WO2005050724A1 - 基板洗浄方法、基板洗浄装置およびコンピュータ読み取り可能な記録媒体 - Google Patents

基板洗浄方法、基板洗浄装置およびコンピュータ読み取り可能な記録媒体 Download PDF

Info

Publication number
WO2005050724A1
WO2005050724A1 PCT/JP2004/016842 JP2004016842W WO2005050724A1 WO 2005050724 A1 WO2005050724 A1 WO 2005050724A1 JP 2004016842 W JP2004016842 W JP 2004016842W WO 2005050724 A1 WO2005050724 A1 WO 2005050724A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
processed
pure water
water supply
center
Prior art date
Application number
PCT/JP2004/016842
Other languages
English (en)
French (fr)
Inventor
Hiromitsu Nanba
Takashi Yabuta
Takehiko Orii
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to US10/577,314 priority Critical patent/US7927429B2/en
Priority to JP2005515595A priority patent/JP4040063B2/ja
Priority to AT0939904A priority patent/AT501653B1/de
Publication of WO2005050724A1 publication Critical patent/WO2005050724A1/ja
Priority to US13/042,844 priority patent/US8113221B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/50Reconditioning of record carriers; Cleaning of record carriers ; Carrying-off electrostatic charges
    • G11B23/505Reconditioning of record carriers; Cleaning of record carriers ; Carrying-off electrostatic charges of disk carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/67034Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1316Methods for cleaning the liquid crystal cells, or components thereof, during manufacture: Materials therefor

