WO2005020337A1 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
WO2005020337A1
WO2005020337A1 PCT/JP2004/011158 JP2004011158W WO2005020337A1 WO 2005020337 A1 WO2005020337 A1 WO 2005020337A1 JP 2004011158 W JP2004011158 W JP 2004011158W WO 2005020337 A1 WO2005020337 A1 WO 2005020337A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
emitting device
light
light emitting
nitride semiconductor
Prior art date
Application number
PCT/JP2004/011158
Other languages
English (en)
French (fr)
Other versions
WO2005020337A8 (ja
Inventor
Youichi Nagai
Makoto Kiyama
Takao Nakamura
Takashi Sakurada
Katsushi Akita
Koji Uematsu
Ayako Ikeda
Koji Katayama
Susumu Yoshimoto
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to EP04771196A priority Critical patent/EP1571716A4/en
Priority to CA002509785A priority patent/CA2509785A1/en
Publication of WO2005020337A1 publication Critical patent/WO2005020337A1/ja
Publication of WO2005020337A8 publication Critical patent/WO2005020337A8/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/06102Disposition the bonding areas being at different heights
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/1701Structure
    • H01L2224/1703Bump connectors having different sizes, e.g. different diameters, heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to a light emitting device, and more specifically, to a light emitting device formed from a nitride semiconductor.
  • the light emitting device in the present invention may refer only to a semiconductor element or a semiconductor chip formed mainly of a nitride semiconductor substrate and a semiconductor layer laminated thereon, In some cases, it refers only to devices mounted on mounted components and sealed with resin. Furthermore, it may be used for both meanings.
  • a semiconductor chip may be simply referred to as a chip.
  • the substrate and the epitaxy layer formed thereon on the chip may be simply referred to as the substrate.
  • LEDs are currently widely used for lighting small electronic devices such as portable information terminals, but will be used for lighting in large spaces or large areas in the future. It has the potential to be used. In order to be used for lighting large spaces and large areas, it is necessary to increase the light output of LEDs. Therefore, it is necessary to apply a large current to the LED electrodes to solve the problem of temperature rise due to heat generation.
  • Fig. 59 shows a structure of a GaN-based LED that is currently proposed (Patent Document 1).
  • an n-type GaN layer 102 is provided on a sapphire substrate 101, and a quantum well structure 103 is formed between the n-type GaN layer 102 and the p-type GaN layer 104. Light emission occurs in this quantum well structure 103.
  • a p-electrode 105 is formed so as to make ohmic contact
  • an n-electrode 106 is formed so as to make ohmic contact.
  • the p-electrode 105 and the n-electrode 106 are connected to the mounted component 109 via solder balls 107 and 108.
  • the mounted components are composed of a Si substrate, and a circuit is formed to protect against external surge voltages. In other words, emphasis is placed on surge voltage such as transient voltage and electrostatic discharge as the main factor of circuit failure for group III nitride semiconductors such as Ga, Al, and In.
  • a power shunt circuit for protecting the light emitting device is formed by a Zener diode or the like so that a reverse voltage is not applied. The protection from surge voltage will be explained in detail later.
  • the (al) p-type GaN layer 104 is down-mounted so as to emit light on the back side of the sapphire substrate 101, and the (a2) n-type GaN layer 102
  • the feature is that it forms The structure of this GaN-based LED is very complex, as shown in Figure 59.
  • (A2) The n-electrode layer was formed on the n-type GaN layer 102, which causes such a complicated structure because the sapphire substrate 101 is an insulator, so that an n-type electrode cannot be provided on the sapphire substrate. is there.
  • GaAs-based, GaP-based, and GaN-based compound semiconductors used in light-emitting devices that are not limited to the light-emitting devices using the sapphire substrate described above, a protection circuit from transient voltage and electrostatic discharge is provided in the light-emitting device. Proposals have been made frequently (see Patent Document 24).
  • the withstand voltage in the reverse direction is as low as about 50 V and the withstand voltage in the forward direction is only about 150 V.Therefore, it is important to provide a power shunt circuit for the above protection. I have.
  • a chip such as the GaN-based chip is formed on a submount Si substrate, and a protection circuit including a Zener diode is formed on the Si substrate.
  • a protection circuit including a Zener diode is formed on the Si substrate.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-286457
  • Patent Document 3 JP-A-11-54801
  • Patent Document 4 JP-A-11-220176
  • the structure is complicated and the manufacturing cost cannot be avoided. In order to exploit demand for lighting in large spaces, it is essential that LEDs are inexpensive, so the above structure is not desirable. Further, since the p-electrode 105 and the n-electrode 106 are arranged on the side of the down-mounting surface, the area of the electrode, especially the area of the p-electrode is limited. In order to obtain a high output by applying a large current, it is desirable that the p-electrode has a particularly large area. However, the structure shown in FIG. 59 is limited, and as a result, the light output is limited. Furthermore, it is not preferable to dispose two electrode layers on one surface to release the heat generated by the current.
  • the heat radiation area is limited and the thermal resistance (temperature rise due to input of unit energy per unit area) is large. Therefore, it is not possible to increase the injection current per light emitting device.
  • the area of the p-electrode is limited as described above, it is customary to design the heat with little margin.
  • the design of the thermal conditions in the light emitting device is of fundamental importance, and in the case of obtaining a large output, the design is limited by the thermal conditions described above. However, it is inevitable to adopt a complicated electrode shape in order to ease it.
  • the issue of luminous efficiency is also an important force.
  • the totally reflected light propagates through the GaN layer and exits from the side of the GaN layer.
  • the total amount of reflected light accounts for a considerable proportion, and since the GaN layer is thin, the energy density of light emitted from the side is high.
  • the sealing resin located on the side of the GaN layer and irradiated with the light is damaged, which causes a problem of shortening the life of the light emitting device.
  • a GaN-based LED having a structure in which light is extracted from the p-layer side (n-electrode on the back of the SiC substrate, Z-SiC substrate, Zn-type GaN layer / quantum well laminated structure (light-emitting layer) / p-type GaN layer / p-electrode). Since the light absorption of the p-electrode is large, high-output light cannot be emitted to the outside efficiently. If the coverage of the p-electrode is reduced, that is, if the aperture ratio is increased to increase the amount of light emission, the p-type GaN layer has a high electric resistance, so that current must flow through the entire p-type GaN layer.
  • An object of the present invention is to provide a light emitting device that is easy to manufacture because of its simple structure, and that can stably obtain high luminous efficiency over a long period of time.
  • the light emitting device of the present invention provides a nitride semiconductor substrate, an n-type nitride semiconductor layer on a side of the first main surface of the nitride semiconductor substrate, and an n-type nitride semiconductor as viewed from the nitride semiconductor substrate.
  • the light-emitting device includes a p-type nitride semiconductor layer located farther from the layer and a light-emitting layer located between the n-type nitride semiconductor layer and the p-type nitride semiconductor layer.
  • the specific resistance of the nitride semiconductor substrate is 0.5 ⁇ 'cm or less
  • the side of the p-type nitride semiconductor layer is mounted down
  • the side opposite to the first main surface of the nitride semiconductor substrate is mounted. Emit light from the second main surface, which is the main surface of the.
  • the electric resistance is low, and the n-type electrode is provided on the back surface (second main surface) of the nitride semiconductor substrate. Since the poles are provided, even if the n-electrode is provided with a small coverage ratio, that is, a large aperture ratio, a current can be allowed to flow through the entire nitride semiconductor substrate. For this reason, the rate at which light is absorbed by the emission surface is reduced, and luminous efficiency can be increased. It goes without saying that light emission may be performed not only from the second main surface but also from the side surface. The same applies to the following light emitting devices.
  • a p-type electrode layer can be formed on the entire surface of the p-type nitride semiconductor layer, and a large current can be obtained. It is possible to adopt a favorable structure for suppressing the flow of heat and for releasing the generated heat by conduction. That is, restrictions imposed by thermal requirements are greatly reduced. Therefore, it is not necessary to reduce the electric resistance to a comb shape in which the p-electrode and the n-electrode are intricately formed.
  • the GaN substrate has excellent conductivity, it is not necessary to provide a protection circuit for surge voltage, and the withstand voltage can be extremely excellent.
  • the nitride semiconductor "substrate” refers to a plate-like object having a relatively thick thickness that can be carried independently and is difficult to maintain its own shape by itself when transported. And “layer”. The same applies to the GaN substrate and the A1N substrate described below.
  • Another light emitting device of the present invention also includes a GaN substrate of a nitride semiconductor substrate, and an n-type AlGaN layer of an n-type nitride semiconductor layer on the first main surface side of the GaN substrate. ⁇ 1) and GaN-based
  • a light-emitting device comprising a light-emitting layer located between an IGaN layer and a p-type AlGaN layer.
  • the dislocation density of the GaN substrate is 10 8 / cm 2 or less, and the p-type AlGaN
  • the layer side is down-mounted, and light is emitted from the second main surface, which is the main surface opposite to the first main surface of the GaN substrate.
  • the GaN substrate in the present invention has conductivity, and it is easy to reduce the electric resistance.
  • High crystallinity because the dislocation density is 10 8 / cm 2 or less; and
  • the high aperture ratio can increase the light output from the second main surface. It also emits light from the side.
  • Still another light-emitting device of the present invention is a light-emitting device, comprising: a conductive A1N substrate of a nitride semiconductor substrate; and an n-type AlGaN layer of an n-type nitride semiconductor layer on the first main surface side of the A1N substrate. (0 ⁇ 1),
  • the thermal conductivity of the A1N substrate is 100 W / (m'K) or more, the p-type AlGaN layer side is down-mounted, and the main surface opposite to the first main surface of the A1N substrate is
  • the heat can be transmitted to the lead frame and the like from 1 to suppress the temperature rise in the light emitting device.
  • heat can be dissipated from the A1N substrate, which contributes to suppression of temperature rise.
  • the above A1N substrate is assumed to be a conductive A1N substrate into which impurities have been introduced in order to have conductivity.
  • FIG. 1 is a diagram showing an LED of Example A of the present invention in Example 1 of the present invention.
  • FIG. 2 is a diagram showing a laminated structure including a light emitting layer of the LED of FIG. 1.
  • FIG. 3 is a view showing a state of a wafer when a chip having a laminated structure of Example A of the present invention is collected from the wafer.
  • FIG. 4 is a view showing an arrangement of electrodes in FIG. 3.
  • FIG. 5 is a view showing Comparative Example B.
  • FIG. 6 is a view showing a laminated structure including a light emitting layer of the LED of Comparative Example B.
  • FIG. 7 is a view showing a state of a wafer when a chip having a laminated structure of Comparative Example B is collected from the wafer.
  • FIG. 8 is a view showing an arrangement of electrodes in FIG. 7.
  • FIG. 9 is a diagram showing the relationship between the applied current and the optical output of Example A of the present invention and Comparative Example B.
  • FIG. 10 shows the relationship between current density and light output in the light-emitting layers of Inventive Example A and Comparative Example B.
  • FIG. 13 is a plan view of the LED of Invention Example C1 in FIG. 12.
  • FIG. 14 is a view showing an LED of Comparative Example E.
  • FIG. 15 is a plan view of the LED of Comparative Example E shown in FIG.
  • FIG. 16 is a diagram showing an LED of Example F of the present invention in Example 3 of the present invention.
  • FIG. 17 is a view showing the arrangement of electrodes when a chip having a laminated structure of Example F of the present invention is collected from a wafer.
  • FIG. 18 is a diagram schematically showing a current flow in an LED chip by a calculation simulation.
  • FIG. 19 is a diagram showing a current density ratio in a light emitting layer of an LED in Example 3 of the present invention.
  • FIG. 20 is a diagram showing the relationship between the applied current and the light output of the LED (without fluorescent material) in Example 3 of the present invention.
  • FIG. 22 is a diagram showing the relationship between the applied current and the light output of an LED (with a fluorescent material: white) in Example 3 of the present invention.
  • FIG. 23 is a diagram showing the relationship between current density and light output in the light emitting layer of an LED (with a fluorescent material: white) in Example 3 of the present invention.
  • FIG. 24 is a view showing a modification F-3 of the LED in the embodiment 3 of the present invention.
  • FIG. 25 is a plan view of the LED in FIG. 24.
  • FIG. 26 is a diagram showing an outline of an LED transmittance measurement test in Example 4 of the present invention. [27] FIG. 27 is a diagram showing a situation where light passes through the substrate in the transmittance measurement test shown in FIG. 26.
  • FIG. 28 A diagram showing the effect of substrate thickness on transmittance.
  • FIG. 9 is a diagram illustrating a state after performing element isolation etching.
  • FIG. 30 is a view showing a state in which, in Example 5 of the present invention, the LED of Comparative Example M is subjected to element separation etching in order to collect the wafer force, and an n-electrode is to be formed at the bottom of the etching groove. It is.
  • FIG. 31 is a view showing a state in which, in Example 5 of the present invention, the LED of Comparative Example N is etched from the wafer to perform element isolation and an n-electrode is to be formed at the bottom of the etching groove. It is.
  • FIG. 32 is a view showing an LED of Example Q of the present invention in Example 7 of the present invention.
  • FIG. 33 is a drawing showing an LED of Invention Example R of Embodiment 7 of the invention.
  • FIG. 34 is a view showing LEDs of Examples S and T of the present invention in Example 8 of the present invention.
  • FIG. 35 is a drawing showing an LED of Invention Example U of Example 8 of the invention.
  • FIG. 36 is a view showing an LED of Example W of the present invention W of Example 8 of the present invention.
  • FIG. 37 is a graph showing the influence of oxygen concentration on the specific resistance of a GaN substrate in Example 9 of the present invention.
  • FIG. 38 is a view showing the influence of the oxygen concentration on the light transmittance (wavelength: 450 nm) of the GaN substrate in Example 9 of the present invention.
  • FIG. 40 is a diagram showing a state in which a core in a GaN substrate is inherited by an epitaxy layer in Example 10 of the present invention.
  • FIG. 41 is a view showing a core inherited by an epitaxy layer having a hole-shaped concave portion.
  • FIG. 42 is a view showing an off-angle distribution from a c-plane of a GaN substrate of 20 mm ⁇ 20 mm in Example 11 of the present invention.
  • FIG. 43 is a diagram showing a structure in which a buffer layer is arranged between a GaN substrate and an AlGaN cladding layer in Example 11 of the present invention.
  • FIG. 44 is a view showing a result of expanding an off-angle range in which an optical output of 8 mW or more can be obtained in Example 11 of the present invention.
  • FIG. 45 is a diagram showing a light emitting device in Example 12 of the present invention.
  • FIG. 46 is a cross-sectional view focusing on a p-electrode of a light-emitting element according to Example 13 of the present invention.
  • FIG. 47 is a plan view seen through a p-electrode of the light-emitting element of FIG. 46.
  • FIG. 48 is a view showing light emission and reflection in Example 13 of the present invention S5 of Example 13.
  • FIG. 49 is a graph showing light emission and reflection in Comparative Example T6 of Example 13.
  • FIG. 50 is a graph showing light emission and reflection in Example A of the present invention, which was given as a comparative example of Example 13.
  • FIG. 51 is a diagram showing a main surface of a GaN substrate in which a plate-like crystal reflection region appears in a lattice in Example 14 of the present invention.
  • FIG. 52 is a cross-sectional view of a GaN substrate showing a plate-like crystal reflection region in FIG. 51.
  • FIG. 53 is a cross-sectional view showing Example S6 of the present invention in Example 14 of the present invention.
  • FIG. 54 is a plan view showing another plate-like crystal region arranged in parallel to that of FIG. 51, which is included in Example 14 of the present invention.
  • FIG. 55 is a cross-sectional view of FIG. 54.
  • FIG. 56 is a cross-sectional view showing light emission and reflection in Example 15 of the present invention S7 of Example 15 of the present invention.
  • FIG. 57 is a cross-sectional view showing light emission and reflection in Example S8 of the present invention which is another example of Example 15 of the present invention.
  • FIG. 58 is a cross-sectional view showing light emission and reflection in Comparative Example T7.
  • FIG. 59 is a diagram showing a conventional LED.
  • the nitride resistivity of the semiconductor substrate 0.5 Omega 'cm condition hereinafter, even in GaN substrate dislocation density is 10 8 ZCM 2 or less, and the thermal conductivity is 1 OOWZ (m. K) or more Al N
  • the substrate is also filled.
  • the selective embodiment of the light emitting device of the present invention including the above nitride semiconductor substrate is a selective embodiment of another light emitting device of the present invention using a GaN substrate or an A1N substrate as a semiconductor substrate. Needless to say, it can be applied to a GaN substrate or A1N substrate, which is one of the semiconductor substrates.
  • FIG. 1 is a diagram showing an LED of Example A of the present invention in Example 1 of the present invention.
  • a laminated structure including a light-emitting layer, which will be described in detail later, is formed, and a p-electrode 12 is provided.
  • the present embodiment has one feature in that the p-electrode 12 is down-mounted on the lead frame mount 21a by the conductive adhesive.
  • the second main surface la of the GaN substrate 1 is a surface that emits light emitted from the light emitting layer, and the n electrode 11 is provided on this surface.
  • the n-electrode 11 does not cover the entire second main surface. It is important to increase the proportion of the portion not covered by the n-electrode 11. Increasing the aperture ratio reduces the amount of light that is blocked by the n-electrode, and can increase the emission efficiency of emitting light to the outside.
  • FIG. 2 shows an enlarged view of the stacked structure from the GaN substrate 1 to the p-electrode 12 in the above configuration. In FIG. 2, the stacked structure in FIG. 1 is upside down.
  • n-type GaN epitaxial layer 2 is located on GaN substrate 1, and n-type AlGaN layer 3 is formed thereon.
  • a quantum well (MQW: Multi-Quantum Well) 4 consisting of an AlGaN layer, an AlInGaN layer, and a force x1 xx 1-xxy 1-x-y is formed thereon.
  • A1 A p-type AlGaN layer 5 is arranged so as to sandwich the GaN layer 3, and a p-type GaN layer 6 is disposed thereon.
  • a p-type electrode 12 is formed on the p-type GaN layer 6 so as to cover the entire surface, and is mounted down. Next, the method for manufacturing the LED of Example A of the present invention will be described.
  • MQW Multi-Quantum Well
  • the emission wavelength was 450 nm, and the internal quantum efficiency calculated for convenience by comparing the PL (Photo Luminescence) intensity at low temperature of 4.2 K with the PL intensity at room temperature of 298 K was 50%.
  • the type GaN layer had lE18 / cm 3 .
  • This wafer is further etched with a CI-based gas from the Mg-doped p-type layer side to the Si-doped n-type layer by photolithography and RIE (Reactive Ion Etching). By this etching, as shown in FIG. 3, an element isolation groove 25 was formed to perform element isolation.
  • the width L3 of the element separation groove is 100 ⁇ m.
  • the second main surface of the GaN substrate, the back N surface, is placed at the center of the chip every 400 ⁇ m by photolithography technology, evaporation, and lift-off method. Electrodes were attached (see Figures 3 and 4). As an ⁇ electrode, a laminated structure of (Ti layer 20 nm / Al layer 100 nm / Ti layer 20 nm / Au layer 200 nm) was formed in order from the bottom in contact with the GaN substrate. This was heated in a nitrogen (N) atmosphere to reduce the contact resistance to 1E-5 ⁇ 'cm 2 or less.
  • N nitrogen
  • the chip was mounted on the mount portion 21a of the lead frame such that the p-type GaN layer side of the chip was in contact with the chip, thereby forming a light emitting device.
  • the light emitting device and the mount are fixed by the conductive adhesive 14 applied to the mount portion, and conduction is obtained.
  • the light emitting device was mounted so that the p-type GaN layer of the light emitting device was in contact with the entire mount.
  • the adhesive used was an Ag-based adhesive with good thermal conductivity
  • the lead frame was a CuW-based adhesive with good thermal conductivity. Thereby, the obtained thermal resistance was 8 ° C / W.
  • the light-emitting device was formed into a lamp by performing resin sealing with an epoxy resin.
  • a p-electrode 112 is down-mounted on a lead frame mount with a conductive adhesive 114. Further, the n-electrode is connected to the lead frame mount 121a separated from the lead frame mount to which the p-electrode is connected by the conductive adhesive 114.
  • a stacked structure including a light emitting layer (FIG. 6) is provided thereon, and is in contact with a predetermined range of the n-type GaN layer 102.
  • the n-type GaN layer 102 is formed on the sapphire substrate 101, and the n-electrode 111 is provided in a range outside the range where the above-mentioned laminated structure is in contact.
  • the n-electrode 111 is electrically connected to the lead frame mount 121a or the lead frame lead 121b by a wire or a conductive adhesive.
  • the light that has also emitted light from the light-emitting layer is emitted to the outside through the sapphire substrate 101.
  • the epoxy resin 115 is sealed so as to cover the above-described laminated structure including the sapphire substrate.
  • Example A of the present invention in order to improve the heat dissipation from the light emitting device, the light emitting device was mounted so that the p-type GaN layer of the light emitting device was entirely in contact with the mounting portion.
  • the contact area between the p-type GaN layer 106 and the p-electrode 112 was 0.0675 mm 2 . Since heat generated by the light emitting device is generated in the quantum well layer 104 and the p-type GaN layer 106, the heat radiation is mainly determined by the area of the p-electrode 112. In the case of FIG.
  • the n-electrode 111 is also connected to the mount part 121a of the lead frame by the conductive adhesive 114, but the heat radiation area is substantially the above-mentioned contact area of 0.0675 mm 2 .
  • the contact area between the p-type GaN layer 6 and the p-electrode 12 in Inventive Example A is 0.09 mm 2 .
  • the materials of the adhesive and the lead frame were the same as those of Example A of the present invention.
  • the thermal resistance was 10.4 ° CZW, which was 1.3 times worse than that of Example A of the present invention.
  • Example A of the present invention After mounting Example A of the present invention and Comparative Example B in an integrating sphere, a predetermined current was applied, and the light output values collected and output from the detector were compared. The results are shown in FIG. According to FIG. 9, current is injected into the MQW layer without leakage, and non-radiative recombination in the MQW layer occurs.
  • the light output value increases in proportion to the increase of the applied current. For example, with the injection of 20 mA, the output of Example A of the present invention was 8 mW, and the output of Comparative Example B was 7.2 mW.
  • Example A of the present invention a GaN-based epitaxial film / ZGaN substrate is mainly used, while in Comparative Example B, a GaN-based epitaxial film / sapphire substrate is mainly used. Since the refractive index of the sapphire substrate is about 1.8, which is considerably smaller than the refractive index of GaN of 2.4, in Comparative Example B, the light formed and propagated in the GaN-based epitaxial film is At the interface between the epitaxial film and the sapphire substrate, total reflection is easier than in Example A of the present invention. Due to this, the output of Comparative Example B is smaller than that of Inventive Example A.
  • Example A of the present invention there is no portion where the current density becomes extremely large by providing the n-electrode on the second main surface side of the substrate, where the heat radiation area is sufficiently large for the generated heat. It means that it has a structure.
  • Comparative Example B the heat radiation area was smaller than that of Example A of the present invention, and was provided on the n-type GaN layer with the n-electrode exposed, so that the n-type GaN layer was parallel to the layer. This means that the current density of the flowing current has become extremely large. As a result, in Comparative Example B, the heat generation further increases.
  • the present invention example A has a position where the n-electrode and the p-electrode are opposed to each other. It is also possible to prevent an unnecessary increase in manufacturing cost such as providing a film for electrically insulating between the electrode and the n-electrode.
  • test results of the present invention example A and the comparative example B with respect to the electrostatic withstand voltage will be described.
  • Example A of the present invention In the test, a light emitting device and a capacitor charged with static electricity were opposed to each other to generate a discharge between them. At this time, in Comparative Example B, it was broken at a static voltage of about 100V. On the other hand, in Example A of the present invention, there was no breakdown up to about 8000V. In Example A of the present invention, It was found to have about 80 times the electrostatic withstand voltage of Example B.
  • Example A of the present invention since a GaN-based light emitting device is formed on a GaN substrate, even if a GaN-based light emitting chip is down-mounted and light is emitted from the back surface of the GaN substrate, there is no problem. Since there is no difference in the refractive index between the two, light propagates from the GaN-based light-emitting chip to the GaN substrate without total reflection. Therefore, the light output on the main surface of the GaN substrate can be increased as compared with a structure in which a GaN-based light emitting device is formed using a sapphire substrate. Further, since the light is not extremely concentrated and emitted from the side of the GaN layer, the sealing resin is not damaged, and the life of the sealing resin is not restricted.
  • Example 2 of the present invention describes Example C of the present invention when the area is further increased.
  • Example C of the present invention has the same structure as that of Example A of the present invention shown in FIG. 1, but the dimension L1 is 0.3 mm (300 ⁇ ) in Example A of the present invention.
  • L1 is 3 mm, which is 10 times larger, and therefore, the area is 100 times larger.
  • the production method of Invention Example C is as follows.
  • n-electrodes with a diameter of 100 xm were attached at the center of the chip every 3.1 mm by photolithography, evaporation, and the lift-off method.
  • n-electrode a laminated structure of (Ti layer 20 nm ZAl layer 100 ⁇ mZTi layer 20 nm ZAu layer 200 nm) was formed in order from the bottom in contact with the back surface of the GaN substrate. This was heated in an inert atmosphere to reduce the contact resistance to 1E-5 ⁇ 'cm 2 or less.
  • FIG. 12 and FIG. 13 are diagrams showing a C1 example of the present invention, which is a modification of the C example of the present invention.
  • the present invention example C1 is characterized in that the n-electrode 11 is arranged at four corners of the GaN substrate, that is, at four corners.
  • a reflection cup 37 is arranged on the lead frame so as to surround the semiconductor chip.
  • Example C1 of the present invention In the production of Example C1 of the present invention, the same processing as in Example A of the present invention was performed. However, four Au wires were used for the bonding wires, and the diameter of each cross section was 25 ⁇ m. The shape of each n-electrode located at the four corners is 45 ⁇ mO.
  • Comparative Example D will be described.
  • the structure of Comparative Example D is the same as the structure shown in FIG.
  • L1 of Comparative Example D was 3 mm, which is 10 times that of L / 300 in Comparative Example B of FIG. 5 was 300 / im (0.3 mm).
  • the dimension L4 of the portion of the n-type GaN layer forming the n-electrode is 150 ⁇ , which is the same as Comparative Example B in FIG.
  • the manufacturing method of Comparative Example D is as follows.
  • the p-electrode was provided in the p-type GaN layer except for the exposed area 150 mO of the n-type GaN layer for arranging the element isolation groove and the n-electrode from the element area of 3.1 mm.
  • the thickness, heat treatment, and contact resistance were the same as those of Example A of the present invention.
  • Comparative Example E is the same as Comparative Examples B and D in that a p-electrode 112 and an n-electrode 111 are both provided on the down-mounting side using a sapphire substrate as shown in FIG. As shown in the plan view of FIG. 15, the p-electrode 1 12 is in the raised shape, the n-electrode 111 is placed between the raised teeth, and the p-electrode 112 is positioned between the p-electrode 112 and the n-electrode 111.
  • n-electrodes 111 were provided every 0.5 mm, and a comb-shaped electrode having a width of 0.1 mm was provided (see FIGS. 14 and 15).
  • a p-electrode was provided on the remaining back surface of the n-type GaN layer 102 while separating the n-electrode 111 and the p-electrode 112 by 0.1 mm.
  • an insulator 119 for surface protection was provided in the gap between the n-electrode and the p-electrode so that each electrode did not short-circuit.
  • a conductive adhesive 114 is provided at the position corresponding to each electrode position of the mounting portion 121a of the lead frame. Was mounted on the lead frame.
  • Example C of the present invention After mounting Example C of the present invention and Comparative Example D in an integrating sphere, a predetermined current was applied, and the light output values condensed and output from the detector were compared.
