WO2005040039A1 - 硫化リチウムの精製方法 - Google Patents

硫化リチウムの精製方法 Download PDF

Info

Publication number
WO2005040039A1
WO2005040039A1 PCT/JP2004/015231 JP2004015231W WO2005040039A1 WO 2005040039 A1 WO2005040039 A1 WO 2005040039A1 JP 2004015231 W JP2004015231 W JP 2004015231W WO 2005040039 A1 WO2005040039 A1 WO 2005040039A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
lithium sulfide
sulfide
organic solvent
washing
Prior art date
Application number
PCT/JP2004/015231
Other languages
English (en)
French (fr)
Inventor
Yoshikatsu Kiyono
Minoru Senga
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to KR1020067007700A priority Critical patent/KR101109821B1/ko
Priority to AT04792448T priority patent/ATE513788T1/de
Priority to EP04792448A priority patent/EP1681263B1/en
Priority to JP2005514938A priority patent/JP4896520B2/ja
Priority to CN2004800309857A priority patent/CN1871177B/zh
Priority to US10/576,721 priority patent/US8084160B2/en
Publication of WO2005040039A1 publication Critical patent/WO2005040039A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/06Sulfates; Sulfites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • C01B17/36Purification
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for purifying lithium sulfide, which efficiently removes impurities such as sulfur oxides and lithium N-methylaminobutyrate (hereinafter referred to as LMAB) from lithium sulfide used for electronic and electrical materials. . Further, the present invention relates to a solid electrolyte for a lithium secondary battery comprising lithium sulfide purified by the purification method, and a solid battery using the same.
  • LMAB lithium N-methylaminobutyrate
  • a secondary battery is a battery that can be charged and discharged. Since secondary batteries are used while being repeatedly charged and discharged over a long period of time, the members used for them are required to have long-term stability and durability.
  • the applicant of the present application has found a method for producing lithium sulfate by which high-purity lithium sulfide can be obtained by simple means (Japanese Patent Laid-Open No. 7-330312). According to this method, lithium sulfide is produced in an aprotic organic solvent such as N-methyl-2-pyrrolidone (hereinafter, referred to as NMP). Is simple and convenient. However, the resulting lithium sulfide contains LMAB, an impurity derived from NMP.
  • NMP N-methyl-2-pyrrolidone
  • Japanese Patent Application Laid-Open No. 9-283156 discloses a method for producing lithium sulfide by reacting lithium hydroxide with a gaseous sulfur source at a temperature of 130 ° C. or more and 445 ° C. or less. Lithium sulfide produced by this method is mixed with sulfur oxides produced during the production process (eg, lithium sulfite, lithium sulfate, lithium thiosulfate, etc.).
  • an object of the present invention is to provide a method for purifying lithium sulfide, which reduces impurities contained in lithium sulfide, which is a raw material of a solid electrolyte for a lithium secondary battery.
  • the present inventors have conducted intensive studies, and obtained lithium sulfide produced by the method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 7-330321, such as NMP or the like at 100 ° C or higher.
  • the present inventors have found that impurities can be efficiently removed by washing with an organic solvent having a boiling point at a temperature of 100 ° C. or higher, thereby completing the present invention.
  • the first embodiment of the present invention relates to a method in which lithium sulfide obtained by reacting lithium hydroxide and hydrogen sulfide in an aprotic organic solvent is treated with an organic solvent at a temperature of 100 ° C or higher. And a method for purifying lithium sulfide, wherein the method comprises the steps of:
  • a second aspect of the present invention provides a solid electrolyte for a lithium secondary battery using lithium sulfide purified by the method of the first aspect.
  • a third aspect of the present invention provides a solid-state battery using the solid electrolyte for a lithium secondary battery according to the second aspect.
  • the present invention it is possible to economically obtain high-purity lithium sulfide having a sulfur oxide content of 0.15% by mass or less and an LMAB content of 0.1% by mass or less. it can.
  • the obtained solid electrolyte for lithium secondary batteries using high-purity lithium sulfide provides a lithium secondary battery (solid state battery) that is suppressed from deterioration due to impurities and has excellent long-term stability. Obtainable.
  • the method for purifying lithium sulfide according to the first aspect of the present invention is a method for producing lithium sulfide obtained by reacting lithium hydroxide with hydrogen chloride in an aprotic organic solvent.
  • the method is characterized in that the drum is washed with an organic solvent at a temperature of 100 ° C. or higher.
  • the lithium sulfide purified in the method of the present invention has been produced by the method for producing lithium sulfide described in JP-A-7-330312. More specifically, the production method described in Japanese Patent Application Laid-Open No. 7-330312 discloses a method in which lithium hydroxide and sulfur dioxide are mixed at 0 to 150 ° C. while blowing sulfur dioxide into an aprotic organic solvent.
  • the reaction solution is dehydrosulfided without blowing hydrogen sulfide to produce lithium sulfide, or 150-200 ° C
  • lithium hydroxide and hydrogen sulfide are reacted in an aprotic organic solvent to directly produce lithium sulfide.
  • the aprotic organic solvent used in the production of lithium sulfide generally includes a non-protonic polar organic compound (for example, an amidite compound, a ratatam compound, a urea compound, an organic compound, a cyclic organic phosphorus compound). And the like) can be suitably used as a single solvent or as a mixed solvent.
  • a non-protonic polar organic compound for example, an amidite compound, a ratatam compound, a urea compound, an organic compound, a cyclic organic phosphorus compound.
  • N-methyl-2-pyrrolidone preferred are N-methyl-2-pyrrolidone, N-alkylproprolatatam and N-alkylpyrrolidone, and particularly preferred is N-methyl-2-pyrrolidone. is there.
  • lithium hydroxide which is a raw material for producing lithium sulfide
  • commercially available products can be used as long as the purity is not particularly limited.
  • the other raw material sulfuride hydrogen.
  • the reaction conditions for the production of lithium sulfide, the ratio of the use of the raw materials, and the like are as described in JP-A-7-330312.
  • the method of the present invention is characterized in that the lithium sulfide produced by the method described in JP-A-7-330312 is washed with an organic solvent at a temperature of 100 ° C or higher.
  • the reason that the organic solvent is used at a temperature of 100 ° C or higher is that the impurity LMAB generated when the aprotic organic solvent used in the production of lithium sulfide is NMP is solubilized in the organic solvent at a temperature of 100 ° C. It is dakara. This is because LMAB is dissolved in an organic solvent for washing and removed from lithium sulfide.
  • the temperature of the organic solvent is 100 ° C. or higher, there is no particular limitation, and the temperature can be appropriately selected.
  • the temperature of the organic solvent is below the boiling point, for example, when NMP is used, Under pressure, the boiling point is 203 ° C or less, and under pressure when a closed container or the like is used, it is usually 250 ° C or less.
  • the organic solvent used for washing is preferably an aprotic polar solvent.
  • the aprotic organic solvent used for producing lithium sulfide and the aprotic solvent used for washing are preferably used. More preferably, the polar organic solvent is the same.
