WO2017094416A1 - リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池、並びにそれらの製造方法 - Google Patents

リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池、並びにそれらの製造方法 Download PDF

Info

Publication number
WO2017094416A1
WO2017094416A1 PCT/JP2016/082195 JP2016082195W WO2017094416A1 WO 2017094416 A1 WO2017094416 A1 WO 2017094416A1 JP 2016082195 W JP2016082195 W JP 2016082195W WO 2017094416 A1 WO2017094416 A1 WO 2017094416A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
lithium secondary
lithium
Prior art date
Application number
PCT/JP2016/082195
Other languages
English (en)
French (fr)
Inventor
前田 勝美
貞則 服部
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017553717A priority Critical patent/JPWO2017094416A1/ja
Priority to US15/778,905 priority patent/US10833369B2/en
Publication of WO2017094416A1 publication Critical patent/WO2017094416A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium secondary battery, a positive electrode for a lithium secondary battery and a lithium secondary battery using the same, and a method for producing them.
  • Lithium secondary batteries have been put to practical use as batteries for small electronic devices such as notebook computers and mobile phones due to advantages such as high energy density, small self-discharge, and excellent long-term reliability. In recent years, lithium secondary batteries have been applied to electric vehicles, household storage batteries, and power storage applications.
  • a positive electrode and a negative electrode each having an active material layer including a positive electrode active material and a negative electrode active material formed on a current collector are opposed to each other with a separator interposed therebetween. These electrode pairs are impregnated with a nonaqueous electrolytic solution.
  • Lithium metal composite oxide (Patent Document 1) having lithium and a lithium metal composite oxide represented by LiNi 0.5 Mn 1.5 O 4 (Patent Document 2) are disclosed.
  • Non-patent Document 1 compounds having a protective film forming function such as vinylene carbonate, fluoroethylene carbonate, and maleic anhydride are added to the electrolyte, and these compounds are intentionally decomposed during initial charging. It is known that the decomposition product forms a protective coating SEI (Solid Electrolyte Interface) on the electrode surface and suppresses decomposition of the solvent (Non-patent Document 1).
  • SEI Solid Electrolyte Interface
  • a high potential lithium secondary battery using a positive electrode active material having a potential of 4.5 V or higher as described above is used in a positive electrode as compared with a voltage of 3.5 to 4.2 V of a general lithium secondary battery. Gas generation due to oxidative decomposition of the solvent tends to occur.
  • Patent Document 3 As a method of forming a protective film on the surface of the positive electrode active material and suppressing the generation of gas from the positive electrode, a method of coating the positive electrode active material with a silane coupling agent and an epoxy resin (Patent Document 3), A method of wearing (Patent Document 4) is disclosed.
  • Patent Document 4 A method of wearing (Patent Document 4) is disclosed.
  • the protective film of these positive electrodes in a lithium secondary battery using a high potential positive electrode of 4.5 V or more, decomposition of the electrolyte solution at the positive electrode accompanying charge / discharge cannot be suppressed, and gas generation is sufficiently suppressed. There was a problem that it was not possible.
  • Patent Document 5 a method for suppressing the decomposition and gasification and increasing the internal pressure of the battery.
  • various types of phosphorus compounds are added to a positive electrode slurry composed of a positive electrode active material, a conductive additive, a binder, and a solvent to produce a positive electrode and used for a lithium ion battery.
  • Patent Document 5 discloses a positive electrode material for a lithium secondary battery comprising a metal fluoride and a lithium phosphate compound on the surface of a lithium transition metal composite oxide containing at least Mn as a transition metal. ing.
  • a lithium secondary battery with excellent high-temperature cycle characteristics using a surface-coated lithium-manganese composite oxide that can suppress elution of Mn stably even at high temperatures and high voltages as a positive electrode material without reducing conductivity. Is provided.
  • gas generation cannot be sufficiently suppressed.
  • JP 2013-254605 A International Publication No. 2012/141301 JP 2014-22276 A JP 2010-40382 A Japanese Patent Laid-Open No. 11-273684 JP 2010-23001 A
  • An object of the present invention is to suppress the generation of gas accompanying charging / discharging in a lithium secondary battery, and particularly suppress the generation of gas accompanying charging / discharging even when the operating voltage of the lithium secondary battery is high. It is an object to provide a positive electrode active material that can be used, a positive electrode using the same, a lithium secondary battery, and a method for producing the same.
  • the positive electrode active material for a lithium secondary battery of one embodiment of the present invention includes a coated positive electrode active material in which the surface of the positive electrode active material is directly coated with lithium metaphosphate.
  • the positive electrode for a lithium secondary battery includes a positive electrode current collector and a positive electrode active material layer containing the positive electrode active material for the lithium secondary battery on the positive electrode current collector.
  • a lithium secondary battery includes the positive electrode for a lithium secondary battery, a negative electrode including a negative electrode active material, a non-aqueous electrolyte, and an exterior body that accommodates these.
  • a method for producing a positive electrode active material for a lithium secondary battery according to another aspect of the present invention is a method for producing the above-described positive electrode active material for a lithium secondary battery, Immersing the positive electrode active material in a liquid for forming a coating containing lithium metaphosphate, Separating and removing the film-forming liquid; A step of washing the positive electrode active material after immersion with a solvent that dissolves lithium metaphosphate is included.
  • the method for producing a lithium secondary battery according to another aspect of the present invention includes a step of forming a coated positive electrode active material by the production method, a step of forming a positive electrode using the coated positive electrode active material, and a negative electrode. And a step of accommodating the positive electrode, the negative electrode, and the electrolytic solution in an exterior body.
  • the positive electrode active material that can suppress the oxidative decomposition of the solvent at the positive electrode and suppress the gas generation
  • a positive electrode and a lithium secondary battery using the same, and a method for manufacturing the same can be provided.
  • the positive electrode active material for a lithium secondary battery includes a coated positive electrode active material in which the surface of the positive electrode active material is directly coated with lithium metaphosphate. From the viewpoint of obtaining a sufficient covering effect with lithium metaphosphate, it is preferable that the entire surface of the positive electrode active material is directly coated with a sufficient ratio of lithium metaphosphate to the positive electrode active material. Lithium metaphosphate can form a stable coating over the entire surface of the positive electrode active material by forming a bond that does not dissociate with the surface of the positive electrode active material and washing with water.
  • the positive electrode active material is not particularly limited as long as it is normally used as a positive electrode active material, but preferably has an operating voltage of 4.2 V or more.
  • a positive electrode active material having a BET specific surface area of 0.5 to 30 m 2 / g can be used, preferably 1 to 20 m 2 / g.
  • a preferable example is a phosphoric acid compound having an olivine structure such as LiFePO 4 . These can be used alone or in combination of two or more.
  • Li 1 + a Ni x Mn y O 2 (0 ⁇ a ⁇ 0.5, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), Li 1 + a Ni x Mn y M z O 2 (0 ⁇ a ⁇ 0.5, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, M is Co or Fe), Li ⁇ Ni ⁇ Co ⁇ Al ⁇ O 2 (1 ⁇ ⁇ 1.2, ⁇ + ⁇ + ⁇ 1, 0.7 ⁇ ⁇ ⁇ 1, 0 ⁇ 0.2, 0 ⁇ ⁇ 0.1), etc. It is done.
  • a lithium transition metal composite oxide composed of a plurality of transition metals such as cobalt, manganese, nickel and lithium and lithium, particularly those having a spinel structure such as LiNi 0.5 Mn 1.5 O 4 It has a working voltage of 4.8 V or more and can be used preferably.
  • a lithium transition metal composite oxide partially substituted with another element is also used in a high potential lithium secondary battery.
  • a part of at least one element of cobalt, manganese, and nickel constituting the lithium transition metal composite oxide is Sn, Mg, Ti, Fe, Al, Zr, Cr, V, Ga, Ge, Sm, Zn, Cu , Bi, Mo, La or the like, or a part of oxygen atom is replaced with S or F, or an oxide containing these elements (SnO, MgO, TiO 2 , Al 2 O 3 , ZrO, V 2 O 5 , Ga 2 O 3 , GeO 2 , Sm 2 O 3 , ZnO, MoO 3 , La 2 O 3 ) or the like can be used.
  • lithium transition metal complex oxides specifically, for example, LiCo 0.8 Ni 0.2 O 2 , LiNi 1/2 Mn 3/2 O 4 , LiNi 1/3 Co 1/3 Mn 1 / 3 O 2 , LiNi 0.4 Co 0.3 Mn 0.3 O 2 (abbreviated as NCM433), LiNi 0.5 Co 0.2 Mn 0.3 O 2 (abbreviated as NCM523), LiNi 0.5 Co 0 .3 Mn 0.2 O 2 (abbreviated as NCM532), LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , Li 1.2 Mn 0 .4 Ni 0.4 O 2 , Li 1.2 Mn 0.6 Ni 0.2 O 2 , Li 1.19 Mn 0.52 Fe 0.22 O 1.98 , Li 1.21 Mn 0.46 Fe 0.15 Ni 0.15 O 2 , LiMn 1.5 Ni 0.5 O 4 , Li 1.2 Mn 0.4 Fe 0.4 O 2 , Li 1.21 Mn 0.2
  • NCM532 or NCM523 and NCM433 can be used in a range of 9: 1 to 1: 9 (mass ratio), for example, 2: 1 (mass ratio).
  • a lithium transition metal composite oxide represented by the following formula (1) can be used.
  • a compound having a high Ni content with x of 0.4 or less and a compound with a Ni content not exceeding 0.5 are mixed.
  • a battery having a high capacity and high thermal stability can be formed.
  • Li y Ni (1-x) M x O 2 (1) (However, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1.2, and M represents at least one element selected from the group consisting of Co, Al, Mn, Fe, Ti, and B.)
  • the coated positive electrode active material included in the positive electrode active material for a lithium secondary battery according to an embodiment of the present invention is one in which the surface of the positive electrode active material is directly coated with lithium metaphosphate.
  • This lithium metaphosphate is a substance that can be expressed directly or approximately by (LiPO 3 ) n (n is the number of repeating LiPO 3 units and can take an integer of 3 or more), and is a lithium salt of cyclophosphate ( Examples thereof include a lithium salt of metaphosphoric acid having a value of n of 3 to 6) and a lithium salt of polyphosphoric acid.
  • Lithium metaphosphate can contain one or more of these.
  • the lithium salt of polyphosphoric acid is a salt containing an ion represented by [O 3 P— (OPO 2 ) m —OPO 3 ] (m + 2) — (m is an integer of 1 or more) and lithium ion, m (LiPO 3 ) n approaches as the value of increases.
  • the lithium secondary battery using the positive electrode active material (coated positive electrode active material) having the surface of the positive electrode active material coated with lithium metaphosphate uses a positive electrode prepared by simply mixing lithium metaphosphate with the positive electrode slurry.
  • the chemical reaction and decomposition of the electrolyte solution on the surface of the positive electrode active material due to charge and discharge are suppressed, so that gas generation from the positive electrode is suppressed and the lithium secondary battery (lithium ion) with a large capacity is suppressed. Secondary battery) is obtained.
  • the lithium secondary battery (lithium ion secondary battery) has stability over a long period of time, and the effect of extending the life is obtained. As a result, a lithium ion secondary battery having a large capacity, high energy density, and excellent charge / discharge cycle stability can be obtained.
  • the amount of lithium metaphosphate A covering the surface of the positive electrode active material is a mass ratio (A / B) to the positive electrode active material B before coating. ) It is preferably 0.0005 to 0.15, more preferably 0.001 to 0.10. It is preferable that it exists in the said range from the point which acquires sufficient coating effect, without impairing the original characteristic of a positive electrode active material as much as possible.
  • the density of the positive electrode active material layer including the coated positive electrode active material and formed on the positive electrode current collector is preferably 1.0 g / cm 3 or more and 3.0 g / cm 3 or less.
  • the density of the positive electrode active material layer is 1.0 g / cm 3 or more, the absolute value of the discharge capacity can be suppressed from being reduced.
  • the density of the positive electrode active material layer is 3.0 g / cm 3 or less, it is possible to suppress the electrolyte from being easily impregnated into the electrode and the discharge capacity from being lowered.
  • Such a coated positive electrode active material can be prepared by immersing the positive electrode active material in a coating forming liquid containing lithium metaphosphate to coat the surface of the positive electrode active material with lithium metaphosphate.
  • the positive electrode active material is immersed in a coating forming solution in which lithium metaphosphate is dissolved in a solvent (for example, water), Coating the surface with lithium metaphosphate to form a coated positive electrode active material, separating and removing the film-forming liquid (for example, solid-liquid separation such as filtration), and thereafter, the positive electrode active material is treated with metalin.
  • a solvent capable of dissolving lithium acid for example, water
  • the surface of the positive electrode active material, the lithium metaphosphate, and the surface of the positive electrode active material are coated with the positive electrode active material by immersing the positive electrode active material in a liquid for forming a coating containing lithium metaphosphate without any other coating treatment before the coating treatment with lithium metaphosphate.
  • the entire surface of the positive electrode active material can be directly coated with lithium metaphosphate without forming an intervening layer therebetween.
  • the above-described coating forming solution can be prepared by dissolving lithium metaphosphate in water.
  • the content of lithium metaphosphate in the coating forming liquid is preferably 0.05 to 15% by mass, and more preferably 0.1 to 10% by mass.
  • a positive electrode active material is added to the above-described coating forming solution, and immersed in the room temperature (for example, 25 ° C.) to 100 ° C. (preferably 40 to 100 ° C., more preferably 50 to 100 ° C.) for 1 to 24 hours.
  • the active material is reacted with lithium metaphosphate.
  • the positive electrode active material is filtered off and further washed with water to remove unreacted lithium metaphosphate.
  • a coating film in which lithium metaphosphate is bonded to the positive electrode surface is formed.
  • it is dried at room temperature (for example, 25 ° C.) to 150 ° C. under vacuum or atmospheric pressure, and then heat-treated at 250 to 500 ° C. under air or inert atmosphere for 1 to 24 hours. In this way, a coated positive electrode active material can be obtained.
  • a positive electrode active material is added to the coating forming solution, and immersed for 1 to 24 hours at room temperature (for example, 25 ° C.) to 100 ° C. (preferably 40 to 100 ° C., more preferably 50 to 100 ° C.). After reacting the active material with lithium metaphosphate, the solution is separated by filtration, water is evaporated by heating, and then washed with water to remove unreacted lithium metaphosphate, and heat treatment (heat drying) in the same manner as above. By doing so, a coated positive electrode active material can also be obtained.