  • a current of 20 mA was applied, the output of Example C of the present invention was 8 mW, while that of Comparative Example D was 7.2 mW.
  • a current of 2 A 2000 mA was applied, in the example C of the present invention, an output of 800 mW, which was 100 times higher, was obtained. However, it was damaged in Comparative Example D.
  • Comparative Example D a structure in which the current flowing from the n-type electrode to the MQW light-emitting portion in the direction parallel to the n-type GaN layer was dispersed was fabricated.
  • Comparative Example E an output of 7.2 mW at an applied current of 20 mA and 720 mW at 2 A were obtained, which was 0.9 times the output of Example C of the present invention.
  • Example C of the present invention As described above, if an attempt is made to obtain a performance close to that of Example C of the present invention, a very complicated structure and process are required as compared with Example C of the present invention, so that the manufacturing cost becomes extremely large.
  • Example C of the present invention it was not possible to break down to about 8000V. That is, in the example of the present invention, a very high electrostatic withstand voltage of about 80 times could be obtained.
  • Example C1 of the present invention the aperture ratio is much higher than 50% and almost 100%. Also, by being located at the corner of the GaN substrate, the obstacle to light extraction is significantly reduced compared to the case where it is located at the center. In the case shown in FIG. 12, the n-electrode is located outside the active layer in plan view, so that the n-electrode has no effect on light extraction. As a result, it is possible to obtain an even higher output in Invention Example C1 than in Invention C.
  • Example 3 of the present invention the effects of the aperture ratio on the light emitting surface and the electrical resistance of the GaN substrate on the light output were measured.
  • the aperture ratio was adjusted by changing the substrate area or the p-electrode size and the n-electrode size.
  • the force using the LED having the structure shown in Fig. 1 was used.
  • the test piece in which the fluorescent material 26 was arranged to form a white LED was also tested.
  • the test specimens are Example F of the present invention and Comparative Examples G and H in which the specific resistance of the GaN substrate does not fall within the scope of the present invention. Specimen F described later, Each of G and H was sealed with an epoxy resin without containing the fluorescent material shown in FIG. 1, and a white LED mounted with the fluorescent material shown in FIG. 16 was produced.
  • the aperture ratio was ⁇ (p electrode area / n electrode area) / p electrode area ⁇ ⁇ 100 (%).
  • the method for producing the above-mentioned inventive example F and comparative examples G and H will be described below.
  • a lamp that emits white light was also manufactured.
  • a fluorescent material that can obtain 1801 m per watt of 450 nm light output was used.
  • the resulting light emitting device has a 0.49 mm aperture.
  • the resulting light emitting device has an 8 mm aperture.
  • Example F of the present invention With respect to Example F of the present invention and Comparative Examples G and H, the current distribution in a range where the current spreads relatively uniformly from the n-electrode to the MQW layer was calculated by simulation. The results of this simulation are reflected in the device designs of Example F of the present invention and Comparative Examples G and H.
  • Figure 18 shows an image of the spread of the current.
  • FIG. 19 is a diagram showing the current density ratio at the distance r, where r is the radial distance from the center of the light emitting layer 4 of the MQW. The current density is 1 at the center of the n-electrode.
  • Example F of the present invention The current density was highest immediately below the n-electrode, and the current density decreased as the distance from the n-electrode increased.
  • the range in which a current density of 1/3 or more directly below the n-electrode can be obtained is 12 mm in diameter centered just below the n-electrode. Based on this result, the size of the light-emitting device was set to 8 mm inclusive.
  • an n-type electrode with a diameter of 100 ⁇ was attached to the center of the chip at a distance of 8.1 mm by photolithography, evaporation, and the lift-off method.
  • an n-type electrode with a diameter of 100 zm was attached to the center of the chip every 0.5 mm on the N face of the GaN substrate by photolithography, vapor deposition, and the lift-off method.
  • the aperture ratio is approximately 97% per element.
  • the thickness, heat treatment, and contact resistance are the same as in Examples A to E of the present invention.
  • the size of the chip of the present invention E was 8 mm in total.
  • the electrical resistance of the GaN substrate is the same as that of Comparative Example G, and the current spread is 0.7 mm in diameter.
  • the n-electrode Must have a diameter of 7.51 mm.
  • the scribing width is set to 0.1 mm on the second main surface (light emitting surface) of the GaN substrate, using photolithography technology, vapor deposition, and lift.
  • An n-electrode with a diameter of 7.51 mm was attached every 8.1 mm by the off method. In this case, the aperture ratio is approximately 31% per element.
  • Example F of the present invention and Comparative Examples G and H were adjusted to 8 mW, 7.8 mW and 2.5 mW, respectively, so as to match the area ratio of the portion where no electrode was arranged.
  • the output increased in proportion to the increase of the applied current up to the output of 0.1 W when the current density of the light emitting portion was 110 Ocmcm 2 at the applied current of 0.26 A.
  • the output was saturated as the temperature increased due to heat generation, and the light emitting device was broken by applying a current of 10A.
  • FIG. 22 and FIG. 23 show the results of measuring the luminance of the above three types of test specimens.
  • FIG. 22 is a diagram showing the relationship between the applied current of the whitened LED by arranging the fluorescent material and the obtained luminance
  • FIG. 23 is a diagram similarly showing the relationship between the current and the luminance.
  • Inventive Example F and Comparative Example H even if the same fluorescent material was used, the brightness obtained varies depending on the area ratio of the portion where no electrode is arranged.Therefore, with an applied current of 10 A, 7201 m / chip and 2341 m / chip And In Comparative Example G, the thermal limit was 181 m / chip at an applied current of 0.26 A, and it was broken when an applied current of 10 A was applied. According to FIGS. 22 and 23, only Example F of the present invention obtained high luminance at a high current.
  • the reason why the current application is set to a maximum of 10 A in the present embodiment is that if the current is further increased, the Joule heat generation density at the n-electrode may become too large and the heat generation may increase.
  • Example F_3 of the present invention the n-electrode had a 450-zm aperture and was arranged at four corners of the GaN substrate (see FIGS. 24 and 25). As shown in FIGS. 24 and 25, the n-electrodes located at the four corners are each electrically connected to the lead frame by a bonding wire. Au wire is used as the bonding wire, and its cross-sectional diameter is 300 xm. The aperture ratio in this case is almost 100%. Further, similarly to the inventive example C1, a reflective cup 37, which is a cup-shaped reflector, was disposed.
  • the fluorescent material was not mounted, and the fluorescent material was mounted on the integrating sphere, and then a predetermined current was applied to emit light.
  • a predetermined current was applied to emit light.
  • the light output value output from the detector that condenses the light was measured, it was 8 mW when a current of 20 mA was applied, 4 W when the applied current was 500 A, 10 A, and 28 W when a current of 70 A was applied. Output was obtained.
  • the electrodes and wires are Since there is no obstacle to light extraction, the light output can be further increased.
  • Example 4 of the present invention describes the effect of the GaN substrate thickness on the optical output.
  • the light absorption of the GaN substrate was measured using three specimens of the present invention I, J, and K having the same structure as the LED shown in FIG. A method for manufacturing a test body will be described.
  • a stacked structure of Mg-doped p-type AlGaN layer / Mg-doped p-type GaN layer) was formed.
  • the emission wavelength was 380 nm, and the internal quantum efficiency calculated for convenience by comparing the PL intensity at 4.2 K at low temperature with the PL intensity at 298 K at room temperature was 50%.
  • the range where the current spreads relatively uniformly from the point-like n-electrode to the MQW layer was calculated by simulation. As a result, the current density was highest immediately below the n-electrode, and decreased as the distance from the n-electrode increased. In addition, the range in which a current density of 1/3 or more directly below the n-electrode can be obtained is 3 mm in diameter centered just below the n-electrode, so the size of the light-emitting device is 1.6 mm, which is included in it.
  • an n-type electrode with a diameter of 100 / im was attached every 1.7 mm by photolithography, vapor deposition, and the lift-off method.
  • the portion of the GaN substrate without the n-type electrode on the Ga surface, that is, the aperture ratio is almost 100% per device. Thickness
  • Example A of the present invention Heat treatment, and contact resistance are the same as those of Example A of the present invention.
  • the resulting light emitting device has a 1.6 mm aperture.
  • Atomic ratio of A1 ⁇ 0 ⁇ 2, 0.5, 1 and 3 types were used.
  • N layers are sequentially formed.
  • ⁇ electrode with a diameter of 100 ⁇ m was attached every 400 ⁇ m according to the method.
  • ⁇ electrode is Al GaN substrate
  • the size of the light emitting element (chip) was the same as that of Example G of the present invention, that is, 1.6 mm.
  • ⁇ -type electrodes with a diameter of 100 ⁇ m were attached every 1.7 mm by photolithography, deposition, and lift-off.
  • the ratio of the portion without the n-electrode on the second main surface (light emission surface) of the GaN substrate, that is, the aperture ratio is almost 100% per device.
  • the thickness, heat treatment, and contact resistance were the same as in Example I of the present invention.
  • the substrates 1 of the present invention examples I and J and the comparative example K having different substrate thicknesses were prepared, and the transmittance for incident light having a wavelength of 380 nm was measured.
  • Figures 26 and 27 show the outline of the light transmittance measurement test.
  • the thickness of the inventive example ⁇ Force S lmm (1000 ⁇ m) and thickness.
  • Figure 28 summarizes the test results.
  • the transmittances of inventive examples I and J and comparative example K were 70%, 90% and 10%, respectively.
  • High light extraction can also be obtained by thinning the GaN substrate. Even if the thickness is too thin, the spread of the current from the n-electrode to the MQW is too small, and if it is too thick, the extraction efficiency deteriorates as described above, so the force depending on the emission wavelength is 50 ⁇ m—500 ⁇ m is desirable.
  • the manufacturing cost of the GaN substrate can be reduced, and a light emitting device with lower cost can be manufactured. It becomes. It goes without saying that the cost can be reduced by reducing the thickness of the substrate regardless of the emission wavelength.
  • the manufacturing yield of the thickness of the n-type GaN layer formed on the substrate will be described.
  • the test pieces used are three examples of the present invention L having the same structure as the present invention A using the GaN substrate, and comparative examples M and N having the same structure as the comparative example B using the sapphire substrate.
  • N layer ZMg doped p-type GaN layer is formed.
  • the Si-doped n-type GaN layer 2 The thickness t was 100 nm.
  • Example L of the present invention One (113) The same processing as the corresponding processing in Example A of the present invention was performed. At this time, when the etching groove 25 for element separation is formed, the etching groove bottom portion 25a is not completely flat as shown in FIG. In the case of Example L of the present invention, no electrode or the like is provided in this portion even when the central portion reaches the GaN substrate or the buffer layer as described above, so that the depth in this portion and the flatness of the bottom portion vary slightly. Also has a small effect on production yields.
  • the thickness of the Si-doped n-type GaN layer 102 was 3 ⁇ m.
  • MQW layer with three stacked layers of GaN layer and In GaN layer Mg-doped p of Z cladding layer p
  • AlGaN layer / Mg-doped p-type GaN layer was formed. Referring to FIG. 6, Si-doped n-type G
  • the thickness of the aN layer 102 was 100 nm.
  • Comparative Example N since the sapphire substrate is an insulator, the n-electrode needs to be provided on the same growth film side as the p-electrode. Then, this wafer is further etched with C1-based gas from the Mg-doped p-type layer side to the Si-doped n-type GaN layer by photolithography and RIE to expose the n-type GaN layer to provide an n-type electrode. I tried to make it. However, as shown in Fig. 31, in Comparative Example N, the thickness of the Si-doped n-type GaN layer was as thin as 100 nm (0.1 ⁇ m), so that the n-type GaN layer was uniformly exposed in the wafer. I can't do that. For this reason, the exposed surface was an n-type AlGaN layer or a GaN buffer layer depending on the location. Hot phosphoric acid, etc.
  • Example L of the present invention As a result of measuring the optical output in the same manner as in Example 1, in Example L of the present invention, an output of 8 mW was obtained at an applied current of 20 mA. On the other hand, with the same applied current, the output of Comparative Example M was 7.2 mW. In the structure of Example L of the present invention, the same output was obtained even when the thickness of the n-type GaN layer was reduced from 3 ⁇ m to 100 nm. Also, since the n-electrode can be provided on the N-plane of the conductive GaN substrate, it is not necessary to expose the Si-doped n-type GaN layer.
  • the thickness of the light-emitting element grown on the substrate depends on the target wavelength and output, but is usually at most 6 / im or less, and most of the thickness of the Si-doped n-type GaN layer is In the example of the present invention, the thickness can be reduced from 3 ⁇ l ⁇ to 100 nm. As a result, according to the example of the present invention, it is possible to drastically reduce the cost of film growth.
  • Example 6 One (Example 6)-In Example 6 of the present invention, the effect of the dislocation density of the GaN substrate on the optical output will be described.
  • the test specimens used were the same as the invention sample A, and two specimens of the invention example O having a dislocation density of 1E6Zcm 2 and the comparative example P having a dislocation density of 1E9 / cm 2 .
  • Example O of the present invention As a result of measuring the optical output, in Example O of the present invention and Comparative Example P, an output of 8 mW was obtained at an applied current of 20 mA, and outputs of 40 mW and 30 mW were obtained at an applied current of 100 mA. Was. Thus, Example O of the present invention can obtain a higher light emission output when compared with Comparative Example P.
  • Example Q of the present invention is the LED shown in FIG. 32 in which the surface and the end face are made non-specular
  • Example R of the present invention is the LED shown in FIG. 33 in which the non-specular is not performed.
  • Non-mirror surfaces were obtained by dry or wet etching such as RIE.
  • a mechanical polishing method may be used in addition to the non-mirroring method by etching.
  • a method by wet etching using a KOH aqueous solution as an etchant was applied. After sufficiently stirring the 4 mol / l KOH aqueous solution while maintaining the temperature at 40 ° C, the wafer was immersed in a stirrer for 30 minutes to make the N face of the GaN substrate and the end face of the element non-mirror.
  • Example Q of the present invention As a result of measuring the optical output in the same manner as in Example 1, the present invention Q and the comparative example R obtained outputs of 4.8 W and 4 W respectively at an applied current of 10 A.
  • the fluorescent material was provided and the color was white
  • an output of 11501 m was obtained in Example Q of the present invention and 9601 m in Comparative Example R at an applied current of 10 A. That is, in Example Q of the present invention, a higher emission output could be obtained. It goes without saying that the same effect is obtained even when the emission wavelength is changed. This is because when the surface and the end surface of the substrate and the n-type GaN layer are mirror-finished, as shown in Fig.
  • Example 8 of the present invention describes the effect of the reflectance of the p-type electrode on the light output.
  • the p-electrode is manufactured by the following method. A 4 nm thick Ni layer and a 4 nm thick Au layer are formed in order from the bottom in contact with the p-type GaN layer. Next, heat treatment is performed in an inert atmosphere. Thereafter, an Ag layer having a thickness of 100 nm is formed on the Au layer.
  • the contact resistance of the p-electrode produced by the above method was 5E-4 ⁇ 'cm 2 .
  • the transmittance of the p-electrode was measured after the same heat treatment was performed on the p-electrode formed on the glass plate and formed in order from the bottom layer (4 nm thick Ni layer / 4 nm thick Au layer). As a result, the transmittance of the Ni layer side force to 450 nm incident light was 70%. In addition, the reflectance was measured by attaching a 100 nm thick Ag layer to a glass plate. As a result, a reflectance of 88% was obtained for 450 nm incident light. Therefore, (4 nm thick Ni layer / 4 nm thick Au layer / 100 ⁇ m Ag layer) was formed on a glass plate with Ni layer as the lower layer, and the reflectance was measured after the same heat treatment.
  • the p-electrode is manufactured by the following method. A 4 nm thick Ni layer and a 4 nm thick Au layer are formed on the p-type GaN layer in this order from the bottom. Thereafter, heat treatment is performed in an inert atmosphere. Next, a 100 nm thick A1 layer and a 100 nm thick Au layer are formed on the above Au layer. The The contact resistance of the p-electrode produced by the above method was 5E-4 ⁇ 'cm 2 .
  • a laminated film of (4 nm thick Ni layer / 4 nm thick Au layer) was attached to a glass plate and subjected to the same heat treatment, and the transmittance was measured. As a result, 450 nm incident light from the Ni side was measured. 70%. Furthermore, the reflectance was measured by attaching a 100 nm thick A1 layer to a glass plate and found to be 84% for 450 nm incident light. In addition, from the bottom, a laminated film of (4 nm thick Ni layer / 4 nm thick Au layer / 100 nm thick A1 layer) was formed on a glass plate, and after the same heat treatment, the reflectance was measured. The result is 42 for 450 nm incident light.
  • a reflectance of / 0 was obtained. This reflectivity is as follows. After the incident light of wavelength 450nm passes through (4nm thick Ni layer / 4nm thick Au electrode layer) with 70% transmittance, it is reflected by A1 layer with 42% reflectance and re- And the reflectivity calculated when 70% transmittance is transmitted through a 4 nm thick Ni layer / 4 Au thick electrode layer.
  • Rh As a p-electrode, Rh was applied to the p-type GaN layer over the entire surface with a thickness of lOOnm, which is an ohmic electrode with high reflectivity to the p-type GaN layer. Contact resistance is 5e_4 ⁇ 'cm 2. The transmittance of this electrode was measured by attaching Rh to a glass plate and found to be 60% for 450 nm incident light.
  • Invention Example W is the same as Invention Example F.
  • Fig. 34 is a schematic diagram of the reflection on the mounting side of the present invention S and T
  • Fig. 35 is a schematic diagram of the reflection on the mounting side of the present invention U
  • the reflection on the mounting side of the present invention W FIG. 36 shows a schematic diagram of the above.
  • the high reflection layer 35 is disposed between the p electrode 12 and the conductive adhesive 14, whereas in the invention example U, the p electrode 12 itself is made of a high reflectance material.
  • Example V of the present invention the surface is further made non-mirror.
  • no particular consideration is given to reflection on the mounting side.
  • the emission output could be further improved.
  • Example V of the present invention by making the N-plane and the end face of the GaN substrate non-mirror, further improvement was made possible.
  • Example 9 of the present invention the relationship between the oxygen concentration of the GaN substrate, the specific resistance, and the light transmittance was grasped. Based on this relationship, p-down mounting, that is, in a light-emitting element with a GaN substrate as the light emitting surface, is characterized by establishing the optimal relationship between GaN substrate thickness and oxygen concentration for a given light emitting area. . As described above, since the light emission surface is a GaN substrate in the p-down mounting, the oxygen concentration that has a large effect on the specific resistance and the light transmittance is particularly important, as shown below.
  • FIG. 37 is a diagram showing the effect of oxygen concentration on the specific resistance of a GaN substrate. From FIG. 37, the following specific resistance 0.5 Omega cm, child achieved by an oxygen concentration at least 1E17 ZCM 3 or more You can.
  • FIG. 38 is a diagram showing the influence of the oxygen concentration on the transmittance of light having a wavelength of 45011111 when the GaN substrate 400111 is used. The figure shows that when the oxygen concentration exceeds 2E19 / cm 3 , the transmittance of light with a wavelength of 450 nm sharply decreases. 37 and 38, it can be seen that increasing the oxygen concentration is effective in reducing the specific resistance of the GaN substrate and enlarging the light emitting surface, but lowering the light transmittance. Therefore, it is very important to set the oxygen concentration, the thickness of the GaN substrate, and the plane size of the light emission as the GaN substrate used for the light emitting device mounted p-down.
  • Fig. 39 shows the results of measuring the light output of the lamp and the planar size through which the current flows uniformly when a lamp was manufactured from a GaN substrate having a varied thickness and oxygen concentration for Example A of the present invention.
  • FIG. Regarding the light output of the lamp the light output tends to decrease as the thickness increases or as the oxygen concentration increases.
  • the maximum planar size through which current flows uniformly the larger the thickness and the higher the oxygen concentration, the larger the size.
  • the light output is 8 mW equivalent or more when applying 20 mA in the size of Example A of the present invention.
  • 6E18 atoms / cm 3 or more an oxygen concentration in the GaN substrate having a thickness of 200 ⁇ ⁇ (8E18 atoms / cm 3 or more in one side 5mm square) to 20mA when marked pressurized with the size of invention sample a
  • a uniform light emission can be obtained after securing a light output of 8 mW or more.
  • a square of 4 mm on a side corresponds to an application of 3.6 ⁇ (5.6 ⁇ ), and 3.6 ⁇ ( 5.6 ⁇ )
  • a uniform light emission can be obtained after securing an optical output of 1.4 W (2.3 W) or more in proportion to the applied current.
  • the side 4mm square 3E18 atoms / cm 3 or more in the case of side 5mm square, oxygen concentration 4E18 atoms / cm 3 or more.
  • the oxygen concentration is 2E19 / cm 3 or less, an optical output of 8 mW or more cannot be obtained when 20 mA is applied in the size of Example A of the present invention.
  • a current is uniformly applied to a square having a side of 10 mm, which is equivalent to 8 mW when a current of 20 mA is applied in the size of Example A of the present invention.
  • the oxygen concentration range that enables the above output to be obtained is wide enough for practical use. It can be seen that at a thickness of 200 ⁇ m, an oxygen concentration of 2E19 or more can be achieved with an oxygen concentration lower than Zcm 3 . At a thickness of 400 am, this is possible with an oxygen concentration of 8E18 / cm 3 or more.
  • It has a stacked structure of MQW / cladding layer Mg-doped p-type AlGaN layer / Mg-doped p-type GaN layer) in which three layers of N layers and three layers are stacked.
  • Comparative Example T1 A GaN substrate having a thickness of 400 zm and being made n-type with an oxygen concentration of 5E19 / cm 3 was used.
  • the specific resistance of this GaN substrate is 0.002 ⁇ cm, and the transmittance for light with a wavelength of 450 nm is 35%.
  • the conditions other than the above are the same as those of the invention sample S1.
  • Comparative Example T2 A GaN substrate having a thickness of 400 zm and being made n-type with an oxygen concentration of 2E16 / cm 3 was used.
  • the specific resistance of this GaN substrate is 1.0 ⁇ cm, and the transmittance for light with a wavelength of 450 nm is 90%.
  • the conditions other than the above are the same as those of the invention sample S1.
  • Example S1 20 m by assembling the light-emitting element with p-down mounting of the test sample
  • an optical output of 8 mW was obtained in Example S1 of the present invention.
  • the optical output of Comparative Example T1 was only 4 mW
  • the optical output of Comparative Example T2 was only 5 mW.
  • the optical output of 4 mW of Comparative Example T1 can be said to be an output corresponding to the transmittance of the GaN substrate.
  • the state of light emission was observed from the second main surface side of the GaN substrate, which was the light emitting surface, and the intensity of light emission was observed in the plane.
  • the emission intensity is extremely strong around the n-electrode.
  • the emission intensity rapidly decreases as the distance from the n-electrode increases. This is because the current passing through the n-electrode spreads sufficiently in the plane of the light emitting device due to the large specific resistance of the GaN substrate. For this reason, light emission occurred only around the p-electrode where the current was concentrated. As a result, the light emission output of the entire light emitting device of Comparative Example T2 was inferior to that of Inventive Example S1.
  • the tenth embodiment of the present invention is characterized in that the light output is increased by limiting the density of the dislocation bundle in the GaN substrate in the light emitting device mounted p-down.
  • the light output is increased by limiting the density of the dislocation bundle in the GaN substrate in the light emitting device mounted p-down.
  • dislocations generated inevitably are concentrated and collected, and dislocation fluxes are distributed in a dispersive manner.
  • the GaN substrate is placed on the light emission side, so if the dislocation flux density exceeds a predetermined value (dislocation flux density 4E2 / cm 2 ), the production yield of the light emitting device is estimated It was confirmed that the event had a dramatic effect.
  • the dislocation bundle of the GaN substrate is inherited by the p-type GaN layer 6 of an epitaxy film such as a p-type GaN layer, and appears as a core 61 on the epitaxy film. Therefore, the dislocation flux density and the core density are almost the same.
  • the core 61 becomes a hole-shaped concave portion as shown in FIG. 41, depending on the conditions for forming the epitaxial film. The density of the concave holes has a dramatic effect on the production yield of a p-down mounting light emitting device using a GaN substrate as an emitting surface.
  • test pieces used are as follows.
  • Example S2 A 0 & N substrate in which dislocation bundles are distributed on average one per 500 111 500 111 was used. This corresponds to a dislocation flux density of 4E2 / cm 2 . Other conditions are the same as in Example S1 of the present invention.
  • Comparative Example T3 In the comparative example, a GaN group in which one dislocation bundle is distributed per 10 ⁇ m ⁇ 10 ⁇ m A plate was used. This corresponds to a dislocation flux density of 1E6 / cm 2 . The other conditions were the same as in Example S2 of the present invention.
  • a light emitting element as a device having an optical output of less than 8mW was disassembled and a chip was taken out and examined.
  • the removed chip is removed with an appropriate acid solution and the electrode is removed and observed from the p-type semiconductor layer side, several epitaxy growth layers are not formed in the GaN substrate where dislocation fluxes are distributed.
  • a hole-shaped recess having a diameter of about 1 zm was observed. The above-mentioned hole-shaped recess was not recognized when the light output was 8 mW or more.
  • Embodiment 11 of the present invention is characterized in that an n-type AlGaN buffer layer and an n-type GaN buffer layer are arranged between a GaN substrate and an n-type AlGaN cladding layer 3.
  • the substrate has a warped force.
  • a GaN substrate has a particularly large warp. Therefore, in the case of a GaN substrate, the off-angle greatly varies within the substrate plane as shown in FIG. FIG. 42 shows an example of an off-angle distribution of c-plane force of a 20 mm ⁇ 20 mm GaN substrate.
  • the region Rl located at the corner and having a small off-angle of 0.05 ° level and the region having a large off-angle of 1.5 ° level The light emitting device formed in R2 cannot obtain an optical output of 8 mW or more for an applied current of 20 mA.
  • This is Ga This is due to the poor crystallinity of the epitaxial film formed on the N substrate.
  • an n-type AlGaN buffer layer 31 and an n-type GaN buffer layer 2 having a lattice constant intermediate between the GaN substrate 1 and the AlGaN cladding layer 3 are arranged. An attempt was made to mitigate the difference in lattice constant. More specifically, the feature is that the n-type AlGaN buffer layer 31 is arranged at the above position.
  • test specimens used are as follows.
  • Example 1 was used in a plane of 20 mm X 20 mm, with the off angle from the c-plane continuing from the area of 0.05 ° to the area of 1.5 °.
  • the specific resistance of the GaN substrate is 0.01 ⁇ 'cm, dislocation density of lE7 / cm 2, a thickness of 400 / im.
  • a plurality of light emitting elements were manufactured from each position according to the manufacturing process (al) -one (all) of Example A of the present invention in Example 1.
  • an n-type GaN layer was formed in contact with the GaN substrate 1, and an AlGaN layer was placed between the GaN substrate and the n-type GaN layer.
  • Example S3 of the present invention When a current of 20 mA was applied to the light emitting device, in Example S3 of the present invention, light was emitted in a 0.05-1.5 ° region including the above regions Rl and R2 of the GaN substrate of 20 mm X 20 mm. An output of 8 mW or more was obtained (see Fig. 44). In Comparative Example T4, the power S was able to obtain an optical output of 8 mW or more only in the light emitting element formed on the area where the off angle was 0.1 ° and 1.0 °. Light output of 8mW was not reached at off-angle levels of 0.05 ° and 1.5 °
  • Example S3 of the present invention even when a GaN substrate whose off-angle fluctuates greatly is used, by disposing the AlGaN buffer layer as described above, an epitaxy layer having excellent crystallinity can be obtained.
  • Example 11 2 Example 11-2 of the present invention is similar to Example 11, except that an n-type AlGaN buffer layer and an n-type GaN buffer are provided between the GaN substrate and the n-type AlGaN cladding layer 3.
