WO2005068675A1 - 転がり軸受 - Google Patents

転がり軸受 Download PDF

Info

Publication number
WO2005068675A1
WO2005068675A1 PCT/JP2005/000543 JP2005000543W WO2005068675A1 WO 2005068675 A1 WO2005068675 A1 WO 2005068675A1 JP 2005000543 W JP2005000543 W JP 2005000543W WO 2005068675 A1 WO2005068675 A1 WO 2005068675A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
less
rolling
rolling bearing
life
Prior art date
Application number
PCT/JP2005/000543
Other languages
English (en)
French (fr)
Inventor
Shinji Fujita
Original Assignee
Nsk Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004077026A external-priority patent/JP4534537B2/ja
Priority claimed from JP2004106487A external-priority patent/JP2005291342A/ja
Priority claimed from JP2004361274A external-priority patent/JP5076274B2/ja
Application filed by Nsk Ltd. filed Critical Nsk Ltd.
Priority to EP05703780A priority Critical patent/EP1715072A4/en
Priority to US10/586,851 priority patent/US8083868B2/en
Publication of WO2005068675A1 publication Critical patent/WO2005068675A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/36Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for balls; for rollers
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/70Ferrous alloys, e.g. steel alloys with chromium as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/12Force, load, stress, pressure
    • F16C2240/18Stress
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/902Metal treatment having portions of differing metallurgical properties or characteristics
    • Y10S148/906Roller bearing element