  • aprotic polar organic solvent preferably used for washing examples include, for example, non-protonic polar organic compounds such as amide compounds, ratatum compounds, urea compounds, organic sulfur compounds, and cyclic organic phosphorus compounds. It can be suitably used as a single solvent or a mixed solvent.
  • examples of the amide compound include N, N-dimethylformamide, N, N-getylformamide, N, N-dimethylacetoamide, N, N-dipropyl Examples include acetoamide and N, N-dimethylbenzoic acid amide.
  • ratatam compound examples include, for example, force prolatatam, N-methylcaprolatatam, N-ethylcaprolatatam, N isopropyl force prolatatam, N isobutyl caprolatatam, N normal propyl force prolatatam, N normal butyrol caprolatatam, N— N-alkyl-prolatatams such as cyclohexylcaprolatatam, N-methyl-2-pyrrolidone (NMP), N-ethyl-2-pyrrolidone, N-isopropyl 2-pyrrolidone, N-isobutyl-2-pyrrolidone, N-n-propyl-2-pyrrolidone, N-Normalptyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N-methyl-3-methyl-2-pyrrolidone, N-ethyl-3-methyl-2-pyrrolidone, N-methyn
  • N- methyl-3 Echiru 2-pin Peridon examples include dimethyl sulfoxide, getyl sulfoxide, diphenylene sulfone, 1-methyl-1 year old oxosulfolane, 1-phenyl-1-oxosulfolane, and the like.
  • Each of these various aprotic organic compounds may be used alone or in combination of two or more, and further mixed with other solvent components which do not disturb the object of the present invention.
  • preferred are N-alkyl-proprotamam and N-alkylpyrrolidone, and particularly preferred. Is N-methyl-2-pyrrolidone (NMP).
  • the amount of the organic solvent used for washing is not particularly limited, and the number of times of washing is not particularly limited, but is preferably two or more times.
  • the washing is preferably performed under an inert gas such as nitrogen or argon.
  • NM is used as an aprotic organic solvent.
  • Lithium sulfide is produced using P.
  • NMP is added to the obtained crude lithium sulfide, the lithium sulfide is washed at a temperature of 100 ° C or more, and decanted at a temperature of 100 ° C or more under an inert gas such as nitrogen. Perform chilling or filtration. Perform this washing operation at least once.
  • the total content of the sulfur oxidized product is 0.15% by mass or less, preferably 0% by mass or less.
  • the total content of the sulfur acid oxidant and the content of lithium N-methylaminobutyrate (LMAB) become smaller as the washing is repeated, and the smaller the content, the more preferable. However, considering the actual manufacturing process, the number of cleanings is expected to be within about 10 times. By repeating washing about 10 times, the total content of sulfur oxides can be reduced to about 0.001% by mass and the content of lithium N-methylaminobutyrate (LMAB) to about 0.0005% by mass It is.
  • a solid electrolyte for a lithium secondary battery using lithium sulfide purified by the method of the present invention and a solid battery using the same which are the second and third embodiments of the present invention, will be described.
  • I do. [0033] as a starting material a lithium sulfide purified by the method of the present invention, when synthesizing the solid electrolyte, ionic conductivity 1. 0 X 10- 3 sZcm, preferably 1. 1 X 10- 3 sZcm more It has electrical characteristics favorable for use as a solid electrolyte for a lithium secondary battery.
  • the lithium sulfide purified by the method of the present invention has reduced impurities that adversely affect the long-term stability of the battery. Further, although the reason is not clear, the purity of the purified impurity is low. It is preferably contained as a solid electrolyte for a lithium secondary battery and has ionic conductivity, and can maintain desired battery performance for a long period of time even after repeated charging and discharging.
  • Lithium sulfide was produced by the method of the first embodiment (two-step method) of JP-A-7-330312. Specifically, N-methyl-2-pyrrolidone (NMP) 336.4 g (33.6 mol) and lithium hydroxide 288.7 g (12 mol) were charged into a 10-liter autoclave equipped with stirring blades. The temperature was increased to 300 rpm and 130 ° C. After the temperature was raised, hydrogen was blown into the liquid at a supply rate of 3 liters Z for 2 hours. Subsequently, the temperature of the reaction solution was increased under a nitrogen stream (for 200 ccZ), and a part of the reacted hydrogen sulfide was dehydrosulfided.
  • NMP N-methyl-2-pyrrolidone
  • Lithium sulfide was produced by the method of the first embodiment (two-step method) of JP-A-7-330312. Specifically, N-methyl-2-pyrrolidone (NMP) 336.4 g (3
  • impurities such as lithium sulfite (Li SO), lithium sulfate (Li SO), and thiosulfuric acid were impurities.
  • Lithium (Li S O) and lithium N-methylaminobutyrate (LMAB) are examples of lithium N-methylaminobutyrate
  • Lithium sulfide was obtained in the same manner as in Example 1, except that the drying under normal pressure at 230 ° C under a nitrogen stream was changed to the drying under reduced pressure at 230 ° C.
  • the results of measuring the impurity content in the obtained lithium sulfide are shown in Table 1 below.
  • Lithium sulfide was obtained in the same manner as in Example 2, except that the washing with NMP was repeated 10 times.
  • the results of measuring the impurity content in the obtained lithium sulfide are shown in Table 1 below.
  • Example 1 crude lithium sulfide obtained by decanting NMP in a 500 mL slurry reaction solution (NMP-lithium sulfide slurry) produced in Example 1 (that is, lithium sulfide vigorously without washing with NMP) Table 1 below shows the results of the measurement of the impurity content in).
  • Lithium sulfide was obtained in the same manner as in Example 1 except that the washing temperature was changed from 105 ° C. to normal temperature.
  • the results of measuring the impurity content in the obtained lithium sulfide are shown in Table 1 below.
  • Lithium sulfide was obtained in the same manner as in Example 1, except that the washing solvent was changed to dimethoxyethane (boiling point: 8283 ° C) and the washing temperature was changed to 70 ° C.
  • the results of measuring the impurity content in the obtained lithium sulfate are shown in Table 1 below.
  • Comparative Example 4 Lithium sulfite; manufactured by Aldrich Chemical Company, Inc.
  • Comparative Example 5 Lithium sulfite; manufactured by Furuchi Chemical Co., Ltd.
  • Comparative Example 6 Lithium sulfite; manufactured by Kishida Chemical Co., Ltd.
  • Comparative Example 2 which was washed at a washing temperature of less than 100 ° C., the contents of lithium sulfite and lithium sulfate were reduced to the same level as in Examples 1 and 2, and lithium thiosulfate and N —The content of lithium methylbutyrate (LMAB) is reduced and reduced.
  • LMAB lithium methylbutyrate
  • the commercially available lithium sulfide of Comparative Example 416 manufactured by a method different from the method described in JP-A-7-330312 does not originally contain LMAB, but has a structure similar to that of JP-A-7-330312. Compared with lithium sulfide (Comparative Example 1) produced by the method described in It may contain sulfur oxides.
  • Example 1 From the results of Example 1 and Comparative Example 2, it can be seen that even when the same solvent is used, the desired cleaning effect cannot be obtained if the cleaning temperature is lower than 100 ° C.
  • the lithium sulfide produced by the method described in JP-A-7-330312 is purified.
  • impurities such as sulfur sulfide and LMAB, which lower the long-term stability of the lithium secondary battery.
  • a solid electrolyte for a lithium secondary battery having excellent long-term stability and a solid battery having excellent battery performance using the same can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 非プロトン性有機溶媒中で水酸化リチウムと硫化水素とを反応させて得た硫化リチウムを、有機溶媒を用い、100°C以上の温度で洗浄することを特徴とする硫化リチウムの精製方法。この精製方法により硫化リチウムに含まれる不純物を低減できる。

