WO2010113403A1 - リチウムイオン電池用正極の製造方法、リチウムイオン電池用正極、および前記正極を用いたリチウムイオン電池 - Google Patents
リチウムイオン電池用正極の製造方法、リチウムイオン電池用正極、および前記正極を用いたリチウムイオン電池 Download PDFInfo
- Publication number
- WO2010113403A1 WO2010113403A1 PCT/JP2010/001903 JP2010001903W WO2010113403A1 WO 2010113403 A1 WO2010113403 A1 WO 2010113403A1 JP 2010001903 W JP2010001903 W JP 2010001903W WO 2010113403 A1 WO2010113403 A1 WO 2010113403A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- lithium
- ion battery
- lithium ion
- active material
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a lithium ion battery, and more particularly to an improved method for removing impurities from a positive electrode active material for a lithium ion battery.
- the positive electrode of the lithium ion battery includes a lithium transition metal oxide as a positive electrode active material.
- LiCoO 2 is generally used as the lithium transition metal oxide, but recently lithium nickel oxides such as LiNiO 2 have also been proposed.
- a lithium transition metal oxide is synthesized by firing a compound containing a transition metal and a lithium compound.
- lithium hydroxide and lithium carbonate are generated as by-products.
- Lithium hydroxide generates gas by reacting with a nonaqueous solvent such as ethylene carbonate.
- Lithium carbonate generates gas by oxidative decomposition in a high temperature environment. For this reason, when the by-product is mixed in the battery, the battery may expand due to the generation of gas, or the electrode may be deformed. The expansion of the battery and the deformation of the electrode are factors that cause deterioration in cycle characteristics and storage characteristics, and also cause damage to the battery and liquid leakage.
- Patent Documents 2 to 4 disclose a method of washing with water after firing a raw material as a method for producing a lithium transition metal oxide such as lithium nickel oxide.
- a method for manufacturing a positive electrode for a lithium ion battery in which a positive electrode including a positive electrode active material layer containing a lithium transition metal oxide as a positive electrode active material is washed with a cleaning solution.
- LiZF 6-m R mn (Z is Represents any one of phosphorus, boron, arsenic and antimony, R represents a perfluoroalkyl group having 1 or 2 carbon atoms, m is an integer of 0 to 3 when Z is phosphorus, and Z is boron 2 in which Z is 0 when Z is arsenic and antimony, n is 0 when Z is phosphorus, arsenic and antimony, and is 2 when Z is boron. salt And at least one of hydrogen halide.
- a positive electrode for a lithium ion battery includes a positive electrode current collector and a positive electrode active material layer formed on a surface of the positive electrode current collector, and the positive electrode active material layer is used as a positive electrode active material.
- Lithium transition metal oxide is included, and the surface of the positive electrode active material has lithium halide attached thereto, and the amount of lithium halide attached is 300 to 4000 ⁇ g with respect to 1 g of the positive electrode active material.
- a lithium ion battery includes the positive electrode for a lithium ion battery, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte.
- a positive electrode for a lithium ion battery containing lithium transition metal oxide as a positive electrode active material from which lithium hydroxide and lithium carbonate are highly removed.
- a lithium ion battery in which mixing of lithium hydroxide and lithium carbonate is highly suppressed, and which is excellent in cycle characteristics, storage characteristics, and reliability.
- a positive electrode provided with a positive electrode active material layer containing a lithium transition metal oxide as a positive electrode active material is washed with a cleaning liquid, and the positive electrode active material is coated on the surface of the positive electrode active material with respect to 1 g of the positive electrode active material.
- the cleaning liquid for cleaning the positive electrode contains an aprotic solvent and a solute.
- the solute contains at least one of the fluorine-containing lithium salt represented by the general formula (1) and a hydrogen halide.
- fluorine-containing lithium salt represented by the general formula (1) examples include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiPF 3 (CF 3 ) 3 , LiPF 3 (C 2 F 5 ) 3 , Examples include LiPF 4 (CF 3 ) 2 and LiPF 5 CF 3 .
- the said fluorine-containing lithium salt can be used individually by 1 type, and can also be used in combination of 2 or more type.
- the fluorine-containing lithium salt is particularly preferably LiPF 6 .
- the hydrogen halide include hydrogen fluoride, hydrogen chloride, hydrogen bromide, and hydrogen iodide. One hydrogen halide can be used alone, or two or more hydrogen halides can be used in combination.
- the hydrogen halide is particularly preferably hydrogen fluoride.
- the fluorine-containing lithium salt of the general formula (1) has high hydrolyzability. Therefore, when the cleaning liquid contains the fluorine-containing lithium salt of the general formula (1), this fluorine-containing lithium salt is hydrolyzed by water adhering to the surface of the positive electrode active material to generate hydrogen fluoride. The produced hydrogen fluoride reacts with lithium hydroxide and lithium carbonate adhering to the surface of the positive electrode active material to produce lithium fluoride. When the cleaning liquid contains hydrogen halide, this hydrogen halide reacts with lithium hydroxide and lithium carbonate to produce lithium halide. Examples of the lithium halide generated by washing include lithium fluoride, lithium chloride, lithium bromide, and lithium iodide. Among these, lithium fluoride is the most inert and stable among lithium halides. For this reason, it is particularly preferable that the cleaning liquid contains hydrogen fluoride as the hydrogen halide.
- lithium hydroxide and lithium carbonate adhering to the surface of the positive electrode active material can be changed to lithium halides such as lithium fluoride.
- Lithium halides are scattered on the surface of the positive electrode active material.
- lithium halide is a compound that is inert to a non-aqueous electrolyte solvent and the like and is stable (not easily gasified). For this reason, the side reaction between the positive electrode active material and the non-aqueous electrolyte can be suppressed by converting lithium hydroxide and lithium carbonate on the surface of the positive electrode active material into lithium halide and inactivating them. .
- Examples of the aprotic solvent used in the cleaning liquid include carbonate esters such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate; cyclic ethers such as tetrahydrofuran, 1,4-dioxane, and 1,3-dioxolane; N-methylformamide, N-methylacetamide, N-methylpropionamide, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone (NMP), N- N-substituted amides such as cyclohexylpyrrolidone and N-methylcaprolactam; N, N, N ′, N′-tetramethylurea, N, N′-dimethylimidazolidinone, N, N′-dimethylethyleneurea, N, N '-Jimee N- substituted urea
- the aprotic solvent is preferably a carbonic acid ester, and more preferably propylene carbonate.
- the content of propylene carbonate in the aprotic solvent is preferably 50 to 100% by mass and more preferably 80 to 100% by mass from the viewpoint of the vapor pressure of the solvent.
- the concentration of the fluorine-containing lithium salt is preferably 0.5 to 1.5 mol / L as a molar amount with respect to 1 L of the cleaning liquid. 8 to 1.2 mol / L is more preferable. If the concentration of the fluorine-containing lithium salt is below the above range, the effect of changing lithium hydroxide and lithium carbonate attached to the positive electrode active material to lithium fluoride may be reduced. In this case, the effect of removing lithium hydroxide and lithium carbonate from the positive electrode is reduced. On the other hand, even if the fluorine-containing lithium salt is contained exceeding the concentration range, there is no change in the effect of removing lithium hydroxide and lithium carbonate from the positive electrode, which may increase the cost of the cleaning liquid.
- the cleaning liquid containing the fluorine-containing lithium salt of the general formula (1) can further contain hydrogen halide.
- hydrogen halide By including hydrogen halide in the cleaning liquid in advance, it is possible to efficiently convert lithium hydroxide and lithium carbonate adhering to the positive electrode active material into lithium halide even at room temperature. For this reason, the efficiency of removing lithium hydroxide and lithium carbonate from the positive electrode is further improved.
- the concentration of hydrogen halide can be appropriately set according to the concentration of the fluorine-containing lithium salt. .
- the concentration of the hydrogen halide is not limited to this, but is preferably 2000 ppm by mass or less, more preferably 300 to 1200 ppm by mass with respect to the entire cleaning liquid. If the concentration of hydrogen halide exceeds the above range, hydrogen halide may be excessive in the cleaning liquid. In this case, hydrogen halide may react with Li of the positive electrode active material to generate excessive lithium halide. If the amount of lithium halide adhering to the positive electrode active material becomes excessive, the resistance on the surface of the positive electrode active material may increase.
