절광(DL1)의 간격(S3)보다도 작다.
한편, 제2 방향에 대한 슬릿(424a)의 사이즈는, 렌즈(422)의 후측의 초점 위치에서의 제1 회절광(DL1)의 빔 사이즈보다도 크다. 또, 제2 방향에 대한 슬릿(424a)의 사이즈는, 렌즈(422)의 초점 거리를 f, 레이저광(L)의 파장을 λ, 반사형 공간 광 변조기(410)의 화소 사이즈를 xSLM으로 하면, 하기 식 (1)에서 나타내어지는 1차 광의 최대 회절 거리(F) 보다도 작다. 따라서, 여기에서는, 제1 회절광(DL1) 중 0차 광 및 ±1차 광은 슬릿(424a)을 통과하고, 제1 회절광(DL1) 중 ±3차 이상의 고차 광 및 제2 회절광(DL2)은 슬릿(424a)을 통과하지 않고 차단된다.
[수식 2]
Figure 112019043737783-pct00002
여기서, 상기의 최대 회절 거리(F)에 대해 설명한다. 도 21에 나타내어지는 바와 같이, 회절 격자(G)에서의 회절각을 θ, 회절 차수를 m(m=0,±1,±2,±3,···)으로 하고, 회절 격자(G)에서의 격자 간격(1주기의 간격)을 L로 하면, 각 값의 관계가 하기 식 (2)로 나타내어진다. m차 회절광은, 격자 간격이 L 일 때 θ에서 회절하는 광 성분을 가리킨다.
[수식 3]
Figure 112019043737783-pct00003
초점 거리가 f인 집속 렌즈(CL)에 θ인 회절각의 광이 입사하고, 초점 거리(F) 부근에서 집광했을 때의 상(像) 높이를 h로 하면, h와 θ에는 하기 식 (3)의 관계가 있다.
[수식 4]
Figure 112019043737783-pct00004
공간 광 변조기에서의 최대 회절각(분기 간격)은, 격자 간격 L=2xSLM일 때이기 때문에, m차 광의 최대 회절 거리 Fm=2×h(h는 절대값)는, 상기 식 (2), (3)으로부터, 하기 식 (4)와 같이 나타내어진다. 따라서, m=1인 1차 광의 최대 회절 거리 F가 상기 식 (1)과 같이 나타내어진다.
[수식 5]
Figure 112019043737783-pct00005
또, 슬릿 부재(424)는, 렌즈(422)의 후측의 초점 위치의 근방에 배치되어 있어도 괜찮다. 초점 위치의 근방은, 대략 초점 위치, 초점 위치의 부근, 혹은 초점 위치의 주변으로서, 슬릿 부재(424)가 레이저광(L)에서의 일정값 이상의 공간 주파수 성분을 차광할 수 있는 범위(일정 차수 이상의 회절광을 차단할 수 있는 범위)이다.
또, 렌즈(422)의 후측의 초점 위치에서의 제1 회절광(DL1)의 빔 사이즈(S1)는, 위상 패턴(P0)에 따라 변화할 수 있다. 즉, 위상 패턴(P0)(예를 들면 제1 패턴(P1))은, 상술한 바와 같이, 회절 격자 패턴 이외의 패턴을 포함하는 경우에, 빔 사이즈(S1)가 변화하는 경우가 있다. 예를 들면, 위상 패턴(P0)은, 레이저광(L)이 가공 대상물(1)에 집광되었을 때에 생기는 수차(收差)를 보정하기 위한 수차 보정 패턴을 포함하는 경우가 있다. 이 경우에는, 위상 패턴(P0)가 수차 보정 패턴을 포함하지 않는 경우에 비해, 렌즈(422)의 후측의 초점 위치에서의 레이저광(L)의 퍼짐이 커진다. 이 때문에, 빔 사이즈(S1)가 커진다. 따라서, 슬릿(424a)의 사이즈는, 위상 패턴(P0)에 따른 빔 사이즈(S1)에 근거하여 규정하면 좋다.