Definitions

  • Substrate cleaning method for substrate cleaning, substrate cleaning apparatus, and computer-readable recording medium
  • the present invention implements a substrate cleaning method capable of suppressing generation of a watermark on the surface of a substrate to be processed such as a semiconductor wafer or a glass substrate for an FPD (Flat Panel Display), and executes the substrate processing method.
  • a substrate cleaning method capable of suppressing generation of a watermark on the surface of a substrate to be processed such as a semiconductor wafer or a glass substrate for an FPD (Flat Panel Display), and executes the substrate processing method.
  • a substrate cleaning method capable of suppressing generation of a watermark on the surface of a substrate to be processed such as a semiconductor wafer or a glass substrate for an FPD (Flat Panel Display)
  • FPD Full Panel Display
  • the surface of a semiconductor wafer must be kept clean at all times, and therefore, the semiconductor wafer is appropriately subjected to a cleaning process.
  • a predetermined cleaning liquid is supplied to a semiconductor wafer held by a spin chuck (chemical cleaning processing), and then pure water is supplied to the semiconductor wafer.
  • a processing method is known in which a cleaning liquid is supplied to wash off (rinse processing), and the semiconductor wafer is rotated at high speed to shake off pure water from the semiconductor wafer (spin drying processing).
  • Japanese Patent Laid-Open No. 287922/1992 discloses a cleaning processing step of supplying a predetermined cleaning liquid to the surface of a substrate to be processed from obliquely above, After that, a rinsing process of supplying pure water to the surface of the substrate from obliquely above, and a drying process of rotating the substrate at high speed to drain the liquid are performed.
  • a substrate processing method is disclosed in which the beginning of the processing step is overlapped and a nitrogen gas is supplied to a central portion of a substrate to be processed in the overlapping step and the drying processing step.
  • Japanese Patent Application Laid-Open No. 2001-53051 discloses that an inert gas is provided at the center of a substrate after rinsing.
  • a substrate drying method is disclosed in which pure water is sprayed onto the outer peripheral portion of the substrate and the inert gas spraying position and the pure water spraying position are both moved radially outward from the center of the substrate. ing.
  • the surface of the semiconductor wafer becomes hydrophilic (for example, SiO surface formed by a predetermined method) and hydrophobic surface (for example,
  • the present invention has been made in view of vigorous circumstances, and it is an object of the present invention to provide a cleaning method capable of suppressing generation of a watermark. Another object of the present invention is to provide a substrate cleaning apparatus and a computer-readable recording medium for performing the substrate processing method.
  • a substrate to be processed while rotating a substrate to be processed in a substantially horizontal posture, pure water is supplied to the surface thereof to perform a rinsing process on the substrate to be processed, and thereafter, the substrate to be processed is The pure water supply flow rate to the substrate to be treated is reduced from that at the time of the rinsing process, and the pure water supply point to the substrate to be treated is moved outward from the center of the substrate to be treated.
  • the speed at which the pure water supply point to the substrate to be processed also moves outwardly at the center force of the substrate to be processed can be made faster at the outer peripheral portion of the substrate to be processed than at the central portion. preferable.
  • the centrifugal force does not sufficiently act on the pure water at the center of the substrate to be processed, it is difficult to dry the substrate as it is.
  • the water supply point reaches a position at a predetermined distance from the center of the substrate, the movement of the pure water supply point is stopped, and nitrogen gas is blown to the center of the substrate to be processed.
  • a method of stopping the spraying and moving the pure water supply point again to the outside of the substrate to be processed is also suitably used.
  • the pure water supply point to the substrate to be processed is separated from the center of the substrate by 10 to 15 mm. Position, stop moving the pure water supply point there, spray nitrogen gas to the center of the substrate to be treated for a predetermined time, and then stop blowing nitrogen gas to move the pure water supply point again to the substrate to be treated. It is also preferable to move the wire to the outside at a speed of 3 mmZ seconds or less.
  • Nitrogen gas is blown to the center, and then the nitrogen gas spray point is moved to the outside of the center of the substrate together with the pure water supply point while blowing the nitrogen gas to the substrate, and the nitrogen gas is sprayed on the way. It is also preferable to use the method of stopping only.
  • the number of rotations of the substrate to be processed in the rinsing process is not less than lOOrpm and not more than lOOOOrpm!
  • the rotation speed of the substrate to be processed is 800 rpm or more.
  • the rotation speed of the substrate to be processed in the spin drying process is preferably 2500 rpm or less from the viewpoint of preventing generation of particles and watermarks due to mist of pure water scattered from the substrate to be processed. .
  • the rotation speed of the substrate to be processed during spin drying may be higher than that during rinsing.
  • the number of rotations of the substrate to be processed is not less than 100 rpm and not more than 100 rpm in the rinsing process, and not less than 1500 rpm and not more than 2500 rpm in the spin drying process.
  • the substrate cleaning method of the present invention is suitably used when a hydrophobic surface and a hydrophilic surface are mixed on the surface of the substrate to be processed, but, of course, when the surface of the substrate to be processed has only the hydrophobic surface or It can also be used when only the hydrophilic surface is provided.
  • the present invention provides a substrate cleaning apparatus for performing the above substrate cleaning method. That is, according to the second aspect of the present invention, the substrate to be processed is held and rotated in a substantially horizontal posture.
  • a pure water supply mechanism having a pure water supply nozzle that discharges pure water to the surface of the substrate to be processed held by the spin chuck, and a liquid supply unit that supplies pure water to the pure water supply nozzle;
  • a pure water nozzle scanning mechanism for scanning the pure water supply nozzle between the center of the substrate to be processed and the outer edge thereof,
  • a rinsing process for supplying pure water at a predetermined flow rate to the surface of the substrate to be processed while rotating the substrate to be processed held by the spin chuck is performed. Thereafter, the rinsing process is performed by supplying a pure water supply flow rate to the substrate to be processed.
  • the spin drying process of the substrate to be processed is substantially equivalent to the pure water supply point.
  • a substrate cleaning apparatus comprising:
  • the substrate cleaning apparatus further includes a gas supply having a gas nozzle for spraying the nitrogen gas to the center of the surface of the substrate to be processed held by the spin chuck. It is preferable to have a mechanism! / ⁇ . It is preferable that the gas supply mechanism is also controlled by the control unit from the viewpoint of smoothly processing the substrate to be processed.
  • the substrate cleaning apparatus includes a gas supply mechanism having a gas nozzle for spraying nitrogen gas onto the surface of the substrate to be processed held by the spin chuck, and a gas nozzle scanning mechanism for scanning the gas nozzle on the substrate to be processed. It is also preferable to adopt a configuration provided with such a configuration. Also in this case, the processing of the substrate to be processed can be performed smoothly by adopting a configuration in which the gas supply mechanism and the gas nozzle scanning mechanism are controlled by the control unit.
  • the present invention provides a computer-readable recording medium storing a program for causing a computer that controls such a substrate cleaning apparatus to execute the above-described substrate cleaning method. That is, according to the third aspect of the present invention, while rotating the substrate to be processed held in a substantially horizontal posture, pure water is supplied to the substrate to be rinsed, and then the substrate is cleaned by spin drying.
  • the computer that controls the device (a) holding the spin chuck While rotating the substrate to be processed, pure water is supplied to the surface of the substrate to be processed at a predetermined flow rate to perform a rinsing process. (B) The flow rate of pure water supplied to the substrate to be processed is changed from the time of the rinsing process.
  • another recording medium according to the configuration of the substrate cleaning apparatus that is, the substrate to be processed held in a substantially horizontal posture is rotated while the substrate to be processed is rotated.
  • a computer that controls a substrate cleaning apparatus that supplies pure water to the substrate to perform a rinsing process, and further supplies a nitrogen gas to the substrate to perform spin drying, (a) processes the substrate to be processed held by the spin chuck. While rotating, pure water is supplied to the surface of the substrate to be treated at a predetermined flow rate to perform a rinsing process.
  • the pure water supply flow rate to the substrate to be treated is made smaller than that during the rinsing process, and The point of supplying pure water to the substrate to be processed is moved outward from the center of the substrate to be processed, and (c) the point of supplying pure water to the substrate to be processed is located at a position separated by a predetermined distance from the center of the substrate to be processed. When it arrives, the movement of the pure water supply point is temporarily stopped. (D) stopping the blowing of the nitrogen gas and moving the pure water supply point again to the outside of the substrate to be treated, thereby causing the pure water supply point to move.
  • a computer-readable recording medium on which a program for executing a process is spin-dried on the substrate to be processed while forming a liquid film in a region substantially outside the region.
  • a still further recording medium according to the configuration of the substrate cleaning apparatus, that is, the substrate to be processed held in a substantially horizontal posture is rotated while rotating the substrate to be processed.
  • a computer for controlling a substrate cleaning apparatus that supplies pure water to the substrate, performs a rinsing process, and further supplies a nitrogen gas to the substrate to be processed, and spin-drys the substrate, (a) processes the substrate to be processed held by the spin chuck; Supplying the pure water at a predetermined flow rate to the surface of the substrate while rotating, and performing a rinsing process; (b) reducing the pure water supply flow rate to the substrate to be processed as compared with the rinsing process, and (C) moving the pure water supply point to the substrate to be processed outward from the center of the substrate to be processed; Force When reaching a position separated by a predetermined distance, the movement of the pure water supply point is temporarily stopped there and nitrogen gas is blown to the center of the substrate to be processed, and
  • the difference between the drying time of the hydrophobic surface and the drying time of the hydrophilic surface is reduced even when the hydrophobic surface and the hydrophilic surface are mixed! Therefore, it is possible to perform high-precision substrate cleaning processing in which generation of a water mark is suppressed.
  • the present invention is of course effective even when the surface of the substrate to be processed is formed of a hydrophobic surface or a hydrophilic surface.
  • FIG. 1 is a vertical sectional view showing a schematic structure of a substrate cleaning apparatus.
  • FIG. 2 is a plan view showing a schematic structure of the substrate cleaning apparatus.
  • FIG. 3 is a diagram showing a schematic control system of the substrate cleaning apparatus.
  • FIG. 4 is a flowchart showing a cleaning method.
  • FIG. 5 is a diagram schematically showing a wafer drying process by a conventional spin drying method.
  • FIG. 6 is another view schematically showing a wafer drying process by a conventional spin drying method.
  • FIG. 7 is yet another view schematically showing a wafer drying process by a conventional spin drying method.
  • FIG. 8 is a diagram schematically showing a process of drying a wafer by spin drying in the cleaning method of the present invention.
  • FIG. 9 is a plan view showing a schematic structure of another substrate cleaning apparatus.
  • FIG. 10 is a flowchart showing another cleaning method.
  • FIG. 11 is a plan view showing a schematic structure of still another substrate cleaning apparatus.
  • FIG. 1 is a vertical sectional view showing a schematic structure of a substrate cleaning apparatus 10 for cleaning a semiconductor wafer.
  • Fig. 2 shows the plan view.
  • the main part of the substrate cleaning apparatus 10 is provided in the housing 50.
  • Figure 1 and Figure 2 Only a part of the housing 50 is shown.
  • An annular cup CP is disposed substantially at the center of the housing 50, and a spin chuck 51 is disposed inside the cup CP.
  • a so-called mechanical chuck type which holds the wafer W by vacuum suction or holds the wafer W end face mechanically, is preferably used, in a state where the wafer W is held. It is rotationally driven by a drive motor 52.
  • a drain 53 for discharging the cleaning liquid and pure water is provided at the bottom of the cup CP.Also, the vertical wall of the housing 50 of the substrate cleaning apparatus 10 carries a wafer with an external force, and conversely, the wafer is externally provided. A transfer window 56 for carrying out W is formed.
  • the processing liquid nozzle 61 for supplying a cleaning liquid and pure water to the surface of the wafer W is formed in a substantially cylindrical shape, and is held by the nozzle holding member 63 with its longitudinal direction being substantially vertical.
  • a cleaning liquid or pure water is selectively sent to the treatment liquid nozzle 61 from a cleaning liquid supply unit 64 and a pure water supply unit 65 configured to be able to change the flow rate by opening and closing a valve. That is, the processing liquid nozzle 61 functions as a nozzle for supplying the cleaning liquid to the wafer W and also as a nozzle for supplying pure water to the wafer W.
  • a so-called straight nozzle is suitably used.
  • the nozzle holding member 63 is attached to the tip of the scan arm 67.
  • the scan arm 67 is attached to the upper end of a vertical support member 69 arranged on a guide rail 68 laid in one direction (Y direction) on the bottom plate of the housing 50.
  • the vertical support member 69 is horizontally movable by a Y-axis drive mechanism 77, and includes a Z-axis drive mechanism 78 for raising and lowering the scan time 67. Therefore, the processing liquid nozzle 61 can move on the wafer W in the Y direction, and can retreat outside the cup CP beyond the upper end of the cup CP.
  • the N nozzle 62 for spraying nitrogen gas (N gas) onto the surface of the wafer W is also configured in a substantially cylindrical shape.
  • the wafer W is disposed above the center of the wafer W held by the spin chuck 51 with its longitudinal direction being substantially vertical.
  • the N nozzle 62 can be moved up and down by a lifting mechanism 79.
  • N gas is supplied to the N nozzle 62 from an N gas supply unit 66.
  • a cylindrical cover 54 is attached to the N nozzle 62 so as to surround the tip.
  • the mist falls into the undried pure water portion of the wafer w, and the pure water portion is subsequently removed, thereby suppressing the generation of particles.
  • the outer diameter of the N nozzle 62 is 6 mm ⁇ (inner diameter; 4 mm ⁇ )
  • FIG. 3 shows a schematic control system configuration of the substrate cleaning apparatus 10.
  • a control unit (that is, a computer) 11 for controlling the processing of the wafer W by the substrate cleaning apparatus 10 includes a process controller (CPU) 12 and a process manager for determining the cleaning processing conditions and the like for the wafer W.
  • a data input / output unit 13 having a display and the like for visualizing and displaying a calculation result by a keyboard or a process controller (CPU) 12 for performing a command input operation, a progress state of a cleaning process, and the like, and a control unit for controlling the substrate cleaning apparatus 10.