Description

明 細 書
硫化リチウムの精製方法
技術分野
[0001] 本発明は、電子'電気材料に用いられる硫化リチウムから、硫黄酸化物や N—メチ ルァミノ酪酸リチウム(以下、 LMABという)などの不純物を効率よく除去する、硫化リ チウムの精製方法に関する。さらに、該精製方法よつて精製された硫化リチウムから なるリチウム二次電池用固体電解質およびそれを用いた固体電池に関する。
背景技術
[0002] 近年、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、モーターを動力 源とする自動二輪車、電気自動車、ノ、イブリツド電気自動車などに用いられる、高性 能リチウム二次電池などの需要が増加している。二次電池とは、充電'放電ができる 電池をいう。二次電池は、長期に渡り充放電を繰り返しながら使用されるため、これに 用いられる部材には長期安定性や耐久性が求められる。
[0003] 二次電池に用いられる固体電解質などの原料の純度が低いと、部材の劣化が進行 しゃすい。それ故、固体電解質などの原料を高純度化する必要がある。
[0004] 本願出願人は、簡易な手段によって高純度の硫化リチウムを得ることができる硫ィ匕 リチウムの製造方法を見出した (特開平 7— 330312号公報)。この方法は、硫化リチ ゥムを N—メチルー 2—ピロリドン (以下、 NMPと 、う)などの非プロトン性有機溶媒中で 製造するものであり、工程の連続ィ匕が可能であるため、経済的かつ簡便なものである 。しかしながら、得られた硫化リチウムには、 NMP由来の不純物である LMABが混 入する。
[0005] 特開平 9— 283156号公報には、水酸化リチウムとガス状硫黄源を、 130°C以上 44 5°C以下の温度で反応させて硫化リチウムを製造する方法が開示されている。この方 法で製造した硫化リチウムには、製造過程で生成した硫黄酸ィ匕物 (例えば、亜硫酸リ チウム、硫酸リチウム、チォ硫酸リチウムなど)などが混入する。
[0006] 上記のような方法で製造した硫化リチウムを、リチウム二次電池用固体電解質など の原料に用いると、充放電の繰り返しによって固体電解質が劣化し、目的とする電池 性能が発揮できない。
[0007] 上記問題点を解決するため、本発明は、リチウム二次電池用固体電解質の原料で ある硫化リチウムに含まれる不純物を低減する、硫化リチウムの精製方法を提供する ことを目的とする。
[0008] さらに、本発明は、不純物が低減された硫化リチウムを用いたリチウム二次電池用 固体電解質および、これを用いた固体電池を提供することを目的とする。
発明の開示
[0009] 上記目的を達成するため、本発明者らは鋭意研究を重ね、上記特開平 7— 33031 2号公報に開示されている方法によって製造した硫化リチウムを、 NMPなどの 100°C 以上の沸点を有する有機溶媒を用い、 100°C以上の温度で洗浄することにより、不 純物を効率よく除去できることを見出し、本発明を完成させた。
[0010] すなわち、本発明の第 1の態様は、非プロトン性有機溶媒中で水酸化リチウムと硫 化水素とを反応させて得た硫化リチウムを、有機溶媒を用い、 100°C以上の温度で 洗浄することを特徴とする硫化リチウムの精製方法を提供する。
[0011] 本発明の第 2の態様は、上記第 1の態様の方法で精製された硫化リチウムを用いた リチウム二次電池用固体電解質を提供する。
[0012] 本発明の第 3の態様は、上記第 2の態様のリチウム二次電池用固体電解質を用い た固体電池を提供する。
[0013] 本発明によれば、硫黄酸化物の含有量が 0. 15質量%以下および LMABの含有 量が 0. 1質量%以下まで低減された高純度の硫化リチウムを経済的に得ることがで きる。
[0014] また、得られた高純度の硫化リチウムを用いたリチウム二次電池用固体電解質は、 不純物に起因する劣化が抑えられ、長期安定性に優れたリチウム二次電池(固体電 池)を得ることができる。
発明を実施するための最良の形態
[0015] 以下、本発明を詳細に説明する。
本発明の第 1の態様である硫化リチウムの精製方法 (以下、本発明の方法という)は 、非プロトン性有機溶媒中で水酸化リチウムと硫ィ匕水素とを反応させて得た硫化リチ ゥムを、有機溶媒を用い、 100°C以上の温度で洗浄することを特徴とする。
[0016] 本発明の方法において精製される硫化リチウムは、前記特開平 7— 330312号公報 記載の硫化リチウムの製造方法によって製造されたものである。より詳細には、特開 平 7— 330312号公報記載の製造方法は、 0— 150°Cにおいて、非プロトン性有機溶 媒中に硫ィ匕水素を吹き込みながら水酸化リチウムと硫ィ匕水素とを反応させて水硫ィ匕 リチウムを生成し、次いで、 150— 200°Cにおいて、硫化水素を吹き込まないでこの 反応液を脱硫化水素化して硫化リチウムを生成するか、または 150— 200°Cにおい て、非プロトン性有機溶媒中で水酸化リチウムと硫化水素とを反応させ、直接硫化リ チウムを生成するものである。
[0017] 硫化リチウムの製造に用いられる非プロトン性有機溶媒としては、一般に、非プロト ン性の極性有機化合物 (たとえば、アミドィ匕合物,ラタタム化合物,尿素化合物,有機 ィォゥ化合物,環式有機リンィ匕合物など)を、単独溶媒として、または、混合溶媒とし て、好適に使用することができる。
[0018] 前記各種の非プロトン性有機溶媒の中でも、好ま ヽのは N—メチルー 2—ピロリドン 、 N—アルキル力プロラタタムおよび N—アルキルピロリドンであり、特に好ましいのは N —メチル— 2—ピロリドンである。
[0019] 硫化リチウム製造の原料である水酸化リチウムとしては、特に制限はなぐ高純度で ある限り市販の製品を使用することができる。また、もう一方の原料である硫ィ匕水素も 特に制限はない。また、硫化リチウム製造の反応条件、原料の使用割合などは、特 開平 7— 330312号公報の記載に従う。