  • the feature is that by disposing the layers, the hole-shaped concave portion shown in FIG. 41 which is generated when an epitaxy film is formed in the dislocation bundle portion of the GaN substrate as in Example 10 is eliminated.
  • the inside of the wafer on the side of the epitaxial layer was observed with a differential interference microscope and a scanning electron microscope (SEM). As a result, it was confirmed that there was no hole-shaped concave portion as shown in FIG. All of the GaN substrate with a diameter of 2 inches described above were assembled into a light emitting device except for an edge of about 5 mm from the outer periphery. One out of every 50 light emitting elements was extracted, a current of 20 mA was applied, and the yield at which an optical output of 8 mW or more was obtained was investigated. The result was a 100% yield.
  • Example 12 of the present invention a p-type AlGaN layer having enhanced conductivity was arranged outside the MQW4 / p-type AlGaN cladding layer 5 / p-type GaN layer 6, and the reflectivity was high and the Ag electrode was used as the p-electrode.
  • the feature is that only the layers are arranged on the entire surface. Therefore, no other metal electrode considering the work function is provided. With this configuration, a high reflectance is provided at the bottom portion on the down side, so that light absorption that occurs when another metal electrode is used is reduced, and light emission efficiency can be increased.
  • test specimens are as follows.
  • Example S4 of the present invention Similar to Example A of the present invention, Ga as the first main surface of the GaN substrate was used. It has the following laminated structure on the surface.
  • Example A of the present invention of Example 1 the treatment step of the force (a7) for forming the Ni / Au electrode layer was not performed in the treatment step (a7), but instead the Ag electrode layer having a thickness of 100 nm was used. Was formed.
  • Comparative Example T5 In the structure of Inventive Example A of Example 1, an Ag electrode layer having a thickness of 100 nm was further arranged in contact with the NiZAu electrode layer.
  • Example S4 of the present invention since the p-type InGaN layer 32 was in contact with the p-type GaN layer 6, the excitement level was low. For this reason, the carrier concentration increases and the work resistance is not so large Even if the Ag reflection film 33, which is not so large, is arranged in contact with the p-type InGaN layer 32 as a p-electrode, the contact resistance between the Ag reflection film 33 and the p-type InGaN layer 32 is still small. Not so big. When the drive voltage of the light emitting device of Example S4 of the present invention was compared with the drive voltage of the light emitting device of Comparative Example T5, the difference was less than 0.05 V, and a significant difference could not be recognized.
  • Example S4 of the present invention an optical output of 11.5mW was obtained when a current of 20mA was applied, whereas in Comparative Example T5 it was 9.6mW. In addition, Example A of the present invention was 8 mW.
  • Example S4 of the present invention a large light output is obtained in Example S4 of the present invention because light traveling from the light emitting layer toward the p semiconductor layer is absorbed by the Ni / Au electrode layer because there is no Ni / Au electrode layer. The reason for this is that the light is reflected by the Ag layer with a reflectivity of 88%.
  • the inventive example S4 the light output that could be extracted outside reached 1.2 times that of the comparative example T5.
  • the force S using an Ag film for the p-electrode, and other materials that have high reflectivity and high contact resistance with the p-type InGaN layer 32 may be used, for example.
  • A1, Rh can be used.
  • Example 13 In Example 13 of the present invention, the light output was improved by arranging Ni / Au layers discretely in contact with the p-type GaN layer for the p-electrode and coating the Ag film to fill the gap.
  • FIG. 46 is a cross-sectional view focusing on the p-electrode.
  • NiZAu electrode layers 12a are discretely arranged at a predetermined pitch on the bottom surface of the down side of the epitaxial layer. Further, an Ag layer 33 is arranged so as to fill the space therebetween and cover the down-side bottom surface of the epitaxial layer and the NiZAu electrode layer 12a.
  • FIG. 47 is a plan view showing the p-electrode through the upper part of the p-electrode.
  • a typical pitch of the discrete Ni / Au electrode layers 12a is 3 ⁇ m.
  • the pitch of 3 ⁇ m is based on the fact that in a normal p-type GaN layer or p-type AlGaN cladding layer, the diameter within the range where the current spreads from its specific resistance is 6 ⁇ m. Let's do it. In other words, by setting the pitch to 3 ⁇ m, current reaches from one discrete electrode to the next. In order for the current to flow through the electrode layer without leakage, the pitch should be 3 xm or less.However, if the pitch is made too small, the effective light extraction by the discretely arranged Ni / Au electrode layer Will be reduced.
  • invention Example S5 Produced according to the same manufacturing process as Inventive Example A of Example 1, except that a 4 nm thick Ni layer was formed in contact with the p-type GaN layer in the p-electrode fabrication step (a7). Then, a 4 nm-thick Au layer was formed on the entire surface. Next, patterning was performed using a resist mask to form discretely distributed Ni / Au electrodes (see FIGS. 46 and 47). Next, by performing a heat treatment in an inert gas atmosphere, the contact resistance was set to 5 ⁇ -4 ⁇ 'cm 2 .
  • an Ag layer was formed on the entire surface so as to fill the gap between the NiZAu electrodes and to cover the Ni / Au electrodes, thereby forming a reflective electrode.
  • the occupancy of the discretely arranged NiZAu layer in the p-type GaN layer was 20%, and the occupancy of Ag was 80%.
  • the pitch of the Ni / Au electrode layer 12 was 3 ⁇ m (see FIG. 48).
  • Example T6 A laminated structure was formed on a GaN substrate according to the same manufacturing process as Example A of the present invention in Example 1.
  • the p-electrode is in contact with the p-type GaN layer according to the fabrication process (a7).
  • a Ni / Au layer was placed on the surface, and heat treatment was performed.
  • an Ag layer was further formed on the entire surface in contact with the Ni / Au layer (see FIG. 49).
  • FIG. 50 shows the reflection behavior of light toward the down side of the same light-emitting element as Example A of the present invention.
  • Example S5 of the present invention Light output was measured by applying a current of 20 mA to each of the light emitting devices manufactured as described above.
  • Example S5 of the present invention an optical output of 11.5 mW was obtained, but in Comparative Example T6, it was 9.6 mW.
  • the ratio of light reflected from the p-electrode and emitted from the emission surface reaches 86% of the light from the active layer toward the mount side (down side) (see FIG. 48). On the other hand, it was 67% in Comparative Example T6 (FIG. 49).
  • the ratio in Inventive Example A was 40% (FIG. 50).
  • Example S5 of the present invention the light heading to the down side is reflected by 88% of the p-electrode due to Ag occupying 80% of the p-electrode, and occupies 20% of the p-electrode.
  • the NiZAu layer reflects 20% of the light with a reflectance exceeding 40% (simply not 40%).
  • the above ratio is 86%.
  • Comparative Example T6 the light was further reflected by the Ag layer located on the down side of the Ni / Au layer, and the ratio of reflection was larger than that of Example A of the present invention.
  • Comparative Example T6 belongs most widely to the present invention examples.
  • the present embodiment is merely a comparative example for convenience of explanation.
  • Ni / Au electrode layer described above may be replaced with a Pt electrode layer or a Pd electrode layer.
  • the reflective electrode Ag layer may be replaced with a Pt layer or a Rh layer.
  • the fourteenth embodiment of the present invention is directed to a case where a plurality of parallel GaN substrates propagated from the GaN substrate to the epitaxial layer.
  • the feature is that the plate-like crystal inversion region is removed, and a p-electrode is arranged for each gap region of the plate-like crystal inversion region.
  • the GaN substrate it is distributed parallel to the thickness direction of the GaN substrate and appears in a stripe form on the main surface of the GaN substrate, and the crystal inversion region propagates to the epitaxial layers 2, 3, 4, 5, and 6.
  • the plate-like crystal inversion regions shown in FIGS. 51 and 52 are arranged in a lattice on the main surface.
  • the plate-like crystal inversion region and the dislocation bundle are the same in that the crystal arrangement is inverted with respect to the surroundings.
  • the difference between the two is that the dislocation bundle gathers the dislocations into a string or a thick line, and thus the crystal inversion region is a string shape, whereas the plate-like crystal inversion region has a plate shape. It is in. That is, in the plate-like crystal inversion region, dislocations are distributed at a high density in a planar region having a thickness.
  • the crystal inversion region in the above-mentioned epitaxy layer is completely removed, and the crystal inversion region of the GaN substrate is removed to a predetermined depth on the first main surface side, and each epitaxy layer is separated.
  • the feature is that a p-electrode is provided for each separated epitaxial layer (see Fig. 53).
  • the plate-like crystal inversion region may be formed from a lattice-like crystal inversion region where the plate-like crystal inversion region intersects on the main surface as shown in FIG. 51, or may be formed on the main surface as described later. A parallel arrangement in which the distribution is uniform in a certain direction may be used.
  • the first main surface on the epitaxy layer side has a (0001) plane, that is, a c-plane.
  • the crystal inversion region having a plane-symmetric relationship with the first main surface is the (000-1) plane, that is, the ⁇ c plane, and grows with the c axis inverted.
  • the surface is a Ga-plane in which Ga atoms are arranged, and in the crystal inversion region, the surface is an N-plane in which N atoms are arranged.
  • Example S6 of the present invention a GaN substrate in which crystal inversion regions each having a width of 30 ⁇ m were arranged in a lattice pattern at intervals of 100 / im on the first main surface was used.
  • the crystal inversion region propagates to the epitaxial film formed on the GaN substrate.
  • a laminated structure was formed by the same manufacturing method as that of Example A of the present invention (see step (al)-(a6) of Example A of the present invention).
  • the following processing is performed instead of (a7). That is, using a mask pattern that covers only the crystal inversion region propagated to the P-type GaN layer as shown in FIG. 52, a p-electrode layer is formed only in the c-plane region of the mask gap, and then the mask pattern is removed.
  • the semiconductor substrate having the mask coated on the entire second main surface (rear surface) of the GaN substrate is held in KOH at 8N (regulated) at 80 ° C., and the crystal on the first main surface is removed.
  • the inversion region was removed by etching into the GaN substrate through an epitaxial layer such as a p-type GaN layer to form a groove 52. Since the plate-like crystal inversion region 51 has a high density of dislocations, it can be easily etched by KOH.
  • the etching depth in the GaN substrate is such that the interfacial force between the epitaxial layer and the GaN substrate is 150 ⁇ m below the GaN substrate.
  • the mask was removed, and an insulating film was deposited so as to fill the groove 52 (FIG. 53).
  • Example S6 of the present invention the plate-like crystal inversion regions were arranged in a lattice shape.
  • the plate-like crystal inversion regions need not be in a lattice shape.
  • a plate-like crystal inversion region may be arranged only in parallel along a certain direction on the main surface of the GaN substrate. Further, even when a nitride semiconductor substrate in which point-like (actually, plane or small circle) crystal inversion regions are regularly present is used, the same as in Example S6 of the present invention according to the size and depth of the etching hole. An optical output larger than that of Example A of the present invention can be obtained.
  • Embodiment 15 of the present invention is characterized in that, as shown in FIG. 56, a fluorescent plate 46 is arranged above a semiconductor chip so as to face the GaN substrate 1 and sealed with a resin 15.
  • a fluorescent plate 46 is arranged above a semiconductor chip so as to face the GaN substrate 1 and sealed with a resin 15.
  • the fluorescent screen is placed facing the GaN substrate, which is the radiation surface in p-down mounting.
  • Specimens used are inventive examples S7 and S8 and comparative example T7 shown in FIG.
  • Invention Example S7 is basically produced according to the manufacturing process of Invention Example F shown in Example 3. As shown in FIG. 56, a phosphor plate 46 was arranged on a chip mounted with p-down so as to face the back surface of the GaN substrate 1, and sealed with an epoxy resin 15 to obtain a white light emitting device.
  • the above-described fluorescent plate 46 was manufactured by the following manufacturing method. 1 (Iodine) by halogen transport method
  • the diffused massive ZnSSe crystal was prepared, and the massive ZnSSe crystal was heated in an atmosphere of Zn and Cu to diffuse Cu into ZnSSe.
  • the bulk ZnSSe crystal was polished to a thickness of 0.5 mm using a coarse polishing machine, and then cut into a shape that could fit in the lead frame.
  • Example S8 of the Invention In Example S8 of the invention, irregularities were formed on the surface 46a of the fluorescent plate 46 facing the GaN substrate (see FIG. 57). The height of the unevenness was 2 zm, and the average pitch of the unevenness was 5 zm. Other structures were the same as those of the inventive example S7.
  • a fluorescent plate 46 was arranged above a chip mounted with a p-top so as to face the chip, and sealed with an epoxy resin 15 to obtain a white light emitting device.
  • Example S7 of the present invention 8001 m was obtained, and in Example S8 of the present invention, 8801 m, a high luminance was obtained.
  • the luminance of Comparative Example T7 was 5,401 m.
  • the above GaN substrate is n-typed by oxygen doping, the oxygen concentration, the oxygen atom 1E1 7 pieces / cm 3 - in the range of 2E19 atoms / cm 3, the thickness of the GaN substrate 100 beta m- 600 ⁇ m.
  • the oxygen concentration at least 1E17, as described above / cm 3 or more it is possible to improve the specific resistance of the GaN substrate, it is possible to widen sufficiently current introduced from the p-electrode in GaN substrate, the active Luminescence can be produced using the full width of the layer.
  • the oxygen concentration to 2E19 / cm 3 or less, it is possible to secure a transmittance of 60% or more for light having a wavelength of 450 nm, thereby increasing the transmittance of the GaN substrate serving as a radiation surface and increasing the light output. Can be secured.
  • the above oxygen concentration range depends on the thickness of the GaN substrate It works particularly effectively when the force is 00 ⁇ —600 ⁇ .
  • the above oxygen concentration is in the range of 5E18 atoms / cm 3 — 2E19 atoms / cm 3
  • the thickness of the GaN substrate may be in the range of 200 ⁇ m to 400 ⁇ m, and both sides of the light-emitting rectangular surface of the second main surface may be in the range of 10 mm or less.
  • the oxygen concentration of the, 3E18 oxygen atoms pieces / cm 3 - 5E18 atoms in the range of / cm 3 was in the range of 400 ⁇ m 600 ⁇ m, the second major surface Both sides of the light-emitting rectangular surface may be within a range of 3 mm or less.
  • the oxygen concentration of the, 5E18 oxygen atoms / cm 3 - 5E19 atoms in the range of / cm 3 the thickness of the GaN substrate was in the range of 100 ⁇ m 200 ⁇ m, emitting light of the second main surface Both sides of the rectangular surface can be less than 3mm.
  • Dislocation flux force A GaN substrate that is distributed on the first main surface of the GaN substrate at an average density of 4E6 / cm 2 or less may be used.
  • the above dislocation bundles average 4E2 cells to the first major surface / cm 2 distributed in the following densities, rectangular both surfaces of the sides 200 mu m 400 for emitting light of the second main surface It may be in the range of ⁇ m.
  • the n-type AlGaN buffer layer is in contact with the GaN substrate and the n-type AlGaN buffer layer is in contact with the n-type AlGaN buffer layer.
  • the configuration may be such that the n-type GaN buffer layer is located and the n-type AlGaN layer (0 ⁇ 1 ⁇ 1) is in contact with the n-type GaN buffer layer.
  • the n-type AlGaN layer is placed between the GaN substrate and the n-type AlGaN layer (0 ⁇ x ⁇ 1), which is the cladding layer of the active layer, as described above.
  • a buffer layer and an n-type GaN buffer layer may be arranged.
  • the above-mentioned laminated structure has a region in which the off angle is 0.10 ° or
  • Dislocation fluxes are distributed on the GaN substrate described above, and dislocation fluxes are distributed on the epitaxy layer located on the n-type GaN buffer layer in contact with the n-type AlGaN buffer layer and the n-type A1GaN buffer layer. Propagating, let's go, as a composition.
  • the manufacturing yield can be significantly increased. That is, by disposing the n-type AlGaN buffer layer and the n-type GaN buffer layer as described above, it is possible to substantially eliminate dislocation bundles in the epitaxial laminated structure including the light emitting layer. That is, the dislocation bundle can be terminated near the GaN substrate or a layer immediately above the GaN substrate by the n-type AlGaN buffer layer and the n-type AlGaN buffer layer.
  • the p-type GaN buffer layer located on the down side in contact with the p-type AlGaN layer (0 ⁇ x ⁇ 1) and the p-type InGaN contact layer located in contact with the p-type GaN buffer layer May be provided.
  • the p-type InG having excellent electrical conductivity is formed under the p-electrode layer. Since an aN contact layer can be provided, the necessity of selecting a material for the p-electrode layer with the work function or the like being the most important is reduced. For this reason, for example, the material of the p-electrode can be selected by giving the most importance to the reflectance and the like.
  • [0181] can be such that the range of the Mg concentration force Mg atoms 1E18- 1E21 atoms / cm 3 of the above ⁇ -type InGaN contact layer.
  • the above-described configuration may have a p-electrode layer composed of an Ag layer in contact with the p-type InGaN contact layer.
  • the light output can be increased by increasing the reflectance from the mounting portion, that is, the bottom of the light emitting element to reduce the loss of light.
  • the above-mentioned GaN substrate has a plate-like crystal inversion region extending continuously in the thickness direction and in the plane of the GaN substrate, and the plate-like crystal inversion region in the GaN substrate and the GaN substrate.
  • the plate-shaped crystal inversion region propagated to the n-type and p-type nitride semiconductor layers formed above is removed from the p-type nitride semiconductor layer side to the position through the n-type nitride semiconductor layer and into the GaN substrate Then, a p-electrode is provided for each p-type nitride semiconductor layer in contact with the p-type nitride semiconductor layer remaining after the removal.
  • the light extraction surface can be increased, so that the light output can be improved.
  • the plate-like crystal inversion region may be removed with a KOH aqueous solution to a position in the GaN substrate.
  • the first p-electrode which is in contact with the p-type nitride semiconductor layer and is arranged discretely over the surface of the p-type nitride semiconductor layer, fills a gap between the first p-electrode and the first p-electrode.
  • a second p-electrode made of Ag which covers the p-type nitride semiconductor layer and the first p-electrode.
  • the coverage of the discretely arranged first p-electrodes on the surface of the p-type nitride semiconductor layer may be in the range of 10 to 40%.
  • the fluorescent plate may be arranged so as to be away from the nitride semiconductor substrate and to face the second main surface of the nitride semiconductor substrate.
  • the fluorescent plate By arranging the fluorescent plate directly above the nitride semiconductor substrate that constitutes the light emitting section with the p-down mounted, the light reflected back from the back surface of the fluorescent plate is re-reflected by the nitride semiconductor surface, and To the side. As a result, the light output can be improved.
  • the surface of the above-described phosphor plate facing the second main surface of the nitride semiconductor substrate can be subjected to an unevenness treatment.
  • the above-described nitride semiconductor substrate may function as a grounding member for releasing power of the transient voltage or electrostatic discharge to the ground.
  • a nitride semiconductor substrate having a high electrical conductivity requires a light-emitting element to respond to a transient voltage applied between the nitride semiconductor substrate and the side of the down-mounted p-type AlGaN layer ⁇ electrostatic discharge. In order to protect them from high voltages, they can function as grounding members that release those high voltages to the ground. Therefore, it is not necessary to provide a protection circuit such as a power shunt circuit including a zener diode to cope with the above-mentioned transient voltage or electrostatic discharge. Transient voltages and electrostatic discharges are the main causes of circuit failure for III-nitride semiconductors. If the electrical conductivity of the nitride semiconductor substrate is high as described above, it can be used as a grounding member, and manufacturing. The process can be greatly shortened, and the manufacturing cost can be reduced.
  • the above light emitting element can emit light by applying a voltage of 4 V or less.
  • a nitride semiconductor substrate having a high electric conductivity, that is, a low electric resistance it is possible to inject a current sufficient for light emission into the light emitting layer by applying a low voltage, and to emit light. This Therefore, since a smaller number of batteries can be mounted, it is possible to contribute to a reduction in size, weight, and cost of a lighting device incorporating a light emitting element. It is also effective in reducing power consumption.
  • the thickness of the nitride semiconductor substrate is set to 50 ⁇ m or more.
  • the GaN substrate or the n-type nitride semiconductor be thick.
  • the thickness of the substrate is less than ⁇ ⁇ m, if the area of the n-electrode is reduced, it does not spread sufficiently when it reaches the active layer of the quantum well structure, and does not emit light in the active layer. The light emission is insufficient and some parts are generated.
  • the thickness of the substrate By setting the thickness of the substrate to 50 zm or more, even if the area of the n-electrode is reduced due to the low electric resistance, the current spreads sufficiently in the substrate and the light emitting portion in the active layer is reduced. Can be expanded sufficiently. More preferably, it should be at least 75 x m. However, if the thickness is too large, the absorption by the substrate cannot be neglected.
  • An electrode having an aperture ratio of 50% or more may be provided on the second main surface of the nitride semiconductor substrate.
  • the emission efficiency of light from the second main surface can be increased.
  • the light output absorbed by the n-electrode decreases as the rotation efficiency increases, so that the light output can be increased.
  • the aperture ratio is more preferably at least 75%, further preferably at least 90%.
  • an electrode provided on the nitride semiconductor substrate, the contact area between the nitride semiconductor substrate can be such that 0.055 mm 2 or more.
  • the cross-sectional area of the bonding wire for electrically connecting the electrode and the lead frame is equal to or less than 0.
  • the cross-sectional area of the bonding wire that electrically connects the electrode and the lead frame is set to 0. 07 mm 2 or more.
  • electrode is positioned is divided into two or more corners of the nitride semiconductor substrate, the total contact area between the electrode and the nitride semiconductors substrate is at 0.055 mm 2 or more, and is located on the lead frame and the corner one
  • the sum of the cross-sectional areas of the bonding wires electrically connecting the electrodes can be 0.002 mm 2 or more.
  • the sum of the cross-sectional area of Bondin Guwaiya for electrically connecting the electrode and the lead frame located above the corner may be 0.07 mm 2 or more.
  • the area of the portion emitting light of the above second main surface may be 0. 25 mm 2 or more.
  • the range that can be replaced with existing lighting equipment is increased. If the area of the light emitting part is less than 0.25 mm 2 , the number of light emitting elements to be used becomes too large, and it is impossible to replace existing lighting equipment.
  • the part that emits light is as follows. In a nitride compound semiconductor substrate, the larger the current is, the better. This means that the light emission area can be increased as the electric resistance decreases.For example, if the specific resistance of the nitride compound semiconductor substrate is 0.01 ⁇ 'cm, as in Example F of the present invention, it is about 8 mm ⁇ 8 mm. can do.
  • the light emitting portion of the second main surface of the nitride semiconductor substrate may have a size of lmm x 1mm or more.
  • the light emitting portion of the second main surface of the nitride semiconductor substrate may be 3 mm ⁇ 3 mm or more. Further, the light emitting portion on the second main surface of the nitride semiconductor substrate may have a size of 5 mm ⁇ 5 mm or more.
  • the size of lmm X lmm or more means a size including 1mm X lmm.
  • the above light emitting element may be configured to have a thermal resistance of 30 ° C / W or less.
  • the luminous efficiency of the light emitting element is reduced due to the temperature rise. If the temperature rise is excessive, the light emitting element is damaged. For this reason, in a light emitting element, temperature or thermal resistance is an important design factor. Conventionally, the thermal resistance has been approximately 60 ° C / W (Patent Document 1). However, as described above, by setting the thermal resistance to be 30 ° C./W or less, the luminous efficiency is significantly reduced even if the power supplied to the light emitting element is sufficiently applied, or the light emitting element No damage is caused. The halving of the thermal resistance as described above was first realized by using a GnN substrate having a small specific resistance as described above.
  • the temperature of the portion where the temperature rises most in the continuous light-emitting state can be set to 150 ° C or lower.
  • the temperature where the temperature rises most that is, the temperature of the light emitting layer is set to 150 ° C or lower, and a sufficiently high luminous efficiency can be secured. Further, the life can be greatly extended as compared with the conventional light emitting device.
  • the thickness of the n-type nitride semiconductor layer is preferably 3 / im or less.
  • the n-type nitride semiconductor layer is formed by epitaxial growth on the nitride semiconductor substrate. If it is excessively thick, a long time is required for a film forming process, and the cost of raw materials increases. By setting the thickness of the n-type nitride semiconductor layer to 3 ⁇ or less as described above, a great cost reduction can be obtained. More preferably, it is better to be 2 / im or less.
  • a non-mirror surface treatment may be applied to a portion not covered with the electrode.
  • Non-mirror treatment may be applied to the side of the laminated structure, needless to say.
  • the surface force subjected to the non-mirror surface treatment described above is applied to an aqueous solution of potassium hydroxide (K) H), an aqueous solution of sodium hydroxide (NaOH), an aqueous solution of ammonia (NH 4), or another alkaline aqueous solution.
  • K potassium hydroxide
  • NaOH sodium hydroxide
  • NH 4 aqueous solution of ammonia
  • a non-specular surface may be used.
  • the surface may be made non-specular using one.
  • the surface subjected to the non-mirror surface treatment may be a surface non-mirrorized using RIE.
  • RIE reactive ion etching
  • wet etching with an alkaline aqueous solution can be used to obtain a predetermined uneven interval by combining with photolithography technology.
  • the electrode provided on the p-type nitride semiconductor layer can be formed of a material having a reflectance of 0.5 or more.
  • a phosphor may be arranged so as to cover the second main surface of the nitride semiconductor substrate. Further, the nitride semiconductor substrate may contain at least one of an impurity emitting fluorescence and a defect.
  • the light emitting device of the present invention includes at least two of the above light emitting devices, and these light emitting devices are connected in series.
  • a lighting component in which a plurality of the above-described high-efficiency light-emitting elements are mounted on a lead frame or the like using a high-voltage power supply.
  • a car battery for example, a car battery
  • the voltage is about 12 V
  • light can be emitted by connecting the light emitting elements of the present invention in four or more stages in series.
  • Another light-emitting element of the present invention includes two or more of the above-described light-emitting elements, and these light-emitting elements may be connected in parallel. With the above configuration, a lighting component including the above-described high-efficiency light-emitting element can be obtained using a high-current power supply.
  • Still another light-emitting element of the present invention and a power supply circuit for causing the light-emitting elements to emit light, wherein two or more parallel parts in which two or more light-emitting elements are connected in parallel are connected in series. May be connected.
  • the power supply circuit described above may include a parallel / vertical switching unit when the capacity of the lighting device is variable, and the parallel / horizontal switching unit may switch the wiring applied to the light emitting element.
  • the light-emitting device of the present invention uses a nitride semiconductor substrate having high conductivity and a p-down mounting structure. As a result, (1) it is excellent in heat dissipation and does not require a complicated electrode structure. (2) Excellent conductivity, excellent large-area light emission without the need to provide a protection circuit to protect the light-emitting element from transient voltage ⁇ electrostatic discharge, and excellent electrostatic withstand voltage. Since there is no large discontinuity in the refractive index from large to small from the light emitting layer to the substrate, total reflection is unlikely to occur from the light emitting layer to the emission surface. No degradation (4) Light emission at low voltage does not require a large-capacity power supply, so it is particularly suitable for lighting equipment for automobiles. (5) Its simple structure makes it easy to manufacture and inexpensive. There is also excellent maintenance. For this reason, it is expected that it will be widely used in various lighting products including lighting devices for automobiles in the future.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 構造が簡単なために製造が容易で、大きな発光効率を長期間安定して得ることができる発光素子を提供するために、窒化物半導体基板(1)の第1の主表面の側に、n型窒化物半導体層(2)と、窒化物半導体基板から見てn型窒化物半導体層より遠くに位置するp型窒化物半導体層(6)と、n型窒化物半導体層およびp型窒化物半導体層(6)の間に位置する発光層(4)とを備え、窒化物半導体基板の比抵抗が0.5Ω・cm以下であり、p型窒化物半導体層の側をダウン実装し、窒化物半導体基板の第1の主表面と反対側の主表面である第2の主表面(1a)から光を放出する。