Definitions

  • the present invention relates to a rolling bearing.
  • a rolling motion is performed between a bearing ring and a rolling element. Therefore, the raceway surface of the bearing ring and the rolling surface of the rolling element are repeatedly subjected to contact stress. For this reason, the materials constituting these members are required to have properties such as being hard, capable of withstanding loads, having a long rolling fatigue life, and having good wear resistance against slipping.
  • the material constituting these members is SUJ2 of Japanese Industrial Standard as bearing steel, and steel equivalent to SCR420 or SCM420 equivalent steel of case-hardened steel. Used. Since these materials are repeatedly subjected to contact stress as described above, in order to obtain the required properties such as rolling fatigue life, the bearing steel is quenched and tempered, and the case-hardened steel is carburized. Or it is hardened and tempered after carbonitriding, and the hardness is HRC58 or more and 64 or less.
  • a sufficient lubricating film is difficult to form on the rolling surface of the rolling bearing used in these harsh environments, and a large tangential force acts. For this reason, heat generation and surface fatigue are likely to occur due to metal contact.
  • new surfaces surfaces with exposed steel structure
  • hydrogen ions are likely to be generated. These hydrogen ions are adsorbed on the new surface generated on the rolling surface to become hydrogen atoms, and the hydrogen atoms accumulate in the stress field (near the maximum shear stress position). Sites where hydrogen atoms are concentrated are not brittle Therefore, the rolling bearing is prematurely peeled off.
  • Such a rolling bearing for a belt-type continuously variable transmission is used in a severe operating environment such as high vibration and high load and under lubrication with a lubricating oil having a high friction coefficient. This causes a tribochemical reaction and causes an early peeling of the rolling bearing.
  • a method using a lubricating oil having a high kinematic viscosity and not adding an additive such as a decompression agent or a friction modifier to the lubricating oil can be considered.
  • a lubricating oil having a high kinematic viscosity as a lubricating oil for the belt type continuously variable transmission in terms of fuel efficiency, power transmission efficiency from the input shaft to the output shaft, and a lifetime of the shudder.
  • the C content is 0.665-0.90% by mass
  • the Si content is
  • the raceway ring has a C content of 0.995-1.10% by mass, a Si or A1 content of 1.0-2.0% by mass, and a Mn content. 1.15% by mass or less, the content of 0.9.90-1.60% by mass, the balance is Fe and inevitable impurities, and the O content is 13 ppm or less. It is proposed that the retained austenite content is 8 vol% or less and the hardness is HRC60 or more by quenching and high temperature tempering at 230-30 ° C. According to the technology described in Japanese Patent No. 2013772, the dimensional stability at high temperature can be improved, and the decrease in hardness can be prevented.
  • JP-A-2001-2212308 at least the fixed ring has a C content of 0.4-1. 2% by mass, a total content of Si and A1 is 0.7-2.0% by mass, The Mn content is 0.2 to 2.0% by mass, the Ni content is 0.1 to 3.0% by mass, the Cr content is 3.0 to 9.0% by mass, and The hardness of the raceway surface is reduced by quenching and tempering the steel slag material with a Cr equivalent of 9.0-17.0% by mass calculated by equation (1) after processing it into a specified shape. It has been proposed to use HRC57 or higher, with fine carbides with a diameter of 50-500 nm dispersed and deposited on the raceway surface.
  • [Cr], [Si] [[Mo], [V] [[Al], [Nb], and [Ti] are Cr, Si, Mo, V, Al in the steel, respectively. shows Nb, Ti content (mass 0/0).
  • Patent Nos. 2138103 and 2128328 indentations caused by foreign matter are defined by defining the carbon amount, the retained austenite amount, the carbonitride amount, and the like of the surface layer of the race and rolling elements.
  • Technology has been proposed to reduce the stress concentration at the edge of the steel and suppress the occurrence of cracks, thereby improving the life of the rolling bearing.
  • Japanese Patent No. 3051944 discloses a bearing component having an excellent rolling fatigue life, in which the steel composition, internal hardness, and surface hardness are defined.
  • needle roller bearings have a small ratio of the outer diameter to the inner diameter. In other words, the bearing is thin. However, it is widely used in high-load parts such as automobile transmissions and engines because it has a relatively large load capacity for its wall thickness.
  • the following is an example of a planetary gear bearing that supports a planetary gear widely used in transmissions and the like.
  • planetary gear bearings helical gears are generally used so that the power of the planetary gear equivalent to the outer ring can be transmitted smoothly.
  • the running trace of the planetary shaft corresponding to the inner ring is twisted due to the force relationship between the planetary gear and the helical gear.
  • an uneven force acts on the needle roller disposed between the planetary gear and the planetary shaft. Therefore, there is a problem that the edge load is skewed and the life of the bearing is shortened or seizure occurs.
  • JP 2002-188643 discloses that at least one of the needle roller and the inner member is made of steel having a smaller linear expansion coefficient than the outer member, or steel having an average retained austenite amount of 2% or less. By configuring, a technique for suppressing seizure and force squeezing associated with high-speed rotation speed and the like will be disclosed.
  • the amount of retained austenite ( ⁇ ) and the content of C, Cr, and Mo are defined for at least one of the surface layers of the race and rolling elements.
  • a rolling bearing made of alloy steel in which the surface hardness (Hv) of the carburized or carbonitrided surface layer satisfies the predetermined relationship between the residual austenite amount.
  • Hv surface hardness of the carburized or carbonitrided surface layer
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-343577
  • Patent Document 2 Japanese Patent No. 2883460
  • Patent Document 3 Japanese Patent No. 2013772
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-221238
  • Patent Document 5 Japanese Patent No. 2138103
  • Patent Document 6 Japanese Patent No. 2128328
  • Patent Document 7 Japanese Patent No. 2051944
  • Patent Document 8 Japanese Patent Laid-Open No. 2002-188643
  • Patent Document 9 Japanese Patent No. 2541160
  • Non-Patent Document 1 Automobile Engineering Society of Japan, Preprint of Academic Lecture, No. 30-02 (2002)
  • Non-Patent Document 2 NSK Technical Journal No. 656 (1993)
  • the present invention solves the problems of the prior art as described above, and is used under severe conditions such as high temperature, high speed, foreign matter contamination, high friction coefficient and low viscosity operation.
  • a rolling bearing having a long life and high dimensional stability is provided.
  • a rolling bearing having an outer ring, an inner ring, and a plurality of rolling elements arranged to roll between the outer ring and the inner ring,
  • At least one member selected from the outer ring, inner ring, and rolling element is:
  • the content of C is 0.2 Wt% or more and 0.6 Wt% or less
  • Cr content is 2.5 Wt% or more and 7. OWt% or less
  • Mn content power 0.5 Wt% or more 2. OWt% or less
  • Mo content rate power 0.5 Wt% or more 3.0 Wt% or less
  • the amount of retained austenite on the surface is 15% to 45% by volume
  • a rolling bearing having an outer ring, an inner ring, and a plurality of rolling elements arranged to roll between the outer ring and the inner ring,
  • At least one member selected from the outer ring, inner ring, and rolling element is:
  • the C content is 0.8 Wt% or more and 1.2 Wt% or less
  • the Cr content is 2.0 Wt% or more and 4.0 Wt% or less
  • Mn content power 0. lWt% or more 2. 0Wt% or less
  • Si content rate power 0.5 Wt% or more 1.5 Wt% or less
  • Mo content power 0.lWt% or more 2. 0Wt% or less
  • the amount of retained austenite on the surface is 15% to 45% by volume
  • the selected member is further
  • the sum of the carbon concentration and nitrogen concentration on the surface is 1.0 Wt% or more and 2.5 Wt% or less. According to a fourth aspect of the invention, the selected member is further
  • V content is 2. OWt% or less
  • Ni content is 2. OWt% or less.
  • the selected member is further
  • the abundance of at least one kind of carbide and carbonitride is 15% to 35% in area ratio.
  • the selected member is further
  • the precipitate is M C type, M C type, M (C, N) type, M (C, N) type double carbonitride
  • the selected member is further
  • the Fe-Cr and Mo-based precipitates contain 30 wt% or more of Cr and Mo in total.
  • the selected member is further
  • the maximum value of compressive residual stress in the surface layer is 150 MPa or more and 2000 MPa or less.
  • the rolling bearing is a needle roller bearing
  • the selected member is at least one of an inner ring and a rolling element.
  • the selected member is further
  • the average retained austenite content is 8% or less by volume.
  • the selected member is further
  • the average retained austenite content is less than 2.5 times the sum of the Cr and Mo contents.
  • the rolling surface of the rolling bearing of the present invention is preferably lubricated with a lubricating oil having a friction coefficient of 0.10 or more and a kinematic viscosity at 100 ° C. of 8 cst or less.
  • the rolling bearing of the present invention can be applied to a rolling bearing for supporting a power rotary shaft from an engine.
  • the rolling bearing of the present invention can be used to support a shaft of a pulley around which a belt of a belt type continuously variable transmission is wound.
  • the nitrogen concentration on the surface should be 0.1 lwt% or more and 0.5wt% or less.
  • the preferred surface nitrogen concentration is more preferably 0.2 wt% or more and 0.3 wt% or less.
  • Carbon dissolves in the base to increase the strength after quenching and tempering, and combines with carbide forming elements such as Fe, Cr, Mo and V to form carbides and carbonitrides, wear resistance It is an effective element for improving. If the C content is less than 0.2%, ⁇ ferrite may be generated and the toughness may be lowered. In addition, the carburizing or carbonitriding time for forming the hardened layer to a sufficient depth may increase, leading to a significant increase in cost.
  • a preferable range of the C content is 0.25 to 0.5%.
  • Cr Cr
  • Cr Cr
  • Cr Cr
  • Double carbonitride such as (C, N) is finely distributed in the steel, improving wear resistance
  • the Cr content exceeds 7.0%, the cold workability, machinability, and carburization processability may decrease, leading to a significant increase in cost.
  • coarse eutectic carbides and eutectic carbonitrides may form, which may significantly reduce rolling fatigue life and strength.
  • the preferable range of the Cr content is 2.5-6.0%.
  • Mn manganese
  • Ms martensite transformation
  • Si acts as a deoxidizer during steelmaking and, like Cr and Mn, dissolves in the base and strengthens martensite, making it an effective element for improving bearing life. It is. In order to obtain this effect, the Si content must be 0.1% or more. On the other hand, if the Si content exceeds 1.5%, the machinability, forgeability, cold workability, and carburization properties may be reduced. The preferable range of the Si content is 0.1-0.7%.
  • Mo mobdenum
  • Cr mobdenum
  • Cr elements that are effective to stabilize interstitial solid-soluble elements such as C and N to stabilize the structure and to suppress early delamination due to hydrogen accumulation in the stress field But there is.
  • Mo mobdenum
  • Abrasion resistance is improved by forming fine carbides such as C and fine carbonitrides such as Mo (C, N).
  • the Mo content exceeds 3.0%, the cold workability and machinability may decrease and the cost may increase significantly.
  • coarse eutectic carbides and eutectic carbonitrides may be formed, and the rolling fatigue life and strength may be significantly reduced.
  • the preferable range of the Mo content is 0.5-1. 5%.
  • V vanadium
  • VC vanadium
  • VN fine nitrides
  • V (C, N) fine carbons
  • V (C, N) Since it forms nitrides, it is an effective element for improving strength and wear resistance.
  • V the content of V as much as possible.
  • the content is too high, cold workability and machinability may be reduced, leading to a significant increase in cost.
  • coarse eutectic carbides and eutectic carbonitrides may be formed, which may significantly reduce rolling fatigue life and strength. Therefore, the upper limit of the V content is set to 2.0%.
  • Ni nickel is an element effective for stabilizing austenite, suppressing the formation of ⁇ ferrite, and improving toughness.
  • the upper limit was made 2.0%.
  • the above-described material having steel strength is processed into a predetermined shape by forging or cutting, and then carburized or carbonitrided.
  • This carburizing or carbonitriding process is performed, for example, in an oven in which an atmosphere temperature is 900 to 960 ° C, RX gas + enriched gas is introduced in the carburizing process, and RX gas + enriched gas + ammonia gas is introduced in the carbonitriding process. This is done by heating and holding for several hours.
  • the total content of C and N in the surface layer part forming the rolling surface is 1.0% or more, preferably 1.2%
  • carbonized_material and a carbonitride can be made into the range shown below, respectively.
  • the upper limit was made 2.5%.
  • the hardness of the surface layer portion forming the rolling surface is HRC60 or more in terms of Rockwell hardness.
  • the preferable range of the hardness of the surface layer portion is HRC61 or more.
  • the retained austenite in the surface layer portion that forms the rolling surface has the effect of reducing surface fatigue. In order to obtain this effect, the amount of retained austenite needs to be 15% or more. On the other hand, if the amount of retained austenite in the surface layer exceeds 45%, the hardness may decrease or the bearing ring may be deformed when assembling the bearing, so the upper limit was set to 45%. A preferable range of the retained austenite amount in the surface layer portion is 20-40%.
  • Carbides and carbonitrides that exist on the surface layer forming the rolling surface cause partial rupture of the lubrication film on the rolling surface, and hydrogen ions generated by the tribochemical reaction penetrate and diffuse into the steel as hydrogen atoms. In addition, this hydrogen atom is trapped to suppress accumulation in the stress field.
  • the abundance of at least one kind of precipitate of carbide and carbonitride in the rolling plane is less than 15%, this effect cannot be sufficiently obtained.
  • the abundance ratio of the precipitates exceeds 35%, the carbides and carbonitrides are coarsened and the rolling fatigue life is reduced.
  • the average residual austenite amount needs to be 8 vol% or less.
  • Carbon dissolves in the base to increase the strength after quenching and tempering, and combines with carbide-forming elements such as Fe, Cr, Mo, and V to form carbides and carbonitrides, and wear resistance. It is an effective element for improving the properties. If the C content exceeds 1.2%, coarse eutectic carbides and eutectic carbonitrides are likely to be formed during steelmaking, resulting in reduced rolling fatigue life and strength, forging, cold workability, In addition, the cost may increase due to a decrease in machinability. A preferable range of the C content is 0.9-1 to 1%.
  • Cr Cr
  • Cr Cr
  • Cr Cr
  • Double carbonitride such as (C, N) is finely distributed in the steel, improving wear resistance
  • a preferable range of the Cr content is 2.5-3. 5%.
  • Mn manganese
  • Ms macro It is an effective element for lowering the (rutensite transformation) point to secure the retained austenite amount and to improve the hardenability.
  • the Mn content should be 0.1% or more.
  • the Mn content exceeds 2.0%, the martensite transformation start temperature is significantly lowered, so that a large amount of retained austenite remains after carburizing treatment, and sufficient hardness cannot be obtained, Workability and machinability may be reduced. From the above viewpoint, the preferable range of the Mn content is 0.5-1.5%.
  • Si acts as a deoxidizer during steelmaking and is an effective element for improving hardenability because it dissolves in the matrix and strengthens martensite.
  • the Si content is set to 1.5% or less.
  • the content of Si is usually 0.2 to 0.5% because it reduces the machinability, forgeability, cold workability, etc. of bearing steel.
  • the lower limit of the Si content is set to 0.5% in the present application.
  • a preferable range of the Si content is 0.8 to 1.2%.
  • Mo mobdenum
  • Cr mobdenum
  • Cr elements that are effective to stabilize interstitial solid-soluble elements such as C and N to stabilize the structure and to suppress early delamination due to hydrogen accumulation in the stress field But there is.
  • Mo mobdenum
  • Abrasion resistance is improved by forming fine carbides such as C and fine carbonitrides such as Mo (C, N).
  • the Mo content needs to be 0.1% or more. It is preferable to increase the Mo content as much as possible. However, if the content is too high, the cold workability and machinability will decrease, resulting in a significant increase in costs, coarse eutectic carbides and co-crystals. In some cases, the formation of crystalline carbon nitride significantly reduces the rolling fatigue life and strength.
  • a preferable range of the Mo content is 0.5-1. 5%.
  • the inventors of the present invention are prone to early separation of a rolling bearing for a belt-type continuously variable transmission when the above-described phase transformation occurs, particularly for a rolling bearing for a belt-type continuously variable transmission. Focused on that. Therefore, by previously dispersing and precipitating Fe-Cr, Mo-based precipitates, which are at least one of the double carbides and double carbonitrides described above, phase transformation is less likely to occur during use of the belt-type continuously variable transmission. They found that it was possible to suppress the early separation that is typical of rolling bearings for belt-type continuously variable transmissions.
  • the area ratio of the precipitate consisting of at least one of carbides and carbonitrides on the rolling surface is 30% or more.
  • Type or M C type double carbide and M (C, N) type or M (C, N)
  • Fe-Cr, Mo-based precipitates consisting of at least one of 23 6 7 3 23 6 type double carbonitrides.
  • the melting point of Fe is 1536 ° C
  • the melting point of Cr is 1857 ° C
  • the melting point of Mo is 2617 ° C
  • Type Fe—Cr, Mo type double carbide M (C, N) type or M (C, N)
  • Fe-Cr, Mo-type double carbonitrides of the type are M C type Fe C and M (C, N) type Fe
  • the melting point of the Fe—Cr, Mo-based precipitates can be further increased, so that the phase transformation can be further suppressed.
  • the o content is preferably 12 ppm or less, and the Ti content is preferably 30 ppm or less.
  • FIG. 1 is a partial longitudinal sectional view showing a structure of a deep groove ball bearing which is an embodiment of a rolling bearing according to the present invention.
  • FIG. 2 shows the relationship between the Cr content in the alloy steel in the embodiment shown in Fig. 1 and the L life of the bearing.
  • FIG. 3 is a schematic configuration diagram showing a life test apparatus used in the embodiment.
  • FIG. 4 is a cross-sectional view showing an alternator that is an example of an engine accessory.
  • FIG. 5 is an exploded perspective view of the planetary gear device.
  • FIG. 6 is a cross-sectional view of a main part of the planetary gear device of FIG.
  • FIG. 7 is a cross-sectional view of an automatic transmission incorporating a planetary gear device.
  • FIG. 8A is a diagram for explaining the operating principle of the speed reduction mechanism.
  • FIG. 8B is a diagram for explaining the operating principle of the speed reduction mechanism.
  • FIG. 8C is a diagram for explaining the operating principle of the speed reduction mechanism.
  • FIG. 8D is a diagram for explaining the operating principle of the speed reduction mechanism.
  • FIG. 9 is a cross-sectional view for explaining a planetary shaft durability test method.
  • FIG. 10 is a schematic configuration diagram showing a belt-type continuously variable transmission used for a life test in the embodiment.
  • the deep groove ball bearing shown in FIG. 1 includes an inner ring 1, an outer ring 2, and a plurality of balls (rolling elements) 3 disposed between the inner ring 1 and the outer ring 2 so as to be able to roll.
  • At least one of the inner ring 1, the outer ring 2, and the ball 3 contains carbon in an amount of 0.2 to 0.6% by mass, chromium in an amount of 2.5 to 7% by mass, and manganese in an amount of 0.5% by mass. It is made of alloy steel containing 2% by mass or less, 0.1% by mass to 1.5% by mass of silicon, and 0.5% by mass to 3% by mass of molybdenum.
  • the amount of retained austenite of the surface is 45 vol% or less than 15 vol%, the mean residual austenite amount (in volume 0/0), the content of chromium in the alloy steel (in mass 0/0) And molybdenum Is less than 2.5 times the sum of the contents (unit: mass%).
  • Such deep groove ball bearings have excellent dimensional stability and long life even when used under high temperature and lubrication with foreign matter.
  • the inner ring and outer ring made of various alloy steels with the composition shown in Table 1 and rolling elements made of JIS steel type SUJ2 were prepared to produce a deep groove ball bearing with a nominal number of 6206, which was durable. A test was conducted. Components other than C, Si, Mn, Cr, and Mo in the alloy steel are iron and inevitable impurities.
  • steel type H in Table 1 is JIS steel type SUJ2.
  • the underline attached to the numerical values in Table 1 means that the numerical values are out of the recommended range of the present invention.
  • alloy steel is turned to the specified dimensions, carburized or carbonitrided as described below, and then quenched and tempered at the specified temperature before finishing grinding. It manufactured by giving.
  • Carburizing conditions are: atmosphere is a mixture of RX gas and enriched gas, processing time is about 3-5 hours, and processing temperature is 900-960 ° C. After air cooling to room temperature, oil quenching was performed at 840 ° C for 1 hour, and tempering was further performed at 180 ° C for 2 hours.