[0020] 本発明の方法は、特開平 7 - 330312号公報記載の上記方法で製造された硫化リ チウムを、有機溶媒を用い、 100°C以上の温度で洗浄することに特徴がある。有機溶 媒を 100°C以上の温度で用いる理由は、硫化リチウム製造時に用いる非プロトン性 有機溶媒が NMPである場合に生成される不純物 LMABが、有機溶媒に可溶化す る温度が 100°Cだカゝらである。 LMABを洗浄用の有機溶媒に溶解させて、硫化リチ ゥムから除去するためである。
従って、有機溶媒の温度は 100°C以上であれば、特に限定は無く適宜選択できる 。し力しながら、有機溶媒の温度は沸点以下であり、例えば、 NMPを用いた場合、常 圧では沸点の 203°C以下であり、密閉容器等を用いた場合の加圧下では通常 250 °C以下である。
[0021] 本発明の方法において、洗浄に用いる有機溶媒は非プロトン性極性溶媒であるこ とが好ましぐさらに、硫化リチウム製造に使用する非プロトン性有機溶媒と洗浄に用 V、る非プロトン性極性有機溶媒とが同一であることがより好まし 、。
[0022] 洗浄に好ましく用いられる非プロトン性極性有機溶媒としては、例えば、アミド化合 物、ラタタム化合物、尿素化合物、有機硫黄化合物、環式有機リン化合物などの非プ 口トン性の極性有機化合物が挙げられ、単独溶媒または、混合溶媒として好適に使 用することができる。これら非プロトン性の極性有機溶媒のうち前記アミド化合物とし ては、例えば、 N, N—ジメチルホルムアミド、 N, N—ジェチルホルムアミド、 N, N—ジ メチルァセトアミド、 N, N—ジプロピルァセトアミド、 N, N—ジメチル安息香酸アミドな どを挙げることができる。また、前記ラタタム化合物としては、例えば、力プロラタタム、 N—メチルカプロラタタム、 N—ェチルカプロラタタム、 N イソプロピル力プロラタタム、 N イソブチルカプロラタタム、 N ノルマルプロピル力プロラタタム、 N ノルマルブチ ルカプロラタタム、 N—シクロへキシルカプロラタタムなどの N アルキル力プロラタタム 類、 N—メチルー 2—ピロリドン(NMP)、 N—ェチルー 2—ピロリドン、 N イソプロピル 2 —ピロリドン、 N イソブチルー 2—ピロリドン、 N ノルマルプロピル 2—ピロリドン、 N—ノ ルマルプチルー 2 ピロリドン、 N—シクロへキシルー 2 ピロリドン、 N—メチルー 3—メチ ノレ— 2—ピロリドン、 N—ェチル—3—メチル—2—ピロリドン、 N—メチノレ— 3, 4, 5—トリメチ ノレ 2—ピロリドン、 N—メチルー 2—ピペリドン、 N—ェチルー 2—ピペリドン、 N イソプロピ ルー 2—ピペリドン、 N—メチルー 6—メチルー 2—ピぺリドン、 N—メチルー 3 ェチル—2—ピ ペリドンなどを挙げることができる。前記有機硫黄ィ匕合物としては、例えば、ジメチル スルホキシド、ジェチルスルホキシド、ジフエ-レンスルホン、 1ーメチルー 1一才キソス ルホラン、 1—フエ-ルー 1ーォキソスルホランなどを挙げることができる。これら各種の 非プロトン性有機化合物はそれぞれ一種単独で、または二種以上を混合して、さら には本発明の目的に支障の無い他の溶媒成分と混合して、前記非プロトン性有機溶 媒として使用することができる。前記各種の非プロトン性有機溶媒の中でも、好ましい のは、 N アルキル力プロラタタムおよび、 N アルキルピロリドンであり、特に好ましい のは N—メチルー 2—ピロリドン(NMP)である。
[0023] 洗浄に使用する有機溶媒の量は特に限定されず、また、洗浄の回数も特に限定さ れないが、 2回以上であることが好ましい。
[0024] 本発明の方法にぉ 、て、洗浄は、窒素、アルゴンなどの不活性ガス下で行うことが 好ましい。
[0025] 次に、本発明の方法における操作を、硫化リチウム製造用の非プロトン性有機溶媒 および洗浄用の有機溶媒が共に NMPである場合を例として説明する。
[0026] (1)前記特開平 7 - 330312号公報記載の方法で、非プロトン性有機溶媒として NM
Pを用いて硫化リチウムを製造する。
[0027] (2)得られたスラリー反応溶液 (NMP-硫化リチウムスラリー)の NMPを、 100°C以上 の温度で、デカンテーシヨンまたは濾過する。
[0028] (3)得られた粗硫化リチウムに NMPを添加し、 100°C以上の温度で硫化リチウムを 洗浄し、 100°C以上の温度で、窒素などの不活性ガス下で、デカンテーシヨンまたは 濾過を行う。この洗浄操作を 1回以上行う。
[0029] (4)洗浄された硫化リチウムを、洗浄に使用した NMPの沸点以上の温度で、窒素な どの不活性ガス気流下で、常圧または減圧下で、 5分以上 (好ましくは約 2— 3時間 以上)乾燥し、精製された硫化リチウムを得る。
[0030] 本発明の方法によれば、硫黄酸ィ匕物の総含有量が 0. 15質量%以下、好ましくは 0
. 1質量%以下であり、 N—メチルァミノ酪酸リチウム(LMAB)の含有量が 0. 1質量
%以下である高度に精製された硫化リチウムが得られる。
[0031] 尚、硫黄酸ィ匕物の総含有量および N—メチルァミノ酪酸リチウム (LMAB)の含有量 は、洗浄を繰り返す程少なくなり、少ないほど好ましい。しかし、現実の製造プロセス を考慮すると洗浄回数は 10回程度以内になると考えられる。洗浄を 10回程度繰り返 すことにより、硫黄酸化物の総含有量は約 0. 001質量%、 N—メチルァミノ酪酸リチウ ム(LMAB)の含有量は約 0. 0005質量%まで減らすことが可能である。
[0032] 次に、本発明の第 2および第 3の態様である、上記本発明の方法によって精製され た硫化リチウムを用いたリチウム二次電池用固体電解質およびそれを用いた固体電 池について説明する。 [0033] 本発明の方法によって精製された硫化リチウムを原料として、固体電解質を合成し た場合は、イオン伝導度が 1. 0 X 10— 3sZcm、好ましくは 1. 1 X 10— 3sZcm以上で あり、リチウム二次電池用固体電解質として利用するのに好ましい電気的特性を有し ている。