Description

明 細 書
発光装置
技術分野
[0001] 本発明は、発光装置に関し、より具体的には窒化物半導体から形成される発光装 置に関するものである。なお、本発明における発光装置とは、窒化物半導体基板とそ の上に積層された半導体層とを主体に形成される半導体素子または半導体チップの みを指す場合もあるし、また、半導体チップが実装部品に搭載され樹脂封止された デバイスのみを指す場合もある。さらに、両方の意味に用いられる場合もある。また、 半導体チップを単にチップと呼ぶ場合がある。また、チップのうち基板とその上に形 成されたェピタキシャル層とを、単に基板と呼ぶ場合がある。
背景技術
[0002] 白色発光ダイオード (LED:Light Emitting Diode)は、今のところ携帯情報端末な どの小型電子機器の照明に盛んに用レ、られているが、今後、大きな空間または大面 積の照明に用いられる可能性を秘めている。大空間、大面積の照明に用いられるた めには、 LEDの光の出力を大きくする必要がある。このために LEDの電極に大電流 を流し、発熱にともなう温度上昇の問題を解決する必要がある。
[0003] 図 59に、現在、提案されている GaN系 LEDの構造を示す(特許文献 1)。この GaN 系 LEDでは、サファイア基板 101の上に n型 GaN層 102を設け、その n型 GaN層 10 2と p型 GaN層 104との間に量子井戸構造 103を形成している。発光はこの量子井 戸構造 103で発生する。 p型 GaN層 104の上には p電極 105がォーミック接触するよ うに形成され、また、 n型 GaN層 102には n電極 106がォーミック接触するように形成 されている。
[0004] これら p電極 105および n電極 106は、はんだボール 107, 108を介在させて実装 部品 109に接続されている。実装部品(サブマウント部品)は Si基板から構成され、 外部からのサージ電圧から保護するための回路が形成されている。すなわち、 Ga、 Al、 Inなどの III族窒化物半導体についての回路故障の主要な要因が、過渡電圧や 静電放電などのサージ電圧であることを重視して、発光装置に大きな順電圧および 逆電圧が印加されないように、発光装置保護のための電力分路回路をツエナーダイ オードなどで形成している。サージ電圧からの保護についてはこのあと詳しく説明す る。
[0005] 上記の GaN系 LEDは、サファイア基板 101の裏面側力 光を放出するように(al) p 型 GaN層 104をダウン実装し、かつ(a2) n型 GaN層 102に n電極層 106を形成して いる点に特徴を有する。この GaN系 LEDの構造は、図 59に見るとおり、非常に複雑 である。このような複雑な構造の原因となる(a2) n型 GaN層 102に n電極層を形成し た理由は、サファイア基板 101が絶縁体なのでサファイア基板に n型電極を設けるこ とができないからである。
[0006] 上述のサファイア基板を用いた発光装置だけでなぐ発光装置に用いられる GaAs 系、 GaP系、 GaN系の化合物半導体では、過渡電圧および静電放電からの保護回 路を発光装置に併設する提案が、これまで度々なされてきた (特許文献 2 4参照)。 とくに GaN系化合物半導体では、逆方向の耐圧が 50V程度と低ぐまた順方向電圧 も 150V程度の耐圧しかなレ、ために、上記保護のための電力分路回路を設けること が重要視されている。すなわち、上記 GaN系などのチップをサブマウントの Si基板上 に形成し、その Si基板にツエナーダイオードなどを含む保護回路を形成する。上記 のような多くの保護回路の提案は、 Ga、 Al、 Inなどの III族窒化物半導体についての 回路故障の主要な要因が、過渡電圧ゃ静電放電などのサージ電圧であることを示す 証左であるといえる。
[0007] また、上述の保護回路を設けた発光装置とは別に、導電体である SiC基板上に Ga N系発光装置を形成した例も知られている。すなわち、(SiC基板の裏面 n電極/ Si C基板/ n型 GaN層/量子井戸積層構造 (発光層)/ p型 GaN層/ p電極)の積層 構造を用いて、 p型 GaN層から光を放出する構造の LEDも、広く用いられている。 特許文献 1 :特開 2003 - 8083号公報
特許文献 2:特開 2000 - 286457号公報
特許文献 3:特開平 11 - 54801号公報
特許文献 4:特開平 11一 220176号公報
発明の開示 発明が解決しょうとする課題
[0008] 上記の図 59に示すサファイア基板を用いた GaN系 LEDでは、構造が複雑となり、 製造コストが高くなることは避けられない。広い空間の照明の用途に需要を開拓する ためには、 LEDは安価であることが必須であるので、上記の構造は好ましくなレ、。ま た、ダウン実装面の側に、 p電極 105と、 n電極 106とが配置されるため、電極の面積 、とくに p電極の面積が制限を受ける。大電流を流して高出力を得るためには、 p電極 はとくに大面積とすることが望ましいが、図 59に示す構造では制限を受け、この結果 、光出力に制限を受けることになる。さらに、電流にともなって発生する熱を逃がす上 でも、片側の面に 2つの電極層を配置することは好ましくない。
[0009] また、 n型 GaN層 102を基板と平行方向に電流が流れる際の抵抗が大きぐ発熱や 駆動電圧ひいては消費電力の増加の原因ともなる。とくに、成膜工程の短縮化を目 的に n型 GaN層の厚みを薄くすると、上記の発熱や消費電力増加の問題のほかに、 その n型 GaN膜の露出の歩留りが非常に悪くなる。
[0010] また、上記のサファイア基板を用いた発光装置を含めて発光装置全般に言えること であるが、放熱面積が制限され、また、熱抵抗(単位面積当たり単位エネルギー投入 による温度上昇)も大きいため、 1発光装置当たり注入電流を大きくとることができな レ、。とくにサファイア基板を用いた場合には、上述のように p電極の面積が制限を受 けるため、余裕がほとんどない熱設計をするのが通例である。
[0011] さらに、上記サファイア基板を用いた GaN系 LEDの場合には、放熱面積が制約さ れるため、少しでも電気抵抗を下げて発熱量を低減するために、 p電極と n電極とを 櫛型状に入り組ませて接触面積を拡大する構造を採用する事態に追い込まれる。こ のような櫛型形状の電極は加工が容易ではなぐ確実に製造コスト上昇につながる。
[0012] 上述のように、発光装置において熱的条件の設計は基本的な重要性を持ち、大出 力を得ようとする場合、上記のような熱的条件によって制約を受け、それを少しでも緩 和するために複雑な電極形状をあえて採用せざるをえなレヽ。
[0013] さらに、次のような問題がある。サファイア基板上に形成された GaN系発光装置を ダウン実装して、サファイア基板の裏面を光の放出面にする場合、サファイアの屈折 率が 1. 8程度であり、 GaNの屈折率が 2. 4程度であるので、光を発生し伝播させて きた GaN層とサファイア基板との界面で、所定の入射角以上の光は全反射して、外 に出ない。すなわち、入射角 Θ≥sin_1 (1.8/2.4) =42° の範囲の光は、 GaN層内に 止まり、外に出ない。このため、サファイア基板の主面における発光効率が低下する 。しかし、発光効率の問題も重要である力 それだけに止まらない。上記全反射した 光は GaN層を伝播し、 GaN層の側部から出射される。上記の全反射する光量はか なりの割合を占め、また、 GaN層は薄いため、側部から出射される光のエネルギー密 度は高くなる。 GaN層の側部に位置してその光に照射される封止樹脂は損傷を受け 、発光装置の寿命を短縮するという問題を生じる。
[0014] また、 p層側から光を取り出す(SiC基板裏面 n電極 ZSiC基板 Zn型 GaN層/量 子井戸積層構造 (発光層)/ p型 GaN層/ p電極)の構造の GaN系 LEDでは、 p電 極の光吸収率が大きいため大出力の光を効率よく外に放出することができない。 p電 極の被覆率を減少させ、すなわち開口率を増大させて光の放出量を増やそうとする と、 p型 GaN層は電気抵抗が高いため電流を p型 GaN層全体にゆきわたらせて流す ことができなレ、。このため発光を量子井戸構造の全体にわたって活性化することがで きず、発光出力が低下する。また、電気抵抗が上昇し、発熱や電源容量の問題を生 じる。さらに、電流を p型 GaN層全体に一様に流すことを目的に p型 GaN層の厚みを 厚くすると、この p型 GaN層による光の吸収が大きぐ出力が制約される。
課題を解決するための手段
[0015] 本発明は、構造が簡単であるために製造が容易で、大きな発光効率を長時間にわ たって安定して得ることができる発光装置を提供することを目的とする。
[0016] 本発明の発光装置は、窒化物半導体基板と、窒化物半導体基板の第 1の主表面 の側に、 n型窒化物半導体層と、窒化物半導体基板から見て n型窒化物半導体層よ り遠くに位置する p型窒化物半導体層と、 n型窒化物半導体層および p型窒化物半導 体層の間に位置する発光層とを備えた発光装置である。この発光装置では、窒化物 半導体基板の比抵抗が 0. 5 Ω ' cm以下であり、 p型窒化物半導体層の側をダウン実 装し、窒化物半導体基板の第 1の主表面と反対側の主表面である第 2の主表面から 光を放出する。
[0017] この構成では、電気抵抗の低レ、窒化物半導体基板の裏面(第 2の主表面)に n型電 極を設けるので、小さな被覆率すなわち大きな開口率で n電極を設けても電流を窒 化物半導体基板全体にゆきわたらせて流すことができる。このため、放出面で光を吸 収される率が小さくなり、発光効率を高くすることができる。なお、光の放出は第 2の 主表面だけでなく側面からなされてもよいことは言うまでもなレ、。以下の発光装置に おいても同様である。
[0018] また、電気抵抗が高レ、 p型窒化物半導体層の側は光放出面にならないので、 p型 窒化物半導体層の全面に p型電極層を形成することができ、大電流を流し発熱を抑 える上でも、また発生した熱を伝導で逃がす上でも好都合の構造をとることが可能と なる。すなわち、熱的要件のために受ける制約が非常に緩和される。このため、電気 抵抗を低下させるために、 p電極と n電極とを入り組ませた櫛型形状などにする必要 がない。
[0019] さらに、 GaN基板が導電性に優れることから、サージ電圧に対する保護回路をとく に設ける必要がなぐまた耐圧性も非常に優れたものにできる。
[0020] また、複雑な加工工程を行なうことがないので、製造コストを低減することも容易化 される。
[0021] なお、窒化物半導体「基板」は、独立して持ち運びできる厚みが相応に厚い板状物 体をさし、持ち運びにおレ、て単独ではそれ自身の形状を保ち難レヽ「膜」や「層」とは区 別される。このあと説明する、 GaN基板および A1N基板についても同様である。
[0022] 本発明の他の発光装置は、また、窒化物半導体基板の GaN基板と、 GaN基板の 第 1の主表面の側に、 n型窒化物半導体層の n型 Al Ga N層(0≤χ≤1)と、 GaN基
1—
板から見て n型 Al Ga N層より遠くに位置する p型 Al Ga N層(0≤x≤ 1)と、 n型 A
1 1
I Ga N層および p型 Al Ga N層の間に位置する発光層とを備えた発光装置であ 1 1
る。この発光装置は、 GaN基板の転位密度が、 108/cm2以下であり、 p型 Al Ga N
1— 層の側をダウン実装し、 GaN基板の第 1の主表面と反対側の主表面である第 2の主 表面から光を放出する。
[0023] この構成によれば、上記本発明における GaN基板は導電性を有することを前提と し、電気抵抗を低減することは容易なので、上記の発光装置における作用効果に加 えて、 GaN基板の転位密度が、 108/cm2以下であるので結晶性が高いこと、および 高い開口率により第 2の主表面からの光出力を高めることができる。また、側面からも 光を放出する。
[0024] また、屈折率の連続性が保たれるので、上述した全反射の問題も生じない。
[0025] 本発明のさらに別の発光装置は、窒化物半導体基板の導電性の A1N基板と、 A1N 基板の第 1の主表面の側に、 n型窒化物半導体層の n型 Al Ga N層(0≤χ≤1)と、
1
A1N基板から見て前記 n型 Al Ga N層より遠くに位置する p型 Al Ga N層(0≤x≤
1 1
1)と、 n型 Al Ga N層および p型 Al Ga N層の間に位置する発光層とを備えた発
1 1
光装置である。そして、上記の A1N基板の熱伝導率が、 100W/ (m'K)以上であり 、 p型 Al Ga N層の側をダウン実装し、 A1N基板の第 1の主表面と反対側の主表面
1
である第 2の主表面から光を放出する。
[0026] A1Nは非常に熱伝導率が高ぐ放熱性に優れているため、上記の p型 Al Ga N層
1 からリードフレーム等に熱を伝達して、発光装置における温度上昇を抑制することが できる。また、上記 A1N基板からも熱を放散し、温度上昇の抑制に貢献することがで きる。なお、上記の A1N基板は導電性を持たせるために不純物を導入した導電性 A1 N基板を前提とする。
図面の簡単な説明
[0027] [図 1]本発明の実施例 1における本発明例 Aの LEDを示す図である。
[図 2]図 1の LEDの発光層を含む積層構造を示す図である。
[図 3]本発明例 Aの積層構造のチップをウェハから採取するときのウェハの状態を示 す図である。
[図 4]図 3における電極の配置を示す図である。
[図 5]比較例 Bを示す図である。
[図 6]比較例 Bの LEDの発光層を含む積層構造を示す図である。
[図 7]比較例 Bの積層構造のチップをウェハから採取するときのウェハの状態を示す 図である。
[図 8]図 7における電極の配置を示す図である。
[図 9]本発明例 Aおよび比較例 Bの印加電流と光出力との関係を示す図である。
[図 10]本発明例 Aおよび比較例 Bの発光層での電流密度と光出力との関係を示す 図である。
園 11]本発明の実施例 2における本発明例 Cの LEDを示す図である。
園 12]本発明の実施例 2における本発明例 C1の LEDを示す図である。
[図 13]図 12の発明例 C1の LEDの平面図である。
[図 14]比較例 Eの LEDを示す図である。
[図 15]図 14に示す比較例 Eの LEDの平面図である。
園 16]本発明の実施例 3における本発明例 Fの LEDを示す図である。
園 17]本発明例 Fの積層構造のチップをウェハから採取するときの電極の配置を示 す図である。
[図 18]計算シミュレーションによる LEDチップ内の電流の流れを模式的に示す図で ある。
園 19]本発明の実施例 3における LEDの発光層における電流密度比を示す図であ る。
園 20]本発明の実施例 3における LED (蛍光材なし)の印加電流と光出力との関係を 示す図である。
園 21]本発明の実施例 3における LED (蛍光材なし)の発光層での電流密度と光出 力との関係を示す図である。
園 22]本発明の実施例 3における LED (蛍光材あり:白色)の印加電流と光出力との 関係を示す図である。
園 23]本発明の実施例 3における LED (蛍光材あり:白色)の発光層での電流密度と 光出力との関係を示す図である。
園 24]本発明の実施例 3における LEDの変形例 F-3を示す図である。
[図 25]図 24の LEDの平面図である。
園 26]本発明の実施例 4における LEDの透過率測定試験の概要を示す図である。 園 27]図 26に示す透過率測定試験において光が基板を透過する状況を示す図であ る。
園 28]透過率に及ぼす基板の厚みの影響を示す図である。
園 29]本発明の実施例 5において、本発明例 Lの LEDをウェハ力 採取するために 素子分離のエッチングを行なった後の状態を示す図である。
[図 30]本発明の実施例 5において、比較例 Mの LEDをウェハ力 採取するために素 子分離のエッチングを行ない、 n電極をエッチング溝の底部に形成しょうとするときの 状態を示す図である。
[図 31]本発明の実施例 5において、比較例 Nの LEDをウェハから採取するために素 子分離のエッチングを行ない、 n電極をエッチング溝の底部に形成しょうとするときの 状態を示す図である。
[図 32]本発明の実施例 7の本発明例 Qの LEDを示す図である。
[図 33]本発明の実施例 7の本発明例 Rの LEDを示す図である。
[図 34]本発明の実施例 8の本発明例 Sおよび Tの LEDを示す図である。
[図 35]本発明の実施例 8の本発明例 Uの LEDを示す図である。
[図 36]本発明の実施例 8の本発明例 Wの LEDを示す図である。
[図 37]本発明の実施例 9において GaN基板の比抵抗に及ぼす酸素濃度の影響を示 す図である。
[図 38]本発明の実施例 9において GaN基板の光(波長 450nm)の透過率に及ぼす 酸素濃度の影響を示す図である。
園 39]厚みおよび酸素濃度を変化させた GaN基板から発光素子を作製したときのそ の発光素子の光出力および電流が均一に流れる平面サイズを示す図である。
[図 40]本発明の実施例 10における GaN基板中のコアがェピタキシャル層に継承さ れた状態を示す図である。
園 41]孔状凹部となったェピタキシャル層に継承されたコアを示す図である。
[図 42]本発明の実施例 11において、 20mm X 20mmの GaN基板の c面からのオフ 角度分布を示す図である。
[図 43]本発明の実施例 11における、 GaN基板と AlGaNクラッド層との間にバッファ 層を配置した構造を示す図である。
園 44]本発明の実施例 11において、光出力 8mW以上を得ることができるオフ角範 囲を広げた結果を示す図である。
園 45]本発明の実施例 12における発光素子を示す図である。 [図 46]本発明の実施例 13における発光素子の p電極に着目した断面図である。
[図 47]図 46の発光素子の p電極を透視した平面図である。
[図 48]実施例 13の本発明例 S5における発光および反射を示す図である。
[図 49]実施例 13の比較例 T6における発光および反射を示す図である。
[図 50]実施例 13の比較例として挙げられた本発明例 Aにおける発光および反射を 示す図である。
[図 51]本発明の実施例 14において、板状結晶反射領域が格子状に現れている Ga N基板の主面を示す図である。
[図 52]図 51の板状結晶反射領域を示す GaN基板の断面図である。
[図 53]本発明の実施例 14の本発明例 S6を示す断面図である。
[図 54]本発明の実施例 14に含まれる、図 51とは別の並列配置の板状結晶領域を示 す平面図である。
[図 55]図 54の断面図である。
[図 56]本発明の実施例 15の本発明例 S7における発光および反射を示す断面図で ある。
[図 57]本発明の実施例 15における他の実施例である本発明例 S8での発光および反 射を示す断面図である。
[図 58]比較例 T7における発光および反射を示す断面図である。
[図 59]従来の LEDを示す図である。
符号の説明
1 GaN基板、 la 光放出面(第 2の主表面)、 2 n型 GaN層、 3 n型 Al Ga N層
1
、4 MQW (発光層)、 5 p型 Al Ga N層、 6 p型 GaN層、 11 n電極、 12 p電極
1
、 12a 離散配置の Ni/Auの p電極、 13 ワイヤ、 14 導電性接着剤、 15 エポキシ 系樹脂、 21a リードフレームのマウント部、 21b リードフレームのリード部、 25 素子 分離溝、 25a 素子分離溝の底部、 26 蛍光材、 35 高反射膜、 50 チップ境界、 L 1 p電極辺長さ、 L2 スクライブ線間隔(チップ辺長さ)、 L3 素子分離溝幅、 L4 ェ ツチング溝辺長さ、 D n電極直径、 r 発光層での中央からの距離、 t n型 GaN層の 厚み、 31 n型 AlGaNバッファ層、 32 p型 InGaN層、 33 Ag電極層、 46 蛍光板 , 46a 蛍光板の凹凸面、 51 板状結晶反転領域、 52 トレンチ、 61 コア(孔状凹 部)、 R1 オフ角 0.05° 領域、 R2 オフ角 1.44° 領域。
発明を実施するための最良の形態
[0029] 上記窒化物半導体基板における比抵抗 0.5 Ω ' cm以下という条件は、転位密度が 108Zcm2以下の GaN基板においても、また熱伝導率が 1 OOWZ (m . K)以上の Al N基板においても満たされている。上記窒化物半導体基板を含む本発明の発光装 置における選択的な実施態様は、 GaN基板または A1N基板を半導体基板とする他 の本発明の発光装置の選択的な実施態様として、基板のみを窒化物半導体基板の 一つである GaN基板または A1N基板にして適用できることは言うまでもない。
[0030] 次に図面を用いて、本発明の実施例について説明する。
[0031] (実施例 1)
最初に、サファイア基板と窒化物半導体基板である GaN基板との比較を行なう。図 1は、本発明の実施例 1における本発明例 Aの LEDを示す図である。 GaN基板 1の 第 1の主表面の側に後で詳細に説明する発光層などを含む積層構造が形成され、 p 電極 12が設けられている。本実施の形態では、この p電極 12が導電性接着剤 14に よってリードフレームマウント部 21aにダウン実装されている点に 1つの特徴がある。
[0032] GaN基板 1の第 2の主表面 laは、発光層で発光した光を放出する面であり、この面 に n電極 11が設けられている。この n電極 11は、第 2の主表面全体を覆わないように する。 n電極 11に被覆されていない部分の比率を大きくとることが重要である。開口 率を大きくすれば、 n電極によって遮られる光が減り、光を外に放出する放出効率を 高めること力できる。
[0033] n電極 11はワイヤ 13によりリードフレームのリード部 21bと電気的に接続されている 。ワイヤ 13および上記の積層構造は、エポキシ系樹脂 15により封止されている。上 記の構成のうち、 GaN基板 1から p電極 12にいたる間の積層構造を拡大して示した のが図 2である。図 2では、図 1における積層構造が上下逆になつている。
[0034] 図 2を参照して、 GaN基板 1の上に n型 GaNェピタキシャル層 2が位置し、その上に n型 Al Ga N層 3が形成されている。その上に Al Ga N層と Al In Ga N層と力 x 1 x x 1 - x x y 1 - x - y らなる量子井戸 (MQW:Multi-Quantum Well)4が形成され、その量子井戸 4を n型 A1 Ga N層 3とはさむように p型 Al Ga N層 5が配置され、その上に p型 GaN層 6が配 1 1
置されている。上記において、量子井戸 4において発光する。また、図 1に示すように 、 p型 GaN層 6の上に p電極 12が全面を被覆するように形成され、ダウン実装される。 次に、本発明例 Aの LEDの製造方法にっレ、て説明する。
(al) c面から 0. 5° ずらした GaNのオフ基板を使用した。この基板の比抵抗は 0.01 Ω ' cmであり、転位密度は lE7/cm2であり、厚みは 400 μ mとした。
(a2) MOCVD(Metal Organic Chemical Vapor Deposition)で GaN基板の第 1の 主面である Ga面上に次の積層構造を形成した。 (Siドープ n型 GaN層 Zクラッド層の Siドープ n型 Al Ga N層/ GaN層と In Ga N層との 2層構造が 3層重ねられた
0.2 0.8 0.15 0.85
MQW(Multi-Quantum Well)/クラッド層の Mgドープ p型 Al Ga N層/ Mgドー
0.2 0.8
プ p型 GaN層)
(a3)発光波長は 450nmであり、低温 4. 2Kでの PL(Photo Luminescence)強度と室 温 298Kでの PL強度を比較することにより便宜的に算出した内部量子効率は 50% であった。
(a4)このウェハを活性化処理して、 Mgドープ p型層の低抵抗化を行なった。ホール 測定によるキャリア濃度は、 Mgドープ p型 Al Ga N層力 S5E17/cm3、 Mgドープ p
0.2 0.8
型 GaN層が lE18/cm3であった。
(a5)このウェハをさらに、フォトリソグラフィ技術と RIE(Reactive Ion Etching)により、 Mgドープ p型層側から Siドープ n型層まで CI系ガスでエッチングする。このエツチン グにより、図 3に示すように、素子分離溝 25を形成し、素子分離を行なった。素子分 離溝の幅 L3は 100 μ mである。
(a6) GaN基板の第 2の主面である裏面の N面には、フォトリソグラフィ技術と、蒸着と 、リフトオフ法とにより 400 μ mおきにチップの中心に直径(D) 100 μ mの η電極をつ けた(図 3および図 4参照)。 η電極として、 GaN基板に接して下から順に (Ti層 20nm /Al層 100nm/Ti層 20nm/Au層 200nm)の積層構造を形成した。これを窒素( N )雰囲気中で加熱することにより、接触抵抗を 1E— 5 Ω ' cm2以下とした。
2
(a7) p電極としては p型 GaN層に接して厚み 4nmの Ni層を形成し、その上に厚み 4n mの Au層を全面に形成した(図 3および図 4参照)。これを不活性ガス雰囲気中でカロ 熱処理することにより、接触抵抗を 5E— 4 Ω ' cm2とした。
(a8)その後に、図 3および図 4に示すように、チップ境界 50が側面として現れるように スクライブを行ない、チップ化したものを発光装置とした。チップ化した発光装置は、 光の放出面が 300 μ mD (1辺の長さが 300 μ mの四角形)の形状で、発光層が 30 O z m口の形状をとる。すなわち図 4において、し1 = 300〃111であり、 Ι^ = 400 μ πι である。また、素子分離溝の幅し3 = 100 111であり、 η電極の直径 D = 100 x mであ る。
(a9)図 1を参照して、リードフレームのマウント部 21aに、上記チップの p型 GaN層側 が接するように搭載して、発光装置を形成した。マウント部に塗布した導電性接着剤 14によって発光装置とマウントとを固定するとともに、導通が得られるようにしている。 (alO)発光装置からの放熱性を良くするために、発光装置の p型 GaN層が全面マウ ント部と接するように搭載した。また接着剤は熱伝導の良レ、 Ag系のものを、またリード フレームも熱伝導の良い CuW系のものを選択した。これにより、得られた熱抵抗は 8 °C/Wであった。
(all)さらに、 n電極とリードフレームのリード部とをワイヤボンドにより導通させた後、 エポキシ系樹脂により樹脂封止を行なって発光装置をランプ化した。
[0035] 次に比較例 Bについて簡単に説明する。図 5において、 p電極 112がリードフレーム マウント部に導電性接着剤 114によりダウン実装されている。また、 n電極が導電性接 着剤 114により、 p電極が接続されているリードフレームマウント部とは分離されたリー ドフレームマウント部 121aに接続されている。この上に発光層を含む積層構造(図 6) が設けられ、 n型 GaN層 102の所定範囲に接している。 n型 GaN層 102はサファイア 基板 101に形成されており、上記積層構造が接している範囲の外の範囲に n電極 11 1が設けられている。 n電極 111は、ワイヤまたは導電性接着剤によりリードフレーム マウント部 121a、またはリードフレームリード部 121bと電気的に接続されている。
[0036] 発光層力も発光した光はサファイア基板 101を通って外部に放出される。サフアイ ァ基板を含む上記の積層構造を覆うようにエポキシ系樹脂 115が封止される。
(bl) c面から 0. 2° ずらしたサファイアの絶縁オフ基板を使用した。このサファイア基 板の厚みは 400 μ mとした。 (b2)一 (b4)本発明例 Aにおける(a2)—(a4)と同じ処理を施した。
(b5)比較例 Bの場合、サファイア基板は絶縁体であるため、 n電極は p電極と同じ成 長膜側に設ける必要がある。そこでこのウェハをさらにフォトリソグラフィ技術と RIEに より、 Mgドープ p型層側から Siドープ n型層まで C1系ガスでエッチングすることにより 、 n電極を設けるための n型 GaN層を露出させ、また本発明例 Aと同様の素子分離を 行なった(図 7,図 8)。素子の形状は 300 μ ΐη口で、その中で露出させた n型 GaNの 広さは 1つの素子当り 150 x mOである。すなわち露出部の四角形の段の辺の長さ L 4は 150 x mである。
(b6)露出した n型 GaN層上には、フォトリソグラフィ技術と、蒸着と、リフトオフ法とによ り直径 100 z mの n電極をつけた。厚み、熱処理、接触抵抗は本発明例 Aと同じとし た。
(b7) p電極を素子 300 μ mロカ、ら η型 GaN露出部 150 μ mOを除いた、 p型 GaN層 部に設置した。厚み、熱処理、接触抵抗は本発明例 Aと同じにした。
(b8)一(b9)本発明例 Aにおいて対応する処理と同じ処理を行なった。
(blO)本発明例 Aと同様に、発光装置からの放熱性を良くするために、発光装置の p 型 GaN層が全面マウント部と接するように搭載した。図 5において、 p型 GaN層 106と p電極 112との接触面積は 0. 0675mm2とした。発光装置の発熱は量子井戸層 104 と p型 GaN層 106とで生じるので、この放熱は主として p電極 112の面積で決まる。図 5の場合には、 n電極 111も導電性接着剤 114でリードフレームのマウント部 121aに 接続されているが、放熱面積は、実質的に上記の接触面積 0. 0675mm2である。本 発明例 Aの p型 GaN層 6と p電極 12との接触面積は 0. 09mm2である。接着剤、リー ドフレームの材質は本発明例 Aと同じとした。比較例 Bでは、上記の構造を反映して、 熱抵抗は 10. 4°CZWと本発明例 Aの 1. 3倍と悪くなつた。
(bll)本発明例 Aにおいて対応する処理と同じ処理を行なった。
(実験およびその結果)
本発明例 Aと比較例 Bとを、積分球内に搭載した後所定の電流を印加し、集光され ディテクタから出力される光出力値の比較を行なった。結果を図 9に示す。図 9によれ ば、電流がリークすることなく MQW層に注入され、 MQW層での非発光性再結合が 比較的少なぐまた発熱によるチップの温度上昇が小さいような比較的理想的な状態 では、光出力値は印加した電流の増加に比例して増加する。たとえば 20mAの注入 では本発明例 Aが 8mWであり、また比較例 Bが 7. 2mWの出力が得られた。
[0038] これは、本発明例 Aでは GaN系ェピタキシャル膜 ZGaN基板を主な構成とするの に比して、比較例 Bでは GaN系ェピタキシャル膜/サファイア基板を主な構成とする 。サファイア基板の屈折率は約 1. 8であり、 GaNの屈折率 2. 4よりもかなり小さいた め、比較例 Bでは、 GaN系ェピタキシャル膜中で形成され伝播してきた光は、 GaN 系ェピタキシャル膜とサファイア基板との界面で、本発明例 Aより全反射しやすい。こ れが原因で、比較例 Bの出力が本発明例 Aのそれより小さくなる。
[0039] し力、し、電流を 5倍にして 100mAを印加した場合、本発明例 Aでは 5倍の 40mW の出力が得られたが、比較例 Bでは 25. 2mWしか得られなかった(図 9参照)。このと きの MQW発光部での電流密度は、図 10に示すように、本発明例 Aでは l lOAZc m2であり、比較例 Bでは 150A/cm2であった。すなわち本発明例 Aの MQW発光部 での電流密度が、比較例 Bのそれより大きくなつている。