계속하여 도 16을 참조한다. 카메라 제어부(504)는, 프로파일 취득용 카메라(464)의 동작을 제어한다. 또, 카메라 제어부(504)는, 강도 분포 화상을 프로파일 취득용 카메라(464)로부터 취득하여 인식한다. 이것에 의해, 카메라 제어부(504)는, 레이저광(L)의 강도를 취득할 수 있다. 기억부(510)는, 예를 들면, 반사형 공간 광 변조기(410)에 표시하기 위한 위상 패턴을 기억하고 있다. 또, 기억부(510)는, 카메라 제어부(504)가 취득한 레이저광(L)의 강도를 기억해도 괜찮다. 게다가, 제어부(500)에는, 모니터(600)가 접속되어 있다. 모니터(600)는, 공간 광 변조기 제어부(502)에 의해 반사형 공간 광 변조기(410)(액정층(216))에 표시시키는 위상 패턴 및 프로파일 취득용 카메라(464)에서 취득한 강도 분포 화상 등을 표시할 수 있다.
이상 설명한 바와 같이, 레이저 가공 장치(200)에서는, 레이저 출력부(300)(레이저 발진기(310))로부터 출력된 레이저광(L)이, 반사형 공간 광 변조기(410)의 위상 패턴(P0)에 의해 변조된 후에, 집광 렌즈 유닛(430)에 의해 가공 대상물(1)을 향해서 집광된다. 레이저광(L)은, 제1 방향을 따라서 가공 대상물(1)에 조사된다. 제1 방향은, 여기에서는, 레이저광(L)과 가공 대상물(1)을 상대적으로 이동시키는 방향이다. 반사형 공간 광 변조기(410)의 위상 패턴(P0)은, 집광 렌즈 유닛(430)의 입사동면(430a)에 입사하는 레이저광(L)의 일부(유효 광)를 변조하는 제1 패턴(P1)과, 레이저광(L)의 잔부(비유효 광)를 변조하는 제2 패턴(P2)을 포함한다. 제1 패턴(P1)은, 제1 방향을 따라서 광을 회절하기 위한 제1 회절 격자 패턴(G1)을 포함한다. 따라서, 레이저광(L) 중 유효 광은, 가공 대상물(1)에 대한 레이저광(L)의 조사 방향(스캔 방향)인 제1 방향에 대해서, 복수의 제1 회절광(DL1)으로 분기된다.
한편, 제2 패턴(P2)은, 제1 방향에 교차하는 제2 방향을 따라서 광을 회절하기 위한 제2 회절 격자 패턴(G2)을 포함한다. 따라서, 레이저광(L) 중 비유효 광은, 레이저광(L)의 스캔 방향에 교차하는 제2 방향에 대해서, 복수의 제2 회절광(DL2)으로 분기된다. 그리고, 제2 회절광(DL2)은, 렌즈(422)의 후측의 초점 위치에서, 슬릿 부재(424)의 슬릿(424a)에 의해 차단된다.
그 결과, 유효 광의 회절광인 복수의 제1 회절광(DL1)이 슬릿(424a)을 통과하여 가공 대상물(1)에 조사되는 한편으로, 비유효 광의 회절광인 제2 회절광(DL2)이 슬릿(424a)에 의해 차단되어, 집광 렌즈 유닛(430)에 도달하지 않는다. 따라서, 레이저 가공 장치(200)에 의하면, 레이저광(L)의 가공 대상물(1)로의 조사 상태의 변화를 억제하면서, 레이저광(L)을 복수로 분기시켜 가공 대상물(1)에 조사하는 것이 가능하다. 즉, 가공 정밀도의 열화를 억제하면서, 절단 예정 라인(5a, 5b)을 따라서 다점(多点)(일예에서는 3점)에서의 레이저 가공(개질 영역의 형성)을 행하는 것이 가능하다.
또, 레이저 가공 장치(200)에서는, 제1 회절 격자 패턴(G1)은, 제2 방향을 따른 복수의 홈 패턴으로 이루어지며, 제2 회절 격자 패턴(G2)은, 제1 방향을 따른 복수의 홈 패턴으로 이루어진다. 이와 같이, 제1 회절 격자 패턴(G1)과 제2 회절 격자 패턴(G2)에서 홈 패턴의 방향을 교차(직교)하도록 설정함으로써, 제1 회절광(DL1)의 분기 방향과 제2 회절광(DL2)의 분기 방향을 다르게 할 수 있다.