  • a recording unit 14 in which programs, recipes, data related to executed processing, and the like are recorded.
  • the recording unit 14 includes the substrate cleaning apparatus 10 in order to perform a series of processes including a cleaning process using a cleaning solution, a rinsing process using pure water, and a spin drying process, which will be described in detail later.
  • Processing program 15 for causing the process controller (CPU) 12 to execute the operation control of the various drive mechanisms that are configured, time distribution in a series of processing, supply of cleaning liquid, pure water, N gas, and scan speed of the scan arm 67 Recipe 16 recorded
  • processing programs 15 and recipes 16 include, for example, hard disk (HD), fixed storage media such as memory (RAM, etc.), CD-ROM (or CD-R, etc.), DVD-ROM (or DVD-R, etc.) It is recorded on various portable recording media such as a MO disk and the like, and is recorded so as to be readable by a process controller (CPU) 12.
  • HD hard disk
  • RAM random access memory
  • CD-ROM compact disc-read only memory
  • DVD-ROM DVD-ROM
  • the recording unit 14 stores data relating to the processing performed by the substrate cleaning apparatus 10, for example, the lot number of the wafer w, the processing recipe used, the processing date and time, and the operation of various mechanisms during processing. It becomes possible to record data 17 such as whether or not there is a crop failure. Such data 17 can be copied and transferred to various portable recording media such as CD-R and MO disks.
  • the process controller (CPU) 12 attaches and detaches the wafer W by the spin chuck 51, controls the rotation speed of the motor 52, scans the Y-axis drive mechanism 77, and operates the Z-axis drive mechanism. 78 up / down operation, start / stop of pure water supply from pure water supply unit 65 and pure water flow control, start / stop of N gas supply from N gas supply unit 66, etc.
  • the control signal is transmitted to each mechanism or the like. It is also preferable that bidirectional communication is performed in which data indicating execution of the operation is fed back to the process controller (CPU) 12 from various mechanisms constituting the substrate cleaning apparatus 10.
  • FIG. 3 shows only main mechanisms and the like controlled by the process controller (CPU) 12, but does not show all of them.
  • FIG. 4 shows a flowchart of the cleaning process described below.
  • the spin chuck 51 holds the wafer W in a substantially horizontal posture, and adjusts the height of the wafer W (step 1).
  • the processing liquid nozzle 61 positioned above the center of the wafer W, a predetermined amount of cleaning liquid is supplied to the surface of the wafer W while rotating the wafer W at a predetermined rotation speed, and the wafer W is processed for a predetermined time (step 2).
  • the cleaning liquid is supplied to the surface of the wafer W while the wafer W is still, a paddle is formed, and after a predetermined time has elapsed, the wafer W is further rotated while rotating the wafer W.
  • a cleaning solution may be supplied.
  • pure water is supplied from the processing liquid nozzle 61 to the approximate center of the wafer W at a predetermined flow rate (for example, 1 LZ) while rotating the wafer W at a predetermined rotation speed (eg, 100 rpm—100 rpm). Then, the wafer W is rinsed (step 3). In this rinsing process, the processing solution nozzle 61 may be scanned on the wafer W in the Y direction!
  • the processing liquid nozzle 61 is positioned above the center of the wafer W, and the flow rate of pure water supplied to the wafer W (ie, the amount of pure water discharged from the processing liquid nozzle 61) is reduced.
  • the amount is reduced to 20-50 mLZ (step 4), and thereafter, the pure water supply point (that is, the position of the processing liquid nozzle 61) is also moved outward at a predetermined speed with the central force of the wafer W (step 5).
  • the reason for reducing the amount of pure water supplied to the wafer W in step 4 is as follows.
  • the spin drying processes in steps 4 and 5 are completed by stopping the supply of pure water to wafer W when the point of supply of pure water to wafer W deviates from the periphery of wafer W. However, the wafer W may be rotated for a predetermined time thereafter. The wafer W that has been subjected to such spin drying processing is transferred from the spin chuck 51 to an apparatus for performing the next processing (step 6).
  • Fig. 5 Fig. 8 is a diagram showing a comparison between the conventional spin drying method and the spin drying method in steps 4 and 5 described above.
  • FIG. 5 shows a conventional spin of a wafer W having a hydrophilic SiO layer 21 formed on the entire surface.
  • FIG. 5 shows a state in which pure water is supplied to the center of the wafer W and pure water 22 is stored on the surface of the wafer W.
  • the right diagram of FIG. 5 shows an initial state when the supply of pure water to the ueno and W is stopped and the wafer W is rotated at a predetermined rotation speed.
  • the pure water 22 on the wafer W is thinned on the surface of the wafer W by centrifugal force, and is left outside the wafer W so that a liquid film (not shown) remains. Due to the slow movement, the surface of the wafer W dries slowly from the center outward.
  • FIG. 6 is a diagram schematically showing a conventional spin drying process of a wafer W (bare wafer) having a hydrophobic surface.
  • the left diagram in FIG. 6 shows a state in which pure water is supplied to the center of the wafer W and pure water 22 is stored on the surface of the wafer W.
  • the right diagram of FIG. 6 shows an initial state when the supply of pure water to the wafer W is stopped and the wafer W is rotated at a predetermined rotation speed. Since pure water is repelled on the hydrophobic surface, the pure water on the surface of the wafer W is centrifugal. As a result, the entire surface of the wafer W is instantaneously dried. That is, when the number of rotations of the wafer W is the same, the hydrophobic surface dries faster than the hydrophilic surface.
  • FIG. 7 is a diagram schematically showing a conventional spin drying process of a wafer W in which a hydrophilic surface portion 23 and a hydrophobic surface portion 24 coexist.
  • the left diagram in FIG. 7 shows a state in which pure water is supplied to the center of the wafer and pure water 22 is stored on the surface of the wafer W.
  • the right diagram of FIG. 7 shows an initial state when the supply of pure water to the wafer W is stopped and the wafer W is rotated at a predetermined rotation speed.
  • FIG. 8 is a diagram schematically showing a drying process of the wafer W in which the hydrophilic surface portion 23 and the hydrophobic surface portion 24 are mixed by the spin drying method of Steps 4 and 5 described above.
  • the left diagram of FIG. 8 shows a state in which pure water is supplied to the center of the wafer and pure water 22 is stored on the surface of the wafer W.
  • the right diagram in Fig. 8 shows the state of wafer W when the pure water supply to wafer W is reduced and the pure water supply point is moved from the center of wafer W to the outside of wafer W. .
  • the number of rotations during the spin drying of the wafer W be higher than the number of rotations during the rinsing of the wafer W.
  • the rotation speed of the wafer W in the rinsing process can be set to 100 rpm or more and 100 rpm or less.
  • the rotation speed of the wafer W in the spin drying process is preferably set to 1500 rpm or more and 250 Orpm or less. This is because if the rotation speed of the wafer W is too slow, the hydrophilic surface A difference occurs in the drying time between the wafer W and the hydrophobic surface, which causes a problem that a watermark easily occurs.
  • the speed of moving the pure water supply point to the wafer W to the outside of the central force of the wafer W depends on the number of rotations of the wafer W in order to avoid generation of a watermark. Can be changed accordingly.
  • Table 1 shows the center force of the processing liquid nozzle 61 while rotating the 300 mm diameter wafer W at a constant speed and supplying pure water from the processing liquid nozzle 61 to the wafer W at 50 mLZ. The figure shows the result of examining the position where the interference fringes disappear inside the liquid film formed on the wafer W when scanning is performed at a constant speed (11-4 mm Z seconds) on the outer side.
  • Table 1 shows that when the rotation speed of the wafer W is 1600 rpm, when the processing liquid nozzle 61 is scanned outward from the center of the wafer W in ImmZ seconds, the processing liquid nozzle 61 is separated from the center of the wafer W by 40 mm. This indicates that the interference fringe disappeared at the point, and thereafter, the processing liquid nozzle 61 was scanned to the periphery of the wafer W, and no interference fringe was observed. According to Table 1, when the processing liquid nozzle 61 scans at 2 mmZ seconds, the processing liquid nozzle 61 disappears at a point where the center force of the wafer W is also 80 mm away, and then the interference fringe disappears. It turns out that the force was not recognized.
  • the scanning speed of the processing liquid nozzle 61 is set to, for example, ImmZ seconds, and the entire wafer W is scanned, the processing time becomes longer and the productivity is reduced. Therefore, when the rotation speed of the wafer W is fixed, the processing time can be shortened by making the scanning speed of the processing liquid nozzle 61 higher at the outer peripheral portion of the wafer W than at the central portion thereof.
  • the rotation speed of ⁇ , W (300 mm ⁇ ) is 2500 rpm
  • the scanning speed of the processing liquid nozzle 61 is set to ImmZ seconds from the center of the wafer W to a radius of 40 mm, and is set to ImmZ seconds between the radius of 40 mm and the radius of 80 mm. It can be 2 mmZ seconds and 3 mmZ seconds from the radius of 80 mm to the periphery (radius: 150 mm).
  • the processing liquid nozzle 61 is quickly moved to a position 10 to 15 mm away from the center of the wafer W (for example, 80 mmZ seconds). , And immediately afterwards, the center of the wafer W
  • Spraying the wafer at the center of the wafer W promotes the drying of the center of the wafer W, and the processing liquid nozzle 61 scans the force to the periphery of the wafer W at a speed of 3 mmZ seconds or less. Since the generation of marks can be further suppressed, it is preferably used. It is preferable that the processing liquid nozzle 61 scans the periphery of the wafer W after the N gas has been sprayed on the center of the wafer W.
  • FIG. 9 is a plan view showing a schematic structure of the substrate cleaning apparatus 10 '.
  • the substrate cleaning apparatus 10 ′ includes a processing liquid nozzle 61 for selectively supplying a chemical solution and pure water to the wafer W to a nozzle holding member 63 ′ attached to the tip of the scan arm 67, and pure water for spin drying processing.
  • the amount of pure water supplied to the wafer W is reduced from, for example, 1 LZ to 20-50 mLZ when the process shifts from the rinsing process to the spin drying process. Therefore, if the cleaning liquid discharge nozzle 61 is designed to be compatible with the amount of pure water discharged during the rinsing process, the relationship between the pipe diameter and the nozzle diameter is reduced when the amount of pure water discharged during spin drying is reduced. Therefore, stable supply of pure water may not be performed.
  • the substrate cleaning apparatus 1 supplies pure water to the wafer W from the processing liquid nozzle 61 in the processing with the cleaning liquid and the rinsing processing, and supplies the wafer W from the pure water nozzle 61 in the spin drying processing.
  • the processing liquid nozzle 61 and the pure water nozzle 61 are arranged close to each other, and the pure water nozzle 61 and the N nozzle 62 are held at a predetermined distance.
  • Fig. 10 is a flowchart showing a first cleaning treatment method for the wafer W by the substrate cleaning apparatus 1 (/. In this method, both the point of N gas spraying and the point of pure water supply are set for the wafer W.
  • Steps 11 to 13 which are the same processes as Steps 1 to 3 described above with reference to FIG. 4 are performed.
  • the pure water from the pure water nozzle 61 to the wafer W is supplied.
  • Start feeding (eg, 20-50 mLZ) (step 14).
  • step 15 After driving the scan arm 67 in the + Y direction (see FIG. 9) so that the pure water nozzle 61 is positioned above the center of the wafer W, pure water is supplied from the processing liquid nozzle 61 to the wafer W. Is stopped (step 15). After that, the rotation speed of the wafer W is adjusted to 800 rpm or more (Step 16). In this way, it is acceptable to lower the rotational speed of Ueno and W in a later process.
  • the N nozzle 62 While spraying N gas onto the wafer W from the N nozzle 62, the N nozzle 62 is
  • This N gas accelerates the drying of wafer W for scanning with water nozzle 61
  • drying can be gradually advanced from the center of the wafer W toward the outside, and finally the entire surface of the wafer W can be dried.
  • W rotation speed should be 1500rpm or more! / ,.
  • the supplied pure water exerts a sufficient centrifugal force on the outer portion of the wafer W to dry.
  • the N nozzle 62 approaches the outer peripheral portion of the wafer W.
  • the scan arm 67 is scanned at a predetermined speed in the + Y direction so that the pure water nozzle 61 moves outward from the center of the wafer W.
  • a processing method that does not stop the driving of the arm 67 may be adopted.
  • the processing liquid nozzle 61 is rapidly moved to a position 10 to 15 mm away from the center of the wafer W, and then quickly moved to the center of the wafer W. N gas is sprayed from the N nozzle 62, and the processing liquid nozzle 61 is
  • the distance between the pure water nozzle 61 and the N nozzle 62 must be set in advance.
  • the pure water nozzle 61 is quickly moved to a predetermined position, At the same time, the N nozzle 62 can reach the center of the wafer W.
  • FIG. 11 is a plan view showing a schematic structure of the substrate cleaning apparatus 10.
  • the substrate cleaning apparatus 10 includes a substrate cleaning apparatus 10 'and a processing liquid nozzle 61, a pure water nozzle 61, and an N nozzle 62.
  • the N nozzle 62 is connected to the tip of the rotatable scan arm 67 '.
  • the nozzle 62 is always in the area inside the circumference where the pure water nozzle 61 is located (a circle around the center of rotation of the wafer W), and as the pure water nozzle 61 moves to the outside of the wafer W, N
  • the substrate cleaning apparatus 10 is set in such a manner that the N nozzle 62 is moved straight through the center of the wafer W in the Y direction.
  • the structure may be changed to a structure that can be scanned independently of the pure water nozzle 61.
  • the N nozzle 62 may be scanned so as to follow the pure water nozzle 61, or the pure water nozzle may be scanned.
  • the pure water nozzle 61 and N nozzle 62 With a structure that can be scanned vertically, the pure water nozzle 61 and N nozzle 62
  • the processing liquid nozzle 61 has a structure capable of selectively supplying a cleaning liquid and pure water to the wafer W.
  • the substrate cleaning apparatus has a nozzle for supplying only the cleaning liquid and a pure water only.
  • the supply nozzle may be provided separately.
  • the substrate cleaning apparatus 10 be further provided with a pure water nozzle for supplying pure water to the wafer W during spin drying, separately from the processing liquid nozzle 61, as in the case of the substrate cleaning apparatus 1 (.
  • the pure water nozzle may be provided on the nozzle holding member 63, or may be configured to be driven independently of the processing liquid nozzle 61.
  • the processing liquid nozzle 61 in the Y-axis direction has a mechanism that rotates while drawing an arc between the center and the periphery of the wafer W around a predetermined rotation axis. You may have one.
  • the effect of suppressing generation of a watermark by the substrate cleaning method of the present invention can be particularly remarkably obtained when a hydrophobic surface and a hydrophilic surface are mixed on the surface of the substrate to be processed. Force This effect can of course also be obtained when the surface of the substrate to be processed has only a hydrophobic surface or only a hydrophilic surface.
  • the substrate to be processed is not limited to a semiconductor wafer, but may be a glass substrate for FPD or a ceramic substrate.
  • the cleaning method of the present invention is suitable for a method of manufacturing a semiconductor device or an FDP device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Liquid Crystal (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