  • Oxides containing elements such as SnO, MgO, TiO 2 , Al 2 O 3 , ZrO, V 2 O 5 , Ga 2 O 3 , GeO 2 , Sm 2 O 3 , ZnO, MoO 3 , La 2 O 3 ) etc. may be covered.
  • a positive electrode active material is added to a solution of the above-mentioned metal element nitrate, sulfate, metal alkoxide, etc., heated to react to evaporate water, and then 250 ° C. to 500 ° C.
  • a film of oxide can be formed by heat treatment.
  • a positive electrode for a lithium secondary battery according to an embodiment of the present invention is obtained by forming a positive electrode active material layer containing the above coated positive electrode active material on a positive electrode current collector.
  • the positive electrode active material layer only needs to contain the above-described coated positive electrode active material, but a conductive additive may be added for the purpose of reducing impedance.
  • a conductive additive may be added for the purpose of reducing impedance.
  • the conductive auxiliary agent include graphites such as natural graphite and artificial graphite, and carbon blacks such as acetylene black, ketjen black, furnace black, channel black, and thermal black.
  • a plurality of types of conductive assistants may be appropriately mixed and used.
  • the amount of the conductive auxiliary agent is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • the positive electrode active material layer is preferably formed on the positive electrode current collector by binding and integrating the particles of the coated positive electrode active material using a positive electrode binder.
  • the binder for the positive electrode include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polytetrafluoroethylene, polypropylene, Examples thereof include polyethylene, polyimide, and polyamideimide.
  • the amount of the positive electrode binder used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. .
  • the positive electrode current collector is not particularly limited, and for example, an aluminum foil or a stainless lath plate can be used.
  • the positive electrode collects a coating solution obtained by adding a solvent to a mixture of the positive electrode active material including the above-described coated positive electrode active material, a binder, and various auxiliary agents as necessary, and kneading it into a slurry. It can be manufactured by applying to the body and drying.
  • the lithium secondary battery by embodiment of this invention contains the said positive electrode, the negative electrode containing a negative electrode active material, the electrolyte solution which impregnates these electrodes, and the exterior body which accommodates these.
  • the negative electrode may be any material as long as it contains a negative electrode active material capable of occluding and releasing lithium ions, but the negative electrode active material particles are bound together by a negative electrode binder and integrated on the negative electrode current collector. What was formed as an active material layer can be used.
  • Examples of the negative electrode active material include metals and alloys that can be alloyed with lithium, oxides and carbon materials that can occlude and release lithium ions, and the like.
  • Examples of the metal include simple silicon and tin.
  • the oxide examples include silicon oxide represented by SiO x (0 ⁇ x ⁇ 2), niobium pentoxide (Nb 2 O 5 ), lithium titanium composite oxide (Li 4/3 Ti 5/3 O 4). ), Titanium dioxide (TiO 2 ), and the like.
  • silicon oxide is preferably used from the viewpoint of charge / discharge cycle characteristics because the expansion and contraction due to repeated charge / discharge of the negative electrode active material itself is alleviated.
  • a silicon oxide represented by SiO x (0.5 ⁇ x ⁇ 1.5) can be used.
  • the silicon oxide may be crystalline or non-crystalline, and may include lithium represented by SiLi y O z (y> 0, 2>z> 0), and a trace amount of nitrogen, boron, And one or more elements of sulfur and sulfur may be contained in an amount of 0.1 to 5% by mass.
  • the electrical conductivity of the silicon oxide can be improved.
  • the negative electrode active material it is preferable to use silicon oxide together with elemental silicon because volume change can be suppressed during charge and discharge.
  • the negative electrode active material containing simple silicon and silicon oxide can be prepared by mixing simple silicon and silicon oxide and sintering under high temperature and reduced pressure. Further, as the negative electrode active material, a compound of silicon and a transition metal such as silicate, nickel silicide, cobalt silicide, and the like can be used in addition to silicon oxide.
  • a negative electrode active material containing a compound of transition metal and silicon as a silicon compound is produced, for example, by mixing and melting simple silicon and transition metal, or coating the surface of simple silicon by vapor deposition or the like can do.
  • the carbon material as the negative electrode active material is preferable because it has good cycle characteristics and safety, and excellent continuous charge characteristics.
  • Examples of such carbon materials include graphite materials, amorphous carbon, diamond-like carbon, carbon nanotubes, carbon black, coke, mesocarbon microbeads, hard carbon, graphite, and the like.
  • Examples of artificial graphite, natural graphite, and carbon black include acetylene black and furnace black. These can be used alone or in combination of two or more.
  • Graphite with high crystallinity has high electrical conductivity, and is excellent in adhesion to the negative electrode current collector and voltage flatness.
  • amorphous carbon having low crystallinity since amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
  • a material containing silicon, silicon oxide, or carbon material is preferable because it can suppress volume change associated with charge and discharge, and these can be used simply by mixing them. And also referred to as a negative electrode composite).
  • the negative electrode composite preferably has a structure in which all or a part of silicon is dispersed in a silicon oxide having an amorphous structure and the surface is covered with carbon.
  • the silicon oxide having an amorphous structure can suppress the volume expansion of the carbon material and silicon, and can also suppress the decomposition of the electrolytic solution by dispersing silicon. Although this mechanism is not clear, it is presumed that the silicon oxide has an amorphous structure, which has some influence on the film formation at the interface between the carbon material and the electrolytic solution.
  • the amorphous structure is considered to have relatively few elements due to non-uniformity such as crystal grain boundaries and defects. It can be confirmed by X-ray diffraction measurement that all or part of the silicon oxide has an amorphous structure. When the silicon oxide does not have an amorphous structure, a peak inherent to the silicon oxide is strongly observed in the X-ray diffraction measurement. On the other hand, when all or part of the silicon oxide has an amorphous structure, a peak unique to the silicon oxide becomes broad in the X-ray diffraction measurement.
  • silicon dispersed in silicon oxide can be confirmed by a combination of observation with a transmission electron microscope and measurement with energy dispersive X-ray spectroscopy. Specifically, the cross section of the sample is observed with a transmission electron microscope, and the oxygen concentration of the silicon portion dispersed in the silicon oxide is measured by energy dispersive X-ray spectroscopy measurement. As a result, it can be confirmed that silicon dispersed in silicon oxide is not an oxide.
  • the content ratio of silicon, silicon oxide, and carbon material is preferably such that the silicon content is 5% by mass or more and 90% by mass or less, and 20% by mass or more and 50% by mass or less in the negative electrode composite. More preferably.
  • the content of the silicon oxide is preferably 5% by mass or more and 90% by mass or less, and more preferably 40% by mass or more and 70% by mass or less in the negative electrode composite.
  • the content of the carbon material is preferably 2% by mass or more and 50% by mass or less, more preferably 2% by mass or more and 30% by mass or less in the negative electrode composite.
  • Such a negative electrode composite can be produced, for example, by the method disclosed in JP-A-2004-47404. That is, when silicon oxide is subjected to CVD treatment in an atmosphere containing an organic gas such as methane gas, silicon is nanoclustered in silicon oxide and the surface is coated with carbon. Furthermore, the surface of the negative electrode composite can be treated with a silane coupling agent or the like.
  • the negative electrode active material may be a mixture of particulate single silicon, silicon oxide and carbon material.
  • the average particle diameter of simple silicon can be made smaller than the average particle diameter of the carbon material and silicon oxide.
  • single silicon having a large volume change during charge / discharge has a relatively small particle size
  • carbon materials and silicon oxides having a small volume change have a relatively large particle size. Is more effectively suppressed.
  • the large particle size and the small particle size alternately occlude and release lithium ions, and from this point, the occurrence of residual stress and residual strain is suppressed.
  • the average particle diameter of the single silicon is preferably 20 ⁇ m or less, and more preferably 15 ⁇ m or less.
  • the average particle diameter of the silicon oxide is preferably 1 ⁇ 2 or less of the average particle diameter of the carbon material, and the average particle diameter of the single silicon is preferably 1 ⁇ 2 or less of the average particle diameter of the silicon oxide.
  • the negative electrode active material in the negative electrode active material layer is preferably 55% by mass or more, and more preferably 65% by mass or more.
  • the binder for the negative electrode is not particularly limited.
  • polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer For example, rubber (SBR), polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide, alkali-neutralized lithium salt, sodium salt, potassium salt, polyacrylic acid, carboxymethylcellulose, or the like can be used.
  • SBR rubber
  • polyimide, polyamideimide, SBR, alkali-neutralized lithium salt, sodium salt, and potassium salt containing polyacrylic acid or carboxymethylcellulose are preferred because of their high binding properties.
  • the amount of the binder for the negative electrode to be used is preferably 5 to 25 parts by mass with respect to 100 parts by mass of the negative electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. .
  • Examples of the negative electrode current collector include those made of metal materials such as copper, nickel, and stainless steel. Among these, copper is particularly preferable from the viewpoint of workability and cost. Moreover, it is preferable that the surface of the negative electrode current collector is roughened in advance. Furthermore, the shape of the current collector is arbitrary, and examples thereof include a foil shape, a flat plate shape, and a mesh shape. Also, a perforated current collector such as expanded metal or punching metal can be used.
  • the negative electrode is a coating liquid obtained by adding a solvent to a mixture of the above-described negative electrode active material, a binder, and various auxiliary agents as necessary, and kneading it into a slurry. Can be produced by applying to a current collector and drying.
  • Electrolytic solution a solution obtained by dissolving an electrolyte in a non-aqueous solvent can be used.
  • cyclic carbonates chain carbonates, chain esters, lactones, ethers, sulfones, nitriles, phosphate esters and the like can be used.
  • cyclic carbonates examples include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, and vinyl ethylene carbonate.
  • chain carbonates examples include dimethyl carbonate, diethyl carbonate, dipropyl carbonate, dibutyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, and methyl butyl carbonate.
  • chain esters examples include methyl formate, methyl acetate, methyl propionate, ethyl propionate, methyl pivalate, and ethyl pivalate.
  • lactones include ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ -methyl- ⁇ -.
  • ethers such as butyrolactone include tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1, 2-dibutoxyethane and the like can be mentioned.
  • Examples of sulfones include sulfolane, 3-methylsulfolane, and 2,4-dimethylsulfolane.
  • Examples of nitriles include acetonitrile, propionitrile, succinonitrile, glutaronitrile, and adiponitrile.
  • Examples of phosphate esters include phosphorus. And trimethyl phosphate, triethyl phosphate, tributyl phosphate, and trioctyl phosphate.
  • non-aqueous solvent can be used individually by 1 type or in combination of 2 or more types.
  • combinations of a plurality of types of non-aqueous solvents include a combination of cyclic carbonates and chain carbonates.
  • the combination containing at least cyclic carbonate and chain carbonate is more preferable.
  • At least one selected from a fluorinated ether solvent, a fluorinated carbonate solvent, a fluorinated phosphate ester, etc. may be added to the combination of the cyclic carbonate and the chain carbonate as the third solvent.
  • fluorinated ether solvent examples include CF 3 OCH 3 , CF 3 OC 2 H 5 , F (CF 2 ) 2 OCH 3 , F (CF 2 ) 2 OC 2 H 5 , and F (CF 2 ).
  • fluorinated carbonate solvent examples include fluoroethylene carbonate, fluoromethyl methyl carbonate, 2-fluoroethyl methyl carbonate, ethyl- (2-fluoroethyl) carbonate, (2,2-difluoroethyl) ethyl carbonate, bis (2 -Fluoroethyl) carbonate, ethyl- (2,2,2-trifluoroethyl) carbonate and the like.
  • Fluorinated phosphate esters include tris (2,2,2-trifluoroethyl) phosphate, tris (trifluoromethyl) phosphate, tris (2,2,3,3-tetrafluoropropyl) phosphate, etc. Is mentioned.
  • electrolyte salt supporting salt
  • lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C). 2 F 5) 2, CF 3 SO 3 Li, C 4 F 9 SO 3 Li, LiAsF 6 and LiAlCl 4, LiSbF 6, LiPF 4 (CF 3) 2, LiPF 3 (C 2 F 5) 3, LiPF 3 ( CF 3 ) 3 , (CF 2 ) 2 (SO 2 ) 2 NLi, (CF 2 ) 3 (SO 2 ) 2 Li can be mentioned.
  • Lithium bis (oxalate) borate and Lithium oxaltodifluoroborate can also be used. These electrolyte salts can be used alone or in combination of two or more. Of these, LiPF 6 , LiBF 4 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 C 2 F 5 ) 2 are preferable.
  • the concentration of the electrolyte salt in the electrolytic solution is preferably 0.1 to 3M, and more preferably 0.5 to 2M.
  • separator As the separator, a single layer or laminated porous film or non-woven fabric such as polyolefin such as polypropylene or polyethylene, aramid or polyimide can be used. Moreover, inorganic materials such as glass fibers, polyolefin films coated with fluorine compounds and fine particles, laminates of polyethylene films and polypropylene films, and polyolefin films laminated with an aramid layer can be exemplified.
  • the thickness of the separator is preferably 5 to 50 ⁇ m, and more preferably 10 to 40 ⁇ m from the viewpoint of the energy density of the battery and the mechanical strength of the separator.
  • an electrode pair (or a laminate including a plurality of electrode pairs corresponding to a predetermined capacity) in which a positive electrode and a negative electrode are opposed to each other via a separator is accommodated in an outer package. And a step of injecting an electrolytic solution and sealing the exterior body.
  • the above-described configuration can be applied to a single-layer or stacked-type coin battery having a separator, a cylindrical battery, a laminated battery, and the like.
  • each electrode is connected to a metal terminal tab, placed in an outer package such as a laminate film, and an electrolyte solution is injected. And have a shape formed by sealing.
  • the exterior body accommodates the positive electrode and the negative electrode laminated via the separator and the electrolyte solution impregnated therein, has a strength that can be stably held, and is electrochemically stable with respect to these substances. And what has airtightness and watertightness is preferable.
  • stainless steel, nickel-plated iron, aluminum, titanium, or an alloy thereof, a plated one, a metal laminate resin film (metal laminate film), or the like can be used.
  • the metal laminate film is obtained by laminating a metal thin film on a heat-fusible resin film, and is preferably a film that is stable and sufficiently water-tight and air-tight in an electrolytic solution.