  • the carbonitriding conditions are as follows: atmosphere is a mixture of RX gas, enriched gas, and ammonia gas (5%), treatment time is about 3-5 hours, and treatment temperature is 900-960 ° C. Then, after oil cooling, quenching and tempering were performed under the same conditions as for carburizing.
  • Table 2 summarizes the amount of austenite ( ⁇ ;)). Also, chromium content in alloy steel
  • Cr% + Mo% Amount Cr% and molybdenum content Mo% (hereinafter referred to as “Cr% + Mo%”) and average retained austenite amount ( ⁇
  • the deep groove ball bearing obtained by assembling the inner ring, outer ring and rolling elements described above was rotated under oil bath lubrication with an axial load of 3.5 GPa and a rotational speed of 3000 min- 1 .
  • the 90% remaining life (L life) was measured when the flaking or seizure occurred on at least one of the inner and outer rings. 1500 hours rotation
  • the L life is 1500 hours.
  • a lubricating oil having an ISO viscosity grade of ISO VG150 was used, and the lubricating oil temperature was 160 ° C.
  • 300 ppm of steel powder (hardness Hv600) with a diameter of 74-147 m was added to the lubricating oil as a foreign substance.
  • Table 2 shows the results of the durability test. As shown in Table 2, Examples 1 and 7 had a much longer life than Comparative Examples 1 and 1 1. In particular, Examples 1 to 16 are the contents of Cr in the alloy steel, the amount of retained austenite on the surface, and the amount of average retained austenite ( ⁇
  • Example 7 Although the Cr content was within a suitable range, it was slightly higher, so amorphous carbides were formed and the life was slightly shorter than in Examples 3-6.
  • Comparative Example 1-19 has a shorter life compared to Example 1-17 because the composition of the alloy steel is out of the scope of the present invention.
  • Comparative examples 1 and 2 are made of SUJ2. In the case of comparative example 1, they are subjected to quenching, and in the case of comparative example 2, carbonitriding is performed. Since Comparative Example 2 was carbonitrided, it had a longer life than Comparative Example 1, but it was significantly shorter than each Example.
  • Comparative Examples 3 and 4 are the amount of retained austenite on the surface and the amount of average retained austenite.
  • austenite amount is not a suitable value, seizure occurred and the life was short.
  • the This graph is a plot of the test results of Examples 1-7 and Comparative Examples 3 and 4. As can be seen from this graph, if the Cr content is 2.5 mass% or more and 7 mass% or less, the bearing has a long life, and if it is 2.5 mass% or more and 6 mass% or less, the bearing life is longer. Met. Example 2 Next, the effect of the present invention will be verified based on the second example and the comparative example.
  • the inner ring and the outer ring made of the material G1 were heat-treated as a heat treatment at 840 ° C and kept for 20 to 60 minutes, followed by oil quenching and further at 170 ° C. Tempering was performed by holding in air for 2 hours.
  • carbides, nitrides, and carbonitrides are dispersed and deposited on the surface layer of the inner ring and outer ring having a material strength other than G1, and the surface layer is formed on the inner ring and outer ring made of the material G1.
  • the carbide was dispersed and deposited on the part. Then, grinding and surface finishing were performed on each material after the heat treatment.
  • the total content (mass ratio) of C and N in the surface layer part forming the raceway surface (rolling surface) was calculated as the raceway force 437 m (ball diameter 8. Measurements were taken with an electron microanalyzer at a depth of 73 mm (5%).
  • the hardness of the surface layer portion was measured by the Rockwell hardness test method defined in JIS Z 2245.
  • the amount of retained austenite (volume ratio) of the surface layer portion was measured with an X-ray diffractometer at a portion from the raceway surface to a depth of 437 ⁇ m.
  • the maximum value of the residual stress in the surface layer portion was measured with an X-ray diffractometer at a portion up to a depth of 437 m orbital surface force.
  • the maximum value of residual stress measured with this device is the average value of the weight of X-ray attenuation within the X-ray penetration depth.
  • the raceway surface was corroded with a corrosive solution (4 g picric acid + 100 ml ethanol), and then, with an optical microscope, 0.5 m or more of carbides and carbonitrides were applied. About 30 fields of view were observed at a magnification of 1000 times. Then, by processing the observed image, the abundance (area ratio) of carbide and carbonitride was measured for each field of view, and the average of 30 fields of view was measured. The value was calculated.
  • a corrosive solution 4 g picric acid + 100 ml ethanol
  • Fig. 3 shows the life test of a test bearing consisting of 122 inner and outer rings, a ball of carbonitriding made of high-carbon chromium bearing steel type 2 (SUJ2), and a cage made of 6-6 nylon.
  • P load load
  • ZC dynamic load rating
  • 10 test bearings were prepared for each, and the internal clearance was 10-15 m for both.
  • the rotating shaft 103 is supported by a support bearing 104 and a test bearing 105, and a driven pulley 106 and a driving pulley (rotating shaft) fixed to one end of the rotating shaft 103 are used.
  • 103 a pulley fixed to a drive shaft that is driven to rotate by a motor and not shown in Fig. 3).
  • the other end of the rotating shaft 103 is supported by a support bearing 104, and the outer ring of the support bearing 104 is fitted and fixed to the first housing 102A.
  • the first housing 102A is fixed to the base 101.
  • the second housing 102B is fixed to the end of the first housing 102A on the test bearing 105 side, and the outer ring of the test bearing 105 is fitted and fixed to the second housing 102B.
  • the first housing 102A and the second housing 102B are configured such that the support rigidity of the support bearing 104 by the first housing 102A is high and the support rigidity of the test bearing 105 by the second housing 102B is low.
  • a vibrometer 108 for detecting the vibration of the test bearing 105 is attached to the upper surface of the second housing 102B.
  • the rolling bearings 123 and 124 that support the rotating shaft 121 of the pulley 122 around which the belt that receives the power of the engine force is wound by an alternator (engine auxiliary machine) 120 shown in FIG. It was assumed to be used in a harsher environment than the current situation. In other words, with a radial load applied to the test bearing 105 shown in Fig. 3, the rotational speed is increased every 9 seconds. A rapid acceleration / deceleration test was conducted by switching between 9000min- 1 and 18000min- 1 .
  • No. 101 No. 107 test bearings in which the inner ring and the outer ring satisfy the scope of the present invention have the No. 108-122 test bearings in which at least one of the inner ring and the outer ring also falls within the range of the present invention. Compared to the test bearing, it has a long service life.
  • the maximum value of compressive residual stress in the surface layer part forming the raceway is out of the preferred range (150-2000 MPa) of the present invention.
  • No. 107 has the maximum compressive residual stress satisfying the above range. Compared with No. 101-106, it had a short life. This makes the orbit It can be seen that a longer life can be achieved by setting the maximum value of the compressive residual stress in the surface layer part of the surface to 150-2000 MPa.
  • No. 114 is made of SUJ2 and has a C content of more than the range of the present invention and a Cr content of less than the range of the present invention.
  • the maximum value of the residual stress and the abundance of precipitates of carbide isotropic force were out of the range of the present invention, so the life was shorter than the calculated life.
  • the Cr content of the steel used for the material HI is less than the range of the present invention.
  • the total content of C and N was outside the range of the present invention, so the surface layer forming the raceway surface The hardness of the part was not sufficiently obtained, and the life was shorter than the calculated life.
  • the Cr content of the steel constituting the material II used was larger than the range of the present invention, the amount of retained austenite in the surface layer portion forming the raceway surface, and the abundance of precipitates that are equivalent to carbides.
  • the range force of the present invention was also outside, the life was shorter than the calculated life.
  • the Si content of the steel material K1 used was larger than the range of the present invention, and the maximum value of the compressive residual stress of the surface layer portion forming the raceway surface and precipitates with carbide isotropic force. Therefore, the lifetime was shorter than the calculated lifetime.
  • the content of V in the steel N1 used was larger than the range of the present invention, and coarse eutectic carbide and eutectic carbonitride were generated.
  • the Ni content of the steel used to form the material Ol is higher than the range of the present invention, and the total content and hardness of the surface layer C and N forming the raceway surface are in the range of the present invention. Because it was off, it was shorter than the calculated life.
  • FIG. 5 is an exploded perspective view of the planetary gear device
  • FIG. 6 is a cross-sectional view of the main part of the planetary gear device of FIG.
  • FIG. 7 is a cross-sectional view of an automatic transmission in which the planetary gear device of FIG. 5 is incorporated.
  • Torque output from an engine (not shown) is transmitted to the automatic transmission 201 via the converter 202, and is decelerated to a plurality of stages by a speed reduction mechanism in which a plurality of rows of planetary gear devices 203 are combined.
  • the decelerated torque is output to a drive and a lane (not shown) connected to the output shaft 204.
  • the planetary gear device 203 includes a sun gear 211 through which a shaft (not shown) is inserted, a ring gear 212 arranged concentrically with the sun gear 211, the sun gear 211, and the ring gear 212.
  • a plurality of (three in FIG. 5) planetary gears 213 and a carrier 214 that is arranged concentrically with the sun gear 211 and the ring gear 212 and rotatably supports the planetary gear 213 are provided.
  • FIG. 6 which is a sectional view of the planetary gear 213, a planetary shaft 215 fixed to the carrier 214 is passed through the center of the planetary gear 213, and is formed on the inner peripheral surface of the planetary gear 213.
  • a plurality of one-dollar rollers 217 are arranged between the raceway surface and the raceway surface formed on the outer peripheral surface of the planetary shaft 215 so that the planetary gear 213 can rotate freely. It can be rotated around 215 as an axis.
  • the radial needle roller bearing is composed of the planetary gear 213, the planetary shaft 215, and the one-dollar roller 217, and this radial needle roller bearing constitutes the bearing for the planetary gear. .
  • the needle roller 217 may be a single row as shown in FIG. 6, or may be a double row.
  • the planetary gear bearing may also be a cage and roller needle roller bearing having a cage.
  • the planetary shaft 215 in the present embodiment corresponds to an inner ring that is a constituent element of the present invention
  • the planetary gear 213 also corresponds to an outer ring
  • the needle roller 217 also corresponds to a rolling element.
  • At least one of the planetary shaft 215 and the one-dollar roller 217 has a carbon content of 0.2% by mass or more and 0.6% by mass or less, and chromium by 2.5% by mass or more.
  • Alloy steel containing 0.5% by mass or more, 0.5% by mass to 2% by mass of manganese, 0.1% by mass to 1.5% by mass of manganese, and 0.5% by mass to 3% by mass of molybdenum. It is configured. Then, carbonitriding (or carburizing), quenching, and tempering are performed in this order, and the sum of the carbon concentration and nitrogen concentration on the surface is 1% by mass to 2.5% by mass.
  • the surface hardness is HRC60 or more, and the amount of retained austenite on the surface is 15% to 45% by volume. Furthermore, the average retained austenite content is less than 8% by volume.
  • Such a planetary gear bearing has a long life because seizure, galling, etc. occur even when used under high temperature and high speed conditions or under lean lubrication.
  • dimensional changes due to decomposition of retained austenite hardly occur even at high temperatures.
  • deformation and damage are less likely to occur when a moment load is applied (particularly, planetary shaft 215 is less likely to be deformed).
  • the conditions for the heat treatment are not particularly limited, but an example is shown below.
  • carbonitriding or carburizing
  • Carbonitriding (or carburizing) is performed, for example, by holding at 900-960 ° C for several hours in a furnace into which RX gas, enriched gas, and ammonia are introduced. If quenching is carried out as it is after this treatment, the structure tends to have an insufficient life for a structure composed mainly of large retained austenite grains and lenticular martensite whose grain size of the prior austenite is large. Therefore, after carbonitriding (or carburizing), A and A
  • the sun gear 211 is fixed, the planetary gear 213 (carrier 214) is on the drive side, and the ring gear 2 12 is on the driven side. A ratio is obtained.
  • the sun gear 211 is driven, the planetary gear 213 (carrier 214) is fixed, and the ring gear 212 is driven. The direction of rotation of the torque output relative to the torque can be reversed.
  • Planetary shafts (outer diameter: 12.2 mm, length: 28.2 mm) composed of various alloy steels having the composition shown in Table 5 were prepared and subjected to durability tests. Components other than C, Si, Mn, Cr and Mo in the alloy steel are iron and inevitable impurities.
  • Steel grade G2 in Table 5 is JIS grade SUJ2.
  • Tally shafts are made by turning alloy steel to specified dimensions and carburizing as described below. Alternatively, it was manufactured by carbonitriding, followed by quenching and tempering at a predetermined temperature, followed by finish grinding.
  • Carburizing conditions are: atmosphere is a mixture of RX gas and enriched gas, processing time is about 3-5 hours, and processing temperature is 820-950 ° C.
  • the carbonitriding conditions are as follows: atmosphere is a mixture of RX gas, enriched gas, and ammonia gas (5%), processing time is about 3-5 hours, and processing temperature is 820-950 ° C.
  • Table 6 summarizes the properties of each planetary shaft obtained (the amount of retained austenite on the surface, surface hardness, etc.).
  • the carbon and nitrogen concentrations on the surface of the planetary shaft are values measured with an electron probe microanalyzer (EPMA), and the amount of retained austenite ( ⁇
  • a planetary shaft 220 is passed through the outer ring 221, and it is freely interposed between a raceway surface formed on the outer peripheral surface of the planetary shaft 220 and a raceway surface formed on the inner peripheral surface of the outer ring 221.
  • the planetary shaft 220 can be rotated by a plurality of one-dollar rollers 222 (outer diameter 2 mm, length 15 mm).
  • a lubricating oil supply hole 220a is opened on the outer peripheral surface (cylindrical surface) of the planetary shaft 220, and the lubricating oil injected into the opening 220b on the end surface is transferred from the lubricating hole 220a to the raceway surface. Refueling has started.
  • Table 6 shows the results of the durability test. As shown in Table 6, Examples 201-208 had a much longer life than Comparative Examples 201-211. In particular, Examples 201 to 206 had an average retained austenite amount of 8% by volume or less, so that they did not cause seizure and peeling even under conditions of high temperature and moment load.
  • Comparative Examples 201-209 had a shorter life than Examples 201-208 because the composition of the alloy steel was outside the scope of the present invention.
  • Comparative examples 201 and 202 were made of SUJ2, and in the case of comparative example 201, they were subjected to quenching, and in the case of comparative example 202, carbonitriding was performed.
  • the composition of the alloy steel is suitable, but in Comparative Example 210, the sum of the surface carbon concentration and nitrogen concentration is not a suitable value. Since the sum of carbon concentration and nitrogen concentration, surface hardness, surface retained austenite amount, and average retained austenite amount are not all suitable values, the lifetime was short.
  • materials A3 to Q3 made of steel with the various configurations shown in Table 7 were cut into the shape of inner ring and outer ring for deep groove ball bearing (inner diameter 40mm, outer diameter 80mm, width 18mm) of nominal number 6208. At this time, the radius of curvature of the inner and outer ring raceway grooves was set to be 50.5 to 51.5% of the ball diameter.
  • carbide, nitride, and carbonitride are dispersed and deposited on the surface of the inner ring and outer ring having a material strength other than H3, and carbide is formed on the surface of the inner ring and outer ring made of material H. Dispersed and precipitated. Then, after heat treatment, grinding and surface finishing were performed, and the surface roughness of the raceway surfaces of the inner ring and the outer ring was set to 0.01-0.03 mRa.
  • the total content (mass ratio) of C and N in the surface layer part (the part from the surface to a depth of 10 ⁇ m) forming the raceway surface (rolling surface) is Measured with an emission spectrophotometer.
  • the hardness of the surface layer portion was measured by the Rockwell hardness test method defined in JIS Z 2245.
  • the amount of retained austenite (volume ratio) in the surface layer portion was measured with an X-ray diffractometer.
  • the raceway surface was corroded with a corrosive solution (4 g of picric acid + 100 ml of ethanol), and then the carbide and carbonitride of 0.5 m or more were used with an optical microscope. About 30 fields of view were observed at a magnification of 1000 times. Then, by performing image processing on the observed image, the abundance (area ratio) of carbide and carbonitride was measured for each visual field, and the average value of 30 visual fields was calculated.
  • a corrosive solution 4 g of picric acid + 100 ml of ethanol
  • the total content of Cr and Mo in the Fe-Cr and Mo-based precipitates is calculated using an energy dispersive X-ray analyzer (EDS: Energy Dispersive) attached to the transmission electron microscope.
  • EDS Energy Dispersive
  • an input shaft 310 provided with an input shaft side (primary) pulley 301 and an output shaft side (secondary) pulley 302 are provided.
  • the output shaft 220 is supported by a pair of rolling S bearings 301a, 301b, 302a, 302b.
  • each test bearing was attached as a primary front bearing (that is, a rolling bearing that supports the input shaft 310 on the engine 304 side of the primary pulley 301) 301a.
  • the other rolling bearings 301b, 302a, 302b were the same in each test.
  • the belt 303 of this belt-type continuously variable transmission unit has a structure in which 300 pieces 303b are attached to two rings 303a formed by laminating 10 steel thin plates having a thickness of 0.2 mm.
  • the length of the belt 303 is 600 mm.
  • Lubricating oil supply Primary front bearing (lOmlZmin), other bearings (200mlZ mm)
  • test bearing No. 301-311 which is an example of the present invention has a longer life compared to the test bearing No. 312-322 which is a comparative example. It was.
  • the abundance of precipitates with carbide isotropic force on the raceway surface is in the range of 15-35%, but in the case of No. 310 and 311 where the abundance of Fe-Cr and Mo-based precipitates is less than 30%, Compared with 302-304, it has a shorter life.
  • No. 311 in which the abundance of Fe—Cr, Mo-based precipitates is less than 30% and the total content of Cr and Mo is less than 30% is Fe—Cr, Mo-based precipitates.
  • No. 310 having an abundance ratio of less than 30% and a total content ratio of Cr and Mo of 30% or more the lifetime was shorter. This shows that the total content of Cr and Mo in the Fe—Cr and Mo-based precipitates is preferably 30% or more.
  • Nos. 312 and 313 are made of SUJ2, and sufficient carbides cannot be obtained on the raceway surface in which the Si content, the Cr content, and the Mo content are less than the scope of the present invention. As a result, it was shorter than the calculated life.
  • No. 314 had a shorter life than the calculated life because sufficient carbide and carbonitride were not obtained on the raceway surface where the Cr content was lower than the range of the present invention.
  • No. 315 had a short life because coarse eutectic carbides and eutectic carbonitrides with a Cr content larger than the range of the present invention were generated.
  • No. 316 had a shorter life than the calculated life because sufficient carbide and carbonitride were not obtained on the raceway surface where the C content was less than the range of the present invention.
  • No. 319 had a short life because coarse eutectic carbides and eutectic carbonitrides with a Mo content larger than the range of the present invention were generated.
  • No. 320 had a short life because coarse eutectic carbide and eutectic carbonitride having a V content larger than the range of the present invention were generated.
  • the coefficient of friction is as high as 0.10 or more, and the kinematic viscosity at 100 ° C is 8 cSt or less. It has been confirmed that even when a low lubricant is used, the service life can be longer than the calculated life.
  • a metal seal or the like is used.
  • Contact seals such as non-contact seals, rubber seals (such as nitrile rubber and acrylic rubber), and fluorine seals may be selected and used according to the operating temperature.
  • the internal clearance is “CN clearance”.
  • the rolling bearing of the present invention can be suitably used under high temperature, high speed conditions and under lubrication with foreign matter.
  • it can be suitably used for engines, transmissions, and the like of automobiles, agricultural machines, construction machines, and steel machines. Similar effects can also be obtained with deep groove ball bearings, cylindrical roller bearings, tapered roller bearings, and needle roller bearings as rolling bearings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Rolling Contact Bearings (AREA)
  • Transmissions By Endless Flexible Members (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 外輪と、内輪と、前記外輪と内輪との間に転動自在に配置された複数の転動体と、を有する転がり軸受である。前記外輪、内輪、転動体のうちから選択された少なくとも一つの部材は、Cの含有率が、0.2Wt%以上 0.6Wt%以下であり、Crの含有率が、2.5Wt%以上7.0Wt%以下であり、Mnの含有率が、0.5Wt%以上2.0Wt%以下であり、Siの含有率が、0.1Wt%以上1.5Wt%以下であり、Moの含有率が、0.5Wt%以上3.0Wt%以下であり、浸炭処理又は浸炭窒化処理、焼入れ処理、焼き戻し処理が施され、表面の残留オーステナイト量が体積比で15%以上45%以下であり、表面硬さHRC60以上の条件を満たす。