[0040] これは、本発明例 Aでは放熱面積が発生する熱に対して十分広ぐまた n電極を基 板の第 2の主表面側に設けることで電流密度が極端に大きくなる部位がない構造と なっていることを意味する。これに対し、比較例 Bでは放熱面積が本発明例 Aよりも小 さい上に、 n電極を露出させた n型 GaN層上に設けたため、 n型 GaN層中を層に平 行な方向に流れる電流の電流密度が極端に大きくなり過ぎたことを意味する。その結 果、比較例 Bでは、発熱がさらに増加することとなる。
[0041] また、本発明例 Aは比較例 Bと異なり n電極と p電極が対向した位置にあるため電気 的ショートのおそれがなぐ同じ側にある比較例 Bでたとえばショートを防止するため に p電極と n電極との間を電気的に絶縁するための膜を設けるような余計な製造コスト の増加を防ぐことも可能である。
[0042] さらに、本発明例 Aおよび比較例 Bの静電耐圧についての試験結果を説明する。
試験は、発光装置と、静電気がチャージされたコンデンサとを対向させて両者間に放 電を生じさせた。このとき、比較例 Bではおよそ 100Vの静電圧で破壊された。一方、 本発明例 Aではおよそ 8000Vまで破壊することがなかった。本発明例 Aでは、比較 例 Bの約 80倍の静電耐圧を有することが分った。
[0043] また、上記の本発明例 Aでは、 GaN基板の上に GaN系発光装置を形成するため、 GaN系発光チップをダウン実装して GaN基板裏面から光を放出するようにしても、屈 折率の相違が両者の間にないため、全反射をすることなぐ GaN系発光チップから G aN基板へと光が伝播する。このため、サファイア基板を用いて GaN系発光装置を形 成した構造に比べて、 GaN基板主面における光出力を高めることができる。さらに、 GaN層の側部から光が極端に集中して出射されることがないので、封止樹脂が損傷 を受けることがなくなり、封止樹脂により寿命が制約を受けることがなくなる。
[0044] 本発明例では、発光波長 450nmでの一例を示したにすぎず、発光波長や層構造 を変えた場合でも同じ効果を得ることができる。また基板の特性が同等であれば、 Ga N基板の代わりに、 Al Ga N基板(ただし、xは 0より大きく 1以下)を用いても同様の
1
効果が得られることは言うまでもなレ、。
[0045] 一 (実施例 2)—
本発明の実施例 2では、さらに大面積化したときの本発明例 Cについて説明する。 本発明例 Cは、図 1に示す本発明例 Aの構造と同じであるが、その寸法 L1が本発明 例 Aでは 0· 3mm (300 μ ΐη)であったのに比して、本発明例 Cでは、図 11に示すよう に、 L1は 3mmと 10倍になっており、したがって面積では 100倍になっている。まず、 本発明例 Cの製造方法はつぎのとおりである。
[0046] (本発明例 C)
(cl)一(c5) GaN基板に大きいものを用いる力 S、本発明例 Aにおいて対応する処理と 同じ処理を行なう。
(c6) GaN基板の裏面である第 2の主表面には、フォトリソグラフィ技術と、蒸着と、リフ トオフ法とにより 3. 1mmおきに、チップの中心に直径 100 x mの n電極をつけた。 n 電極としては、上記 GaN基板の裏面に接して下から順に(Ti層 20nmZAl層 100η mZTi層 20nmZAu層 200nm)の積層構造を形成した。これを不活性雰囲気中で 加熱処理することにより、接触抵抗を 1E— 5 Ω ' cm2以下とした。
(c7)本発明例 Aにおいて対応する処理と同じ処理を行なった。
(c8)その後に所定の形状になるよう、スクライブを行なレ、、チップィ匕したものを発光装 置とした。チップ化した発光素子のサイズは 3mm口である。
(c9)一(cl l)本発明例 Aにおいて対応する処理と同じ処理を施した。次に、本発明 例 Cの n電極の配置を変形した変形例 C1を、以下のように作製した。
[0047] (本発明例 C1)
図 12および図 13は、上記本発明例 Cの変形例である本発明例 C1を示す図である 。本発明例 C1では、 n電極 11を GaN基板の四隅、すなわち 4つのコーナーに配置し た点に特徴がある。また、半導体チップの実装において半導体チップを取り囲むよう にリードフレームに反射カップ 37を配置している。
[0048] 上記本発明例 C1の製造では、本発明例 Aと対応する工程において同じ処理を施 した。ただしボンディングワイヤには 4本の Au線を用レ、、それぞれの断面の直径は 2 5 μ mとした。 4つのコーナーに位置する各 n電極の形状は 45 μ mOである。
[0049] 次に比較例 Dについて説明する。比較例 Dの構造は、図 5に示す構造と同じである 。ただし、図 5の比較例 Bにおける L1が 300 /i m (0. 3mm)であったのに比して、比 較例 Dの L1は 3mmと 10倍としている。また、 n電極を形成する n型 GaN層の部分の 寸法 L4は、図 5の比較例 Bと同じ 150 μ ΐηである。比較例 Dの製造方法は次のとおり である。
[0050] (比較例 D)
(dl) c面から 0· 2° ずらしたサファイアの大サイズの絶縁オフ基板を使用した。サファ ィァ基板の厚みは 400 μ mとした。
(d2)一(d4)本発明例 Aにおいて対応する処理と同じ処理を施した。
(d5)比較例 Dの場合、サファイア基板が絶縁体であるため、 n電極は p電極と同じ成 長膜側に設ける必要がある。そこで、このウェハをさらにフォトリソグラフィ技術と RIE により、 Mgドープの p型層側から Siドープの n型層まで C1系ガスでエッチングすること により、 n電極を設けるための n型 GaN層を露出させ、本発明例 Aと同様の素子分離 を行なった。素子のサイズは、上記したように 3mm口と大型サイズとした。 n電極を配 置するためにで露出させた n型 GaN層の部分の広さは 1つの素子当り 150 μ m口と した。
(d6)露出させた n型 GaN層上には、フォトリソグラフィ技術と、蒸着と、リフトオフ法と により直径 100 μ ΐηの n型電極をつけた。厚み、熱処理、接触抵抗は本発明例 Aと同 じである。
(d7) p電極は、素子領域 3. 1mm口から素子分離溝と n電極とを配置するための n型 GaN層の露出部 150 z mOを除いた、 p型 GaN層に設けた。厚み、熱処理、接触抵 抗は本発明例 Aと同じとした。
(d8)一(dll)本発明例 Aにおいて対応する処理と同じ処理を行なった。
[0051] 次に、もう一つの比較例 Eについて説明する。比較例 Eは、図 14に示すようにサフ アイァ基板を用いて、 p電極 112および n電極 111をともにダウン実装側に設ける点で は比較例 Bおよび Dと同じである。し力し、図 15の平面図から明らかなように、 p電極 1 12を揚形状にして、 n電極 111を揚の歯の間に酉己置し、 p電極 112と n電極 111との 間に絶縁体を配置している点で異なっている。これは、 p電極と n電極とを流れる電流 を均等化して電流密度が極端に高くなる箇所を生じないようにするためである。この 比較例 Eの製造方法は次のとおりである。
[0052] (比較例 E)
比較例 Dと同様の作製方法で、 n電極 111は 0. 5mmおきに 5本、 0. 1mm幅の櫛 形電極を設けた(図 14および図 15参照)。 n電極 111と p電極 112との間を 0. 1mm 隔離しながら、 n型 GaN層 102の残りの裏面部分に p電極を設けた。さらに各々の電 極が電気的ショートしないように、 n電極と p電極との間の隙間には表面保護のための 絶縁体 119を設けた。さらにショートしないようにリードフレームのマウント部 121aの 各々の電極位置に対応する部分に導電性接着剤 114を設け、チップとリードフレー ムの横および縦方向、さらに回転方向のずれを制御しながらチップをリードフレーム に搭載した。
[0053] (実験およびその結果)
本発明例 Cと比較例 Dとを積分球内に搭載した後所定の電流を印加し、集光され ディテクタから出力される光出力値の比較を行なった。 20mAの電流印加において、 本発明例 Cの出力は 8mWであり、一方比較例 Dでは 7. 2mWであった。一方、 2A ( 2000mA)の電流を印加したとき、本発明例 Cでは 100倍の出力の 800mWが得ら れた。しかし、比較例 Dでは破損していた。 [0054] そこで比較例 Dを樹脂封止をしない状態で、電流を印加しながらサーモビユアで素 子の温度を測定した結果、 n電極から MQW発光部へ n型 GaN層中を層に平行な方 向に集中して電流が流れる部位が異常発熱し、破損したことがわかった。
[0055] そこで、さらに比較例 Dに対して n型電極から MQW発光部へ n型 GaN層中を層に 平行な方向に流れる電流が分散する構造のものを作製した。これが上記の比較例 E である。比較例 Eでは、印加電流 20mAで 7. 2mW、 2Aで 720mWと、本発明例 C の 0. 9倍の出力を得ることができた。
[0056] このように、本発明例 Cに近い性能を得ようとすれば、本発明例 Cと比べて非常に 複雑な構造およびプロセスが必要となるため製造コストは非常に大きなものとなる。
[0057] 次に、上記の本発明例 C、比較例 Dおよび Eについて静電耐圧の試験を行なった。
試験は、上記のように、発光装置と、静電気がチャージされたコンデンサとを対向さ せて両者間に放電を生じさせた。このとき、比較例 Dおよび Eではおよそ 100Vの静 電圧で破壊された。一方、本発明例 Cではおよそ 8000Vまで破壊することがなかつ た。すなわち、本発明例においては 80倍程度の非常に高い静電耐圧を得ることがで きた。
[0058] 本発明例 C1では、開口率は 50%を大きく上回りほとんど 100%である。また、 GaN 基板のコーナーに位置することにより、中央に位置する場合に比較して光取り出しの 障害になることは飛躍的に低減される。図 12に示す場合、平面的に見て n電極は活 性層の外に位置するので n電極が光取り出しに影響を及ぼすことはまったく無くなる 。この結果、本発明例 C1では本発明例 Cよりさらに高い出力を得ることが可能である
[0059] 一 (実施例 3)—
本発明の実施例 3では、光放出面における開口率および GaN基板の電気抵抗の 光出力に及ぼす影響を測定した。開口率の調整は、基板面積または p電極サイズと n 電極サイズとを変えることにより行なった。試験体は、図 1に示す構造の LEDを用い た力 一部の試験については、図 16に示すように、蛍光材 26を配置して白色 LEDと した試験体についても試験した。試験体は、本発明例 Fと、 GaN基板の比抵抗が本 発明の範囲に入らない比較例 Gおよび Hの 3体である。この後で説明する試験体 F、 G、 Hの各々について図 1に示す蛍光材を含まずエポキシ系樹脂で封止したものと、 図 16に示す蛍光材を搭載した白色 LEDとを作製した。開口率は、 { (p電極面積一 n 電極面積) /p電極面積 } X 100 (%)とした。
[0060] 本発明例 Fの Ll = 8mm、 ϋ= 100 μ πιであり、開口率はほぼ 100%である。また、 比較例 Gの L1 = 0. 49mm, Ο = 100 μ πιであり、開口率は 97%である。また、比較 例 Ηの Ll = 8mm、 D = 7. 51mmであり、開口率は 31 %である。上記本発明例 Fお よび比較例 G、 Hの製造方法について次に説明する。
[0061] (本発明例 F)
(fl)一(f 5)本発明例 Aにおいて対応する処理と同じ処理を行なった。
(f6)その後に所定の形状になるよう、図 17に示すようにスクライブを行なレ、、チップ 化したものを発光装置とした。得た発光装置は 8mm口である。
(f7)—(f 11)本発明例 Aにおいて対応する処理と同じ処理を行なった。
(f 12)上記の(f 11)とは別に(f 10)においてでリードフレームのマウントに搭載したもの の上の n電極側に蛍光材を搭載した後にエポキシ系樹脂により樹脂封止を行なって
、白色に発光するランプをも作製した。これには 450nmの光出力 1ワット当り 1801m が得られる蛍光材を使用した。
[0062] (比較例 G)
(gl) c面から 0· 5° ずらした n型 GaNのオフ基板を使用した。比抵抗 0· 6 Ω · αηと本 発明の範囲 0. 5 Ω ' cm以下より高いものを選んだ。この GaN基板の転位密度は 1E 7/cm2であり、また厚みは 400 μ mとした。
(g2)—(g5)本発明例 Fにおいて対応する処理と同じ処理を行なった。
(g6)その後に、所定の形状になるようスクライブを行なレ、、チップ化したものを発光装 置とした。得た発光装置は 0. 49mm口である。
(g7)—(gl2)本発明例 Fにおいて対応する処理と同じ処理を行なった。
[0063] (比較例 H)
(hl) c面から 0. 5° ずらした n型 GaNのオフ基板を使用した。比抵抗 0. 6 Q ' cmと本 発明の範囲 0. 5 Ω ' cm以下より高いものを選んだ。この GaN基板の転位密度は 1E 7/cm2であり、また厚みは 400 μ mとした。 (h2)一(h5)本発明例 Fにおいて対応する処理と同じ処理を行なった。
(h6)その後に所定の形状になるよう、スクライブを行なレ、、チップ化したものを発光装 置とした。得た発光装置は 8mm口である。
(h7)一(hl2)本発明例 Fにおいて対応する処理と同じ処理を行なった。
(実験およびその結果)
(1)本発明例 Fおよび比較例 G、 Hについて、 n電極から MQW層へ電流が比較的 均一に広がる範囲の電流分布をシミュレーションで算出した。このシミュレーション結 果を、本発明例 Fおよび比較例 G、 Hの素子設計に反映している。図 18に、電流の 広がりのイメージ図を示す。図 19は、 MQWの発光層 4における中心からの径方向 距離を rとして、距離 rにおける電流密度比を示す図である。電流密度は n電極中心 の値を 1とする。 (i)本発明例 Fの結果: n電極直下は最も電流密度が大きぐ n電極か ら離れるにつれ電流密度は小さくなつた。また n電極直下の 1/3以上の電流密度が 得られる範囲が n電極直下を中心に直径 12mmとなった。この結果を基に、発光装 置の大きさはそれに内包される 8mm口とした。 GaN基板の第 2の主表面である N面 には、フォトリソグラフィ技術と、蒸着と、リフトオフ法とにより 8. 1mm置きにチップの 中心に直径 100 μ ΐηの n型電極をつけた。この場合、 GaN基板の N面上で n型電極 のない部分、つまり開口率は素子当りほぼ 100%である。厚み、熱処理、接触抵抗は 本発明例 Aと同じである。 (ii)比較例 Gの結果: n電極直下の 1/3以上の電流密度 が得られる範囲が n電極直下を中心に直径 0. 7mmとなった。そこで本発明例 Eと n 電極の大きさとを合わせて直径 100 μ ΐηとし、チップサイズは直径 0. 7mmに内包さ れる 0. 49mm口とした。そこで GaN基板の N面にはフォトリソグラフィ技術と、蒸着と 、リフトオフ法とにより 0. 5mm置きにチップの中心に直径 100 z mの n型電極をつけ た。この場合、開口率は素子当りほぼ 97%である。厚み、熱処理、接触抵抗は本発 明例 A— Eと同じである。 (iii)比較例 Hでは、本発明例 Eとチップの大きさを合わせて 8mm口とした。 GaN基板の電気抵抗は比較例 Gと同じであり、電流の広がりが直径 0. 7mmとなるので、 8mm口に均一に電流を流そうとすると(n型電極直下の 1Z3以 上)、 n電極は直径 7. 51mm必要である。そこで、 GaN基板の第 2の主表面(光放出 面)には、スクライビングの幅を 0. 1mmとして、フォトリソグラフィ技術と、蒸着と、リフト オフ法とにより 8. 1mmおきに直径 7. 51mmの n電極をつけた。この場合、開口率は 素子当りほぼ 31 %となる。
[0065] (2)本発明例 Fと比較例 G、 Hとを、蛍光材を搭載しないもの同士を、積分球内に搭 載した後、所定の電流を印加し、集光されディテクタから出力される光出力値の比較 を行なった。結果を図 20および図 21に示す。
[0066] 20mAの電流印加では、本発明例 Fと比較例 G、 Hとは、電極を配置していない部 分の面積率と整合するように、それぞれ 8mW、 7. 8mW、 2. 5mWの出力となった。 本発明例 Fで最も高光出力が得られ、比較例 Gも本発明例 Fほどではないが比較的 高い光出力が得られた。そこでさらに 500倍の 1 OAを印加した場合、本発明例 Fおよ び比較例 Hとは、各々電極を配置しない部分の面積率に応じて 4Wおよび 1. 3Wの 出力が得られた。
[0067] 比較例 Gでは、印加電流 0. 26Aで発光部の電流密度が l lOAZcm2のときの 0. 1 Wの出力までは印加電流の増加に比例して出力が増加した。しかし、その後熱発生 による温度上昇とともに出力が飽和し、電流 10Aの印加により発光装置が壊れてい た。
[0068] また、上記の 3種の試験体の輝度を測定した結果を図 22および図 23に示す。図 2 2は、蛍光材を配置して白色化した LEDの印加電流と得られた輝度との関係を示す 図であり、また図 23は同様に電流と輝度との関係を示す図である。本発明例 Fと比較 例 Hは同じ蛍光材を使用しても、各々電極を配置しない部分の面積率に応じて得ら れる輝度が変わるので、 10Aの印加電流で 7201m/チップ、 2341m/チップとなつ た。比較例 Gは電流印加 0. 26Aにおける 181m/チップが熱的な限界であり、電流 を 10A印加すると破損した。図 22および図 23によれば、高電流で高い輝度が得ら れたのは本発明例 Fだけであった。
[0069] なお、本実施例において電流印加を最大 10Aとしたのは、それ以上電流を増やす と n電極でのジュール発熱密度が大きくなり過ぎて発熱が大きくなる可能性があるか らである。
[0070] n電極を大きくするか、または接触抵抗を充分下げれば、最大電流が電流密度 11 OA/cm2に対する 70Aまで同じ効果を得ることができる。 [0071] (本発明例 F-2および F-3)
そこで、本発明例 Fと同じ処理を施し、本発明例 F-2では n電極の直径 Dを lmm ( 面積 0.785mm2)とし、 GaN基板の中央に配置した。また、本発明例 F_3では n電極 を 450 z m口とし、 GaN基板の 4つのコーナーに配置した(図 24および図 25参照)。 図 24および図 25に示すように、 4つのコーナーに位置する n電極は、それぞれボン デイングワイヤによってリードフレームと電気的に接続されている。ボンディングワイヤ には Au線を用レ、、その断面の直径は 300 x mである。この場合の開口率はいずれも ほぼ 100%である。また、本発明例 C1と同様に、カップ状の反射体である反射カップ 37を配置した。
[0072] 本発明例 Fと同様に蛍光材を搭載しなレ、ものを積分球に装入した後、所定の電流 を印加して発光させた。その光を集光するディテクタから出力される光出力値を計測 したところ、 20mAの電流印加では 8mW、印加電流を前記の 500倍の 10Aとした場 合では 4W、さらに 70Aを印加した場合では 28Wの出力を得ることができた。
[0073] また、蛍光材を配置して白色光化した LEDの場合、 50401m/チップの輝度を得 ること力 Sできた。
[0074] もちろんサイズが小さぐ印加電流の比較的小さい発光装置を多数個並べて同様 の出力を得ることが可能である力 素子配置の位置精度のためや電気的ショートを回 避するため素子間に一定距離が必要となり、全体の大きさが極端に大きくなつたり、 また 1個 1個の素子に導通を施したりすると、極端にコストが高くなつたりして実用的で はない。本発明によればそうした問題を避け従来と全く同じ製造プロセス数を用いて 、ほぼ同じコストでまた大きさも必要最小限で高発光出力を得ることができる。
[0075] また発光波長や層構造が変わっても、または基板の特性が同等であれば、 GaN基 板の代わりに Al Ga N基板(ただし Xは 0より大きく 1以下)を用いても同様の効果が
1—
あることは言うまでもなレ、。
[0076] 図 24および図 25に示すように、 GaN基板のコーナーに位置する n電極とリードフレ 一ムとを半径 150 z mの 4本の Au線で電気的に接続することにより、電極やワイヤが 光取り出しの障害になることがなくなるので、さらに光出力を高めることが可能である。
[0077] 一 (実施例 4)一 本発明の実施例 4では、 GaN基板厚みの光出力に及ぼす影響について説明する 。図 1に示す LEDと同じ構造を有する本発明例 I、J、 Kの 3体の試験体を用いて、 Ga N基板の光吸収を測定した。試験体の作製方法について説明する。
[0078] (本発明例 I)
(11) c面から 0. 5° ずらした n型 GaNのオフ基板を使用した。この GaN基板の比抵抗 は 0. 01 Ω ' cmであり、転位密度は lE7Zcm2であった。この GaN基板は、厚み 100 μ mとした。
(12) M〇CVDにより、 GaN基板の第 1の主表面上に、順に次の層を形成した。すな わち、 (GaNバッファ層 ZSiドープ n型 GaN層 Zクラッド層の Siドープ n型 Al Ga N 層/ GaN層と In Ga N層との 2層構造が 3層重ねられた MQW層 Zクラッド層の
Mgドープ p型 Al Ga N層/ Mgドープ p型 GaN層)の積層構造を形成した。
(13)発光波長は 380nmであり、低温 4. 2Kでの PL強度と室温 298Kでの PL強度を 比較することにより便宜的に算出した内部量子効率は 50%であった。
(14)一(i5)本発明例 Aにおいて対応する処理と同じ処理を施した。
(16)まず点状の n電極から MQW層へ電流が比較的均一に広がる範囲をシミュレ一 シヨンで算出した。その結果、 n電極直下が最も電流密度が大きく n電極から離れるに つれ電流密度が小さくなつた。また n電極直下の 1/3以上の電流密度が得られる範 囲が n電極直下を中心に直径 3mmとなったので、発光装置の大きさはそれに内包さ れる 1. 6mm口とした。 GaN基板の N面にはフォトリソグラフィ技術と、蒸着と、リフトォ フ法とにより 1. 7mm置きに直径 100 /i mの n型電極をつけた。この場合、 GaN基板 の Ga面上で n型電極のない部分、つまり開口率は素子当りほぼ 100%である。厚み
、熱処理、接触抵抗は本発明例 Aと同じである。
(17)本発明例 Aにおいて対応する処理と同じ処理を行なった。
(18)その後に所定の形状になるよう、スクライブを行なレ、、チップ化したものを発光装 置とした。得た発光装置は 1. 6mm口である。
(Ϊ9)一(il l)本発明例 Aにおいて対応する処理と同じ処理を行なった。
[0079] (本発明例 J)
(jl) c面から 0. 5° ずらした Al Ga Nのオフ基板を使用した。比抵抗は 0. 01 Ω ' c mであり、転位密度は lE7/cm2であった。 n型 Al Ga N基板の厚みは 100 μ mと
1—
した。 A1の原子比率 χ=0· 2、 0. 5、 1と 3種類のものを用いた。
(j2) M〇CVDにより、 Al Ga N基板の第 1の主表面上に、次の積層構造を形成し
1- た。 (クラッド層の Siドープ n型クラッド Al Ga N/GaNと In Ga Nとの 2層構造
0.2 0.8 0.05 0.95
を 3層重ねた MQW層/クラッド層の Mgドープ p型 Al Ga N層/ Mgドープ p型 Ga
0.2 0.8
N層)を順に形成する。
03)一 (j5)本発明例 Iにおいて対応する処理と同じ処理を行なった。
06) Al Ga N基板の第 2の主表面には、フォトリソグラフィ技術と、蒸着と、リフトオフ
1
法とにより 400 μ mおきに直径 100 μ mの η電極をつけた。 η電極は、 Al Ga N基板
1 の第 2の主表面に接して下から順に(Ti層 2 Onm/ A1層/ 10 OnmZTi層 2 OnmZ Au層 200nm)の積層構造を形成することにより構成した。これを不活性雰囲気中で 加熱処理することにより、接触抵抗を 1E— 4 Ω ' cm2以下とした。
07)一 (j 11)本発明例 Iにおいて対応する処理と同じ処理を行なった。
[0080] (比較例 K)
(kl) c面から 0· 5° ずらした n型 GaNのオフ基板を使用した。この GaN基板の比抵 抗は 0. 01 Ω ' cmであり、転位密度は lE7/cm2であった。この GaN基板は、厚み 1 mm (1000 μ ΐη)とした。
(k2)一(k5)本発明例 Iにおいて対応する処理と同じ処理を施した。
(k6)発光素子(チップ)のサイズは本発明例 Gと同じの 1 · 6mm口とした。 GaN基板 の第 2の主表面には、フォトリソグラフィ技術と、蒸着と、リフトオフ法とにより 1. 7mm おきに直径 100 μ mの η型電極をつけた。この場合 GaN基板の第 2の主表面(光放 出面)で n電極のない部分の比率、つまり、開口率は素子当りほぼ 100%である。厚 み、熱処理、接触抵抗は本発明例 Iと同じとした。
(k7)一(kl l)発明例 Iにおいて対応する処理と同じ処理を行なった。
[0081] (実験およびその結果)
まず、基板厚みの違う本発明例 I、 Jおよび比較例 Kの基板 1を用意し、波長 380nm の入射光に対する透過率を測定した。図 26および図 27に光透過率測定試験の概 要を示す。本発明例 Iおよび Jの厚みが 100 μ mであるのに比して本発明例 Κの厚み 力 S lmm (1000 μ m)と厚レ、。試験の結果を図 28に整理して示す。
[0082] 図 28によれば、本発明例 I、 Jおよび比較例 Kについて、透過率は各々 70%、 90% および 10%であった。本発明例 Jでは、 A1の原子数比 χ=0· 2、 0. 5および 1と 3種 類の基板を作製したが、いずれの透過率も 90%であった。
[0083] そこで、蛍光材を搭載して白色 LEDにした本発明例 I、 J、および比較例 Kとを、積 分球内に搭載した後所定の電流を印加し、集光されディテクタから出力される光出力 値の比較を行なった。電流 20mAを印加したところ、本発明例 I、 J、および比較例 と で、 4. 2mW、 5. 4mW (上記 3種類すベて)および 0. 6mWの出力が得られた。この 差は各々の基板の透過率の差によるものであるが、 GaN基板の場合波長 400nmよ り短波長で極端にその光の透過率が小さくなるため、その場合、本発明のように基板 を Al Ga Nとすることで高い光の取出しを得ることができる。
1
[0084] また、 GaN基板を薄くすることでも高い光の取出しを得ることができる。厚みは薄す ぎても n電極から MQWへの電流の広がり範囲が小さくなりすぎ、厚すぎると前述のよ うに取出し効率が悪くなるため、発光波長にもよる力 その厚みは 50 μ m— 500 μ m が望ましい。また本発明例のように GaN基板の厚みが 100 /i m程度の薄いものを使 用することにより、 GaN基板の製造コストを小さくすることができ、より低コストの発光 装置を製造することが可能となる。発光波長によらず、基板厚みの低減により低コスト 化できることは言うまでもなレ、。
[0085] 一 (実施例 5)—
本発明の実施例 5では、基板上に形成される n型 GaN層の厚みの製造歩留りにつ いて説明する。用いた試験体は、 GaN基板を用いる本発明例 Aと同じ構造の本発明 例 Lと、サファイア基板を用いる比較例 Bと同様の構造の比較例 M、 Nの 3体である。
[0086] (本発明例 L)
(11)本発明例 Aにおいて対応する処理と同じ処理を行なう。
(12) M〇CVDにより、次の積層構造を形成する (図 2参照)。 (GaN基板 ZGaNバッ ファ層 ZSiドープ n型 GaN層 2/クラッド層の Siドープ n型 Al Ga N層 ZGaN層と I
0.2 0.8
n Ga N層の 2層構造を 3層重ねた MQW層/クラッド層の Mgドープ p型 Al Ga
0.1 0.9 0.2 0.8
N層 ZMgドープ p型 GaN層)を形成する。図 2を参照して、 Siドープ n型 GaN層 2の 厚み tは lOOnmとした。
(13)一(113)本発明例 Aにおいて対応する処理と同様の処理を行なった。このとき素 子分離のエッチング溝 25を形成すると、エッチング溝底部 25aは図 29に示すように 完全には平坦にはならず多少の凹凸のある形状となる。本発明例 Lの場合は、上記 のように中央部が GaN基板やバッファ層に達してもこの部分に電極などを設けること がないので、この部分における深さや底部の平坦度が多少変動しても製造歩留り等 に及ぼす影響は小さい。
[0087] (比較例 M)
(ml)比較例 Bにおいて対応する処理と同様の処理を行なった。
(m2) M〇CVDにより、サファイア基板上に、次の積層構造を形成した(図 6参照)。 ( サファイア基板 ZGaNバッファ層/ Siドープ n型 GaN層 Zクラッド層の Siドープ n型 Al Ga N層/ GaN層と In Ga N層との 2層構造を 3層重ねた MQW層
0.1 0.9 Zクラッド
0.2 0.8
層の Mgドープ p型 Al Ga N層/ Mgドープ p型 GaN層)を形成する。図 6を参照し
0.2 0.8
て、 Siドープ n型 GaN層 102の厚みは 3 μ mとした。
(m3)一 (mil)比較例 Bにおける対応する処理と同じ処理を行なった。このとき素子 分離のエッチング溝 125を形成すると、エッチング溝底部 125aは、図 30に示すよう に完全には平坦にはならず多少の凹凸のある形状となる。し力し比較例 Mの場合は 、 Siドープ n型 GaN層 102の厚みは 3 μ ΐηと厚いので、上記のように中央部がバッフ ァ層ゃサフアイャ基板に達することがない。この結果、この部分における深さや底部 の平坦度が多少変動しても製造歩留り等に及ぼす影響は小さい。
[0088] (比較例 N)
(nl)比較例 Bにおける対応する処理と同じ処理を行なった。
(n2) M〇CVDにより、サファイア基板面上に、次の積層構造を形成した(図 6参照)。 (GaNバッファ層 ZSiドープ n型 GaN層/クラッド層の Siドープ n型 Al Ga N層/
0.2 0.8
GaN層と In Ga N層との 2層構造を 3層重ねた MQW層 Zクラッド層の Mgドープ p
0.1 0.9
型 Al Ga N層/ Mgドープ p型 GaN層を形成した。図 6を参照して、 Siドープ n型 G
0.2 0.8
aN層 102の厚みは lOOnmとした。
(n3)一 (n4)比較例 Bにおける対応する処理と同じ処理を行なった。 (n5)比較例 Nの場合、サファイア基板の上にサファイアとは格子定数の異なる GaN 系多層膜を成長させるため、 n型 GaN層の厚みが lOOnmと薄過ぎると良質の多層 膜を得ることができず、発光出力は極端に小さくなる。
[0089] また、比較例 Nの場合、サファイア基板が絶縁体であるため n電極は p電極と同じ成 長膜側に設ける必要がある。そこでこのウェハをさらに、フォトリソグラフィ技術と RIE により、 Mgドープ p型層側から Siドープ n型 GaN層まで C1系ガスでエッチングするこ とにより、 n型電極を設けるために n型 GaN層を露出させようとした。しかし、図 31に示 すように、本比較例 Nでは Siドープ n型 GaN層の厚みが 100nm (0. 1 μ m)と薄いた めに、ウェハ内に均一に n型 GaN層を露出させることができなレ、。このため、場所によ つて露出面が n型 Al Ga N層だったり、 GaNバッファ層だったりした。熱リン酸など