[0034] 上記本発明の方法によって精製された硫化リチウムは、電池の長期安定性に悪影 響を与える不純物が低減されており、さらに、理由は明らかではないが、精製後の不 純物の含まれ方がリチウム二次電池用固体電解質として好ま ヽイオン伝導度を有 しており、充放電を繰り返しても長期に渡って目的とする電池性能を保持することが できる。
[0035] 上記のように優れた特性を有するリチウム二次電池用固体電解質を用いることによ り、長期安定性に優れる固体電池が得られる。
[0036] 本発明の方法によって精製された硫化リチウムを、リチウム二次電池用固体電解質 とする方法およびこれを用いて固体電池を製造する方法は、従来公知の方法を用い ることがでさる。
[0037] 以下、実施例、比較例を挙げて本発明をさらに具体的に説明する。
[実施例 1]
(1)硫化リチウムの製造
硫化リチウムは、特開平 7— 330312号公報の第 1の態様(2工程法)の方法にした 力 て製造した。具体的には、撹拌翼のついた 10リットルオートクレープに N—メチル —2—ピロリドン(NMP) 3326. 4g (33. 6モル)および水酸ィ匕リチウム 287. 4g (12モ ル)を仕込み、 300rpm、 130°Cに昇温した。昇温後、液中に硫ィ匕水素を 3リットル Z 分の供給速度で 2時間吹き込んだ。続、てこの反応液を窒素気流下(200ccZ分) 昇温し、反応した硫化水素の一部を脱硫化水素化した。昇温するにつれ、上記硫化 水素と水酸化リチウムの反応により副生した水が蒸発を始めた力 この水はコンデン サにより凝縮し系外に抜き出した。水を系外に留去すると共に反応液の温度は上昇 するが、 180°Cに達した時点で昇温を停止し、一定温度に保持した。脱硫化水素反 応が終了後 (約 80分)反応を終了し、硫化リチウムを得た。
[0038] (2)硫化リチウムの精製 上記(1)で得られた 500mLのスラリー反応溶液 (NMP-硫化リチウムスラリー)中 の NMPをデカンテーシヨンした後、脱水した NMP lOOmLを加え、 105°Cで約 1時 間撹拌した。その温度のまま NMPをデカンテーシヨンした。さらに NMP lOOmLを 加え、 105°Cで約 1時間撹拌し、その温度のまま NMPをデカンテーシヨンし、同様の 操作を合計 4回繰り返した。デカンテーシヨン終了後、窒素気流下 230°C (NMPの沸 点以上の温度)で硫化リチウムを常圧下で 3時間乾燥した。得られた硫化リチウム中 の不純物含有量を測定した。得られた結果を下記表 1に示す。
[0039] なお、不純物である、亜硫酸リチウム (Li SO )、硫酸リチウム (Li SO )、チォ硫酸
2 3 2 4
リチウム(Li S O )および N—メチルァミノ酪酸リチウム(LMAB)は、イオンクロマトグ
2 2 3
ラフ法により定量した。
[0040] [実施例 2]
実施例 1において、窒素気流下 230°C常圧乾燥を、 230°C減圧乾燥に変更した以 外は実施例 1と同様にして硫化リチウムを得た。得られた硫化リチウム中の不純物含 有量を測定した結果を下記表 1に示す。
[0041] [実施例 3]
実施例 2において、 NMPによる洗浄を 10回繰り返した以外は、実施例 2と同様にし て硫化リチウムを得た。得られた硫化リチウム中の不純物含有量を測定した結果を下 記表 1に示す。
[0042] [比較例 1]
実施例 1にお 、て製造された 500mLのスラリー反応溶液 (NMP-硫化リチウムスラ リー)中の NMPをデカンテーシヨンして得た粗硫化リチウム(すなわち、 NMPによる 洗浄を行わな力つた硫化リチウム)中の不純物含有量を測定した結果を下記表 1に 示す。
[0043] [比較例 2]
実施例 1において、洗浄温度を 105°Cから常温に変更した以外は実施例 1と同様 にして硫化リチウムを得た。得られた硫化リチウム中の不純物含有量を測定した結果 を下記表 1に示す。
[0044] [比較例 3] 実施例 1において、洗浄溶媒を、ジメトキシェタン (沸点: 82 83°C)に変更し、洗 浄温度を 70°Cにした以外は実施例 1と同様にして硫化リチウムを得た。得られた硫 ィ匕リチウム中の不純物含有量を測定した結果を下記表 1に示す。
[0045] [比較例 4一 6]
特開平 7 - 330312号公報記載の方法とは異なる方法で製造された、下記の硫化リ チウム市販品中の不純物含有量を測定した結果を下記 1に示す。
[0046] 比較例 4 :亜硫酸リチウム; Aldrich Chemical Company, Inc.製
比較例 5:亜硫酸リチウム;フルゥチ化学 (株)製
比較例 6:亜硫酸リチウム;キシダ化学 (株)製
[0047] [表 1]
Figure imgf000009_0001
[0048] 表 1の結果から、特開平 7— 330312号公報記載の方法によって製造され、精製さ れていない粗硫化リチウム (比較例 1)に比べ、実施例 1および 2で得られた精製され た硫化リチウムは、 、ずれの不純物も低減されて 、ることがわ力る。
[0049] 100°C未満の洗浄温度で洗浄した比較例 2では、亜硫酸リチウムおよび硫酸リチウ ムの含有量については、実施例 1および 2と同などに低減されている力 チォ硫酸リ チウムおよび N—メチル酪酸リチウム(LMAB)の含有量にっレ、ては、低減されてレ、な 、ことがわ力る。
[0050] また、特開平 7— 330312号公報記載の方法とは異なる方法で製造された比較例 4 一 6の市販の硫化リチウムは、 LMABは元々含まれていないものの、特開平 7— 330 312号公報記載の方法で製造された硫化リチウム (比較例 1)と比べて非常に多量の 硫黄酸化物が含まれて 、ることがゎカゝる。
実施例 1および比較例 2の結果から、同一の溶媒を用いた場合であっても、洗浄温 度が 100°C未満では、所望の洗浄効果は得られな 、ことがわかる。
産業上の利用可能性
特開平 7— 330312号公報記載の方法によって製造された硫化リチウムを精製する 、本発明の方法によれば、硫黄酸ィ匕物や LMABなどの、リチウム二次電池の長期安 定性を低下させる不純物を経済的に低減することができ、ひいては、長期安定性に 優れたリチウム二次電池用固体電解質およびそれを用いた優れた電池性能を有す る固体電池が提供できる。

