JP2010186808A - 発光ダイオード及び発光ダイオードランプ - Google Patents

発光ダイオード及び発光ダイオードランプ Download PDF

Info

Publication number
JP2010186808A
JP2010186808A JP2009028576A JP2009028576A JP2010186808A JP 2010186808 A JP2010186808 A JP 2010186808A JP 2009028576 A JP2009028576 A JP 2009028576A JP 2009028576 A JP2009028576 A JP 2009028576A JP 2010186808 A JP2010186808 A JP 2010186808A
Authority
JP
Japan
Prior art keywords
emitting diode
light
light emitting
layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009028576A
Other languages
English (en)
Inventor
Ryoichi Takeuchi
良一 竹内
Wataru Nabekura
亙 鍋倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2009028576A priority Critical patent/JP2010186808A/ja
Priority to CN2010800070964A priority patent/CN102308397A/zh
Priority to PCT/JP2010/000193 priority patent/WO2010092741A1/ja
Priority to US13/148,428 priority patent/US20110315955A1/en
Priority to KR1020117018532A priority patent/KR101318492B1/ko
Priority to TW099103717A priority patent/TWI433356B/zh
Publication of JP2010186808A publication Critical patent/JP2010186808A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

【課題】本発明は光取り出し面に2つの電極と傾斜側面を有する発光ダイオードにおいて、光の取り出し効率が高く、実装工程の生産性が高い高輝度発光ダイオードを提供する。
【解決手段】組成式(AlGa1−XIn1−YP(0≦X≦1,0<Y≦1)から成る発光層を含む発光部を有し、該発光部を含む化合物半導体層を透明基板と接合された発光ダイオードである。発光ダイオードの主たる光取り出し面に第1の電極と、第1の電極と極性の異なる第2の電極とを有する。第2の電極は発光層を挟んで第1の電極とは反対側の化合物半導体層上に形成されている。透明基板の側面は、発光層に近い側では発光層の発光面に対して略垂直である第1の側面と、発光層に遠い側では発光面に対して傾斜している第2の側面を有している発光ダイオードに対し、第3の電極を透明基板裏面に形成する。
【選択図】図4