- the concentration of hydrogen halide is preferably 300 to 4000 mass ppm, more preferably 500 to 1500 mass ppm with respect to the entire cleaning liquid. If the concentration of hydrogen halide is below the above range, the effect of changing lithium hydroxide and lithium carbonate attached to the positive electrode active material to lithium halide may be reduced. On the other hand, when the concentration of the hydrogen halide exceeds the above range, the hydrogen halide becomes excessive in the cleaning liquid, and there is a possibility that excessive lithium halide adheres to the positive electrode active material.
- Examples of the positive electrode cleaning method include a method of immersing the positive electrode in the cleaning liquid.
- the cleaning liquid is agitated as necessary.
- the immersion time of the positive electrode is not limited to this, but is preferably 0.5 to 2 hours.
- the temperature of the cleaning liquid when cleaning the positive electrode is preferably 40 to 90 ° C, more preferably 60 to 90 ° C.
- the solute in the cleaning liquid and the water adhering to the positive electrode active material become difficult to react, and the amount of hydrogen halide generated may be insufficient.
- the temperature of the cleaning liquid exceeds the above range, an excessive amount of hydrogen halide may be generated in the cleaning liquid. In this case, excess lithium halide may adhere to the positive electrode active material.
- the positive electrode is rinsed as necessary.
- the rinsing process is performed once or repeated a plurality of times as necessary. Thereby, the solute in the cleaning liquid adhering to the positive electrode surface can be rinsed off.
- an aprotic solvent can be used.
- the aprotic solvent include the same aprotic solvent as exemplified as the positive electrode cleaning liquid.
- the aprotic solvent is used in a state not containing a solute such as a lithium salt.
- the aprotic solvent used for the rinsing treatment is not particularly limited, but from the viewpoint of simplifying the drying after the rinsing treatment, it is preferable to use an aprotic solvent used as a nonaqueous solvent for the nonaqueous electrolyte described later.
- the positive electrode having a positive electrode active material layer containing a lithium transition metal oxide as a positive electrode active material is attached to the surface of the positive electrode active material by performing the above-described cleaning and, if necessary, performing the above-described rinsing treatment.
- the adhesion amount of lithium halide to 1 g of the positive electrode active material can be adjusted to be 300 to 4000 ⁇ g.
- the adhesion amount of lithium halide to 1 g of the positive electrode active material is particularly preferably 700 to 3200 ⁇ g, more preferably 1100 to 3200 ⁇ g, and particularly preferably 1800 to 3200 ⁇ g with respect to 1 g of the positive electrode active material, in the above range.
- the adhesion amount of lithium halide per 1 g of the positive electrode active material exceeds 4000 ⁇ g, the amount of lithium halide adhering to the positive electrode active material is excessive, and the resistance on the surface of the positive electrode active material may increase.
- the adhesion amount of lithium halide per 1 g of the positive electrode active material exceeds 4000 ⁇ g because the fluorine-containing lithium salt and hydrogen halide represented by the general formula (1) are excessive in the cleaning liquid for cleaning the positive electrode. The probability that it existed is high.
- the amount of hydrogen halide such as hydrogen fluoride present in the cleaning liquid greatly exceeds the amount necessary to convert lithium hydroxide and lithium carbonate adhering to the surface of the positive electrode active material to lithium halide. It will be.
- the adhesion amount of lithium halide per 1 g of the positive electrode active material is less than 300 ⁇ g, the lithium hydroxide and lithium carbonate adhering to the surface of the positive electrode active material cannot be sufficiently converted into lithium halide. The probability is high.
- the amount of lithium halide adhering to the surface of the positive electrode active material is several ⁇ g or less per 1 g of the positive electrode active material, or lower than the detection limit.
- Quantification of lithium halide on the surface of the positive electrode active material layer can be performed by utilizing, for example, that lithium halide dissolves in water. Specifically, first, the positive electrode is immersed in water, whereby lithium halide adhering to the surface of the positive electrode active material is dissolved in water. The temperature of water for immersing the positive electrode is preferably 15 to 25 ° C., and the time for immersing the positive electrode in water is preferably 10 minutes to 1 hour. Next, halide ions in water in which lithium halide is dissolved are quantified by ion chromatography or the like. Thereby, the adhesion amount of lithium halide per 1 g of the positive electrode active material can be calculated.
- the positive electrode for a lithium ion battery includes a positive electrode current collector and a positive electrode active material layer containing a lithium transition metal oxide formed on the surface of the positive electrode current collector.
- a current collector used for a positive electrode of a lithium ion battery can be used without any particular limitation. Specifically, a current collector made of aluminum, an aluminum alloy, or the like can be given.
- the thickness of the positive electrode current collector is not particularly limited, but is preferably 5 to 100 ⁇ m.
- the positive electrode active material forming the positive electrode active material layer contains a lithium transition metal oxide.
- the lithium transition metal oxide include various lithium transition metal oxides used as a positive electrode active material for lithium ion batteries. Of these, lithium nickel oxide is preferable.
- As the lithium nickel oxide general formula (2): Li x Ni w M z Me 1- (w + z) O 2 + d (M represents at least one element of cobalt and manganese, Me represents M Represents at least one element selected from the group consisting of a metal element different from, boron, phosphorus and sulfur, d represents an oxygen defect or oxygen excess, 0.98 ⁇ x ⁇ 1, 0.3 ⁇ w ⁇ 1.0, 0 ⁇ z ⁇ 0.7, 0.9 ⁇ (w + z) ⁇ 1.0) are more preferable.
- positive electrode active materials other than lithium transition metal oxides can also be included as the positive electrode active material. As such a positive electrode active material, the positive electrode active material used for a lithium ion battery can be used
- the atomic ratio of Li represented by x changes due to charge / discharge. Therefore, the value of x is not particularly limited, but is generally 0.98 or more and 1 or less, and preferably 0.98 or more and 0.99 or less.
- the atomic ratio of Ni represented by w is 0.3 or more and 1.0 or less, preferably 0.7 or more and 0.95 or less, and more preferably 0.75 or more and 0.9 or less. When w is less than 0.3, the effect of further improving the capacity of the lithium transition metal oxide by adding Ni to the lithium transition metal oxide cannot be obtained sufficiently.
- M represents either cobalt (Co) or manganese (Mn), or both Co and Mn.
- the atomic ratio of M represented by z is 0 or more and 0.7 or less, and preferably 0.05 or more and 0.25 or less.
- Me represents at least one element selected from the group consisting of a metal element different from M, boron (B), phosphorus (P), and sulfur (S). Examples of other metal elements different from M include Al, Cr, Fe, Mg, Zn, and Al is particularly preferable.
- M includes one or more elements selected from the group consisting of the other metal elements, B, P, and S.
- the atomic ratio of Me represented by 1- (w + z) is 0 or more and 0.1 or less, and preferably 0 or more and 0.05 or less.
- the oxygen defect or oxygen excess represented by d is usually within ⁇ 1%, preferably within ⁇ 0.5% with respect to the stoichiometric composition ratio of oxygen. That is, ⁇ 0.02 ⁇ d ⁇ 0.02, preferably ⁇ 0.01 ⁇ d ⁇ 0.01.
- the lithium transition metal oxide can be produced by a known method. As an example, there is a method in which a compound containing nickel (Ni), element M and element Me, and a lithium compound are baked and then washed with a cleaning liquid described later.
- the compound containing Ni, element M and element Me can be used in the form of hydroxide, oxide, carbonate, oxalate and the like. Such a compound can be obtained as a commercial product, and can also be synthesized by a known method.
- the lithium compound include lithium hydroxide, lithium carbonate, lithium nitrate, lithium peroxide and the like, and lithium hydroxide or lithium carbonate is particularly preferable.
- the lithium compound can be obtained as a commercial product, and can also be synthesized by a known method.
- the firing conditions of the compound containing Ni, element M and element Me and the lithium compound are not particularly limited, and known firing conditions can be employed.