 ウエハWを略水平姿勢で所定の回転数で回転させながらその表面に所定流量で純水を供給してウエハWをリンス処理した後に、ウエハWへの純水の供給流量を低減し、かつ、純水供給点をウエハWの中心から外側へ移動させる。こうして純水供給点の略外側で液膜を形成しながらウエハWをスピン乾燥処理する。

Description

明 細 書
基板洗浄方法、基板洗浄装置およびコンピュータ読み取り可能な記録媒 体
技術分野
[0001] 本発明は、半導体ウェハや FPD (Flat Panel Display)用ガラス基板等の被処理基 板の表面でのウォーターマークの発生を抑制することができる基板洗浄方法、その 基板処理方法を実行するための基板洗浄装置およびコンピュータ読み取り可能な記 録媒体に関する。
背景技術
[0002] 例えば、半導体デバイスの製造プロセスにおいては、常時、半導体ウェハの表面を 清浄に保つ必要があるために、適宜、半導体ウェハに洗浄処理が施される。半導体 ウェハを 1枚ずつ処理する枚葉式洗浄処理の典型例としては、スピンチャックに保持 された半導体ウェハに所定の洗浄液を供給し (薬液洗浄処理)、その後に半導体ゥ ェハに純水を供給して洗浄液を洗い流し (リンス処理)、さらに半導体ウェハを高速 回転させて純水を半導体ウェハから振り切る (スピン乾燥処理)、処理方法が知られ ている。
[0003] このような処理方法では、スピン乾燥時に発生する純水のミストが半導体ウェハの 乾燥面に付着すること等によって、半導体ウェハの表面にウォーターマークが発生 する問題がある。
[0004] そこで、このようなウォーターマークの発生を抑制する洗浄方法として、特開平 4 2 87922号公報には、被処理基板の表面に所定の洗浄液を斜め上方から供給する洗 浄処理工程と、その後に被処理基板の表面に純水を斜め上方から供給するリンス処 理工程と、その後に被処理基板を高速回転させて液切りする乾燥処理工程とを有し 、リンス処理工程の終期と乾燥処理工程の始期をオーバーラップさせて、このオーバ 一ラップ工程および乾燥処理工程にお!、て被処理基板の中心部に窒素ガスを供給 する基板処理方法が開示されている。
[0005] また特開 2001— 53051号公報には、リンス処理後の基板の中心部に不活性ガス を噴射するとともに、基板の外周部に純水を噴射し、これら不活性ガスの噴射位置と 純水の噴射位置をともに基板の中心から外側へと径方向に移動させる基板乾燥方 法が開示されている。
[0006] し力しながら、半導体デバイスの製造プロセスが進行すると、半導体ウェハの表面 には親水性面 (例えば、所定の方法により形成された SiO面)と疎水性面 (例えば、
2
ベア Si面)とが混在するパターンが形成される。これら親水性面と疎水性面とではス ピン乾燥処理時における水切れの速さが異なるために、上述した従来のスピン乾燥 方法では、ウォーターマークの発生を回避することは困難である。
発明の開示
[0007] 本発明は力かる事情に鑑みてなされたものであり、ウォーターマークの発生を抑制 することができる洗浄処理方法を提供することを目的とする。また、本発明は、この基 板処理方法を実行するための基板洗浄装置およびコンピュータ読み取り可能な記録 媒体を提供することを目的とする。
[0008] 本発明の第 1の観点によれば、被処理基板を略水平姿勢で回転させながら、その 表面に純水を供給して前記被処理基板をリンス処理し、その後に前記被処理基板へ の純水の供給流量をリンス処理時よりも低減し、かつ、前記被処理基板への純水供 給点を前記被処理基板の中心から外側へ移動させて、前記純水供給点の略外側の 領域で液膜を形成しながら、前記被処理基板をスピン乾燥処理する基板洗浄方法、 が提供される。
[0009] このような基板洗浄方法では、被処理基板への純水供給点が被処理基板の中心 力も外側へ移動する速度を、被処理基板の外周部でその中心部よりも速くすることが 好ましい。また、被処理基板の中心部では純水に遠心力が十分に働き難ぐそのまま では乾燥し難いので、被処理基板の中心部での均一な乾燥を促進するために、被 処理基板への純水供給点が被処理基板の中心から所定距離離れた位置に到達し た際にそこで純水供給点の移動を停止して被処理基板の中心部に窒素ガスを吹き 付け、その後に窒素ガスの吹き付けを停止して、純水供給点を再び被処理基板の外 側へ移動させる方法も好適に用いられる。
[0010] さらに、被処理基板への純水供給点を被処理基板の中心から 10— 15mm離れた 位置へ急速移動させてそこで純水供給点の移動を停止し、被処理基板の中心部に 窒素ガスを所定時間吹き付け、その後に窒素ガスの吹き付けを停止して純水供給点 を再び被処理基板の外側へ 3mmZ秒以下の速度で移動させる方法も好ましい。
[0011] さらにまた、被処理基板への純水供給点が被処理基板の中心部から所定距離離 れた後に被処理基板の中心部に窒素ガスを吹き付け、次いで被処理基板に窒素ガ スを吹き付けながら窒素ガスの吹き付け点を純水供給点と共に被処理基板の中心部 から外側へ移動させる方法を採ることもできる。その他にも、被処理基板の外側部分 では純水に十分な遠心力が作用するため、被処理基板への純水供給点が被処理基 板の中心部力 所定距離離れた後に被処理基板の中心部に窒素ガスを吹き付け、 その後に被処理基板に窒素ガスを吹き付けながら窒素ガスの吹き付け点を純水供給 点と共に被処理基板の中心部力 外側へ移動させ、その途中で窒素ガスの吹きつけ のみを停止する方法を用いることも好まし 、。
[0012] リンス処理における被処理基板の回転数は lOOrpm以上 lOOOrpm以下とすること が好まし!/、。スピン乾燥処理にお!、て被処理基板の中心部に窒素ガスを吹き付け、 その吹き付け位置を純水供給点と共に被処理基板の外側へ移動させる場合には、 被処理基板の回転数は 800rpm以上であればょ 、。またスピン乾燥処理における被 処理基板の回転数は、被処理基板から飛散する純水がミスト化すること等に起因す るパーティクルやウォーターマークの発生を防止する観点から、 2500rpm以下とする ことが好ましい。
[0013] これに対し、スピン乾燥時に被処理基板に窒素ガスを供給しな 、場合には、被処 理基板のスピン乾燥処理時における回転数をリンス処理時における回転数よりも高く することが好ましい。具体的には、被処理基板の回転数を、リンス処理では lOOrpm 以上 lOOOrpm以下とし、スピン乾燥処理では 1500rpm以上 2500rpm以下とするこ とが好ましい。本発明の基板洗浄方法は、被処理基板の表面に疎水性面と親水性 面とが混在している場合に好適に用いられるが、勿論、被処理基板の表面が疎水性 面のみの場合または親水性面のみの場合にも用いることができる。
[0014] 本発明は、上記基板洗浄方法を実行するための基板洗浄装置を提供する。すなわ ち、本発明の第 2の観点によれば、被処理基板を略水平姿勢で保持し、回転させる 前記スピンチャックに保持された被処理基板の表面に純水を吐出する純水供給ノ ズルと、前記純水供給ノズルに純水を送液する送液部と、を有する純水供給機構と、 前記純水供給ノズルを被処理基板の中心上と外縁上との間でスキャンさせる純水ノ ズルスキャン機構と、
前記スピンチャックに保持された被処理基板を回転させながら前記被処理基板の 表面に所定流量で純水を供給するリンス処理を行い、その後に前記被処理基板へ の純水供給流量を前記リンス処理のときよりも少なくし、かつ、前記被処理基板への 純水供給点を前記被処理基板の中心から外側へ移動させることにより、前記被処理 基板のスピン乾燥処理が前記純水供給点の略外側の領域で液膜を形成しながら行 われるように、前記スピンチャックおよび前記純水供給機構ならびに前記純水ノズル スキャン機構を制御する制御部と、
を具備する基板洗浄装置、が提供される。
[0015] 上述した窒素ガスを用いたスピン乾燥を行うために、この基板洗浄装置は、さらにス ピンチャックに保持された被処理基板の表面の中心部に窒素ガスを吹き付けるガスノ ズルを有するガス供給機構を具備して ヽることが好まし!/ヽ。このガス供給機構もまた 制御部により制御される構成とすることが、被処理基板の処理をスムーズに行う観点 からも、好ましい。
[0016] また、この基板洗浄装置は、スピンチャックに保持された被処理基板の表面に窒素 ガスを吹き付けるガスノズルを有するガス供給機構と、このガスノズルを被処理基板 上でスキャンさせるガスノズルスキャン機構とをさらに具備している構成とすることも好 ましい。この場合にも、ガス供給機構とガスノズルスキャン機構が制御部により制御さ れる構成とすることで、被処理基板の処理をスムーズに行うことができる。
[0017] 本発明は、このような基板洗浄装置を制御するコンピュータに、上記基板洗浄方法 を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体を提 供する。すなわち、本発明の第 3の観点によれば、略水平姿勢に保持された被処理 基板を回転させながら、前記被処理基板に純水を供給してリンス処理し、さらにスピ ン乾燥する基板洗浄装置を制御するコンピュータに、 (a)前記スピンチャックに保持 された被処理基板を回転させながら前記被処理基板の表面に所定流量で純水を供 給してリンス処理し、 (b)前記被処理基板への純水供給流量を前記リンス処理のとき よりも少なくし、かつ、前記被処理基板への純水供給点を前記被処理基板の中心か ら外側へ移動させて、前記純水供給点の略外側の領域で液膜を形成しながら前記 被処理基板をスピン乾燥させる、処理を実行させるためのプログラムを記録したコン ピュータ読み取り可能な記録媒体、が提供される。
[0018] 本発明の第 4の観点によれば、基板洗浄装置の構成に応じた別の記録媒体、すな わち、略水平姿勢に保持された被処理基板を回転させながら、前記被処理基板に純 水を供給してリンス処理し、さらに前記被処理基板に窒素ガスを供給してスピン乾燥 する基板洗浄装置を制御するコンピュータに、 (a)前記スピンチャックに保持された 被処理基板を回転させながら前記被処理基板の表面に所定流量で純水を供給して リンス処理し、 (b)前記被処理基板への純水供給流量を前記リンス処理のときよりも 少なくし、かつ、前記被処理基板への純水供給点を前記被処理基板の中心から外 側へ移動させ、(c)前記被処理基板への純水供給点が前記被処理基板の中心から 所定距離離れた位置に到達した際にそこで前記純水供給点の移動を一時停止させ て前記被処理基板の中心部に窒素ガスを吹き付け、 (d)前記窒素ガスの吹き付けを 停止させた後に前記純水供給点を再び前記被処理基板の外側へ移動させて、前記 純水供給点の略外側の領域で液膜を形成しながら前記被処理基板をスピン乾燥さ せる、処理を実行させるためのプログラムを記録したコンピュータ読み取り可能な記 録媒体、が提供される。
[0019] 本発明の第 5の観点によれば、基板洗浄装置の構成に応じたさらに別の記録媒体 、すなわち、略水平姿勢に保持された被処理基板を回転させながら、前記被処理基 板に純水を供給してリンス処理し、さらに前記被処理基板に窒素ガスを供給してスピ ン乾燥する基板洗浄装置を制御するコンピュータに、 (a)前記スピンチャックに保持 された被処理基板を回転させながら前記被処理基板の表面に所定流量で純水を供 給してリンス処理し、 (b)前記被処理基板への純水供給流量を前記リンス処理のとき よりも少なくし、かつ、前記被処理基板への純水供給点を前記被処理基板の中心か ら外側へ移動させ、(c)前記被処理基板への純水供給点が前記被処理基板の中心 力 所定距離離れた位置に到達した際にそこで前記純水供給点の移動を一時停止 させて前記被処理基板の中心部に窒素ガスを吹き付け、 (d)前記被処理基板に窒 素ガスを吹き付けながら前記窒素ガスの吹き付け点を前記純水供給点と共に前記被 処理基板の中心部力も外側へ移動させる、処理を実行させるためのプログラムを記 録したコンピュータ読み取り可能な記録媒体、が提供される。
[0020] 本発明によれば、疎水性面と親水性面とが混在して!/、る場合にも、疎水性面の乾 燥時間と親水性面の乾燥時間との差を小さくすることができるために、ウォーターマ ークの発生を抑制した、高精密な基板洗浄処理を行うことができる。本発明は、被処 理基板の表面が疎水性面からなる場合や親水性面からなる場合にも、勿論、有効で める。
図面の簡単な説明
[0021] [図 1]基板洗浄装置の概略構造を示す鉛直断面図。
[図 2]基板洗浄装置の概略構造を示す平面図。
[図 3]基板洗浄装置の概略の制御システムを示す図。
[図 4]洗浄処理方法を示すフローチャート。
[図 5]従来のスピン乾燥方法によるウェハの乾燥過程を模式的に示す図。
[図 6]従来のスピン乾燥方法によるウェハの乾燥過程を模式的に示す別の図。
[図 7]従来のスピン乾燥方法によるウェハの乾燥過程を模式的に示すさらに別の図。
[図 8]本発明の洗浄処理方法におけるスピン乾燥によるウェハの乾燥過程を模式的 に示す図。
[図 9]別の基板洗浄装置の概略構造を示す平面図。
[図 10]別の洗浄処理方法を示すフローチャート。
[図 11]さらに別の基板洗浄装置の概略構造を示す平面図。
発明を実施するための最良の形態
[0022] 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。図 1に 半導体ウェハを洗净する基板洗净装置 10の概略構造を示す鉛直断面図を示し、図
2にその平面図を示す。
[0023] 基板洗浄装置 10の主要部分は筐体 50内に設けられている。図 1および図 2ではこ の筐体 50の一部のみを示している。筐体 50内の略中央部には環状のカップ CPが 配置され、カップ CPの内側にはスピンチャック 51が配置されている。スピンチャック 5 1としては、ウェハ Wを真空吸着して保持するもの、またはウェハ W端面を機械的に 保持する、所謂、メカチャック方式のものが好適に用いられ、ウェハ Wを保持した状 態で駆動モータ 52によって回転駆動される。カップ CPの底部には、洗浄液、純水を 排出するためのドレイン 53が設けられ、また、基板洗浄装置 10の筐体 50の鉛直壁 には、外部力もウェハを搬入し、逆に外部にウェハ Wを搬出するための搬送窓 56が 形成されている。
[0024] ウェハ Wの表面に洗浄液と純水を供給する処理液ノズル 61は、略筒状に構成され 、その長手方向を略鉛直にしてノズル保持部材 63に保持されている。処理液ノズル 61へは、洗浄液供給部 64およびバルブの開閉調節等により流量変更可能に構成さ れた純水供給部 65から洗浄液または純水が選択的に送液される。つまり、処理液ノ ズル 61は、ウェハ Wに洗浄液を供給するノズルとしても、ウェハ Wに純水を供給する ノズルとしても、機能する。処理液ノズル 61としては、所謂、ストレートノズルが好適に 用いられる。ノズル保持部材 63はスキャンアーム 67の先端部に取り付けられている。
[0025] このスキャンアーム 67は、筐体 50の底板上に一方向(Y方向)に敷設されたガイド レール 68上に配置された垂直支持部材 69の上端部に取り付けられている。この垂 直支持部材 69は Y軸駆動機構 77によって水平移動可能であり、かつ、スキャン了一 ム 67を昇降させるための Z軸駆動機構 78を備えている。したがって、処理液ノズル 6 1はウェハ W上を Y方向で移動自在であり、かつ、カップ CPの上端を越えてカップ C P外へ退避可能となって ヽる。
[0026] ウェハ Wの表面に窒素ガス (Nガス)を吹き付ける Nノズル 62もまた略筒状に構成
2 2
され、その長手方向を略鉛直にして、スピンチャック 51に保持されるウェハ Wの中心 の上方に配置されている。この Nノズル 62は、昇降機構 79によって昇降自在である
2
。 Nノズル 62へは Nガス供給部 66から Nガスが供給される。
2 2 2
[0027] Nノズル 62には、その先端部を囲うように、円筒状のカバー 54が取り付けられてい
2
る。このカバー 54がないと、 Nノズル 62から噴射される Nガスはウェハ W上に一点
2 2
集中し、ウェハ W上の純水のミストを巻き上げる。このとき、 Nノズル 62から噴射され
2 る Nガスの周囲ではそのミストの落下速度が遅くなり、ミストがウェハ Wの乾いた部分
2
に落ちてパーティクルになるという問題が生ずる。しかし、カバー 54を設けると、 Nノ
2 ズル 62から噴射される Nガスのうちの外側に向力う Nガスがカバー 54にあたってダ
2 2
ゥンフローとなるので、ミストがウェハ wの乾いてない純水部分に落ち、その純水部分 はその後に除去されるので、パーティクルの発生が抑制される。
[0028] 例えば、 Nノズル 62の外径が 6mm φ (内径; 4mm φ )の場合、カバー 54の内径
2
は 10mm φ— 20mm φとすることが好ましい。また、 Nノズル 62の先端とカバー 54
2
の先端との距離を調節することができるように、カバー 54を Nノズル 62とは独立して
2
昇降自在とすることが好ましぐこれによりウェハ wの乾燥の進み方を制御することが できる。
[0029] 図 3に基板洗浄装置 10の概略の制御システムの構成を示す。基板洗浄装置 10〖こ よるウェハ Wの処理を制御するための制御部(つまり、コンピュータ) 11は、プロセス コントローラ (CPU) 12と、工程管理者がウェハ Wの洗浄処理条件等を決定するため のコマンド入力操作等を行うキーボードやプロセスコントローラ(CPU) 12による演算 結果、洗浄処理の進行状態等を可視化して表示するディスプレイ等を有するデータ 入出力部 13と、基板洗浄装置 10を制御するためのプログラムやレシピ、実行された 処理に関係するデータ等が記録された記録部 14と、を有している。
[0030] 記録部 14には、具体的には、後に詳細に説明する、洗浄液による洗浄処理、純水 によるリンス処理、そしてスピン乾燥処理に至る一連の処理を行うために、基板洗浄 装置 10を構成する各種の駆動機構の動作制御をプロセスコントローラ(CPU) 12に 実行させるための処理プログラム 15や、一連の処理における時間配分、洗浄液や純 水、 Nガスの供給量、スキャンアーム 67のスキャン速度等が記録されたレシピ 16が
2
記録されている。これらの処理プログラム 15やレシピ 16は、例えば、ハーディスク(H D)、メモリー(RAM等)の固定記憶媒体や、 CD-ROM (または CD-R等)、 DVD- ROM (または DVD— R等)、 MOディスク等の可搬性のある各種記録媒体に記録さ れており、プロセスコントローラ(CPU) 12によって読み取り可能に記録されている。
[0031] また、記録部 14には、基板洗浄装置 10で実行された処理に関するデータ、例えば 、ウェハ wのロット番号、用いられた処理レシピ、処理日時、処理中の各種機構の動 作不良の有無等のデータ 17を記録することができるようになって 、る。このようなデー タ 17は、 CD— Rや MOディスク等の可搬性のある各種記録媒体にコピーや移し替え できるようになつている。
[0032] プロセスコントローラ(CPU) 12は、処理プログラム 15とレシピ 16にしたがって、スピ ンチャック 51によるウェハ Wの脱着、モータ 52の回転数制御、 Y軸駆動機構 77のス キャン動作、 Z軸駆動機構 78の昇降動作、純水供給部 65からの純水供給の開始と 停止および純水流量制御、 Nガス供給部 66からの Nガス供給の開始と停止等の各
2 2
種の制御信号を各機構等に送信する。基板洗浄装置 10を構成する各種機構からそ の動作の実行を示すデータがプロセスコントローラ(CPU) 12にフィードバックされる 双方向通信が行われる構成も好ましい。なお、図 3には、プロセスコントローラ(CPU ) 12によって制御される主な機構等のみを示しており、全てを示してはいない。