또, 레이저 가공 장치(200)에서는, 제1 방향에 대한 슬릿(424a)의 사이즈는, 렌즈(422)의 초점 위치에서의 제1 회절광(DL1)의 빔 사이즈(S1)와, 초점 위치에서의 제1 회절광(DL1)의 분기 간격(S2)과의 합계값보다도 크고, 제2 방향에 대한 슬릿(424a)의 사이즈는, 초점 위치에서의 제1 회절광(DL1)의 빔 사이즈(S1)보다도 크다. 이 때문에, 복수의 제1 회절광(DL1)을 슬릿(424a)에서 차단하지 않고 확실히 가공 대상물(1)에 조사할 수 있다.
또, 레이저 가공 장치(200)에서는, 분기 간격(S2)은, 제1 방향에서의 ±1차의 제1 회절광의 간격이라도 좋다. 이 경우, 적어도, 제1 회절광 중 0차 광과 ±1차 광을 대상물에 조사할 수 있다.
또, 레이저 가공 장치(200)에서는, 제2 방향에 대한 슬릿(424a)의 사이즈는, 렌즈(422)의 초점 거리를 f, 레이저광(L)의 파장을 λ, 반사형 공간 광 변조기(410)의 화소 사이즈를 xSLM으로 하면, 상기 식 1로 나타내어지는 최대 회절 거리(F)보다도 작다. 이 때문에, 제2 회절광(DL2)을 슬릿(424a)에 의해 확실히 차단할 수 있다.
게다가, 레이저 가공 장치(200)에서는, 슬릿(424a)의 제1 방향에 대한 사이즈는, 렌즈(422)의 초점 위치에서의 ±3차의 제1 회절광(DL1)의 간격(S3)보다도 작다. 이 때문에, 제1 회절광 중 ±3차 이상의 고차 광을 슬릿(424a)에 의해 차단할 수 있다.
이상은, 본 발명의 일 측면의 일 실시 형태이다. 본 발명의 일 측면은, 상기 실시 형태에 한정되지 않고, 각 청구항의 요지를 변경하지 않는 범위에서 변형하거나, 또는 다른 것에 적용해도 괜찮다.
예를 들면, 상기 실시 형태는, 가공 대상물(1)의 내부에 개질 영역(7)을 형성하는 것에 한정되지 않고, 어블레이션(ablation) 등, 다른 레이저 가공을 실시하는 것이라도 좋다. 상기 실시 형태는, 가공 대상물(1)의 내부에 레이저광(L)을 집광시키는 레이저 가공에 이용되는 레이저 가공 장치에 한정되지 않고, 가공 대상물(1)의 표면(1a, 3) 또는 이면(1b)에 레이저광(L)을 집광시키는 레이저 가공에 이용되는 레이저 가공 장치라도 좋다. 본 발명의 일 측면이 적용되는 장치는 레이저 가공 장치에 한정되지 않고, 레이저광(L)을 대상물에 조사하는 것이면, 여러가지 레이저광 조사 장치에 적용할 수 있다. 상기 실시 형태에서는, 절단 예정 라인(5)을 조사 예정 라인으로 했지만, 조사 예정 라인은 절단 예정 라인(5)에 한정되지 않고, 조사되는 레이저광(L)을 따르게 할 수 있는 라인이면 좋다.
또, 상기 실시 형태에서, 반사형 공간 광 변조기(410)의 반사면(410a)과 집광 렌즈 유닛(430)의 입사동면(430a)이 결상 관계에 있는 양측 텔레센트릭 광학계를 구성하는 결상 광학계는, 한 쌍의 렌즈(422, 423)에 한정되지 않고, 반사형 공간 광 변조기(410)측의 제1 렌즈계(예를 들면, 접합 렌즈, 3개 이상의 렌즈 등) 및 집광 렌즈 유닛(430)측의 제2 렌즈계(예를 들면, 접합 렌즈, 3개 이상의 렌즈 등)를 포함하는 것 등이라도 좋다.
또, 상기 실시 형태에서, 프로파일 취득용 카메라(464)는, 그 촬상면(464a)이 반사형 공간 광 변조기(410)의 액정층(216)의 반사면과 공역인 면에 위치하면 좋고, 공역면(491)의 위치에 프로파일 취득용 카메라(464)를 배치해도 괜찮다. 이 경우, 레이저 가공 장치(200)(도 16 참조)에서는, 렌즈(463)는 불필요하게 된다. 상기 실시 형태에서, 렌즈(422), 렌즈(423) 및 렌즈(463)의 릴레이 배율은 임의 배율이라도 좋다. 상기 실시 형태는, 반사형 공간 광 변조기(410)를 구비했지만, 공간 광 변조기는 반사형의 것에 한정되지 않고, 투과형의 공간 광 변조기를 구비하고 있어도 괜찮다.