Description

本発明は、発光ダイオード及び発光ダイオードランプに関するものである。
従来から、赤色、橙色、黄色或いは黄緑色の可視光を発する発光ダイオード(英略称:LED)として、燐化アルミニウム・ガリウム・インジウム(組成式(AlGa1−XIn1−YP;0≦X≦1,0<Y≦1)から成る発光層を備えた化合物半導体LEDが知られている。この様なLEDにあって、(AlGa1−XIn1−YP(0≦X≦1,0<Y≦1)から成る発光層を備えた発光部は、一般に発光層から出射される発光に対し光学的に不透明であり、また機械的にもそれ程強度のない砒化ガリウム(GaAs)等の基板材料上に形成されている。
このため、より高輝度の可視LEDを得るために、また、更なる素子の機械的強度の向上を目的とした研究が進められている。すなわち、GaAsのような不透明な基板材料を除去した後、発光を透過できると共に従来に増してより機械強度に優れた透明な材料からなる支持体層を改めて接合させた、いわゆる接合型LEDを構成する技術が開示されている(例えば、特許文献1〜5参照)。
また、高輝度の可視LEDを得るために、素子形状による光取り出し効率を向上させる方法が用いられている。その例として、側面形状によって高輝度化を向上させた技術が開示されている(例えば、特許文献6〜7参照)。さらに、接合基板界面の高抵抗層を利用して、静電耐性を向上させた技術が開示されている(例えば、特許文献8参照)。
特許第3230638号公報 特開平6−302857号公報 特開2002−246640号公報 特許第2588849号公報 特開2001−57441号公報 特開2007−173551号公報 米国特許第6229160号公報 特開2007−19057号公報
このように、透明基板接合型LEDやチップ形状の最適化等により、高輝度LEDの提供が可能となったが、製造技術的には、実装工程における生産性の向上や輝度品質の安定化等が求められていた。また、静電耐性の向上などの実装工程に関連したニーズがあった。
ところで、発光ダイオードの表面及び裏面に電極を形成する構造の素子においては、多くの実装技術に関連した提案がされている。しかしながら、光取り出し面に2つの電極を有する構造の高輝度素子では、電気的特性を含めて構造が複雑であり、静電耐圧の安定化や実装技術についての検討が不十分であった。
例えば、特許文献6に開示されているように、高輝度化の為、基板の側面において、発光層に近い側では発光層の発光面に対して略垂直である第1の側面と、発光層に遠い側では発光面に対して傾斜している第2の側面とにより高輝度化する技術が開示されている。しかしながら、パッケージと接続する基板の底面の面積が小さく、発光面の面積が大きく形成されているため、第1または第2の電極にワイヤーをワイヤンボンディングする際にチップが転倒しやすいという問題があった。このため、発光ダイオード素子とパッケージとの間で安定した接続強度を得るには、ダイボンド剤の選定や接続条件の管理などの制約が大きいという問題があった。
一方、特許文献8に記載された発光ダイオードでは、発光部と導電性の基板との間に高抵抗層を設けることにより、静電耐性の向上が図られている。しかしながら、パッケージと電気的に接触するため、銀ペーストなどの導電性のペーストを用いる必要がある。これらの導電性ペーストは光の吸収が大きいため、透明基板接続型LEDの場合に発光の妨げになるという問題があった。特に、導電性ペーストである銀ペースト等を過剰に使用すると透明基板の側面を覆ってしまうため、著しく輝度が低下するという問題があった。反対に、導電性ペーストの使用量が少なすぎる場合には、接着強度が不足してLEDチップが安定しないという問題があった。
本発明は、上記事情を鑑みてなされたものであり、光取り出し面に2つの電極と傾斜側面とを有する発光ダイオードにおいて、高い光の取り出し効率を維持しつつ、実装工程の生産性を向上すると共に逆電圧が印加した際に逆方向電流が発光層を流れることがない発光ダイオードを提供することを目的とする。
すなわち、本発明は以下に関する。
(1) pn接合型の発光部を含む化合物半導体層と透明基板とが接合された発光ダイオードであって、発光ダイオードの主たる光取り出し面に設けられた第1及び第2の電極と、前記透明基板の前記化合物半導体層との接合面と反対側に設けられた第3の電極とを備えることを特徴とする発光ダイオード。
(2) 前記第3の電極がショットキー電極であることを特徴とする前項(1)に記載の発光ダイオード。
(3) 前記第3の電極が、前記光取り出し面の発光に対する反射率が90%以上の反射層を有することを特徴とする前項(1)又は(2)に記載の発光ダイオード。
(4) 前記反射層が、銀、金、アルミニウム、白金、又はこれらを1以上含む金合であることを特徴とする前項(3)に記載の発光ダイオード。
(5) 前記第3の電極が、前記透明基板と接する面と前記反射層との間に酸化膜を有することを特徴とする前項(3)又は(4)に記載の発光ダイオード。
(6) 前記酸化膜が、透明導電膜であることを特徴とする前項(5)に記載の発光ダイオード。
(7) 前記透明導電膜が、インジウム・錫の酸化物からなる透明導電膜(ITO)であることを特徴とする前項(6)に記載の発光ダイオード。
(8) 前記第3の電極が、前記透明基板と接する面と反対側に、接続層を有することを特徴とする前項(1)乃至(7)のいずれか一項に記載の発光ダイオード。
(9) 前記接続層が、融点400℃未満の共晶金属であることを特徴とする前項(8)に記載の発光ダイオード。
(10) 前記第3の電極が、前記反射層と前記接続層との間に融点2000℃以上の高融点バリア金属を備えていることを特徴とする前項(8)又は(9)に記載の発光ダイオード。
(11) 前記高融点バリア金属が、タングステン、モリブデン、チタン、白金、クロム、タンタルからなる群から選択された少なくともいずれか1つを含むことを特徴とする前項(10)に記載の発光ダイオード。
(12) 前記発光部が、組成式(AlGa1−XIn1−YP(0≦X≦1,0<Y≦1)から成る発光層を含むことを特徴とする前項(1)乃至(11)のいずれか一項に記載の発光ダイオード。
(13) 前記第1及び第2の電極がオーミック電極であることを特徴とする前項(1)乃至(12)のいずれか一項に記載の発光ダイオード。
(14) 前記透明基板の材質がGaPであることを特徴とする前項(1)乃至(13)のいずれか一項に記載の発光ダイオード。
(15) 前記透明基板の側面が、前記化合物半導体層に近い側において前記光取り出し面に対して略垂直である垂直面と、前記化合物半導体層に遠い側において前記光取り出し面に対して内側に傾斜した傾斜面とを有することを特徴とする前項(1)乃至(14)のいずれか一項に記載の発光ダイオード。
(16) 前記化合物半導体層と前記透明基板との間に、当該透明基板よりも高い抵抗を有する高抵抗層が設けられていることを特徴とする前項(1)乃至(15)のいずれか一項に記載の発光ダイオード。
(17) 前項(1)乃至(16)のいずれか一項に記載の発光ダイオードを備え、前記発光ダイオードの前記発光部の上方に設けられた前記第1又は第2の電極と前記第3の電極とが、略同電位に接続されていることを特徴とする発光ダイオードランプ。
本発明の発光ダイオードによれば、主たる光取り出し面に設けられた第1及び第2の電極に加えて、透明基板の化合物半導体層との接合面と反対側に設けられた第3の電極を備えた構成となっている。この第3の電極は、高輝度化、導通性、実装工程の安定化が可能な積層構造を有する新機能電極である。したがって、高い光の取り出し効率を維持しつつ、実装工程の生産性を向上すると共に逆電圧が印加した際に逆方向電流が発光層を流れることがない発光ダイオードを提供することができる。
本発明の発光ダイオードランプによれば、上記発光ダイオードを備え、この発光ダイオードの発光部の上方に設けられた第1又は第2の電極と第3の電極とが、略同電位に接続されている。このため、逆電圧が印加した際に逆方向電流が発光層を流れることがない発光ダイオードランプを提供することができる。
本発明の一実施形態である発光ダイオードを用いた発光ダイオードランプの平面図である。 本発明の一実施形態である発光ダイオードを用いた発光ダイオードランプの、図1中に示すA−A’線に沿った断面模式図である。 本発明の一実施形態である発光ダイオードの平面図である。 本発明の一実施形態である発光ダイオードの、図3中に示すB−B’線に沿った断面模式図である。 本発明の一実施形態である発光ダイオードの第3の電極を説明するための断面模式図である。 本発明の一実施形態である発光ダイオードに用いるエピウェーハの断面模式図である。 本発明の一実施形態である発光ダイオードに用いる接合ウェーハの断面模式図である。
以下、本発明を適用した一実施形態である発光ダイオードについて、これを用いた発光ダイオードランプとともに図面を用いて詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
図1及び図2は、本発明を適用した一実施形態である発光ダイオードを用いた発光ダイオードランプを説明するための図であり、図1は平面図、図2は図1中に示すA−A’線に沿った断面図である。
図1及び図2に示すように、本実施形態の発光ダイオード1を用いた発光ダイオードランプ41は、マウント基板42の表面に1以上の発光ダイオード1が実装されている。より具体的には、マウント基板42の表面には、n電極端子43とp電極端子44とが設けられている。また、発光ダイオード1の第1の電極であるn型オーミック電極4とマウント基板42のn電極端子43とが金線45を用いて接続されている(ワイヤボンディング)。一方、発光ダイオード1の第2の電極であるp型オーミック電極5とマウント基板42のp電極端子44とが金線46を用いて接続されている。さらに、図2に示すように、発光ダイオード1のn型及びp型オーミック電極4,5が設けられた面と反対側の面には、第3の電極6が設けられており、この第3の電極6によって発光ダイオード1がn電極端子43上に接続されてマウント基板42に固定されている。ここで、n型オーミック電極4と第3の電極6とは、n極電極端子43によって等電位又は略等電位となるように電気的に接続されている。そして、マウント基板42の発光ダイオード1が実装された表面は、一般的なエポキシ樹脂47によって封止されている。