  • heat-fusible resins examples include polypropylene and polyethylene; polypropylene or polyethylene acid modification; polyphenylene sulfide; polyester such as polyethylene terephthalate; polyamide; ethylene-vinyl acetate copolymer; ethylene-methacrylic acid copolymer or ethylene-acrylic.
  • An ionomer resin or the like in which an acid copolymer is intermolecularly bonded with metal ions can be used.
  • the thickness of the heat-fusible resin film is preferably 10 to 200 ⁇ m, and more preferably 30 to 100 ⁇ m.
  • the metal thin film polypropylene, polyethylene, etc. coated with aluminum, silica, and alumina can be used. From the viewpoint of suppressing volume expansion, an aluminum laminate film is preferred. Further, examples of the metal laminate film include those obtained by laminating a protective layer made of a film of polyester such as polyethylene terephthalate or polyamide on the surface of the metal laminate film not provided with the metal thin film.
  • FIG. 1 An example of a lithium secondary battery (lithium ion secondary battery) according to an embodiment of the present invention is shown in the schematic configuration diagram of FIG.
  • the lithium secondary battery shown in FIG. 1 has a positive electrode 10 in which the positive electrode active material layer 1 is provided on both sides or one side of the positive electrode current collector 1A, and a negative electrode active material layer 2 on both sides or one side of the negative electrode current collector 2A.
  • the negative electrode 20 thus laminated is laminated via the porous separator 3, and is accommodated in the aluminum vapor-deposited laminate film outer package 4 together with an electrolytic solution (not shown).
  • the formed negative electrode tab 2 ⁇ / b> B is connected, and the tips of the positive electrode tab and the negative electrode tab are drawn out of the exterior body 4.
  • the P2p spectrum obtained by XPS analysis of the obtained positive electrode active material, lithium metaphosphate (Li (PO 3 ) n ), and lithium phosphate (Li 3 PO 4 ) is shown in FIG. From these results, by covering the positive electrode active material with lithium metaphosphate, the lithium metaphosphate is chemically reacted and bonded on the surface of the positive electrode active material, resulting in a different chemical structure from lithium metaphosphate and lithium phosphate. It was confirmed that
  • Synthesis Example 5 Production Example 5 of Positive Electrode Active Material for Lithium Secondary Battery Instead of dissolving 0.8591 g of lithium metaphosphate in 100 ml of water, the same procedure as in Synthesis Example 2 was performed except that 5.1546 g of lithium metaphosphate was dissolved in 100 ml of water (0.6 mol / L, 5.1 mass%). A coated positive electrode active material was obtained. The coating amount (bonding amount) of the lithium metaphosphate with respect to the positive electrode active material was 9.7% by mass.
  • Example 1 Production example 1 of a lithium secondary battery 92 mass of the coated positive electrode active material obtained in Synthesis Example 1 (covering amount of lithium metaphosphate: 0.3 mass%, active material: Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2 ) %, Ketjen black 4% by mass and polyvinylidene fluoride 4% by mass, a solvent was added to prepare a slurry. And this slurry was apply
  • a positive electrode active material layer is formed on one surface of the positive electrode current collector in the same procedure, and a positive electrode active material layer is formed on the other surface of the positive electrode current collector that is not provided with the same procedure. And the positive electrode which has a positive electrode active material layer on both surfaces was also produced.
  • a slurry was prepared by adding a solvent to a mixture containing 85% by weight of silicon oxide (SiO) having an average particle diameter of 15 ⁇ m and 15% by weight of polyamic acid. And this slurry was apply
  • silicon oxide SiO
  • An electrolyte solution was prepared by dissolving 1.0 M LiPF 6 in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 30:70.
  • a positive electrode tab and a negative electrode tab were welded to each of the positive electrode current collector and the negative electrode current collector, and then a porous film separator was sandwiched between the produced positive electrode and negative electrode to form a laminate.
  • the laminated body was covered with two aluminum laminate film exterior bodies, and three sides of the exterior body were sealed by heat sealing.
  • the electrolytic solution was injected into the formed outer package container, and the electrolytic solution was impregnated in the laminate at an appropriate degree of vacuum. Thereafter, under reduced pressure, one side of the outer package that had not been heat-sealed was heat-sealed and sealed to produce a lithium secondary battery before activation treatment.
  • the prepared lithium secondary battery before activation treatment was charged to 4.5 V with a current of 20 mA (20 mA / g) per 1 g of the positive electrode active material. Thereafter, the battery was discharged to 1.5 V at a current of 20 mA (20 mA / g) per 1 g of the positive electrode active material. Similarly, after discharging to 1.5 V, the battery was charged to 4.5 V at 20 mA / g, then discharged to 1.5 V, and an activation treatment was repeated to repeat the charge / discharge cycle twice. Thereafter, the sealed portion of the outer package was broken and the pressure was reduced to remove the gas inside the battery, and the broken portion was resealed, thereby producing a lithium secondary battery.
  • Example 2 Production example 2 of lithium secondary battery To the coated positive electrode active material obtained in Synthesis Example 1 (covering amount of lithium metaphosphate: 0.3 mass%, composition of the active material: Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2 ) Alternatively, the coated positive electrode active material obtained in synthesis example 2 (coating amount of the lithium metaphosphate: 0.8 wt%, active material: Li 1.26 Fe 0.11 Ni 0.11 Mn0 .52 O 2) and A lithium secondary battery was produced and evaluated in the same manner as in Example 1 except that it was used. The results are shown in Table 1.
  • Example 3 Production example 3 of lithium secondary battery To the coated positive electrode active material obtained in Synthesis Example 1 (covering amount of lithium metaphosphate: 0.3 mass%, composition of the active material: Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2 ) Instead, the coated positive electrode active material obtained in Synthesis Example 3 (covering amount of lithium metaphosphate: 2.3 mass%, active material: Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2 ) A lithium secondary battery was prepared and evaluated in the same manner as in Example 1 except that was used. The results are shown in Table 1.
  • Example 4 Production example 4 of lithium secondary battery To the coated positive electrode active material obtained in Synthesis Example 1 (covering amount of lithium metaphosphate: 0.3 mass%, composition of the active material: Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2 ) Instead, the coated positive electrode active material obtained in Synthesis Example 4 (covering amount of lithium metaphosphate: 4.7% by mass, active material: Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2 ) A lithium secondary battery was prepared and evaluated in the same manner as in Example 1 except that was used. The results are shown in Table 1.
  • Example 5 Production example 5 of lithium secondary battery To the coated positive electrode active material obtained in Synthesis Example 1 (covering amount of lithium metaphosphate: 0.3 mass%, composition of the active material: Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2 ) Instead, the coated positive electrode active material obtained in Synthesis Example 5 (covering amount of lithium metaphosphate: 9.7% by mass, active material: Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2 ) A lithium secondary battery was prepared and evaluated in the same manner as in Example 1 except that was used. The results are shown in Table 1.
  • Example 6 Production example 6 of a lithium secondary battery To the coated positive electrode active material obtained in Synthesis Example 1 (covering amount of lithium metaphosphate: 0.3 mass%, composition of the active material: Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2 ) Instead, the coated positive electrode active material obtained in Synthesis Example 6 (covering amount of lithium metaphosphate: 0.7 mass%, active material: Li 1.23 Fe 0.15 Ni 0.15 Mn 0.46 O 2 ) A lithium secondary battery was prepared and evaluated in the same manner as in Example 1 except that was used. The results are shown in Table 1.
  • Example 7 Production example 7 of a lithium secondary battery To the coated positive electrode active material obtained in Synthesis Example 1 (covering amount of lithium metaphosphate: 0.3 mass%, composition of the active material: Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2 ) Instead, the coated positive electrode active material obtained in Synthesis Example 7 (covering amount of lithium metaphosphate: 0.7 mass%, active material: Li 1.2 Ni 0.18 Mn 0.54 Co 0.08 O 2 ) A lithium secondary battery was prepared and evaluated in the same manner as in Example 1 except that was used. The results are shown in Table 1.
  • Example 8 Production example 8 of positive electrode for lithium secondary battery To the coated positive electrode active material obtained in Synthesis Example 1 (covering amount of lithium metaphosphate: 0.3 mass%, composition of the active material: Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2 ) Instead, the coated positive electrode active material obtained in Synthesis Example 8 (covering amount of lithium metaphosphate: 0.6 mass%, active material: LiNi 0.8 Co 0.15 Al 0.05 O 2 ) was used. Produced a lithium secondary battery in the same manner as in Example 1 and evaluated the lithium secondary battery. The results are shown in Table 1.
  • Example 9 Production example 9 of positive electrode for lithium secondary battery To the coated positive electrode active material obtained in Synthesis Example 1 (covering amount of lithium metaphosphate: 0.3 mass%, composition of the active material: Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2 ) Instead, the coated positive electrode active material obtained in Synthesis Example 9 (covering amount of lithium metaphosphate: 0.5 mass%, active material: LiNi 0.8 Co 0.1 Mn 0.1 O 2 ) was used. Produced a lithium secondary battery in the same manner as in Example 1 and evaluated the lithium secondary battery. The results are shown in Table 1.
  • Example 10 In place of the electrolytic solution obtained by dissolving 1.0M LiPF6 in a solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume ratio of 30:70, ethylene carbonate (EC) and diethyl carbonate (DEC) and 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TFETFP) mixed in a volume ratio of 28.5: 66.5: 5 A lithium secondary battery was prepared and evaluated in the same manner as in Example 2 except that an electrolytic solution in which 0 M LiPF 6 was dissolved was used. The results are shown in Table 1.
  • Example 11 In place of the electrolytic solution obtained by dissolving 1.0M LiPF 6 in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 30:70, ethylene carbonate (EC) and diethyl carbonate were used.
  • An electrolytic solution in which 1.0 M LiPF 6 was dissolved in a solvent in which carbonate (DEC) and (2,2-difluoroethyl) ethyl carbonate (DFEEC) were mixed at a volume ratio of 28.5: 66.5: 5 was used.
  • Others produced lithium secondary batteries in the same manner as in Example 2, and evaluated them. The results are shown in Table 1.
  • Example 12 Production example 12 of positive electrode for lithium secondary battery Instead of the coated positive electrode active material obtained in Synthesis Example 1 (covering amount of lithium metaphosphate: 0.3 mass%, active material: Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2 )
  • the coated positive electrode active material obtained in Synthesis Example 10 (covering amount of lithium metaphosphate: 0.4% by mass, active material: Li 1.26 Fe 0 coated with 1% by mass of samarium oxide (Sm 2 O 3 ) .11 Ni 0.11 Mn 0.52 O 2 ) was used, and a lithium secondary battery was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 1 Example 1 except that a lithium transition metal composite oxide (Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2 ) not covered with lithium metaphosphate was used instead of the coated positive electrode active material
  • Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2 a lithium transition metal composite oxide not covered with lithium metaphosphate was used instead of the coated positive electrode active material
  • a lithium secondary battery was prepared in the same manner as described above and evaluated. The results are shown in Table 1.
  • Example 1 except that a lithium transition metal composite oxide (Li 1.23 Fe 0.15 Ni 0.15 Mn 0.46 O 2 ) not covered with lithium metaphosphate was used instead of the coated positive electrode active material
  • Li 1.23 Fe 0.15 Ni 0.15 Mn 0.46 O 2 a lithium transition metal composite oxide not covered with lithium metaphosphate was used instead of the coated positive electrode active material
  • a lithium secondary battery was prepared in the same manner as described above and evaluated. The results are shown in Table 1.
  • Example 1 except that a lithium transition metal composite oxide (Li 1.2 Ni 0.18 Mn 0.54 Co 0.08 O 2 ) not covered with lithium metaphosphate was used instead of the coated positive electrode active material
  • Li 1.2 Ni 0.18 Mn 0.54 Co 0.08 O 2 Li 1.2 Ni 0.18 Mn 0.54 Co 0.08 O 2
  • a lithium secondary battery was prepared in the same manner as described above and evaluated. The results are shown in Table 1.
  • Lithium transition metal composite oxide LiNi 0.8 Co 0.15 Al 0.05 O 2 ) that was not coated with lithium metaphosphate was used instead of the coated positive electrode active material. A secondary battery was produced and evaluated. The results are shown in Table 1.
  • Lithium transition metal composite oxide LiNi 0.8 Co 0.1 Mn 0.1 O 2 ) not covered with lithium metaphosphate was used in place of the coated positive electrode active material, as in Example 1.
  • a secondary battery was produced and evaluated. The results are shown in Table 1.
  • Relative value with the initial capacity of a lithium ion secondary battery (Comparative Examples 1 to 5) using a positive electrode active material not coated with lithium metaphosphate as 100 2) Positive electrode active material not coated with lithium metaphosphate Relative value with respect to 100 as the gas generation amount of lithium ion secondary batteries (Comparative Examples 1 to 5) using
  • the lithium secondary battery using the positive electrode active material coated with lithium metaphosphate according to the embodiment of the present invention does not significantly reduce the initial capacity, and can suppress the gas generation accompanying the charge / discharge cycle and is high. Excellent characteristics that capacity retention ratio can be obtained.
  • a cathode active material for a lithium secondary battery comprising a coated cathode active material in which the surface of the cathode active material is directly coated with lithium metaphosphate
  • the positive electrode active material is A lithium transition metal composite oxide containing at least one transition metal element selected from nickel, cobalt and manganese; At least one selected from Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Ge, Sm, Zn, Cu, Bi, Mo, La as a part of the transition metal of the lithium transition metal oxide Substituted with one of these elements or / and partially substituted oxygen atom with S;
  • a positive electrode active material for a lithium secondary battery comprising: a phosphate compound having an olivine structure; and at least one selected from those obtained by coating the surface of the positive electrode active material with an oxide containing any one of the above elements.
  • a cathode active material for a lithium secondary battery comprising a coated cathode active material in which the surface of the cathode active material is directly coated with lithium metaphosphate
  • a positive electrode active material for a lithium secondary battery comprising at least one selected from
  • the lithium secondary battery using the positive electrode active material for lithium secondary battery and the positive electrode for lithium secondary battery according to the present invention is used in all industrial fields that require a power source, and in industrial fields related to transportation, storage and supply of electrical energy.
  • UPS backup power sources