Description

転がり軸受
技術分野
[0001] 本発明は転がり軸受に関する。
背景技術
[0002] 転がり軸受においては、軌道輪と転動体との間で転がり運動が行われるため、軌道 輪の軌道面及び転動体の転動面は繰り返し接触応力を受ける。そのため、これらの 部材を構成する材料には、硬い、負荷に耐える、転がり疲労寿命が長い、滑りに対す る耐摩耗性が良好である等の性質が要求される。
そこで、一般的には、これらの部材を構成する材料には、軸受鋼としては日本工業 規格の SUJ2、そして肌焼鋼としては日本工業規格の SCR420相当の鋼や SCM42 0相当の鋼等がよく使用されて 、る。これらの材料は前述のように繰り返し接触応力 を受けるので、転がり疲労寿命等の必要とされる性質を得るために、軸受鋼であれば 焼入れ,焼戻しが施され、肌焼鋼であれば浸炭処理又は浸炭窒化処理後に焼入れ ,焼戻しが施されて、硬さが HRC58以上 64以下とされている。
一方、エンジンまわりの部材であるオルタネータ、電磁クラッチ、中間プーリ、カーェ アコンデイショナ用コンプレッサ、水ポンプ、変速機のプラネタリーギヤ、ベルト式無段 変速機、同様の駆動系であるガスヒートポンプなどに用いられる軸受は、エンジンな どの燃焼機関力もの動力を受けて回転する軸を支持しているため、高温、高荷重、 高振動、高速運転などの過酷な条件下で使用される。
これらの過酷な環境下で用 ヽられる転がり軸受の転がり面には、十分な潤滑膜が 形成され難ぐまた、大きな接線力が作用する。このため、金属接触による発熱や表 面疲労が発生しやすい。また、金属接触によって新生面 (鋼の組織が露出した面)が 生じやすくなる。この新生面はトライボケミカル反応の触媒となるため、転がり面には、 潤滑油中に含まれる添加剤や水分が分解されて水素イオンが生じ易くなる。そして、 この水素イオンが転がり面に生じた新生面に吸着して水素原子となり、水素原子が応 力場 (最大剪断応力位置の近傍)に集積される。水素原子が集中した部位は脆くな るので、転がり軸受の早期剥離が引き起こされる。
また、金属の切粉,肖 ijり屑,バリ,摩耗粉等の異物が転がり軸受内部の潤滑剤に混 入すると、軌道輪や転動体が損傷を受け、転がり軸受の寿命が大幅に低下する場合 がある。
[0003] ベルト式無段変速機の潤滑には、トルクコンバータ、歯車機構、油圧機構、湿式ク ラッチ等を円滑に作動させて動力を伝達するために、入力軸側プーリ及び出力軸側 プーリを支持する転がり軸受を含めて、摩擦係数の高!ヽ自動変速機用潤滑油 (ATF : Automatic
Transmission Fluid )や無段変速機用潤滑油 (CVTF: Continuously Variable Transmission Fluid )等の潤滑油が使用されている。
[0004] このようなベルト式無段変速機用の転がり軸受は、高振動及び高荷重等の苛酷な 使用環境下で、且つ、摩擦係数が高い潤滑油による潤滑下で使用されるため、上述 のトライボケミカル反応が生じやすぐ転がり軸受の早期剥離が引き起こされる。
[0005] ここで、トライボケミカル反応を生じ難くするために、動粘度の高い潤滑油を使用し、 減圧剤や摩擦調整剤等の添加剤を潤滑油に添加しない方法が考えられる。しかし、 ベルト式無段変速機の潤滑油として動粘度の高い潤滑油を使用することは、燃費効 率、入力軸から出力軸への動力伝達効率、及びシャダ一寿命等の点で好ましくない 。このため、ベルト式無段変速機用の転がり軸受の場合には、潤滑油を変える方法 ではなぐ転がり面を強化する方法で転がり軸受の寿命を長くすることが有効である。 この考え方に基づく技術としては、下記の技術が挙げられる。
[0006] 特開 2003— 343577号公報では、内輪、外輪、及び転動体の少なくとも一つを、応 力場への水素集積を抑制可能な Crを多く含む鋼で形成するとともに、転がり面の炭 素及び窒素の合計含有率、残留オーステナイトの含有率、及び硬さを特定の構成と することが提案されている。
社団法人自動車技術会、学術講演会前刷集、 No. 30 - 02 (2002年)、 5— 8頁に は、転動体の転動面に電気めつき法で Ni被膜を形成することにより、トライボケミカル 反応で生じた水素イオンを新生面に吸着し難くすることが記載されている。
[0007] また、上述したような苛酷な条件下で使用される軸受の寿命を長くするための技術 としては、以下の技術が挙げられる。
特許第 2883460号公報では、 Cの含有率が 0. 65-0. 90質量%、 Siの含有率が
0. 15—0. 50質量%、 Mnの含有率が 0. 15—1. 00質量%、 Crの含有率が 2. 0— 5. 0質量0 /0、 Nの含有率力 90— 200ppmであり、さらに 100— 500ppmの A1および 50— 5000ppmの Nbの少なくとも一種が含有された軸受用鋼が提案されている。こ の特許第 2883460号公報に記載の技術によれば、転がり面に早期剥離が生じ難く なるとともに、熱処理後の靱性の低下を抑制できる。
[0008] 特許第 2013772号公報では、軌道輪を、 Cの含有率が 0. 95-1. 10質量%、 Si または A1の含有率が 1. 0-2. 0質量%、 Mnの含有率が 1. 15質量%以下、 の 含有率が 0. 90-1. 60質量%、残部が Feおよび不可避不純物で、 Oの含有率が 1 3ppm以下である鋼力もなる素材を所定形状にカ卩ェした後、焼入れおよび 230— 30 0°Cでの高温焼戻しを施すことにより、残留オーステナイト量を 8体積%以下とし、硬 さを HRC60以上とすることが提案されている。この特許第 2013772号公報に記載 の技術によれば、高温での寸法安定性が向上し、且つ、硬さの低下を防ぐことができ る。
[0009] 特開 2001— 221238号公報では、少なくとも固定輪を、 Cの含有率が 0. 4-1. 2 質量%、 Siおよび A1の合計含有率が 0. 7-2. 0質量%、 Mnの含有率が 0. 2-2. 0質量%、 Niの含有率が 0. 1-3. 0質量%、 Crの含有率が 3. 0-9. 0質量%であ り、さらに下記式(1)で算出される Cr当量が 9. 0— 17. 0質量%である鋼カもなる素 材を所定形状に加工した後、焼入れおよび焼戻しを施すことにより、軌道面の硬さを HRC57以上とし、軌道面に直径 50— 500nmの微細炭化物が分散析出されたもの とすることが提案されている。
[0010] Cr¾ S = [Cr] + 2 [Si] + 1. 5 [Mo] + 5 [V] + 5. 5 [A1] + 1. 75 [Nb] + l. 5 [Ti
1 . · · · · (1)
なお、上記式(1)中の [Cr]、 [Si]ゝ [Mo] , [V]ゝ [Al]、 [Nb]、 [Ti]はそれぞれ鋼 中の Cr、 Si、 Mo、 V、 Al、 Nb、 Tiの含有率(質量0 /0)を示す。
[0011] この特開 2001— 221238号公報によれば、軌道面に分散析出させた微細炭化物 が水素をトラップするため、軌道面の早期剥離を抑制することができる。 [0012] また、転がり軸受内部の潤滑剤に異物が混入しているような異物混入潤滑下で使 用されても長寿命な転がり軸受が、種々提案されている。
[0013] 例えば、特許第 2138103号公報,特許第 2128328号公報には、軌道輪や転動 体の表面層の炭素量,残留オーステナイト量,炭窒化物量等を規定することにより、 異物により生じる圧痕のエッジ部における応力集中を緩和し、クラックの発生を抑え て、転がり軸受の寿命を向上させる技術が提案されている。また、特許第 3051944 号公報には、鋼の組成,内部硬さ,及び表面硬さが規定された、転がり疲労寿命の 優れた軸受部品が開示されて 、る。
[0014] 一方、針状ころ軸受は、内径に対する外径の比が小さい。すなわち肉厚が薄い軸 受である。しかし、その肉厚の割には比較的大きな負荷容量を有しているという特徴 があることから、自動車のトランスミッション,エンジン等の高負荷部分に広く使用され ている。
以下に、トランスミッション等に幅広く使用されているプラネタリーギヤを軸支するプ ラネタリーギヤ用軸受を例に説明する。プラネタリーギヤ用軸受では、外輪に相当す るプラネタリーギヤ力もの力の伝達が滑らかに行われるように、一般的にははすば歯 車が使用される。このために、プラネタリーギヤとはすば歯車の力関係から、内輪に 相当するプラネタリーシャフトの走行跡がねじれた形となる。このため、ブラネタリーギ ャとプラネタリーシャフトとの間に配されたニードルローラーに対して、不均一な力が 作用する。したがって、エッジロードゃスキュー等が発生して、軸受の寿命が低下した り焼付きが発生したりしゃす 、と 、う問題があった。
[0015] 特開 2002— 188643号公報には、ニードルローラー及び内方部材の少なくとも一 方を、外方部材よりも線膨張係数が小さい鋼、又は、平均残留オーステナイト量が 2 %以下の鋼で構成することにより、回転速度の高速ィ匕等に伴う焼付きや力じりを抑制 する技術が開示されて ヽる。
[0016] さらに、特許第 2541160号公報には、軌道輪及び転動体の少なくとも一方の表面 層について、残留オーステナイト量(γ )と C, Cr, Moの含有量とが規定されている
R
とともに、浸炭又は浸炭窒化処理された表面層の表面硬さ(Hv)と残留オーステナイ ト量とが所定の関係を満足する合金鋼で構成された転がり軸受が開示されている。 また、上記のようなプラネタリーギヤ用軸受は、サンギヤ等の歯車と同一容器内で 使用されることから、ギヤ間の相対接触ゃ摺動によって生じた硬い異物が軸受の潤 滑油中に侵入して、軸受寿命に悪影響を与える場合があると 、う問題もあった。
[0017] このような問題に対処するため、従来は、材料の改良とすきまの適正化とがなされ ていた。すなわち、 NSK Technical Journal No. 656 (1993年)に記載されて いるような浸炭窒化処理技術を用いて、軸受鋼又は浸炭鋼における表面層中の残 留オーステナイト量を高めるとともに、円周方向すきま及びラジアルすきまを適正化 することによって、圧痕縁の応力集中を緩和して長寿命化を達成しょうとしていた。 特許文献 1:特開 2003— 343577号公報
特許文献 2:特許第 2883460号公報
特許文献 3:特許第 2013772号公報
特許文献 4:特開 2001—221238号公報
特許文献 5 :特許第 2138103号公報
特許文献 6:特許第 2128328号公報
特許文献 7:特許第 2051944号公報
特許文献 8:特開 2002-188643号公報
特許文献 9:特許 2541160号公報
非特許文献 1 :社団法人自動車技術会、学術講演会前刷集、 No. 30 - 02 (2002年 )
非特許文献 2 :NSK Technical Journal No. 656 (1993年)
発明の開示
発明が解決しょうとする課題
[0018] 上述の従来の技術にもかかわらず、部材の小型 ·軽量化及び高性能 ·高出力化に 伴い、転がり軸受の使用環境がさらに高温化、高速になり、さらに苛酷な条件になる ことを想定すると、改良が必要であった。また、応力場への水素集積に起因する早期 剥離を効果的に抑制するという点で改善の余地があった。
そこで、本発明は上記のような従来技術が有する問題点を解決し、高温、高速、異 物混入、高摩擦係数かつ低粘度の潤滑油での運転といった過酷な条件で使用され ても寸法安定性が高ぐ長寿命を有する転がり軸受を提供する。
課題を解決するための手段
上述した課題を解決するために、本発明の第 1の見地によれば、
外輪と、内輪と、前記外輪と内輪との間に転動自在に配置された複数の転動体と、を 有する転がり軸受であって、
前記外輪、内輪、転動体のうちから選択された少なくとも一つの部材は、
Cの含有率が、 0. 2Wt%以上 0. 6Wt%以下であり、
Crの含有率が、 2. 5Wt%以上 7. OWt%以下であり、
Mnの含有率力 0. 5Wt%以上 2. OWt%以下であり、
Siの含有率力 0. lWt%以上 1. 5Wt%以下であり、
Moの含有率力 0. 5Wt%以上 3. 0Wt%以下であり、
浸炭処理又は浸炭窒化処理、焼入れ処理、焼き戻し処理が施され、
表面の残留オーステナイト量が体積比で 15%以上 45%以下であり、
表面硬さ HRC60以上である。
本発明の第 2の見地によれば、
外輪と、内輪と、前記外輪と内輪との間に転動自在に配置された複数の転動体と、を 有する転がり軸受であって、
前記外輪、内輪、転動体のうちから選択された少なくとも一つの部材は、
Cの含有率が、 0. 8Wt%以上 1. 2Wt%以下であり、
Crの含有率が、 2. 0Wt%以上 4. 0Wt%以下であり、
Mnの含有率力 0. lWt%以上 2. 0Wt%以下であり、
Siの含有率力 0. 5Wt%以上 1. 5Wt%以下であり、
Moの含有率力 0. lWt%以上 2. 0Wt%以下であり、
浸炭処理又は浸炭窒化処理、焼入れ処理、焼き戻し処理が施され、
表面の残留オーステナイト量が体積比で 15%以上 45%以下であり、
表面硬さ HRC60以上である。
本発明の第 3の見地によれば、前記選択された部材は更に、
表面の炭素濃度と窒素濃度の和が 1. 0Wt%以上、 2. 5Wt%以下である。 本発明の第 4の見地によれば、前記選択された部材は更に、
Vの含有率が、 2. OWt%以下であり、
Niの含有率が、 2. OWt%以下である。
本発明の第 5の見地によれば、前記選択された部材は更に、
炭化物、炭窒化物の少なくとも一種の析出物の存在率が面積比で 15%以上 35%以 下である。
本発明の第 6の見地によれば、前記選択された部材は更に、
前記析出物は、 M C型、 M C型、 M (C, N)型、 M (C, N)型の複炭窒化物
7 3 23 6 7 3 23 6 の少なくとも一種からなる Fe— Cr, Mo系析出物である。
本発明の第 7の見地によれば、前記選択された部材は更に、
前記 Fe-Cr, Mo系析出物は、 Cr及び Moを合計で 30wt%以上含有する。
本発明の第 8の見地によれば、前記選択された部材は更に、
表層部の圧縮残留応力の最大値が 150MPa以上 2000MPa以下である。
本発明の第 9の見地によれば、前記転がり軸受は針状ころ軸受であり、前記選択さ れた部材は内輪及び転動体のうちの少なくとも 1つである。
本発明の第 10の見地によれば、前記選択された部材は更に、
平均残留オーステナイト量が体積比で 8%以下である。
本発明の第 11の見地によれば、前記選択された部材は更に、
平均残留オーステナイト量が Crと Moの含有量との和の 2. 5倍以下である。
なお、本発明の転がり軸受の転がり面は摩擦係数が 0. 10以上で、 100°Cの動粘 度が 8cst以下の潤滑油で潤滑されることが好ましい。
また、本発明の転がり軸受は、エンジンからの動力回転軸支持用の転がり軸受に適 用できる。
また、本発明の転がり軸受は、ベルト式無段変速機のベルトを巻き付けるプーリの 軸を支持するために用いることができる。
さらに、浸炭窒化処理を行った場合は、表面の窒素濃度が表面の窒素濃度が 0. 1 wt%以上であると耐磨耗性がより向上し、 0. 5wt%を超えると研削加工が困難にな る可能性があるので、表面の窒素濃度が 0. lwt%以上、 0. 5wt%以下とすることが 好ましぐ表面の窒素濃度が 0. 2wt%以上、 0. 3wt%以下とすることがより好ましい 以下、本発明の第 1の数値限定の臨界的意義について詳細に説明する。 〔Cの含有率 (質量比): 0. 2-0. 6%〕
炭素)は、基地に固溶して、焼入れおよび焼戻し後の強度を増加させるとともに 、 Fe、 Cr、 Mo、 V等の炭化物形成元素と結合して炭化物や炭窒化物を形成し、耐 摩耗性を向上させるために有効な元素である。 Cの含有率が 0. 2%未満であると、 δ フェライトが生じて靱性が低下する場合がある。また、硬化層を十分な深さまで形成 するための浸炭又は浸炭窒化処理の時間が増加して、コストの著しい上昇を招く場 合がある。
[0020] なお、 Cの含有率の好ましい範囲は、 0. 25-0. 5%である。
[0021] 〔Crの含有率(質量比): 2. 5-7. 0%]
Cr (クロム)は、基地に固溶して、焼入れ性、焼戻し軟化抵抗性、耐食性、および転 力 Sり疲労寿命を向上させるために有効な元素である。また、 Cや N (窒素)等の侵入型 固溶元素を動き難くして基地組織を安定化させるとともに、応力場への水素集積に 起因する早期剥離を抑制するために有効な元素でもある。さらに、 Crを添加すること で、より高硬度の (Fe, Cr)
3
C又は (Fe, Cr) C等の複炭化物や、 (Fe, Cr) (C, N)又は (Fe, Cr)
7 3 3 7
(C, N) 等の複炭窒化物が鋼中に微細に分布するようになるため、耐摩耗性を向上
3
さ甘る作用ちある。
[0022] Crの含有率が 7. 0%を超えると、冷間加工性、被削性、および浸炭処理性が低下 して、コストの著しい上昇を招く場合がある。また、粗大な共晶炭化物や共晶炭窒化 物が形成して、転がり疲労寿命や強度を著しく低下させる場合がある。なお、 Crの含 有率の好ましい範囲は、 2. 5-6. 0%である。
[0023] 〔Mnの含有率(質量比) : 0. 5—2. 0%]
Mn (マンガン)は、製鋼時の脱酸剤として作用するとともに、基地に固溶して Ms (マ ルテンサイト変態)点を降下させて残留オーステナイト量を確保したり、焼入れ性を向 上させるために有効な元素である。 Mnの含有率が 2. 0%を超えると、冷間加工性や 被削性を低下させるだけでなぐマルテンサイト変態開始温度を著しく低下させるた め、浸炭処理後に多量の残留オーステナイトが残存して十分な硬さが得られなくなる 場合がある。なお、 Mnの含有率の好ましい範囲は、 0. 8-1. 5%であり、さらに好ま しい範囲は、 0. 8— 1. 2%である。
[0024] 〔Siの含有率 (質量比): 0. 1-1. 5%]
Si (ケィ素)は、 Mnと同様に、製鋼時の脱酸剤として作用するとともに、 Crや Mnと 同様に、基地に固溶してマルテンサイトを強化させるため、軸受寿命向上に有効な 元素である。この効果を得るために、 Siの含有率は 0. 1%以上とする必要がある。一 方、 Siの含有率が 1. 5%を超えると、被削性、鍛造性、冷間加工性および浸炭処理 性を低下させる場合がある。なお、 Siの含有率の好ましい範囲は、 0. 1-0. 7%であ る。
[0025] 〔Moの含有率(質量比) : 0. 5-3. 0%]
Mo (モリブデン)は、 Crと同様に、基地に固溶して焼入れ性、焼戻し軟化抵抗性、 耐食性、および転がり疲労寿命を向上させるために有効な元素である。また、 Crと同 様に、 Cや N等の侵入型固溶性元素を動き難くして組織を安定化させるとともに、応 力場への水素集積に起因する早期剥離を抑制するために有効な元素でもある。さら に、 Mo
2
C等の微細炭化物や Mo (C, N)等の微細炭窒化物を形成して、耐摩耗性を向上さ
2
甘る作用ちある。
Moの含有率が 3. 0%を超えると、冷間加工性や被削性が低下して、コストの著し い上昇を招く場合がある。また、粗大な共晶炭化物や共晶炭窒化物を形成して、転 力 Sり疲労寿命や強度を著しく低下させる場合がある。なお、 Moの含有率の好ましい 範囲は、 0. 5-1. 5%である。
[0026] 〔Vの含有率 (質量比): 2. 0%以下〕
V (バナジウム)は、炭化物、窒化物、および炭窒化物を形成してこれらに固溶した り、 VC等の微細炭化物、 VN等の微細窒化物、および V (C, N)等の微細炭窒化物 を形成するため、強度および耐摩耗性の向上に有効な元素である。また、 Vは、 Cr や Moと同様に、 Cや N等の侵入型固溶元素を動き難くして組織を安定化させるとと もに、応力場への水素集積に起因する早期剥離を抑制するために有効な元素でも ある。
この効果を得るために、 Vの含有率は出来る限り多くすることが好ましいが、含有率 が多すぎると、冷間加工性や被削性が低下して、コストの著しい上昇を招く場合があ る。また、粗大な共晶炭化物や共晶炭窒化物を形成して、転がり疲労寿命や強度を 著しく低下させる場合がある。よって、 Vの含有率の上限は、 2. 0%とした。
[0027] 〔Niの含有率 (質量比): 2. 0%以下〕
Ni (ニッケル)は、オーステナイトを安定ィ匕させるとともに、 δフェライトの形成を抑え 、靱性を向上させるために有効な元素である。一方、 Niの含有率が多すぎると、多量 の残留オーステナイトが残存して、十分な焼入れ硬さが得られなくなるため、その上 限は 2. 0%とした。
[0028] 〔熱処理について〕
まず、上述した鋼力もなる素材を、鍛造又は切削により所定形状に加工した後、浸 炭又は浸炭窒化処理を行う。この浸炭又は浸炭窒化処理は、例えば、雰囲気温度 9 00— 960°Cで、浸炭処理では RXガス +エンリッチガスを、浸炭窒化処理では RXガ ス +エンリッチガス +アンモニアガスを導入した炉内で、数時間加熱保持することに より行う。
[0029] 次に、焼入れ処理および焼戻し処理を行うが、浸炭又は浸炭窒化処理の直後に焼 入れを行うと、主として、粒径の大きな残留オーステナイトとレンズ状のマルテンサイト とからなる組織となり、寿命改善効果が得られ難い。このため、浸炭又は浸炭窒化処 理後に、 A
1
変態点以下の温度でー且保持するか室温まで除冷した後に、再度 820— 900°Cに 加熱して焼入れを行い、 160— 200°C程度で焼戻しを行うことが好ましい。これにより 、浸炭処理を行ったものには微細で硬い炭化物力 浸炭窒化処理を行ったものには 微細で硬い炭化物および炭窒化物力 マルテンサイトとオーステナイトとからなるマト リックスに均一に分散した良好な組織が得られる。
[0030] 〔表層部の Cおよび Nの合計含有率 (質量比):1. 0-2. 5%〕
転がり面をなす表層部の Cおよび Nの合計含有率を 1. 0%以上、好ましくは 1. 2% 以上とすることで、前記表層部の硬さと、残留オーステナイト量と、炭化物および炭窒 化物の少なくとも一方力 なる析出物の存在率とを各々以下に示す範囲内にするこ とができる。一方、前記表層部の Cおよび Nの合計含有率が多すぎると、析出物が粗 大化して転がり疲労寿命を低下させるため、その上限は 2. 5%とした。
[0031] 〔表層部の硬さ: HRC60以上〕
転がり面の摩耗および表面疲労を軽減させて、転がり疲労寿命を向上させるために は、転がり面をなす表層部の硬さを、ロックウェル硬さで HRC60以上とする必要があ る。なお、前記表層部の硬さの好ましい範囲は、 HRC61以上である。
[0032] 〔表層部の残留オーステナイト量 (体積比): 15— 45%〕
転がり面をなす表層部の残留オーステナイトは、表面疲労を軽減させる作用がある 。この効果を得るために、残留オーステナイト量は 15%以上とする必要がある。一方 、前記表層部の残留オーステナイト量が 45%を超えると、硬さが低下したり、軸受を 組み立てる際に軌道輪に変形が生じる場合があるので、その上限は 45%とした。な お、前記表層部の残留オーステナイト量の好ましい範囲は、 20— 40%である。
[0033] 〔炭化物および炭窒化物の少なくとも一種力もなる析出物の存在率 (面積比): 15— 3 5%]
転がり面をなす表層部に存在する炭化物および炭窒化物は、転がり面において潤 滑膜の部分的な破断が生じ、トライボケミカル反応により生じた水素イオンが水素原 子として鋼中に侵入拡散した場合に、この水素原子をトラップして応力場への集積を 抑制する。
炭化物および炭窒化物の少なくとも一種力 なる析出物の転がり面内での存在率 が 15%未満であると、この効果が十分に得られない。一方、この析出物の存在率が 3 5%を超えると、炭化物および炭窒化物が粗大化し、転がり疲労寿命を低下させる。
[0034] 〔表層部の圧縮残留応力の最大値: 150— 2000MPa〕