- a preferred firing temperature is 650 to 900 ° C.
- the lithium transition metal oxide can also be synthesized by multi-stage firing.
- Examples of the atmosphere during firing include an air atmosphere and an oxygen atmosphere.
- the atmosphere at the time of baking it is preferable to raise oxygen partial pressure, so that there are many nickel contents of the lithium transition metal oxide to produce. It is preferable that the atmosphere during firing does not substantially contain carbon dioxide.
- the atmosphere during firing preferably has a dew point of ⁇ 20 ° C. or lower.
- Lithium hydroxide and lithium carbonate are attached to the surface of the lithium transition metal oxide synthesized by firing. This is because the lithium transition metal oxide synthesized by firing adsorbs water during cooling or the like. The water adsorbed on the lithium transition metal oxide causes an exchange reaction between H + ions and Li + ions with lithium of the lithium transition metal oxide, thereby generating lithium hydroxide. Furthermore, lithium hydroxide reacts with air to produce lithium carbonate. Lithium hydroxide and lithium carbonate adhering to the surface of the lithium transition metal oxide are converted into lithium halide by producing the positive electrode and then washing the obtained positive electrode with the above washing liquid. Thereby, lithium hydroxide and lithium carbonate can be removed from the surface of the lithium transition metal oxide.
- the positive electrode active material layer of the positive electrode for a lithium ion battery includes, for example, a positive electrode active material layer including a lithium transition metal oxide as a positive electrode active material, a binder, a dispersion medium, and a conductive agent as necessary. It is obtained by applying the forming paste to the surface of the positive electrode current collector and drying it.
- Examples of the dispersion medium include NMP, acetone, methyl ethyl ketone, tetrahydrofuran, dimethylformamide, dimethylacetamide, tetramethylurea, and trimethyl phosphate.
- Examples of the binder include various known binders such as polyvinylidene fluoride, polytetrafluoroethylene, styrene butadiene rubber, and carboxymethyl cellulose.
- Examples of the conductive agent include graphite, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black, carbon fiber, and various metal fibers.
- the content ratio of the positive electrode active material in the positive electrode active material layer is the total amount of the positive electrode active material, the binder, and the additive such as a conductive agent (amount obtained by removing the dispersion medium from the total amount of the positive electrode active material layer forming paste).
- the amount is preferably 70 to 98 parts by mass, more preferably about 85 parts by mass with respect to parts by mass.
- FIG. 1 is a partially cutaway perspective view schematically showing the structure of a lithium ion battery according to an embodiment of the present invention.
- 1 includes an electrode group 1 formed by winding the above-described positive electrode for a lithium ion battery, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte (not shown). Is provided.
- the electrode group 1 is housed in a battery case 2 together with a non-aqueous electrolyte (not shown) and sealed by a sealing plate 5.
- the electrode group 1 includes a positive electrode lead 3 connected to the positive electrode at one end in the winding axis direction and a negative electrode lead 4 connected to the negative electrode.
- the positive electrode lead 3 is connected to the sealing plate 5 on the opening end side of the battery case 2.
- the sealing plate 5 is also used as a positive electrode terminal.
- the negative electrode lead 4 is connected to the negative electrode terminal 6 on the opening end side of the battery case 2.
- the insulating plate 7 disposed in the battery case 2 isolates the electrode group 1 and the sealing plate 5 and further isolates the positive electrode lead 3 and the negative electrode lead 4.
- the negative electrode terminal 6 is disposed in a through hole provided in the sealing plate 5, and the sealing plate 5 and the negative electrode terminal 6 are separated from each other by an insulating packing 8 disposed in the through hole.
- the sealing plate 5 further includes a nonaqueous electrolyte pouring port, a cap 9 for sealing the pouring port, and a battery safety valve 10.
- the negative electrode includes a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector.
- the negative electrode current collector include various current collectors used for the negative electrode of a lithium ion battery. Therefore, it is not particularly limited, and examples thereof include metals such as stainless steel, nickel, copper, and titanium, and thin films made of carbon, conductive resin, and the like. These negative electrode current collectors may be further surface-treated with carbon, nickel, titanium, or the like.
- the thickness of the negative electrode current collector is not particularly limited, but is generally 5 to 100 ⁇ m.
- the negative electrode active material layer includes a negative electrode active material, and, if necessary, a conductive agent and a binder.
- the negative electrode active material include various negative electrode active materials used in lithium ion batteries. Therefore, although not particularly limited, carbon materials such as graphite and amorphous carbon, silicon or tin alone, alloys containing silicon or tin, solid solutions, or composite materials thereof may be used.
- the conductive agent and the binder include those exemplified as the conductive agent and the binder used for the positive electrode.
- the separator examples include a microporous thin film, a woven fabric, or a non-woven fabric having a high ion permeability, a predetermined mechanical strength, and an insulating property.
- a microporous thin film such as lithium ion batteries
- a woven fabric such as a woven fabric
- a non-woven fabric having a high ion permeability, a predetermined mechanical strength, and an insulating property.
- polyolefin microporous membranes such as polypropylene and polyethylene having excellent durability and a shutdown function are preferable.
- the thickness of the separator is generally 10 ⁇ m or more and 300 ⁇ m or less, and preferably 10 ⁇ m or more and 40 ⁇ m or less.
- the nonaqueous electrolyte includes, for example, a lithium salt as a solute and a nonaqueous solvent.
- Non-aqueous solvents include carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and ethyl methyl carbonate, ethers such as tetrahydrofuran and 1,3-dioxolane, and aprotic organic solvents such as carboxylic acid esters such as ⁇ -butyrolactone. Is mentioned. These non-aqueous solvents may be used alone or in combination of two or more.
- lithium salt examples include a fluorine-containing lithium salt used for a cleaning solution for a positive electrode for a lithium ion battery, and various other solutes used for a non-aqueous electrolyte. Of these, LiPF 6 and LiBF 4 are preferable. Moreover, lithium salt may be used individually by 1 type, and may be used in combination of 2 or more type.
- the lithium ion battery since the residual of lithium hydroxide and lithium carbonate in the positive electrode is highly suppressed, mixing of lithium hydroxide and lithium carbonate into the battery can be highly suppressed. it can. In addition, this makes it possible to obtain a lithium ion battery excellent in cycle characteristics, storage characteristics, reliability, and the like.
- the shape of the lithium ion battery is not limited to this.
- Various shapes such as a coin type, a cylindrical type, a sheet type, a button type, a flat type, and a laminated type can be appropriately selected depending on the use of the lithium ion battery.
- the present invention is not limited to a lithium ion battery for small devices, but is also effective as a large and large capacity lithium ion battery such as a power source for electric vehicles and a power storage power source.
- Example 1 Production and cleaning of positive electrode 1 kg of LiNi 0.80 Co 0.15 Al 0.05 O 2 powder, 0.5 kg of polyvinylidene fluoride NMP solution (manufactured by Kureha Chemical Co., Ltd., # 1320, solid content concentration: 12% by mass), acetylene
- a positive electrode active material layer forming paste was prepared by charging 40 g of black together with an appropriate amount of NMP into a double-arm kneader and stirring at 30 ° C. for 30 minutes. The obtained paste was applied on both surfaces of a 20 ⁇ m thick aluminum foil as a positive electrode current collector and dried at 120 ° C. for 15 minutes to form a positive electrode active material layer.
- the positive electrode was obtained by pressing with a roll press and adjusting the total thickness of the positive electrode current collector and the positive electrode active material layer to 160 ⁇ m.
- the obtained positive electrode was cut and formed into a size suitable for being accommodated in a rectangular battery case (height 50 mm, width 34 mm, thickness 5 mm).
- a positive electrode lead was attached to a part of the positive electrode.
- LiPF 6 / PC a cleaning solution for positive electrode having a concentration of LiPF 6 of 1.0 mol / L
- the positive electrode was wound and placed in a beaker having a capacity of 50 mL, and about 50 mL of the positive electrode cleaning solution (LiPF 6 / PC) was poured into the beaker.
- the beaker was placed in a thermostatic bath and left at 20 ° C. for 1 hour to clean the positive electrode (cleaning treatment).