図3及び図4は、本発明を適用した一実施形態である発光ダイオードを説明するための図であり、図3は平面図、図4は図3中に示すB−B’線に沿った断面図である。図3及び図4に示すように、本実施形態の発光ダイオード1は、pn接合型の発光部7を含む化合物半導体層2と透明基板3とが接合された発光ダイオードである。そして、発光ダイオード1は、主たる光取り出し面に設けられたn型オーミック電極(第1の電極)4及びp型オーミック電極(第2の電極)5と、透明基板3の化合物半導体層2との接合面と反対側に設けられた第3の電極6とを備えて概略構成されている。なお、本実施形態における主たる光取り出し面とは、発光部7において、透明基板3を貼り付けた面の反対側の面である。
化合物半導体層2は、pn接合型の発光部7を含むものであれば特に限定されるものではない。発光部7は、(AlGa1−XIn1−YP(0≦X≦1,0<Y≦1)から成る発光層10を含む化合物半導体積層構造体である。発光部7は、具体的には、例えば、Mgをドープしたキャリア濃度1×1018〜8×1018cm−3、層厚5〜15μmのp型GaP層8上に、少なくともp型の下部クラッド層9、発光層10、n型の上部クラッド層11が順次積層されて構成されている。
発光層10は、アンドープ、n形又はp形のいずれかの伝導型の(AlGa1−XIn1−YP(0≦X≦1,0<Y≦1)からも構成することができる。層厚は、0.1〜2μm、キャリア濃度は、3×1017cm−3未満が好ましい。この発光層10は、ダブルヘテロ構造、単一(single)量子井戸(英略称:SQW)構造、あるいは多重(multi)量子井戸(英略称:MQW)構造のどちらであっても良いが、単色性に優れる発光を得るためにはMQW構造とすることが好ましい。また、量子井戸(英略称:QW)構造をなす障壁(barrier)層及び井戸(well)層を構成する(AlGa1−XIn1−YP(0≦X≦1,0<Y≦1)の組成は、所望の発光波長を帰結する量子準位が井戸層内に形成される様に決定することができる。
発光部7は、上述の発光層10と、放射再結合をもたらすキャリア(担体;carrier)及び発光を発光層10に「閉じ込める」ために、発光層10の下側及び上側に対峙して配置した下部クラッド(clad)層9及び上部クラッド層11を含む、所謂、ダブルヘテロ(英略称:DH)構造とすることが高強度の発光を得る上で好ましい。下部クラッド層9及び上部クラッド層11は、発光層10を構成する(AlGa1−XIn1−YP(0≦X≦1,0<Y≦1)よりも禁止帯幅が広い半導体材料から構成するのが好ましい。
下部クラッド層9としては、例えば、Mgをドープした、キャリア濃度1×1017〜1×1018cm−3、層厚0.5〜2μmのp型の(AlGa1−XIn1−YP(0≦X≦1,0<Y≦1)からなる半導体材料を用いることが望ましい。一方、上部クラッド層11としては、例えば、Siをドープしたキャリア濃度2×1017〜2×1018cm−3、層厚0.5〜5μmのn型の(AlGa1−XIn1−YP(0≦X≦1,0<Y≦1)からなる半導体材料を用いることが望ましい。
また、発光層10と下部クラッド層9及び上部クラッド層11との間に、両層間におけるバンド(band)不連続性を緩やかに変化させるための中間層を設けても良い。この場合、中間層は、発光層10と下部クラッド層9及び上部クラッド層11との中間の禁止帯幅を有する半導体材料から構成するのが望ましい。同様に、発光層10として、例えばAlGa(1−x)Asを用いた場合にも適用することができる。
また、発光部7の構成層の上方には、オーミック(Ohmic)電極の接触抵抗を下げるためのコンタクト層、素子駆動電流を発光部の全般に平面的に拡散させるための電流拡散層、逆に素子駆動電流の通流する領域を制限するための電流阻止層や電流狭窄層など公知の層構造を設けることができる。
透明基板3は、図4に示すように、化合物半導体層2のp型GaP層8側に接合されている。この透明基板3は、発光部7を機械的に支持するのに充分な強度を有し、且つ、発光部7から出射される発光を透過できる禁止帯幅が広く、導電性の光学的に透明な材料から構成する。例えば、燐化ガリウム(GaP)、砒化アルミニウム・ガリウム(AlGaAs)、窒化ガリウム(GaN)等のIII−V族化合物半導体結晶体、硫化亜鉛(ZnS)やセレン化亜鉛(ZnSe)等のII−VI族化合物半導体結晶体、或いは六方晶或いは立方晶の炭化珪素(SiC)等のIV族半導体結晶体などから構成することができる。
透明基板3は、発光部7を機械的に充分な強度で支持するために、例えば約50μm以上の厚みとすることが好ましい。また、化合物半導体層2へ接合した後に透明基板3への機械的な加工を施し易くするため、約300μmの厚さを超えないものとすることが好ましい。すなわち、(AlGa1−XIn1−YP(0≦X≦1,0<Y≦1)から成る発光層10を備えた本実施形態の発光ダイオード1において、透明基板3は、約50μm以上約300μm以下の厚さを有するn型GaP基板から構成するのが最適である。
また、図4に示すように、透明基板3の側面は、化合物半導体層2に近い側において主たる光取り出し面に対して略垂直である垂直面3aとされており、化合物半導体層2に遠い側において主たる光取り出し面に対して内側に傾斜した傾斜面3bとされている。これにより、発光層10から透明基板3側に放出された光を効率よく外部に取り出すことができる。また、発光層10から透明基板3側に放出された光のうち、一部は垂直面3aで反射され傾斜面3bで取り出すことができる。一方、傾斜面3bで反射された光は垂直面3aで取り出すことができる。このように、垂直面3aと傾斜面3bとの相乗効果により、光の取り出し効率を高めることができる。
また、本実施形態では、図4に示すように、傾斜面3bと発光面に平行な面とのなす角度αを、55度〜80度の範囲内とすることが好ましい。このような範囲とすることで、透明基板3の底部で反射された光を効率よく外部に取り出すことができる。
また、垂直面3aの幅(厚さ方向)を、30μm〜100μmの範囲内とすることが好ましい。垂直面3aの幅を上記範囲内にすることで、透明基板3の底部で反射された光を垂直面3aにおいて効率よく発光面に戻すことができ、さらには、主たる光取り出し面から放出させることが可能となる。このため、発光ダイオード1の発光効率を高めることができる。
また、透明基板3の傾斜面3bは、粗面化されることが好ましい。傾斜面3bが粗面化されることにより、この傾斜面3bでの光取り出し効率を上げる効果が得られる。すなわち、傾斜面3bを粗面化することにより、傾斜面3bでの全反射を抑制して、光取り出し効率を上げることができる。
化合物半導体層2と透明基板3との接合界面は、高抵抗層となる場合がある。すなわち、化合物半導体層2と透明基板3との間には、図示略の高抵抗層が設けられている場合がある。この高抵抗層は、透明基板3よりも高い抵抗値を示し、高抵抗層が設けられている場合には化合物半導体層2のp型GaP層8側から透明基板3側への逆方向の電流を低減する機能を有している。また、透明基板3側からp型GaP層8側へと不用意に印加される逆方向の電圧に対して耐電圧性を発揮する接合構造を構成しているが、その降伏電圧は、pn接合型の発光部7の逆方向電圧より低値となる様に構成することが好ましい。
n型オーミック電極4およびp型オーミック電極5は、発光ダイオード1の主たる光取り出し面に設けられた低抵抗のオーミック接触電極である。ここで、n型オーミック電極4は、上部クラッド層11の上方に設けられており、例えば、AuGe、Ni合金/Pt/Auからなる合金を用いることができる。一方、p型オーミック電極5は、図4に示すように、露出させたp型GaP層8の表面にAuBe/Auからなる合金を用いることができる。
ここで、本実施形態の発光ダイオード1では、発光部7がp型GaP層8を含む構成とし、第2の電極としてp型オーミック電極5を、p型GaP層8上に形成することが好ましい。このような構成とすることにより、作動電圧を下げる効果が得られる。また、p型オーミック電極5をp型GaP層8上に形成することにより、良好なオーミックコンタクトが得られるため、作動電圧を下げることができる。
なお、本実施形態では、第1の電極の極性をn型とし、第2の電極の極性をp型とするのが好ましい。このような構成とすることにより、発光ダイオード1の高輝度化を達成することができる。一方、第1の電極をp型とすると、電流拡散が悪くなり、輝度の低下を招く。これに対して、第1の電極をn型とすることにより、電流拡散が良くなり、発光ダイオード1の高輝度化を達成することができる。
本実施形態の発光ダイオード1では、図3に示すように、n型オーミック電極4とp型オーミック電極5とが対角の位置となるように配置することが好ましい。また、p型オーミック電極5の周囲を、化合物半導体層2で囲んだ構成とすることが最も好ましい。このような構成とすることにより、作動電圧を下げる効果が得られる。また、p型オーミック電極5の四方をn型オーミック電極4で囲むことにより、電流が四方に流れやすくなり、その結果作動電圧が低下する。
また、本実施形態の発光ダイオード1では、図3に示すように、n型オーミック電極4を、ハニカム、格子形状など網目とすることが好ましい。このような構成とすることにより、信頼性を向上させる効果が得られる。また、格子状とすることにより、発光層10に均一に電流を注入することができ、その結果、信頼性を向上させる効果が得られる。なお、本実施形態の発光ダイオード1では、n型オーミック電極4を、パッド形状の電極(パッド電極)と幅10μm以下の線状の電極(線状電極)とで構成することが好ましい。このような構成とすることにより、高輝度化をはかることができる。さらに、線状電極の幅を狭くすることにより、光取り出し面の開口面積を上げることができ、高輝度化を達成することができる。