또, 집광 렌즈 유닛(430) 및 한 쌍의 측거 센서(450)는, Y축 방향에서의 케이스(401)의 단부(401d)에 장착되어 있었지만, Y축 방향에서의 케이스(401)의 중심 위치보다도 단부(401d)측으로 치우쳐 장착되어 있으면 좋다. 반사형 공간 광 변조기(410)는, Y축 방향에서의 케이스(401)의 단부(401c)에 장착되어 있었지만, Y축 방향에서의 케이스(401)의 중심 위치보다도 단부(401c)측으로 치우쳐 장착되어 있으면 좋다. 또, 측거 센서(450)는, X축 방향에서 집광 렌즈 유닛(430)의 한쪽에만 배치되어 있어도 괜찮다.
게다가, 슬릿(424a)의 형상 및 사이즈는, 상기의 일 예에 한정되지 않는다. 예를 들면, 슬릿(424a)은, 제2 방향보다도 제1 방향으로 상대적으로 긴 형상이면 좋고, 예를 들면 타원 형상 등이라도 좋다. 슬릿(424a)은, 반드시 고차의 제1 회절광(DL1)을 차단하지 않아도 좋다. 예를 들면, 제1 방향에 대한 슬릿(424a)의 사이즈를, ±2차의 제1 회절광(DL1)의 간격보다도 크게 해도 괜찮다.
또, 상기 실시 형태에서는, 제1 패턴(P1)이 제1 회절 격자 패턴(다른 회절 격자 패턴)을 포함하는 경우에 대해 예시했다. 그렇지만, 제1 패턴(P1)은, 회절 격자 패턴을 포함하지 않아도 좋다. 예를 들면, 제1 패턴(P1)은, 수차 방정(方正)을 위한 패턴이라도 좋다. 한편, 제1 패턴(P1) 및/또는 제2 패턴(P2)은, 레이저광(L)을 평면(예를 들면 X-Y면) 내에서 분기시킬 뿐만 아니라, 당해 평면에 교차하는 방향(예를 들면 Z방향:깊이 방향)으로 분기하기 위한 패턴을 포함하고 있어도 괜찮다.
여기서, 레이저광(L)의 가공 대상물(1)로의 조사 상태의 변화를 억제하는 관점으로부터는, 액정층(216)이, 집광 렌즈 유닛(대물 렌즈)(430)의 동면에 입사하는 레이저광(L)의 일부(유효 광)가 입사하는 유효 영역(AC)과, 레이저광(L)의 잔부(비유효 광)가 입사하는 비유효 영역을 포함하며, 슬릿 부재(424)가, 비유효 영역(AB)에서 변조된 광을 슬릿(424a)에 의해 차단하면 좋다. 특히, 유효 영역(AC)의 형상은, 상술한 원 형상에 한정하지 않고, 예를 들면 원환 형상이라도 좋다. 게다가, 비유효 영역(AB)의 형상은, 상술한 원환 형상에 한정하지 않고, 유효 영역(AC)에 대해서 상보적인 형상으로 할 수 있다.
즉, 일예로서, 유효 영역(AC)가 원환 형상인 경우에는, 비유효 영역(AB)은, 원환의 내측의 원형 부분과, 원환의 외측의 부분을 포함하는 형상이라도 좋다. 즉, 액정층(216)에서, 적어도 일방향을 따라서 유효 영역(AC)과 비유효 영역(AB)이 혼재하고 있는 경우가 있다. 그러한 경우라도, 상술한 바와 같이, 비유효 영역(AB)에서 변조된 광만을 슬릿(424a)에 의해 차단하면 좋다.
[산업상의 이용 가능성]
레이저광의 대상물로의 조사 상태의 변화를 억제할 수 있는 레이저광 조사 장치를 제공할 수 있다.
1 - 가공 대상물(대상물)
100, 200 - 레이저 가공 장치(레이저광 조사 장치)
310 - 레이저 발진기(레이저 광원)
410 - 반사형 공간 광 변조기(공간 광 변조기)
422 - 렌즈(집속 렌즈)
424 - 슬릿 부재
424a - 슬릿
430 - 집광 렌즈 유닛(대물 렌즈)
430a - 입사동면(동면)
L - 레이저광
DL1 - 제1 회절광
DL2 - 제2 회절광
P0 - 위상 패턴
P1 - 제1 패턴
P2 - 제2 패턴
G1 - 제1 회절 격자 패턴
G2 - 제2 회절 격자 패턴