- the positive electrode After winding the positive electrode subjected to the cleaning treatment, the positive electrode was put into a beaker having a capacity of 50 mL, and about 50 mL of propylene carbonate was poured into the beaker. The whole positive electrode was immersed in propylene carbonate and left for 5 minutes with slight stirring, and then the propylene carbonate was removed (rinsing treatment). This rinsing operation was repeated three times to rinse off LiPF 6 from the positive electrode. The positive electrode thus rinsed was vacuum-dried for 10 minutes in an environment of a temperature of 80 ° C. and an atmospheric pressure of 1 mmHg to remove propylene carbonate from the positive electrode.
- the total thickness of the negative electrode current collector and the negative electrode active material layer was adjusted to 160 ⁇ m by pressing with a roll press to obtain a negative electrode.
- the obtained negative electrode was cut and formed into a size suitable for being accommodated in the prismatic battery case.
- a negative electrode lead was attached to a part of the negative electrode.
- nonaqueous electrolyte Ethylene carbonate, propylene carbonate, and diethyl carbonate were mixed at a volume ratio of 3: 3: 4.
- a nonaqueous electrolyte was prepared by dissolving LiPF 6 and vinylene carbonate in the nonaqueous solvent thus obtained.
- the concentration of LiPF 6 in the nonaqueous electrolyte was 1.0 mol / L, and the concentration of vinylene carbonate was 5% by mass.
- Lithium Ion Battery Composite film of the positive electrode subjected to the above-described cleaning treatment, the negative electrode, the nonaqueous electrolyte, and polyethylene and polypropylene as a separator product number “2300”, manufactured by Celgard Co., Ltd.
- a square lithium ion battery (design capacity: 900 mAh) shown in FIG. 1 was obtained.
- Charging / discharging conditions of the charging / discharging cycle In the charging process, the maximum current was 630 mA, the upper limit voltage was 4.2 V, and constant current / constant voltage charging was performed for 2 hours 30 minutes. The rest time after charging was 10 minutes. In the discharge treatment, a constant current discharge was performed with a discharge current of 900 mA and a discharge end voltage of 2.5V. The rest time after discharge was 10 minutes.
- the positive electrode cut piece and 25 mL of ion exchange water were added to a 50 mL sample bottle, and the positive electrode cut piece was immersed in ion exchange water.
- the ion-exchanged water was stirred for 30 minutes in a state where the entire positive electrode cut piece was immersed in the ion-exchanged water.
- the ion exchange water in the sample bottle was filtered with a filter having a pore diameter of 0.45 ⁇ m. The filtrate obtained by filtration was used as a measurement sample.
- the content ( ⁇ g) of fluoride ions in the measurement sample was quantified by ion chromatography, and the amount of lithium fluoride deposited ( ⁇ g / g) per gram of the positive electrode active material was calculated.
- the measurement results are shown in Table 1 below.
- a sample for measuring the adhesion amount of lithium fluoride a sample that was subjected to three charge / discharge cycles was used. Quantification of the amount of lithium fluoride adhered in the state immediately after the produced positive electrode was washed with the above cleaning liquid and in the state where the battery was assembled using the washed positive electrode and the charge / discharge cycle was repeated several times. No significant difference was observed in the results.
- Examples 2-8 A lithium ion battery was produced in the same manner as in Example 1 except that the temperature during the positive electrode cleaning treatment was set to the values shown in Table 1 below, and the physical properties thereof were evaluated. Comparative Example 1 A lithium ion battery was produced in the same manner as in Example 1 except that the positive electrode was not washed, and its physical properties were evaluated.
- Examples 9 to 16 15.2 g of LiPF 6 was dissolved in 100 mL of PC, and hydrogen fluoride (HF) was further added to prepare a positive electrode cleaning solution.
- the concentration of LiPF 6 in the obtained cleaning liquid (LiPF 6 + HF / PC) was 1.0 mol / L, and the concentration of HF was 400 ppm.
- Lithium ion batteries were produced in the same manner as in Examples 1 to 8, except that the positive electrode cleaning solution (LiPF 6 + HF / PC) was used instead of LiPF 6 / PC.
- the physical properties of the obtained lithium ion battery were evaluated in the same manner as in Example 1. The above results are shown in Table 2 below.
- Examples 17-24 HF was added to PC to prepare a positive electrode cleaning solution.
- the content of HF was 400 ppm with respect to the total mass of the positive electrode cleaning liquid.
- Lithium ion batteries were produced in the same manner as in Examples 1 to 8, except that the positive electrode cleaning solution (HF / PC) was used instead of LiPF 6 / PC.
- the physical properties of the obtained lithium ion battery were evaluated in the same manner as in Example 1. The above results are shown in Table 3 below.
- Examples 25-32 HF was added to PC to prepare a positive electrode cleaning solution.
- the content of HF was 2000 ppm with respect to the total mass of the positive electrode cleaning liquid.
- Lithium ion batteries were produced in the same manner as in Examples 1 to 8, except that the above positive electrode cleaning solution (HF / PC) was used instead of LiPF 6 / PC.
- physical properties of the obtained lithium ion battery were evaluated in the same manner as in Example 1. The above results are shown in Table 4 below.
- Examples 33 to 40 and Comparative Example 2 Examples 1 to 8 and Example 1 except that 1 kg of LiNi 1/30 Mn 1/3 Co 1/3 O 2 powder was used instead of 1 kg of LiNi 0.80 Co 0.15 Al 0.05 O 2 powder as the positive electrode active material.
- a lithium ion battery was produced in the same manner as in Comparative Example 1.
- the physical properties of the obtained lithium ion battery were evaluated in the same manner as in Example 1. The results are shown in Table 5 below.
- Examples 41-48 Examples 9 to 16 except that 1 kg of LiNi 1/30 Mn 1/3 Co 1/3 O 2 powder was used instead of 1 kg of LiNi 0.80 Co 0.15 Al 0.05 O 2 powder as the positive electrode active material. Similarly, a lithium ion battery was manufactured. The physical properties of the obtained lithium ion battery were evaluated in the same manner as in Example 1. The above results are shown in Table 6 below.
- Examples 49-56 Examples 17 to 24 except that 1 kg of LiNi 1/30 Mn 1/3 Co 1/3 O 2 powder was used instead of 1 kg of LiNi 0.80 Co 0.15 Al 0.05 O 2 powder as the positive electrode active material. Similarly, a lithium ion battery was manufactured. The physical properties of the obtained lithium ion battery were evaluated in the same manner as in Example 1. The above results are shown in Table 7 below.
- Examples 33 to 40 in which the positive electrode was cleaned with a cleaning solution containing LiPF 6 and PC, the capacity retention rate of the lithium ion battery was improved, and the amount of battery swelling after the charge / discharge cycle was improved. Reduced.
- lithium fluoride was adhered in the range of 700 ⁇ g to 4000 ⁇ g per 1 g of the positive electrode active material.
- Examples 41 to 48 in which the positive electrode was cleaned with a cleaning solution containing LiPF 6 , PC and HF, the capacity retention rate of the lithium ion battery was high, and the battery swelled after the charge / discharge cycle The amount was reduced.
- lithium fluoride was adhered in the range of 1100 ⁇ g to 4000 ⁇ g per 1 g of the mass of the positive electrode active material.
- Examples 49 to 56 in which the positive electrode was cleaned with a cleaning solution containing PC and HF, the capacity retention rate of the lithium ion battery was improved, and the amount of swelling of the battery after the charge / discharge cycle was increased. Reduced.
- lithium fluoride was adhered in the range of 300 ⁇ g to 700 ⁇ g per 1 g of the mass of the positive electrode active material.
- Examples 57 to 64 in which the positive electrode was cleaned with a cleaning solution containing PC and HF, all improved the capacity retention rate of the lithium ion battery, and the amount of battery swelling after the charge / discharge cycle was high. Reduced. In Examples 57 to 64, after assembling the batteries, lithium fluoride was adhered in the range of 1800 ⁇ g to 3200 ⁇ g per gram of the positive electrode active material.
- the present invention is useful in the field of lithium ion batteries such as lithium ion batteries.