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明の課題は、リチウム二次電池において充放電に伴うガスの発生を抑制することができ、特にリチウム二次電池の使用電圧が高い場合であっても充放電に伴うガスの発生を抑制することができる正極活物質、これを用いた正極及びリチウム二次電池、並びにそれらの製造方法を提供することにある。 本発明は、正極活物質の表面が直接メタリン酸リチウムで被覆された被覆正極活物質を含む、リチウム二次電池用正極活物質である。

Description

リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池、並びにそれらの製造方法
 本発明は、リチウム二次電池用正極活物質、これを用いたリチウム二次電池用正極及びリチウム二次電池、並びにそれらの製造方法に関する。
 リチウム二次電池は、エネルギー密度が高い、自己放電が小さい、長期信頼性に優れる等の利点により、ノート型パソコンや携帯電話等の小型電子機器などの電池として実用化されている。また、近年では、電気自動車や家庭用蓄電池、電力貯蔵用途へのリチウム二次電池の適用が進んでいる。
 一般的なリチウム二次電池は、それぞれ正極活物質及び負極活物質を含む活物質層が集電体上に形成された正極と負極がセパレーターを介して対向して積層され、必要に応じて複数の電極対を含む積層体とされ、これらの電極に非水電解液が含浸されている。
 このようなリチウム二次電池の正極活物質として、高エネルギー密度のリチウム二次電池を実現するために、Li1.19Mn0.52Fe0.221.98で表される層状岩塩構造を有するリチウム金属複合酸化物(特許文献1)や、LiNi0.5Mn1.5で表されるリチウム金属複合酸化物(特許文献2)が開示されている。
 このようなリチウム二次電池においては、充放電に伴い、負極表面では電解液溶媒の還元分解が生じ、正極表面では電解液溶媒の酸化分解が生じ、その分解生成物が電極表面に堆積して抵抗を増大させたり、場合によっては、溶媒の分解により発生したガスによって電池が膨れたりすることがある。その結果、電池の保存特性の低下やサイクル特性の低下が起こり、電池特性が低下する問題があった。
 このような問題を回避するために、電解液中に、ビニレンカーボネートやフルオロエチレンカーボネート、マレイン酸無水物等の保護被膜生成機能を有する化合物を添加し、初期充電時にこれらの化合物を意図的に分解させ、その分解物が電極表面に保護被膜SEI(Solid Electrolyte Interface)を形成し、溶媒の分解を抑制することが知られている(非特許文献1)。
 しかしながら、これらの添加剤は負極表面にSEIを形成するものの、正極における溶媒の酸化分解によるガス発生の抑制に対して十分な効果が得られていない。
 特に、上記のような4.5V以上の電位を有する正極活物質を使用した高電位のリチウム二次電池は、一般的なリチウム二次電池の電圧3.5~4.2Vに比べ、正極において溶媒の酸化分解によるガス発生が起こりやすくなる。
 正極活物質表面に保護被膜を形成させ、正極からのガスの発生を抑制する方法として、正極活物質にシランカップリング剤およびエポキシ樹脂を被覆する方法(特許文献3)や、ホウ酸化合物を被着させる方法(特許文献4)が開示されている。しかしながら、これらの正極の保護被膜では4.5V以上の高電位正極を用いたリチウム二次電池においては、充放電に伴う正極での電解液の分解を抑制できず、ガス発生を十分に抑制することができないという問題点があった。
 また、各種リン化合物(リン酸リチウム、メタリン酸リチウム、リン酸コバルト又はリン化コバルト)を正極に含有させることで、充電状態で高温貯蔵をした場合にリチウムニッケル複合酸化物と有機電解液が反応して分解、ガス化し、電池の内部圧力を上昇させることを抑制する方法(特許文献5)が開示されている。具体的には、正極活物質と導電補助剤、結着剤、溶剤からなる正極スラリーに各種リン化合物を添加して、正極を作製してリチウムイオン電池に用いている。しかしながら、リン化合物を正極に含有させる(正極スラリーへの添加)方法では、4.5V以上の高電位正極を用いたリチウム二次電池においては、充放電に伴う正極での電解液の分解を抑制できず、ガス発生を十分に抑制することができず、さらに初期容量の低下を引き起こすという問題点があった。
 また、特許文献5には、遷移金属として少なくともMnを含むリチウム遷移金属複合酸化物の表面に、金属フッ化物とリン酸リチウム化合物を有することを特徴とするリチウム二次電池用正極材料が開示されている。また、課題として、導電性を低下させることなく、高温・高電圧下でも安定的にMn溶出を抑制できる表面被覆リチウムマンガン複合酸化物を正極材料として用い、高温サイクル特性に優れたリチウム二次電池を提供することが記載されている。しかしながら、この二次電池においてもガス発生を十分に抑制することができない。
特開2013-254605号公報 国際公開第2012/141301号 特開2014-22276号公報 特開2010-40382号公報 特開平11-273674号公報 特開2010-232001号公報
Journal.Power Sources、第162号、第2巻、p.1379-1394(2006)
 本発明の目的は、リチウム二次電池において充放電に伴うガスの発生を抑制することができ、特にリチウム二次電池の使用電圧が高い場合であっても充放電に伴うガスの発生を抑制することができる正極活物質、これを用いた正極及びリチウム二次電池、並びにそれらの製造方法を提供することにある。
 本発明の一態様のリチウム二次電池用正極活物質は、正極活物質の表面が直接メタリン酸リチウムで被覆された被覆正極活物質を含む。
 また、本発明の他の態様のリチウム二次電池用正極は、正極集電体と、この正極集電体上の、上記リチウム二次電池用正極活物質を含む正極活物質層とを含む。
 また、本発明の他の態様のリチウム二次電池は、上記リチウム二次電池用正極と、負極活物質を含む負極と、非水電解液と、これらを収容する外装体とを含む。
 また、本発明の他の態様のリチウム二次電池用正極活物質の製造方法は、上記のリチウム二次電池用正極活物質を製造する方法であって、
 正極活物質をメタリン酸リチウムを含む被覆形成用液に浸漬する工程と、
 前記被膜形成用液を分離除去する工程と、
 浸漬後の正極活物質を、メタリン酸リチウムを溶解する溶媒で洗浄する工程を含む。
 また、本発明の他の態様のリチウム二次電池の製造方法は、前記製造方法により被覆正極活物質を形成する工程と、この被覆正極活物質を用いて正極を形成する工程と、負極を形成する工程と、該正極と該負極と電解液を外装体に収容する工程を含む。
 本発明の実施形態によれば、リチウム二次電池の使用電圧を高電位に設定した場合であっても、正極での溶媒の酸化分解を抑制でき、ガス発生を抑制することができる正極活物質、これを用いた正極及びリチウム二次電池、並びにそれらの製造方法を提供することができる。
本発明の実施形態によるリチウム二次電池の一例の構成を示す概略断面図である。 本発明の実施例において作製した正極活物質のXPSスペクトルのP2pスペクトルを示す図である。
 [リチウム二次電池用正極活物質]
 本発明の実施形態によるリチウム二次電池用正極活物質は、正極活物質の表面が直接メタリン酸リチウムで被覆された被覆正極活物質を含む。メタリン酸リチウムによる十分な被覆効果を得る点から、正極活物質に対する十分な比率のメタリン酸リチウムで、正極活物質の表面の全体にわたって直接被覆されていることが好ましい。メタリン酸リチウムは、正極活物質表面と、水による洗浄では解離しない結合を形成して、正極活物質表面の全体にわたって安定な被膜を形成することができる。
 上記の正極活物質としては、通常正極活物質として使用されるものであれば、特に限定されるものではないが、作動電圧が4.2V以上のものが好ましい。正極活物質のBET比表面面積が0.5~30m/gのものを用いることができ、好ましくは1~20m/gのものを用いることができる。
 具体的には、LiMnO、LiMn等のLiMn(0<x<2)、LiCoO、LiNiO等のリチウム遷移金属酸化物や、LiCo1-xNi(0.01<x<1)、LiNiCoMn(x+y+z=1、0.01<x、0.01<y、0.01<z)、LiNiβCoγAlδ(β+γ+δ=1、0.7≦β<1、0<γ≦0.2、0<δ≦0.1)等のリチウムと2種以上の遷移金属の酸化物であるリチウム遷移金属複合酸化物、LiFePO等のオリビン構造を有するリン酸化合物を好適なものとして挙げることができる。これらは1種又は2種以上を組み合わせて用いることができる。
 これらのうち、使用電圧が4.5V以上のリチウム二次電池で使用できる正極活物質としては、リチウム遷移金属複合酸化物において化学量論組成よりもLiを過剰にしたリチウム過剰遷移金属複合酸化物が挙げられる。
 このようなリチウム過剰遷移金属複合酸化物としては、
 Li1+aNiMn(0<a≦0.5、0<x<1、0<y<1)、
 Li1+aNiMn(0<a≦0.5、0<x<1、0<y<1、0<z<1、Mは、CoまたはFe)、
 LiαNiβCoγAlδ(1<α≦1.2、β+γ+δ=1、0.7≦β<1、0<γ≦0.2、0<δ≦0.1)等が挙げられる。
 また、コバルト、マンガン、ニッケル等の複数種の遷移金属とリチウムからなるリチウム遷移金属複合酸化物を挙げることができ、特に、LiNi0.5Mn1.5等のスピネル構造を有するものは4.8V以上の作業電圧を有し、好適に用いることができる。
 更に、サイクル特性や安全性の向上、また高い充電電位での使用を可能にするため、リチウム遷移金属複合酸化物の一部を他の元素で置換したものも高電位リチウム二次電池で使用することができる。例えば、リチウム遷移金属複合酸化物を構成するコバルト、マンガン、ニッケルの少なくとも一種の元素の一部をSn、Mg、Ti、Fe、Al、Zr、Cr、V、Ga、Ge、Sm、Zn、Cu、Bi、Mo、La等の少なくとも1種以上の元素で置換したり、酸素原子の一部をSやFで置換したり、またはこれらの元素を含有する酸化物(SnO、MgO、TiO、Al、ZrO、V、Ga、GeO、Sm、ZnO、MoO、La)等で正極表面を被覆したものを用いることができる。
 これらのリチウム遷移金属複合酸化物としては、具体的は、例えば、LiCo0.8Ni0.2、LiNi1/2Mn3/2、LiNi1/3Co1/3Mn1/3、LiNi0.4Co0.3Mn0.3(NCM433と略記)、LiNi0.5Co0.2Mn0.3(NCM523と略記)、LiNi0.5Co0.3Mn0.2(NCM532と略記)、LiNi0.8Co0.15Al0.05、LiNi0.8Co0.1Mn0.1、Li1.2Mn0.4Ni0.4、Li1.2Mn0.6Ni0.2、Li1.19Mn0.52Fe0.221.98、Li1.21Mn0.46Fe0.15Ni0.15、LiMn1.5Ni0.5、Li1.2Mn0.4Fe0.4、Li1.21Mn0.4Fe0.2Ni0.2、Li1.26Mn0.37Ni0.22Ti0.15、LiMn1.37Ni0.5Ti0.134.0、Li1.2Mn0.56Ni0.17Co0.07、Li1.2Mn0.54Ni0.13Co0.13、Li1.2Mn0.56Ni0.17Co0.07、Li1.2Mn0.54Ni0.13Co0.13、LiNi0.8Co0.15Al0.05、LiNi0.5Mn1.48Al0.02、LiNi0.5Mn1.45Al0.053.90.05、LiNi0.4Co0.2Mn1.25Ti0.15、Li1.23Fe0.15Ni0.15Mn0.46、Li1.26Fe0.11Ni0.11Mn0.52、Li1.2Fe0.20Ni0.20Mn0.40、Li1.29Fe0.07Ni0.14Mn0.57、Li1.26Fe0.22Mn0.37Ti0.15、Li1.29Fe0.07Ni0.07Mn0.572.8、Li1.30Fe0.04Ni0.07Mn0.61、Li1.2Ni0.18Mn0.54Co0.08、Li1.23Fe0.03Ni0.03Mn0.58等を挙げることができる。
 これらは1種又は2種以上を組み合わせて用いることができる。具体的には、例えば、NCM532またはNCM523とNCM433とを9:1~1:9(質量比)の範囲、例えば、2:1(質量比)で混合して使用することができる。
 また、以下の式(1)で示されるリチウム遷移金属複合酸化物を用いることができる。例えば、式(1)において、xが0.4以下のNiの含有量が高い化合物と、Niの含有量が0.5を超えない化合物(例えばxが0.5以上のNCM433)とを混合することで、高容量で熱安定性の高い電池を構成することもできる。
      LiNi(1-x)   (1)
(但し、0≦x<1、0<y≦1.2、MはCo、Al、Mn、Fe、Ti及びBからなる群より選ばれる少なくとも1種の元素を示す。)
 [被覆正極活物質]
 本発明の実施形態によるリチウム二次電池用正極活物質に含まれる被覆正極活物質は、上記正極活物質の表面が直接メタリン酸リチウムで被覆されたものである。このメタリン酸リチウムは、(LiPO(nはLiPO3単位の繰り返し数で、3以上の整数を取り得る)で直接又は近似的に表すことができる物質であり、シクロリン酸のリチウム塩(例えばnの値が3~6のメタリン酸のリチウム塩)、ポリリン酸のリチウム塩が挙げられる。メタリン酸リチウムはこれらの1種または2種以上を含むことができる。なお、ポリリン酸のリチウム塩は、[OP-(OPO-OPO(m+2)-(mは1以上の整数)で表されるイオンとリチウムイオンを含む塩であり、mの値が大きくなるほど(LiPOに近づくことになる。
 上記メタリン酸リチウムが正極活物質に被覆される際の化学反応等の詳細は不明であるが、正極活物質表面において、式(2)(式中のnはLiPO3単位の繰り返し数を表し、Mn+は金属イオンを表し、n+は価数を表す)に示すように、メタリン酸リチウムが正極活物質表面に存在するヒドロキシル基と反応することで、正極活物質表面にメタリン酸残基部分(メタリン酸リチウムからリチウムイオンを除いた部分)が化学結合することが考えられる。例えば、式(2)に示すように、メタリン酸残基部分の燐原子(P)と正極活物質の金属イオン(Mn+)が酸素原子(O)を介して結合すると考えられる。
Figure JPOXMLDOC01-appb-C000001
 このようにメタリン酸リチウムによって正極活物質表面を被覆した正極活物質(被覆正極活物質)を用いたリチウム二次電池は、単にメタリン酸リチウムを正極スラリーに混合して作製された正極を用いたリチウム二次電池に比べ、充放電に伴う正極活物質の表面における電解液の化学反応や分解が抑制されるため、正極からのガス発生が抑制され、また容量が大きなリチウム二次電池(リチウムイオン二次電池)が得られる。さらに、メタリン酸リチウムで正極活物質表面が被覆されているためリチウム二次電池(リチウムイオン二次電池)が長期に亘って安定性を有し、寿命を延長させる効果が得られる。その結果、容量が大きく、エネルギー密度が高く、充放電サイクルの安定性に優れたリチウムイオン二次電池が得られる。