図5は、本実施形態の発光ダイオード1の第3の電極6を説明するための断面図である。図4及び図5に示すように、第3の電極6は、透明基板3の底面に形成されており、高輝度化、導通性、実装工程の安定化が可能な積層構造を有している。具体的には、第3の電極6は、透明基板3の底面側から、少なくとも、反射層13、バリア層14、接続層15が積層されて概略構成されている。また、第3の電極6は、オーミック電極であってもショットキー電極であっても良いが、第3の電極6が透明基板3の底面にオーミック電極を形成すると、発光層10からの光を吸収してしまうため、ショットキー電極であることが好ましい。第3の電極6の厚さは特に限定されるものではないが、0.2〜5μmの範囲が好ましく、1〜3μmの範囲がより好ましく、1.5〜2.5μmの範囲が特に好ましい。ここで、第3の電極6の厚さが0.2μm未満であると高度な膜厚制御技術が必要であるために好ましくない。また、第3の電極6の厚さが5μmを超えるとパターン形成しにくく、高コストであるために好ましくない。一方、第3の電極6の厚さが上記範囲であると、品質の安定性とコストの両立が可能であるために好ましい。
反射層13は、発光ダイオード1の高輝度化、すなわち発光層10から透明基板3側に放出された光を効率よく外部に取り出すために設けられている。この反射層13は、光取り出し面の発光に対する反射率が90%以上であることが好ましい。また、反射層13として、反射率の高い金属を適用することができる。具体的には、例えば、銀、金、アルミニウム、白金およびこれらの金属の合金が挙げられる。反射層13の厚さは特に限定されるものではないが、0.02〜2μmの範囲が好ましく、0.05〜1μmの範囲がより好ましく、0.05〜0.5μmの範囲が特に好ましい。ここで、反射層13の厚さが0.02μm未満であると金属によっては、透過し反射率が低下する可能性があるために好ましくない。また、反射層13の厚さが2μmを超えると応力の増加および高いコストであるために好ましくない。一方、反射層13の厚さが上記範囲であると、高反射率で、低コストであるために好ましい。
また、図5に示すように、第3の電極6は、透明基板3と反射層13とが接する面に、酸化膜16が挿入されていることが好ましい。酸化膜16は、反射層13を構成する金属と透明基板3を構成する半導体基板との間の拡散・反応を防止するために設けられている。この酸化膜16を透明基板3と反射層13とが接する面に挿入することによって、反射層13の反射率の低下を抑制することができる。
酸化膜16としては、例えば、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)等の透明導電膜、酸化ケイ素(SiO)、窒化ケイ素(SiN)などの絶縁膜、電気的接触を確保するため一部金属膜とした膜など公知の材料及びそれらの組み合わせを適用することができるが、発光層10から透明基板3側に放出された光を効率よく外部に取り出すために透明導電膜を用いることが好ましく、ITO膜を用いることがより好ましい。酸化膜16の厚さは特に限定されるものではないが、0.02〜1μmの範囲が好ましく、0.05〜0.5μmの範囲がより好ましく、0.1〜0.2μmの範囲が特に好ましい。ここで、酸化膜16の厚さが0.02μm未満であると相互拡散の防止が不十分であるために好ましくない。また、酸化膜16の厚さが1μmを超えると膜の応力が増大し、クラックが発生しやすいために好ましくない。一方、酸化膜16の厚さが上記範囲であると、安定した品質の膜となるために好ましい。
バリア層14は、図5に示すように、反射層13と接続層15との間に設けられている。このバリア層14は、反射層13を構成する金属と接続層15を構成する金属とが相互に拡散することを抑制して反射層13の反射率の低下を防止する機能を有している。また、バリア層14は、融点2000℃以上の高融点バリア金属から構成されている。この高融点バリア金属としては、例えば、タングステン、モリブデン、チタン、白金、クロム、タンタル等の高融点金属を適用することができ、これらの金属から少なくともいずれか1つを含むことが好ましい。バリア層14の厚さは特に限定されるものではないが、0.05〜0.5μmの範囲が好ましく、0.08〜0.2μmの範囲がより好ましく、0.1〜0.15μmの範囲が特に好ましい。ここで、バリア層14の厚さが0.05μm未満であると、バリア機能が不十分となるために好ましくない。また、バリア層14の厚さが0.5μmを超えると、応力の増大やプロセス温度が高くなるために好ましくない。一方、バリア層14の厚さが上記範囲であると、安定した品質を容易に形成できるために好ましい。
接続層15は、図5に示すように、透明基板3と第3の電極6を構成する酸化膜16とが接する面と反対側、すなわち、マウント基板42の表面のn電極端子43と対向する側に設けられている。この接続層15は、発光ダイオード1を実装する際に溶融してマウント基板42との接続を行う機能を有している。また、接続層15は、低融点の金属からなる層(低融点金属層)15bから構成されている。この低融点金属層15bとしては、In、Snメタルおよび公知の半田材料を適用することが可能であるが、融点が低い共晶金属の適用が好ましい。融点の低い共晶金属としては、例えば、AuSn、AuGe,AuSi等が挙げられる。特にAu系は、品質が安定しているので望ましい。また、前後にAu層を形成すれば、溶融後、組成が変わり、融点が高くなるため、実装工程での耐熱性が向上するため、特に望ましい組み合わせである。
ところで、従来の発光ダイオードでは、マウント基板との実装に銀(Ag)ペーストが用いられていた。この銀ペーストは反射率が高いため、銀ペーストを用いて発光ダイオードをマウント基板に実装した場合には高輝度の発光ダイオードランプが得られるという利点があった。しかしながら、銀ペーストは接続強度が小さいため、確実に接合するために使用量が多くなるという問題があった。特に、本実施形態の発光ダイオード1のように傾斜面3bを有する透明基板3を接合する場合には、安定した接続を得るために多量の銀ペーストが必要であり、この銀ペーストが透明基板3の傾斜面3bを覆ってしまうため、結果として発光ダイオードの輝度を低下させてしまっていた。
これに対して、本実施形態の発光ダイオードでは、マウント基板との実装に第3の電極6を構成する接続層15を用いることができる。この接続層15は、上述したように低融点金属層15bとして共晶金属が用いられているため、共晶金属ダイボンドによって少量で強固な接続を実現することができる。このため、透明基板3の傾斜面3bを接続層15で覆うこともなく、また、第3の電極6を構成する反射層13が高輝度化の機能を分担しているため、発光ダイオード1の高輝度化及び接続強度の向上を両立することができる。
接続層15(低融点金属層15b)の融点としては、下限値が150℃以上であることが好ましく、200℃以上であることがより好ましく、250℃以上であることが特に好ましい。また、上限値は、400℃未満であることが好ましく、350℃未満であることがより好ましく、300℃未満であることが特に好ましい。ここで、融点が150℃未満であると、発光ダイオード1以外の部品の実装に用いられている半田付けの際に溶融してしまうために好ましくない。一方、融点が400℃以上であると、パッケージ材料が変質する場合があるために好ましくない。
接続層15は、図5に示すように、バリア層14と低融点金属層15bとの間に金(Au)からなる層15aを設けても良い。この金からなる層(金層)15aを設けることにより、低融点金属層15bからなる層の酸化を防止することができるため、発光ダイオード1をマウント基板42に実装するダイボンド工程の安定性を向上することができる。
接続層15の厚さは特に限定されるものではないが、0.2〜3μmの範囲が好ましく、0.5〜2μmの範囲がより好ましく、0.8〜1.5μmの範囲が特に好ましい。ここで、接続層15の厚さが0.2μm未満であると接合強度不足が発生しやすくなるために好ましくない。また、接続層15の厚さが3μmを超えるとコスト面で不利になるために好ましくない。一方、接続層15の厚さが上記範囲であると、安定した接続強度が得られるために好ましい。
次に、本実施形態の発光ダイオード1の製造方法について、この発光ダイオード1を用いた発光ダイオードランプ41の製造方法と併せて説明する。図6は、本実施形態の発光ダイオード1に用いるエピウェーハの断面図である。また、図7は、本実施形態の発光ダイオード1に用いる接合ウェーハの断面図である。
(化合物半導体層の形成工程)
先ず、図6に示すように、化合物半導体層2を作製する。化合物半導体層2は、例えばGaAs単結晶等からなる半導体基板17上に、Siをドープしたn型のGaAsからなる緩衝層18、エッチングストップ層(図示略)、Siをドープしたn型のAlGaInPからなるコンタクト層19、n型の上部クラッド層11、発光層10、p型の下部クラッド層9、Mgドープしたp型GaP層8を順次積層して作製する。ここで、緩衝層(buffer)18は、半導体基板17と発光部7の構成層との格子ミスマッチの緩和するために設けられている。また、エッチングストップ層は、選択エッチングに利用するために設けられている。