転がり面における亀裂の発生および進展を抑制するために、浸炭処理または浸炭 窒化処理を施すことにより、転がり面をなす表層部の圧縮残留応力の最大値を 150 MPa以上とする必要がある。一方、前記表層部に最大値が 2000MPaを超える圧縮 残留応力を付与するためには、ショットピーユング処理等の機械力卩ェが必要となるた め、コストの上昇を招く。
[0035] 〔平均残留オーステナイト量について〕
残留オーステナイト量が多いと、モーメント荷重を受けた場合に変形が生じやすくな るとともに、エッジロードゃスキューが発生して軸受寿命が短くなるおそれがある。さら に、高温下で使用される場合には、残留オーステナイトが分解して寸法変化が生じる ため、すきまが減少して焼付きが生じるおそれがある。よって、平均残留オーステナイ ト量は 8体積%以下とする必要がある。
[0036] 次に、本発明の第 2見地による数値限定の臨界的意義について詳細に説明する。
〔Cの含有率 (質量比): 0. 8-1. 2%]
炭素)は、基地に固溶して、焼入れ及び焼戻し後の強度を増加させるとともに、 F e、 Cr、 Mo、 V等の炭化物形成元素と結合して炭化物や炭窒化物を形成し、耐摩耗 性を向上させるために有効な元素である。 Cの含有率が 1. 2%を超えると、製鋼時に 粗大な共晶炭化物や共晶炭窒化物が形成され易くなり、転がり疲労寿命や強度が 低下したり、鍛造性、冷間加工性、及び被削性が低下することによるコストの上昇を 招く場合がある。なお、 Cの含有率の好ましい範囲は、 0. 9-1. 1%である。
[0037] 〔Crの含有率(質量比): 2. 0-4. 0%]
Cr (クロム)は、基地に固溶して、焼入れ性、焼戻し軟化抵抗性、耐食性、及び転が り疲労寿命を向上させるために有効な元素である。また、 Cや N (窒素)等の侵入型 固溶元素を動き難くして基地組織を安定化させるとともに、応力場への水素集積に 起因する早期剥離を抑制するために有効な元素でもある。さらに、 Crを添加すること で、より高硬度の (Fe, Cr)
3
C又は (Fe, Cr) C等の複炭化物や、 (Fe, Cr) (C, N)又は (Fe, Cr)
7 3 3 7
(C, N) 等の複炭窒化物が鋼中に微細に分布するようになるため、耐摩耗性を向上
3
さ甘る作用ちある。
[0038] Crの含有率が 2. 0%未満であると、 Fe Cや Fe (C, N)が析出するため、早期剥
3 3
離が生じる。なお、 Crの含有率の好ましい範囲は、 2. 5-3. 5%である。
[0039] 〔Mnの含有率(質量比) : 0. 1-2. 0%]
Mn (マンガン)は、製鋼時の脱酸剤として作用するとともに、基地に固溶して Ms (マ ルテンサイト変態)点を降下させて残留オーステナイト量を確保したり、焼入れ性を向 上させるために有効な元素である。この効果を得るために、 Mnの含有率は 0. 1%以 上とする。一方、 Mnの含有率が 2. 0%を超えると、マルテンサイト変態開始温度を 大幅に低下させるため、浸炭処理後に多量の残留オーステナイトが残存して十分な 硬さが得られなくなったり、冷間加工性や被削性を低下させる場合がある。なお、上 述した観点から、 Mnの含有率の好ましい範囲は、 0. 5-1. 5%である。
[0040] 〔Siの含有率(質量比) : 0. 5-1. 5%]
Si (ケィ素)は、 Mnと同様に、製鋼時の脱酸剤として作用するとともに、基地に固溶 してマルテンサイトを強化させるため、焼入れ性を向上させるために有効な元素であ る。この効果を得るために、 Siの含有率は 1. 5%以下とした。また、通常、 Siは、軸受 鋼の被削性、鍛造性、及び冷間加工性等を低下させるという理由から、その含有率 は 0. 2-0. 5%となっている。しかし、焼戻し軟化抵抗性及び耐高温特性を向上さ せるために、本願では Siの含有率の下限を 0. 5%とした。なお、 Siの含有率の好まし い範囲は、 0. 8-1. 2%である。
[0041] 〔Moの含有率(質量比) : 0. 1-2. 0%]
Mo (モリブデン)は、 Crと同様に、基地に固溶して、焼入れ性、焼戻し軟化抵抗性 、耐食性、及び転がり疲労寿命を向上させるために有効な元素である。また、 Crと同 様に、 Cや N等の侵入型固溶性元素を動き難くして組織を安定化させるとともに、応 力場への水素集積に起因する早期剥離を抑制するために有効な元素でもある。さら に、 Mo
2
C等の微細炭化物や Mo (C, N)等の微細炭窒化物を形成して、耐摩耗性を向上さ
2
甘る作用ちある。
[0042] この効果を得るために、 Moの含有率は 0. 1%以上とする必要がある。 Moの含有 率は出来る限り多くすることが好ましいが、含有率が多すぎると、冷間加工性や被削 性が低下することによるコストの大幅な上昇を招いたり、粗大な共晶炭化物や共晶炭 窒化物を形成して、転がり疲労寿命や強度を大幅に低下させる場合がある。なお、 Moの含有率の好ましい範囲は、 0. 5-1. 5%である。
[0043] 〔転がり面に存在する炭化物及び炭窒化物について〕 通常、軸受鋼(SUJ1— 5)に含有される炭化物の大部分は、 M C (金属原子 3個と
3
炭素原子 1個からなる)型の Fe Cで表される。しかし、鋼に Crや Mo等の合金元素を
3
添加すると、炭化物の結晶構造が変化し、 M
3
C型の炭化物から、 M C型又は M C型の Fe - Cr, Mo系複炭化物に相変態する
7 3 23 6
。同様に、炭窒化物の結晶構造は、 M
3
(C, N)型の炭窒化物から、 M (C, N) 型又は M (C, N)
7 3 23 6
型の Fe— Cr, Mo系複炭窒化物に相変態する。
[0044] 本発明者らは、特にベルト式無段変速機用の転がり軸受について、上記の相変態 が起こる際に、ベルト式無段変速機用の転がり軸受の早期剥離が生じ易くなつている ことに着目した。そこで、上述した複炭化物及び複炭窒化物の少なくとも一種力もな る Fe— Cr, Mo系析出物を予め分散析出させて、ベルト式無段変速機の使用中に相 変態を生じ難くすることにより、ベルト式無段変速機用の転がり軸受に特有の早期剥 離を抑制できることを見出した。
この効果を得るために、転がり面における炭化物及び炭窒化物の少なくとも一種か らなる析出物のうちの面積比で 30%以上を、 M C
7 3
型又は M C型の複炭化物、及び M (C, N) 型又は M (C, N)
23 6 7 3 23 6 型の複炭窒化物の少なくとも一種からなる Fe— Cr, Mo系析出物とすることが好まし い。
[0045] [Fe-Cr, Mo系析出物の Cr及び Moの合計含有率(質量比): 30%以上〕
Feの融点が 1536°Cで、 Crの融点が 1857°Cで、 Moの融点が 2617°Cであるため 、 M C型又は M C
7 3 23 6
型の Fe— Cr, Mo系複炭化物や、 M (C, N) 型又は M (C, N)
7 3 23 6
型の Fe— Cr, Mo系複炭窒化物は、 M C型の Fe Cや M (C, N)型の Fe
3 3 3 3
(C, N)よりも融点が高い。
よって、 Fe-Cr, Mo系析出物の Cr及び Moの合計含有率を 30%以上とすることで 、 Fe-Cr, Mo系析出物の融点をさらに高くできるため、相変態をさらに抑制できる。
[0046] 〔その他の不可避成分〕
0 (酸素)及び Ti (チタン)は、酸ィ匕物系介在物や Ti系介在物となり、転がり疲労寿 命を低下させるため、これらの含有率は少ないことが好ましい。このため、 oの含有率 は 12ppm以下とし、 Tiの含有率は 30ppm以下とすることが好ましい。
図面の簡単な説明
[0047] [図 1]は、本発明に係る転がり軸受の一実施形態である深溝玉軸受の構造を示す部 分縦断面図である。
[図 2]は、図 1に示した実施形態中の合金鋼中の Crの含有量と軸受の L 寿命との相
10 関を示すグラフである。
[図 3]は、実施形態で使用した寿命試験装置を示す概略構成図である。
[図 4]は、エンジン補機の一例であるオルタネータを示す断面図である。
[図 5]は、プラネタリーギヤ装置の分解斜視図である。
[図 6]は、図 5のプラネタリーギヤ装置の要部の断面図である。
[図 7]は、プラネタリーギヤ装置が組み込まれた自動変速機の断面図である。
[図 8A]は、減速機構の作動原理を説明する図である。
[図 8B]は、減速機構の作動原理を説明する図である。
[図 8C]は、減速機構の作動原理を説明する図である。
[図 8D]は、減速機構の作動原理を説明する図である。
[図 9]は、プラネタリーシャフトの耐久試験の方法を説明する断面図である。
[図 10]は、実施形態で寿命試験に使用したベルト式無段変速機を示す概略構成図 である。
符号の説明
[0048] 1 内輪
2 外輪
3 玉 (転動体)
120 オルタネータ(エンジン補機)
121 回転軸
122 プーリ
123, 124 転がり軸受
203 プラネタリーギヤ装置 211 サンギヤ
212 リングギヤ
213 プラネタリーギヤ
214 キヤリャ
215 プラネタリーシャフト
217 ニードルローラー
220 プラネタリーシャフト
221 外輪
222 ニードルローラー
301 プライマリプーリ(入力軸側プーリ)
301a, 301b 転がり軸受
302 セカンダリプーリ (出力軸側プーリ)
302a, 302b 転力り軸受
303 ベノレ卜
310 入力軸
320 出力軸
発明を実施するための最良の形態
本発明に係る転がり軸受の第 1の実施の形態を、図面を参照しながら詳細に説明 する。
図 1の深溝玉軸受は、内輪 1と、外輪 2と、内輪 1及び外輪 2の間に転動自在に配さ れた複数の玉 (転動体) 3と、を備えている。内輪 1,外輪 2,及び玉 3の少なくとも 1つ は、炭素を 0. 2質量%以上 0. 6質量%以下、クロムを 2. 5質量%以上 7質量%以下 、マンガンを 0. 5質量%以上 2質量%以下、ケィ素を 0. 1質量%以上 1. 5質量%以 下、モリブデンを 0. 5質量%以上 3質量%以下含有する合金鋼で構成されている。 そして、浸炭処理又は浸炭窒化処理が施されていて、内輪 1,外輪 2の軌道面や玉 3 の転動面には、この熱処理により硬化された表面層が形成されている。また、表面の 残留オーステナイト量は 15体積%以上 45体積%以下であり、平均残留オーステナ イト量 (単位は体積0 /0)は、合金鋼中のクロムの含有量 (単位は質量0 /0)とモリブデン の含有量 (単位は質量%)との和の 2. 5倍以下である。このような深溝玉軸受は、高 温下且つ異物混入潤滑下で使用されても、寸法安定性に優れ長寿命である。
実施例 1
[0050] 以下に、実施例を示して、本発明をさらに具体的に説明する。表 1に示すような組 成を有する種々の合金鋼で構成された内輪,外輪と、 JIS鋼種 SUJ2で構成された転 動体とを用意して、呼び番号 6206の深溝玉軸受を製造し、耐久試験を行った。なお 、合金鋼の C, Si, Mn, Cr, Mo以外の成分は、鉄及び不可避の不純物である。また 、表 1の鋼種 Hは、 JIS鋼種 SUJ2である。さらに、表 1中の数値に付された下線は、そ の数値が本発明の推奨範囲力 外れていることを意味する。
[0051] [表 1]
Figure imgf000019_0001
内輪及び外輪は、合金鋼を所定の寸法に旋削加工し、後述のような浸炭処理又は 浸炭窒化処理を施し、さらに所定温度で焼入れ,焼戻しを施した後に、仕上げ研削 を施すことにより製造した。浸炭処理の条件は、雰囲気が RXガスとエンリッチガスの 混合物、処理時間が約 3— 5時間、処理温度が 900— 960°Cである。そして、常温ま で空冷した後に、 840°Cで 1時間油焼入れを行い、さらに 180°Cで 2時間焼戻しを行 つた。浸炭窒化処理の条件は、雰囲気が RXガス,エンリッチガス,及びアンモニアガ ス(5%)の混合物、処理時間が約 3— 5時間、処理温度が 900— 960°Cである。そし て、油冷した後に、浸炭処理の場合と同条件で焼入れ,焼戻しを行った。
[0053] 得られた内輪及び外輪の性状 (表面の残留オーステナイト量( γ )及び平均残留
R
オーステナイト量(γ ;) )を、表 2にまとめて示す。また、合金鋼中のクロムの含有
R mean
量 Cr%とモリブデンの含有量 Mo%との和(以降は「Cr% + Mo%」と記す)、及び、 平均残留オーステナイト量( γ
R
)と Cr% + Mo%との比(γ Z[Cr% + Mo%])を、表 2にまとめて示す。なお mean R mean
、残留オーステナイト量 R
)は X線回折法で測定した。また、表 2中の数値に付された下線は、その数値が本発 明の推奨範囲力 外れていることを意味する。
[0054] [表 2]
Figure imgf000021_0002
Figure imgf000021_0003
Figure imgf000021_0001
次に、耐久試験の方法について説明する。前述の内輪,外輪,及び転動体を組み 立てて得た深溝玉軸受を、油浴潤滑下、アキシアル荷重 3. 5GPa、回転速度 3000 min—1の条件で回転させた。そして、内輪,外輪の少なくとも一方にフレーキングや焼 付きが生じた時点を寿命とし、 90%残存寿命 (L 寿命)を測定した。 1500時間回転
10
させてもフレーキングや焼付きが生じな力つた場合は、 L 寿命は 1500時間とした。 なお、潤滑油としては、 ISO粘度グレードが ISO VG150である潤滑油を用い、潤滑 油の温度は 160°Cとした。また、この潤滑油には、異物として直径 74— 147 mの鋼 粉 (硬さ Hv600)を 300ppm添カ卩した。
[0056] 耐久試験の結果を表 2に示す。表 2から分力るように、実施例 1一 7は、比較例 1一 1 1と比べて格段に長寿命であった。特に、実施例 1一 6は、合金鋼中の Crの含有量, 表面の残留オーステナイト量,及び平均残留オーステナイト量(γ
R
/ [Cr% + Mo%]の値)の全てが好適な値であるので、高温下且つ異物混入潤 mean
滑下においても、フレーキング及び焼付きが全く生じな力つた。また、実施例 7は、 Cr の含有量が好適な範囲内ではあるものの若干多いので、非晶炭化物が生成して実 施例 3— 6よりも寿命が若干短力つた。
[0057] これに対して、比較例 1一 9は、合金鋼の組成が本発明の範囲から外れているので 、実施例 1一 7と比べて短寿命であった。比較例 1, 2は SUJ2製であり、比較例 1の場 合はずぶ焼入れが施してあり、比較例 2の場合は浸炭窒化処理が施してある。比較 例 2は浸炭窒化処理が施してあるため、比較例 1よりも長寿命であつたが、各実施例 と比べると著しく短寿命であった。
[0058] また、比較例 3, 4は、表面の残留オーステナイト量及び平均残留オーステナイト量
( y
R mean Z[Cr% + Mo%]の値)は好適な範囲内であるものの、 Crの含有量が好適 な範囲力も外れているため、短寿命であった。さらに、比較例 5— 9は、 C, Si, Mn, Moのいずれかの含有量が好適な範囲力 外れているため、短寿命であった。さらに 、比較例 10, 11の場合は、合金鋼の組成は好適である力 比較例 10については平 均残留オーステナイト量(0
R
Z[Cr% + Mo%]の値)が好適な値ではなぐ比較例 11については表面の残留 mean
オーステナイト量が好適な値ではな!、ため、焼付きが生じ短寿命であった。
[0059] ここで、合金鋼中の Crの含有量と軸受の L 寿命との相関を示すグラフを、図 2に示
10
す。このグラフは、実施例 1一 7及び比較例 3, 4の試験結果をプロットしたものである 。このグラフから分力るように、 Crの含有量が 2. 5質量%以上 7質量%以下であると 軸受が長寿命であり、 2. 5質量%以上 6質量%以下であるとより長寿命であった。 実施例 2 [0060] 次に、本発明の効果を第 2の実施例および比較例に基づき検証する。
まず、表 3に示す各構成の鋼カゝらなる素材 A1— Olを、呼び番号 6303の単列深溝 玉軸受(内径 17mm、外径 47mm、幅 14mm)用の内輪および外輪の形状に切り出 した。表 3において、含有成分の含有率が本発明の範囲から外れるものには下線を 施した。
[0061] [表 3]
Figure imgf000024_0001
Gl以外の素材力 なる内輪および外輪には、熱処理として、 RXガス +ェ ンリッチガス +アンモニアガスの雰囲気(カーボンポテンシャル Cp : 0. 8—1. 2、アン モ-ァガス:3— 5%)下で、 900— 960°Cにカロ熱し、 2— 8時間保持することにより浸 炭窒化を行った後、油焼入れを行い、さらに、 160— 180°Cの大気中で 1. 5— 2時 間保持することにより焼戻しを行った。
[0063] 一方、素材 G1からなる内輪および外輪には、熱処理として、 840°Cに加熱し、 20 一 60分間保持することにより焼入れを行った後、油焼入れを行い、さらに、 170°Cの 大気中で 2時間保持することにより焼戻しを行った。
このような熱処理により、 G1以外の素材力 なる内輪および外輪には、いずれも表 層部に炭化物、窒化物、および炭窒化物が分散析出され、素材 G1からなる内輪お よび外輪には、表層部に炭化物が分散析出された。そして、熱処理後の各素材に、 研削および表面仕上げ加工を行った。
[0064] このようにして得られた内輪および外輪について、軌道面(転がり面)をなす表層部 の Cおよび Nの合計含有率(質量比)を、軌道面力 437 m (玉の直径 8. 73mm の 5%)の深さまでの部分で、電子線マイクロアナライザにより測定した。
また、前記表層部の硬さ(ロックウェル硬さ)を、 JIS Z 2245に規定されたロックゥ エル硬さ試験法により測定した。
[0065] さらに、前記表層部の残留オーステナイト量(体積比)を、軌道面から 437 μ mの深 さまでの部分で、 X線回折装置により測定した。
さらに、前記表層部の残留応力の最大値を、軌道面力 437 mの深さまでの部 分で、 X線回折装置により測定した。この装置で測定された残留応力の最大値は、 X 線侵入深さ内での X線減衰の重みのカゝかった平均値である。
[0066] さらに、炭化物および炭窒化物力 なる析出物(以下、「軌道面における炭化物等 力もなる析出物」と称す。)の軌道面内での存在率 (面積比)を、以下のように測定し た。
まず、表面力卩ェを行った後の軌道面を腐食液 (4gのピクリン酸 + 100mlのエタノー ル)で腐食させた後、光学顕微鏡を用い、 0. 5 m以上の炭化物および炭窒化物に ついて、 30視野を倍率 1000倍で観察した。そして、観察像を画像処理することによ り、各視野毎に炭化物および炭窒化物の存在率 (面積比)を測定し、 30視野の平均 値を算出した。
これらの測定結果について、同じ構成の各 10体の内輪および外輪の測定結果から 算出した平均値を、表 4に併せて示す。表 4において、各構成が本発明の範囲から 外れるものには下線を施した。
[0067] 次に、鋼の糸且成および熱処理が表 4に示すようにそれぞれ異なる No. 101— No.
122の内輪および外輪と、高炭素クロム軸受鋼 2種 (SUJ2)製で浸炭窒化処理が施 された玉と、 6— 6ナイロン製の保持器とからなる試験軸受を、図 3に示す寿命試験装 置 10に組み込み、荷重を P (負荷荷重) ZC (動定格荷重) =0. 10、試験温度を 80 °Cとした条件で寿命試験を行った。ここで、この試験軸受は、各 10体ずつ用意し、い ずれも内部すきまを 10— 15 mとした。
[0068] 図 3に示すように、この試験装置 110では、回転軸 103を支持軸受 104と試験軸受 105とで支持し、回転軸 103の一端に固定された従動プーリ 106と駆動プーリ(回転 軸 103と平行に設けた、モータにより回転駆動される駆動軸に固定されたプーリで、 図 3には表示されていない。 )との間に掛け渡した無端ベルト 107にラジアル荷重 F
P
を付与することにより、回転軸 3を介して試験軸受 104にラジアル荷重を付与している
[0069] 回転軸 103の他端は支持軸受 104で支持され、支持軸受 104の外輪は第 1ハウジ ング 102Aに内嵌固定されている。第 1ハウジング 102Aは、基台 101に固定されて いる。第 1ハウジング 102Aの試験軸受 105側の端部に第 2ハウジング 102Bが固定 され、第 2ハウジング 102Bに試験軸受 105の外輪が内嵌固定されている。第 1ハウ ジング 102Aおよび第 2ハウジング 102Bは、第 1ハウジング 102Aによる支持軸受 10 4の支持剛性が高ぐ第 2ハウジング 102Bによる試験軸受 105の支持剛性が低くな るように構成されている。また、第 2ハウジング 102Bの上面に、試験軸受 105の振動 を検出する振動計 108が取り付けられている。
[0070] 本実施形態では、例えば図 4に示すオルタネータ(エンジン補機) 120でエンジン 力もの動力を受けるベルトが巻き付けられたプーリ 122の回転軸 121を支持する転が り軸受 123, 124を、現状よりも苛酷な環境下で使用することを想定して行った。つま り、図 3に示す試験軸受 105にラジアル荷重を付与した状態で、 9秒毎に回転速度を 9000min— 1と 18000min— 1とに切り換えて急加減速試験を行った。
[0071] この寿命試験は、試験軸受の内輪又は外輪に剥離が生じるまで行い、この剥離が 生じるまでの時間を寿命時間として測定した。そして、同じ構成の 10体の試験軸受 の結果より、ワイブル分布関数に基づいて短寿命側から 10%の内輪又は外輪に剥 離が生じるまでの総回転時間を求め、これを寿命 (L 寿命)とした。この結果は、表 4
10
に併せて示す。
また、これらの試験軸受の計算寿命は 1350時間であるため、 1500時間でこの寿 命試験を打ち切った。そして、打ち切り時間になっても内輪および外輪のいずれにも 剥離が生じな力つた場合には、 L 寿命を 1500時間とした。
10
[0072] [表 4]
表 4
Figure imgf000028_0001
表 4から分力るように、内輪および外輪が本発明の範囲を満たす構成の No. 101 一 107の試験軸受は、内輪および外輪の少なくとも一つが本発明の範囲力も外れる No. 108— 122の試験軸受と比較して、長寿命であった。
No. 101— 107のうち、軌道面をなす表層部の圧縮残留応力の最大値が本発明 の好ましい範囲(150— 2000MPa)力 外れる No. 107は、圧縮残留応力の最大 値が前記範囲を満たす No. 101— 106と比較して短寿命であった。これにより、軌道 面をなす表層部の圧縮残留応力の最大値を 150— 2000MPaとすることでさらに長 寿命となることが分かる。
[0074] 一方、 No. 108, 109では、軌道面をなす表層部における炭化物等力もなる析出 物の存在率が本発明の範囲(15— 35面積%)から外れていたため、計算寿命よりも 短寿命であった。
No. 110, 111では、軌道面をなす表層部の残留オーステナイト量が本発明の範 囲(15— 45体積%)から外れていたため、計算寿命よりも短寿命であった。
No. 112, 113では、軌道面をなす表層部の残留オーステナイト量と、炭化物等か らなる析出物の存在率とが本発明の範囲カゝら外れていたため、 No. 108— 111より も短寿命であった。
[0075] No. 114では、 SUJ2製であり、 Cの含有率が本発明の範囲よりも多ぐ Crの含有 率が本発明の範囲よりも少なぐ軌道面をなす表層部の残留オーステナイト量と、残 留応力の最大値と、炭化物等力 なる析出物の存在率とが本発明の範囲力 外れて いたため、計算寿命よりも短寿命であった。
No. 115では、使用した素材 HIをなす鋼の Crの含有率が本発明の範囲よりも少 なぐ Cおよび Nの合計含有率が本発明の範囲カゝら外れていたため、軌道面をなす 表層部の硬さが十分に得られず、計算寿命よりも短寿命であった。