Claims (10)

  1. 레이저광을 제1 방향을 따라서 대상물에 조사하는 레이저광 조사 장치로서,
    상기 레이저광을 출력하는 레이저 광원과,
    상기 레이저 광원으로부터 출력된 상기 레이저광을 위상(位相) 패턴에 따라 변조(變調)하여 출사하는 공간 광 변조기(變調器)와,
    상기 공간 광 변조기로부터 출사된 상기 레이저광을 상기 대상물을 향해서 집광하는 대물 렌즈와,
    상기 레이저광의 광로(光路)에서의 상기 공간 광 변조기와 상기 대물 렌즈와의 사이에 배치되고, 상기 레이저광을 집속(集束)하는 집속 렌즈와,
    상기 레이저광의 광로에서의 상기 집속 렌즈의 후측의 초점 위치에 배치되고, 상기 레이저광의 일부를 차단하는 슬릿 부재를 구비하며,
    상기 위상 패턴은, 상기 대물 렌즈의 동면(瞳面)에 입사하는 상기 레이저광의 일부를 변조하는 제1 패턴과, 상기 레이저광의 잔부를 변조하는 제2 패턴을 포함하고,
    상기 제2 패턴은, 상기 제1 방향에 교차하는 제2 방향을 따라서 상기 레이저광의 상기 잔부를 복수의 회절광으로 분기시키기 위한 회절 격자 패턴을 포함하며,
    상기 슬릿 부재는, 슬릿에 의해서 상기 회절광을 차단하는, 레이저광 조사 장치.
  2. 청구항 1에 있어서,
    상기 슬릿 부재는, 상기 제2 방향보다도 상기 제1 방향으로 상대적으로 길게 되도록 형성된 상기 슬릿에 의해서, 상기 회절광을 차단하는, 레이저광 조사 장치.
  3. 청구항 1에 있어서,
    상기 제1 패턴은, 상기 제1 방향을 따라서 상기 레이저광의 상기 일부를 복수의 다른 회절광으로 분기시키기 위한 다른 회절 격자 패턴을 포함하는 레이저광 조사 장치.
  4. 청구항 3에 있어서,
    상기 제1 방향에 대한 상기 슬릿의 사이즈는, 상기 초점 위치에서의 상기 다른 회절광의 빔 사이즈와, 상기 초점 위치에서의 상기 다른 회절광의 분기 간격과의 합계값보다도 크고,
    상기 제2 방향에 대한 상기 슬릿의 사이즈는, 상기 초점 위치에서의 상기 회절광의 빔 사이즈보다도 큰 레이저광 조사 장치.
  5. 청구항 4에 있어서,
    상기 분기 간격은, 상기 제1 방향에서의 ±1차의 상기 다른 회절광의 간격인, 레이저광 조사 장치.
  6. 청구항 4에 있어서,
    상기 제2 방향에 대한 상기 슬릿의 사이즈는, 상기 집속 렌즈의 초점 거리를 f, 상기 레이저광의 파장을 λ, 상기 공간 광 변조기의 화소 사이즈를 xSLM으로 하면, 하기 식 (1)에서 나타내어지는 최대 회절 거리(F) 보다도 작은, 레이저광 조사 장치.
    [수식 1]
    Figure 112021134969391-pct00006