- power sources for portable electronic devices such as mobile phones, personal digital assistants (PDAs), notebook personal computers, digital cameras, and portable game machines, in-vehicle power sources such as electric vehicles and hybrid vehicles, and uninterruptible power sources Useful in the field.
- portable electronic devices such as mobile phones, personal digital assistants (PDAs), notebook personal computers, digital cameras, and portable game machines
- in-vehicle power sources such as electric vehicles and hybrid vehicles
- uninterruptible power sources Useful in the field.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
特許文献2~4は、リチウムニッケル酸化物などのリチウム遷移金属酸化物を製造する方法として、原料の焼成後に水洗する方法を開示している。
最初に、本発明のリチウムイオン電池用正極の製造方法について説明する。
リチウムイオン電池用正極の製造方法は、正極活物質としてリチウム遷移金属酸化物を含む正極活物質層を備えた正極を洗浄液で洗浄して、正極活物質の表面に、正極活物質1gに対して300~4000μgのハロゲン化リチウムを付着させる工程を含む。
正極を洗浄する洗浄液は、非プロトン性溶媒および溶質を含む。溶質は、上記一般式(1)で表されるフッ素含有リチウム塩、およびハロゲン化水素の少なくともいずれか1つを含む。
ハロゲン化水素としては、フッ化水素、塩化水素、臭化水素、ヨウ化水素などが挙げられる。ハロゲン化水素は1種を単独で用いることができ、2種以上を組み合わせて用いることもできる。また、ハロゲン化水素は、特にフッ化水素が好ましい。
洗浄液がハロゲン化水素を含むときは、このハロゲン化水素が、水酸化リチウムおよび炭酸リチウムと反応して、ハロゲンリチウムを生成する。洗浄により生成するハロゲン化リチウムとしては、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウムなどが挙げられる。なかでも、フッ化リチウムは、ハロゲン化リチウムのなかでも最も不活性で安定である。このため、洗浄液は、ハロゲン化水素としてフッ化水素を含むことが特に好ましい。
非プロトン性溶媒がプロピレンカーボネートを含む場合に、非プロトン性溶媒中のプロピレンカーボネートの含有割合は、溶媒の蒸気圧の観点より、50~100質量%が好ましく、80~100質量%がさらに好ましい。
また、正極を洗浄する時の洗浄液の温度は、40~90℃が好ましく、60~90℃がさらに好ましい。洗浄液の温度が上記範囲を下回ると、上記洗浄液中の溶質と、正極活物質に付着した水とが反応しにくくになって、ハロゲン化水素の生成量が不十分になるおそれがある。この場合、正極活物質に付着した水酸化リチウムおよび炭酸リチウムがフッ化リチウムに変化されにくくなるため、正極から水酸化リチウムや炭酸リチウムを除去する効果が低下する。一方、洗浄液の温度が上記範囲を上回ると、洗浄液中に過剰な量のハロゲン化水素が生成するおそれがある。この場合、正極活物質に過剰のハロゲン化リチウムが付着するおそれがある。
濯ぎ処理に用いられる非プロトン性溶媒は特に限定されないが、濯ぎ処理後の乾燥を簡略化する観点より、後述する非水電解質の非水溶媒として用いられる非プロトン性溶媒を用いることが好ましい。
正極活物質の質量1gあたりのハロゲン化リチウムの付着量が4000μgを上回るのは、正極を洗浄するための洗浄液において、一般式(1)で表されるフッ素含有リチウム塩およびハロゲン化水素が過剰に存在していた蓋然性が高い。この場合、洗浄液中に存在するフッ化水素などのハロゲン化水素の量が、正極活物質の表面に付着している水酸化リチウムおよび炭酸リチウムをハロゲン化リチウムに変えるために必要な量を大きく上回ることになる。このような過剰のハロゲン化水素は、ハロゲン化水素由来のH+イオンと正極内のLi+イオンとの交換反応を進行させて、正極活物質層の表面に新たにハロゲン化リチウムを生成させる。こうして正極活物質の表面において過剰に生成したハロゲン化リチウムは、正極活物質の表面抵抗を上昇させる要因となる。
なお、正極活物質としてリチウム遷移金属酸化物を含む正極活物質層を備えた正極を、上記洗浄液による洗浄を施さないで、非水電解質と接触させてリチウムイオン電池を組み立てた場合には、その後に充放電処理を施したとしても、正極活物質の表面に付着するハロゲン化リチウムの量が、正極活物質1gあたり数μg以下であるか、あるいは検出限界を下回る。
リチウムイオン電池用正極は、正極集電体と、正極集電体の表面に形成されたリチウム遷移金属酸化物を含む正極活物質層と、を備えている。
正極集電体としては、リチウムイオン電池の正極に用いられる集電体を特に限定なく用いることができる。具体的には、アルミニウム、アルミニウム合金などからなる集電体が挙げられる。正極集電体の厚みは特に限定されないが、5~100μmが好ましい。
リチウムニッケル酸化物としては、一般式(2):LixNiwMzMe1-(w+z)O2+d(Mはコバルトおよびマンガンの少なくともいずれか1の元素を示し、MeはMとは異なる金属元素、ホウ素、リンおよび硫黄からなる群より選ばれる少なくとも1の元素を示し、dは酸素欠陥分または酸素過剰分を示し、0.98≦x≦1、0.3≦w≦1.0、0≦z≦0.7、0.9≦(w+z)≦1.0)で表される化合物がより好ましい。
また、正極活物質として、リチウム遷移金属酸化物以外の正極活物質を含むこともできる。このような正極活物質としては、リチウムイオン電池に用いられる正極活物質を特に限定なく用いることができる。
wで表されるNiの原子割合は0.3以上1.0以下であり、0.7以上0.95以下が好ましく、0.75以上0.9以下がより好ましい。wが0.3を下回ると、リチウム遷移金属酸化物にNiを含有させることによってリチウム遷移金属酸化物の容量をさらに向上させるという効果が十分に得られなくなる。
Meは、Mとは異なる金属元素、ホウ素(B)、リン(P)および硫黄(S)からなる群より選ばれる少なくとも1の元素を示す。Mとは異なる他の金属元素としては、Al、Cr、Fe、Mg、Znなどが挙げられ、特にAlが好ましい。Mは、上記他の金属元素と、Bと、Pと、Sとからなる群より選ばれる元素を単独で含むか、2種以上含む。1-(w+z)で表されるMeの原子割合は0以上0.1以下であり、0以上0.05以下が好ましい。
リチウムニッケル酸化物の具体例は、これに限定されないが、LiNiwCozAl1-(w+z)O2+δ、LiNiwCoz'Mnz''O2+δ(z’+z”=z)などが挙げられる。
リチウム化合物としては、水酸化リチウム、炭酸リチウム、硝酸リチウム、過酸化リチウムなどが挙げられ、特に、水酸化リチウムまたは炭酸リチウムが好適である。リチウム化合物は市販品として得ることができ、公知の方法により合成することもできる。
リチウム遷移金属酸化物の表面に付着している水酸化リチウムおよび炭酸リチウムは、正極を作製した後、得られた正極を上記洗浄液で洗浄することにより、ハロゲン化リチウムへと変換される。これにより、リチウム遷移金属酸化物の表面から水酸化リチウムおよび炭酸リチウムを除去することができる。
結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレンブタジエンゴム、カルボキシメチルセルロースなどの、公知の各種結着剤が挙げられる。
導電剤としては、黒鉛類や、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラックや、炭素繊維、各種金属繊維などが挙げられる。
図1は、本発明を一実施形態であるリチウムイオン電池の構造を概略的に示す一部切欠き斜視図である。図1のリチウムイオン電池11は、上述のリチウムイオン電池用正極と、負極と、正極および負極の間に介在されるセパレータと、を捲回して形成された電極群1、および図示しない非水電解質を備える。
負極集電体としては、リチウムイオン電池の負極に用いられる各種の集電体が挙げられる。それゆえ、特に限定されないが、ステンレス鋼、ニッケル、銅、チタンなどの金属や、炭素、導電性樹脂などからなる薄膜などが挙げられる。これら負極集電体は、さらに、カーボン、ニッケル、チタンなどで表面処理が施されていてもよい。負極集電体の厚みは、特に限定されないが、一般に、5~100μmである。
負極活物質としては、リチウムイオン電池に用いられている各種の負極活物質が挙げられる。それゆえ、特に限定されないが、グラファイト、非晶質カーボンなどの炭素材料、ケイ素またはスズの単体、ケイ素またはスズを含む合金、固溶体またはこれらの複合材料、などが挙げられる。
導電剤や結着剤としては、正極に用いられる導電剤や結着剤として例示したものと同様のものが挙げられる。
非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートなどの炭酸エステル、テトラヒドロフラン、1,3-ジオキソランなどのエーテル、γ-ブチロラクトンなどのカルボン酸エステル、などの非プロトン性有機溶媒が挙げられる。これら非水溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(1)正極の作製および洗浄
LiNi0.80Co0.15Al0.05O2の粉末1kgと、ポリフッ化ビニリデンのNMP溶液(呉羽化学株式会社製、#1320、固形分濃度12質量%)0.5kgと、アセチレンブラック40gとを、適量のNMPとともに双腕式練合機に投入して、30℃で30分間攪拌することにより、正極活物質層形成用ペーストを調製した。得られたペーストを、正極集電体としての厚さ20μmのアルミニウム箔の両面に塗布して、120℃で15分間乾燥させることにより、正極活物質層を形成した。次いで、ロールプレスで加圧して、正極集電体と正極活物質層との厚みの合計を160μmに調整することにより、正極を得た。得られた正極を切断して、角型の電池ケース(高さ50mm、幅34mm、厚さ5mm)へ収容するのに適したサイズに成形した。正極の一部には正極リードを取り付けた。
洗浄処理が施された正極を捲回した後、容量50mLのビーカーに投入して、このビーカーにプロピレンカーボネート約50mLを注いだ。正極全体がプロピレンカーボネートに浸漬されている状態で、少し攪拌しながら5分間放置し、その後、プロピレンカーボネートを除去した(濯ぎ処理)。この濯ぎ処理の操作を3回繰り返すことにより、正極からLiPF6を濯ぎ落とした。こうして濯ぎ処理が施された正極を、温度80℃、気圧1mmHgの環境下で10分間真空乾燥することにより、正極からプロピレンカーボネートを除去した。
人造黒鉛3kgと、変性スチレン-ブタジエンゴムの分散液(日本ゼオン株式会社製、BM-400B、固形分40質量%)200gと、カルボキシメチルセルロース50gとを、適量の水とともに双腕式練合機に投入し、攪拌することにより、負極活物質層形成用ペーストを調製した。得られた負極活物質層形成用ペーストを、負極集電体としての厚さ12μmの銅箔の両面に塗布し、120℃で乾燥させることにより、負極活物質層を形成した。次に、ロールプレスで加圧することにより、負極集電体と負極活物質層との厚みの合計を160μmに調整して、負極を得た。得られた負極を切断して、上記角型電池ケースへ収容するのに適したサイズに成形した。負極の一部には負極リードを取り付けた。
エチレンカーボネートと、プロピレンカーボネートと、ジエチルカーボネートとを、体積比3:3:4で混合した。こうして得られた非水溶媒に、LiPF6と、ビニレンカーボネートとを溶解させることにより、非水電解質を調製した。非水電解質中のLiPF6の濃度は1.0mol/Lであり、ビニレンカーボネートの濃度は5質量%であった。
上述の洗浄処理が施された正極と、上記負極と、上記非水電解質と、セパレータとしてのポリエチレンとポリプロピレンとの複合フィルム(セルガード株式会社製、品番「2300」、厚さ25μm)とを用いて、図1に示す角型のリチウムイオン電池(設計容量900mAh)を得た。
(i)容量維持率と電池膨れ量の測定
上記リチウムイオン電池に対して、下記条件による充放電サイクルを、45℃で繰り返した。3サイクル目の放電容量を100%とみなし、500サイクルを経過した時の放電容量を百分率で表し、これを容量維持率(%)とした。また、3サイクル目の充電後と、501サイクル目の充電後とにおいて、角型電池の最大平面(縦50mm、横34mm)における中央部の厚みをそれぞれ測定して、45℃での充放電サイクルの繰返しに伴う電池膨れ量(mm)を求めた。測定結果を下記表1に示す。
充電処理は、最大電流を630mA、上限電圧を4.2Vとし、定電流・定電圧充電を2時間30分行った。充電後の休止時間は10分間とした。放電処理は、放電電流を900mA、放電終止電圧を2.5Vとし、定電流放電を行った。放電後の休止時間は10分間とした。
上記リチウムイオン電池に対して、上記条件による充放電サイクルを、25℃で3サイクル繰り返した。3サイクル目の放電が完了した状態の電池を分解して正極を取り出し、正極の中央部分を縦2.0cm、横2.0cmのサイズに切断した。得られた正極切断片をエチルメチルカーボネートに浸漬し、洗浄する操作を3回繰り返すことにより、正極切断片に付着していた非水電解質などを除去した。
本実施例では、フッ化リチウムの付着量を測定するサンプルとして、充放電サイクルを3サイクル経たものを用いた。なお、作製された正極を上記洗浄液で洗浄した直後の状態と、洗浄後の正極を用いて電池を組み立てて、充放電サイクルを数回程度繰り返した状態とにおいて、フッ化リチウムの付着量の定量結果に有意な差は観察されなかった。
正極の洗浄処理時の温度を下記表1に示す値に設定したこと以外は実施例1と同様にして、リチウムイオン電池を製造し、その物性を評価した。
比較例1
正極の洗浄処理を行わなかったこと以外は実施例1と同様にして、リチウムイオン電池を製造し、その物性を評価した。
PC100mLに対し、LiPF6を15.2g溶解させ、さらに、フッ化水素(HF)を加えて、正極用洗浄液を調製した。得られた洗浄液(LiPF6+HF/PC)におけるLiPF6の濃度は1.0mol/Lであり、HFの濃度は400ppmであった。LiPF6/PCに代えて、上記正極用洗浄液(LiPF6+HF/PC)を用いたこと以外は実施例1~8と同様にして、リチウムイオン電池を製造した。また、得られたリチウムイオン電池の物性を実施例1と同様にして評価した。以上の結果を下記表2に示す。
PCにHFを加えて、正極用洗浄液を調製した。得られた洗浄液(HF/PC)において、HFの含有量は、正極用洗浄液全体の質量に対して400ppmであった。LiPF6/PCに代えて、上記正極用洗浄液(HF/PC)を用いたこと以外は実施例1~8と同様にして、リチウムイオン電池を製造した。また、得られたリチウムイオン電池の物性を実施例1と同様にして評価した。以上の結果を下記表3に示す。
PCにHFを加えて、正極用洗浄液を調製した。得られた洗浄液(HF/PC)において、HFの含有量は、正極用洗浄液全体の質量に対して2000ppmであった。LiPF6/PCに代えて、上記正極用洗浄液(HF/PC)を用いたこと以外は実施例1~8と同様にして、リチウムイオン電池を製造した。また、得られたリチウムイオン電池の物性評価を、実施例1と同様にして行った。以上の結果を下記表4に示す。
なお、容量維持率、電池膨れ、およびLiFの付着量の測定結果については、A+(極めて良好)、A(良好)、B(可)およびC(不良)の4段階で評価した。
表2より明らかなように、LiPF6とPCとHFとを含む洗浄液で正極を洗浄した実施例9~16は、いずれもリチウムイオン電池の容量維持率が高く、充放電サイクル後における電池の膨れ量が低減した。実施例9~16は、電池の組立て後において、正極活物質の質量1gあたり700μg以上4000μg以下の範囲でフッ化リチウムが付着していた。
表4より明らかなように、PCとHFとを含む洗浄液で正極を洗浄した実施例25~32では、いずれもリチウムイオン電池の容量維持率が向上し、充放電サイクル後における電池の膨れ量が低減した。実施例25~32は、電池の組立て後において、正極活物質の質量1gあたり1800μg以上3200μg以下の範囲でフッ化リチウムが付着していた。
正極活物質として、LiNi0.80Co0.15Al0.05O2の粉末1kgに代えて、LiNi1/30Mn1/3Co1/3O2の粉末1kgを用いたこと以外は、実施例1~8および比較例1と同様にして、リチウムイオン電池を製造した。また、得られたリチウムイオン電池の物性を実施例1と同様にして評価した。以上の結果を下記表5に示す。
正極活物質として、LiNi0.80Co0.15Al0.05O2の粉末1kgに代えて、LiNi1/30Mn1/3Co1/3O2の粉末1kgを用いたこと以外は、実施例9~16と同様にして、リチウムイオン電池を製造した。また、得られたリチウムイオン電池の物性を実施例1と同様にして評価した。以上の結果を下記表6に示す。
正極活物質として、LiNi0.80Co0.15Al0.05O2の粉末1kgに代えて、LiNi1/30Mn1/3Co1/3O2の粉末1kgを用いたこと以外は、実施例17~24と同様にして、リチウムイオン電池を製造した。また、得られたリチウムイオン電池の物性を実施例1と同様にして評価した。以上の結果を下記表7に示す。
正極活物質として、LiNi0.80Co0.15Al0.05O2の粉末1kgに代えて、LiNi1/30Mn1/3Co1/3O2の粉末1kgを用いたこと以外は、実施例25~32と同様にして、リチウムイオン電池を製造した。また、得られたリチウムイオン電池の物性を実施例1と同様にして評価した。以上の結果を下記表8に示す。
表6より明らかなように、LiPF6とPCとHFとを含む洗浄液で正極を洗浄した実施例41~48は、いずれもリチウムイオン電池の容量維持率が高く、充放電サイクル後における電池の膨れ量が低減した。実施例41~48は、電池の組立て後において、正極活物質の質量1gあたり1100μg以上4000μg以下の範囲でフッ化リチウムが付着していた。
表8より明らかなように、PCとHFとを含む洗浄液で正極を洗浄した実施例57~64は、いずれもリチウムイオン電池の容量維持率を向上し、充放電サイクル後における電池の膨れ量が低減した。これら実施例57~64は、電池の組立て後において、正極活物質の質量1gあたり1800μg以上3200μg以下の範囲でフッ化リチウムが付着していた。
Claims (16)
- 正極活物質としてリチウム遷移金属酸化物を含む正極活物質層を備えた正極を洗浄液で洗浄して、前記正極活物質の表面に、前記正極活物質1gに対して300~4000μgのハロゲン化リチウムを付着させる工程を含み、
前記洗浄液が、非プロトン性溶媒および溶質を含み、