Claims

請求の範囲
[1] 非プロトン性有機溶媒中で水酸化リチウムと硫化水素とを反応させて得た硫化リチ ゥムを、有機溶媒を用い、 100°C以上の温度で洗浄することを特徴とする硫化リチウ ムの精製方法。
[2] 洗浄に用いる有機溶媒が、非プロトン性極性溶媒であることを特徴とする請求項 1 に記載の精製方法。
[3] 洗浄に用いる有機溶媒力 N-メチル 2-ピロリドン (NMP)であることを特徴とする 請求項 2に記載の精製方法。
[4] 硫黄酸化物の総含有量が 0. 15質量%以下であり、 N -メチルァミノ酪酸リチウム (L
MAB)の含有量が 0. 1質量%以下であることを特徴とする、請求項 1一 3のいずれ 力 1項に記載の精製方法によって得られる硫化リチウム。
[5] 請求項 4に記載の硫化リチウムを用いたリチウム二次電池用固体電解質。
[6] イオン伝導度が 1 X 10— 3SZcm以上であることを特徴とする請求項 5に記載のリチ ゥム二次電池用固体電解質。
[7] 請求項 5に記載のリチウム二次電池用固体電解質を用いた固体電池。
[8] 請求項 6に記載のリチウム二次電池用固体電解質を用いた固体電池。
PCT/JP2004/015231 2003-10-23 2004-10-15 硫化リチウムの精製方法 WO2005040039A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020067007700A KR101109821B1 (ko) 2003-10-23 2004-10-15 황화리튬의 정제 방법
AT04792448T ATE513788T1 (de) 2003-10-23 2004-10-15 Verfahren zur reinigung von lithiumsulfid
EP04792448A EP1681263B1 (en) 2003-10-23 2004-10-15 Method for purifying lithium sulfide
JP2005514938A JP4896520B2 (ja) 2003-10-23 2004-10-15 硫化リチウムの精製方法
CN2004800309857A CN1871177B (zh) 2003-10-23 2004-10-15 硫化锂的精制方法
US10/576,721 US8084160B2 (en) 2003-10-23 2004-10-15 Method for purifying lithium sulfide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003363403 2003-10-23
JP2003-363403 2003-10-23

Publications (1)

Publication Number Publication Date
WO2005040039A1 true WO2005040039A1 (ja) 2005-05-06

Family

ID=34510038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015231 WO2005040039A1 (ja) 2003-10-23 2004-10-15 硫化リチウムの精製方法

Country Status (8)

Country Link
US (1) US8084160B2 (ja)
EP (1) EP1681263B1 (ja)
JP (1) JP4896520B2 (ja)
KR (1) KR101109821B1 (ja)
CN (2) CN101980398A (ja)
AT (1) ATE513788T1 (ja)
TW (1) TW200530121A (ja)
WO (1) WO2005040039A1 (ja)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006003276T5 (de) 2005-12-09 2008-10-23 Idemitsu Kosan Co., Ltd. Lithiumionen leitender Festelektrolyt auf Sulfidbasis und Lithiumbatterie ganz aus Feststoff unter Verwendung von selbigem
WO2009047977A1 (ja) 2007-10-11 2009-04-16 Idemitsu Kosan Co., Ltd. リチウムイオン伝導性固体電解質の製造方法
JP2010126422A (ja) * 2008-11-28 2010-06-10 Panasonic Corp リチウム含有複合酸化物の製造方法および非水系二次電池
WO2010125467A1 (en) 2009-05-01 2010-11-04 Toyota Jidosha Kabushiki Kaisha Solid electrolyte material, electrode element that includes solid electrolyte material, all-solid battery that includes solid electrolyte material, and manufacturing method for solid electrolyte material
WO2011064662A1 (en) 2009-11-25 2011-06-03 Toyota Jidosha Kabushiki Kaisha Lithium ion conducting material and lithium battery
WO2011073798A2 (en) 2009-12-16 2011-06-23 Toyota Jidosha Kabushiki Kaisha Method of producing a sulfide solid electrolyte material, sulfide solid electrolyte material, and lithium battery
WO2012017544A1 (ja) 2010-08-05 2012-02-09 トヨタ自動車株式会社 硫化物固体電解質ガラス、リチウム固体電池および硫化物固体電解質ガラスの製造方法
WO2012026238A1 (en) 2010-08-26 2012-03-01 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material and lithium solid state battery
WO2012026561A2 (en) 2010-08-26 2012-03-01 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, cathode body and lithium solid state battery
JP2012041207A (ja) * 2010-08-13 2012-03-01 Idemitsu Kosan Co Ltd 固体電解質ガラス及びその製造方法
WO2012128374A1 (en) 2011-03-18 2012-09-27 Toyota Jidosha Kabushiki Kaisha Slurry, production method for solid electrolyte layer, production method for electrode active material layer, and production method for all-solid-state battery
WO2012156795A1 (en) 2011-05-18 2012-11-22 Toyota Jidosha Kabushiki Kaisha Method of producing solid sulfide electrolyte material and solid sulfide electrolyte material
WO2013005085A1 (en) 2011-07-06 2013-01-10 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, lithium solid-state battery, and method for producing sulfide solid electrolyte material
WO2013008089A1 (en) 2011-07-13 2013-01-17 Toyota Jidosha Kabushiki Kaisha Method for producing sulfide solid electrolyte materials
WO2013042371A1 (ja) 2011-09-22 2013-03-28 出光興産株式会社 ガラス粒子
WO2013069243A1 (ja) 2011-11-07 2013-05-16 出光興産株式会社 固体電解質
WO2013076955A1 (ja) 2011-11-24 2013-05-30 出光興産株式会社 電極材料、及びそれを用いたリチウムイオン電池
WO2014002483A1 (ja) 2012-06-29 2014-01-03 出光興産株式会社 正極合材
WO2014073197A1 (ja) 2012-11-06 2014-05-15 出光興産株式会社 固体電解質
WO2014102580A1 (en) 2012-12-27 2014-07-03 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, lithium solid battery and method of preparing sulfide solid electrolyte material
WO2014192309A1 (ja) 2013-05-31 2014-12-04 出光興産株式会社 固体電解質の製造方法
JP2015024953A (ja) * 2009-12-04 2015-02-05 出光興産株式会社 アルカリ金属硫化物及びその製造方法
EP2916381A1 (en) 2009-02-27 2015-09-09 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material
DE102015224925A1 (de) 2015-06-16 2016-12-22 Hyundai Motor Company Method for manufacturing lithium ion conductive sulfide compound, lithium ion conductive sulfide compound manufactured by the same, and solid electrolyte and all solid battery comprising the same
US9537174B2 (en) 2009-09-09 2017-01-03 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte
US9793574B2 (en) 2013-04-24 2017-10-17 Idemitsu Kosan Co., Ltd. Method for producing solid electrolyte
US10020536B2 (en) 2016-08-22 2018-07-10 Korea Institute Of Science And Technology Method of preparing sulfide-based solid electrolyte having excellent air stability
US10038215B2 (en) 2013-09-13 2018-07-31 Toyota Jidosha Kabushiki Kaisha Method for producing sulfide solid electrolyte
US10239027B2 (en) 2014-12-16 2019-03-26 Idemitsu Kosan Co., Ltd. Device for producing lithium sulfide, and method for producing lithium sulfide
US10280109B2 (en) 2014-10-31 2019-05-07 Idemitsu Kosan Co., Ltd. Sulfide glass and crystalline solid electrolyte production method, crystalline solid electrolyte, sulfide glass and solid-state battery
US10865108B2 (en) 2016-12-14 2020-12-15 Idemitsu Kosan Co., Ltd Complex comprising sulfur, a method for manufacturing the same, and a method for manufacturing a solid electrolyte
WO2023191417A1 (ko) * 2022-03-31 2023-10-05 주식회사 솔리비스 고순도의 알칼리 금속황화물의 제조방법