  7. 청구항 4에 있어서,
    상기 슬릿의 상기 제1 방향에 대한 사이즈는, 상기 초점 위치에서의 ±3차의 상기 다른 회절광의 간격보다도 작은, 레이저광 조사 장치.
  8. 청구항 3에 있어서,
    상기 다른 회절 격자 패턴은, 상기 제2 방향을 따른 복수의 홈 패턴으로 이루어지며,
    상기 회절 격자 패턴은, 상기 제1 방향을 따른 복수의 홈 패턴으로 이루어지는, 레이저광 조사 장치.
  9. 청구항 1 내지 청구항 8 중 어느 한 항에 있어서,
    상기 공간 광 변조기는, 상기 위상 패턴을 표시하는 액정층을 포함하고,
    상기 액정층은, 상기 레이저광이 입사하는 영역 중 원 형상의 유효 영역과 상기 유효 영역의 외측의 원환(圓環) 형상의 비유효 영역을 포함하며,
    상기 제1 패턴은, 상기 유효 영역에 표시되어 상기 레이저광의 상기 일부를 변조하고,
    상기 제2 패턴은, 상기 비유효 영역에 표시되어 상기 레이저광의 상기 잔부를 변조하는, 레이저광 조사 장치.
  10. 레이저광을 제1 방향을 따라서 대상물에 조사하는 레이저광 조사 장치로서,
    상기 레이저광을 출력하는 레이저 광원과,
    상기 레이저 광원으로부터 출력된 상기 레이저광을 위상 패턴에 따라 변조하여 출사하는 공간 광 변조기와,
    상기 공간 광 변조기로부터 출사된 상기 레이저광을 상기 대상물을 향해서 집광하는 대물 렌즈와,
    상기 레이저광의 광로에서의 상기 공간 광 변조기와 상기 대물 렌즈와의 사이에 배치되고, 상기 레이저광을 집속하는 집속 렌즈와,
    상기 레이저광의 광로에서의 상기 집속 렌즈의 후측의 초점 위치에 배치되고, 상기 레이저광의 일부를 차단하는 슬릿 부재를 구비하며,
    상기 공간 광 변조기는, 상기 위상 패턴을 표시하는 액정층을 포함하고,
    상기 액정층은, 상기 대물 렌즈의 동면에 입사하는 상기 레이저광의 일부가 입사하는 유효 영역과, 상기 레이저광의 잔부가 입사하는 비유효 영역을 포함하며,
    상기 슬릿 부재는, 상기 비유효 영역에서 변조된 광을 슬릿에 의해 차단하는, 레이저광 조사 장치.
KR1020197012339A 2016-10-19 2017-10-05 레이저광 조사 장치 KR102382862B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016205294A JP6732627B2 (ja) 2016-10-19 2016-10-19 レーザ光照射装置
JPJP-P-2016-205294 2016-10-19
PCT/JP2017/036362 WO2018074253A1 (ja) 2016-10-19 2017-10-05 レーザ光照射装置