1
を用いてウエットエッチングを試みた力 どのようなエツチャントでも同様の結果だった
[0090] (実験結果)
実施例 1と同じ要領で光出力を測定した結果、本発明例 Lでは印加電流 20mAで 8mWの出力を得た。一方、同じ印加電流で、比較例 Mでは 7. 2mWの出力を得た。 また、本発明例 Lの構造では、 n型 GaN層の厚みを 3 μ mから lOOnmと薄くしても同 等の出力を得ることができた。また n電極を導電性 GaN基板の N面に設けることがで きるため、 Siドープ n型 GaN層を露出させることは必要ない。
[0091] 基板上に成長する発光素子の膜厚は、対象とする波長や出力にもよるが、通常せ ぃぜぃ 6 /i m以下であり、その大部分を占める Siドープ n型 GaN層の厚みを、本発明 例では 3 μ ΐηから lOOnmと薄くすることができる。この結果、本発明例によれば、膜成 長のコストを飛躍的に小さくすることが可能である。
[0092] 比較例 Nの試験体の処理工程(n5)で説明したように、 n型 GaN層を 100nm (0. 1 μ πι)と薄くすると、 η型 GaN層露出の歩留まりが非常に悪く実用的ではない。また、 将来の技術進歩により仮に均一な露出が実現したとしても、層の厚みが薄すぎるた め、実施例 1における比較例 Bのように、 n型 GaN層中を層に平行な方向に流れる電 流の電流密度が極端に大きくなり過ぎて発熱が増加し、実用的な光出力は得ること ができない(図 31参照)。もちろん蛍光材を用いて白色とした場合や発光波長を変え た場合でも同様の効果が得られるのは言うまでもない。
[0093] 一 (実施例 6) - 本発明の実施例 6では、 GaN基板の転位密度の光出力に及ぼす影響について説 明する。用いた試験体は、本発明例 Aと同じ構造を有し、転位密度が lE6Zcm2の 本発明例 Oおよび転位密度が lE9/cm2の比較例 Pの 2体である。
[0094] (本発明例 O)
(01) c面から 0. 5° ずらした n型 GaNのオフ基板を使用した。この GaN基板の比抵 抗は 0. 01 Ω ' cmであり、転位密度は lE6Zcm2であった。この GaN基板の厚みは 4 00 μ mとした。
(02)一(oil)本発明例 Aにおける対応する処理と同じ処理を行なった。
[0095] (比較例 P)
(pl) c面から 0. 5° ずらした n型 GaNのオフ基板を使用した。この GaN基板の比抵 抗は 0. 01 Ω ' cmであり、転位密度は lE9/cm2であった。この GaN基板の厚みは、 本発明例 Oと同じ 400 μ mとした。
(p2)一(pll)本発明例 Aにおける対応する処理と同じ処理を行なった。
[0096] (実験結果)
実施例 1と同じように、光出力を測定した結果、本発明例 Oおよび比較例 Pにおい て、印加電流 20mAでともに 8mWの出力を、また印加電流 100mAでは各々 40m Wおよび 30mWの出力を得た。このように本発明例 Oは比較例 Pと比べたとき、より高 い発光出力を得ることができる。
[0097] 本発明例 Oと比較例 Pとでは、比抵抗や厚み等は同じなので、発熱や放熱は同じ である。上記光出力の差が熱の影響でないことを確認するため、 duty比 1%、印加 時間 1 μ sの 100 μ sサイクルのパルス電流を印加し比較した。この試験結果は、上述 の結果と同じであり、印加電流 100mAにおいて各々 40mWおよび 30mWの出力を 得た。
[0098] したがって、メカニズムは必ずしも明らかではなレ、が、熱の影響ではなく転位密度の 差によって、高電流密度での発光出力の差が得られた。また、発光波長や層構造を 変えた場合や、蛍光材を設けた白色とした場合でも同様の効果が得られることを発 明者の実験により確認している。
[0099] 一 (実施例 7)—
本発明の実施例 7では、光出力に及ぼす表面および端面の非鏡面化の影響につ いて説明する。用いた試験体は、本発明例 Q、 Rである。本発明例 Qは、表面および 端面を非鏡面化した図 32に示す LEDであり、本発明例 Rは、非鏡面化を行わない 図 33に示す LEDである。
[0100] (本発明例 Q)
(ql)一(q7)本発明例 Fにおいて対応する処理と同じ処理を行なった。
(q7と q8との間に揷入する処理工程) GaN基板の N面および素子端面を非鏡面とし た。非鏡面とする方法は RIEなどのドライエッチやウエットエッチによった。このような エッチングによる非鏡面化方法のほかに機械的に研磨する方法を用いてもよい。本 実施例では、エツチャントとして KOH水溶液を用いたウエットエッチによる方法を適 用した。 4mol/lの KOH水溶液を、温度を 40°Cに保った状態で十分に攪拌したの ち、ウェハを 30分間スターラーの中に浸漬し、 GaN基板の N面および素子端面を非 鏡面化した。
(q8)一(qll)本発明例 Fにおいて対応する処理と同じ処理を行なった。
[0101] (比較例 R)
本発明例 Fと同じものである。
[0102] (実験結果)
実施例 1と同じように光出力を測定した結果、本発明例 Qおよび比較例 Rは印加電 流 10Aで各々 4. 8Wおよび 4Wの出力を得た。また蛍光材を設けて白色とした場合 、印加電流 10Aにおいて、本発明例 Qで 11501mを、また比較例 Rで 9601mの出力 を得た。すなわち、本発明例 Qにおいて、より高発光出力を得ることができた。もちろ ん発光波長を変えた場合でも同様の効果があることは言うまでもない。これは、基板 および n型 GaN層の表面および端面が鏡面状態では、図 33に示すように、屈折率 の高い GaNの表面で全反射が生じ易ぐ内部から外側に光が抜けにくいからである 。これに対して、図 32に示すように非鏡面化すると、外部への光放出効率を高めるこ とができる。 [0103] なお、非鏡面化に KOH水溶液を使用する場合、濃度が 0. 1— 8mol/l、温度が 2 0— 80°Cの範囲で行なうと同様の効果が得られることが発明者の実験によりわかって いる。
[0104] 一 (実施例 8)—
本発明の実施例 8では、光出力に及ぼす p型電極における反射率の影響について 説明する。用いた試験体は、本発明例 S、 T、 U、 V、 Wの 5体である。
[0105] (本発明例 S)
(si)一(s6)本発明例 Fにおいて対応する処理と同じ処理を行なった。
(s7) p電極は、次の方法で作製される。 p型 GaN層に接して下層から順に 4nm厚み の Ni層、および 4nm厚みの Au層を形成する。次いで、不活性雰囲気中で加熱処理 する。この後に、上記の Au層の上に lOOnm厚みの Ag層を形成する。上記方法で作 製された p電極の接触抵抗は 5E— 4 Ω ' cm2であった。
[0106] また上記 p電極のうち、ガラス板の上に接して下層から順に形成した(4nm厚みの N i層 /4nm厚みの Au層)に、同じ熱処理を施した後に透過率を測定した。その結果、 Ni層側力 の 450nmの入射光に対する透過率は 70%であった。さらに、 lOOnm厚 みの Ag層をガラス板につけて反射率を測定した。この結果、 450nmの入射光に対 して反射率 88%が得られた。そこで(4nm厚みの Ni層 /4nm厚みの Au層/ 100η mの Ag層)を Ni層を下層にしてガラス板に形成して、同じ熱処理をした後に反射率 を測定した。その結果、 450nmの入射光に対して 44%の反射率が得られた。この反 射率は、波長 450nmの入射光が、(4nm厚みの Ni層 /4nm厚みの Au電極層)を 7 0%の透過率で透過した後、 Ag層で 88%の反射率で反射し、再び (4nm厚みの Ni 層と 4nm厚みの Au電極層)を 70%の透過率で透過したとする反射率に一致する。 (s8) (sll)本発明例 Fにおいて対応する処理と同じ処理を行なった。
[0107] (本発明例 T)
(tl)一(t6)本発明例 Fにおいて対応する処理と同じ処理を行なった。
(t7) p電極は次の方法で作製する。 p型 GaN層の上に下から順に、 4nm厚みの Ni層 、および 4nm厚みの Au層を形成する。この後、不活性雰囲気中で熱処理する。次い で、上記の Au層の上に、 lOOnm厚みの A1層および lOOnm厚みの Au層を形成す る。上記の方法で作製された p電極の接触抵抗は 5E - 4 Ω ' cm2であった。
[0108] またこの電極のうち、(厚み 4nmの Ni層/厚み 4nmの Au層)の積層膜をガラス板 につけて同じ熱処理をした後に透過率を測定した結果、 Ni側からの 450nmの入射 光に対して 70%であった。さらに、 lOOnm厚の A1層をガラス板につけて反射率を測 定した結果、 450nmの入射光に対して 84%であった。また、下から順に(4nm厚の Ni層 /4nm厚の Au層/ lOOnm厚の A1層)の積層膜をガラス板に形成して、同じ熱 処理をした後に反射率を測定した。この結果、 450nmの入射光に対して 42。/0の反 射率が得られた。この反射率は、波長 450nmの入射光が、(4nm厚の Ni層 /4nm 厚の Au電極層)を 70%の透過率で透過した後、 A1層で 42%の反射率で反射し、再 び(4nm厚の Ni層 /4nm厚の Au電極層)を 70%の透過率で透過したときに算出さ れる反射率と一致する。
(t8)—(ti l)本発明例 Fにおいて対応する処理と同じ処理を行なった。
[0109] (本発明例 U)
(ul)一(u6)本発明例 Fにおいて対応する処理と同じ処理を行なった。
(u7) p電極として、 p型 GaN層に、 p型 GaN層に対してォーミック性の電極で反射率 も高い Rhを厚み lOOnmで全面につけた。接触抵抗は 5e_4 Ω ' cm2である。またこの 電極の Rhをガラス板につけて透過率を測定した結果、 450nmの入射光に対して 60 %であった。
(u8)一(ul l)本発明例 Fにおいて対応する処理と同じ処理を行なった。
[0110] (本発明例 V)
(vl)—(v7)本発明例 Sにおいて対応する処理と同じ処理を行なった。
(v7と v8との間に揷入する処理工程)本発明例 Qにおいて、 q7と q8との間に揷入する 処理工程と同じ処理を行なう。
(v8)— (vl l)本発明例 Sにおいて対応する処理と同じ処理を行なった。
[0111] (本発明例 W)
本発明例 Wは本発明例 Fと同じものである。
[0112] (実験結果)
実施例 1と同じように光出力を測定した結果、本発明例 S、 T、 U、 Vおよび Wは、印 カロ電流 10Aで、各々 4. 8W、 4. 8W、 5. 2W、 5. 8Wおよび 4Wの出力を得た。本発 明例 S、 Tの実装側での反射の模式図を図 34に、本発明例 Uの実装側での反射の 模式図を図 35に、また本発明例 Wの実装側での反射の模式図を図 36に示す。本発 明例 S、Tでは p電極 12と導電性接着剤 14との間に高反射層 35を配置しているのに 対して、本発明例 Uでは p電極 12そのものを高反射率材料とし、本発明例 Vではさら に非鏡面化されている。また、本発明例 Wでは実装側における反射についてはとく に配慮していない。
[0113] 本発明例 S、 T、 U、 Vにおいて蛍光材を設けて白色 LEDとした場合、印加電流 10 Aで、各々 8641m、 8641m, 9361mおよび 10441mの出力を得た。これらの結果によ れば、 p電極を高反射率材料で形成したり、また p電極と導電性接着剤との間に高反 射率材を配置することにより、光の有効活用をはかり、光出力を向上させることができ る。すなわち、電極層に Agや A1や Rhの反射膜を p電極そのもの、または p電極と導 電性接着剤との間に組み込むことにより、発光出力をさらに向上することができた。さ らに、本発明例 Vのように、 GaN基板の N面や端面を非鏡面とすることで、さらなる向 上が可能となった。
[0114] 発光波長を変えた場合、 Ag層や A1層での反射率や Auおよび Ni層での吸収率が 変わるので効果の程度は一概には言えなレ、が、 V、ずれの波長でも効果があることは 言うまでもない。また Rhの代わりに同等以上の仕事関数を持ち、同等以上の反射率 のある元素を用いて同等以上の効果を得ることも可能である。
[0115] (実施例 9)
本発明の実施例 9では、 GaN基板の酸素濃度と比抵抗および光の透過率との関 係を把握した。その関係に基づいて pダウン実装、すなわち GaN基板を光放出面と する発光素子において、所定の光放出面積の場合に最適な GaN基板厚みと酸素濃 度との関係を樹立した点に特徴がある。上述のように pダウン実装では光放出面が G aN基板となるので、つぎに示すように、比抵抗と光透過率とに大きな影響を有する酸 素濃度はとくに重要である。
[0116] 図 37は、 GaN基板の比抵抗に及ぼす酸素濃度の影響を示す図である。図 37より 、比抵抗 0.5 Ω cm以下は、酸素濃度 1E17個 Zcm3以上とすることにより実現するこ とができる。また、図 38は、 GaN基板 400 111のときの波長45011111の光の透過率に 及ぼす酸素濃度の影響を示す図である。同図より酸素濃度が 2E19個 /cm3を超え ると波長 450nmの光の透過率が急激に低下することが分かる。図 37と図 38と力 、 酸素濃度の増大は、 GaN基板の比抵抗を減少させ、発光面を拡大するのに有効で あるが光の透過率を低下させることが分かる。したがって、 pダウン実装される発光素 子に用いられる GaN基板としては酸素濃度、 GaN基板の厚さ、発光の平面サイズを どのように設定するかが非常に重要となる。
[0117] 図 39は本発明例 Aに対して厚みおよび酸素濃度を変化させた GaN基板からラン プを作製したとき、そのランプの光出力および電流が均一に流れる平面サイズを測 定した結果を示す図である。ランプの光出力についていえば、厚みが厚いほど、また 酸素濃度が高いほど光出力は低下する傾向にある。また電流が均一に流れる最大 の平面サイズについていえば、厚みが厚いほど、また酸素濃度が高いほど大きくなる ί頃向にある。
[0118] 図 39力ら、たとえば電流が均一に流れる平面サイズが一辺 4mm (—辺 5mm)の正 方形とする場合、光出力として本発明例 Aの大きさで 20mA印加時に 8mW相当以 上を得たいとき、厚み 200 μ ΐηの GaN基板では酸素濃度を 6E18個/ cm3以上(一 辺 5mm正方形では 8E18個/ cm3以上)とすれば、本発明例 Aの大きさで 20mA印 加時に光出力 8mW以上を確保した上で、均一な発光を得ることができる。つまり本 発明例 Aの大きさ一辺 300 μ mの正方形における 20mA印加と電流密度を合わせ た場合、一辺 4mm (—辺 5mm)の正方形では 3·6Α (5.6Α)印加に相当し、 3.6Α (5 .6Α)印加時に印加電流に比例して光出力 1.4W (2.3W)以上確保した上で、均一 な発光を得ることができる。
[0119] また、厚み 400 z mの GaN基板では、上記厚み 200 μ mの場合と同じ目標性能と したとき、一辺 4mm正方形では 3E18個/ cm3以上(一辺 5mm正方形の場合、酸素 濃度 4E18個/ cm3以上)とすればよレ、。ただし、厚み 400 z mでは酸素濃度を 2E1 9個/ cm3以下にしないと本発明例 Aの大きさで 20mA印加時に 8mW相当以上の 光出力を得ることができない。
[0120] さらに、厚み 600 μ mの GaN基板では、一辺 4mm正方形の領域を電流が均一に 流れる酸素濃度 2.5E18個/ cm3以上に比して、本発明例 Aの大きさで 20mA印加 時に光出力 8mW相当以上となる酸素濃度の限界値は 2.5E18個/ cm3よりわずか に高いだけである。したがって、上記 2つの条件を満たす酸素濃度範囲は狭い範囲 しかない。一方、一辺 3mm正方形の領域に均一に電流が流れる酸素濃度 2E18個 /cm3程度以上なので、一辺 4mm正方形に比較して酸素濃度の許容範囲はわず かに広くなる。
[0121] また、図 39によれば、 GaN基板の厚みが 200 μ m— 400 μ mの場合、一辺 10mm の正方形に均一に電流を流し、本発明例 Aの大きさで 20mA印加時に 8mW相当以 上の出力を得ることを可能にする酸素濃度範囲は実用上十分広いことが分かる。厚 み 200 μ mでは酸素濃度 2E19個 Zcm3より低い酸素濃度以上で可能であることが 分かる。また厚み 400 a mでは酸素濃度 8E18/cm3以上で可能である。
[0122] 次に具体的な実施例について説明する。実施例では次の試験体を用いた。
(本発明例 SI) : 1E19個/ cm3の酸素濃度により n型化されている厚み 400 /i mの G aN基板を用いた。この GaN基板の比抵抗は 0.007 Ω cmであり、波長 450nmの光 に対する透過率は 72%である。上記 GaN基板を用いて発光素子に組み上げるに際 し、上記以外の部分は本発明例 Aと同じ条件とした。すなわち、 GaN基板の平面サイ ズは、光放出面が 1辺の長さ 0.3mmの正方形となるようにとり(実施例 1の(al)参照) 、(a2) M〇CVDで GaN基板の第 1の主面である Ga面上に次の積層構造を形成した 。 (Siドープ n型 GaN層/クラッド層の Siドープ n型 Al Ga N層/ GaN層と In Ga
N層との 2層構造が 3層重ねられた MQW/クラッド層の Mgドープ p型 Al Ga N 層/ Mgドープ p型 GaN層)の積層構造を有する。
(比較例 T1):厚み 400 z mであり、酸素濃度 5E19個/ cm3により n型化されている GaN基板を用いた。この GaN基板の比抵抗は 0.002 Ω cmであり、波長 450nmの光 に対する透過率は 35%である。上記以外の条件は本発明例 S1と同じである。
(比較例 T2):厚み 400 z mであり、酸素濃度 2E16個/ cm3により n型化されている GaN基板を用いた。この GaN基板の比抵抗は 1.0 Ω cmであり、波長 450nmの光に 対する透過率は 90%である。上記以外の条件は本発明例 S1と同じである。
[0123] (試験およびその結果):上記試験体の pダウン実装の発光素子を組み上げて 20m Aの電流を印加したところ、本発明例 S1では 8mWの光出力を得ることができた。これ に比して比較例 T1では 4mW、また比較例 T2では 5mWの光出力しか得ることができ なかった。比較例 T1の 4mWという光出力は、その GaN基板の透過率に応じた出力 ということができる。比較例 T2について出光面である GaN基板の第 2主面側から発光 の状態を観察したところ、面内に発光の強弱が認められた。すなわち n電極の周囲に おいて発光強度が極端に強ぐ n電極から遠ざかるにつれて急激に発光強度は弱く なる。これは、 GaN基板の比抵抗が大きいために n電極を経由する電流が発光素子 の面内に十分に広がらな力、つたからである。このため、発光は電流が集中する p電極 周囲でのみ生じた。この結果、比較例 T2の発光素子全体の発光出力は、本発明例 S1より劣るものとなった。
[0124] 一 (実施例 10)—
本発明の実施例 10は、 pダウン実装の発光素子における GaN基板内の転位束の 密度を限定して光出力を高めた点に特徴がある。 GaN基板の形成の際に、大部分 の領域の結晶性を高めるために、不可避的に発生する転位を集中化して集めて離 散的に転位束を分布させることにより、その間の大部分の領域の GaN基板の結晶性 を高める。 pダウン実装の発光素子では GaN基板が光放出側に配置されるために、 転位束の密度が所定値 (転位束密度 4E2個 /cm2)を超えると発光装置の製造歩留 まりに、推定を超えて劇的に影響するという事象を確認することができた。
[0125] 上記 GaN基板の転位束は、図 40に示すように p型 GaN層などェピタキシャル膜の p型 GaN層 6にも継承され、ェピタキシャル膜上にコア 61として現れる。したがって、 転位束密度とコア密度とはほぼ一致する。このコア 61は、ェピタキシャル膜の成膜条 件によっては、図 41に示すような孔状凹部となる。この孔状凹部の密度が、 GaN基 板を放出面とする pダウン実装発光装置では、製造歩留まりに劇的に影響する。
[0126] 用いた試験体は次のとおりである。
(本発明例 S2):転位束が、平均して500 111 500 111当たり1個分布してぃる0& N基板を用いた。これは転位束密度 4E2個 /cm2に対応する。他の条件は、本発明 例 S1と同じである。
(比較例 T3):比較例には転位束が 10 μ m X 10 μ m当たり 1個分布している GaN基 板を用いた。これは転位束密度 1E6個 /cm2の密度に対応する。他の条件は本発 明例 S2と同じとした。
[0127] (試験およびその結果):上記の GaN基板を実生産ベースでそれぞれ複数の発光 素子に組み上げた。各試験体に 20mAの電流を印加し、光出力が 8mW以上得られ る歩留まりを調査した。その結果、本発明例 S2では歩留まり 95%であった力 比較 例 T3では歩留まり 50%であった。すなわち転位束密度が 4E2個/ cm2以下であれ ば、実際に製造可能な歩留まりとすることができるが、上記密度を超えると実際に商 業ベースで継続的に製造することが不可能となる。
[0128] 光出力が 8mWに満たないデバイスとしての発光素子を分解してチップを取り出し 調査した。取り出したチップを適当な酸溶液で電極を取り除き、 p型半導体層側から 観察すると、 GaN基板の転位束が分布する箇所においてェピタキシャル成長層が形 成されていなレ、ものが複数例、観察された。転位束が分布する箇所では、直径: 1 z m 程度の孔状凹部が観察された。上記孔状凹部は、光出力が 8mW以上のものには認 められなかった。
[0129] また、上記の試験体に対して、実施例 1の本発明例 Aの作製段階 (a7)に対応する 段階において、 20mAの電流を印加したところ、上記孔状凹部を含む発光素子は駆 動電圧がすべて IV未満であった。これは、孔状凹部を電極が坦めて p電極側と n電 極側の層同士が電気的に短絡しており、その結果、電流が活性層全体に広がって 十分な量供給されなレ、ために低レヽ光出力となったと考えられる。
[0130] (実施例 11)
本発明の実施例 11は、 GaN基板と n型 AlGaNクラッド層 3との間に、 n型 AlGaNバ ッファ層と n型 GaNバッファ層とを配置した点に特徴がある。通常、基板には反りがあ る力 GaN基板ではとくに反りが大きレ、。このため GaN基板では、オフ角も図 42に示 すように、基板面内で大きく変動する。図 42は、 20mm X 20mmの GaN基板の c面 力 のオフ角分布例を示している。この GaN基板にェピタキシャル膜を形成して発光 素子に個片化して光出力を測定すると、コーナに位置してオフ角が 0.05° レベルと 小さい領域 Rl、およびオフ角が 1.5° レベルと大きい領域 R2に形成された発光装置 は、 20mAの印加電流に対して光出力 8mW以上を得ることができなレ、。これは、 Ga N基板上に形成されたェピタキシャル膜の結晶性がよくないことに起因している。この ため、図 43に示すように、 GaN基板 1と AlGaNクラッド層 3との間に、両者の中間の 格子定数を有する n型 AlGaNバッファ層 31と、 n型 GaNバッファ層 2とを配置して格 子定数の相違を緩和する試みを行った。より具体的には、 n型 AlGaNバッファ層 31 を上記位置に配置した点に特徴がある。
[0131] 用いた試験体は次のとおりである。
(本発明例 S3):用いた GaN基板は、図 42に示すように 20mm X 20mmの面内で、 c 面からのオフ角度が 0.05° の領域から 1.5° の領域へと連続して変化している。この GaN基板の比抵抗は 0.01 Ω ' cmであり、転位密度は lE7Zcm2であり、厚みは 400 z mである。このようにオフ角度分布がある GaN基板を用いて、実施例 1の本発明例 Aの製造工程(al)— (all)にしたがって、上記 20mm X 20mmの基板の各位置から 発光素子を作製した。このとき図 43に示すように、 GaN基板 1と n型 GaNバッファ層 2 との間に厚み 50nmの Al Ga Nバッファ層を配置した。 (比較例 T4): GaN基板
0.15 0.85
は 20mm X 20mmの面内で、 c面からのオフ角度が 0.05° の領域から 1.5° の領域 へと連続したものを用いた。この GaN基板の比抵抗は 0.01 Ω ' cmであり、転位密度 は lE7/cm2であり、厚みは 400 /i mである。実施例 1の本発明例 Aの製造工程(al )一(all)にしたがって各位置から複数の発光素子を作製した。比較例 T4では、 Ga N基板 1に接して n型 GaN層を形成し、 GaN基板と n型 GaN層との間に Al Ga N
0.15 0.85 バッファ層を配置しなかった。
[0132] (試験およびその結果):発光素子に 20mAの電流を印加したとき、本発明例 S3で は 20mm X 20mmの GaN基板の上記領域 Rl, R2を含む 0.05— 1.5° の領域で、 光出力 8mW以上を得ることができた(図 44参照)。し力、し比較例 T4では、オフ角度 0 .1° 一 1.0° の領域上に形成された発光素子においてのみ光出力 8mW以上を得る こと力 Sできた。 0.05° および 1.5° のオフ角レベルでは光出力 8mWに未達であった
[0133] これは、本発明例 S3では、オフ角度が大きく変動する GaN基板を用いても、上記 のように Al Ga Nバッファ層を配置することにより結晶性に優れたェピタキシャノレ
0.15 0.85
層を形成できるからである。 [0134] - (実施例 11 2)- 本発明の実施例 11-2は、実施例 11と同じく GaN基板と n型 AlGaNクラッド層 3と の間に、 n型 AlGaNバッファ層と n型 GaNバッファ層とを配置することで、実施例 10 のような GaN基板の転位束の部分にェピタキシャル膜を形成したときに生じる図 41 に示した孔状凹部をなくした点に特徴がある。
[0135] (本発明例 S2- 2):比較例 T3と同様、転位束が 10 μ m X 10 μ m当たり 1個分布し ている直径 2インチの GaN基板を用いた。これは転位束密度 1E6個/ cm2の密度に 対応する。図 43に示すように、 GaN基板 1と n型バッファ層 2との間に厚み 50nmの A 1 Ga Nバッファ層を配置した。他の条件は本発明例 S2と同じとした。
0.15 0.85
[0136] (試験およびその結果)
ェピタキシャル層を生成したのち、微分干渉顕微鏡および SEM (走查型電子顕微 鏡)でェピタキシャル層側のウェハ面内を観察した。その結果、図 41に示すような孔 状凹部は一つもないことを確認した。上記の直径 2インチの GaN基板を外周から縁 5 mm程度を除き、すべて発光素子に組み上げた。発光素子を 50個に 1個の割合で 抜き取り、 20mAの電流を印加し、光出力が 8mW以上得られる歩留まりを調査した。 結果は、 100%の歩留まりであった。上記の歩留まりは、より多くの製造を行なえば、 孔状凹部以外の製造要因により 100%未満の 100%に近い歩留まりが得られると考 えられる。しかし、孔状凹部に焦点を絞って行った上記歩留まり試験結果では、 100 %という特異に良好な歩留まりを得ることができた。
[0137] (実施例 12)—
本発明の実施例 12は、 MQW4/p型 AlGaNクラッド層 5/p型 GaN層 6の外側に 電導性を高めた p型 AlGaN層を配置して、 p電極として反射率の高レ、 Ag電極層のみ を全面に配置した点に特徴がある。したがって仕事関数等を考慮した他の金属電極 を設けていない。この構成によりダウン側底部において高い反射率を有するため、他 の金属電極を用いた場合に生じる光の吸収が小さくなり、光放出効率を高めることが できる。
[0138] 試験体は次のとおりである。
(本発明例 S4 (図 45参照)):本発明例 Aと同様に GaN基板の第 1の主面である Ga 面上に次の積層構造を有する。
/MQW4/クラッド層の Mgドープ p型 Al Ga N層 5/Mgドープ p型 GaN層 6/ 厚み 5nmの Mgドープ InGaN層 32/
上記の積層構造では Mgドープ p型 GaN層 6に接して厚み 5nmの Mgドープ InGaN 層 32を有する点に特徴がある。さらに実施例 1の本発明例 Aでは処理工程(a7)にお いて Ni/Au電極層を形成していた力 (a7)の処理工程を行わず、代わりに厚みが 1 OOnmの Ag電極層 33を形成した。
(比較例 T5):実施例 1の本発明例 Aの構造において、 NiZAu電極層に接してさら に厚み 1 OOnmの Ag電極層を配置した。
[0139] (試験およびその結果):本発明例 S4では、 p型 GaN層 6に接して p型 InGaN層 32 力あるためにァクセブタレベルが低くなる。このためキャリア濃度が増加し、それほど 仕事関数が大きくない Ag反射膜 33を p電極として p型 InGaN層 32に接して配置して も、 Ag反射膜 33と p型 InGaN層 32との接触抵抗はそれほど大きくならなレ、。本発明 例 S4の発光素子の駆動電圧と、比較例 T5の発光素子の駆動電圧とを比較したが、 差は 0.05V未満であり、有意な差を認めることはできな力 た。
[0140] 本発明例 S4では、 20mAの電流を印加したとき 11.5mWの光出力を得ることがで きたのに比して、比較例 T5では 9.6mWであった。なお、本発明例 Aは 8mWであつ た。
[0141] 上記のように本発明例 S4において大きな光出力が得られるのは、発光層から p半 導体層側に向かう光が、 Ni/Au電極層がないために Ni/Au電極層で吸収される ことはなぐ反射率 88%の Ag層に反射されるためである。一方、比較例 T5では、 p電 極層における光の反射率 = NiZAuによる吸収 70% X Ag反射率 X再吸収 70% = 44%と低いものになる。この結果、本発明例 S4では、外部に取り出すことができた光 出力が、比較例 T5の 1.2倍に達した。
[0142] なお、本実施例では p電極に Ag膜を用いた力 S、そのほか反射率が高く p型 InGaN 層 32との接触抵抗がそれほど高くなければどのような材料を用いてもよぐたとえば A 1、 Rhを用いることができる。
[0143] 一 (実施例 13)— 本発明の実施例 13では、 p電極を p型 GaN層との接触抵抗が小さい Ni/Au層を 離散的に配置し、その間隙を埋めるように Ag膜を被覆して光出力を向上させた点に 特徴がある。図 46は p電極に着目した断面図である。ェピタキシャル層のダウン側底 面に、所定のピッチで NiZAu電極層 12aが離散的に配置されている。さらにその間 を埋め、ェピタキシャル層のダウン側底面および NiZAu電極層 12aを被覆するよう に Ag層 33が配置されている。図 47は、 p電極の上側部分を透して p電極を見た平面 図である。