[0033] 次に、上述の通りに構成された基板洗浄装置 10によるウェハ Wの洗浄処理方法に ついて説明する。図 4に以下に説明する洗浄処理工程のフローチャートを示す。最 初に、スピンチャック 51にウェハ Wを略水平姿勢で保持させて、ウェハ Wの高さを調 節する(ステップ 1)。処理液ノズル 61をウェハ Wの中心の上方に位置させて、ウェハ Wを所定の回転数で回転させながら、ウェハ Wの表面に所定量の洗浄液を供給し、 ウェハ Wを所定時間処理する(ステップ 2)。このステップ 2の処理では、ウェハ Wを静 止させた状態でウェハ Wの表面に洗浄液を供給してパドルを形成し、所定時間が経 過した後にウェハ Wを回転させながらさらにウェハ Wの表面に洗浄液を供給してもよ い。
[0034] 次に、ウェハ Wを所定の回転数(例えば lOOrpm— lOOOrpm)で回転させながら、 処理液ノズル 61からウェハ Wの略中心に所定の流量 (例えば 1LZ分)で純水を供 給し、ウェハ Wをリンス処理する(ステップ 3)。このリンス処理においては、処理液ノズ ル 61をウェハ W上で Y方向にスキャンさせてもよ!、。
[0035] このようなリンス処理の終期に処理液ノズル 61がウェハ Wの中心上にあるようにして 、ウェハ Wへの純水の供給流量(つまり処理液ノズル 61からの純水吐出量)を例えば 20— 50mLZ分に低減し (ステップ 4)、その後、純水供給点(つまり処理液ノズル 61 の位置)をウェハ Wの中心力も外側へ所定の速度で移動させる (ステップ 5)。 [0036] ステップ 4でウェハ Wへの純水供給量を低減する理由は次の通りである。すなわち 、リンス処理時にはリンス効率を上げるためにウェハ Wへの純水供給量を多くするこ とが好ましい。しかし、そのままの流量で処理液ノズル 61のスキャンを開始すると、ゥ ェハ Wに形成されて!、る液膜が厚 、ために、ウェハ Wから振り切られた純水がカップ CPで跳ね返って、液滴やミストが多く発生し、これがパーティクルやウォーターマーク の発生原因となる。そこで、純水供給量を減らして薄い液膜とすることにより、このよう な跳ね返りが抑制されて、パーティクルやウォーターマークの発生が抑制される。また 、このような方法によって乾燥を早めることができる。
[0037] このステップ 4 · 5のスピン乾燥工程は、ウェハ Wへの純水供給点がウェハ Wの周縁 から外れた時点で、ウェハ Wへの純水の供給を停止することにより終了する。しかし、 その後に所定時間、ウェハ Wを回転させてもよい。このようなスピン乾燥処理が終了 したウェハ Wはスピンチャック 51から次の処理を行う装置へ搬送される (ステップ 6)。
[0038] 次に、上述したステップ 4· 5のスピン乾燥工程についてさらに詳細に説明する。図 5 一図 8は従来のスピン乾燥方法と上記ステップ 4 · 5によるスピン乾燥方法とを比較し て示す図である。
[0039] 図 5は、表面全体に親水性の SiO層 21が形成されているウェハ Wの従来のスピン
2
乾燥過程を模式的に示す図である。図 5の左図は、ウェハ Wの中心に純水が供給さ れ、ウェハ Wの表面に純水 22が液盛りされている状態を示している。図 5の右図は、 ウエノ、 Wへの純水の供給を停止して、ウェハ Wを所定の回転数で回転させたときの 初期状態を示している。ウェハ Wの表面が全面親水性である場合には、ウェハ W上 の純水 22は遠心力によってウェハ Wの表面に薄 、液膜(図示せず)力残るようにゥ ェハ Wの外側にゆっくりと移動するために、ウェハ Wの表面は中心から外側に向かつ てゆっくりと乾く。
[0040] 図 6は、疎水性の表面を有するウェハ W (ベアウェハ)の従来のスピン乾燥過程を 模式的に示す図である。図 6の左図はウェハ Wの中心に純水が供給され、ウェハ W の表面に純水 22が液盛りされている状態を示している。図 6の右図は、ウェハ Wへの 純水の供給を停止して、ウェハ Wを所定の回転数で回転させたときの初期状態を示 している。疎水性面上では純水は弾かれるために、ウェハ Wの表面の純水は遠心力 によって一気に振り切られ、瞬時にウェハ Wの表面全体が乾燥する。つまり、ウェハ Wの回転数が同じ場合には、疎水性面の方が親水性面よりも早く乾く。
[0041] 図 7は親水性面部 23と疎水性面部 24とが混在するウェハ Wの従来のスピン乾燥 過程を模式的に示す図である。図 7の左図はウェハの中心に純水が供給され、ゥェ ハ Wの表面に純水 22が液盛りされている状態を示している。図 7の右図は、ウェハ W への純水の供給を停止して、ウェハ Wを所定の回転数で回転させたときの初期状態 を示している。前述したように、親水性面と疎水性面とではウエノ、 Wの回転数が同じ 場合に乾燥時間に差があるために、ウェハ Wに親水性面 23と疎水性面 24とが混在 すると、疎水性面 24が先に乾き、親水性面部 23上に純水 22が残った状態となる。こ うして親水性面 23上に残った純水 22が遠心力によって外側へ移動する際に乾いた 疎水性面 24に付着し、これによつてウォーターマークが発生すると考えられる。
[0042] 図 8は、先に説明したステップ 4· 5のスピン乾燥方法による、親水性面部 23と疎水 性面部 24とが混在するウェハ Wの乾燥過程を模式的に示す図である。図 8の左図は 、ウェハの中心に純水が供給され、ウェハ Wの表面に純水 22が液盛りされている状 態を示している。図 8の右図は、ウェハ Wへの純水供給量を低減させて、純水供給 点をウェハ Wの中心からウェハ Wの外側への移動させているときのウェハ Wの状態 を示している。
[0043] この図 8の右図に示されるように、ステップ 4· 5のスピン乾燥方法では、純水供給点 の略外側では純水 22の液膜が形成され、この液膜が形成されるエリアは処理液ノズ ル 61の位置がウェハ Wの外側に移動するにしたがって狭まる。つまり、ウェハ Wをそ の中心力も外側へとゆっくりと乾燥させることができる。このため、ウェハ Wの表面に 親水性面と疎水性面とが混在して!/、る場合であっても、親水性面部 23と疎水性面部 24との乾燥時間差が短くなり、ウォーターマークの発生が抑制される。
[0044] このステップ 4· 5のスピン乾燥方法では、ウェハ Wのスピン乾燥処理時における回 転数をウェハ Wのリンス処理時における回転数よりも高くすることが好ましい。例えば 、リンス処理におけるウェハ Wの回転数は lOOrpm以上 lOOOrpm以下とすることが でき、この場合にはスピン乾燥処理におけるウェハ Wの回転数を 1500rpm以上 250 Orpm以下とすることが好ましい。これは、ウェハ Wの回転数が遅過ぎると、親水性面 と疎水性面との乾燥時間に差が生じ、ウォーターマークが発生しやすくなるという問 題を生じ、一方、ウェハ Wの回転数が高過ぎると、ウェハ Wの周囲に乱気流が発生し 、この乱気流に乗ってウェハ Wから飛散した純水のミストがウェハ Wの既に乾燥した 部分に再付着することによってウォーターマークが発生し易くなるという問題が生ずる からである。
[0045] ウェハ Wへの純水供給点をウェハ Wの中心力 外側へ移動させる速度、つまり処 理液ノズル 61のスキャン速度は、ウォーターマークの発生を回避するために、ウェハ Wの回転数に応じて変えることができる。表 1に、 300mm φのウェハ Wを一定の回 転数で回転させながら、かつ、処理液ノズル 61から純水を 50mLZ分でウェハ Wに 供給しながら、処理液ノズル 61をウェハ Wの中心力 外側^ ^一定の速度(1一 4mm Z秒)でスキャンさせたときに、ウェハ Wに形成される液膜の内側部分で干渉縞が消 滅する位置を調べた結果を示す。
[0046] [表 1]
Figure imgf000014_0001
※^:ウェハの周縁までのスキャンで干渉縞が消滅しない場合
[0047] 表 1は、ウェハ Wの回転数が 1600rpmの場合には、処理液ノズル 61を ImmZ秒 でウェハ Wの中心から外側へスキャンすると、処理液ノズル 61がウェハ Wの中心から 40mm離れた点で干渉縞が消滅し、その後、処理液ノズル 61をウェハ Wの周縁まで スキャンさせる間に干渉縞の発生が認められな力 たことを示している。また、表 1に よると、処理液ノズル 61を 2mmZ秒でスキャンした場合には、処理液ノズル 61がゥ ェハ Wの中心力も 80mm離れた点で干渉縞が消滅し、その後、干渉縞の発生が認 められな力つたことがわかる。これに対して、処理液ノズル 61を 3mmZ秒または 4m mZ秒でスキャンさせると、処理液ノズル 61がウェハ Wの周縁に達するまで常に干渉 縞が観察された。つまり、この条件では最初から最後まで干渉縞が消滅せず、ウォー ターマークの発生を抑制することができな力つたことがわかる。
[0048] 表 1から、処理液ノズル 61のスキャン速度が一定の場合には、ウェハ Wの回転数を 上げると干渉縞が消滅する位置がウェハ Wの中心に近くなり、一方、ウェハ Wの回転 数が一定の場合には、干渉縞が消滅する位置は処理液ノズル 61のスキャン速度が 遅い場合に、ウェハ Wの中心に近くなつていることがわかる。このことから、ウェハ W の回転速度が速ぐかつ、処理液ノズル 61のスキャン速度が遅い場合に、干渉縞の 発生を抑制することができると 、うことがわかる。
[0049] しかしながら、処理液ノズル 61のスキャン速度を、例えば ImmZ秒としてウェハ W 全体をスキャンすると、処理時間が長くなり、生産性が低下する。そこで、ウェハ Wの 回転数を一定とした場合には、処理液ノズル 61のスキャン速度をウェハ Wの外周部 でその中心部よりも速くすることにより、処理時間を短縮することができる。例えば、ゥ エノ、 W(300mm φ )の回転数が 2500rpmの場合、処理液ノズル 61のスキャン速度 を、ウェハ Wの中心から半径 40mmまでの間は ImmZ秒とし、半径 40mmから半径 80mmの間は 2mmZ秒とし、半径 80mmから周縁(半径: 150mm)までの間は 3m mZ秒、とすることができる。
[0050] ウェハ Wの中心から外周へ処理液ノズル 61をゆっくりとスキャンさせる方法に代え て、処理液ノズル 61をウェハ Wの中心から 10— 15mm離れた位置へ急速移動し( 例えば、 80mmZ秒)、その後に速やかにウェハ Wの中心部に Nノズル 62力ら Nガ
2 2 スを吹き付けることによりウェハ Wの中心部の乾燥を促進し、処理液ノズル 61をそこ 力もウェハ Wの周縁へと 3mmZ秒以下の速度でスキャンさせる方法も、ウェハ Wの 中心部でのウォーターマークの発生をさらに抑制することができるので、好適に用い られる。なお、処理液ノズル 61のウェハ Wの周縁へのスキャンは、ウェハ Wの中心部 への Nガスの吹き付けが終了した後に開始することが好ましいが、 Nガスの吹き付
2 2 けが行われて 、る間に開始してもよ 、。
[0051] 次に本発明に係る洗浄処理方法を実施する別の基板洗浄装置について説明する 。図 9に基板洗浄装置 10' の概略構造を示す平面図を示す。基板洗浄装置 10' は、スキャンアーム 67の先端に取り付けられたノズル保持部材 63' に、薬液および 純水を選択的にウェハ Wに供給する処理液ノズル 61と、スピン乾燥処理時に純水を ウェハ Wに供給する純水ノズル 61と、ウェハ Wに Nガスを吹き付ける Nノズル 62と、
2 2
が配置された構成を有している。これらノズル周り以外の構成は、先に説明した基板 洗浄装置 10と同様であるので、説明を割愛する。
[0052] 前述したように、基板洗浄装置 10によるウェハ Wの洗浄処理では、リンス処理から スピン乾燥処理へ移行する際に、ウェハ Wへ供給する純水量を、例えば 1LZ分から 20— 50mLZ分に低減するために、洗浄液吐出ノズル 61をリンス処理時の多い純 水吐出量に適合する構造とした場合には、スピン乾燥時に純水吐出量を減少させた 場合に、配管径ゃノズル径との関係で、安定した純水供給を行えなくなるおそれがあ る。このような問題を解決するために、基板洗浄装置 1( では、洗浄液による処理と リンス処理では処理液ノズル 61からウェハ Wに純水を供給し、スピン乾燥処理時に は純水ノズル 61からウェハ Wに純水を供給することができるようになっている。
[0053] また、ノズル保持部材 63' では、処理液ノズル 61と純水ノズル 61は近接配置され ており、純水ノズル 61と Nノズル 62とは一定距離離して保持されている。
2
[0054] この基板洗浄装置 1(/ によるウェハ Wの第 1の洗浄処理方法を示すフローチヤ一 トを図 10に示す。この方法は、 Nガスの吹き付け点と純水供給点とを共にウェハ W
2
の中心力も外側へ移動させる処理方法である。つまり、最初に先に図 4を参照しなが ら説明したステップ 1一ステップ 3と同じ処理であるステップ 11一 13を行う。次に、ステ ップ 13のリンス処理の終期に、処理液ノズル 61からウェハ Wの中心へ純水供給(例 えば、 1LZ分)を続けながら、純水ノズル 61からウェハ Wへの純水の供給(例えば、 20— 50mLZ分)を開始する(ステップ 14)。
[0055] 次いで、純水ノズル 61がウェハ Wの中心上に位置するようにスキャンアーム 67を + Yの向き(図 9参照)に駆動した後に、処理液ノズル 61からウェハ Wへの純水供給を 停止する(ステップ 15)。その後、ウェハ Wの回転数を 800rpm以上に調整する(ステ ップ 16)。このようにウエノ、 Wの回転数を下げることが許容されるのは、後の工程で、
Nノズル 62から Nガスをウェハ Wに吹き付けながら、ウェハ W上で Nノズル 62を純
2 2 2
水ノズル 61と共にスキャンさせるために、この Nガスによってウェハ Wの乾燥を促進
2
させることがでさるカゝらである。
[0056] ウェハ Wの回転数を調整したら、純水ノズル 61から純水を供給しながら、スキャン アーム 67を所定速度で +Yの向きに(つまりウェハ Wの外側に向けて)スキャンさせ る(ステップ 17)。こうして Νノズル 62がウェハ Wの中心上に到達した時点で、ー且、
2
スキャンアーム 67の駆動を停止して、 Νノズル 62からウェハ Wの中心へ Νガスを吹
2 2 き付け、ウェハ Wの中心部の均一乾燥を促進する (ステップ 18)。
[0057] 所定時間、ウェハ Wの中心へ Νガスを吹き付けた後、 Νノズル 62からウェハ Wに
2 2
Νガスを吹き付けながら、スキャンアーム 67を再び +Υの向きに駆動し、純水ノズル
2
61と Νノズル 62を同時スキャンさせる(ステップ 19)。このような方法によっても、親水
2
性面と疎水性面との乾燥時間差を短くしながら、ウェハ Wの中心部から外側に向け て徐々に乾燥を進めることができ、最終的にウェハ W全面を乾燥させることができる。
[0058] なお、基板洗浄装置 1( を用いた場合でも、 Νノズル 62のスキャン時に Νノズル
2 2
62から Νガスをウェハ Wに吹き付けない処理方法を行ってもよぐその場合には、ゥ
2
エノ、 Wの回転数は 1500rpm以上とすることが好まし!/、。
[0059] 一般的に、回転するウェハ Wに純水を供給すると、ウェハ Wの外側部分では供給 された純水に十分に遠心力が作用して乾燥が進む。このことを利用して、基板洗浄 装置 l( を用いたウェハ Wの処理では、 Nノズル 62がウェハ Wの外周部に近づい
2
たら、ウェハ Wへの Nガスの吹き付けを停止する方法、または Nガスの噴射量を低
2 2
減する方法を採ることもできる。また、基板洗浄装置 10と同様に、 Nノズル 62からの
2
ウェハ Wへの Nガスの吹き付けを、ウェハ Wの中心部に限って行う処理方法を採る
2
こともできる。さらに、純水ノズル 61がウェハ Wの中心から外側へ移動するようにスキ ヤンアーム 67を所定速度で +Yの向きにスキャンさせ、 Nノズル 62がウェハ Wの中
2
心に達した時点でウェハ Wへの Nガスの吹き付けを開始するが、このときにスキャン
2
アーム 67の駆動を停止しない処理方法を採ることもできる。
[0060] さらにまた先に説明したスピン乾燥方法の 1つである、処理液ノズル 61をウェハ W の中心から 10— 15mm離れた位置へ急速移動し、その後に速やかにウェハ Wの中 心部に Nノズル 62力ら Nガスを吹き付け、そこから処理液ノズル 61をウェハ Wの周
2 2
縁へと 3mmZ秒以下の速度でスキャンさせる処理方法と同様の処理を、基板洗浄 装置 l( を用いて行う場合には、予め、純水ノズル 61と Nノズル 62との間隔を 10
2
一 15mmに設定しておけば、純水ノズル 61を所定位置に急速移動させると、これと 同時に、 Nノズル 62をウェハ Wの中心に到達させることができる。
2
[0061] 次に本発明に係る洗浄処理方法を実施するさらに別の基板洗浄装置について説 明する。図 11に基板洗浄装置 10〃 の概略構造を示す平面図を示す。基板洗浄装 置 10 は、基板洗浄装置 10' を、処理液ノズル 61 ·純水ノズル 61と Nノズル 62と
2
が独立してウェハ Wの中心と周縁との間をスキャンすることができる構造に改変したも のであり、それ以外の部分の構造は基板洗浄装置 1(/ と同じである。
[0062] 基板洗浄装置 10 では、 Nノズル 62は、回動自在なスキャンアーム 67' の先端
2
に設けられたノズル保持部材 63 に取り付けられている。ウェハ Wのスピン乾燥処 理において、純水ノズル 61をウェハ Wの中心から外側へスキャンさせた際に Nノズ
2 ル 62は常に純水ノズル 61が位置する円周(ウェハ Wの回転中心を中心とする円を 指す)の内側の領域にあり、純水ノズル 61がウェハ Wの外側に移動するにつれて N
2 ノズル 62をウェハ Wの外側に移動させる。
[0063] なお、基板洗浄装置 10 を、 Nノズル 62がウェハ Wの中心を通って Y方向に直線
2
的に、純水ノズル 61とは独立してスキャン可能な構造へと改変してもよい。その場合 Nノズル 62を純水ノズル 61を後追いするようにスキャンさせてもよいし、純水ノズル
2
61とは逆向きにスキャンさせてもよい。このように純水ノズル 61と Nノズル 62とを独
2
立してスキャンさせることができる構造とすることにより、純水ノズル 61と Nノズル 62
2 のスキャン速度に差を設けることができる。
[0064] 以上、本発明の洗浄処理方法の実施の形態について説明してきた力 本発明はこ のような形態に限定されるものではない。上記説明では、処理液ノズル 61は洗浄液と 純水とを選択的にウェハ Wに供給することができる構造のものを示した力 基板洗浄 装置は、洗浄液のみを供給するノズルと、純水のみを供給するノズルとを別体で備え ていてもよい。また、基板洗浄装置 10にも、基板洗浄装置 1( と同様に、処理液ノ ズル 61と別に、スピン乾燥時にウェハ Wに純水を供給する純水ノズルをさらに設ける ことも好まし 、。この場合にお 、て純水ノズルはノズル保持部材 63に設けてもょ 、し 、処理液ノズル 61と独立して駆動可能な構造としてもよい。さら〖こ、処理液ノズル 61 として Y軸方向に移動自在な構造のもの示した力 例えば、処理液ノズルは、所定の 回転軸を中心として、ウェハ Wの中心と周縁との間で弧を描きながら回動する機構を 備えたものであってもよ 、。
[0065] 本発明の基板洗浄方法によるウォーターマークの発生の抑制という効果は、被処 理基板の表面に疎水性面と親水性面とが混在している場合に、特に顕著に得ること ができる力 この効果は、勿論、被処理基板の表面が疎水性面のみの場合または親 水性面のみの場合にも得られることができる。被処理基板は、半導体ウェハに限定さ れるものではなく、 FPD用ガラス基板やセラミックス基板等であってもよ 、。
[0066] 以上説明した実施の形態は、あくまでも本発明の技術的内容を明らかにすることを 意図するものであって、本発明はこのような具体例にのみ限定して解釈されるもので はなぐ本発明の精神とクレームに述べる範囲で、種々に変更して実施することがで きるものである。
産業上の利用可能性
[0067] 本発明の洗浄処理方法は、半導体装置や FDP装置の製造方法に好適である。