[0076] No. 116では、使用した素材 IIをなす鋼の Crの含有率が本発明の範囲よりも多く 、軌道面をなす表層部の残留オーステナイト量と、炭化物等力 なる析出物の存在 率とが本発明の範囲力も外れていたため、計算寿命よりも短寿命であった。
No. 117では、使用した素材 J1をなす鋼の Cの含有率が本発明の範囲よりも多ぐ Cおよび Nの合計含有率と、炭化物等からなる析出物の存在率とが本発明の範囲か ら外れていたため、計算寿命よりも短寿命であった。
[0077] No. 118では、使用した素材 K1をなす鋼の Siの含有率が本発明の範囲よりも多く 、軌道面をなす表層部の圧縮残留応力の最大値と、炭化物等力 なる析出物の存 在率とが本発明の範囲力も外れていたため、計算寿命よりも短寿命であった。
No. 119では、使用した素材 L1をなす鋼の Mnの含有率が本発明の範囲よりも多 ぐ軌道面をなす表層部の硬さと、残留オーステナイト量とが本発明の範囲力 外れ ていたため、計算寿命よりも短寿命であった。
[0078] No. 120では、使用した素材 Mlをなす鋼の Moの含有率が本発明の範囲よりも多 ぐ粗大な結晶炭化物および共晶炭窒化物が発生したため、計算寿命よりも短寿命 であった。
No. 121では、使用した素材 N1をなす鋼の Vの含有率が本発明の範囲よりも多く 、粗大な共晶炭化物および共晶炭窒化物が発生したため、計算寿命よりも短寿命で めつに。
No. 122では、使用した素材 Olをなす鋼の Niの含有率が本発明の範囲よりも多く 、軌道面をなす表層部の Cおよび Nの合計含有率と、硬さとが本発明の範囲から外 れていたため、計算寿命よりも短寿命であった。
[0079] 以上の結果より、転がり軸受の内輪および外輪を本発明の範囲を満たす No. 101 一 107の構成とすることによって、エンジン補機用の転がり軸受の使用環境がさらに 苛酷になっても、長寿命が得られることが分力つた。
実施例 3
[0080] 更に、本発明に係るプラネタリーギヤ装置に用いる針状ころ軸受である第 3の実施 の形態を、図面を参照しながら詳細に説明する。図 5はプラネタリーギヤ装置の分解 斜視図であり、図 6は、図 5のプラネタリーギヤ装置の要部の断面図である。また、図 7は、図 5のプラネタリーギヤ装置が組み込まれた自動変速機の断面図である。 図示しないエンジンから出力されるトルクは、コンバータ 202を介して自動変速機 2 01に伝達され、複数列のプラネタリーギヤ装置 203が組み合わされてなる減速機構 によって複数段に減速される。そして、減速されたトルクは、出力軸 204に連結された 図示しないドライブ及びレーンに出力されるようになっている。
[0081] プラネタリーギヤ装置 203は、図 5に示すように、図示しない軸が挿通されたサンギ ャ 211と、サンギヤ 211と同心に配されたリングギヤ 212と、サンギヤ 211及びリング ギヤ 212に嚙み合う複数(図 5においては 3個)のプラネタリーギヤ 213と、サンギヤ 2 11及びリングギヤ 212と同心に配されプラネタリ一ギヤ 213を回転自在に支持するキ ャリャ 214と、を備えている。
[0082] 図 5のプラネタリーギヤ装置 203の要部(すなわちプラネタリーギヤ用軸受の部分) の断面図である図 6に示すように、プラネタリーギヤ 213の中心には、キヤリャ 214に 固定されたプラネタリーシャフト 215が揷通されており、また、プラネタリーギヤ 213の 内周面に形成された軌道面とプラネタリーシャフト 215の外周面に形成された軌道面 との間には、複数の-一ドルローラー 217が転動自在に配されていて、これによりプ ラネタリーギヤ 213はプラネタリーシャフト 215を軸として回転自在とされている。
[0083] このように、プラネタリーギヤ 213,プラネタリーシャフト 215,及び-一ドルローラー 217からラジアル針状ころ軸受が構成されており、このラジアル針状ころ軸受がブラ ネタリーギヤ用軸受をなしている。
なお、ニードルローラー 217は、図 6に示すように単列でもよいが複列でもよい。ま た、プラネタリーギヤ用軸受は、保持器を有するケージアンドローラータイプの針状こ ろ軸受でもよい。さらに、本実施形態におけるプラネタリーシャフト 215が、本発明の 構成要件である内輪に相当し、プラネタリーギヤ 213が同じく外輪に相当し、ニード ルローラー 217が同じく転動体に相当する。
[0084] 本実施形態においては、プラネタリーシャフト 215及び-一ドルローラー 217の少 なくとも一方は、炭素を 0. 2質量%以上 0. 6質量%以下、クロムを 2. 5質量%以上 7 質量%以下、マンガンを 0. 5質量%以上 2質量%以下、ケィ素を 0. 1質量%以上 1 . 5質量%以下、モリブデンを 0. 5質量%以上 3質量%以下含有する合金鋼で構成 されている。そして、浸炭窒化処理 (又は浸炭処理),焼入れ,焼戻しの順の熱処理 が施されており、表面の炭素濃度と窒素濃度との和が 1質量%以上 2. 5質量%以下 とされている。さらに、表面硬さは HRC60以上、表面の残留オーステナイト量は 15 体積%以上 45体積%以下となっている。さらにまた、平均残留オーステナイト量は 8 体積%以下である。
[0085] このようなプラネタリーギヤ用軸受は、高温,高速条件下や希薄潤滑下で使用され ても焼付き,力じり等が生じに《長寿命である。また、高温下においても、残留ォー ステナイトの分解による寸法変化が生じにくい。さらに、モーメント荷重を受けた場合 にも変形や損傷が生じにくい (特に、プラネタリーシャフト 215に変形が生じにくい)。
[0086] 熱処理の条件は特に限定されるものではないが、一例を以下に示す。前述の合金 鋼を鍛造又は切削加工により所望の形状に成形した後、浸炭窒化処理 (又は浸炭処 理)を施す。浸炭窒化処理 (又は浸炭処理)は、例えば、 RXガス,エンリッチガス,及 びアンモニアを導入した炉内で 900— 960°C程度に数時間保持することにより行わ れる。この処理の後にそのまま焼入れを行うと、旧オーステナイトの粒径が大きぐ主 として大きな残留オーステナイト粒とレンズ状のマルテンサイトとからなる組織になつ て、寿命が不十分となる傾向がある。よって、浸炭窒化処理 (又は浸炭処理)の後に は、ー且 A
1
変態点以下に長時間保持するか又は室温まで冷却した後に、再度 820— 900°C程 度に加熱して焼入れを行い、最終的に 160— 200°C程度で焼戻しを行う。なお、この ような熱処理を施した場合には、微細且つ高硬度の炭化物や炭窒化物が、マルテン サイト及びオーステナイトからなる基地組織に均一に分散した良好な組織を呈する。
[0087] ここで、前述の減速機構の作動原理を、図 8を参照しながら説明する。まず、 1速の 場合は、図 8の(a)に示すように、サンギヤ 211をドライブ側とし、プラネタリーギヤ 21 3 (キヤリャ 214)をドリブン側とし、リングギヤ 212を固定することによって、大きな減速 比が得られる。 2速の場合は、図 8の(b)に示すように、サンギヤ 211を固定し、プラネ タリーギヤ 213 (キヤリャ 214)をドリブン側とし、リングギヤ 212をドライブ側とすること によって、中程度の減速比が得られる。 3速の場合は、図 8の(c)に示すように、サン ギヤ 211を固定し、プラネタリーギヤ 213 (キヤリャ 214)をドライブ側とし、リングギヤ 2 12をドリブン側とすることによって、小さな減速比が得られる。なお、後退の場合は、 図 8の(d)に示すように、サンギヤ 211をドリブン側とし、プラネタリーギヤ 213 (キヤリ ャ 214)を固定し、リングギヤ 212をドライブ側とすることによって、入力されたトルクに 対して出力されるトルクの回転方向を逆転させることができる。
[0088] 〔実施例〕
以下に、実施例を示して、本発明をさらに具体的に説明する。表 5に示すような組 成を有する種々の合金鋼で構成されたプラネタリーシャフト(外径 12. 2mm、長さ 28 . 2mm)を用意して、耐久試験を行った。なお、合金鋼の C, Si, Mn, Cr, Mo以外 の成分は、鉄及び不可避の不純物である。また、表 5の鋼種 G2は、 JIS鋼種 SUJ2で ある。
[0089] [表 5]
Figure imgf000033_0001
タリーシャフトは、合金鋼を所定の寸法に旋削加工し、後述のような浸炭処理 又は浸炭窒化処理を施し、さらに所定温度で焼入れ,焼戻しを施した後に、仕上げ 研削を施すことにより製造した。浸炭処理の条件は、雰囲気が RXガスとエンリッチガ スの混合物、処理時間が約 3— 5時間、処理温度が 820— 950°Cである。浸炭窒化 処理の条件は、雰囲気が RXガス,エンリッチガス,及びアンモニアガス(5%)の混合 物、処理時間が約 3— 5時間、処理温度が 820— 950°Cである。
得られた各プラネタリーシャフトの性状 (表面の残留オーステナイト量,表面硬さ等) を、表 6にまとめて示す。なお、プラネタリーシャフトの表面の炭素濃度及び窒素濃度 は、電子プローブ微量分析装置 (EPMA)で測定した値であり、表面の残留オーステ ナイト量(γ
R
)は X線回折装置で測定した値である。
[表 6]
¾ 9
Figure imgf000035_0001
[0092] 次に、耐久試験の方法について、図 9を参照しながら説明する。
外輪 221にプラネタリーシャフト 220が揷通されており、プラネタリーシャフト 220の 外周面に形成された軌道面と外輪 221の内周面に形成された軌道面との間に転動 自在に介装された複数の-一ドルローラー 222 (外径 2mm、長さ 15mm)によって、 プラネタリーシャフト 220が回転可能とされている。このプラネタリーシャフト 220の外 周面(円筒面)には図示のように潤滑油の給油孔 220aが開口しており、端面の開口 部 220bに注入された潤滑油が給油孔 220aから軌道面に給油されるようになってい る。
[0093] ラジアル荷重 4200N、回転速度 lOOOOmin— 潤滑油の温度 150°Cの条件でプラ ネタリーシャフト 220を回転させ、はくりや焼付きが生じて回転時の振動が初期の 2倍 になった時点、又は、プラネタリーシャフト 220の温度が急激に上昇して 185°Cに達 した時点を寿命として評価した。なお、ラジアル荷重は、図示しないサポート軸受を介 して外輪 221に負荷した。また、供給する潤滑油の温度は 150°Cであるが、試験中 のプラネタリーシャフト 220の温度は、発熱によってさらに 10°C程度高温であると推 測される。
耐久試験の結果を表 6に示す。表 6から分力るように、実施例 201— 208は、比較 例 201— 211と比べて格段に長寿命であった。特に、実施例 201— 206は、平均残 留オーステナイト量が 8体積%以下であるので、高温下且つモーメント荷重を受ける 条件下においても、焼付き及びはくりが全く生じな力つた。
[0094] これに対して、比較例 201— 209は、合金鋼の組成が本発明の範囲から外れてい るので、実施例 201— 208と比べて短寿命であった。比較例 201, 202は SUJ2製で あり、比較例 201の場合はずぶ焼入れが施してあり、比較例 202の場合は浸炭窒化 処理が施してあるが、大きな効果は見られな力つた。また、比較例 210, 211の場合 は、合金鋼の組成は好適であるが、比較例 210については表面の炭素濃度と窒素 濃度との和が好適な値ではなぐ比較例 211については、表面の炭素濃度と窒素濃 度との和、表面硬さ、表面の残留オーステナイト量、平均残留オーステナイト量が全 て好適な値ではないため、短寿命であった。
実施例 4
[0095] 以下に、本発明の効果を第 4の実施例及び比較例に基づき検証する。
まず、表 7に示す各構成の鋼カゝらなる素材 A3— Q3を、呼び番号 6208の深溝玉軸 受(内径 40mm、外径 80mm、幅 18mm)用の内輪及び外輪の形状に切り出した。こ のとき、内輪及び外輪の軌道溝の曲率半径を、玉の直径の 50. 5— 51. 5%となるよ うに形成した。
[0096] [表 7]
Figure imgf000037_0001
そして、 H3以外の素材力 なる内輪及び外輪には、熱処理として、 RXガス +ェン リッチガス +アンモニアガスの雰囲気(カーボンポテンシャル Cp : 0. 8—1. 2、アンモ ユアガス: 3— 5%)下で、 920— 960°Cに加熱し、 2— 6時間保持することにより浸炭 窒化を行った後、油焼入れを行い、さらに、 160— 180°Cの大気中で 1. 5-2. 5時 間保持することにより焼戻しを行った。 [0098] 一方、素材 H3からなる内輪及び外輪には、熱処理として、 830— 860°Cにカロ熱し、 0. 5-1. 5時間保持することにより焼入れを行った後、油焼入れを行い、さらに、 16 0— 180°Cの大気中で 1. 5-2. 5時間保持することにより焼戻しを行った。
このような熱処理により、 H3以外の素材力 なる内輪及び外輪には、いずれも表面 に炭化物、窒化物、及び炭窒化物が分散析出され、素材 Hからなる内輪及び外輪に は、表面に炭化物が分散析出された。そして、熱処理後、研削及び表面仕上げ加工 を行い、内輪及び外輪の軌道面の表面粗さを、 0. 01-0. 03 mRaとした。
[0099] このようにして得られた内輪及び外輪について、軌道面(転がり面)をなす表層部( 表面から 10 μ mの深さまでの部分)の C及び Nの合計含有率 (質量比)を、発光分光 分析装置により測定した。
また、前記表層部の硬さ(ロックウェル硬さ)を、 JIS Z 2245に規定されたロックゥ エル硬さ試験法により測定した。
さらに、前記表層部の残留オーステナイト量 (体積比)を、 X線回折装置により測定 した。
[0100] さらに、軌道面における炭化物及び炭窒化物力 なる析出物(以下、「軌道面にお ける炭化物等力もなる析出物」と称す。)の存在率 (面積比)を、以下のように測定した
。まず、表面力卩ェを行った後の軌道面を腐食液 (4gのピクリン酸 + 100mlのエタノー ル)で腐食させた後、光学顕微鏡を用い、 0. 5 m以上の炭化物及び炭窒化物につ いて、 30視野を倍率 1000倍で観察した。そして、観察像を画像処理することにより、 各視野毎に炭化物及び炭窒化物の存在率 (面積比)を測定し、 30視野の平均値を 算出した。
[0101] さらに、軌道面における炭化物等力 なる析出物のうちの Fe— Cr, Mo系析出物の 存在率 (面積比)を、透過型電子顕微鏡を用いて電子線回折パターンを観察すること により測定した。
さらに、 Fe-Cr, Mo系析出物の Cr及び Moの合計含有率を、透過型電子顕微鏡 に付属のエネルギー分散 X線分析装置(EDS: Energy Dispersive
Spectrometry)を用いて測定した。
これらの測定結果は、同じ構成の各 10体の内輪及び外輪の各測定結果から算出 した平均値を、表 8に併せて示す。
[0102] 次に、鋼の糸且成及び熱処理が表 8に示すようにそれぞれ異なる No. 301— No. 32 2の内輪及び外輪と、高炭素クロム軸受鋼 2種 (SUJ2)製で浸炭窒化処理が施され た玉と、鋼製の波形プレス保持器とからなる試験軸受を、図 10に示すベルト式無段 変速機ユニットに組み込み、以下に示す条件で寿命試験を行った。ここで、この試験 軸受は、各 10体ずつ用意し、いずれも内部すきまを「CNすきま (普通すきま)」とした 。また、潤滑油としては、以下に示す摩擦係数の異なる二種類を使用した。
[0103] 〔潤滑油の種類〕
(1):市販の CVTF
• 40°Cにおける動粘度: 30— 40cSt
• 100°Cにおける動粘度: 7cSt程度
•110°Cにおける摩擦係数: 0. 12 (滑り速度: 0. 5m/s)
(2):市販の CVTF
• 40°Cにおける動粘度: 30— 40cSt
• 100°Cにおける動粘度: 7cSt程度
•110°Cにおける摩擦係数: 0. 14 (滑り速度: 0. 5m/s)
[0104] このベルト式無段変速機ユニットでは、図 10に示すように、入力軸側(プライマリ)プ ーリ 301が設けられた入力軸 310と、出力軸側(セカンダリ)プーリ 302が設けられた 出力軸 220力 それぞれ一対の転力 Sり軸受 301a、 301b, 302a, 302bで支持され ている。この 4個の転がり軸受のうち、プライマリフロント軸受(すなわち、プライマリプ ーリ 301よりもエンジン 304側で入力軸 310を支持する転がり軸受) 301aとして、各 試験軸受を取り付けた。これ以外の転がり軸受 301b、 302a, 302bとしては、各試験 で同じものを用いた。
また、このベルト式無段変速機ユニットのベルト 303は、厚さ 0. 2mmの鋼製薄板を 10枚積層してなる二本のリング 303aに、 300個のコマ 303bを取り付けた構造となつ ており、ベルト 303の長さは 600mmである。
[0105] 〔寿命試験条件〕
荷重: P (負荷荷重) ZC (動定格荷重) =0. 26 入力軸の回転速度: 500— 6000min 1の範囲内で加速 ·減速
エンジンからの入力トルク: 200N · m
潤滑油供給量:プライマリーフロント軸受(lOmlZmin)、それ以外の軸受(200mlZ mm)
供給油温: 110°C
[0106] この寿命試験は、内輪又は外輪に剥離が生じるまで行い、この剥離が生じるまでの 時間を寿命時間として測定した。そして、同じ構成の 10体の試験軸受の結果より、ヮ ィブル分布関数に基づいて短寿命側から 10%の内輪又は外輪に剥離が生じるまで の総回転時間を求め、これを寿命 (L 寿命)とした。この結果は、表 8に併せて示す。
10
また、これらの試験軸受の計算寿命は 494時間であるため、 1000時間でこの寿命 試験を打ち切った。そして、打ち切り時間になっても内輪及び外輪のいずれにも剥離 が生じなカゝつた場合には、 L 寿命を 1000時間とした。
10
[0107] [表 8]
表 8
Figure imgf000041_0001
[0108] 表 8から分力るように、本発明の実施例である No. 301— 311の試験軸受は、比較 例である No. 312— 322の試験軸受と比較して、長寿命であった。
No. 301— 311のうち、軌道面における炭化物等カゝらなる析出物の存在率が 15% 未満の No. 305と、この析出物の存在率力 35%を超える No. 309では、 No. 302 一 304と比較して、短寿命であった。これにより、軌道面における炭化物等力もなる 析出物の存在率を 15— 35%にすると好ましいことが分かる。
[0109] また、 Crの含有率が本発明の好ましい範囲よりも少ない No. 301と、 Siの含有率が 本発明の好ましい範囲よりも少ない No. 306と、 Mnの含有率が本発明の好ましい範 囲よりも少ない No. 307と、 Moの含有率が本発明の好ましい範囲よりも少ない No. 308では、 No. 302— 304と比較して、短寿命であった。
さらに、軌道面における炭化物等力もなる析出物の存在率は 15— 35%の範囲内 であるが、 Fe-Cr, Mo系析出物の存在率が 30%未満の No. 310、 311では、 No. 302— 304と比較して、短寿命であった。これにより、軌道面における炭化物等から なる析出物の 30%以上を、 Fe-Cr, Mo系析出物にすると好ましいことが分かる。
[0110] さらに、 Fe— Cr, Mo系析出物の存在率が 30%未満で、且つ、 Cr及び Moの合計 含有率が 30%未満の No. 311は、 Fe— Cr, Mo系析出物の存在率が 30%未満で、 且つ、 Cr及び Moの合計含有率が 30%以上の No. 310と比べて、短寿命であった。 これにより、 Fe— Cr, Mo系析出物の Cr及び Moの合計含有率は、 30%以上にする と好ましいことが分かる。
[0111] 一方、 No. 312、 313では、 SUJ2製であり、 Siの含有率、 Crの含有率及び Moの 含有率が本発明の範囲よりも少なぐ軌道面に十分な炭化物が得られな力つたため 、計算寿命よりも短寿命であった。
No. 314では、 Crの含有率が本発明の範囲よりも少なぐ軌道面に十分な炭化物 及び炭窒化物が得られな力つたため、計算寿命よりも短寿命であった。
No. 315では、 Crの含有率が本発明の範囲よりも多ぐ粗大な共晶炭化物及び共 晶炭窒化物が発生したため、短寿命であった。
No. 316では、 Cの含有率が本発明の範囲よりも少なぐ軌道面に十分な炭化物 及び炭窒化物が得られな力つたため、計算寿命よりも短寿命であった。
[0112] No. 317では、 Cの含有率が本発明の範囲よりも多ぐ軌道面に十分な Fe— Cr, M o系析出物が得られな力 たため、計算寿命よりも短寿命であった。
No. 318では、 Siの含有率が本発明の範囲よりも少なぐ軌道面をなす表層部の 硬さが十分に得られず、且つ、残留オーステナイト量が多くなつていたため、計算寿 命よりも短寿命であった。
No. 319では、 Moの含有率が本発明の範囲よりも多ぐ粗大な共晶炭化物及び 共晶炭窒化物が発生したため、短寿命であった。 [0113] No. 320では、 Vの含有率が本発明の範囲よりも多ぐ粗大な共晶炭化物及び共 晶炭窒化物が発生したため、短寿命であった。
No. 321では、 Siの含有率が本発明の範囲よりも少なぐ Fe-Cr, Mo系析出物の うち Cr及び Moの合計含有率が 30%未満であったため、計算寿命よりも短寿命であ つた o
No. 322では、 Mnの含有率が本発明の範囲よりも多ぐ軌道面をなす表層部の硬 さが十分に得られず、且つ、残留オーステナイト量が多くなつていたため、計算寿命 よりも短寿命であった。
[0114] 以上の結果より、内輪及び外輪を、本発明の範囲を満たす No. 301— 311の構成 とすることにより、摩擦係数が 0. 10以上と高ぐ 100°Cにおける動粘度が 8cSt以下と 低い潤滑油を使用した場合であっても、計算寿命よりも長寿命にできることが確認で きた。
なお、本実施形態の転がり軸受では、シールがないものを用いた力 入力軸側プ ーリ及び出力軸側プーリとベルトとの摩擦粉が多くなるユニットに用いる場合には、金 属製シール等の非接触シールや、ゴムシール (二トリルゴムやアクリルゴムなど)、フッ 素シール等の接触シールを使用温度に応じて選択して使用しても構わな 、。
[0115] また、本実施形態の転がり軸受では、鋼製の保持器を用いたが、さらに高速回転下 で使用する場合には、プラスチック製の保持器を用いることが好ましい。
さらに、本実施形態の転がり軸受では、内部すきまを「CNすきま」としたが、ラジア ル荷重やアキシャル荷重を抑制するという観点から、この内部すきまをより小さくする ことが好ましい。また、同様の観点から、内輪及び外輪の軌道溝の曲率半径を、本実 施形態よりも小さくすることが好ましい。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
本出願は、 2004年 1月 20日出願の日本特許出願(特願 2004— 012300)、 2004 年 3月 17日出願の日本特許出願(特願 2004— 077026)、 2004年 3月 30日出願の 日本特許出願 (特願 2004-100181)、 2004年 3月 31日出願の日本特許出願 (特 願 2004— 106487)、 2004年 12月 14曰出願の曰本特許出願(特願 2004— 36127 4)に基づくものであり、その内容はここに参照として取り込まれる。
産業上の利用可能性
本発明の転がり軸受は、高温、高速条件下且つ異物混入潤滑下においても好適 に使用可能である。特に、自動車,農業機械,建設機械,鉄鋼用機械等のエンジン , トランスミッション等に好適に使用可能である。なお、転がり軸受として深溝玉軸受、 円筒ころ軸受、円錐ころ軸受、および針状ころ軸受においても同様の効果を得ること ができる。