 このようなメタリン酸リチウムを用いて形成される被覆正極活物質において、正極活物質の表面を被覆するメタリン酸リチウムAの量は、被覆前の正極活物質Bに対して質量比(A/B)0.0005~0.15であることが好ましく、より好ましくは0.001~0.10である。正極活物質の本来の特性をできるだけ損なわないで十分な被覆効果を得る点から、上記範囲にあることが好ましい。
 上記被覆正極活物質を含み正極集電体上に形成された正極活物質層の密度は、1.0g/cm以上、3.0g/cm以下であることが好ましい。正極活物質層の密度が1.0g/cm以上であれば、放電容量の絶対値が小さくなるのを抑制することができる。一方、正極活物質層の密度が3.0g/cm以下であれば、電解液が電極へ容易に含浸し、放電容量が低下するのを抑制することができる。
 [メタリン酸リチウムが被覆された被覆正極活物質の製造方法]
 このような被覆正極活物質は、メタリン酸リチウムを含む被覆形成用液に正極活物質を浸漬することにより、その正極活物質の表面をメタリン酸リチウムで被覆して調製することができる。
 例えば、本発明の実施形態によるリチウム二次電池用正極活物質の製造方法は、正極活物質を、メタリン酸リチウムが溶媒(例えば水)に溶解した被覆形成用液に浸漬して、正極活物質の表面をメタリン酸リチウムで被覆して被覆正極活物質を形成する工程と、前記被膜形成用液を分離除去する工程(例えばろ別等の固液分離)と、その後、正極活物質を、メタリン酸リチウムを溶解できる溶媒(例えば水)で洗浄する工程を含む。メタリン酸リチウムで被覆処理する前に他の被覆処理をすることなく、メタリン酸リチウムを含む被覆形成用液に正極活物質を浸漬して被覆処理するため、正極活物質の表面とメタリン酸リチウムとの間に介在層を形成することなく、正極活物質の表面の全体にわたって直接にメタリン酸リチウムで被覆することができる。
 上記の被覆形成用液は、メタリン酸リチウムを水に溶解して調製することができる。被覆形成用液中のメタリン酸リチウムの含有量は、0.05~15質量%であることが好ましく、0.1~10質量%であることがより好ましい。
 上記の被覆形成用液に正極活物質を加え、例えば、室温(例えば25℃)~100℃(好ましくは40~100℃、より好ましくは50~100℃)で1時間から24時間浸漬し、正極活物質とメタリン酸リチウムとを反応させる。その後、正極活物質をろ別し、さらに水洗することで未反応のメタリン酸リチウムが除去される。結果、正極表面にメタリン酸リチウムが結合した被覆膜が形成される。そして室温(例えば25℃)~150℃で真空下または大気圧下で乾燥させ、その後、250~500℃で、空気下または不活性雰囲気下で、1時間から24時間加熱処理する。このようにして被覆正極活物質を得ることができる。
 また、被覆形成用液に正極活物質を加え、例えば、室温(例えば25℃)~100℃(好ましくは40~100℃、より好ましくは50~100℃)で1時間から24時間浸漬し、正極活物質とメタリン酸リチウムとを反応させた後、ろ別に代えて、水を加熱蒸発させ、その後、水洗することで未反応のメタリン酸リチウムを除去し、上記と同様に加熱処理(加熱乾燥)することで被覆正極活物質を得ることもできる。
 また、上記方法で製造したメタリン酸リチウムが被覆された被覆正極活物質に、さらにSn、Mg、Ti、Al、Zr、Cr、V、Ga、Ge、Sm、Zn、Cu、Bi、Mo、La等の元素を含有する酸化物(例えばSnO、MgO、TiO、Al、ZrO、V、Ga、GeO、Sm、ZnO、MoO、La)等を被覆してもよい。
 この酸化物の被膜の形成方法としては、例えば、上記金属元素の硝酸塩、硫酸塩、金属アルコキシド等の溶液に正極活物質を加え、加熱反応させて水分を蒸発させた後、250℃から500℃で熱処理することで酸化物の被膜を形成することができる。
 [正極]
 本発明の実施形態によるリチウム二次電池用正極は、上記被覆正極活物質を含む正極活物質層が正極集電体上に形成されたものである。
 正極活物質層は上記被覆正極活物質を含むものであればよいが、インピーダンスを低下させる目的で、導電補助剤を添加してもよい。導電補助剤としては、例えば、天然黒鉛、人造黒鉛等のグラファイト類、アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルブラック等のカーボンブラック類が挙げられる。導電補助剤は、複数の種類を適宜混合して用いてもよい。導電補助剤の量は、正極活物質100質量部に対して、1~10質量部が好ましい。
 正極活物質層は、正極用結着剤を用いて、上記被覆正極活物質の粒子同士を結着し一体化して、正極集電体上に形成されたものが好ましい。正極用結着剤としては、例えば、ポリフッ化ビニリデンやビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等を挙げることができる。特に、汎用性や低コストの観点から、ポリフッ化ビニリデンを正極用結着剤として使用することが好ましい。使用する正極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」との観点から、正極活物質100質量部に対して2~10質量部が好ましい。
 正極集電体としては、特に制限されるものではなく、例えば、アルミニウム箔やステンレス製のラス板等を用いることができる。
 正極は、上述の被覆正極活物質を含む正極極活物質と、結着剤と、必要に応じて各種の助剤等との混合物に溶媒を加えて混練してスラリー化した塗布液を集電体に塗布し、乾燥することにより製造することができる。
 [リチウム二次電池]
 本発明の実施形態によるリチウム二次電池は、上記正極と、負極活物質を含む負極と、これらの電極に含浸させる電解液と、これらを収納する外装体とを含む。
 [負極]
 負極としては、リチウムイオンの吸蔵放出が可能な負極活物質を含むものであればよいが、負極活物質粒子同士が負極用結着剤によって結着され一体化され、負極集電体上に負極活物質層として形成されたものを用いることができる。
 負極活物質としては、リチウムとの合金化が可能な金属又は合金、リチウムイオンの吸蔵及び放出が可能な酸化物や炭素材料等を挙げることができる。
 上記の金属としては、例えば、単体ケイ素、スズ等を挙げることができる。
 上記の酸化物としては、SiO(0<x≦2)で表されるケイ素酸化物、五酸化ニオブ(Nb)、リチウムチタン複合酸化物(Li4/3Ti5/3)、二酸化チタン(TiO)等を挙げることができる。これらのうち、ケイ素酸化物は負極活物質自体の繰り返し充放電に対する膨脹収縮を緩和するため、充放電サイクル特性の観点から好ましく用いられる。例えば、SiO(0.5≦x≦1.5)で表されるケイ素酸化物を使用できる。
 ケイ素酸化物は結晶性、又は非結晶性であってもよく、SiLi(y>0、2>z>0)で表されるリチウムを含んでいてもよく、微量の窒素、ホウ素、及びイオウの何れか1種以上の元素を、0.1~5質量%含有していてもよい。微量の金属元素や非金属元素をケイ素酸化物に含有させることによって、ケイ素酸化物の電気伝導性を向上させることができる。
 負極活物質として、ケイ素酸化物は単体ケイ素と共に用いることが充放電において体積変化を抑えることができるため好ましい。単体ケイ素とケイ素酸化物とを含む負極活性物質は、単体ケイ素とケイ素酸化物とを混合し、高温減圧下にて焼結させることによって作製することができる。また、負極活物質として、ケイ素酸化物の他、ケイ酸塩、ニッケルシリサイド、コバルトシリサイドなどの遷移金属とケイ素との化合物等も用いることができる。ケイ素化合物として遷移金属とケイ素との化合物を含む負極活物質は、例えば、単体ケイ素と遷移金属を混合して溶融させたり、単体ケイ素の表面に遷移金属を蒸着等によって被覆させたりすることによって作製することができる。
 負極活物質としての上記炭素材料は、サイクル特性及び安全性が良好であるとともに、連続充電特性が優れていることから好ましい。このような炭素材料としては、例えば、黒鉛材料や非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、カーボンブラック、コークス、メソカーボンマイクロビーズ、ハードカーボン、グラファイト等を挙げることができ、黒鉛材料としては、人造黒鉛や天然黒鉛、カーボンブラックとしては、アセチレンブラックやファーネスブラック等を挙げることができる。これらは1種又は2種以上を組み合わせて用いることができる。結晶性の高い黒鉛は、電気伝導性が高く、負極集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。
 負極活物質として、ケイ素、ケイ素酸化物、炭素材料を含むものが、充放電に伴う体積変化を抑えることができ好ましく、これらを単に混合して用いることもできるが、これらを含む複合体(以下、負極複合体ともいう。)とすることが好ましい。負極複合体は、全部または一部がアモルファス構造のケイ素酸化物中にケイ素の全部又は一部が分散され、表面を炭素で被覆されている構造を有するものであることが好ましい。アモルファス構造のケイ素酸化物は、炭素材料やケイ素の体積膨張を抑制することができ、ケイ素が分散されることにより電解液の分解も抑制することができる。このメカニズムは明確ではないが、ケイ素酸化物がアモルファス構造であることによって、炭素材料と電解液の界面への皮膜形成に何らかの影響があるものと推定される。また、アモルファス構造は、結晶粒界や欠陥といった不均一性に起因する要素が比較的少ないと考えられる。ケイ素酸化物の全部または一部がアモルファス構造を有することは、X線回折測定によって確認することができる。ケイ素酸化物がアモルファス構造を有しない場合には、X線回折測定において、ケイ素酸化物に固有のピークが強く観測される。一方、ケイ素酸化物の全部または一部がアモルファス構造を有する場合は、X線回折測定において、ケイ素酸化物に固有のピークがブロードとなる。
 ケイ素の全部または一部がケイ素酸化物中に分散していることは、透過型電子顕微鏡観察とエネルギー分散型X線分光法測定とを併用することによって確認することができる。具体的には、サンプルの断面を透過型電子顕微鏡によって観察し、ケイ素酸化物中に分散しているケイ素部分の酸素濃度をエネルギー分散型X線分光法測定によって測定する。その結果、ケイ素酸化物中に分散されたケイ素が酸化物となっていないことを確認することができる。
 負極複合体において、ケイ素、ケイ素酸化物および炭素材料の含有割合は、ケイ素の含有量は負極複合体中、5質量%以上90質量%以下とすることが好ましく、20質量%以上50質量%以下とすることがより好ましい。ケイ素酸化物の含有量は、負極複合体中、5質量%以上90質量%以下とすることが好ましく、40質量%以上70質量%以下とすることがより好ましい。炭素材料の含有量は、負極複合体中、2質量%以上50質量%以下とすることが好ましく、2質量%以上30質量%以下とすることがより好ましい。
 このような負極複合体は、例えば、特開2004-47404号公報に開示されている方法で作製することができる。すなわち、ケイ素酸化物をメタンガスなどの有機物ガスを含む雰囲気下でCVD処理を行うことで、ケイ素がケイ素酸化物中にナノクラスター化し、表面が炭素で被覆されたものが得られる。更に、負極複合体の表面をシランカップリング剤等によって処理することもできる。
 また、負極活物質として、粒子状の単体ケイ素、ケイ素酸化物及び炭素材料の混合物であってもよい。例えば、単体ケイ素の平均粒子径を、炭素材料およびシリコン酸化物の平均粒子径よりも小さい構成とすることができる。このようにすれば、充放電時において体積変化の大きい単体ケイ素が相対的に小粒径となり、体積変化の小さい炭素材料やケイ素酸化物が相対的に大粒径となるため、デンドライト生成および合金の微粉化がより効果的に抑制される。また、充放電の過程において、大粒径の粒子と小粒径の粒子が交互にリチウムイオンを吸蔵放出し、この点からも、残留応力、残留歪みの発生が抑制される。
 単体ケイ素の平均粒子径は、例えば20μm以下が好ましく、15μm以下がより好ましい。また、ケイ素酸化物の平均粒子径が炭素材料の平均粒子径の1/2以下が好ましく、単体ケイ素の平均粒子径がケイ素酸化物の平均粒子径の1/2以下が好ましい。平均粒子径を上記の範囲に制御すれば、体積膨脹の緩和効果をより有効に得ることができるため、エネルギー密度、サイクル寿命および効率のバランスに優れた二次電池を得ることができる。単体ケイ素やケイ素酸化物などの平均粒子径は、50%累積径D50(メジアン径)として、レーザー回折散乱法や動的光散乱法などの測定法によって測定される。
 負極活物質層中の負極活物質は、55質量%以上であることが好ましく、65質量%以上であることがより好ましい。
 負極用結着剤としては、特に制限されるものではないが、例えば、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム(SBR)、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド、アルカリで中和されたリチウム塩、ナトリウム塩、カリウム塩を含む、ポリアクリル酸又はカルボキシメチルセルロース等を用いることができる。中でも、結着性が強いことから、ポリイミドやポリアミドイミド、SBR、アルカリで中和されたリチウム塩、ナトリウム塩、カリウム塩を含むポリアクリル酸又はカルボキシメチルセルロースが好ましい。使用する負極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」との観点から、負極活物質100質量部に対して5~25質量部が好ましい。
 負極集電体としては、銅やニッケル、ステンレス鋼等の金属材料製のものを挙げることができる。中でも、加工性及びコストの点から銅が特に好ましい。また、負極集電体の表面は、予め粗面化処理しておくことが好ましい。さらに、集電体の形状は任意であり、箔状や平板状、メッシュ状等が挙げられる。また、エキスパンドメタルやパンチングメタルのような穴あきタイプの集電体を使用することもできる。
 負極は、正極活物質層の場合と同様に、上述の負極活物質と、結着剤と、必要に応じて各種の助剤等との混合物に溶媒を加えて混練してスラリー化した塗布液を集電体に塗布し、乾燥することにより製造することができる。
 [電解液]
 電解液は、非水溶媒に電解質を溶解したものを用いることができる。
 溶媒としては、環状カーボネート類や鎖状カーボネート類、鎖状エステル類、ラクトン類、エーテル類、スルホン類、ニトリル類、リン酸エステル類等を用いることができる。