Claims

請求の範囲
[1] 被処理基板を略水平姿勢で回転させながら、その表面に純水を供給して前記被処 理基板をリンス処理し、その後に前記被処理基板への純水の供給流量をリンス処理 時よりも低減し、かつ、前記被処理基板への純水供給点を前記被処理基板の中心か ら外側へ移動させて、前記純水供給点の略外側の領域で液膜を形成しながら、前記 被処理基板をスピン乾燥処理する基板洗浄方法。
[2] 請求項 1に記載の基板洗浄方法にお!、て、前記スピン乾燥処理では、前記被処理 基板への純水供給点を前記被処理基板の中心から外側へ移動させる速度を、前記 被処理基板の外周部でその中心部よりも速くする。
[3] 請求項 1または請求項 2に記載の基板洗浄方法において、前記スピン乾燥処理で は、前記被処理基板への純水供給点が前記被処理基板の中心から所定距離離れ た位置に到達した際にそこで前記純水供給点の移動を一時停止して前記被処理基 板の中心部に窒素ガスを吹き付け、その後に前記窒素ガスの吹き付けを停止して、 前記純水供給点を再び前記被処理基板の外側へ移動させる。
[4] 請求項 3に記載の基板洗浄方法にお!ヽて、前記スピン乾燥処理では、前記被処理 基板への純水供給点を前記被処理基板の中心から 10— 15mm離れた位置へ急速 移動させてそこで前記純水供給点の移動を一時停止し、前記被処理基板の中心部 に窒素ガスを所定時間吹き付け、その後に前記窒素ガスの吹き付けを停止して前記 純水供給点を再び前記被処理基板の外側へ 3mmZ秒以下の速度で移動させる。
[5] 請求項 1または請求項 2に記載の基板洗浄方法において、前記スピン乾燥処理で は、前記被処理基板への純水供給点が前記被処理基板の中心から所定距離離れ た後に前記被処理基板の中心部に窒素ガスを吹き付け、その後に前記被処理基板 に窒素ガスを吹き付けながら前記窒素ガスの吹き付け点を前記純水供給点と共に前 記被処理基板の中心部力 外側に移動させる。
[6] 請求項 5に記載の基板洗浄方法にお 、て、前記スピン乾燥処理では、前記窒素ガ スの吹き付け点を前記純水供給点と共に前記被処理基板の中心部力 外側に移動 させる途中で窒素ガスの吹きつけのみを停止する。
[7] 請求項 5または請求項 6に記載の基板洗浄方法において、前記リンス処理における 被処理基板の回転数を lOOrpm以上 lOOOrpm以下とし、前記スピン乾燥処理にお ける被処理基板の回転数を 800rpm以上 2500rpm以下とする。
[8] 請求項 1から請求項 6の 、ずれか 1項に記載の基板洗浄方法にお!、て、前記被処 理基板のスピン乾燥処理時における回転数を前記被処理基板のリンス処理時にお ける回転数よりも高くする。
[9] 請求項 8に記載の基板洗浄方法において、前記リンス処理における被処理基板の 回転数を lOOrpm以上 lOOOrpm以下とし、前記スピン乾燥処理における被処理基 板の回転数を 1500rpm以上 2500rpm以下とする。
[10] 請求項 1から請求項 9の 、ずれか 1項に記載の基板洗浄方法にお!、て、前記被処 理基板の表面には疎水性面と親水性面とが混在している。
[11] 被処理基板を略水平姿勢で保持し、回転させるスピンチャックと、
前記スピンチャックに保持された被処理基板の表面に純水を吐出する純水供給ノ ズルと、前記純水供給ノズルに純水を送液する純水供給部と、を有する純水供給機 構と、
前記純水供給ノズルを被処理基板の中心上と外縁上との間でスキャンさせる純水ノ ズルスキャン機構と、
前記スピンチャックに保持された被処理基板を回転させながら前記被処理基板の 表面に所定流量で純水を供給するリンス処理を行い、その後に前記被処理基板へ の純水供給流量を前記リンス処理のときよりも少なくし、かつ、前記被処理基板への 純水供給点を前記被処理基板の中心から外側へ移動させることにより、前記被処理 基板のスピン乾燥処理が前記純水供給点の略外側の領域で液膜を形成しながら行 われるように、前記スピンチャックおよび前記純水供給機構ならびに前記純水ノズル スキャン機構を制御する制御部と、
を具備する基板洗浄装置。
[12] 請求項 11に記載の基板洗浄装置にお!、て、前記制御部は、前記スピン乾燥処理 にお 1、て、前記被処理基板の中心から外側へ純水供給点を移動させる速度を前記 被処理基板の外周部でその中心部よりも速くする。
[13] 請求項 11または請求項 12に記載の基板洗浄装置において、前記スピンチャックに 保持された被処理基板の表面の中心部に窒素ガスを吹き付けるガスノズルを有する ガス供給機構をさらに具備し、
前記制御部は、前記スピン乾燥処理において、前記被処理基板への純水供給点 が前記被処理基板の中心から所定距離離れた位置に到達した際にそこで前記純水 供給点の移動を一時停止させて前記被処理基板の中心部に窒素ガスを吹き付け、 次 、で前記窒素ガスの吹き付けを停止させた後に前記純水供給点が再び前記被処 理基板の外側へ移動するように、さらに前記ガス供給機構を制御する。
[14] 請求項 13に記載の基板洗浄装置において、前記制御部は、前記スピン乾燥処理 にお 、て、前記被処理基板への純水供給点を前記被処理基板の中心から 10mm— 15mm離れた位置へ急速移動させてそこで純水供給点の移動を停止し、続、て前 記被処理基板の中心部に窒素ガスを所定時間吹き付け、その後に前記窒素ガスの 吹き付けを停止して純水供給点を前記被処理基板の外側へ 3mmZ秒以下の速度 で移動させる。
[15] 請求項 11または請求項 12に記載の基板洗浄装置において、前記スピンチャックに 保持された被処理基板の表面に窒素ガスを吹き付けるガスノズルを有するガス供給 機構と、前記ガスノズルを被処理基板上でスキャンさせるガスノズルスキャン機構と、 をさらに具備し、
前記制御部は、前記スピン乾燥処理において、前記被処理基板への純水供給点 が前記被処理基板の中心から所定距離離れた後に前記被処理基板の中心部へ窒 素ガスを吹き付け、引き続いて前記被処理基板に窒素ガスを吹き付けながら前記窒 素ガスの吹き付け点が前記純水供給点と共に前記被処理基板の中心部から外側へ 移動するように、さらに前記ガス供給機構と前記ガスノズルスキャン機構をも制御する
[16] 請求項 15に記載の基板洗浄装置において、前記制御部は、前記スピン乾燥処理 にお 1、て、前記窒素ガスの吹き付け点を前記純水供給点と共に前記被処理基板の 中心部から外側へ移動させる途中で窒素ガスの吹きつけのみを停止させる。
[17] 請求項 11または請求項 12に記載の基板洗浄装置において、前記スピンチャックに 保持された被処理基板の表面に窒素ガスを吹き付けるガスノズルを有するガス供給 機構をさらに具備し、
前記ガスノズルは前記純水供給ノズルと一定の間隔を開けて前記純水ノズルスキヤ ン機構に保持され、
前記制御部は、前記スピン乾燥処理において、前記被処理基板への純水供給点 が前記被処理基板の中心から所定距離離れた後に前記被処理基板の中心部へ窒 素ガスを吹き付け、引き続いて前記被処理基板に窒素ガスを吹き付けながら前記窒 素ガスの吹き付け点と前記純水供給点とが同時に前記被処理基板の中心部から外 側へ移動するように、さらに前記ガス供給機構をも制御する。
[18] 請求項 15から請求項 17のいずれか 1項に記載の基板洗浄装置において、前記制 御部は、前記リンス処理における被処理基板の回転数を lOOrpm以上 lOOOrpm以 下とし、前記スピン乾燥処理における被処理基板の回転数を 800rpm以上 2500rp m以下とする。
[19] 請求項 11から請求項 17のいずれか 1項に記載の基板洗浄装置において、前記制 御部は、前記スピン乾燥処理における被処理基板の回転数を、前記被処理基板のリ ンス処理時における被処理基板の回転数よりも高くする。
[20] 請求項 19に記載の基板洗浄装置において、前記制御部は、前記リンス処理にお ける被処理基板の回転数を lOOrpm以上 lOOOrpm以下とし、前記スピン乾燥処理 における被処理基板の回転数を 1500rpm以上 2500rpm以下とする。
[21] 略水平姿勢に保持された被処理基板を回転させながら、前記被処理基板に純水を 供給してリンス処理し、さらにスピン乾燥する基板洗净装置を制御するコンピュータに 、 (a)前記スピンチャックに保持された被処理基板を回転させながら前記被処理基板 の表面に所定流量で純水を供給してリンス処理し、 (b)前記被処理基板への純水供 給流量を前記リンス処理のときよりも少なくし、かつ、前記被処理基板への純水供給 点を前記被処理基板の中心から外側へ移動させて、前記純水供給点の略外側の領 域で液膜を形成しながら前記被処理基板をスピン乾燥させる、処理を実行させるた めのプログラムを記録したコンピュータ読み取り可能な記録媒体。
[22] 請求項 21に記載のコンピュータ読み取り可能な記録媒体にぉ 、て、前記プロダラ ムは前記コンピュータに、前記被処理基板の中心から外側へ純水供給点を移動させ る速度を前記被処理基板の外周部でその中心部よりも速くなるように、前記基板洗浄 装置を制御させる。
[23] 略水平姿勢に保持された被処理基板を回転させながら、前記被処理基板に純水を 供給してリンス処理し、さらに前記被処理基板に窒素ガスを供給してスピン乾燥する 基板洗浄装置を制御するコンピュータに、 (a)前記スピンチャックに保持された被処 理基板を回転させながら前記被処理基板の表面に所定流量で純水を供給してリンス 処理し、 (b)前記被処理基板への純水供給流量を前記リンス処理のときよりも少なく し、かつ、前記被処理基板への純水供給点を前記被処理基板の中心から外側へ移 動させ、(c)前記被処理基板への純水供給点が前記被処理基板の中心から所定距 離離れた位置に到達した際にそこで前記純水供給点の移動を一時停止させて前記 被処理基板の中心部に窒素ガスを吹き付け、(d)前記窒素ガスの吹き付けを停止さ せた後に前記純水供給点を再び前記被処理基板の外側へ移動させて、前記純水 供給点の略外側の領域で液膜を形成しながら前記被処理基板をスピン乾燥させる、 処理を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体
[24] 請求項 23に記載のコンピュータ読み取り可能な記録媒体にぉ 、て、前記プロダラ ムは前記コンピュータに、前記 (b)のプロセスでは前記被処理基板への純水供給点 を前記被処理基板の中心から外側へ急速移動させ、前記 (c)のプロセスでは純水供 給点の移動を前記被処理基板の中心から 10mm— 15mm離れた位置で停止させて 、前記被処理基板の中心部に窒素ガスを所定時間吹き付け、前記 (d)のプロセスで は、前記窒素ガスの吹き付けを停止した後に純水供給点を再び前記被処理基板の 外側へ 3mmZ秒以下の速度で移動させるように、前記基板洗浄装置を制御させる。
[25] 略水平姿勢に保持された被処理基板を回転させながら、前記被処理基板に純水を 供給してリンス処理し、さらに前記被処理基板に窒素ガスを供給してスピン乾燥する 基板洗浄装置を制御するコンピュータに、 (a)前記スピンチャックに保持された被処 理基板を回転させながら前記被処理基板の表面に所定流量で純水を供給してリンス 処理し、 (b)前記被処理基板への純水供給流量を前記リンス処理のときよりも少なく し、かつ、前記被処理基板への純水供給点を前記被処理基板の中心から外側へ移 動させ、(C)前記被処理基板への純水供給点が前記被処理基板の中心から所定距 離離れた位置に到達した際にそこで前記純水供給点の移動を一時停止させて前記 被処理基板の中心部に窒素ガスを吹き付け、(d)前記被処理基板に窒素ガスを吹き 付けながら前記窒素ガスの吹き付け点を前記純水供給点と共に前記被処理基板の 中心部から外側へ移動させる、処理を実行させるためのプログラムを記録したコンビ ユータ読み取り可能な記録媒体。
[26] 請求項 25に記載のコンピュータ読み取り可能な記録媒体において、前記プロダラ ムは前記コンピュータに、前記(d)のプロセスでは、前記窒素ガスの吹き付け点を前 記被処理基板の中心部力 外側へ移動させる途中で前記窒素ガスの吹きつけのみ が停止されるように、前記基板洗浄装置を制御させる。
[27] 請求項 25または請求項 26に記載のコンピュータ読み取り可能な記録媒体にぉ 、 て、前記プログラムは前記コンピュータに、前記 (a)のプロセスにおける被処理基板 の回転数が lOOrpm以上 lOOOrpm以下となり、前記(b)—(d)のプロセスにおける 被処理基板の回転数が 800rpm以上 2500rpm以下となるように、前記基板洗浄装 置を制御させる。
[28] 請求項 21から請求項 26のいずれか 1項に記載のコンピュータ読み取り可能な記録 媒体において、前記プログラムは前記コンピュータに、前記 (b)以降のプロセスにお ける被処理基板の回転数が前記 (a)のプロセスにおける被処理基板の回転数よりも 高くなるように、前記基板洗浄装置を制御させる。
[29] 請求項 28に記載のコンピュータ読み取り可能な記録媒体において、前記プロダラ ムは前記コンピュータに、前記(a)のプロセスにおける被処理基板の回転数が lOOrp m以上 lOOOrpm以下となり、前記 (b)以降のプロセスにおける被処理基板の回転数 力 Sl500rpm以上 2500rpm以下となるように、前記基板洗浄装置を制御させる。
PCT/JP2004/016842 2003-11-18 2004-11-12 基板洗浄方法、基板洗浄装置およびコンピュータ読み取り可能な記録媒体 WO2005050724A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/577,314 US7927429B2 (en) 2003-11-18 2004-11-12 Substrate cleaning method, substrate cleaning apparatus and computer readable recording medium
JP2005515595A JP4040063B2 (ja) 2003-11-18 2004-11-12 基板洗浄方法、基板洗浄装置およびコンピュータ読み取り可能な記録媒体
AT0939904A AT501653B1 (de) 2003-11-18 2004-11-12 Substrat-reinigungsverfahren, substrat-reinigungsvorrichtung und computer-lesbares aufzeichnungsmedium
US13/042,844 US8113221B2 (en) 2003-11-18 2011-03-08 Substrate cleaning method, substrate cleaning apparatus and computer readable recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-387728 2003-11-18
JP2003387728 2003-11-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/577,314 A-371-Of-International US7927429B2 (en) 2003-11-18 2004-11-12 Substrate cleaning method, substrate cleaning apparatus and computer readable recording medium
US13/042,844 Division US8113221B2 (en) 2003-11-18 2011-03-08 Substrate cleaning method, substrate cleaning apparatus and computer readable recording medium

Publications (1)

Publication Number Publication Date
WO2005050724A1 true WO2005050724A1 (ja) 2005-06-02

Family

ID=34616168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016842 WO2005050724A1 (ja) 2003-11-18 2004-11-12 基板洗浄方法、基板洗浄装置およびコンピュータ読み取り可能な記録媒体

Country Status (7)

Country Link
US (2) US7927429B2 (ja)
JP (1) JP4040063B2 (ja)
KR (1) KR100772469B1 (ja)
CN (1) CN100423205C (ja)
AT (1) AT501653B1 (ja)
TW (1) TWI242808B (ja)
WO (1) WO2005050724A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036180A (ja) * 2005-06-23 2007-02-08 Tokyo Electron Ltd 基板処理方法及び基板処理装置
JP2007149772A (ja) * 2005-11-24 2007-06-14 Tokyo Electron Ltd 液処理方法、液処理装置、制御プログラム、およびコンピュータ読取可能な記憶媒体
JP2007173308A (ja) * 2005-12-19 2007-07-05 Tokyo Electron Ltd 基板洗浄方法、基板洗浄装置、制御プログラム、およびコンピュータ読取可能な記憶媒体
CN100459057C (zh) * 2006-05-22 2009-02-04 中芯国际集成电路制造(上海)有限公司 晶圆表面的清洗方法
JP2009071028A (ja) * 2007-09-13 2009-04-02 Sokudo:Kk 基板処理装置および基板処理方法
US7914626B2 (en) 2005-11-24 2011-03-29 Tokyo Electron Limited Liquid processing method and liquid processing apparatus
JP2011176035A (ja) * 2010-02-23 2011-09-08 Disco Corp ウエーハの洗浄方法
US8043469B2 (en) 2006-10-06 2011-10-25 Tokyo Electron Limited Substrate processing method, substrate processing apparatus, and storage medium
JP2012023354A (ja) * 2010-06-17 2012-02-02 Tokyo Electron Ltd 基板処理方法、この基板処理方法を実行するためのコンピュータプログラムが記録された記録媒体、および基板処理装置
US8216389B2 (en) 2008-04-03 2012-07-10 Tokyo Electron Limited Substrate cleaning method and substrate cleaning apparatus
US8218124B2 (en) 2007-09-13 2012-07-10 Sokudo Co., Ltd. Substrate processing apparatus with multi-speed drying having rinse liquid supplier that moves from center of rotated substrate to its periphery and stops temporarily so that a drying core can form
JP2012199458A (ja) * 2011-03-23 2012-10-18 Hitachi High-Tech Instruments Co Ltd 異物除去装置及びそれを備えたダイボンダ
JP2012222237A (ja) * 2011-04-12 2012-11-12 Tokyo Electron Ltd 液処理方法及び液処理装置
US8337659B2 (en) 2004-10-12 2012-12-25 Tokyo Electron Limited Substrate processing method and substrate processing apparatus
JP2013201418A (ja) * 2012-02-24 2013-10-03 Ebara Corp 基板処理方法
JP2014075388A (ja) * 2012-10-02 2014-04-24 Ebara Corp 基板洗浄装置および研磨装置
TWI568507B (zh) * 2013-05-28 2017-02-01 東京威力科創股份有限公司 基板清洗裝置、基板清洗方法及非臨時性記憶媒體
TWI597770B (zh) * 2013-09-27 2017-09-01 斯克林集團公司 基板處理裝置及基板處理方法
WO2018037691A1 (ja) * 2016-08-22 2018-03-01 東京エレクトロン株式会社 塗布方法、塗布装置及び記憶媒体
CN112859548A (zh) * 2019-11-27 2021-05-28 长鑫存储技术有限公司 显影装置及其显影方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090090392A1 (en) * 2006-03-17 2009-04-09 Nxp B.V. Method of cleaning a semiconductor wafer
CN101391254B (zh) * 2007-09-17 2010-04-21 中芯国际集成电路制造(上海)有限公司 晶片清洗方法
JP4940123B2 (ja) * 2007-12-21 2012-05-30 東京エレクトロン株式会社 基板処理装置および基板処理方法
US20100154826A1 (en) * 2008-12-19 2010-06-24 Tokyo Electron Limited System and Method For Rinse Optimization
US8707974B2 (en) 2009-12-11 2014-04-29 United Microelectronics Corp. Wafer cleaning device
CN104624545A (zh) * 2009-12-24 2015-05-20 联华电子股份有限公司 晶片清洗装置及晶片清洗方式
US20110180113A1 (en) * 2010-01-28 2011-07-28 Chin-Cheng Chien Method of wafer cleaning and apparatus of wafer cleaning
JP5538102B2 (ja) 2010-07-07 2014-07-02 株式会社Sokudo 基板洗浄方法および基板洗浄装置
TWI566311B (zh) * 2011-06-27 2017-01-11 聯華電子股份有限公司 半導體機台與其操作方法
CN102580941A (zh) * 2012-02-27 2012-07-18 上海集成电路研发中心有限公司 提高晶圆清洁度的清洗方法及清洗甩干设备
JP5926086B2 (ja) 2012-03-28 2016-05-25 株式会社Screenホールディングス 基板処理装置および基板処理方法
US9079304B2 (en) * 2012-10-31 2015-07-14 Semes Co., Ltd. Transfer unit, method for controlling the transfer unit, and apparatus and method for treating substrate using the transfer unit
JP6308910B2 (ja) * 2013-11-13 2018-04-11 東京エレクトロン株式会社 基板洗浄方法、基板洗浄システムおよび記憶媒体
JP6064875B2 (ja) * 2013-11-25 2017-01-25 東京エレクトロン株式会社 液処理装置、液処理方法及び記憶媒体
US9793143B2 (en) * 2014-01-06 2017-10-17 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor processing apparatus and method of operating the same
JP6386769B2 (ja) * 2014-04-16 2018-09-05 株式会社荏原製作所 基板乾燥装置、制御プログラム、及び基板乾燥方法
JP2015211137A (ja) * 2014-04-25 2015-11-24 キヤノン株式会社 半導体素子の製造方法及び洗浄処理システム
NL2014792A (en) 2014-06-16 2016-03-31 Asml Netherlands Bv Lithographic apparatus, method of transferring a substrate and device manufacturing method.
KR102231022B1 (ko) * 2014-07-14 2021-03-25 세메스 주식회사 기판 처리 장치 및 기판 처리 방법
JP6454245B2 (ja) * 2014-10-21 2019-01-16 東京エレクトロン株式会社 基板液処理方法及び基板液処理装置並びに基板液処理プログラムを記憶したコンピュータ読み取り可能な記憶媒体
KR20160057966A (ko) 2014-11-14 2016-05-24 가부시끼가이샤 도시바 처리 장치, 노즐 및 다이싱 장치
JP6545511B2 (ja) * 2015-04-10 2019-07-17 株式会社東芝 処理装置
TWI675905B (zh) 2015-11-14 2019-11-01 日商東京威力科創股份有限公司 使用稀釋的氫氧化四甲基銨處理微電子基板的方法
JP6975953B2 (ja) * 2016-12-28 2021-12-01 ヒューグル開発株式会社 異物除去装置及び異物除去方法
WO2020105394A1 (ja) * 2018-11-21 2020-05-28 オルガノ株式会社 採水ディスペンサー及び純水製造装置
US11728185B2 (en) 2021-01-05 2023-08-15 Applied Materials, Inc. Steam-assisted single substrate cleaning process and apparatus
KR102615758B1 (ko) * 2021-05-10 2023-12-19 세메스 주식회사 기판 처리 장치 및 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172951A (ja) * 1996-10-07 1998-06-26 Tokyo Electron Ltd 液処理方法及びその装置
JPH10303169A (ja) * 1997-04-30 1998-11-13 Shibaura Eng Works Co Ltd スピン処理装置
JPH11233480A (ja) * 1998-02-10 1999-08-27 Dainippon Screen Mfg Co Ltd 基板乾燥装置及びその方法
JP2002057088A (ja) * 2000-08-09 2002-02-22 Tokyo Electron Ltd 基板処理装置および現像処理装置
JP2002075949A (ja) * 2000-08-31 2002-03-15 Seiko Epson Corp ウェハ洗浄乾燥方法
JP2003017461A (ja) * 2001-07-03 2003-01-17 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP2003031545A (ja) * 2001-07-12 2003-01-31 Dainippon Screen Mfg Co Ltd 基板乾燥装置、基板乾燥方法および基板のシリコン酸化膜除去方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2640999B2 (ja) 1991-01-22 1997-08-13 大日本スクリーン製造株式会社 回転式表面処理方法及びその方法を実施するための回転式表面処理装置
US6058945A (en) * 1996-05-28 2000-05-09 Canon Kabushiki Kaisha Cleaning methods of porous surface and semiconductor surface
US5997653A (en) * 1996-10-07 1999-12-07 Tokyo Electron Limited Method for washing and drying substrates
US6491764B2 (en) 1997-09-24 2002-12-10 Interuniversitair Microelektronics Centrum (Imec) Method and apparatus for removing a liquid from a surface of a rotating substrate
JP3322853B2 (ja) 1999-08-10 2002-09-09 株式会社プレテック 基板の乾燥装置および洗浄装置並びに乾燥方法および洗浄方法
US6488040B1 (en) * 2000-06-30 2002-12-03 Lam Research Corporation Capillary proximity heads for single wafer cleaning and drying
JP3892792B2 (ja) 2001-11-02 2007-03-14 大日本スクリーン製造株式会社 基板処理装置および基板洗浄装置
JP2003197590A (ja) 2001-12-21 2003-07-11 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP4940066B2 (ja) * 2006-10-23 2012-05-30 東京エレクトロン株式会社 洗浄装置、洗浄方法、およびコンピュータ読取可能な記憶媒体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172951A (ja) * 1996-10-07 1998-06-26 Tokyo Electron Ltd 液処理方法及びその装置
JPH10303169A (ja) * 1997-04-30 1998-11-13 Shibaura Eng Works Co Ltd スピン処理装置
JPH11233480A (ja) * 1998-02-10 1999-08-27 Dainippon Screen Mfg Co Ltd 基板乾燥装置及びその方法
JP2002057088A (ja) * 2000-08-09 2002-02-22 Tokyo Electron Ltd 基板処理装置および現像処理装置
JP2002075949A (ja) * 2000-08-31 2002-03-15 Seiko Epson Corp ウェハ洗浄乾燥方法
JP2003017461A (ja) * 2001-07-03 2003-01-17 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP2003031545A (ja) * 2001-07-12 2003-01-31 Dainippon Screen Mfg Co Ltd 基板乾燥装置、基板乾燥方法および基板のシリコン酸化膜除去方法