[0144] また、離散的な Ni/Au電極層 12aの典型的なピッチは 3 μ mである。ピッチ 3 μ m は、通常の p型 GaN層や p型 AlGaNクラッド層では、その比抵抗から電流が広がる範 囲の直径がせレ、ぜレ、6 μ mであることに基づレ、てレ、る。すなわちピッチ 3 μ mとするこ とにより、 1つの離散電極から隣りの離散電極に電流が届く。電流を電極層にわたつ て抜けのないように流すためには、ピッチ 3 x m以下とするのがよレ、が、あまりピッチを 小さくすると離散配置の Ni/Au電極層により光の有効取出量が減ることになる。
[0145] たとえば離散的 Ni/Au電極の面積率が 20%のとき、図 46および図 47に示す p電 極の構造によれば、光の反射率(計算) =反射率 88% X面積率 80% +反射率 40 % X面積率 20% = 78% (計算)が得られる。本試算をベースにして実際に上記構造 の p電極を作製し、光出力を測定した。試験体は次のとおりである。
(本発明例 S5):実施例 1の本発明例 Aと同じ製造工程にしたがって作製したが、 p電 極の作製工程(a7)において、 p型 GaN層に接して厚み 4nmの Ni層を形成し、その 上に厚み 4nmの Au層を全面に形成した。次いで、レジストマスクをもちいてパター二 ングし、離散的に分布した Ni/Au電極を形成した(図 46、 47参照)。次いで、不活 性ガス雰囲気中で加熱処理することにより、接触抵抗を 5Ε-4 Ω ' cm2とした。このあと 、 NiZAu電極の間隙を埋め込み、かつ Ni/Au電極を覆うように全面に Ag層を形 成し、反射電極とした。離散的に配置された NiZAu層の p型 GaN層における占有 率は 20%とし、 Agの占有率は 80%とした。また、 Ni/Au電極層 12のピッチは 3 μ mとした(図 48参照)。
(比較例 T6):実施例 1の本発明例 Aと同じ製造工程にしたがって積層構造を GaN基 板上に形成した。 p電極は、その作製工程(a7)にしたがって p型 GaN層に接して全 面に Ni/Au層を配置し、熱処理を行った。次いで、本発明例 Aの構成と異なり、さら に Ni/Au層に接して Ag層を全面に形成した(図 49参照)。
[0146] 比較のために本発明例 Aと同じ発光素子について、ダウン側に向かった光の反射 挙動を図 50に示す。
[0147] (試験およびその結果):上記のように作製された各発光素子に電流 20mAを印加 して光出力を測定した。本発明例 S5では 11.5mWの光出力が得られたが、比較例 T 6では 9.6mWであった。また、活性層からマウント側(ダウン側)に向かった光のうち p 電極で反射されて出射面から出射される比率は、本発明例では 86%に達する(図 4 8参照)。これに対して比較例 T6では 67%であった(図 49)。一方、本発明例 Aにお ける上記の比率は 40%であった(図 50)。
[0148] 本発明例 S5ではダウン側に向かった光は、 p電極の 80%を占有する Agにより、そ の 80%分が 88%の反射率で反射され、また p電極の 20%を占める NiZAu層により その 20%分が 40%を超える反射率(単純に反射率 40%ではなレ、)で反射される。こ の結果、本発明例 S5では上記の比率は 86%となる。比較例 T6では、 Ni/Au層の ダウン側に位置する Ag層によってさらに反射され、その反射分があるために本発明 例 Aよりも大きな比率となる。
[0149] なお、比較例 T6は、最も広くは本発明例に属することは言うまでもない。本実施例 を説明するため便宜上比較例としているだけである。
[0150] 上記の Ni/Au電極層は、 Pt電極層または Pd電極層で置き換えてもよい。また、反 射電極 Ag層は、 Pt層または Rh層で置き換えてもよい。
[0151] 同様に Ni/Au電極の面積率が 10%のとき 20mA印加時の光出力は 11.8mW、 NiZAu電極の面積率力 0%のとき 20mA印加時の光出力は 10.6mWと、その面 積率に応じて比較例 T6よりも大きい光出力が得られる。しかし、 NiZAu電極の面積 率が 10%未満の 2%の場合、光出力は比較例 T6と同じ 9.6mWしか得られず、 NiZ Au電極の周りで極端に強い発光むらがあることが本発明者の実験で確認されている
[0152] 一 (実施例 14)一
本発明の実施例 14は、 GaN基板からェピタキシャル層に伝播した並行した複数の 板状結晶反転領域を除去し、その板状結晶反転領域の間隙領域ごとに p電極を配 置した点に特徴がある。 GaN基板には、 GaN基板の厚み方向に並行に分布してスト ライプ状に GaN基板の主面に現れ、その結晶反転領域がェピタキシャル層 2, 3, 4, 5, 6に伝播する。図 51、図 52に示す板状結晶反転領域は主面上で格子状に配置 されている。窒化物半導体基板を作製するとき、転位束(=コア)を集めた領域では 周囲の結晶配列に対して反転した結晶配列をとる。このため、板状結晶反転領域と 転位束とは、周囲と結晶配列が反転しているという点で同じである。両者の相違は、 転位束が転位をひも状または太さのある線状に集め、したがって結晶反転領域がひ も状であるのに対して、板状結晶反転領域ではそれが板状である点にある。すなわ ち、板状結晶反転領域は、転位が、厚みを有する面状領域内に高密度で分布する。
[0153] 本実施例では、上記ェピタキシャル層中の結晶反転領域を完全除去し、また GaN 基板の結晶反転領域を第 1主面側の所定深さに至るまで除去し、各ェピタキシャノレ 層を隔て、隔てられたェピタキシャル層ごとに p電極を設けた点に特徴がある(図 53 参照)。板状結晶反転領域は、図 51に示すように板状結晶反転領域が主面上で交 差する格子状結晶反転領域から形成されていてもよいし、あとで説明するように主面 上で一定方向に揃って分布する並行配置でもよい。
(本発明例 S6):図 51、図 52に示す GaN基板では、ェピタキシャル層側の第 1の主 表面は面方位が(0001)面つまり c面である。この第 1の主表面と面対称の関係にあ る結晶反転領域は、(000-1)面つまり- c面であり、 c軸が反転して成長している。 c面 では表面は Ga原子が配列された Ga面であり、結晶反転領域ではその表面は N原子 が配列された N面である。本発明例 S6では、第 1の主表面において 100 /i mおきに 幅 30 μ mの結晶反転領域が格子状に配列された GaN基板を用いた。結晶反転領 域は、 GaN基板上に形成されたェピタキシャル膜に伝播する。
[0154] 上記 GaN基板を用いて、本発明例 Aと同じ製造方法で積層構造を形成した (本発 明例 Aの工程(al) - (a6)参照)。 p電極を形成する工程では(a7)に代えて次の処理 を行う。すなわち、 P型 GaN層に図 52のように伝播した結晶反転領域のみを被覆す るマスクパターンを用いて、マスク間隙の c面の領域のみに p電極層を形成したのち、 マスクパターンを取り除レ、た。 [0155] 次いで、上記 GaN基板の第 2の主面 (裏面)全面にマスクを被覆した半導体基板を 、 8N (規定) 80°Cの KOH中に保持して、第 1の主面側の結晶反転領域を p型 GaN 層などのェピタキシャル層を経て GaN基板の中にまでエッチングして除去して溝 52 を設けた。板状結晶反転領域 51は転位密度が高い転位密集部なので KOHによる エッチングが容易である。 GaN基板内のエッチング深さは、ェピタキシャル層と GaN 基板との界面力も GaN基板側に 150 μ m入った位置までである。このあとマスクを取 り除き、溝 52を埋め込むように絶縁膜を堆積した(図 53)。
[0156] (試験および試験結果):上記の本発明例 S6を発光素子に組み上げ、 20mAの電 流を印加したところ、 9.6mWの光出力を得ることができた。これは本発明例 Aの光出 力 8mWの 1.2倍である。
[0157] 上述したように、本発明例 S6では板状結晶反転領域が格子状に配列されていたが 、板状結晶反転領域は格子状である必要はなぐ図 54 (平面図)および図 55 (断面 図)に示すように、 GaN基板の主面に一定方向に沿って並列的にのみ配置された板 状結晶反転領域であってもよい。また、点状 (実際は面又は小円状)の結晶反転領 域が規則的に存在する窒化物半導体基板を使用した場合でも、エッチング孔の大き さや深さに応じて本発明例 S6と同様に本発明例 Aよりも大きい光出力を得ることがで きる。
[0158] 一 (実施例 15)—
本発明の実施例 15では、図 56に示すように、半導体チップの上方に、 GaN基板 1 に対面するように蛍光板 46を配置して樹脂 15によって封止した点に特徴がある。 p ダウン実装における放射面となる GaN基板に対面させて蛍光板を配置した構成に、 斬新さがある。用いた試験体は、図 56に示す本発明例 S7、 S8および比較例 T7であ る。
(本発明例 S7):本発明例 S7は基本的には実施例 3に示した本発明例 Fの製造工程 にしたがって製造される。図 56に示すように、 pダウン搭載したチップの上に蛍光板 4 6を GaN基板 1裏面に対面するように配置し、エポキシ系樹脂 15で封止して白色発 光装置とした。
[0159] 上記の蛍光板 46は、次の製造方法で作製した。ハロゲン輸送法により 1 (ヨウ素)が 拡散された塊状の ZnSSe結晶を作製し、この塊状 ZnSSe結晶を Zn、 Cu雰囲気中 で加熱することにより、 ZnSSe内部に Cuを拡散させた。ついでこの塊状 ZnSSe結晶 を粗い研磨盤を用いて厚さ 0.5mmまで研磨したのち、リードフレームに収まる形状に 切り出した。上記の方法で作製された蛍光板の表面および裏面の粗さは、 Rmax= l μ mであつ 7こ。
(本発明例 S8):本発明例 S8では、上記蛍光板 46の GaN基板に対面する表面 46a に凹凸を形成した(図 57参照)。凹凸の高さは 2 z mとし、凹凸の平均的なピッチは 5 z mとした。他の構造は、本発明例 S7と同じとした。
(比較例 T7):図 58に示すように、 pトップ搭載したチップの上方に蛍光板 46をチップ に対面するように配置し、エポキシ系樹脂 15で封止して白色発光装置とした。
[0160] (試験および試験結果):上記の GaN基板から組み上げた発光装置に電流 10Aを 印加したとき、得られた発光の輝度はつぎのとおりであった。本発明例 S7では 8001 m、本発明例 S8では 8801mといずれも高い輝度を得ることができた。一方、比較例 T 7の輝度は 5401mであった。上記の結果は、 pダウン搭載において GaN基板に対面 して蛍光板を配置する方が、 Pトップ搭載に蛍光板を配置するよりも高い輝度を確保 できることを示すものであり、蛍光板の GaN基板に対面する表面を租面化することに よりさらに輝度を向上させることが判明した。
[0161] 次に、上記の実施例と重複するものもあるが本発明の実施例を羅列的に挙げて説 明する。
[0162] 上記の GaN基板は酸素ドープにより n型化されており、酸素濃度が、酸素原子 1E1 7個/ cm3— 2E19個/ cm3の範囲にあり、 GaN基板の厚みが 100 β m— 600 β m であるようにできる。
[0163] 上述のように酸素濃度 1E17個/ cm3以上とすることにより、 GaN基板の比抵抗を 向上することができ、 p電極から導入された電流を GaN基板に十分広げることができ 、活性層の広さを十分使って発光を生じさせることができる。また酸素濃度 2E19個 /cm3以下とすることにより、波長 450nmの光に対して 60%以上の透過率を確保す ること力 Sでき、放射面となる GaN基板における透過率を高め、光出力を確保すること 力できる。上記の酸素濃度範囲は、 pダウン搭載した構造において GaN基板の厚み 力 00 μ ΐη— 600 μ ΐηの場合、とくに有効に作用する。
[0164] また、上記の酸素濃度が、酸素原子 5E18個/ cm3— 2E19個/ cm3の範囲にあり
、 GaN基板の厚みが 200 μ m— 400 μ mの範囲にあり、第 2の主表面の光を放出す る矩形状の面の両方の辺が 10mm以下の範囲にあるようにできる。
[0165] この構成により、発光面の全域にわたって発光させ、かつ十分な光出力を得ること ができる。
[0166] さらに、上記の酸素濃度を、酸素原子 3E18個/ cm3— 5E18個/ cm3の範囲にし て、 GaN基板の厚みを 400 μ m 600 μ mの範囲にし、第 2の主表面の光を放出す る矩形状の面の両方の辺を 3mm以下の範囲としてもよい。また、上記の酸素濃度を 、酸素原子 5E18個/ cm3— 5E19個/ cm3の範囲にして、 GaN基板の厚みを 100 μ m 200 μ mの範囲にし、第 2の主表面の光を放出する矩形状の面の両方の辺を 3mm以下の範囲とすることもできる。
[0167] 上記のように GaN基板の厚みに応じて酸素濃度とチップサイズとを適切にすること により、チップサイズに応じて性能上 (全面均一発光、発光効率)より適切な GaN基 板を設定することができる。また、製造コスト上、最も望ましい条件設定を行なうことも できる。
[0168] 上記の GaN基板の大部分の領域の結晶性を高めるために、その形成時に不可避 的に生成する転位を離散的にひも状に集中化して基板厚み方向に沿って分布させ てできた転位束力 GaN基板の第 1の主表面に平均 4E6個/ cm2以下の密度で分 布する GaN基板を用いてもょレ、。
[0169] この構成により、所定値以上の光出力を有する発光素子を高い製造歩留まりで製 造すること力 Sできる。
[0170] 上記の転位束が第 1の主表面に平均 4E2個/ cm2以下の密度で分布し、第 2の主 表面の光を放出する矩形状の面の両方の辺が 200 μ m 400 μ mの範囲にあるよう にしてもよい。
[0171] 上記のような小型の発光素子では、転位束を含む場合、その特性劣化は避けられ ず、歩留まり低下に直結する。上記のように転位束の密度を低下させることにより、歩 留まり低下を、実用上許容できる範囲にとどめることができる。 [0172] また、上記の GaN基板と n型 Al Ga N層(0≤x≤ 1)との間において、 GaN基板に 接して n型 AlGaNバッファ層力 またその n型 AlGaNバッファ層に接して n型 GaNバ ッファ層が位置し、その n型 GaNバッファ層に接して n型 Al Ga N層(0≤χ≤1)が位 置する構成としてもよい。
[0173] 上記のようなヘテロェピタキシャル積層構造の場合、 GaN基板と活性層のクラッド 層である n型 Al Ga N層(0≤x≤ 1)との間に、上記のように n型 AlGaNバッファ層と n型 GaNバッファ層とを配置してもよレ、。
[0174] 上記のような GaN基板とクラッド層との間に、 n型 GaNバッファ層だけでなく n型 A1G aNバッファ層をカ卩えることにより、結晶性の良好なヘテロェピタキシャル積層構造を 形成すること力 Sできる。
[0175] とくに上記の積層構造は、 GaN基板において、オフ角が 0.10° 以下の領域と 1.0
。 以上の領域とを有するような場合に、用いるのがよい。
[0176] この構成により、 GaN基板が反っており、上記のようにオフ角が変動する場合にお レ、ても、 n型 GaN層に加えて n型 AlGaNバッファ層を配置することにより、結晶性に 優れたへテロェピタキシャル積層構造を得ることができる。
[0177] 上記の GaN基板には転位束が分布し、前記 n型 AlGaNバッファ層および n型 A1G aNバッファ層に接して位置する n型 GaNバッファ層の上に位置するェピタキシャノレ 層には転位束が伝播してレ、なレ、構成としてもょレ、。
[0178] この構成により、たとえ転位束密度が高い GaN基板を用いても、製造歩留まりを非 常に大きくすることができる。すなわち、上記のように n型 AlGaNバッファ層と、 n型 G aNバッファ層とを配置することにより、発光層を含むェピタキシャル積層構造中にお ける転位束を実質的になくすことができる。すなわち、前記 n型 AlGaNバッファ層お よび n型 AlGaNバッファ層により、転位束を GaN基板またはその直上層付近におい て終端させることができる。
[0179] 上記の p型 Al Ga N層(0≤x≤ 1)に接してダウン側に位置する p型 GaNバッファ 層と、その p型 GaNバッファ層に接して位置する p型 InGaNコンタクト層とを備えても よい。
[0180] 上記の構成により、 p電極層が載せられるその下層に電気伝導度に優れた p型 InG aNコンタクト層を配置することができ、 p電極層として仕事関数などを最重要視してそ の材料を選択する必要性が小さくなる。このため、たとえば反射率などを最重要視し て p電極の材料を選択することができる。
[0181] 上記の ρ型 InGaNコンタクト層の Mg濃度力 Mg原子 1E18— 1E21個/ cm3の範 囲にあるようにできる。
[0182] 上記の構成により、電気伝導度を十分確保でき、 p電極に導入された電流をェピタ キシャル膜の全体にわたって広げることができる。
[0183] 上記の p型 InGaNコンタクト層に接して Ag層から構成される p電極層を有する構成 としてもよレ、。
[0184] 上記の構成により、搭載部すなわち発光素子底部からの反射率を大きくしてロスさ れる光を少なくすることにより、光出力を大きくすることができる。
[0185] 上記の GaN基板は、その厚み方向とその GaN基板面内とにわたつて連続して延 びる板状結晶反転領域を有し、その GaN基板内の板状結晶反転領域と、 GaN基板 上に形成された n型および p型窒化物半導体層に伝播した板状結晶反転領域とが、 p型窒化物半導体層側から n型窒化物半導体層を経て GaN基板内にいたる位置ま で除去され、その除去されたあとに残った p型窒化物半導体層に接して、各 p型窒化 物半導体層ごとに p電極が設けられているようにできる。
[0186] この構成によれば光取り出し面を増大できるので光出力を向上させることができる。
[0187] 上記において、板状結晶反転領域を GaN基板内の位置まで KOH水溶液で除去 してもよい。
[0188] KOH水溶液で板状結晶反転領域を除去するとき、フォトマスクが不要であり、また 窒化物半導体基板の第 2の主面を非鏡面化する処理と同時処理することができるメリ ットがある。このため、 KOH水溶液を用いることにより上記の構成において製造コスト を低下させることができる。
[0189] 上記の p型窒化物半導体層に接してその p型窒化物半導体層の表面にわたって離 散的に配置される第 1の p電極と、その第 1の p電極の間隙を充填して、 p型窒化物半 導体層と第 1の p電極とを被覆する Agからなる第 2の p電極とを備えてもよい。
[0190] この構成により、 p電極に導入された電流を面内にわたって十分広げた上で、反射 率を高めて光出力を向上させることができる。
[0191] 上記の離散的に配置される第 1の p電極の p型窒化物半導体層の表面における被 覆率が、 10— 40%の範囲にあるようにしてもよい。
[0192] この構成により、電気伝導度を確保した上で導入された電流を面内にわたって広げ ること力 Sできる。上記被覆率が 10%未満では電流をェピタキシャル層にわたって抜け なく流すことができない。また、 40%を超えると離散的に配置された p電極層による光 の取出し効率に対する悪影響を無視できなくなる。
[0193] 上記の窒化物半導体基板から離れて窒化物半導体基板の第 2の主表面に対面す るように蛍光板が配置されてもょレ、。
[0194] pダウン搭載の光放射部を構成する窒化物半導体基板の直上に蛍光板を配置する ことにより、蛍光板の裏面で反射して戻ってきた光が窒化物半導体表面で再反射さ れ、蛍光板側に向力 ようにできる。この結果、光出力を向上させることができる。
[0195] 上記の蛍光板の窒化物半導体基板の第 2の主表面に面する表面が凹凸化処理さ れるようにできる。
[0196] 上記の構成により、さらに光の取り出し効率を高めることができる。
[0197] 上記の窒化物半導体基板は、過渡電圧または静電放電に対して、その電力をダラ ゥンドに逃がす接地部材として機能させてもよい。
[0198] 電気伝導率の高い窒化物半導体基板は、その窒化物半導体基板とダウン実装さ れた p型 Al Ga N層の側との間に加わる過渡電圧ゃ静電放電に対して発光素子を 高電圧から保護するために、それら高電圧をグラウンドに逃がす接地部材として機能 させること力 Sできる。このため、上記の過渡電圧または静電放電に対処するため、ツエ ナーダイオードを含む電力分路回路などの保護回路を備えなくてもよくなる。過渡電 圧および静電放電は、 III族窒化物半導体に対する回路故障の主要な要因であり、 上記のように窒素物半導体基板の電気伝導度が高ければ、それを接地部材として用 レ、、製造工程を大幅に短縮し、製造コストも低くすることができる。
[0199] 上記の発光素子は 4V以下の電圧を印加することにより発光するようにできる。電気 伝導度が高い、すなわち電気抵抗の小さい窒化物半導体基板を用いることにより、 低い電圧印加で発光に十分な電流を発光層に注入し、発光させること力 Sできる。この ため、より少ない個数の電池の搭載で済むので、発光素子を組み込んだ照明装置の 小型化、軽量化、低コストィ匕に資することができる。また、消費電力の抑制にも有効で ある。
[0200] 上記の窒化物半導体基板の厚みを 50 μ m以上としてもょレ、。
[0201] この構成により、点状または小面積の n電極から電子を流す場合、電子は GaN基 板または n型窒化物半導体基板の表面から内部に入るにしたがって広がってゆく。こ のため、 GaN基板または n型窒化物半導体は厚いほうが望ましい。上記基板の厚み 力 Ο μ m未満では n電極の面積を小さくした場合、量子井戸構造の活性層に到達し たときに十分に広がらず、活性層におレ、て発光しなレ、部分または発光が十分でなレ、 部分を生じる。上記の基板の厚みを 50 z m以上とすることにより、低い電気抵抗によ り n電極の面積を小さくしても上記基板内において電流が十分な広がりをみせて、活 性層での発光部分を十分拡大することができる。より好ましくは 75 x m以上とするの がよい。しかし、あまり厚くしすぎると基板による吸収が無視できなくなるので、 500 μ m以下にするのが望ましい。
[0202] 上記の窒化物半導体基板の第 2の主表面に、開口率 50%以上で電極が設けられ てもよい。
[0203] この構成により、第 2の主表面からの光の放出効率を高めることができる。回効率は 大きいほど n電極で吸収される光量が減るので光出力を増大させることができる。この ため、開口率は、より望ましくは 75%以上、さらに望ましくは 90%以上とするのがよい
[0204] 上記の窒化物半導体基板に設けられた電極と、その窒化物半導体基板との接触 面積が 0.055mm2以上であるようにできる。
[0205] この構成により、たとえば 8mm口の半導体チップで 70A程度まで、電極発熱の影 響なく線形の電流—光出力特性を得ることができる。
[0206] また、電極とリードフレームとを電気的に接続するボンディングワイヤの断面積が 0.
002mm2以上であるようにしてもよい。
[0207] この構成により、電流 2Aまでワイヤ部の発熱の影響なく稼動させることができる。
[0208] 上記の電極とリードフレームとを電気的に接続するボンディングワイヤの断面積を 0. 07mm2以上とすることができる。
[0209] この構成により、電流 70A程度までワイヤ部の発熱の影響なく稼動させることができ る。
[0210] 電極が窒化物半導体基板の 2以上のコーナーに分かれて位置し、電極と窒化物半 導体基板との接触面積の合計が 0.055mm2以上であり、かつリードフレームとコーナ 一に位置する電極とを電気的に接続するボンディングワイヤの断面積の合計が 0.00 2mm2以上であるようにできる。
[0211] この構成により、半導体チップの光取り出しにおいて光の障害となる部分がほとんど 配置されなレ、ようにすることができる。
[0212] 上記のコーナーに位置する電極とリードフレームとを電気的に接続するボンディン グワイヤの断面積の合計を 0.07mm2以上とすることができる。
[0213] この構成により、光取り出しの障害となる部分をほとんど無くしながら、光の出力効 率を高めることができる。
[0214] 上記の第 2の主表面の光を放出する部分の面積を 0. 25mm2以上としてもよい。
[0215] この構成により、所定の個数の上記発光素子を配列することにより、既存の照明機 器に代替しうる範囲が増大する。光を放出する部分の面積が 0. 25mm2未満では、 使用する発光素子の数が多くなりすぎ、既存の照明器具を代替することができない。 上記本発明の実施の形態における、光を放出する部分は。窒化物化合物半導体基 板で、電流が十分広がる範囲内で大きいほどよい。これは電気抵抗が小さいほど光 放出面積を広くとれることを意味し、たとえば窒化物化合物半導体基板の比抵抗が 0 . 01 Ω ' cmならば、本発明例 Fのように、 8mm X 8mm程度にすることができる。
[0216] また、上記の窒化物半導体基板の第 2の主表面の光を放出する部分を、 lmm X 1 mm以上のサイズとしてもよレ、。上記の窒化物半導体基板の第 2の主表面の光を放 出する部分を、 3mm X 3mm以上のサイズとすることもできる。さらに、上記の窒化物 半導体基板の第 2の主表面の光を放出する部分を、 5mm X 5mm以上のサイズとし てもよい。
[0217] 上記のように、光放出面を大面積化することにより、照明装置に搭載する発光素子 の数を減らすことができ、加工工数の抑制、部品点数の削減、消費電力の抑制、など を実現することができる。なお、念のために付け加えると、 lmm X lmm以上のサイズ とは、 1mm X lmmを含むサイズをいう。
[0218] A1N基板に形成される発光素子の場合も含んで、上記の発光素子は、熱抵抗が 3 0°C/W以下となるように構成されてもょレ、。
[0219] 発光素子は温度上昇により発光効率が低下し、また、過度に温度上昇が生じる場 合には、発光素子が損傷を受ける。このため、発光素子において、温度または熱抵 抗は重要な設計要素である。従来、熱抵抗はほぼ 60°C/Wとされていた(上記特許 文献 1)。しかし、上記のように、熱抵抗が 30°C/W以下となるように設定することによ り、発光素子への投入電力を十分行なっても発光効率の低下をいちじるしく生じたり 、また発光素子の損傷を生じることがなくなる。上記のような熱抵抗の半減化は、上記 のように比抵抗の小さレ、GnN基板を用いることによりはじめて実現されたのである。
[0220] また、上記の発光素子では、連続発光状態で最も温度が上昇する部分の温度を、 150°C以下とすることができる。
[0221] この構成により、最も温度が上昇する部分、すなわち発光層の温度を 150°C以下に して、十分高い発光効率を確保することができる。さらに従来の発光素子に比較して 寿命の大幅延長を得ることが可能になる。
[0222] 上記の n型窒化物半導体層の厚みは 3 /i m以下とするのがよい。
[0223] この n型窒化物半導体層は、窒化物半導体基板の上にェピタキシャル成長させるも のであり、むやみに厚くすると成膜処理に長時間を要し、原料費用も増大する。上記 のように n型窒化物半導体層の厚みを 3 μ ΐη以下とすることにより、大きなコスト減を得 ること力 Sできる。さらに望ましくは 2 /i m以下とするのがよい。
[0224] 上記の窒化物半導体基板の第 2の主表面において、電極が被覆していない部分 に非鏡面処理を施してもょレ、。
[0225] この構成により、第 2の主表面、すなわち放出面において、発光層で発生した光が 全反射により上記基板内に閉じ込められ効率が低下するのを防ぐことができる。積層 構造の側面にも非鏡面処理を施してもょレ、ことは言うまでもなレ、。
[0226] 上記の非鏡面処理が施された表面力 水酸化カリウム (K〇H)水溶液、水酸化ナト リウム(NaOH)水溶液、アンモニア(NH )水溶液またはその他のアルカリ水溶液を 用いて非鏡面化された表面であってもよレ、。
[0227] 上記の非鏡面化処理により GaN基板の N面だけを凹凸の大きな表面を能率よく得 ること力 Sできる。 Ga面側はエッチングされない。
[0228] また、上記非鏡面処理が施された表面力 硫酸 (H SO )水溶液、塩酸 (HC1)水溶
2 4
液、リン酸(H PO )水溶液、フッ酸(HF)水溶液およびその他の酸水溶液の少なくと
2 4
も 1つを用いて非鏡面化された表面であってもよい。
[0229] また、上記の非鏡面処理が施された表面が、 RIEを用いて非鏡面化された表面で あってもよレ、。これにより、ドライプロセスにより面積の寸法精度に優れた非鏡面を得 ること力 Sできる。さらには、ドライエッチングの RIEおよびアルカリ水溶液による湿式ェ ツチングのいずれによっても、フォトリソグラフィ技術と組み合わせることにより、所定の 凹凸間隔を得ることができる。
[0230] 上記の p型窒化物半導体層に設けられる電極を、反射率 0. 5以上の反射率の材質 で形成されるようにできる。
[0231] この構成により、実装面側での光の吸収を防ぎ、上記基板の第 2の主面に向けて反 射する光量を多くすることができる。この反射率はより高いほうが好ましぐ 0. 7以上と するのがよい。
[0232] 上記の窒化物半導体基板の第 2の主表面を覆うように蛍光体を配置してもよい。ま た、窒化物半導体基板に蛍光を発する不純物および欠陥の少なくとも一方を含ませ てもよい。
[0233] 上記の構成により、ともに白色 LEDを形成することができる。
[0234] 本発明の発光素子は、上記に挙げたいずれかの発光素子を 2つ以上含み、それら の発光素子が直列接続されてレ、てもよレ、。
[0235] 上記の構成により、高電圧電源を用いて、上述の高効率の発光素子を複数、リード フレーム等に搭載した照明部品を得ることができる。たとえば、 自動車用バッテリーは
12V程度なので、本発明の発光素子を 4段以上直列に接続して発光することができ る。
[0236] また、本発明の別の発光素子は、上述の発光素子を 2つ以上含み、それらの発光 素子が並列接続されてレ、てもよレ、。 [0237] 上記の構成により、高電流電源を用いて、上述の高効率の発光素子から構成され る照明部品を得ることができる。
[0238] 本発明のさらに別の発光素子と、それらの発光素子を発光させるための電源回路と を含み、電源回路において、発光素子が 2つ以上並列に接続された 2以上の並列部 が直列に接続される構成をとつてもよい。
[0239] この構成により、個々の発光素子の発光条件を満たしながら照明部品の容量と電 源容量との整合をとることが可能になる。なお、上記の電源回路では、照明装置の容 量を可変とする場合、並直切換部を備え、その並直切換部により、発光素子に印加 される配線が切り換えられてもよレ、。
産業上の利用可能性
[0240] 本発明の発光素子は、導電性の高い窒化物半導体基板を用い、 pダウン実装した 構造を用いた結果、 (1)放熱性に優れ、複雑な電極構造を設ける必要がなぐ大出 力の発光を可能にし、(2)導電性に優れ、過渡電圧ゃ静電放電から発光素子を保 護するための保護回路を設ける必要がなぐ大面積発光および静電耐圧に優れ、 (3 )発光層から基板にかけて屈折率の大から小への大きな不連続性がないため、発光 層力 放出面にいたる間で全反射が生じ難ぐしたがって全反射に起因する、効率 低下や側面部の樹脂劣化がなぐ(4)低電圧で発光するので、大容量の電源を必要 とせず、とくに自動車用の照明装置用に適しており、(5)その構造が簡単なために、 製造しやすく安価であり、メインテナンス性にも優れている。このため、今後、 自動車 の照明装置を含めて各種の照明製品に広範に利用されることが期待される。