前記溶質が、一般式(1):LiZF6-mRm-n (Zはリン、ホウ素、ヒ素およびアンチモンのいずれか1つを示し、Rは炭素数1または2のパーフルオロアルキル基を示し、mはZがリンである場合に0~3の整数、Zがホウ素である場合に2、Zがヒ素およびアンチモンである場合に0を示し、nはZがリン、ヒ素およびアンチモンである場合に0、Zがホウ素である場合に2を示す)で表されるフッ素含有リチウム塩、およびハロゲン化水素の少なくともいずれか1つを含む、リチウムイオン電池用正極の製造方法。 - 前記一般式(1)で表されるフッ素含有リチウム塩が、LiPF6、LiBF4、LiSbF6、LiAsF6、LiPF3(CF3)3、LiPF3(C2F5)3、LiPF4(CF3)2およびLiPF5CF3からなる群より選ばれる少なくとも1種を含む、請求項1に記載のリチウムイオン電池用正極の製造方法。
- 前記一般式(1)で表されるフッ素含有リチウム塩がLiPF6を含む、請求項2に記載のリチウムイオン電池用正極の製造方法。
- 前記洗浄液が前記一般式(1)で表されるフッ素含有リチウム塩を0.5~1.5mol/Lの濃度で含む、請求項1に記載のリチウムイオン電池用正極の製造方法。
- 前記洗浄液が、さらにハロゲン化水素を2000質量ppm以下の割合で含む、請求項4に記載のリチウムイオン電池用正極の製造方法。
- 前記ハロゲン化水素がフッ化水素を含む、請求項5に記載のリチウムイオン電池用正極の製造方法。
- 前記洗浄液がハロゲン化水素を300~4000質量ppmの割合で含む、請求項1に記載のリチウムイオン電池用正極の製造方法。
- 前記ハロゲン化水素がフッ化水素を含む、請求項7に記載のリチウムイオン電池用正極の製造方法。
- 前記非プロトン性溶媒がプロピレンカーボネートを含む、請求項1に記載のリチウムイオン電池用正極の製造方法。
- 前記非プロトン性溶媒中のプロピレンカーボネートの含有割合が50~100質量%である、請求項9に記載のリチウムイオン電池用正極の製造方法。
- 前記洗浄液の液温が40~90℃である、請求項1に記載のリチウムイオン電池用正極の製造方法。
- 正極集電体と、前記正極集電体の表面に形成された正極活物質層と、を備え、
前記正極活物質層が、正極活物質としてリチウム遷移金属酸化物を含み、
前記正極活物質の表面にはハロゲン化リチウムが付着しており、前記ハロゲン化リチウムの付着量が前記正極活物質1gに対して300~4000μgである、リチウムイオン電池用正極。 - 前記ハロゲン化リチウムがフッ化リチウムを含む、請求項12に記載のリチウムイオン電池用正極。
- 前記リチウム遷移金属酸化物がリチウムニッケル酸化物を含む、請求項12に記載のリチウムイオン電池用正極。
- 前記リチウム遷移金属酸化物が、一般式(2):LixNiwMzMe1-(w+z)O2+d (Mはコバルトおよびマンガンの少なくともいずれか1の元素を示し、MeはMとは異なる金属元素、ホウ素、リンおよび硫黄からなる群より選ばれる少なくとも1の元素を示し、dは酸素欠陥分または酸素過剰分を示し、0.98≦x≦1、0.3≦w≦1、0≦z≦0.7、0.9≦(w+z)≦1)で表される、請求項14に記載のリチウムイオン電池用正極。
- 請求項12に記載のリチウムイオン電池用正極と、負極と、前記正極と前記負極との間に介在されるセパレータと、非水電解質と、を備える、リチウムイオン電池。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/993,613 US20110070497A1 (en) | 2009-03-31 | 2010-03-17 | Method of producing positive electrode for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery using the positive electrode |
JP2010543331A JPWO2010113403A1 (ja) | 2009-03-31 | 2010-03-17 | リチウムイオン電池用正極の製造方法、リチウムイオン電池用正極、および前記正極を用いたリチウムイオン電池 |
CN2010800016635A CN102047473A (zh) | 2009-03-31 | 2010-03-17 | 锂离子电池用正极的制造方法、锂离子电池用正极及采用所述正极的锂离子电池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-084158 | 2009-03-31 | ||
JP2009084158 | 2009-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010113403A1 true WO2010113403A1 (ja) | 2010-10-07 |
Family
ID=42827721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/001903 WO2010113403A1 (ja) | 2009-03-31 | 2010-03-17 | リチウムイオン電池用正極の製造方法、リチウムイオン電池用正極、および前記正極を用いたリチウムイオン電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20110070497A1 (ja) |
JP (1) | JPWO2010113403A1 (ja) |
KR (1) | KR20110025777A (ja) |
CN (1) | CN102047473A (ja) |
WO (1) | WO2010113403A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010244723A (ja) * | 2009-04-01 | 2010-10-28 | Toyota Motor Corp | リチウムイオン二次電池の正極の製造方法 |
WO2014156024A1 (ja) * | 2013-03-27 | 2014-10-02 | 三洋電機株式会社 | 非水電解質二次電池 |
JP2017045633A (ja) * | 2015-08-27 | 2017-03-02 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 |
JPWO2015045315A1 (ja) * | 2013-09-30 | 2017-03-09 | 三洋電機株式会社 | 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9406967B2 (en) * | 2010-12-17 | 2016-08-02 | Toyota Jidosha Kabushiki Kaisha | Method for producing lithium secondary cell |
KR101456963B1 (ko) * | 2012-02-06 | 2014-11-04 | 주식회사 엘지화학 | 양극 활물질의 제조방법 |
JP5952042B2 (ja) * | 2012-03-16 | 2016-07-13 | 日立オートモティブシステムズ株式会社 | 正極合剤の製造方法 |
US9716268B2 (en) | 2012-03-29 | 2017-07-25 | Sanyo Electric Co., Ltd. | Nonaqueous electrolyte secondary battery |
KR101836436B1 (ko) | 2012-06-04 | 2018-03-08 | 주식회사 엘지화학 | 수명특성이 향상된 이차전지용 양극 활물질 및 제조방법 |
JP6202038B2 (ja) * | 2015-01-14 | 2017-09-27 | トヨタ自動車株式会社 | リチウムイオン二次電池及びリチウムイオン二次電池の製造方法 |
CN105161717B (zh) * | 2015-06-29 | 2017-08-29 | 山东玉皇新能源科技有限公司 | 一种降低锂离子电池三元正极材料pH值的简便方法 |
WO2017144120A1 (en) * | 2016-02-26 | 2017-08-31 | Toyota Motor Europe | Lithium-ion battery high temperature aging process |
CN109950488A (zh) * | 2019-03-14 | 2019-06-28 | 乳源东阳光磁性材料有限公司 | 高镍三元正极材料的水洗方法及其应用 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06111822A (ja) * | 1992-05-18 | 1994-04-22 | Nippon Telegr & Teleph Corp <Ntt> | リチウム電池 |
JPH06215800A (ja) * | 1992-10-19 | 1994-08-05 | Nippon Telegr & Teleph Corp <Ntt> | リチウム電池 |
JPH06342657A (ja) * | 1990-07-23 | 1994-12-13 | Her Majesty The Queen In Right Of The Province Of British Columbia As Represented By The Minister | リチウム化二酸化ニッケルカソード活性物質とその製造方法および電気化学的電池 |
JP2003123755A (ja) * | 2001-10-12 | 2003-04-25 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池用正極活物質およびその製造方法 |