Claims

請求の範囲
[1] 外輪と、内輪と、前記外輪と内輪との間に転動自在に配置された複数の転動体と、を 有する転がり軸受であって、
前記外輪、内輪、転動体のうちから選択された少なくとも一つの部材は、
Cの含有率が、 0. 2Wt%以上 0. 6Wt%以下であり、
Crの含有率が、 2. 5Wt%以上 7. 0Wt%以下であり、
Mnの含有率力 0. 5Wt%以上 2. 0Wt%以下であり、
Siの含有率力 0. lWt%以上 1. 5Wt%以下であり、
Moの含有率力 0. 5Wt%以上 3. 0Wt%以下であり、
浸炭処理又は浸炭窒化処理、焼入れ処理、焼き戻し処理が施され、
表面の残留オーステナイト量が体積比で 15%以上 45%以下であり、
表面硬さ HRC60以上である。
[2] 外輪と、内輪と、前記外輪と内輪との間に転動自在に配置された複数の転動体と、を 有する転がり軸受であって、
前記外輪、内輪、転動体のうちから選択された少なくとも一つの部材は、
Cの含有率が、 0. 8Wt%以上 1. 2Wt%以下であり、
Crの含有率が、 2. 0Wt%以上 4. 0Wt%以下であり、
Mnの含有率力 0. lWt%以上 2. 0Wt%以下であり、
Siの含有率力 0. 5Wt%以上 1. 5Wt%以下であり、
Moの含有率力 0. lWt%以上 2. 0Wt%以下であり、
浸炭処理又は浸炭窒化処理、焼入れ処理、焼き戻し処理が施され、
表面の残留オーステナイト量が体積比で 15%以上 45%以下であり、
表面硬さ HRC60以上である。
[3] 請求項 1、 2に記載の転がり軸受であって、前記選択された部材は更に、
表面の炭素濃度と窒素濃度の和が 1. 0Wt%以上、 2. 5Wt%以下である。
[4] 請求項 3に記載の転がり軸受であって、前記選択された部材は更に、
Vの含有率が、 2. 0Wt%以下であり、
Niの含有率が、 2. 0Wt%以下である。
[5] 請求項 4に記載の転がり軸受であって、前記選択された部材は更に、 炭化物、炭窒化物の少なくとも一種の析出物の存在率が面積比で 15%以上 35%以 下である。
[6] 請求項 5に記載の転がり軸受であって、前記選択された部材は更に、
前記析出物は、 M C型、 M C型、 M (C, N)型、 M (C, N)型の複炭窒化物
7 3 23 6 7 3 23 6
の少なくとも一種からなる Fe— Cr, Mo系析出物である。
[7] 請求項 6に記載の転がり軸受であって、前記選択された部材は更に、
前記 Fe-Cr, Mo系析出物は、 Cr及び Moを合計で 30wt%以上含有する。
[8] 請求項 5に記載の転がり軸受であって、前記選択された部材は更に、
表層部の圧縮残留応力の最大値が 150MPa以上 2000MPa以下である。
[9] 請求項 3に記載の転がり軸受であって、前記転がり軸受は針状ころ軸受であり、前記 選択された部材は内輪及び転動体のうちの少なくとも 1つである。
[10] 請求項 9に記載の転がり軸受であって、前記選択された部材は更に、
平均残留オーステナイト量が体積比で 8%以下である。
[11] 請求項 1, 2に記載の転がり軸受であって、前記選択された部材は更に、
平均残留オーステナイト量が Crと Moの含有量との和の 2. 5倍以下である。
PCT/JP2005/000543 2004-01-20 2005-01-18 転がり軸受 WO2005068675A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05703780A EP1715072A4 (en) 2004-01-20 2005-01-18 ROLLER BEARING
US10/586,851 US8083868B2 (en) 2004-01-20 2005-01-18 Rolling bearing