 環状カーボネート類としては、プロピレンカーボネートやエチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート等を挙げることができる。
 鎖状カーボネート類としては、ジメチルカーボネートやジエチルカーボネート、ジプロピルカーボネート、ジブチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、メチルブチルカーボネート等を挙げることができる。
 鎖状エステル類としては、ギ酸メチルや酢酸メチル、プロピオン酸メチル、プロピオン酸エチル、ピバリン酸メチル、ピバリン酸エチル等、ラクトン類としては、γ-ブチロラクトンやδ-バレロラクトン、α-メチル-γ-ブチロラクトン等、エーテル類としては、テトラヒドロフランや2-メチルテトラヒドロフラン、1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタン等を挙げることができる。
 スルホン類としては、スルホランや3-メチルスルホラン、2,4-ジメチルスルホラン等、ニトリル類としては、アセトニトリルやプロピオニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル等、リン酸エステル類としては、リン酸トリメチルやリン酸トリエチル、リン酸トリブチル、リン酸トリオクチル等を挙げることができる。
 なお、上記非水溶媒は、一種を単独または二種以上を組み合わせて使用することができる。複数種類の非水溶媒の組み合わせとしては、例えば、環状カーボネート類と鎖状カーボネート類との組み合わせが挙げられる。中でも、優れた電池特性を実現する上では、環状カーボネート類と鎖状カーボネート類とを少なくとも含む組み合わせがより好ましい。
 また、環状カーボネート類と鎖状カーボネート類との組み合わせに、第3溶媒として、フッ素化エーテル系溶媒、フッ素化カーボネート系溶媒、フッ素化リン酸エステル類等から選ばれるの少なくとも一種を加えてもよい。
 フッ素化エーテル系溶媒としては、具体例としては、CFOCH、CFOC、F(CFOCH、F(CFOC、F(CFOCH、F(CFOC、F(CFOCH、F(CFOC、F(CFOCH、F(CFOC、F(CFOCH、F(CFOC、F(CFOCH、CFCHOCH、CFCHOCHF、CFCFCHOCH、CFCFCHOCHF、CFCFCHO(CFH,CFCFCHO(CFF、HCFCHOCH、H(CFOCHCH、H(CFOCHCF、H(CFCHOCHF、H(CFCHO(CFH、H(CFCHO(CFH、H(CFCHO(CFH、H(CFCHO(CFH、(CFCHOCH、(CFCHCFOCH、CFCHFCFOCH、CFCHFCFOCHCH、CFCHFCFCHOCHF、CFCHFCFCHOCHCFCF、H(CFCHOCFCHFCF、CHFCHOCFCFHCF、F(CFCHOCFCFHCF、CF(CFOCHFなどが挙げられる。
 また、フッ素化カーボネート系溶媒としては、フルオロエチレンカーボネート、フルオロメチルメチルカーボネート、2-フルオロエチルメチルカーボネート、エチル-(2-フルオロエチル)カーボネート、(2,2-ジフルオロエチル)エチルカーボネート、ビス(2-フルオロエチル)カーボネート、エチル-(2,2,2-トリフルオロエチル)カーボネート等が挙げられる。
 フッ素化リン酸エステル類としては、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(トリフルオロメチル)、リン酸トリス(2,2,3,3-テトラフルオロプロピル)等が挙げられる。
 一方、電解質塩(支持塩)の具体例としては、LiPF、LiBF、LiClO等のリチウム塩や、LiN(SOF)、LiN(SOCF、LiN(SO、CFSOLi、CSOLi、LiAsFやLiAlCl、LiSbF、LiPF(CF、LiPF(C、LiPF(CF、(CF(SONLi、(CF(SOLiを挙げることができる。さらに、Lithium bis(oxalate)borate、Lithium oxaltodifluoroborateも用いることができる。これらの電解質塩は、1種又は2種以上を組み合わせて使用することができる。これらのうち、LiPF、LiBF、LiN(SOF)、LiN(SOCF、LiN(SOが好ましい。
 電解質塩の電解液中の濃度は、0.1~3Mであることが好ましく、0.5~2Mであることがより好ましい。
 また、電解液には、その他の成分として、例えば、ビニレンカーボネートやマレイン酸無水物、エチレンサルファイト、ボロン酸エステル、1,3-プロパンスルトン、1,5,2,4-ジオキサジチアン-2,2,4,4-テトラオキシド等をその他の成分として含んでいてもよい。
 [セパレーター]
 セパレーターとしては、ポリプロピレンやポリエチレン等のポリオレフィンやアラミド、ポリイミド等の単層または積層の多孔性フィルムや不織布を用いることができる。また、ガラス繊維等の無機材料、ポリオレフィンフィルムにフッ素化合物や無機微粒子をコーティングしたもの、ポリエチレンフィルムとポリプロピレンフィルムの積層体や、ポリオレフィンフィルムにアラミド層を積層したものを挙げることができる。
 セパレーターの厚さは、電池のエネルギー密度とセパレーターの機械的強度との面から5~50μmが好ましく、10~40μmがより好ましい。
 [リチウム二次電池の製造方法]
 本発明のリチウム二次電池の製造方法は、例えば、正極と負極をセパレーターを介して対向させた電極対(または所定の容量に応じた複数の電極対を含む積層体)を外装体に収容し、電解液を注入し、前記外装体を封止する工程を有する。
 [リチウム二次電池の形状]
 リチウム二次電池としては、単層または積層タイプの、セパレーターを有するコイン電池や円筒型電池、ラミネート型電池等に上述の構成を適用できる。
 例えば、積層ラミネート型のリチウムイオン電池の場合、正極、セパレーター、負極を交互に積層し、それぞれの電極を金属端子のタブに接続し、ラミネートフィルム等の外装体中に入れ、電解液を注入してシールして形成された形状を有する。
 [外装体]
 外装体は、セパレーターを介して積層される正極及び負極と、これらに含浸される電解液とを収容し、安定して保持可能な強度を有し、これらの物質に対して電気化学的に安定で、気密性、水密性を有するものが好ましい。具体的には、例えば、ステンレス、ニッケルメッキを施した鉄、アルミニウム、チタン若しくはこれらの合金又はメッキ加工をしたもの、金属ラミネート樹脂フィルム(金属ラミネートフィルム)等を用いることができる。
 金属ラミネートフィルムは、熱融着性樹脂フィルムに金属薄膜が積層されたものであり、電解液に安定でかつ十分な水密性、気密性を有するものであることが好ましい。
 熱融着性樹脂としては、ポリプロピレンやポリエチレン;ポリプロピレン又はポリエチレンの酸変成物;ポリフェニレンサルファイド;ポリエチレンテレフタレートなどのポリエステル;ポリアミド;エチレン-酢酸ビニル共重合体;エチレン-メタクリル酸共重合体又はエチレン-アクリル酸共重合体を金属イオンで分子間結合させたアイオノマー樹脂等を用いることができる。熱融着性樹脂フィルムの厚さは10~200μmが好ましく、30~100μmであることがより好ましい。
 金属薄膜としては、アルミニウム、シリカ、アルミナをコーティングしたポリプロピレン、ポリエチレン等を用いることができる。体積膨張を抑制する観点から、アルミニウムのラミネートフィルムが好ましい。更に、金属ラミネートフィルムとして、上記金属ラミネートフィルムの金属薄膜が設けられていない面に、ポリエチレンテレフタレートなどのポリエステルやポリアミド等のフィルムからなる保護層を積層したものを挙げることができる。
 [電池の構成例]
 本発明の実施形態によるリチウム二次電池(リチウムイオン二次電池)の一実施例を図1の概略構成図に示す。図1に示すリチウム二次電池は、正極活物質層1が正極集電体1Aの両面又は片面に設けられた正極10と、負極活物質層2が負極集電体2Aの両面又は片面に設けられた負極20とが多孔質セパレーター3を介して積層され、電解液(図示せず)と共に、アルミニウム蒸着ラミネートフィルム外装体4に収容されている。正極集電体1Aの正極活物質層1が設けられていない部分にアルミニウム板で形成された正極タブ1Bが、負極集電体2Aの負極活物質層2が設けられてない部分にニッケル板で形成された負極タブ2Bが接続され、正極タブ及び負極タブのそれぞれの先端が外装体4外に引き出されている。
 以下、本発明の実施形態によるリチウム二次電池用正極活物質、リチウム二次電池用正極、これらの製造方法、これらを用いたリチウム二次電池について、詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 [合成例1]リチウム二次電池用正極活物質の製造例1
 メタリン酸リチウム(三津和化学薬品(株)製、No.63697)0.8591gを水100mlに溶解し(0.1mol/L、0.85質量%)、被覆形成用液を調製した。得られた被覆形成用液に、リチウム遷移金属複合酸化物(Li1.26Fe0.11Ni0.11Mn0.52)を50g加え、60℃で3時間放置した。溶液中からリチウム酸化物をろ別して、水で洗浄後、洗浄したリチウム酸化物を減圧下、120℃で1時間乾燥させ、さらに400℃で空気気流下、常圧で1時間乾燥させた。その結果、被覆前の正極活物質(リチウム遷移金属複合酸化物)に対して0.3質量%の被覆量(結合量)のメタリン酸リチウムで被覆された被覆正極活物質を得た。なお、メタリン酸リチウムの正極活物質に対する被覆量は、ろ別して回収した反応水溶液中に残った未反応のメタリン酸リチウムの量に基づいて求めた。
 [合成例2]リチウム二次電池用正極活物質の製造例2
 リチウム遷移金属複合酸化物(Li1.26Fe0.11Ni0.11Mn0.52)を加えた被覆形成用液を60℃で3時間放置する代わりに、80℃で3時間放置した以外は、合成例1と同様にして被覆正極活物質を得た。メタリン酸リチウムの正極活物質に対する被覆量(結合量)は0.8質量%であった。
 得られた正極活物質、メタリン酸リチウム(Li(PO)及びリン酸リチウム(LiPO)をそれぞれXPS分析して得られたP2pのスペクトルを図2に示す。これらの結果から、正極活物質をメタリン酸リチウムで被覆することで、メタリン酸リチウムが正極活物質表面で化学反応して結合し、その結果メタリン酸リチウムやリン酸リチウムと異なる化学構造になっていることが確認された。
 [合成例3]リチウム二次電池用正極活物質の製造例3
 メタリン酸リチウム0.8591gを水100mlに溶解する代わりに、メタリン酸リチウム1.7182gを水100mlに溶解(0.2mol/L、1.7質量%)した以外は、合成例2と同様にして被覆正極活物質を得た。メタリン酸リチウムの正極活物質に対する被覆量(結合量)は2.3質量%であった。
 [合成例4]リチウム二次電池用正極活物質の製造例4
 メタリン酸リチウム0.8591gを水100mlに溶解する代わりに、メタリン酸リチウム2.5773gを水100mlに溶解(0.3mol/L、2.6質量%)した以外は、合成例2と同様にして被覆正極活物質を得た。メタリン酸リチウムの正極活物質に対する被覆量(結合量)は4.7質量%であった。
 [合成例5]リチウム二次電池用正極活物質の製造例5
 メタリン酸リチウム0.8591gを水100mlに溶解する代わりに、メタリン酸リチウム5.1546gを水100mlに溶解(0.6mol/L、5.1質量%)した以外は、合成例2と同様にして被覆正極活物質を得た。メタリン酸リチウムの正極活物質に対する被覆量(結合量)は9.7質量%であった。
 [合成例6]リチウム二次電池用正極活物質の製造例6
 リチウム遷移金属複合酸化物(Li1.26Fe0.11Ni0.11Mn0.52)を用いる代わりに、リチウム遷移金属複合酸化物(Li1.23Fe0.15Ni0.15Mn0.46)を用いた以外は、合成例2と同様にして被覆正極活物質を得た。メタリン酸リチウムの正極活物質に対する被覆量(結合量)は0.7質量%であった。
 [合成例7]リチウム二次電池用正極活物質の製造例7
 リチウム遷移金属複合酸化物(Li1.26Fe0.11Ni0.11Mn0.52)を用いる代わりに、リチウム遷移金属複合酸化物(Li1.2Ni0.18Mn0.54Co0.08)を用いた以外は、合成例2と同様にして被覆正極活物質を得た。メタリン酸リチウムの正極活物質に対する被覆量(結合量)は0.7質量%であった。
 [合成例8]リチウム二次電池用正極活物質の製造例8
 リチウム遷移金属複合酸化物(Li1.26Fe0.11Ni0.11Mn0.52)を用いる代わりに、リチウム遷移金属複合酸化物(LiNi0.8Co0.15Al0.05)を用いた以外は、合成例2と同様にして被覆正極活物質を得た。メタリン酸リチウムの正極活物質に対する被覆量(結合量)は0.6質量%であった。
 [合成例9]リチウム二次電池用正極活物質の製造例9
 リチウム遷移金属複合酸化物(Li1.26Fe0.11Ni0.11Mn0.52)を用いる代わりに、リチウム遷移金属複合酸化物(LiNi0.8Co0.1Mn0.1)を用いた以外は、合成例2と同様にして被覆正極活物質を得た。メタリン酸リチウムの正極活物質に対する被覆量(結合量)は0.5質量%であった。
 [合成例10]リチウム二次電池用正極活物質の製造例10
 リチウム遷移金属複合酸化物(Li1.26Fe0.11Ni0.11Mn0.52)を用いる代わりに、リチウム遷移金属複合酸化物(Li1.26Fe0.11Ni0.11Mn0.52)に酸化サマリウム(Sm)を1質量%被覆したもの用いた以外は、合成例2と同様にして被覆正極活物質を得た。メタリン酸リチウムの正極活物質に対する被覆量(結合量)は0.4質量%であった。
 [実施例1]リチウム二次電池の製造例1
 合成例1で得られた被覆正極活物質(メタリン酸リチウムの被覆量:0.3質量%、活物質:Li1.26Fe0.11Ni0.11Mn0.52)を92質量%、ケッチェンブラックを4質量%、ポリフッ化ビニリデンを4質量%含む混合物に溶媒を添加してスラリーを調合した。そして、このスラリーをアルミニウム箔(厚み20μm)からなる正極集電体上に塗布・乾燥し、厚さ175μmの正極活物質層を作製し、正極を得た。また、正極集電体の一方の面に同様の手順で正極活物質層を形成し、正極集電体の正極活物質層を設けていない他方の面に同様の手順で正極活物質層を形成し、両面に正極活物質層を有する正極も作製した。
 平均粒径15μmのケイ素酸化物(SiO)を85重量%、ポリアミック酸を15重量%含む混合物に溶媒を添加してスラリーを調合した。そして、このスラリーを銅箔(厚さ10μm)からなる負極集電体上に塗布・乾燥し、厚さ46μmの負極活物質層を作製した。そして、作製した負極活物質層を窒素雰囲気下350℃で3時間アニールし、バインダを硬化させ、負極を得た。