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2729886A1 (en) 2008-07-18 2010-01-21 Rincon Lithium Limited A process for recovering lithium from a brine
US20130295464A1 (en) * 2011-01-27 2013-11-07 Idemitsu Kosan Co., Ltd. Composite material of alkaline metal sulfide and conducting agent
JP6016899B2 (ja) 2011-05-27 2016-10-26 ロックウッド リチウム ゲゼルシャフト ミット ベシュレンクテル ハフツングRockwood Lithium GmbH 硫化リチウムの製造方法
DE102012209757A1 (de) * 2011-06-14 2012-12-20 Chemetall Gmbh Verfahren zur Herstellung eines kohlenstoffbeschichteten Lithiumsulfids und dessen Verwendung
FR2997941B1 (fr) * 2012-11-15 2023-03-03 Arkema France Procede de preparation de sulfure de metal alcalin
CN103523806B (zh) * 2013-10-22 2014-11-12 瓮福(集团)有限责任公司 一种高纯度无水硫酸锂的制备方法
CN104609376A (zh) * 2015-01-30 2015-05-13 浙江工业大学 一种硫化锂粉体的制备方法
CN105016310A (zh) * 2015-07-30 2015-11-04 广东先导稀材股份有限公司 一种高纯硫化锂的制备方法及装置
KR101930992B1 (ko) * 2016-02-15 2018-12-19 한양대학교 산학협력단 황화물계 고체 전해질의 제조방법, 이로부터 제조된 황화물계 고체 전해질 및 이를 포함하는 전고체 리튬 이차전지
CN110790239B (zh) * 2019-08-26 2022-01-28 浙江工业大学 一种硫化锂粉体的机械球磨合成方法
CN112678781B (zh) * 2019-10-18 2022-04-15 天齐锂业(江苏)有限公司 硫化锂的制备方法
WO2021167982A1 (en) 2020-02-17 2021-08-26 Solid Power, Inc. Method of preparing a water-reactive sulfide material
CN112624060B (zh) * 2020-12-31 2022-09-20 江西赣锋锂业股份有限公司 一种利用工业级丁基锂制备高纯硫化锂的方法
KR20230129118A (ko) * 2022-02-28 2023-09-06 주식회사 레이크테크놀로지 황화리튬 제조 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278423A (ja) * 1996-04-16 1997-10-28 Furukawa Co Ltd 硫化リチウムの製造方法
JPH09301706A (ja) * 1996-05-10 1997-11-25 Matsushita Electric Ind Co Ltd 固体電解質およびそれを用いた全固体リチウム電池
JPH10130005A (ja) * 1996-10-28 1998-05-19 Idemitsu Petrochem Co Ltd 硫化リチウムの製造方法及びポリアリーレンスルフィドの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2677346B1 (fr) * 1991-06-10 1993-08-27 Atochem Procede de purification d'une solution aqueuse de chlorure de metal alcalin par enlevement de l'ammonium et de l'iode.
JP3528866B2 (ja) * 1994-06-03 2004-05-24 出光石油化学株式会社 硫化リチウムの製造方法
JPH09110404A (ja) 1995-10-13 1997-04-28 Furukawa Co Ltd 硫化リチウムの製造方法
JP3510420B2 (ja) 1996-04-16 2004-03-29 松下電器産業株式会社 リチウムイオン伝導性固体電解質およびその製造方法
US6022640A (en) * 1996-09-13 2000-02-08 Matsushita Electric Industrial Co., Ltd. Solid state rechargeable lithium battery, stacking battery, and charging method of the same
DE10008499A1 (de) * 1999-03-08 2000-09-28 Idemitsu Petrochemical Co Verfahren zur Abtrennung von festen Nicht-Lithiumhydroxid-Verbindungen
JP2000273175A (ja) 1999-03-19 2000-10-03 Idemitsu Petrochem Co Ltd ポリアリーレンスルフィド系樹脂の精製方法
JP3412616B2 (ja) * 2000-07-19 2003-06-03 住友電気工業株式会社 リチウム二次電池用負極の製造方法
JP4953406B2 (ja) 2001-08-23 2012-06-13 株式会社Gsユアサ 全固体リチウム二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278423A (ja) * 1996-04-16 1997-10-28 Furukawa Co Ltd 硫化リチウムの製造方法
JPH09301706A (ja) * 1996-05-10 1997-11-25 Matsushita Electric Ind Co Ltd 固体電解質およびそれを用いた全固体リチウム電池
JPH10130005A (ja) * 1996-10-28 1998-05-19 Idemitsu Petrochem Co Ltd 硫化リチウムの製造方法及びポリアリーレンスルフィドの製造方法