具体的には、上記の化合物半導体層2を構成する各層は、例えば、トリメチルアルミニウム((CHAl)、トリメチルガリウム((CHGa)およびトリメチルインジウム((CHIn)をIII族構成元素の原料として用いた減圧有機金属化学気相堆積法(MOCVD法)によりGaAs基板17上にエピタキシャル成長させて積層することができる。Mgのドーピング原料としては、例えばビスシクロペンタジエチルマグネシウム(bis−(CMg)等を用いることができる。また、Siのドーピング原料としては、例えばジシラン(Si)等を用いることができる。また、V族構成元素の原料としては、ホスフィン(PH)またはアルシン(AsH)等を用いることができる。また、各層の成長温度としては、p型GaP層8には750℃を適用することができ、その他の各層では730℃を適用することができる。さらに、各層のキャリア濃度及び層厚は、適宜選択することができる。
(透明基板の接合工程)
次に、化合物半導体層2と透明基板3とを接合する。化合物半導体層2と透明基板3との接合は、先ず、化合物半導体層2を構成するp型GaP層8の表面を研磨して、鏡面加工する。次に、このp型GaP層8の鏡面研磨した表面に貼付する透明基板3を用意する。なお、この透明基板3の表面は、p型GaP層8に接合させる以前に鏡面に研磨する。次に、一般の半導体材料貼付装置に、化合物半導体層2と透明基板3とを搬入し、真空中で鏡面研磨した双方の表面に電子を衝突させて中性(ニュートラル)化したArビームを照射する。その後、真空を維持した貼付装置内で双方の表面を重ね合わせて荷重をかけることで、室温で接合することができる(図7参照)。
(第1及び第2の電極の形成工程)
次に、第1の電極であるn型オーミック電極4及び第2の電極であるp型オーミック電極5を形成する。n型オーミック電極4及びp型オーミック電極5の形成は、先ず、透明基板3と接合した化合物半導体層2から、GaAsからなる半導体基板17及び緩衝層18をアンモニア系エッチャントによって選択的に除去する。次に、露出したコンタクト層19の表面にn型オーミック電極4を形成する。具体的には、例えば、AuGe、Ni合金/Pt/Auを任意の厚さとなるように真空蒸着法により積層した後、一般的なフォトリソグラフィー手段を利用してパターニングを行ってn型オーミック電極4の形状を形成する。
次に、コンタクト層19、上部クラッド層11、発光層10、下部クラッド層9を選択的に除去してp型GaP層8を露出させ、この露出したp型GaP層8の表面にp型オーミック電極5を形成する。具体的には、例えば、AuBe/Auを任意の厚さとなるように真空蒸着法により積層した後、一般的なフォトリソグラフィー手段を利用してパターニングを行ってp型オーミック電極5の形状を形成する。その後、例えば450℃、10分間の条件で熱処理を行って合金化することにより、低抵抗のn型オーミック電極4及びp型オーミック電極5を形成することができる。
(第3の電極の形成工程)
次に、透明基板3の化合物半導体層2との接合面と反対側に第3の電極6を形成する。第3の電極6の形成は、具体的には、例えば透明基板3の表面にスパッタ法によって酸化膜16として透明導電膜であるITO膜を0.1um成膜した後に、銀合金膜を0.1umを成膜して反射層13を形成する。次に、この反射層13の上にバリア層14として例えばタングステンを0.1um成膜する。次に、このバリア層14の上にAuを0.5um、AuSn(共晶:融点283℃)を1um、Auを0.1um順次成膜して接続層15を形成する。そして、通常のフォトリソグラフィー法により、任意の形状にパターニングして第3の電極6を形成した。なお、透明基板3と第3の電極6とは、光吸収の少ないショットキー接触である。
(透明基板の加工工程)
次に、透明基板3の形状を加工する。透明基板3の加工は、先ず、第3の電極6を形成していない表面にV字状の溝入れを行う。この際、V字状の溝の第3の電極6側の内側面が発光面に平行な面とのなす角度αを有する傾斜面3bとなる。次に、化合物半導体層2側から所定の間隔でダイシングを行ってチップ化する。なお、チップ化の際のダイシングによって透明基板3の垂直面3aが形成される。
傾斜面3bの形成方法は、特に限定されるものではなく、ウェットエッチング、ドライエッチング、スクライブ法、レーザー加工などの従来からの方法を組み合わせて用いることができるが、形状の制御性及び生産性の高いダイシング法を適用することが最も好ましい。ダイシング法を適用することにより、製造歩留まりを向上することができる。
また、垂直面3aの形成方法は、特に限定されるものではないが、スクライブ・ブレーク法又はダイシング法で形成するのが好ましい。スクライブ・ブレーク法を採用することにより、製造コストを低下させることができる。すなわち、チップ分離の際に切りしろを設ける必要なく、数多くの発光ダイオードが製造できるため製造コストを下げることができる。一方、ダイシング法では、垂直面3aからの光取り出し効率が上がり、高輝度化を達成することができる。
最後に、ダイシングによる破砕層及び汚れを必要に応じて硫酸・過酸化水素混合液等でエッチング除去する。このようにして発光ダイオード1を製造する。
(発光ダイオードの実装工程)
次に、マウント基板42の表面に所定の数量の発光ダイオード1を実装する。発光ダイオード1の実装は、先ず、マウント基板42と発光ダイオード1との位置合せを行い、マウント基板42の表面の所定の位置に発光ダイオード1を配置する。次に、第3の電極6を構成する接続層15とマウント基板42の表面に設けられたn電極端子43とを共晶金属接合(共晶金属ダイボンド)する。これにより、発光ダイオード1がマウント基板42の表面に固定される。次に、発光ダイオード1のn型オーミック電極4とマウント基板42のn電極端子43とを金線45を用いて接続する(ワイヤボンディング)。次に、発光ダイオード1のp型オーミック電極5とマウント基板42のp電極端子44とを金線46を用いて接続する。最後に、マウント基板42の発光ダイオード1が実装された表面を、一般的なエポキシ樹脂47によって封止する。このようにして、発光ダイオード1を用いた発光ダイオードランプ41を製造する。
以上のような構成を有する発光ダイオードランプ41に対して、n電極端子43及びp電極端子44に電圧を付加した場合について説明する。
先ず、発光ダイオードランプ41に順方向の電圧が印加された場合について説明する。順方向の電圧が印加された場合に順方向電流は、先ず、陽極に接続されたp型電極端子44から金線46を経てp型オーミック電極5へと流通する。次に、p型オーミック電極5からp型GaP層8、下部クラッド層9、発光層10、上部クラッド層11、n型オーミック電極4へと順次流通する。次に、n型オーミック電極4から金線45を経て陰極に接続されたn型電極端子43に流通する。なお、発光ダイオード1に高抵抗層が設けられている場合には、順方向電流は、p型GaP層8からn型GaP基板からなる透明基板3へと流通しない。このように、順方向電流が流れる際に、発光層10から発光する。また、発光層10から発光した光は、主たる光取り出し面から放出される。一方、発光層10から透明基板3側へと放出された光は、透明基板3の形状及び第3の電極6を構成する反射層13の機能によって反射されるため、主たる光取り出し面から放出される。したがって、発光ダイオードランプ41(発光ダイオード1)の高輝度化を達成することができる(図2及び図4を参照)。
次に、発光ダイオードランプ41に逆方向の電圧が印加された場合について説明する。逆方向の電圧が印加された場合には、逆方向電流がn型電極端子43からp型電極端子44へと流れることになる。ところで、第3の電極6を有さない従来の発光ダイオードランプでは、不用意に逆方向の電圧が印加された際に発生する逆方向電流が、発光部の上方に設けられたn型オーミック電極を経由してpn接合部の逆方向電圧の高い発光部に流通してしまい、発光ダイオードの発光部が破壊してしまう虞があった。これに対して、本実施形態の発光ダイオード1を備えた発行ダイオードランプ41によれば、第3の電極6とn型オーミック電極4とが略等電位となるように接続されると共に、透明基板3側からp型GaP層8側への降伏電圧がpn接合型の発光部7の逆方向電圧より低値となる構成を有している。これにより、不用意に逆方向の電圧が印加された際に発生する逆方向電流を、発光部7の上方に設けられたn型オーミック電極を経由してpn接合部の逆方向電圧の高い発光部7に流通するよりもむしろ、第3の電極6を経由して降伏電圧の低い透明基板3とp型GaP層8との接合領域を流通させて、発光部7を経由させずにp型オーミック電極5へと逃がすことができる。従って、不用意な逆方向の過電流の通流に起因する発光ダイオード1の発光部7の破壊を回避することができる。
以下、本発明の効果を、実施例を用いて具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
(実施例1)
本実施例では、本発明に係る発光ダイオードを作製した例を具体的に説明する。また、本実施例で作製した発光ダイオードは、AlGaInP発光部を有する赤色発光ダイオードである。なお、本実施例1では、GaAs基板上に設けたエピタキシャル積層構造体(化合物半導体層)とGaP基板とを接合させて発光ダイオードを作製する場合を例にして、本発明を具体的に説明する。
実施例1の発光ダイオードは、先ず、Siをドープしたn型の(100)面から15°傾けた面を有するGaAs単結晶からなる半導体基板上に順次、積層した半導体層を備えたエピタキシャルウェーハを使用して作製した。積層した半導体層とは、Siをドープしたn型のGaAsからなる緩衝層、Siをドープしたn型の(Al0.5Ga0.50.5In0.5Pからなるコンタクト層、Siをドープしたn型の(Al0.7Ga0.30.5In0.5Pからなる上部クラッド層、アンドープの(Al0.2Ga0.80.5In0.5P/Al0.7Ga0.30.5In0.5Pの20対からなる発光層、およびMgをドープしたp型の(Al0.7Ga0.30.5In0.5Pからなる下部クラッド層および薄膜(Al0.5Ga0.50.5In0.5Pからなる中間層、Mgドープしたp型GaP層である。