Claims

請求の範囲
[1] 窒化物半導体基板(1)と、前記窒化物半導体基板の第 1の主表面の側に、 n型窒 化物半導体層(3)と、前記窒化物半導体基板から見て前記 n型窒化物半導体層より 遠くに位置する p型窒化物半導体層(5)と、前記 n型窒化物半導体層および p型窒化 物半導体層の間に位置する発光層 (4)とを備えた発光装置であって、
前記窒化物半導体基板の比抵抗が 0. 5 Ω ' cm以下であり、
前記 p型窒化物半導体層の側をダウン実装し、前記窒化物半導体基板の前記第 1 の主表面と反対側の主表面である第 2の主表面から光を放出する、発光装置。
[2] 前記 p型窒化物半導体層に接してその p型窒化物半導体層の表面にわたって離散 的に配置される第 1の p電極(12a)と、その第 1の p電極の間隙を充填して、前記 p型 窒化物半導体層と前記第 1の P電極とを被覆する、 Ag、 A1および Rhのいずれかから なる第 2の p電極(33)とを備える、請求の範囲第 1項に記載の発光装置。
[3] 前記第 1の p電極の前記 p型窒化物半導体層の表面における被覆率が、 10— 40 %の範囲にある、請求項 2に記載の発光装置。
[4] 前記発光装置の静電耐圧が 3000V以上ある、請求の範囲第 1項に記載の発光装 置。
[5] 前記窒化物半導体基板と、前記ダウン実装される p型 Al Ga N層の側との間に加 わる過渡電圧または静電放電から前記発光装置を保護するための保護回路をとくに 備えない、請求の範囲第 1項に記載の発光装置。
[6] 前記過渡電圧または静電放電に対処するための、ツエナーダイオードを含む電力 分路回路を備えない、請求の範囲第 5項に記載の発光装置。
[7] 前記発光装置は 4V以下の電圧を印加することにより発光する、請求の範囲第 1項 に記載の発光装置。
[8] 前記窒化物半導体基板の厚みが 50 μ m以上ある、請求の範囲第 1項に記載の発 光装置。
[9] 前記窒化物半導体基板の第 2の主表面に、開口率 50%以上で電極が設けられて いる、請求の範囲第 1項に記載の発光装置。
[10] 前記窒化物半導体基板(1)に設けられた電極(11)と、その窒化物半導体基板との 接触面積が 0.055mm2以上である、請求の範囲第 1項に記載の発光装置。
[11] 前記電極(11)とリードフレーム (21b)とを電気的に接続するボンディングワイヤ (1
3)の断面積が 0.002mm2以上である、請求の範囲第 10項に記載の発光装置。
[12] 前記電極とリードフレームとを電気的に接続するボンディングワイヤの断面積が 0.0
7mm2以上である、請求の範囲第 11項に記載の発光装置。
[13] 前記電極が前記窒化物半導体基板の 2以上のコーナーに分かれて位置し、前記 電極と前記窒化物半導体基板との接触面積の合計が 0.055mm2以上であり、かつリ ードフレームと前記コーナーに位置する電極とを電気的に接続するボンディングワイ ャの断面積の合計が 0.002mm2以上である、請求の範囲第 10項に記載の発光装 置。
[14] 前記コーナーに位置する電極とリードフレームとを電気的に接続するボンディング ワイヤの断面積の合計が 0.07mm2以上である、請求の範囲第 13項に記載の発光装 置。
[15] 前記窒化物半導体基板の第 2の主表面の光を放出する部分の面積が 0. 25mm2 以上ある、請求の範囲第 1項に記載の発光装置。
[16] 前記窒化物半導体基板の第 2の主表面の光を放出する部分が、 1mm X lmm以 上のサイズである、請求の範囲第 1項に記載の発光装置。
[17] 前記窒化物半導体基板の第 2の主表面の光を放出する部分が、 3mm X 3mm以 上のサイズである、請求の範囲第 16項に記載の発光装置。 .
[18] 前記窒化物半導体基板の第 2の主表面の光を放出する部分が、 5mm X 5mm以 上のサイズである、請求の範囲第 16項に記載の発光装置。
[19] 熱抵抗が 30°CZW以下となるように構成されている、請求の範囲第 1項に記載の 発光装置。
[20] 連続 光状態で最も温度が上昇する部分の温度が、 150°C以下である、請求の範 囲第 1項に記載の発光装置。
[21] 前記 n型窒化物半導体層の厚みが 3 μ m以下である、請求の範囲第 1項に記載の 発光装置。
[22] 前記窒ィ匕物半導体基板の第 2の主表面において、前記電極が被覆していない部
訂正された用紙 (規則 91) 分に非鏡面処理が施されている、請求の範囲第 1項に記載の発光装置。
[23] 前記非鏡面処理が施された表面が、水酸化カリウム (KOH)水溶液、水酸化ナトリ ゥム(NaOH)水溶液、アンモニア(NH )水溶液またはその他のアルカリ水溶液を用
3
レ、て非鏡面化された表面である、請求の範囲第 22項に記載の発光装置。
[24] 前記非鏡面処理が施された表面が、硫酸 (H SO )水溶液、塩酸 (HC1) 7i溶液、リ
2 4
ン酸(H PO )水溶液、フッ酸(HF)水溶液およびその他の酸水溶液の少なくとも 1つ
2 4
を用いて非鏡面化された表面である、請求の範囲第 22項に記載の発光装置。
[25] 前記非鏡面処理が施された表面が、反応性イオンエッチング (Reactive Ion
Etching:RIE)を用いて非鏡面化された表面である、請求の範囲第 22項に記載の発光 装置。
[26] 前記 p型窒化物半導体層に設けられる電極(12)は反射率 0. 5以上の反射率の材 質で形成されている、請求の範囲第 1項に記載の発光装置。
[27] 前記窒化物半導体基板の第 2の主表面を覆うように蛍光体 (26)が配置されて!/、る
、請求の範囲第 1項に記載の発光装置。
[28] 前記窒化物半導体基板から離れて前記窒化物半導体基板の第 2の主表面に対面 するように蛍光板 (46)が配置されている、請求の範囲第 1項に記載の発光装置。
[29] 前記蛍光板の前記窒化物半導体基板の第 2の主表面に面する表面が凹凸化処理 されている、請求の範囲第 28項に記載の発光装置。 '
[30] 前記窒化物半導体基板が蛍光を発する不純物および欠陥の少なくとも一方を含ん でいる、請求の範囲第 1項に記載の発光装置。
[31] 前記請求の範囲第 1項に記載の発光装置を 2つ以上含み、それらの発光装置が直 列接続または並列接続された、発光装置。
[32] 前記請求の範囲第 1項に記載の発光装置と、それらの発光装置を発光させるため の '源回路とを含み、前記電源回路において、前記発光装置が 2つ以上並列に接 続された 2以上の並列部が直列に接続されている、発光装置。
[33] 窒化物半導体基板の GaN基板(1)と、前記 GaN基板の第 1の主表面の側に、 n型 窒化物半導体層の n型 Al Ga N層(0≤χ≤1) (3)と、前記 GaN基板から見て前記
1-x '
n型 Al Ga N層より遠くに位置する p型 Al Ga N層(0≤x≤ 1) (5)と、前記 n型 Al
丄— 1—
訂正された用紙 (規則 91) Ga N層および p型 Al Ga N層の間に位置する発光層(4)とを備えた発光装置で
1— i
あってヽ
前記 GaN基板の転位密度が、 108/cm2以下であり、
前記 p型 Al Ga N層の側をダウン実装し、前記 GaN基板の前記第 1の主表面と反
1- 対側の主表面である第 2の主表面から光を放出する、発光装置。
[34] 前記 GaN基板は酸素ドープにより n型化されており、酸素濃度が、酸素原子 1E17 個/ cm3— 2E19個/ cm3の範囲にあり、前記 GaN基板の厚みが 100 μ m— 600 μ mである、請求の範囲第 33項に記載の発光装置。
[35] 前記酸素濃度が、酸素原子 5E18個 Zcm3 2E19個 Zcm3の範囲にあり、前記 G aN基板の厚みが 200 μ m— 400 μ mの範囲にあり、前記第 33の主表面の光を放出 する矩形状の面の両方の辺が 10mm以下の範囲にある、請求の範囲第 33項に記載 の発光装置。
[36] 前記酸素濃度が、酸素原子 3E18個/ cm3— 5E18個/ cm3の範囲にあり、前記 G aN基板の厚みが 400 μ m— 600 μ mの範囲にあり、前記第 2の主表面の光を放出 する矩形状の面の両方の辺が 3mm以下の範囲にある、請求の範囲第 33項に記載 の発光装置。
[37] 前記酸素濃度が、酸素原子 5E18個/ cm3— 5E19個/ cm3の範囲にあり、前記 G aN基板の厚みが 100 μ m— 200 μ mの範囲にあり、前記第 2の主表面の光を放出 する矩形状の面の両方の辺が 3mm以下の範囲にある、請求の範囲第 33項に記載 の発光装置。
[38] 前記 GaN基板の大部分の領域の結晶性を高めるために、その形成時に不可避的 に生成する転位を離散的にひも状に集中化して基板厚み方向に沿って分布させて できた転位束(61)が、前記 GaN基板の第 1の主表面に平均 4E6個/ cm2以下の密 度で分布している、請求の範囲第 33項に記載の発光装置。
[39] 前記転位束が前記第 1の主表面に平均 4E2個 Zcm2以下の密度で分布し、前記 第 2の主表面の光を放出する矩形状の面の両方の辺が 200 μ m— 400 μ mの範囲 にある、請求の範囲第 38項に記載の発光装置。
[40] 前記 GaN基板と前記 n型 Al Ga N層(0≤x≤ 1)との間において、前記 GaN基板
1 に接して n型 AlGaNバッファ層(31)が、またその n型 AlGaNバッファ層に接して n型 GaNバッファ層(2)が位置し、その n型 GaNバッファ層に接して前記 n型 Al Ga N 層(0≤χ≤1) (3)が位置している、請求の範囲第 33項に記載の発光装置。
[41] 前記 GaN基板は、オフ角が 0.10° 以下の領域と 1.0° 以上の領域とを有する、請 求の範囲第 40項に記載の発光装置。
[42] 前記 GaN基板には転位束 (61)が分布し、前記 GaNバッファ層に接して位置する n 型 Al Ga N層(0≤x 1) (3)には、前記転位束が伝播していなレ、、請求の範囲第
40項に記載の発光装置。
[43] 前記 p型 Al Ga N層(0≤χ≤1) (5)に接してダウン側に位置する p型 GaNバッファ 層(6)と、その p型 GaNバッファ層に接して位置する p型 InGaNコンタクト層(32)とを 備える、請求の範囲第 33項に記載の発光装置。
[44] 前記 p型 InGaNコンタクト層(32)の Mg濃度が、 Mg原子 1E18〜1E21個 Zcm3の 範函にある、請求の範囲第 43項に記載の発光装置。
[45] 前記 p型 InGaNコンタクト層(32)に接して Ag、 Alおよび Rh層のいずれ力から構成 される P電極層(33)を有する、請求の範囲第 43項に記載の発光装置。
[46] 前記 GaN基板は、その厚み方向とその GaN基板面内の 1方向とに沿って連続して 平面状に延びる板状結晶反転領域(51)を有し、その GaN基板内の板状結晶反転 領域と、前記 GaN基板上に形成された前記 n型および p型窒化物半導体層に伝播し た板状結晶反転領域とが、前記 p型窒化物半導体層側から前記 n型窒化物半導体 層を経て前記 GaN基板内にいたる位置まで除去され、その除去されたあとに残った p型窒化物半導体層に接して、各 p型窒化物半導体層ごとに p電極(12)が設けられ ている、請求の範囲第 33項に記載の発光装置。
[47] 前記板状結晶反転領域が前記 GaN基板内にレ、たる位置まで KOH水溶液で除去 されている、請求の範囲第 46項に記載の発光装置。
[48] 窒化物半導体基板の導電性の A1N基板と、前記 A1N基板の第 1の主表面の側に、 n型窒化物半導体層の n型 Al Ga N層(0≤x≤ 1)と、前記 A1N基板から見て前記 n 型 Al Ga N層より遠くに位置する p型 Al Ga N層(0≤x≤ 1)と、前記 n型 Al Ga
N層おょぴ p型 Al Ga N層の間に位置する発光層とを備えた発光装置であって、
訂正された用紙 (規則 91) 前記 A1N基板の熱伝導率が、 100W/ (m'K)以上であり、 前記 p型 Al Ga N層の側をダウン実装し、前記 A1N基板の前記第 1の主表面と反
1
対側の主表面である第 2の主表面から光を放出する、発光装置。
PCT/JP2004/011158 2003-08-26 2004-08-04 発光装置 WO2005020337A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04771196A EP1571716A4 (en) 2003-08-26 2004-08-04 LIGHT-EMITTING DEVICE
CA002509785A CA2509785A1 (en) 2003-08-26 2004-08-04 Light-emitting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003301706 2003-08-26
JP2003-301706 2003-08-26
JP2003429818 2003-12-25
JP2003-429818 2003-12-25

Publications (2)

Publication Number Publication Date
WO2005020337A1 true WO2005020337A1 (ja) 2005-03-03
WO2005020337A8 WO2005020337A8 (ja) 2005-05-12

Family

ID=34220742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011158 WO2005020337A1 (ja) 2003-08-26 2004-08-04 発光装置

Country Status (9)

Country Link
US (2) US7202509B2 (ja)
EP (1) EP1571716A4 (ja)
JP (2) JP3841092B2 (ja)
KR (1) KR100919657B1 (ja)
CN (1) CN100414724C (ja)
CA (1) CA2509785A1 (ja)
SG (1) SG145722A1 (ja)
TW (1) TW200522392A (ja)
WO (1) WO2005020337A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019099A (ja) * 2005-07-05 2007-01-25 Sumitomo Electric Ind Ltd 発光装置およびその製造方法

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3841092B2 (ja) 2003-08-26 2006-11-01 住友電気工業株式会社 発光装置
JP2005191530A (ja) 2003-12-03 2005-07-14 Sumitomo Electric Ind Ltd 発光装置
ATE541320T1 (de) * 2004-11-18 2012-01-15 Koninkl Philips Electronics Nv Beleuchter und verfahren zur herstellung eines derartigen beleuchters
JP4384019B2 (ja) * 2004-12-08 2009-12-16 住友電気工業株式会社 ヘッドランプ
JP2006179511A (ja) * 2004-12-20 2006-07-06 Sumitomo Electric Ind Ltd 発光装置
JP4244953B2 (ja) * 2005-04-26 2009-03-25 住友電気工業株式会社 発光装置およびその製造方法
JP2006324324A (ja) * 2005-05-17 2006-11-30 Sumitomo Electric Ind Ltd 発光装置、発光装置の製造方法および窒化物半導体基板
JP4297084B2 (ja) * 2005-06-13 2009-07-15 住友電気工業株式会社 発光装置の製造方法および発光装置
US20060289891A1 (en) * 2005-06-28 2006-12-28 Hutchins Edward L Electronic and/or optoelectronic devices grown on free-standing GaN substrates with GaN spacer structures
CN100565948C (zh) * 2005-06-30 2009-12-02 松下电工株式会社 发光装置
JP2007088420A (ja) * 2005-08-25 2007-04-05 Sharp Corp 半導体発光素子の製造方法
JP2007088389A (ja) * 2005-09-26 2007-04-05 Yamaguchi Univ 半導体発光素子の内部量子効率を測定する装置及びその方法
US7928462B2 (en) 2006-02-16 2011-04-19 Lg Electronics Inc. Light emitting device having vertical structure, package thereof and method for manufacturing the same
JP2007266574A (ja) * 2006-02-28 2007-10-11 Sanyo Electric Co Ltd 半導体レーザ素子及び半導体レーザ素子の製造方法
US7754514B2 (en) 2006-08-22 2010-07-13 Toyoda Gosei Co., Ltd. Method of making a light emitting element
JP4894411B2 (ja) * 2006-08-23 2012-03-14 日立電線株式会社 半導体発光素子
JP2008140893A (ja) * 2006-11-30 2008-06-19 Sumitomo Electric Ind Ltd 半導体デバイスおよびその製造方法
US8080833B2 (en) * 2007-01-26 2011-12-20 Crystal Is, Inc. Thick pseudomorphic nitride epitaxial layers
JP5133087B2 (ja) * 2007-02-23 2013-01-30 株式会社ニューフレアテクノロジー 半導体装置の製造方法
TWI331816B (en) * 2007-04-03 2010-10-11 Advanced Optoelectronic Tech Semiconductor light-emitting device
US8104945B2 (en) * 2007-12-27 2012-01-31 Samsung Led Co., Ltd. Backlight unit implementing local dimming for liquid crystal display device
JP4692602B2 (ja) 2008-09-26 2011-06-01 住友電気工業株式会社 窒化ガリウム系エピタキシャルウエハ、およびエピタキシャルウエハを作製する方法
JP5211996B2 (ja) * 2008-09-30 2013-06-12 豊田合成株式会社 発光装置
US20110024775A1 (en) * 2009-07-31 2011-02-03 Goldeneye, Inc. Methods for and devices made using multiple stage growths
JPWO2011016201A1 (ja) * 2009-08-06 2013-01-10 パナソニック株式会社 発光素子および発光装置
KR101081166B1 (ko) * 2009-09-23 2011-11-07 엘지이노텍 주식회사 발광소자, 발광소자의 제조방법 및 발광소자 패키지
JP5381581B2 (ja) * 2009-09-30 2014-01-08 住友電気工業株式会社 窒化ガリウム基板
KR101034054B1 (ko) * 2009-10-22 2011-05-12 엘지이노텍 주식회사 발광소자 패키지 및 그 제조방법
TWI412161B (zh) * 2009-11-06 2013-10-11 Semileds Optoelectronics Co 發光二極體裝置
KR101103892B1 (ko) * 2009-12-08 2012-01-12 엘지이노텍 주식회사 발광소자 및 발광소자 패키지
US20130161664A1 (en) * 2010-09-01 2013-06-27 Showa Denko K.K. Electroluminescent element, display device and lighting device
JPWO2012147390A1 (ja) * 2011-04-28 2014-07-28 昭和電工株式会社 有機発光素子、有機発光素子の製造方法、表示装置および照明装置
WO2012157303A1 (ja) * 2011-05-19 2012-11-22 昭和電工株式会社 有機発光素子、有機発光素子の製造方法、表示装置および照明装置
WO2013021606A1 (ja) * 2011-08-09 2013-02-14 パナソニック株式会社 窒化物半導体層成長用構造、積層構造、窒化物系半導体素子および光源ならびにこれらの製造方法
US9818912B2 (en) 2011-12-12 2017-11-14 Sensor Electronic Technology, Inc. Ultraviolet reflective contact
JP6167109B2 (ja) 2011-12-12 2017-07-19 センサー エレクトロニック テクノロジー インコーポレイテッド 紫外線反射型コンタクト
JP5398937B1 (ja) * 2012-02-23 2014-01-29 パナソニック株式会社 窒化物半導体発光チップ、窒化物半導体発光装置及び窒化物半導体チップの製造方法
WO2013128601A1 (ja) * 2012-02-29 2013-09-06 昭和電工株式会社 エレクトロルミネッセント素子、エレクトロルミネッセント素子の製造方法、表示装置および照明装置
CN104205366B (zh) * 2012-03-30 2018-08-31 亮锐控股有限公司 密封的半导体发光器件
CN103511995B (zh) * 2012-06-29 2016-04-20 展晶科技(深圳)有限公司 发光二极管灯条
KR102076235B1 (ko) * 2012-08-29 2020-02-12 엘지이노텍 주식회사 백라이트 유닛
KR102335452B1 (ko) * 2015-06-16 2021-12-07 서울바이오시스 주식회사 발광 소자
KR102487989B1 (ko) * 2015-09-30 2023-01-12 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자
WO2017150280A1 (ja) * 2016-03-01 2017-09-08 スタンレー電気株式会社 縦型紫外発光ダイオード
US11695093B2 (en) * 2018-11-21 2023-07-04 Analog Devices, Inc. Superlattice photodetector/light emitting diode
JP2021012900A (ja) * 2019-07-03 2021-02-04 パナソニックIpマネジメント株式会社 Iii族窒化物系半導体レーザ素子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251739A (ja) * 1992-03-06 1993-09-28 Toshiba Corp 半導体発光デバイス
JPH11317546A (ja) * 1998-03-02 1999-11-16 Matsushita Electron Corp 半導体発光装置
JP2002319705A (ja) * 2001-04-23 2002-10-31 Matsushita Electric Works Ltd Led装置

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5455390A (en) 1977-10-12 1979-05-02 Nec Corp Light emitting element
JP2685377B2 (ja) * 1990-11-26 1997-12-03 シャープ株式会社 化合物半導体発光素子
JP2836687B2 (ja) 1993-04-03 1998-12-14 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子
TW290743B (ja) 1995-03-27 1996-11-11 Sumitomo Electric Industries
JPH08279627A (ja) 1995-04-07 1996-10-22 Showa Denko Kk 発光素子
US6783867B2 (en) 1996-02-05 2004-08-31 Sumitomo Electric Industries, Ltd. Member for semiconductor device using an aluminum nitride substrate material, and method of manufacturing the same
JP3644191B2 (ja) 1996-06-25 2005-04-27 住友電気工業株式会社 半導体素子
JP3087829B2 (ja) 1996-10-14 2000-09-11 日亜化学工業株式会社 窒化物半導体素子の製造方法
JP3772801B2 (ja) 1996-11-05 2006-05-10 日亜化学工業株式会社 発光ダイオード
JP3409666B2 (ja) 1996-12-02 2003-05-26 日亜化学工業株式会社 面状発光装置及びそれを用いたディスプレイ装置
JP3787220B2 (ja) 1997-07-30 2006-06-21 ローム株式会社 チップ型発光素子
JP3551751B2 (ja) 1997-05-16 2004-08-11 日亜化学工業株式会社 窒化物半導体の成長方法
JPH1097200A (ja) 1997-05-20 1998-04-14 Nichia Chem Ind Ltd 光 源
JP2868085B2 (ja) 1997-05-20 1999-03-10 日亜化学工業株式会社 面状光源
JP3898798B2 (ja) 1997-05-27 2007-03-28 シャープ株式会社 窒化ガリウム系化合物半導体発光素子の製造方法
JP3457516B2 (ja) 1997-08-27 2003-10-20 株式会社東芝 窒化ガリウム系化合物半導体素子
JP3618989B2 (ja) 1997-12-24 2005-02-09 株式会社東芝 半導体レーザ装置
US6841800B2 (en) * 1997-12-26 2005-01-11 Matsushita Electric Industrial Co., Ltd. Light-emitting device comprising a gallium-nitride-group compound-semiconductor
JPH11220176A (ja) 1998-02-03 1999-08-10 Matsushita Electron Corp 半導体発光装置
JP4169821B2 (ja) 1998-02-18 2008-10-22 シャープ株式会社 発光ダイオード
TW428331B (en) 1998-05-28 2001-04-01 Sumitomo Electric Industries Gallium nitride single crystal substrate and method of producing the same
JP3788104B2 (ja) 1998-05-28 2006-06-21 住友電気工業株式会社 窒化ガリウム単結晶基板及びその製造方法
JP3788037B2 (ja) 1998-06-18 2006-06-21 住友電気工業株式会社 GaN単結晶基板
TW406442B (en) * 1998-07-09 2000-09-21 Sumitomo Electric Industries White colored LED and intermediate colored LED
JP3966623B2 (ja) 1998-07-14 2007-08-29 富士フイルム株式会社 N−アルキル−α−ジアルキルアミノアセトヒドロキサム酸化合物の製造方法
TW413956B (en) 1998-07-28 2000-12-01 Sumitomo Electric Industries Fluorescent substrate LED
JP3397141B2 (ja) 1998-07-28 2003-04-14 住友電気工業株式会社 白色led
JP2000077713A (ja) 1998-08-27 2000-03-14 Sanyo Electric Co Ltd 半導体発光素子
JP2000223751A (ja) 1998-11-25 2000-08-11 Nichia Chem Ind Ltd Ledランプ及びそれを用いた表示装置
JP4296644B2 (ja) 1999-01-29 2009-07-15 豊田合成株式会社 発光ダイオード
JP3668031B2 (ja) 1999-01-29 2005-07-06 三洋電機株式会社 窒化物系半導体発光素子の製造方法
JP4136272B2 (ja) * 1999-08-30 2008-08-20 株式会社リコー 半導体発光素子
US6614821B1 (en) * 1999-08-04 2003-09-02 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
JP4005275B2 (ja) 1999-08-19 2007-11-07 日亜化学工業株式会社 窒化物半導体素子
US6514782B1 (en) 1999-12-22 2003-02-04 Lumileds Lighting, U.S., Llc Method of making a III-nitride light-emitting device with increased light generating capability
US6885035B2 (en) 1999-12-22 2005-04-26 Lumileds Lighting U.S., Llc Multi-chip semiconductor LED assembly
US6447604B1 (en) * 2000-03-13 2002-09-10 Advanced Technology Materials, Inc. Method for achieving improved epitaxy quality (surface texture and defect density) on free-standing (aluminum, indium, gallium) nitride ((al,in,ga)n) substrates for opto-electronic and electronic devices
JP2001326425A (ja) 2000-05-12 2001-11-22 Fuji Photo Film Co Ltd 半導体素子用基板の製造方法および半導体素子
JP2002016311A (ja) 2000-06-27 2002-01-18 Sharp Corp 窒化ガリウム系発光素子
JP3834188B2 (ja) 2000-07-10 2006-10-18 日亜化学工業株式会社 半導体発光装置
KR100479796B1 (ko) 2000-09-11 2005-03-31 동경 엘렉트론 주식회사 반도체 소자 및 이의 제조 방법
JP4430264B2 (ja) 2001-03-19 2010-03-10 日亜化学工業株式会社 表面実装型発光装置
US6806508B2 (en) * 2001-04-20 2004-10-19 General Electic Company Homoepitaxial gallium nitride based photodetector and method of producing
CN1259734C (zh) * 2001-06-13 2006-06-14 松下电器产业株式会社 氮化物半导体、其制造方法以及氮化物半导体元件
JP4122739B2 (ja) 2001-07-26 2008-07-23 松下電工株式会社 発光素子及びその製造方法
CN1215574C (zh) 2001-08-08 2005-08-17 洲磊科技股份有限公司 具有分散电流与提高发光面积利用率的发光二极管
JP4244542B2 (ja) 2001-08-28 2009-03-25 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子及びその製造方法
JP2003086843A (ja) 2001-09-14 2003-03-20 Sharp Corp 半導体発光素子及び半導体発光装置
JP3864870B2 (ja) 2001-09-19 2007-01-10 住友電気工業株式会社 単結晶窒化ガリウム基板およびその成長方法並びにその製造方法
JP3801125B2 (ja) 2001-10-09 2006-07-26 住友電気工業株式会社 単結晶窒化ガリウム基板と単結晶窒化ガリウムの結晶成長方法および単結晶窒化ガリウム基板の製造方法
US6744072B2 (en) 2001-10-02 2004-06-01 Xerox Corporation Substrates having increased thermal conductivity for semiconductor structures
JP3920613B2 (ja) 2001-10-02 2007-05-30 三洋電機株式会社 光半導体装置
JP4920152B2 (ja) 2001-10-12 2012-04-18 住友電気工業株式会社 構造基板の製造方法および半導体素子の製造方法
TWI231321B (en) 2001-10-26 2005-04-21 Ammono Sp Zoo Substrate for epitaxy
CN1300901C (zh) * 2001-10-26 2007-02-14 波兰商艾蒙诺公司 使用氮化物块状单晶层的发光元件结构
JP2003218401A (ja) 2002-01-18 2003-07-31 Matsushita Electric Ind Co Ltd 半導体発光装置およびその製造方法
US6791120B2 (en) 2002-03-26 2004-09-14 Sanyo Electric Co., Ltd. Nitride-based semiconductor device and method of fabricating the same
US6984460B2 (en) 2002-03-26 2006-01-10 Tdk Corporation Phosphor thin film, manufacturing method of the same, and electroluminescence panel
JP2003326425A (ja) 2002-05-10 2003-11-18 Toyota Motor Corp ナットランナ
EP1394857A3 (en) * 2002-08-28 2004-04-07 Matsushita Electric Industrial Co., Ltd. Semiconductor device
US7112830B2 (en) * 2002-11-25 2006-09-26 Apa Enterprises, Inc. Super lattice modification of overlying transistor
JP3841092B2 (ja) 2003-08-26 2006-11-01 住友電気工業株式会社 発光装置
US7009215B2 (en) 2003-10-24 2006-03-07 General Electric Company Group III-nitride based resonant cavity light emitting devices fabricated on single crystal gallium nitride substrates
JP2005191530A (ja) * 2003-12-03 2005-07-14 Sumitomo Electric Ind Ltd 発光装置
JP2006179511A (ja) 2004-12-20 2006-07-06 Sumitomo Electric Ind Ltd 発光装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251739A (ja) * 1992-03-06 1993-09-28 Toshiba Corp 半導体発光デバイス
JPH11317546A (ja) * 1998-03-02 1999-11-16 Matsushita Electron Corp 半導体発光装置
JP2002319705A (ja) * 2001-04-23 2002-10-31 Matsushita Electric Works Ltd Led装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1571716A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019099A (ja) * 2005-07-05 2007-01-25 Sumitomo Electric Ind Ltd 発光装置およびその製造方法

Also Published As

Publication number Publication date
US20050062060A1 (en) 2005-03-24
CN1774821A (zh) 2006-05-17
JP2005210053A (ja) 2005-08-04
KR20060059955A (ko) 2006-06-02
SG145722A1 (en) 2008-09-29
EP1571716A1 (en) 2005-09-07
CN100414724C (zh) 2008-08-27
JP3841092B2 (ja) 2006-11-01
CA2509785A1 (en) 2005-03-03
US20080210959A1 (en) 2008-09-04
US7202509B2 (en) 2007-04-10
TW200522392A (en) 2005-07-01
US7687822B2 (en) 2010-03-30
KR100919657B1 (ko) 2009-09-30
TWI348226B (ja) 2011-09-01
EP1571716A4 (en) 2012-07-25
JP2005223362A (ja) 2005-08-18
WO2005020337A8 (ja) 2005-05-12

Similar Documents

Publication Publication Date Title
WO2005020337A1 (ja) 発光装置
KR100955634B1 (ko) 발광 장치
JP4367348B2 (ja) ウエハおよび発光装置の製造方法
KR101202866B1 (ko) 발광 장치
CN100524853C (zh) 头灯
KR101451036B1 (ko) 반도체 발광 소자
JP5050109B2 (ja) 半導体発光素子
US7897981B2 (en) Light emitting device and method of manufacturing the same
JP5788046B2 (ja) 半導体発光素子
KR101419105B1 (ko) 발광 다이오드, 발광 다이오드 램프 및 조명 장치
EP2400571A1 (en) Light-emitting diode, light-emitting diode lamp, and method for producing light-emitting diode
JP5740350B2 (ja) 半導体発光素子
JP2005260276A (ja) 発光装置
JP2008227540A (ja) 発光装置
JP2010186808A (ja) 発光ダイオード及び発光ダイオードランプ
JP6010169B2 (ja) 半導体発光素子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WRT Later publication of a revised version of an international search report translation
WWE Wipo information: entry into national phase

Ref document number: 2509785

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004771196

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004771196

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048098998

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067000253

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067000253

Country of ref document: KR