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006003276T5 (de) 2005-12-09 2008-10-23 Idemitsu Kosan Co., Ltd. Lithiumionen leitender Festelektrolyt auf Sulfidbasis und Lithiumbatterie ganz aus Feststoff unter Verwendung von selbigem
WO2009047977A1 (ja) 2007-10-11 2009-04-16 Idemitsu Kosan Co., Ltd. リチウムイオン伝導性固体電解質の製造方法
JP2010126422A (ja) * 2008-11-28 2010-06-10 Panasonic Corp リチウム含有複合酸化物の製造方法および非水系二次電池
US8404211B2 (en) 2008-11-28 2013-03-26 Panasonic Corporation Method for producing lithium-containing composite oxide and non-aqueous secondary battery
EP2916381A1 (en) 2009-02-27 2015-09-09 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material
WO2010125467A1 (en) 2009-05-01 2010-11-04 Toyota Jidosha Kabushiki Kaisha Solid electrolyte material, electrode element that includes solid electrolyte material, all-solid battery that includes solid electrolyte material, and manufacturing method for solid electrolyte material
US9537174B2 (en) 2009-09-09 2017-01-03 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte
WO2011064662A1 (en) 2009-11-25 2011-06-03 Toyota Jidosha Kabushiki Kaisha Lithium ion conducting material and lithium battery
JP2015024953A (ja) * 2009-12-04 2015-02-05 出光興産株式会社 アルカリ金属硫化物及びその製造方法
WO2011073798A2 (en) 2009-12-16 2011-06-23 Toyota Jidosha Kabushiki Kaisha Method of producing a sulfide solid electrolyte material, sulfide solid electrolyte material, and lithium battery
WO2012017544A1 (ja) 2010-08-05 2012-02-09 トヨタ自動車株式会社 硫化物固体電解質ガラス、リチウム固体電池および硫化物固体電解質ガラスの製造方法
JP2012041207A (ja) * 2010-08-13 2012-03-01 Idemitsu Kosan Co Ltd 固体電解質ガラス及びその製造方法
WO2012026561A2 (en) 2010-08-26 2012-03-01 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, cathode body and lithium solid state battery
WO2012026238A1 (en) 2010-08-26 2012-03-01 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material and lithium solid state battery
WO2012128374A1 (en) 2011-03-18 2012-09-27 Toyota Jidosha Kabushiki Kaisha Slurry, production method for solid electrolyte layer, production method for electrode active material layer, and production method for all-solid-state battery
WO2012156795A1 (en) 2011-05-18 2012-11-22 Toyota Jidosha Kabushiki Kaisha Method of producing solid sulfide electrolyte material and solid sulfide electrolyte material
WO2013005085A1 (en) 2011-07-06 2013-01-10 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, lithium solid-state battery, and method for producing sulfide solid electrolyte material
US9172113B2 (en) 2011-07-06 2015-10-27 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, lithium solid-state battery, and method for producing sulfide solid electrolyte material
US9484597B2 (en) 2011-07-06 2016-11-01 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, lithium solid-state battery, and method for producing sulfide solid electrolyte material
WO2013008089A1 (en) 2011-07-13 2013-01-17 Toyota Jidosha Kabushiki Kaisha Method for producing sulfide solid electrolyte materials
US9595735B2 (en) 2011-07-13 2017-03-14 Toyota Jidosha Kabushiki Kaisha Method for producing sulfide solid electrolyte materials
WO2013042371A1 (ja) 2011-09-22 2013-03-28 出光興産株式会社 ガラス粒子
WO2013069243A1 (ja) 2011-11-07 2013-05-16 出光興産株式会社 固体電解質
EP3361545A1 (en) 2011-11-07 2018-08-15 Idemitsu Kosan Co., Ltd. Solid electrolyte
WO2013076955A1 (ja) 2011-11-24 2013-05-30 出光興産株式会社 電極材料、及びそれを用いたリチウムイオン電池
WO2014002483A1 (ja) 2012-06-29 2014-01-03 出光興産株式会社 正極合材
WO2014073197A1 (ja) 2012-11-06 2014-05-15 出光興産株式会社 固体電解質
WO2014102580A1 (en) 2012-12-27 2014-07-03 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, lithium solid battery and method of preparing sulfide solid electrolyte material
US10199681B2 (en) 2012-12-27 2019-02-05 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, lithium solid battery and method of preparing sulfide solid electrolyte material
US10938062B2 (en) 2012-12-27 2021-03-02 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, lithium solid battery and method of preparing sulfide solid electrolyte material
US9793574B2 (en) 2013-04-24 2017-10-17 Idemitsu Kosan Co., Ltd. Method for producing solid electrolyte
WO2014192309A1 (ja) 2013-05-31 2014-12-04 出光興産株式会社 固体電解質の製造方法
US10116002B2 (en) 2013-05-31 2018-10-30 Idemitsu Kosan Co., Ltd. Production method of solid electrolyte
US10038215B2 (en) 2013-09-13 2018-07-31 Toyota Jidosha Kabushiki Kaisha Method for producing sulfide solid electrolyte
US10280109B2 (en) 2014-10-31 2019-05-07 Idemitsu Kosan Co., Ltd. Sulfide glass and crystalline solid electrolyte production method, crystalline solid electrolyte, sulfide glass and solid-state battery
US10239027B2 (en) 2014-12-16 2019-03-26 Idemitsu Kosan Co., Ltd. Device for producing lithium sulfide, and method for producing lithium sulfide
DE102015224925A1 (de) 2015-06-16 2016-12-22 Hyundai Motor Company Method for manufacturing lithium ion conductive sulfide compound, lithium ion conductive sulfide compound manufactured by the same, and solid electrolyte and all solid battery comprising the same
US10020536B2 (en) 2016-08-22 2018-07-10 Korea Institute Of Science And Technology Method of preparing sulfide-based solid electrolyte having excellent air stability
US10865108B2 (en) 2016-12-14 2020-12-15 Idemitsu Kosan Co., Ltd Complex comprising sulfur, a method for manufacturing the same, and a method for manufacturing a solid electrolyte
WO2023191417A1 (ko) * 2022-03-31 2023-10-05 주식회사 솔리비스 고순도의 알칼리 금속황화물의 제조방법

Also Published As

Publication number Publication date
TWI366554B (ja) 2012-06-21
CN101980398A (zh) 2011-02-23
EP1681263A8 (en) 2006-10-11
TW200530121A (en) 2005-09-16
EP1681263A1 (en) 2006-07-19
CN1871177A (zh) 2006-11-29
KR101109821B1 (ko) 2012-03-13
EP1681263B1 (en) 2011-06-22
US8084160B2 (en) 2011-12-27
US20070196739A1 (en) 2007-08-23
JPWO2005040039A1 (ja) 2007-03-01
CN1871177B (zh) 2010-12-22
ATE513788T1 (de) 2011-07-15
EP1681263A4 (en) 2008-06-25
KR20060076316A (ko) 2006-07-04
JP4896520B2 (ja) 2012-03-14

Similar Documents

Publication Publication Date Title
WO2005040039A1 (ja) 硫化リチウムの精製方法
JP4873479B2 (ja) 高性能全固体リチウム電池
JP5311169B2 (ja) リチウムイオン伝導性固体電解質、その製造方法及び該固体電解質を用いたリチウム二次電池用固体電解質並びに該二次電池用固体電解質を用いた全固体リチウム電池
US8962194B2 (en) Lithium ion conducting sulfide based crystallized glass and method for production thereof
EP2065339B1 (en) Method for producing lithium difluorophosphate and nonaqueous electrolyte battery using the same
JP6651049B1 (ja) 六フッ化リン酸アルカリ金属塩の製造方法、六フッ化リン酸アルカリ金属塩、六フッ化リン酸アルカリ金属塩含有電解濃縮液の製造方法、および二次電池の製造方法
WO2010113403A1 (ja) リチウムイオン電池用正極の製造方法、リチウムイオン電池用正極、および前記正極を用いたリチウムイオン電池
JP2009093995A (ja) リチウムイオン二次電池用硫化物系固体電解質
KR102285464B1 (ko) 불소 음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법
WO2023202093A1 (zh) 一种双氟磺酰亚胺锂的制备方法、锂离子电池
CN100583543C (zh) 锂离子传导性固体电解质、其制造方法及使用了该固体电解质的锂二次电池用固体电解质以及使用了该二次电池用固体电解质的全固体锂电池
EP3373379A1 (en) Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device
KR20200114967A (ko) 불소 음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법
JP3815180B2 (ja) 非水電解液およびそれを用いたリチウム二次電池
KR20200114966A (ko) 불소 음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법
JPH11185811A (ja) リチウム電池用電解液及びその製造方法
KR102259983B1 (ko) 불소 음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법
KR102259982B1 (ko) 불소 음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법
EP4332054A1 (en) Composition comprising an alkali metal salt of bis(fluoro sulfonyl)imide
KR20230015289A (ko) 설페이트 또는 설포네이트 용제 중의 비스(플루오로설포닐)이미드 알칼리금속염의 제조방법
JP2000315522A (ja) リチウム電池用電解液
KR20070017190A (ko) 고성능 전고체 리튬 전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480030985.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514938

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004792448

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067007700

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067007700

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004792448

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10576721

Country of ref document: US

Ref document number: 2007196739

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10576721

Country of ref document: US