本実施例では、上記の半導体層の各層は、トリメチルアルミニウム((CHAl)、トリメチルガリウム((CHGa)およびトリメチルインジウム((CHIn)をIII族構成元素の原料に用いた減圧有機金属化学気相堆積法(MOCVD法)によりGaAs基板上に積層して、エピタキシャルウェーハを形成した。Mgのドーピング原料にはビスシクロペンタジエチルマグネシウム(bis−(CMg)を使用した。Siのドーピング原料にはジシラン(Si)を使用した。また、V族構成元素の原料としては、ホスフィン(PH)またはアルシン(AsH)を用いた。GaP層は750℃で成長させ、その他の半導体層は730℃で成長させた。
GaAs緩衝層のキャリア濃度は約2×1018cm−3、また、層厚は約0.2μmとした。コンタクト層は、(Al0.5Ga0.50.5In0.5Pから構成し、キャリア濃度は約2×1018cm−3、層厚は、約1.5μmとした。上部クラッド層のキャリア濃度は約8×1017cm−3、また、層厚は約1μmとした。発光層は、アンドープの0.8μmとした。下部クラッド層のキャリア濃度は約2×1017cm−3とし、また、層厚は1μmとした。p型GaP層のキャリア濃度は約3×1018cm−3とし、層厚は9μmとした。
次に、p型GaP層は、表面から約1μmの深さに至る領域を研磨し、鏡面加工した。この鏡面加工によって、p型GaP層の表面の粗さを0.18nmとした。一方、上記のp型GaP層の鏡面研磨した表面に貼付するn型GaPからなる透明基板を用意した。この貼付用の透明基板には、キャリア濃度が約2×1017cm−3となる様にSiを添加し、面方位を(111)とした単結晶を用いた。また、透明基板の直径は50ミリメートル(mm)で、厚さは250μmであった。この透明基板の表面は、p型GaP層に接合させる以前に鏡面に研磨し、平方平均平方根値(rms)にして0.12nmに仕上げておいた。
次に、一般の半導体材料貼付装置に、上記の透明基板及びエピタキシャルウェーハを搬入し、3×10−5Paとなるまで装置内を真空に排気した。
次に、透明基板、及びp型GaP層の双方の表面に、電子を衝突させて中性(ニュートラル)化したArビームを3分間に亘り照射した。その後、真空に維持した貼付装置内で、透明基板及びp型GaP層の表面を重ね合わせ、各々の表面での圧力が50g/cmとなる様に荷重を掛け、双方を室温で接合した。
次に、上記接合ウェーハから、GaAs基板およびGaAs緩衝層をアンモニア系エッチャントにより選択的に除去した。次に、コンタクト層の表面に第1の電極として、AuGe、Ni合金を厚さが0.5μm、Ptを0.2μm、Auを1μmとなるように真空蒸着法によりn形オーミック電極を形成した。その後、一般的なフォトリソグラフィー手段を利用してパターニングを施し、n型オーミック電極の形状を形成した。
次に、第2の電極としてp型オーミック電極を形成する領域のエピ層を選択的に除去し、p型GaP層を露出させた。この露出したp型GaP層の表面に、AuBeを0.2μm、Auを1μmとなるように真空蒸着法でp形オーミック電極を形成した。その後、450℃で10分間熱処理を行って合金化し、低抵抗のp型およびn型オーミック電極を形成した。
次に、透明基板の底面に第3の電極を形成した。第3の電極は、スパッタ法で、ITO膜を0.1um、銀合金膜を0.1umの反射層を形成し、その上にタングステンを0.1umのバリア層、次に、Auを0.5um、AuSn(共晶:融点283℃)を1um、Auを0.1umの接続層を形成した。その後、通常のフォトリソグラフィー法により、200umの正方形のパターンを形成した。この第3の電極と透明基板とは、光吸収の少ないショットキー接触とした。
次に、ダイシングソーを用いて、透明基板の裏面から、第3の電極を形成していない領域を傾斜面の角度αが70°となると共に垂直面の厚さが80μmとなるようにV字状の溝入れを行った。次に、化合物半導体層側からダイシングソーを用い350μm間隔で切断し、チップ化した。ダイシングによる破砕層および汚れを硫酸・過酸化水素混合液でエッチング除去して、実施例1の発光ダイオードを作製した。
上記の様にして作製した実施例1の発光ダイオードチップを、マウント基板上に実装した発光ダイオードランプを100個実装した。この発光ダイオードランプは、マウントは、共晶ダイボンダーで、加熱接続され支持(マウント)し、発光ダイオードのn型オーミック電極とマウント基板の表面に設けたn電極端子とを金線でワイヤボンディングし、p型オーミック電極とp電極端子とを金線でワイヤボンディングした後、一般的なエポキシ樹脂で封止して作製した。
マウント基板の表面に設けられたn電極端子とp電極端子とを介してn型及びp型オーミック電極間に電流を流したところ、主波長を620nmとする赤色光が出射された。順方向に20ミリアンペア(mA)の電流を通流した際の順方向電圧(Vf)は、化合物半導体層を構成するp型GaP層と透明基板との接合界面での抵抗の低さ及び各オーミック電極の良好なオーミック特性を反映し、約1.95ボルト(V)となった。また、順方向電流を20mAとした際の発光強度は、発光効率の高い発光部の構成及び反射層を有する第3の電極の構成など外部への取り出し効率も向上させている事を反映して800mcdの高輝度となった。なお、発光ダイオードランプを100個実装した際に発光ダイオードの実装不良はなかった。
(実施例2)
実施例2の発光ダイオードは、上記実施例1の発光ダイオードにおいて第3の電極の構成だけを変更したものである。
ここで、実施例2の発光ダイオードにおける第3の電極は、スパッタ法によって0.2umの厚さのアルミニウム膜からなる反射層を形成し、その上に0.2umの厚さのチタンからなるバリア層、次に、Auを0.5um、AuSn(共晶:融点283℃)を1um、Auを0.1umからなる接続層を形成した。その後、通常のフォトリソグラフィー法により、200umの正方形のパターンを形成した。
実施例2の発光ダイオードを実装した発光ダイオードランプ100個作製した。
マウント基板の表面に設けられたn電極端子とp電極端子とを介してn型及びp型オーミック電極間に電流を流したところ、主波長を620nmとする赤色光が出射された。また、順方向に20ミリアンペア(mA)の電流を通流した際の順方向電圧(Vf)は、約2.0ボルト(V)となった。また、順方向電流を20mAとした際の発光強度は、780mcdであった。なお、発光ダイオードランプを100個実装した際に発光ダイオードの実装不良はなかった。
(比較例1)
比較例1の発光ダイオードは、上記実施例1の発光ダイオードにおいて第3の電極を形成しない構成とした。また、比較例1の発光ダイオードをマウント基板に実装する際には、ダイボンドにAgペーストを用いた。なお、Agペーストの塗布量は、塗布後の厚さが約0.5μmであった。
比較例1の発光ダイオードを実装した発光ダイオードランプ100個作製した。
マウント基板の表面に設けられたn電極端子とp電極端子とを介してn型及びp型オーミック電極間に電流を流したところ、主波長を620nmとする赤色光が出射された。また、順方向に20ミリアンペア(mA)の電流を通流した際の順方向電圧(Vf)は、約2.0ボルト(V)となった。また、順方向電流を20mAとした際の発光強度は、680mcdであった。なお、発光ダイオードランプを100個実装した際に発光ダイオードの実装不良は100個中2個であった。
(比較例2)
比較例2の発光ダイオードは、上記比較例1と同じ構成とした。また、比較例2の発光ダイオードをマウント基板に実装する際には、ダイボンドにAgペーストを用いた。なお、ダイボンドのAgペーストの量は、比較例1で用いた量の1.5倍として発光ダイオードランプ実装工程時の安定性を向上させた。
比較例2の発光ダイオードを実装した発光ダイオードランプ100個作製した。
マウント基板の表面に設けられたn電極端子とp電極端子とを介してn型及びp型オーミック電極間に電流を流したところ、主波長を620nmとする赤色光が出射された。また、順方向に20ミリアンペア(mA)の電流を通流した際の順方向電圧(Vf)は、約2.0ボルト(V)となった。また、順方向電流を20mAとした際の発光強度は、590mcdであった。なお、発光ダイオードランプを100個実装した際に発光ダイオードの実装不良はなかった。
(比較例3)
比較例3の発光ダイオードは、上記比較例1と同じ構成とした。また、比較例3の発光ダイオードをマウント基板に実装する際には、ダイボンドにAgペーストを用いた。なお、ダイボンドのAgペーストの量は、比較例1で用いた量の半分として発光ダイオードランプの輝度を向上させた。
比較例3の発光ダイオードを実装した発光ダイオードランプ100個作製した。
マウント基板の表面に設けられたn電極端子とp電極端子とを介してn型及びp型オーミック電極間に電流を流したところ、主波長を620nmとする赤色光が出射された。また、順方向に20ミリアンペア(mA)の電流を通流した際の順方向電圧(Vf)は、約2.0ボルト(V)となった。また、順方向電流を20mAとした際の発光強度は、730mcdであった。なお、発光ダイオードランプを100個実装した際に発光ダイオードの実装不良は100個中6個であった。
本発明の発光ダイオードは赤色、橙色、黄色或いは黄緑色等まで発光可能であり、しかも高輝度であるので各種の表示ランプとして利用できる。
1・・・発光ダイオード
2・・・化合物半導体層
3・・・透明基板
3a・・・垂直面
3b・・・傾斜面
4・・・n型オーミック電極(第1の電極)
5・・・p型オーミック電極(第2の電極)
6・・・第3の電極
7・・・発光部
8・・・p型GaP層
9・・・下部クラッド層
10・・・発光層
11・・・上部クラッド層
13・・・反射層
14・・・バリア層
15・・・接続層
15a・・・金からなる層(金層)
15b・・・低融点の金属からなる層(低融点金属層)
16・・・酸化膜
17・・・半導体基板
18・・・緩衝層
19・・・コンタクト層
41・・・発光ダイオードランプ
42・・・マウント基板
43・・・n電極端子
44・・・p電極端子
45,46・・・金線
47・・・エポキシ樹脂
α・・・傾斜面と発光面に平行な面とのなす角度