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2004-012300 2004-01-20
JP2004012300A JP4576842B2 (ja) 2004-01-20 2004-01-20 転がり軸受及びこれを用いたベルト式無段変速機
JP2004-077026 2004-03-17
JP2004077026A JP4534537B2 (ja) 2004-03-17 2004-03-17 転がり軸受
JP2004-100181 2004-03-30
JP2004100181 2004-03-30
JP2004-106487 2004-03-31
JP2004106487A JP2005291342A (ja) 2004-03-31 2004-03-31 針状ころ軸受
JP2004-361274 2004-12-14
JP2004361274A JP5076274B2 (ja) 2004-03-30 2004-12-14 転がり軸受

Publications (1)

Publication Number Publication Date
WO2005068675A1 true WO2005068675A1 (ja) 2005-07-28

Family

ID=34799855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000543 WO2005068675A1 (ja) 2004-01-20 2005-01-18 転がり軸受

Country Status (6)

Country Link
US (1) US8083868B2 (ja)
EP (1) EP1715072A4 (ja)
JP (1) JP4576842B2 (ja)
KR (1) KR100827578B1 (ja)
CN (1) CN100532613C (ja)
WO (1) WO2005068675A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154281A (ja) * 2005-12-07 2007-06-21 Nsk Ltd 転がり支持装置
EP1847631A1 (en) * 2006-04-20 2007-10-24 Daido Steel Co.,Ltd. Carburized component and manufacturing method thereof
JP2010002031A (ja) * 2008-06-23 2010-01-07 Ntn Corp トランスミッション用転がり軸受
JP2010002032A (ja) * 2008-06-23 2010-01-07 Ntn Corp トランスミッション用転がり軸受
JP2012031457A (ja) * 2010-07-29 2012-02-16 Nsk Ltd 転がり軸受
JP2013011010A (ja) * 2011-06-02 2013-01-17 Nsk Ltd 転がり軸受およびその製造方法
WO2013084800A1 (ja) * 2011-12-06 2013-06-13 日本精工株式会社 転がり軸受およびその製造方法
WO2017082421A1 (ja) * 2015-11-13 2017-05-18 日本精工株式会社 多列玉軸受
WO2023054105A1 (ja) * 2021-09-28 2023-04-06 株式会社不二越 合金鋼およびそれを用いた機械部品
WO2023095796A1 (ja) * 2021-11-24 2023-06-01 株式会社不二越 転がり軸受部品用合金鋼、それを用いた転がり軸受部品,転がり軸受用軌道輪および転がり軸受

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057691A (ja) * 2006-08-31 2008-03-13 Nsk Ltd 玉軸受
JP4993486B2 (ja) * 2007-05-17 2012-08-08 Ntn株式会社 転動部材、転がり軸受および転動部材の製造方法
WO2008143031A1 (ja) * 2007-05-17 2008-11-27 Ntn Corporation 転動部材、転がり軸受および転動部材の製造方法
DE102008008113A1 (de) * 2008-02-08 2009-08-13 Schaeffler Kg Nichtmagnetisierbares Wälzlagerbauteil aus einem austenitischen Werkstoff und Verfahren zur Herstellung eines derartigen Wälzlagerbauteils
JP5160316B2 (ja) * 2008-06-09 2013-03-13 本田技研工業株式会社 等速ジョイント用ボール及びその製造方法
EP3301201A1 (en) * 2008-12-12 2018-04-04 JTEKT Corporation Bearing constituent member and process for producing the same, and rolling bearing having bearing constituent member
JP5668283B2 (ja) * 2009-10-02 2015-02-12 株式会社ジェイテクト 転がり摺動部材の製造方法
US9239076B2 (en) * 2010-07-02 2016-01-19 Aktiebolaget Skf Method of making a bearing ring, a bearing ring and a bearing
EP2679844A4 (en) * 2011-02-25 2017-07-05 NSK Ltd. Split bearing ring, and manufacturing method for same
DE102012204618A1 (de) * 2012-03-22 2013-09-26 Schaeffler Technologies AG & Co. KG Wälzlager mit einem Lagerring mit gehärteter Randzone
WO2013161775A1 (ja) * 2012-04-25 2013-10-31 日本精工株式会社 転がり軸受
WO2014053385A1 (en) * 2012-10-03 2014-04-10 Aktiebolaget Skf Steel alloy
CN104718305B (zh) * 2012-10-17 2018-03-20 Ntn株式会社 轴承部件、滚动轴承以及轴承部件的制造方法
JP2014152867A (ja) * 2013-02-08 2014-08-25 Ntn Corp 軸受部品および転がり軸受
JP6389031B2 (ja) 2013-06-10 2018-09-12 Ntn株式会社 円錐ころ軸受
CN103614666A (zh) * 2013-11-12 2014-03-05 铜陵市肆得科技有限责任公司 一种泵阀用高硬度低碳钢材料及其制备方法
CN104454998A (zh) * 2014-12-23 2015-03-25 常熟市董浜镇徐市嘉峰机械厂 一种表面渗碳处理的轴承
CN105043909B (zh) * 2015-06-29 2018-03-27 三环集团有限公司 一种碳氮共渗后的高碳铬长寿命轴承零件的检测方法
CN105401120A (zh) * 2015-11-02 2016-03-16 杭州持正科技股份有限公司 发动机正时链条销轴及低温阶梯碳氮共渗工艺
CN105274289A (zh) * 2015-11-02 2016-01-27 杭州持正科技股份有限公司 一种轴承钢销轴的特殊工艺
JP6535276B2 (ja) * 2015-12-09 2019-06-26 株式会社ジェイテクト 軸受構成部材及びその製造方法並びに転がり軸受
WO2017099071A1 (ja) 2015-12-09 2017-06-15 Ntn株式会社 軸受用軸及び軸受
WO2018089090A1 (en) * 2016-11-08 2018-05-17 Carrier Corporation Hybrid bearings
CN108223762A (zh) * 2016-12-21 2018-06-29 湖北浙峰源商贸有限公司 一种长寿命皮带轮及其表面强化处理工艺
JP7078220B2 (ja) * 2017-02-22 2022-05-31 学校法人トヨタ学園 金属製品の製造方法
DE102017216762A1 (de) * 2017-09-21 2019-03-21 Thyssenkrupp Ag Werkstoff und Herstellungsverfahren für Wälzlagerkomponenten
US11391189B2 (en) * 2018-01-31 2022-07-19 Nissan Motor Co., Ltd. Link component with oil hole
JP7152832B2 (ja) * 2018-06-18 2022-10-13 株式会社小松製作所 機械部品
DE102019117071A1 (de) * 2019-06-25 2020-12-31 Schaeffler Technologies AG & Co. KG Ölgeräumte elektrische Maschine mit Wälzlager für ein Kraftfahrzeug
CN111020460B (zh) * 2019-12-27 2022-02-11 常熟天地煤机装备有限公司 一种高镍渗碳钢及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3033349B2 (ja) * 1992-07-10 2000-04-17 株式会社神戸製鋼所 耐ピッチング性に優れた浸炭鋼部品
JP2002115031A (ja) * 2000-10-11 2002-04-19 Ntn Corp 転がり軸受部品、駆動装置およびロール支持装置
JP2002147557A (ja) * 2000-11-14 2002-05-22 Nsk Ltd トロイダル型無段変速機
JP3385722B2 (ja) * 1994-06-15 2003-03-10 住友金属工業株式会社 浸炭焼入方法
JP2003222142A (ja) * 2002-01-31 2003-08-08 Nsk Ltd アンギュラ玉軸受

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633441B2 (ja) 1986-03-19 1994-05-02 エヌティエヌ株式会社 軸受軌道輪
JPH0810015B2 (ja) 1987-01-17 1996-01-31 日本精工株式会社 ころがり軸受
JPH0788851B2 (ja) 1987-08-25 1995-09-27 日本精工株式会社 転がり軸受
JPH0786336B2 (ja) 1988-04-26 1995-09-20 日産自動車株式会社 内燃機関のピストン
JPH01230385A (ja) * 1988-10-22 1989-09-13 Sankyo Kk 弾球遊技機
JPH07110988B2 (ja) 1989-01-13 1995-11-29 日本精工株式会社 転がり軸受
GB2235212B (en) * 1989-07-25 1993-08-11 Nippon Seiko Kk Rolling bearing
GB2235698B (en) * 1989-08-24 1994-04-06 Nippon Seiko Kk Rolling contact parts steel and rolling bearing made thereof
JP2883460B2 (ja) 1991-03-05 1999-04-19 光洋精工株式会社 軸受用鋼
JPH0611899B2 (ja) * 1990-10-25 1994-02-16 株式会社不二越 高クロム系軸受鋼
JP2541160B2 (ja) 1991-07-18 1996-10-09 日本精工株式会社 転がり軸受
JP3326834B2 (ja) * 1992-11-25 2002-09-24 日本精工株式会社 転がり軸受
GB2278127B (en) * 1993-05-13 1995-11-08 Nsk Ltd Rolling bearing
GB2331527B (en) * 1994-09-29 1999-09-29 Nsk Ltd Rolling bearing
JP4114218B2 (ja) * 1996-09-19 2008-07-09 日本精工株式会社 転がり軸受
JPH11201168A (ja) 1998-01-12 1999-07-27 Nippon Seiko Kk 転がり軸受
JP2000282178A (ja) * 1998-10-22 2000-10-10 Nsk Ltd 転がり軸受
JP2000212721A (ja) * 1998-11-19 2000-08-02 Nsk Ltd 耐摩耗性に優れた転動部材
JP2000337389A (ja) 1999-03-19 2000-12-05 Nsk Ltd 転がり軸受
JP4022607B2 (ja) * 1999-07-21 2007-12-19 日産自動車株式会社 耐高面圧部材の製造方法
JP2001032900A (ja) * 1999-07-23 2001-02-06 Nsk Ltd トロイダル形無段変速装置
JP4273609B2 (ja) 2000-02-10 2009-06-03 日本精工株式会社 転がり軸受
JP2002060847A (ja) * 2000-08-22 2002-02-28 Ntn Corp 耐熱浸炭転がり軸受部品およびその製造方法
JP2002188643A (ja) 2000-12-25 2002-07-05 Nsk Ltd 針状ころ軸受
JP3873741B2 (ja) * 2001-12-27 2007-01-24 日本精工株式会社 転がり軸受
JP4348964B2 (ja) * 2002-04-15 2009-10-21 日本精工株式会社 ベルト式無段変速機用転がり軸受及びその製造方法
JP2003343577A (ja) 2002-05-28 2003-12-03 Nsk Ltd 転がり軸受、これを用いたベルト式無段変速機
EP1357308B1 (en) * 2002-04-23 2009-12-23 NSK Ltd., Rolling element bearing with ring or rolling elements made of chromium steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3033349B2 (ja) * 1992-07-10 2000-04-17 株式会社神戸製鋼所 耐ピッチング性に優れた浸炭鋼部品
JP3385722B2 (ja) * 1994-06-15 2003-03-10 住友金属工業株式会社 浸炭焼入方法
JP2002115031A (ja) * 2000-10-11 2002-04-19 Ntn Corp 転がり軸受部品、駆動装置およびロール支持装置
JP2002147557A (ja) * 2000-11-14 2002-05-22 Nsk Ltd トロイダル型無段変速機
JP2003222142A (ja) * 2002-01-31 2003-08-08 Nsk Ltd アンギュラ玉軸受

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1715072A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154281A (ja) * 2005-12-07 2007-06-21 Nsk Ltd 転がり支持装置
EP1847631A1 (en) * 2006-04-20 2007-10-24 Daido Steel Co.,Ltd. Carburized component and manufacturing method thereof
US7967921B2 (en) 2006-04-20 2011-06-28 Daido Steel Co., Ltd. Carburized component and manufacturing method thereof
JP2010002031A (ja) * 2008-06-23 2010-01-07 Ntn Corp トランスミッション用転がり軸受
JP2010002032A (ja) * 2008-06-23 2010-01-07 Ntn Corp トランスミッション用転がり軸受
JP2012031457A (ja) * 2010-07-29 2012-02-16 Nsk Ltd 転がり軸受
JP2013011010A (ja) * 2011-06-02 2013-01-17 Nsk Ltd 転がり軸受およびその製造方法
WO2013084800A1 (ja) * 2011-12-06 2013-06-13 日本精工株式会社 転がり軸受およびその製造方法
WO2017082421A1 (ja) * 2015-11-13 2017-05-18 日本精工株式会社 多列玉軸受
US10578153B2 (en) 2015-11-13 2020-03-03 Nsk Ltd. Multi-row ball bearing
WO2023054105A1 (ja) * 2021-09-28 2023-04-06 株式会社不二越 合金鋼およびそれを用いた機械部品
WO2023095796A1 (ja) * 2021-11-24 2023-06-01 株式会社不二越 転がり軸受部品用合金鋼、それを用いた転がり軸受部品,転がり軸受用軌道輪および転がり軸受

Also Published As

Publication number Publication date
JP4576842B2 (ja) 2010-11-10
EP1715072A1 (en) 2006-10-25
US8083868B2 (en) 2011-12-27
US20070151634A1 (en) 2007-07-05
KR100827578B1 (ko) 2008-05-07
JP2005207453A (ja) 2005-08-04
CN1934282A (zh) 2007-03-21
EP1715072A4 (en) 2010-03-31
KR20060116226A (ko) 2006-11-14
CN100532613C (zh) 2009-08-26

Similar Documents

Publication Publication Date Title
WO2005068675A1 (ja) 転がり軸受
JP4348964B2 (ja) ベルト式無段変速機用転がり軸受及びその製造方法
US8535457B2 (en) Rolling member, rolling bearing and process for manufacturing rolling member
WO2003081062A1 (en) Rolling bearing for belt type non-stage transmission
JP5644166B2 (ja) 水素脆性型の面疲労強度に優れた浸炭窒化鋼
WO2010070958A1 (ja) 表面硬化用機械構造用鋼及び機械構造鋼部品
JP2004011712A (ja) 転がり軸受、これを用いたベルト式無段変速機
JP2011220357A (ja) 遊星歯車装置
JP4998054B2 (ja) 転がり軸受
JP2006097096A (ja) 浸炭または浸炭窒化した軸受鋼部品
US6923576B2 (en) Rolling bearing and belt continuously variable transmission
JP5076274B2 (ja) 転がり軸受
JP2003278768A (ja) ベルト式無段変速機用転がり軸受
JP2006009887A (ja) 玉軸受とトランスミッション用玉軸受
JP2005140275A (ja) プラネタリギヤ装置
JP2003343577A (ja) 転がり軸受、これを用いたベルト式無段変速機
JP3982368B2 (ja) 転動装置
JP4345417B2 (ja) 転がり軸受
JP2006045591A (ja) 円すいころ軸受
JP2005291342A (ja) 針状ころ軸受
WO2024157823A1 (ja) 転動部材
JP2005076651A (ja) 転がり軸受及びこれを用いたベルト式無段変速機
JP2006017163A (ja) 転がり支持装置およびその構成部品の製造方法
WO2000079151A1 (en) Cvt/ivt component
JP4269583B2 (ja) 転がり軸受、これを用いたベルト式無段変速機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2005703780

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005703780

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10586851

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067016695

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580009016.8

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005703780

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067016695

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10586851

Country of ref document: US