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8337659B2 (en) 2004-10-12 2012-12-25 Tokyo Electron Limited Substrate processing method and substrate processing apparatus
US8794250B2 (en) 2004-10-12 2014-08-05 Tokyo Electron Limited Substrate processing method and substrate processing apparatus
JP2007036180A (ja) * 2005-06-23 2007-02-08 Tokyo Electron Ltd 基板処理方法及び基板処理装置
JP4527660B2 (ja) * 2005-06-23 2010-08-18 東京エレクトロン株式会社 基板処理方法及び基板処理装置
US7806989B2 (en) 2005-06-23 2010-10-05 Tokyo Electron Limited Substrate processing method and substrate processing apparatus
US8137478B2 (en) 2005-06-23 2012-03-20 Tokyo Electron Limited Substrate processing method and substrate processing apparatus
JP4680044B2 (ja) * 2005-11-24 2011-05-11 東京エレクトロン株式会社 液処理方法、液処理装置、制御プログラム、およびコンピュータ読取可能な記憶媒体
US7914626B2 (en) 2005-11-24 2011-03-29 Tokyo Electron Limited Liquid processing method and liquid processing apparatus
JP2007149772A (ja) * 2005-11-24 2007-06-14 Tokyo Electron Ltd 液処理方法、液処理装置、制御プログラム、およびコンピュータ読取可能な記憶媒体
US7699939B2 (en) * 2005-12-19 2010-04-20 Tokyo Electron Limited Substrate cleaning method
JP4607755B2 (ja) * 2005-12-19 2011-01-05 東京エレクトロン株式会社 基板洗浄方法、基板洗浄装置、制御プログラム、およびコンピュータ読取可能な記憶媒体
JP2007173308A (ja) * 2005-12-19 2007-07-05 Tokyo Electron Ltd 基板洗浄方法、基板洗浄装置、制御プログラム、およびコンピュータ読取可能な記憶媒体
CN100459057C (zh) * 2006-05-22 2009-02-04 中芯国际集成电路制造(上海)有限公司 晶圆表面的清洗方法
US8043469B2 (en) 2006-10-06 2011-10-25 Tokyo Electron Limited Substrate processing method, substrate processing apparatus, and storage medium
JP2009071028A (ja) * 2007-09-13 2009-04-02 Sokudo:Kk 基板処理装置および基板処理方法
US8218124B2 (en) 2007-09-13 2012-07-10 Sokudo Co., Ltd. Substrate processing apparatus with multi-speed drying having rinse liquid supplier that moves from center of rotated substrate to its periphery and stops temporarily so that a drying core can form
US8894775B2 (en) 2007-09-13 2014-11-25 Screen Semiconductor Solutions Co., Ltd. Substrate processing apparatus and substrate processing method
US8216389B2 (en) 2008-04-03 2012-07-10 Tokyo Electron Limited Substrate cleaning method and substrate cleaning apparatus
US8980013B2 (en) 2008-04-03 2015-03-17 Tokyo Electron Limited Substrate cleaning method and substrate cleaning apparatus
JP2011176035A (ja) * 2010-02-23 2011-09-08 Disco Corp ウエーハの洗浄方法
US8906165B2 (en) 2010-06-17 2014-12-09 Tokyo Electron Limited Substrate processing method, storage medium storing computer program for performing substrate processing method, and substrate processing apparatus
KR101806191B1 (ko) * 2010-06-17 2017-12-07 도쿄엘렉트론가부시키가이샤 기판 처리 방법, 이 기판 처리 방법을 실행하기 위한 컴퓨터 프로그램이 기록된 기록 매체 및 기판 처리 장치
JP2012023354A (ja) * 2010-06-17 2012-02-02 Tokyo Electron Ltd 基板処理方法、この基板処理方法を実行するためのコンピュータプログラムが記録された記録媒体、および基板処理装置
JP2012199458A (ja) * 2011-03-23 2012-10-18 Hitachi High-Tech Instruments Co Ltd 異物除去装置及びそれを備えたダイボンダ
JP2012222237A (ja) * 2011-04-12 2012-11-12 Tokyo Electron Ltd 液処理方法及び液処理装置
US9412627B2 (en) 2011-04-12 2016-08-09 Tokyo Electron Limited Liquid processing method and liquid processing apparatus
JP2013201418A (ja) * 2012-02-24 2013-10-03 Ebara Corp 基板処理方法
JP2014075388A (ja) * 2012-10-02 2014-04-24 Ebara Corp 基板洗浄装置および研磨装置
TWI568507B (zh) * 2013-05-28 2017-02-01 東京威力科創股份有限公司 基板清洗裝置、基板清洗方法及非臨時性記憶媒體
TWI597770B (zh) * 2013-09-27 2017-09-01 斯克林集團公司 基板處理裝置及基板處理方法
US10058900B2 (en) 2013-09-27 2018-08-28 SCREEN Holdings Co., Ltd. Substrate processing apparatus and substrate processing method
US11094529B2 (en) 2013-09-27 2021-08-17 SCREEN Holdings Co., Ltd. Substrate processing apparatus and substrate processing method
US11710629B2 (en) 2013-09-27 2023-07-25 SCREEN Holdings Co., Ltd. Substrate processing apparatus and substrate processing method
WO2018037691A1 (ja) * 2016-08-22 2018-03-01 東京エレクトロン株式会社 塗布方法、塗布装置及び記憶媒体
JPWO2018037691A1 (ja) * 2016-08-22 2019-06-20 東京エレクトロン株式会社 塗布方法、塗布装置及び記憶媒体
CN112859548A (zh) * 2019-11-27 2021-05-28 长鑫存储技术有限公司 显影装置及其显影方法
CN112859548B (zh) * 2019-11-27 2024-03-26 长鑫存储技术有限公司 显影装置及其显影方法

Also Published As

Publication number Publication date
JP4040063B2 (ja) 2008-01-30
KR100772469B1 (ko) 2007-11-02
TWI242808B (en) 2005-11-01
AT501653A2 (de) 2006-10-15
US20070131256A1 (en) 2007-06-14
US20110155193A1 (en) 2011-06-30
CN100423205C (zh) 2008-10-01
KR20060034640A (ko) 2006-04-24
AT501653B1 (de) 2010-04-15
JPWO2005050724A1 (ja) 2007-06-14
TW200524029A (en) 2005-07-16
US8113221B2 (en) 2012-02-14
AT501653A5 (de) 2010-02-15
CN1883035A (zh) 2006-12-20
US7927429B2 (en) 2011-04-19

Similar Documents

Publication Publication Date Title
WO2005050724A1 (ja) 基板洗浄方法、基板洗浄装置およびコンピュータ読み取り可能な記録媒体
JP4607755B2 (ja) 基板洗浄方法、基板洗浄装置、制御プログラム、およびコンピュータ読取可能な記憶媒体
KR100753463B1 (ko) 기판 세정 방법, 기판 세정 장치 및 컴퓨터 판독 가능한 기억 매체
JP6314779B2 (ja) 液処理方法、記憶媒体及び液処理装置
JP5954862B2 (ja) 基板処理装置
CN108028195B (zh) 基板处理方法、基板处理装置以及存储介质
JPH10172951A (ja) 液処理方法及びその装置
US20040187896A1 (en) Substrate processing method and apparatus
JP4455228B2 (ja) 基板処理方法および基板処理装置
JP5276559B2 (ja) 基板処理方法および基板処理装置
JP4236109B2 (ja) 基板処理方法及び基板処理装置
KR20130111176A (ko) 기판 처리 방법 및 기판 처리 장치
JP3425895B2 (ja) 回転式基板乾燥装置および乾燥方法
JP2003264167A (ja) 液処理方法及びその装置
JP3640837B2 (ja) 基板処理装置
JP2006202983A (ja) 基板処理装置および処理室内洗浄方法
JP2000311846A (ja) レジスト現像方法およびレジスト現像装置
CN209747469U (zh) 基板清洗装置
JP2922754B2 (ja) 回転式基板乾燥装置及び回転式基板乾燥方法
JP4347765B2 (ja) 基板処理装置
JP2005019675A (ja) ウエット処理装置
JP2009200331A (ja) 基板洗浄装置および基板洗浄方法
JPH1157632A (ja) 基板処理装置
JPH11288915A (ja) 基板乾燥方法および基板乾燥装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480033944.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005515595

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057021359

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057021359

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007131256

Country of ref document: US

Ref document number: 10577314

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

ENP Entry into the national phase

Ref document number: 93992004

Country of ref document: AT

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A9399/2004

Country of ref document: AT

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10577314

Country of ref document: US