Publications (2)

Publication Number Publication Date
KR20190071730A KR20190071730A (ko) 2019-06-24
KR102382862B1 true KR102382862B1 (ko) 2022-04-05

Family

ID=62019396

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197012339A KR102382862B1 (ko) 2016-10-19 2017-10-05 레이저광 조사 장치

Country Status (7)

Country Link
US (1) US11465235B2 (ko)
JP (1) JP6732627B2 (ko)
KR (1) KR102382862B1 (ko)
CN (1) CN109890554B (ko)
DE (1) DE112017005333T5 (ko)
TW (1) TWI739924B (ko)
WO (1) WO2018074253A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11219951B2 (en) * 2019-07-03 2022-01-11 Directed Metal 3D, S.L. Multi-mode laser device for metal manufacturing applications
CN110672304B (zh) * 2019-08-16 2020-11-03 中国科学院西安光学精密机械研究所 激光通信终端中继光路性能测试系统、方法及校准方法
JP6934083B1 (ja) * 2020-04-08 2021-09-08 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法
JP7462219B2 (ja) * 2020-05-08 2024-04-05 パナソニックIpマネジメント株式会社 レーザ加工装置
CN112965080B (zh) * 2021-02-04 2024-02-20 苏州奥瑞图光电科技有限公司 闪光式无狭缝条纹相机激光面阵成像方法、系统及装置
CN116423048B (zh) * 2023-06-09 2023-08-15 中国船舶集团有限公司第七〇七研究所 一种光电控焦激光焊接装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521131A (ja) 2010-03-05 2013-06-10 マイクロニック マイデータ アーベー レーザ加工の方法および装置
JP2014501937A (ja) 2010-10-28 2014-01-23 ナショナル ユニヴァーシティー オブ シンガポール リソグラフィ法及び装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3878758B2 (ja) 1998-12-04 2007-02-07 浜松ホトニクス株式会社 空間光変調装置
JP3903761B2 (ja) 2001-10-10 2007-04-11 株式会社日立製作所 レ−ザアニ−ル方法およびレ−ザアニ−ル装置
JP5391077B2 (ja) 2007-11-19 2014-01-15 ミヤチテクノス株式会社 レーザ光照射装置
CN105583526B (zh) * 2008-03-21 2018-08-17 Imra美国公司 基于激光的材料加工方法和系统
JP2009283691A (ja) 2008-05-22 2009-12-03 Japan Steel Works Ltd:The レーザ光照射方法およびレーザ光照射装置
US8198564B2 (en) * 2008-09-09 2012-06-12 Electro Scientific Industries, Inc. Adaptive optic beamshaping in laser processing systems
JP5451238B2 (ja) * 2009-08-03 2014-03-26 浜松ホトニクス株式会社 レーザ加工方法
JP5775265B2 (ja) 2009-08-03 2015-09-09 浜松ホトニクス株式会社 レーザ加工方法及び半導体装置の製造方法
EP2336810A1 (de) * 2009-12-18 2011-06-22 Boegli-Gravures S.A. Verfahren und Vorrichtung zur Erzeugung von Farbmustern mittels Beugungsgitter
TWI572960B (zh) * 2012-03-19 2017-03-01 群康科技(深圳)有限公司 液晶顯示裝置及導電基板的製作方法
JP5947172B2 (ja) * 2012-09-19 2016-07-06 浜松ホトニクス株式会社 波長変換型空間光変調装置
CN104118220A (zh) 2014-03-28 2014-10-29 上海飞涅尔激光科技有限公司 一种基于液晶空间光调制器的激光标识二维码方法及装置
DE102014224182A1 (de) 2014-11-26 2016-06-02 Robert Bosch Gmbh Vorrichtung und Verfahren zur Lasermaterialbearbeitung
JP6644563B2 (ja) * 2016-01-28 2020-02-12 浜松ホトニクス株式会社 レーザ光照射装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521131A (ja) 2010-03-05 2013-06-10 マイクロニック マイデータ アーベー レーザ加工の方法および装置
JP2014501937A (ja) 2010-10-28 2014-01-23 ナショナル ユニヴァーシティー オブ シンガポール リソグラフィ法及び装置

Also Published As

Publication number Publication date
JP6732627B2 (ja) 2020-07-29
DE112017005333T5 (de) 2019-07-11
WO2018074253A1 (ja) 2018-04-26
US20200061740A1 (en) 2020-02-27
KR20190071730A (ko) 2019-06-24
CN109890554A (zh) 2019-06-14
TW201819083A (zh) 2018-06-01
CN109890554B (zh) 2021-06-29
JP2018065174A (ja) 2018-04-26
TWI739924B (zh) 2021-09-21
US11465235B2 (en) 2022-10-11

Similar Documents

Publication Publication Date Title
KR102382862B1 (ko) 레이저광 조사 장치
KR102359284B1 (ko) 레이저광 조사 장치 및 레이저광 조사 방법
CN112437709B (zh) 激光加工装置
JP6896702B2 (ja) レーザ光照射装置及びレーザ光照射方法
KR102359881B1 (ko) 레이저 가공 장치
CN108602156B (zh) 激光照射装置
JP6867762B2 (ja) 発散角調整装置及び発散角調整方法
JP7034621B2 (ja) レーザ加工装置
JP6695699B2 (ja) レーザ加工装置
KR102343564B1 (ko) 레이저 가공 장치 및 동작 확인 방법
JP2017131942A (ja) レーザ加工装置
JP6661394B2 (ja) レーザ加工装置
JP7222906B2 (ja) レーザ加工方法、及び、レーザ加工装置
JP2020114605A (ja) レーザ加工装置
JP2017131947A (ja) レーザ出力装置
JP6689612B2 (ja) レーザ加工装置
JP2017131943A (ja) レーザ加工装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant