JP2007019099A - 発光装置およびその製造方法 - Google Patents
発光装置およびその製造方法 Download PDFInfo
- Publication number
- JP2007019099A JP2007019099A JP2005196572A JP2005196572A JP2007019099A JP 2007019099 A JP2007019099 A JP 2007019099A JP 2005196572 A JP2005196572 A JP 2005196572A JP 2005196572 A JP2005196572 A JP 2005196572A JP 2007019099 A JP2007019099 A JP 2007019099A
- Authority
- JP
- Japan
- Prior art keywords
- nitride semiconductor
- light emitting
- emitting device
- main surface
- semiconductor substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/85909—Post-treatment of the connector or wire bonding area
- H01L2224/8592—Applying permanent coating, e.g. protective coating
Landscapes
- Led Device Packages (AREA)
- Led Devices (AREA)
Abstract
【課題】 光の取出し効率を向上させることが可能な発光装置およびその製造方法を提供する。
【解決手段】 GaN基板1と、GaN基板1の第1の主表面の側に、n型AlxGa1-xN層3と、GaN基板1から見てn型AlxGa1-xN層3より遠くに位置するp型AlxGa1-xN層5と、n型AlxGa1-xN層3およびp型AlxGa1-xN層5の間に位置する発光層4とを備えた発光装置である。発光装置は、p型AlxGa1-xN層5の側をダウン実装し、GaN基板1の第1の主表面と反対側の主表面である第2の主表面1aから光を放出する。第2の主表面1aにはレンズ構造が形成されている。
【選択図】 図2
【解決手段】 GaN基板1と、GaN基板1の第1の主表面の側に、n型AlxGa1-xN層3と、GaN基板1から見てn型AlxGa1-xN層3より遠くに位置するp型AlxGa1-xN層5と、n型AlxGa1-xN層3およびp型AlxGa1-xN層5の間に位置する発光層4とを備えた発光装置である。発光装置は、p型AlxGa1-xN層5の側をダウン実装し、GaN基板1の第1の主表面と反対側の主表面である第2の主表面1aから光を放出する。第2の主表面1aにはレンズ構造が形成されている。
【選択図】 図2
Description
この発明は、発光装置およびその製造方法に関し、より具体的には窒化物半導体から形成される発光装置およびその製造方法に関するものである。なお、本発明における発光装置とは、窒化物半導体基板とその上に積層された半導体層とを主体に形成される半導体素子または半導体チップのみを指す場合もあるし、また、半導体チップが実装部品に搭載され樹脂封止されたデバイスのみを指す場合もある。さらに、両方の意味に用いられる場合もある。また、半導体チップを単にチップと呼ぶ場合がある。また、チップのうち基板とその上に形成されたエピタキシャル層とを、単に基板と呼ぶ場合がある。
白色発光ダイオード(LED:Light Emitting Diode)は、今のところ携帯情報端末などの小型電子機器の照明に盛んに用いられているが、今後、大きな空間または大面積の照明に用いられる可能性を秘めている。大空間、大面積の照明に用いられるためには、LEDの光の出力を大きくする必要がある。
このようにLEDの光の出力を大きくするための方策の1つとして、LEDの内部で発生した光を効率的に外部に出力させること、すなわち光の取出し効率の向上が上げられる。このような光の取出し効率を向上させる技術として、従来、透光性基板の裏面を研磨加工することでレンズ効果を有する曲面形状を形成すること(特許文献1参照)、光の出射面にエッチングを用いて傾斜側面が多段状や曲面状になっている凸部を形成すること(特許文献2参照)、基板上に形成された積層構造の最上層に、所望の光学エレメントの形状又はパターンの逆の形状又はパターンを有するスタンピングブロックをプレスする、あるいは他のエッチングや放電加工などの任意の方法により光学エレメント(フレネルレンズ)を形成すること(特許文献3参照)、サファイア基板上に形成された積層構造の表面(光の出射面)にドライエッチングにより溝を形成すること(特許文献4参照)などが提案されている。
特開平11−191636号公報
特開2003−258301号公報
特開2003−17740号公報
特開2002−26386号公報
しかし、上述した従来提案された技術には、以下のような問題があった。すなわち、上記特許文献1および2において提案されている技術では、研磨加工またはエッチングにより曲面形状を形成するとしているが、LED自体はそのサイズが小さく、上記のような研磨やエッチングでは微細なLEDの表面にレンズ効果を有するように高い寸法精度の曲面を形成することは困難であった。このため、光の取出し効率を十分向上させることは難しかった。また、エッチングを用いる場合には、マスク形成工程やマスクの除去工程が必要になるため、製造コストの増大に繋がるという問題もある。
また、上記特許文献3において提案されている技術では、積層構造の最上層に光学エレメントを形成するので、光学エレメントの厚みを十分厚くすることができない。また、光学エレメントの厚みを十分に厚くするためには、積層する最上層の厚みを厚くする必要があり、製造コストの増大を招くことになり、現実的ではなかった。また、スタンピングブロックをプレスする工程は加工対象物が組成変形することを前提としているが、脆性の強い化合物半導体に対してこのような工程を実施すると、当該化合物半導体が破損するといった問題が起きることが考えられる。