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比30:70で混合した溶媒に1.0MのLiPFを溶解させて電解液を調製した。
 正極集電体および負極集電体のそれぞれに、正極タブおよび負極タブを溶接した後、作製した正極と負極との間に多孔質フィルムのセパレーターを挟み積層体を形成した。積層体を2枚のアルミラミネートフィルム外装体で覆い、外装体の3辺を熱融着により封止した。形成された外装体容器へ電解液を注入し、電解液を積層体に適度な真空度において含浸させた。その後、減圧下において、熱融着していなかった外装体の1辺を熱融着封止し、活性化処理前のリチウム二次電池を作製した。
 作製した活性化処理前のリチウム二次電池について、正極活物質1gあたり20mA(20mA/g)の電流で4.5Vまで充電した。その後、正極活物質1gあたり20mA(20mA/g)の電流で1.5Vまで放電した。1.5Vまで放電後、同様に、20mA/gで4.5Vまで充電した後に、1.5Vまで放電し、充放電サイクルを2回繰り返す活性化処理を行った。その後、外装体の封口部を破って減圧することによって電池内部のガスを抜き、破った箇所を再封口することにより、リチウム二次電池を作製した。
 [リチウム二次電池の評価]
 [初期容量と容量維持率]
 得られたリチウム二次電池について、45℃の恒温槽中、40mA/gの定電流で4.5Vまで充電し、さらに5mA/gの電流になるまで4.5Vの定電圧で充電を続けた。その後、5mA/gの電流で1.5Vまで放電し、得られた放電容量を初期容量とした。次に、このリチウム二次電池について、45℃の恒温槽中、40mA/gの定電流で4.5Vまで充電し、さらに5mA/gの電流になるまで4.5Vの定電圧で充電を続け、その後、40mA/gの電流で1.5Vまで放電した。この条件で充放電を合計30回繰り返した。1サイクル目で得られた初回の放電容量(初期容量)と30サイクル目で得られた放電容量との比から、30サイクル後の容量維持率を求めた。結果を表1に示す。
 [ガス発生量]
 30サイクル後のガス発生量をアルキメデス法により測定し、メタリン酸リチウムで被覆していない以外は同じ正極活物質を用いた比較例のガス発生量を100として、ガス発生量を相対比で示した。結果を表1に示す。
 [実施例2]リチウム二次電池の製造例2
 合成例1で得られた被覆正極活物質(メタリン酸リチウムの被覆量:0.3質量%、活物質の組成:Li1.26Fe0.11Ni0.11Mn0.52)に代えて、合成例2で得られた被覆正極活物質(メタリン酸リチウムの被覆量:0.8質量%、活物質:Li1.26Fe0.11Ni0.11Mn0.52)を用いた他は、実施例1と同様にリチウム二次電池を作製し、その評価を行った。結果を表1に示す。
 [実施例3]リチウム二次電池の製造例3
 合成例1で得られた被覆正極活物質(メタリン酸リチウムの被覆量:0.3質量%、活物質の組成:Li1.26Fe0.11Ni0.11Mn0.52)に代えて、合成例3で得られた被覆正極活物質(メタリン酸リチウムの被覆量:2.3質量%、活物質:Li1.26Fe0.11Ni0.11Mn0.52)を用いた他は、実施例1と同様にリチウム二次電池を作製し、その評価を行った。結果を表1に示す。
 [実施例4]リチウム二次電池の製造例4
 合成例1で得られた被覆正極活物質(メタリン酸リチウムの被覆量:0.3質量%、活物質の組成:Li1.26Fe0.11Ni0.11Mn0.52)に代えて、合成例4で得られた被覆正極活物質(メタリン酸リチウムの被覆量:4.7質量%、活物質:Li1.26Fe0.11Ni0.11Mn0.52)を用いた他は、実施例1と同様にリチウム二次電池を作製し、その評価を行った。結果を表1に示す。
 [実施例5]リチウム二次電池の製造例5
 合成例1で得られた被覆正極活物質(メタリン酸リチウムの被覆量:0.3質量%、活物質の組成:Li1.26Fe0.11Ni0.11Mn0.52)に代えて、合成例5で得られた被覆正極活物質(メタリン酸リチウムの被覆量:9.7質量%、活物質:Li1.26Fe0.11Ni0.11Mn0.52)を用いた他は、実施例1と同様にリチウム二次電池を作製し、その評価を行った。結果を表1に示す。
 [実施例6]リチウム二次電池の製造例6
 合成例1で得られた被覆正極活物質(メタリン酸リチウムの被覆量:0.3質量%、活物質の組成:Li1.26Fe0.11Ni0.11Mn0.52)に代えて、合成例6で得られた被覆正極活物質(メタリン酸リチウムの被覆量:0.7質量%、活物質:Li1.23Fe0.15Ni0.15Mn0.46)を用いた他は、実施例1と同様にリチウム二次電池を作製し、その評価を行った。結果を表1に示す。
 [実施例7]リチウム二次電池の製造例7
 合成例1で得られた被覆正極活物質(メタリン酸リチウムの被覆量:0.3質量%、活物質の組成:Li1.26Fe0.11Ni0.11Mn0.52)に代えて、合成例7で得られた被覆正極活物質(メタリン酸リチウムの被覆量:0.7質量%、活物質:Li1.2Ni0.18Mn0.54Co0.08)を用いた他は、実施例1と同様にリチウム二次電池を作製し、その評価を行った。結果を表1に示す。
 [実施例8]リチウム二次電池用正極の製造例8
 合成例1で得られた被覆正極活物質(メタリン酸リチウムの被覆量:0.3質量%、活物質の組成:Li1.26Fe0.11Ni0.11Mn0.52)に代えて、合成例8で得られた被覆正極活物質(メタリン酸リチウムの被覆量:0.6質量%、活物質:LiNi0.8Co0.15Al0.05)を用いた他は、実施例1と同様にリチウム二次電池を作製し、その評価を行った。結果を表1に示す。
 [実施例9]リチウム二次電池用正極の製造例9
 合成例1で得られた被覆正極活物質(メタリン酸リチウムの被覆量:0.3質量%、活物質の組成:Li1.26Fe0.11Ni0.11Mn0.52)に代えて、合成例9で得られた被覆正極活物質(メタリン酸リチウムの被覆量:0.5質量%、活物質:LiNi0.8Co0.1Mn0.1)を用いた他は、実施例1と同様にリチウム二次電池を作製し、その評価を行った。結果を表1に示す。
 [実施例10]
 電解液を、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比30:70で混合した溶媒に1.0MのLiPF6を溶解させた電解液に代えて、エチレンカーボネート(EC)とジエチルカーボネート(DEC)と1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテル(TFETFP)を体積比28.5:66.5:5で混合した溶媒に1.0MのLiPFを溶解させた電解液を用いた他は、実施例2と同様にリチウム二次電池を作製し、その評価を行った。結果を表1に示す。
 [実施例11]
 電解液を、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比30:70で混合した溶媒に1.0MのLiPFを溶解させた電解液に代えて、エチレンカーボネート(EC)とジエチルカーボネート(DEC)と(2,2-ジフルオロエチル)エチルカーボネート(DFEEC)を体積比28.5:66.5:5で混合した溶媒に1.0MのLiPFを溶解させた電解液を用いた他は、実施例2と同様にリチウム二次電池を作製し、その評価を行った。結果を表1に示す。
 [実施例12]リチウム二次電池用正極の製造例12
 合成例1で得られた被覆正極活物質(メタリン酸リチウムの被覆量:0.3質量%、活物質:Li1.26Fe0.11Ni0.11Mn0.52)に代えて、合成例10で得られた被覆正極活物質(メタリン酸リチウムの被覆量:0.4質量%、活物質:酸化サマリウム(Sm)が1質量%被覆されたLi1.26Fe0.11Ni0.11Mn0.52)を用いた他は、実施例1と同様にリチウム二次電池を作製し、その評価を行った。結果を表1に示す。
 [比較例1]
 被覆正極活物質に代えてメタリン酸リチウムで被覆していないリチウム遷移金属複合酸化物(Li1.26Fe0.11Ni0.11Mn0.52)を用いた他は、実施例1と同様にリチウム二次電池を作製し、その評価を行った。結果を表1に示す。
 [比較例2]
 正極活物質層を形成するスラリーとして、メタリン酸リチウムで被覆していないリチウム遷移金属複合酸化物(Li1.26Fe0.11Ni0.11Mn0.52)を92質量%、ケッチェンブラックを4質量%、ポリフッ化ビニリデンを4質量%含むスラリーを調合し、そこにメタリン酸リチウムをリチウム遷移金属複合酸化物に対して0.8質量%添加して調合したスラリーを用いた他は、実施例1と同様にリチウムイオン二次電池を作製し、その評価を行った。結果を表1に示す。
 [比較例3]
 被覆正極活物質に代えてメタリン酸リチウムで被覆していないリチウム遷移金属複合酸化物(Li1.23Fe0.15Ni0.15Mn0.46)を用いた他は、実施例1と同様にリチウム二次電池を作製し、その評価を行った。結果を表1に示す。
 [比較例4]
 被覆正極活物質に代えてメタリン酸リチウムで被覆していないリチウム遷移金属複合酸化物(Li1.2Ni0.18Mn0.54Co0.08)を用いた他は、実施例1と同様にリチウム二次電池を作製し、その評価を行った。結果を表1に示す。
 [比較例5]
 被覆正極活物質に代えてメタリン酸リチウムで被覆していないリチウム遷移金属複合酸化物(LiNi0.8Co0.15Al0.05)を用いた他は、実施例1と同様にリチウム二次電池を作製し、その評価を行った。結果を表1に示す。
 [比較例6]
 被覆正極活物質に代えてメタリン酸リチウムで被覆していないリチウム遷移金属複合酸化物(LiNi0.8Co0.1Mn0.1)を用いた他は、実施例1と同様にリチウム二次電池を作製し、その評価を行った。結果を表1に示す。
 [比較例7]
 被覆正極活物質に代えてメタリン酸リチウムで被覆していないリチウム遷移金属複合酸化物(酸化サマリウム(Sm)が1質量%被覆されたLi1.26Fe0.11Ni0.11Mn0.52)を用いた他は、実施例1と同様にリチウム二次電池を作製し、その評価を行った。結果1を表1に示す。
Figure JPOXMLDOC01-appb-T000002
1)メタリン酸リチウムで被覆していない正極活物質を用いたリチウムイオン二次電池(比較例1~5)の初期容量を100とした相対値
2)メタリン酸リチウムで被覆していない正極活物質を用いたリチウムイオン二次電池(比較例1~5)のガス発生量を100とした相対値
 ガス発生量に関しては、実施例1~5、10、11と比較例1を比較すると、8~30%程度に低減されていることが確認できた。また、初期容量に関しては、メタリン酸リチウムを被覆することで大きく低下しないことが確認できた。一方、実施例2と比較例2の比較から、メタリン酸リチウムを正極スラリーに添加するだけでは、ガス発生の抑制効果が小さく、さらに初期容量が大きく低下することが確認できた。
 また実施例6、7、8、9、12を、それぞれ比較例3、4、5、6、7と比較すると、ガス発生量が低減されることが確認できた。
 一方、容量維持率に関しては、実施例1~12は、比較例1~7と比較して10ポイント以上向上していることが確認できた。
 以上のように、本発明の実施形態による、メタリン酸リチウムで被覆した正極活物質を用いたリチウム二次電池は、初期容量が大きく低下せず、充放電サイクルに伴うガス発生を抑制でき、高い容量維持率が得られるという優れた特性を示す。
 本発明は、以下の態様をとることができる。
 (付記1)
 正極活物質の表面が直接メタリン酸リチウムで被覆された被覆正極活物質を含む、リチウム二次電池用正極活物質であって、
 前記正極活物質が、
 ニッケル、コバルト及びマンガンから選ばれる少なくとも一種の遷移金属元素を含むリチウム遷移金属複合酸化物;
 該リチウム遷移金属酸化物の遷移金属の一部をSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Ge、Sm、Zn、Cu、Bi、Mo、Laから選ばれる少なくとも1種の元素で置換したもの又は/及び酸素原子の一部をSで置換したもの;
 オリビン構造を有するリン酸化合物;並びに
 前記元素のいずれかを含有する酸化物で該正極活物質表面を被覆したものから選ばれる少なくとも1種を含む、リチウム二次電池用正極活物質。
 (付記2)
 正極活物質の表面が直接メタリン酸リチウムで被覆された被覆正極活物質を含む、リチウム二次電池用正極活物質であって、
 前記正極活物質が、
 下記組成式のいずれかで表されるリチウム遷移金属複合酸化物:
 Li1+aNiMn(0<a≦0.5、0<x<1、0<y<1)、
 Li1+aNiMn(0<a≦0.5、0<x<1、0<y<1、0<z<1、Mは、Coまたは/及びFe)、
 LiCo1-xNi(0.01<x<1)、
 LiNiCoMn(x+y+z=1、0.01<x、0.01<y、0.01<z)、
 LiNiβCoγAlδ(β+γ+δ=1、0.7≦β<1、0<γ≦0.2、0<δ≦0.1);
 該リチウム遷移金属酸化物のNi、Co、Mnの少なくとも一種の元素の一部をSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Ge、Sm、Zn、Cu、Bi、Mo、Laから選ばれる少なくとも1種の元素で置換したもの又は/及び酸素原子の一部をSで置換したもの;並びに
 前記元素のいずれかを含有する酸化物で該正極活物質表面を被覆したものから選ばれる少なくとも1種を含む、リチウム二次電池用正極活物質。
 以上、実施形態及び実施例を参照して本発明を説明したが、本発明は上記実施形態及び実施例に限定されるものではない。本発明の構成や詳細には、本発明の範囲内で当業者が理解し得る様々な変更をすることができる。
 本発明のリチウム二次電池用正極活物質やリチウム二次電池用正極を用いたリチウム二次電池は、電源を必要とするあらゆる産業分野、ならびに電気的エネルギーの輸送、貯蔵および供給に関する産業分野において利用することができる。具体的には、携帯電話やノートパソコン、タブレット型端末、携帯用ゲーム機などのモバイル機器の電源として利用することができる。また、電気自動車やハイブリッドカー、電動バイク、電動アシスト自転車などの移動・輸送用媒体の電源として利用することができる。さらには、家庭用蓄電システム、UPSなどのバックアップ用電源、太陽光発電や風力発電などで発電した電力を貯める蓄電設備などに利用することができる。
 この出願は、2015年12月2日に出願された日本出願特願2015-235932を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1 正極活物質層
 1A 正極集電体
 1B 正極タブ
 10 正極(カソード)
 2 負極活物質層
 2A 負極集電体
 2B 負極タブ
 20 負極(アノード)
 3 多孔質セパレーター
 4 ラミネートフィルム外装体