Claims (17)

  1. pn接合型の発光部を含む化合物半導体層と透明基板とが接合された発光ダイオードであって、
    発光ダイオードの主たる光取り出し面に設けられた第1及び第2の電極と、前記透明基板の前記化合物半導体層との接合面と反対側に設けられた第3の電極とを備えることを特徴とする発光ダイオード。
  2. 前記第3の電極がショットキー電極であることを特徴とする請求項1に記載の発光ダイオード。
  3. 前記第3の電極が、前記光取り出し面の発光に対する反射率が90%以上の反射層を有することを特徴とする請求項1又は2に記載の発光ダイオード。
  4. 前記反射層が、銀、金、アルミニウム、白金、又はこれらを1以上含む金合であることを特徴とする請求項3に記載の発光ダイオード。
  5. 前記第3の電極が、前記透明基板と接する面と前記反射層との間に酸化膜を有することを特徴とする請求項3又は4に記載の発光ダイオード。
  6. 前記酸化膜が、透明導電膜であることを特徴とする請求項5に記載の発光ダイオード。
  7. 前記透明導電膜が、インジウム・錫の酸化物からなる透明導電膜(ITO)であることを特徴とする請求項6に記載の発光ダイオード。
  8. 前記第3の電極が、前記透明基板と接する面と反対側に、接続層を有することを特徴とする請求項1乃至7のいずれか一項に記載の発光ダイオード。
  9. 前記接続層が、融点400℃未満の共晶金属であることを特徴とする請求項8に記載の発光ダイオード。
  10. 前記第3の電極が、前記反射層と前記接続層との間に融点2000℃以上の高融点バリア金属を備えていることを特徴とする請求項8又は9に記載の発光ダイオード。
  11. 前記高融点バリア金属が、タングステン、モリブデン、チタン、白金、クロム、タンタルからなる群から選択された少なくともいずれか1つを含むことを特徴とする請求項10に記載の発光ダイオード。
  12. 前記発光部が、組成式(AlGa1−XIn1−YP(0≦X≦1,0<Y≦1)から成る発光層を含むことを特徴とする請求項1乃至11のいずれか一項に記載の発光ダイオード。
  13. 前記第1及び第2の電極がオーミック電極であることを特徴とする請求項1乃至12のいずれか一項に記載の発光ダイオード。
  14. 前記透明基板の材質がGaPであることを特徴とする請求項1乃至13のいずれか一項に記載の発光ダイオード。
  15. 前記透明基板の側面が、前記化合物半導体層に近い側において前記光取り出し面に対して略垂直である垂直面と、前記化合物半導体層に遠い側において前記光取り出し面に対して内側に傾斜した傾斜面とを有することを特徴とする請求項1乃至14のいずれか一項に記載の発光ダイオード。
  16. 前記化合物半導体層と前記透明基板との間に、当該透明基板よりも高い抵抗を有する高抵抗層が設けられていることを特徴とする請求項1乃至15のいずれか一項に記載の発光ダイオード。
  17. 請求項1乃至16のいずれか一項に記載の発光ダイオードを備え、
    前記発光ダイオードの前記発光部の上方に設けられた前記第1又は第2の電極と前記第3の電極とが、略同電位に接続されていることを特徴とする発光ダイオードランプ。
JP2009028576A 2009-02-10 2009-02-10 発光ダイオード及び発光ダイオードランプ Pending JP2010186808A (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009028576A JP2010186808A (ja) 2009-02-10 2009-02-10 発光ダイオード及び発光ダイオードランプ
CN2010800070964A CN102308397A (zh) 2009-02-10 2010-01-15 发光二极管和发光二极管灯
PCT/JP2010/000193 WO2010092741A1 (ja) 2009-02-10 2010-01-15 発光ダイオード及び発光ダイオードランプ
US13/148,428 US20110315955A1 (en) 2009-02-10 2010-01-15 Light-emitting diode and light-emitting diode lamp
KR1020117018532A KR101318492B1 (ko) 2009-02-10 2010-01-15 발광 다이오드 및 발광 다이오드 램프
TW099103717A TWI433356B (zh) 2009-02-10 2010-02-08 發光二極體及發光二極體燈