JP2005123091A (ja) * | 2003-10-17 | 2005-05-12 | Yuasa Corp | 非水電解液二次電池 |
JP2005135849A (ja) * | 2003-10-31 | 2005-05-26 | Mitsui Mining & Smelting Co Ltd | リチウム電池用正極活物質 |
JP2006318815A (ja) * | 2005-05-13 | 2006-11-24 | Nissan Motor Co Ltd | 非水電解リチウムイオン電池用正極材料、これを用いた電池および非水電解リチウムイオン電池用正極材料の製造方法 |
JP2008016316A (ja) * | 2006-07-06 | 2008-01-24 | Sony Corp | 非水電解質二次電池 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5036100B2 (ja) * | 2001-03-30 | 2012-09-26 | 三洋電機株式会社 | 非水電解質二次電池およびその製造方法 |
JP5208353B2 (ja) * | 2005-03-31 | 2013-06-12 | 東洋炭素株式会社 | 正極活物質及びその製造方法 |
-
2010
- 2010-03-17 WO PCT/JP2010/001903 patent/WO2010113403A1/ja active Application Filing
- 2010-03-17 CN CN2010800016635A patent/CN102047473A/zh active Pending
- 2010-03-17 JP JP2010543331A patent/JPWO2010113403A1/ja active Pending
- 2010-03-17 KR KR1020107029581A patent/KR20110025777A/ko active IP Right Grant
- 2010-03-17 US US12/993,613 patent/US20110070497A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06342657A (ja) * | 1990-07-23 | 1994-12-13 | Her Majesty The Queen In Right Of The Province Of British Columbia As Represented By The Minister | リチウム化二酸化ニッケルカソード活性物質とその製造方法および電気化学的電池 |
JPH06111822A (ja) * | 1992-05-18 | 1994-04-22 | Nippon Telegr & Teleph Corp <Ntt> | リチウム電池 |
JPH06215800A (ja) * | 1992-10-19 | 1994-08-05 | Nippon Telegr & Teleph Corp <Ntt> | リチウム電池 |
JP2003123755A (ja) * | 2001-10-12 | 2003-04-25 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池用正極活物質およびその製造方法 |
JP2005123091A (ja) * | 2003-10-17 | 2005-05-12 | Yuasa Corp | 非水電解液二次電池 |
JP2005135849A (ja) * | 2003-10-31 | 2005-05-26 | Mitsui Mining & Smelting Co Ltd | リチウム電池用正極活物質 |
JP2006318815A (ja) * | 2005-05-13 | 2006-11-24 | Nissan Motor Co Ltd | 非水電解リチウムイオン電池用正極材料、これを用いた電池および非水電解リチウムイオン電池用正極材料の製造方法 |
JP2008016316A (ja) * | 2006-07-06 | 2008-01-24 | Sony Corp | 非水電解質二次電池 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010244723A (ja) * | 2009-04-01 | 2010-10-28 | Toyota Motor Corp | リチウムイオン二次電池の正極の製造方法 |
WO2014156024A1 (ja) * | 2013-03-27 | 2014-10-02 | 三洋電機株式会社 | 非水電解質二次電池 |
JPWO2014156024A1 (ja) * | 2013-03-27 | 2017-02-16 | 三洋電機株式会社 | 非水電解質二次電池 |
JPWO2015045315A1 (ja) * | 2013-09-30 | 2017-03-09 | 三洋電機株式会社 | 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池 |
JP2017045633A (ja) * | 2015-08-27 | 2017-03-02 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 |
Also Published As
Publication number | Publication date |
---|---|
US20110070497A1 (en) | 2011-03-24 |
CN102047473A (zh) | 2011-05-04 |
KR20110025777A (ko) | 2011-03-11 |
JPWO2010113403A1 (ja) | 2012-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010113403A1 (ja) | リチウムイオン電池用正極の製造方法、リチウムイオン電池用正極、および前記正極を用いたリチウムイオン電池 | |
US8404211B2 (en) | Method for producing lithium-containing composite oxide and non-aqueous secondary battery | |
JP5917049B2 (ja) | 非水電解質二次電池及びその製造方法 | |
WO2010082261A1 (ja) | 非水電解質二次電池用正極の製造方法および非水電解質二次電池 | |
JP5341837B2 (ja) | 正極、非水電解質電池及び電池パック | |
JP7045578B2 (ja) | 正極添加剤、その製造方法、これを含む正極およびリチウム二次電池 | |
WO2017094416A1 (ja) | リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池、並びにそれらの製造方法 | |
WO2010125729A1 (ja) | 非水電解質二次電池用正極板およびその製法並びに非水電解質二次電池 | |
JP5622525B2 (ja) | リチウムイオン二次電池 | |
JP6733140B2 (ja) | 非水系電解質二次電池用正極活物質の製造方法 | |
JP6304746B2 (ja) | リチウムイオン二次電池 | |
KR102063898B1 (ko) | 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지 | |
WO2018181465A1 (ja) | リチウム複合金属酸化物の製造方法 | |
JP2024522673A (ja) | 電気化学装置及び電子装置 | |
JP6932723B2 (ja) | 非水電解質二次電池 | |
JP2020115485A (ja) | 非水系電解質二次電池用正極活物質、および非水系電解質二次電池 | |
WO2020116631A1 (ja) | リチウム二次電池用正極活物質の製造方法 | |
JP6733139B2 (ja) | 非水系電解質二次電池用正極活物質の製造方法 | |
JP7262418B2 (ja) | 非水系電解質二次電池用正極活物質、および非水系電解質二次電池 | |
WO2013146569A1 (ja) | リチウム二次電池及びその製造方法 | |
JP2016207571A (ja) | 非水電解質二次電池用電極活物質及び非水電解質二次電池 | |
JP7003547B2 (ja) | 非水電解質蓄電素子及びその製造方法 | |
JP5858687B2 (ja) | 非水電解質二次電池及びその製造方法 | |
CN111602283A (zh) | 二次电池和电解液 | |
JP2015026575A (ja) | 非水電解質二次電池組立体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080001663.5 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010543331 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12993613 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10758188 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20107029581 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10758188 Country of ref document: EP Kind code of ref document: A1 |