Claims (10)

  1.  正極活物質の表面が直接メタリン酸リチウムで被覆された被覆正極活物質を含む、リチウム二次電池用正極活物質。
  2.  前記正極活物質がリチウム遷移金属複合酸化物を含有する請求項1記載のリチウム二次電池用正極活物質。
  3.  前記正極活物質が、
     ニッケル、コバルト及びマンガンから選ばれる少なくとも一種の遷移金属元素を含むリチウム遷移金属複合酸化物;
     該リチウム遷移金属酸化物の遷移金属の一部をSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Ge、Sm、Zn、Cu、Bi、Mo、Laから選ばれる少なくとも1種の元素で置換したもの又は/及び酸素原子の一部をS又はFで置換したもの;
     オリビン構造を有するリン酸化合物;並びに
     前記元素のいずれかを含有する酸化物で該正極活物質表面を被覆したものから選ばれる少なくとも1種を含む、請求項1記載のリチウム二次電池用正極活物質。
  4.  前記正極活物質が、
     下記組成式のいずれかで表されるリチウム遷移金属複合酸化物:
     Li1+aNiMn(0<a≦0.5、0<x<1、0<y<1)、
     Li1+aNiMn(0<a≦0.5、0<x<1、0<y<1、0<z<1、Mは、Coまたは/及びFe)、
     LiCo1-xNi(0.01<x<1)、
     LiNiCoMn(x+y+z=1、0.01<x、0.01<y、0.01<z)、
     LiNiβCoγAlδ(β+γ+δ=1、0.7≦β<1、0<γ≦0.2、0<δ≦0.1);
     該リチウム遷移金属酸化物のNi、Co、Mnの少なくとも一種の元素の一部をSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Ge、Sm、Zn、Cu、Bi、Mo、Laから選ばれる少なくとも1種の元素で置換したもの又は/及び酸素原子の一部をS若しくはFで置換したもの;並びに
     前記元素のいずれかを含有する酸化物で該正極活物質表面を被覆したものから選ばれる少なくとも1種を含む、請求項1記載のリチウム二次電池用正極活物質。
  5.  正極集電体と、該正極集電体上の、請求項1から4のいずれか一項に記載のリチウム二次電池用正極活物質を含む正極活物質層とを含む、リチウム二次電池用正極。
  6.  請求項5記載のリチウム二次電池用正極と、負極活物質を含む負極と、非水電解液と、これらを収容する外装体とを含む、リチウム二次電池。
  7.  前記負極が、単体ケイ素、ケイ素酸化物および炭素のうち少なくともいずれかを含有する、請求項6に記載のリチウム二次電池。
  8.  前記非水電解液が、鎖状カーボネート系溶媒および環状カーボネート系溶媒のうち少なくとも一方を含有する、請求項6又は7に記載のリチウム二次電池。
  9.  請求項1から4のいずれか一項に記載のリチウム二次電池用正極活物質を製造する方法であって、
     正極活物質をメタリン酸リチウムを含む被覆形成用液に浸漬する工程と、
     前記被膜形成用液を分離除去する工程と、
     その後、正極活物質を、メタリン酸リチウムを溶解できる溶媒で洗浄する工程を含む、リチウム二次電池用正極活物質の製造方法。
  10.  請求項9に記載の製造方法により被覆正極活物質を形成する工程と、該被覆正極活物質を用いて正極を形成する工程と、負極を形成する工程と、該正極と該負極と電解液を外装体に収容する工程を含む、リチウム二次電池の製造方法。
PCT/JP2016/082195 2015-12-02 2016-10-31 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池、並びにそれらの製造方法 WO2017094416A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017553717A JPWO2017094416A1 (ja) 2015-12-02 2016-10-31 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池、並びにそれらの製造方法
US15/778,905 US10833369B2 (en) 2015-12-02 2016-10-31 Positive electrode active substance for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and methods for producing these

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015235932 2015-12-02
JP2015-235932 2015-12-02

Publications (1)

Publication Number Publication Date
WO2017094416A1 true WO2017094416A1 (ja) 2017-06-08

Family

ID=58797032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082195 WO2017094416A1 (ja) 2015-12-02 2016-10-31 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池、並びにそれらの製造方法

Country Status (3)

Country Link
US (1) US10833369B2 (ja)
JP (1) JPWO2017094416A1 (ja)
WO (1) WO2017094416A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110943206A (zh) * 2018-09-25 2020-03-31 深圳市比亚迪锂电池有限公司 正极活性材料及其制备方法和含有该正极活性材料的电池
JPWO2019065151A1 (ja) * 2017-09-29 2020-04-30 マクセルホールディングス株式会社 非水二次電池及びそれに用いる非水電解液、並びにその非水二次電池の製造方法
JP2022061593A (ja) * 2020-10-07 2022-04-19 プライムプラネットエナジー&ソリューションズ株式会社 活物質粉体の製造方法及び活物質粉体
US11489202B2 (en) * 2017-05-18 2022-11-01 Nec Corporation Electrolyte solution for lithium ion secondary battery and lithium ion secondary battery using same
CN116154142A (zh) * 2023-04-20 2023-05-23 浙江鑫钠新材料科技有限公司 一种半固态锂/钠电池及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109860546B (zh) * 2019-01-10 2022-02-15 宁德新能源科技有限公司 正极材料和包含所述正极材料的电化学装置
CN112713263B (zh) * 2020-12-14 2021-12-28 宁波维科新能源科技有限公司 一种偏磷酸盐包覆钴酸锂材料的制备方法及包含其的锂离子电池
CN112670487B (zh) * 2020-12-28 2022-07-15 天津巴莫科技有限责任公司 一种多重致密包覆的动力用高镍正极材料及制备方法
CN114730855B (zh) * 2021-03-19 2024-07-02 宁德新能源科技有限公司 电化学装置及电子装置
CN113140715B (zh) * 2021-04-12 2022-08-26 广东佳纳能源科技有限公司 复合正极材料及其制备方法以及锂离子电池
CN115188940A (zh) * 2021-07-30 2022-10-14 江苏翔鹰新能源科技有限公司 一种单晶镍钴锰酸锂正极材料
CN113745500B (zh) * 2021-08-03 2023-05-05 湖北融通高科先进材料集团股份有限公司 一种高镍三元正极材料的制备方法
CN113725410B (zh) * 2021-08-05 2023-07-04 华中科技大学 偏磷酸锂原位包覆的三元正极材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273674A (ja) * 1998-03-19 1999-10-08 Shin Kobe Electric Mach Co Ltd 有機電解液二次電池
JP2002358959A (ja) * 2001-03-27 2002-12-13 Showa Denko Kk 正極活物質、その製造方法、該正極活物質を用いたペースト、正極及び非水電解質二次電池
JP2010232001A (ja) * 2009-03-27 2010-10-14 Hitachi Ltd リチウム二次電池用正極材料,リチウム二次電池及びそれを用いた二次電池モジュール
JP2012505520A (ja) * 2008-10-07 2012-03-01 エンビア・システムズ・インコーポレイテッド 高い比放電容量を有するリチウムイオン電池用正極材料およびこれらの材料を合成するためのプロセス
JP2013152825A (ja) * 2012-01-24 2013-08-08 Sony Corp 電池ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2014026950A (ja) * 2012-07-24 2014-02-06 Lg Chem Ltd 多孔性ケイ素系電極活物質及びこれを含む二次電池
JP2015015169A (ja) * 2013-07-05 2015-01-22 日立マクセル株式会社 非水電解質二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7364793B2 (en) * 2004-09-24 2008-04-29 Lg Chem, Ltd. Powdered lithium transition metal oxide having doped interface layer and outer layer and method for preparation of the same
US7648693B2 (en) * 2005-04-13 2010-01-19 Lg Chem, Ltd. Ni-based lithium transition metal oxide
JP2010040382A (ja) 2008-08-06 2010-02-18 Sony Corp 正極活物質の製造方法および正極活物質
JP2011014379A (ja) 2009-07-02 2011-01-20 Sony Corp 非水電解質二次電池及びその製造方法
JP5205424B2 (ja) * 2010-08-06 2013-06-05 株式会社日立製作所 リチウム二次電池用正極材料,リチウム二次電池及びそれを用いた二次電池モジュール
CN103493276A (zh) 2011-04-13 2014-01-01 日本电气株式会社 锂二次电池
WO2012160707A1 (ja) * 2011-05-23 2012-11-29 トヨタ自動車株式会社 正極活物質粒子、並びにそれを用いた正極及び全固体電池
JP6024220B2 (ja) 2012-06-05 2016-11-09 日本電気株式会社 リチウムイオン電池およびその製造方法
JP5894513B2 (ja) 2012-07-20 2016-03-30 日立マクセル株式会社 リチウムイオン二次電池用正極及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273674A (ja) * 1998-03-19 1999-10-08 Shin Kobe Electric Mach Co Ltd 有機電解液二次電池
JP2002358959A (ja) * 2001-03-27 2002-12-13 Showa Denko Kk 正極活物質、その製造方法、該正極活物質を用いたペースト、正極及び非水電解質二次電池
JP2012505520A (ja) * 2008-10-07 2012-03-01 エンビア・システムズ・インコーポレイテッド 高い比放電容量を有するリチウムイオン電池用正極材料およびこれらの材料を合成するためのプロセス
JP2010232001A (ja) * 2009-03-27 2010-10-14 Hitachi Ltd リチウム二次電池用正極材料,リチウム二次電池及びそれを用いた二次電池モジュール
JP2013152825A (ja) * 2012-01-24 2013-08-08 Sony Corp 電池ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2014026950A (ja) * 2012-07-24 2014-02-06 Lg Chem Ltd 多孔性ケイ素系電極活物質及びこれを含む二次電池
JP2015015169A (ja) * 2013-07-05 2015-01-22 日立マクセル株式会社 非水電解質二次電池

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11489202B2 (en) * 2017-05-18 2022-11-01 Nec Corporation Electrolyte solution for lithium ion secondary battery and lithium ion secondary battery using same
JPWO2019065151A1 (ja) * 2017-09-29 2020-04-30 マクセルホールディングス株式会社 非水二次電池及びそれに用いる非水電解液、並びにその非水二次電池の製造方法
JP7069189B2 (ja) 2017-09-29 2022-05-17 マクセル株式会社 非水二次電池及びそれに用いる非水電解液、並びにその非水二次電池の製造方法
CN110943206A (zh) * 2018-09-25 2020-03-31 深圳市比亚迪锂电池有限公司 正极活性材料及其制备方法和含有该正极活性材料的电池
JP2022061593A (ja) * 2020-10-07 2022-04-19 プライムプラネットエナジー&ソリューションズ株式会社 活物質粉体の製造方法及び活物質粉体
JP7132304B2 (ja) 2020-10-07 2022-09-06 プライムプラネットエナジー&ソリューションズ株式会社 活物質粉体の製造方法及び活物質粉体
CN116154142A (zh) * 2023-04-20 2023-05-23 浙江鑫钠新材料科技有限公司 一种半固态锂/钠电池及其制备方法

Also Published As

Publication number Publication date
JPWO2017094416A1 (ja) 2018-09-20
US10833369B2 (en) 2020-11-10
US20180351199A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
WO2017094416A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池、並びにそれらの製造方法
WO2017047280A1 (ja) リチウム二次電池及びその製造方法
JP6807010B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びこれらの製造方法
JP6933216B2 (ja) 非水電解液及びリチウムイオン二次電池
JP6680293B2 (ja) ハイドロフルオロエーテル化合物、非水電解液およびリチウムイオン二次電池
JP7040460B2 (ja) リチウムイオン二次電池用黒鉛系材料の製造方法、リチウムイオン二次電池用負極の製造方法、及びリチウムイオン二次電池の製造方法
JP2011096637A (ja) 二次電池
JP6540516B2 (ja) 環状スルホン酸エステル化合物、非水電解液、これを用いたリチウムイオン二次電池
WO2018101391A1 (ja) リチウムイオン二次電池
WO2016017362A1 (ja) シクロブテンジオン誘導体、非水電解液、及びリチウムイオン二次電池
JP6520947B2 (ja) 非水電解液及びリチウムイオン二次電池
JP7070676B2 (ja) 還元型グラフェン系材料
JP6720974B2 (ja) リチウムイオン二次電池
WO2016021596A1 (ja) リチウム二次電池およびその製造方法
JP7006614B2 (ja) リチウムイオン二次電池用電極、及びそれを用いたリチウムイオン二次電池
WO2018096889A1 (ja) 非水電解液、及びリチウムイオン二次電池
JP7447904B2 (ja) 還元型酸化グラフェン-ジヒドロキシナフタレン複合材料
WO2020145298A1 (ja) 還元型酸化グラフェン-黒鉛複合材料、その製造方法、及びそれを用いたリチウムイオン二次電池
WO2016084556A1 (ja) 非水系電解液を用いた蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870356

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017553717

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870356

Country of ref document: EP

Kind code of ref document: A1