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009028576A JP2010186808A (ja) 2009-02-10 2009-02-10 発光ダイオード及び発光ダイオードランプ

Publications (1)

Publication Number Publication Date
JP2010186808A true JP2010186808A (ja) 2010-08-26

Family

ID=42561590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009028576A Pending JP2010186808A (ja) 2009-02-10 2009-02-10 発光ダイオード及び発光ダイオードランプ

Country Status (6)

Country Link
US (1) US20110315955A1 (ja)
JP (1) JP2010186808A (ja)
KR (1) KR101318492B1 (ja)
CN (1) CN102308397A (ja)
TW (1) TWI433356B (ja)
WO (1) WO2010092741A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119481A (ja) * 2010-11-30 2012-06-21 Mitsubishi Chemicals Corp 半導体発光素子および半導体発光素子の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025017B (zh) * 2016-06-01 2019-01-15 天津三安光电有限公司 具有静电保护的发光二极管及其制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057468A (ja) * 1999-08-18 2001-02-27 Hitachi Ltd はんだ接続構造を有する回路装置およびその製造方法
JP2003142731A (ja) * 2001-10-31 2003-05-16 Toshiba Corp 発光ダイオード素子及び発光ダイオード装置
JP2006191103A (ja) * 2005-01-03 2006-07-20 Samsung Electro Mech Co Ltd 窒化物半導体発光素子
JP2006210829A (ja) * 2005-01-31 2006-08-10 Shin Etsu Handotai Co Ltd 発光素子及び発光素子の製造方法
JP2006253298A (ja) * 2005-03-09 2006-09-21 Toshiba Corp 半導体発光素子及び半導体発光装置
JP2007019057A (ja) * 2005-07-05 2007-01-25 Showa Denko Kk 発光ダイオード
JP2007208221A (ja) * 2006-02-06 2007-08-16 Hitachi Cable Ltd 窒化物系半導体発光素子
JP2009021349A (ja) * 2007-07-11 2009-01-29 Rohm Co Ltd 半導体発光素子の製造方法及び半導体発光素子

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5559817A (en) * 1994-11-23 1996-09-24 Lucent Technologies Inc. Complaint layer metallization
JP3705791B2 (ja) * 2002-03-14 2005-10-12 株式会社東芝 半導体発光素子および半導体発光装置
TW578318B (en) * 2002-12-31 2004-03-01 United Epitaxy Co Ltd Light emitting diode and method of making the same
JP2006253361A (ja) * 2005-03-10 2006-09-21 Oki Data Corp 半導体装置、ledヘッド及びそれを用いた画像形成装置
CN101218687B (zh) * 2005-07-05 2012-07-04 昭和电工株式会社 发光二极管及其制造方法
US7915619B2 (en) * 2005-12-22 2011-03-29 Showa Denko K.K. Light-emitting diode and method for fabrication thereof
JP5126875B2 (ja) * 2006-08-11 2013-01-23 シャープ株式会社 窒化物半導体発光素子の製造方法
JP5012187B2 (ja) * 2007-05-09 2012-08-29 豊田合成株式会社 発光装置
JP2008300621A (ja) * 2007-05-31 2008-12-11 Nichia Corp 半導体発光素子及びその製造方法
JP5241159B2 (ja) * 2007-07-11 2013-07-17 ローム株式会社 半導体装置
US20090173956A1 (en) * 2007-12-14 2009-07-09 Philips Lumileds Lighting Company, Llc Contact for a semiconductor light emitting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057468A (ja) * 1999-08-18 2001-02-27 Hitachi Ltd はんだ接続構造を有する回路装置およびその製造方法
JP2003142731A (ja) * 2001-10-31 2003-05-16 Toshiba Corp 発光ダイオード素子及び発光ダイオード装置
JP2006191103A (ja) * 2005-01-03 2006-07-20 Samsung Electro Mech Co Ltd 窒化物半導体発光素子
JP2006210829A (ja) * 2005-01-31 2006-08-10 Shin Etsu Handotai Co Ltd 発光素子及び発光素子の製造方法
JP2006253298A (ja) * 2005-03-09 2006-09-21 Toshiba Corp 半導体発光素子及び半導体発光装置
JP2007019057A (ja) * 2005-07-05 2007-01-25 Showa Denko Kk 発光ダイオード
JP2007208221A (ja) * 2006-02-06 2007-08-16 Hitachi Cable Ltd 窒化物系半導体発光素子
JP2009021349A (ja) * 2007-07-11 2009-01-29 Rohm Co Ltd 半導体発光素子の製造方法及び半導体発光素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119481A (ja) * 2010-11-30 2012-06-21 Mitsubishi Chemicals Corp 半導体発光素子および半導体発光素子の製造方法

Also Published As

Publication number Publication date
KR101318492B1 (ko) 2013-10-16
TWI433356B (zh) 2014-04-01
TW201112446A (en) 2011-04-01
KR20110104101A (ko) 2011-09-21
WO2010092741A1 (ja) 2010-08-19
US20110315955A1 (en) 2011-12-29
CN102308397A (zh) 2012-01-04

Similar Documents

Publication Publication Date Title
JP4974867B2 (ja) 発光ダイオード及びその製造方法
JP5343018B2 (ja) 発光ダイオード及びその製造方法、並びに発光ダイオードランプ
WO2012073993A1 (ja) 発光ダイオード、発光ダイオードランプ及び照明装置
WO2010095353A1 (ja) 発光ダイオード及びその製造方法、並びに発光ダイオードランプ
WO2010125792A1 (ja) 発光ダイオード及びその製造方法、並びに発光ダイオードランプ
JP5427585B2 (ja) フリップチップ型発光ダイオード及びその製造方法
JP5557649B2 (ja) 発光ダイオード、発光ダイオードランプ及び照明装置
JP2011165799A (ja) フリップチップ型発光ダイオード及びその製造方法、並びに発光ダイオードランプ
JP5586371B2 (ja) 発光ダイオード、発光ダイオードランプ及び照明装置
WO2012020789A1 (ja) 発光ダイオード、発光ダイオードランプ及び照明装置
JP6101303B2 (ja) 発光ダイオード、発光ダイオードランプ及び照明装置
JP5557648B2 (ja) 発光ダイオード、発光ダイオードランプ及び照明装置
JP5801542B2 (ja) 発光ダイオード及び発光ダイオードランプ
WO2010092741A1 (ja) 発光ダイオード及び発光ダイオードランプ
JP4918245B2 (ja) 発光ダイオード及びその製造方法
JP2014168101A (ja) 発光ダイオード、発光ダイオードランプ及び照明装置
JP2014158057A (ja) 発光ダイオード、発光ダイオードランプ及び照明装置
JP2011086917A (ja) 発光ダイオード、発光ダイオードランプ及び照明装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130416