また、上記特許文献4において提案されている技術では、積層構造の表面に溝を形成しているが、積層構造の厚み自体はサファイア基板に比べると極めて薄いため、形成される溝の深さも浅くなる。そのため、溝を形成することにより増加する光の出射面の面積は極めて小さなものであり、光の取出し効率を向上させるという点からは不十分であった。
この発明は、上記のような課題を解決するために成されたものであり、この発明の目的は、光の取出し効率を向上させることが可能な発光装置およびその製造方法を提供することである。
この発明に従った発光装置は、窒化物半導体基板と、窒化物半導体基板の第1の主表面の側に、n型窒化物半導体層と、窒化物半導体基板から見てn型窒化物半導体層より遠くに位置するp型窒化物半導体層と、n型窒化物半導体層およびp型窒化物半導体層の間に位置する発光層とを備えた発光装置であって、p型窒化物半導体層の側をダウン実装し、窒化物半導体基板の第1の主表面と反対側の主表面である第2の主表面から光を放出する。第2の主表面にはレンズ構造が形成されている。
このようにすれば、光の出射面である第2の主表面にレンズ構造を形成しているので、第2の主表面における光の全反射を防止することができる。また、第2の主表面が単純な平面である場合より、第2の主表面の面積を大きくできるので、第2の主表面からの光の取出し効率を向上させることができる。また、光の取出しに際して第2の主表面上に樹脂を配置する場合があるが、基板自体の構造としてのレンズ構造を調整することでこのような樹脂を不用とすることが可能になる。
なお、レンズ構造とは、窒化物半導体基板の第2の主表面の形状がレンズの表面のように成形された構造をいい、窒化物半導体基板自体が光を集光または拡散させるようなレンズと同様の機能を発揮し得る構造であれば、どのような形状であってもよい。たとえば、第2の主表面において表面が曲面状(または球面状、あるいはドーム状)の凸部(窒化物半導体基板の一部が凸レンズとなるような形状)が1つまたは複数個形成されているような構造、あるいは第2の主表面に形成されたフレネルレンズのような構造、または第2の主表面において表面が曲面状の凹部(窒化物半導体基板の一部が凹レンズとなるような形状)が1つまたは複数個形成されたような構造などが、レンズ構造に含まれる。
この発明に従った発光装置は、窒化物半導体基板と、窒化物半導体基板の第1の主表面の側に、n型窒化物半導体層と、窒化物半導体基板から見てn型窒化物半導体層より遠くに位置するp型窒化物半導体層と、n型窒化物半導体層およびp型窒化物半導体層の間に位置する発光層とを備えた発光装置であって、p型窒化物半導体層の側をダウン実装し、窒化物半導体基板の第1の主表面と反対側の主表面である第2の主表面から光を放出する。第2の主表面には孔が形成されている。
このようにすれば、第2の主表面のみではなく、孔の側壁からも光を取出すことができる。また、窒化物半導体基板の第2の主表面からの全反射を防止することもできる。そのため、光の取出し効率を向上させることができる。
この発明に従った発光装置の製造方法は、窒化物半導体基板と、窒化物半導体基板の第1の主表面の側に、n型窒化物半導体層と、窒化物半導体基板から見てn型窒化物半導体層より遠くに位置するp型窒化物半導体層と、n型窒化物半導体層およびp型窒化物半導体層の間に位置する発光層とを備えた発光装置の製造方法であって、窒化物半導体基板を準備する工程と、加工工程とを備える。加工工程では、窒化物半導体基板の第2の主表面と対向するように配置した電極と窒化物半導体基板との間に電圧を印加することによって、電極と窒化物半導体基板との間で放電を発生させることにより、窒化物半導体基板の第2の主表面を部分的に除去する。
このようにすれば、放電加工を利用して窒化物半導体基板の第2の主表面に任意の構造を形成できる。そのため、本発明に従った発光装置におけるレンズ構造や孔を容易に精度よく形成できる。
このように、本発明によれば、発光装置の光の取出し面である第2の主表面においてレンズ構造や孔を形成することにより、光の取出し効率に優れた発光装置を実現できる。
以下図面に基づいて、本発明の実施の形態および実施例について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
(実施の形態1)
図1は、本発明に従った発光装置としてのLEDの実施の形態1を示す平面模式図である。図2は、図1の線分II−IIにおける断面模式図である。図3は、図1のLEDの発光層を含む積層構造を示す図である。図1〜図3を参照して、本発明によるLEDの実施の形態1を説明する。
図1は、本発明に従った発光装置としてのLEDの実施の形態1を示す平面模式図である。図2は、図1の線分II−IIにおける断面模式図である。図3は、図1のLEDの発光層を含む積層構造を示す図である。図1〜図3を参照して、本発明によるLEDの実施の形態1を説明する。
図2に示すように、GaN基板1の第1の主表面の側に後で詳細に説明する発光層などを含む積層構造が形成されている。また当該積層構造上(積層構造においてGaN基板1と対向する面と反対側の面上)にはp電極12が設けられている。また、p電極12上(p電極12において積層構造と接触する面と反対側の面上)には反射膜30が形成されている。反射膜30は導電性の材料からなる。本実施の形態では、この反射膜30が導電性接着剤14によってリードフレームマウント部21aにダウン実装されている。
GaN基板1の第2の主表面1aは、発光層で発光した光を放出する面である。当該第2の主表面1aには、n電極11が設けられている。このGaN基板1の第2の主表面1aは、図1に示すように、第2の主表面1aの中央部において平面形状が四角形状のn電極11が形成された領域と、当該n電極11を囲むように4つの孔31が形成された領域とを備える。4つの孔31は、n電極11の4つの角部とそれぞれ対向する位置に配置されている。孔31の平面形状は四角形状である。なお、孔31の平面形状は円形状、あるいは三角形状、五角形状などの多角形状であってもよい。ここで、n電極11に被覆されていない部分の比率(開口率)を大きく取ることが重要である。開口率を大きくすれば、n電極11によって遮られる光が減り、光を外に放出する放出効率を高めることができる。
図2に示すように、孔31は、GaN基板1の第2の主表面1aから後述する積層構造、p電極12および反射膜30を貫通するように形成されている。孔31は、第2の主表面1a側からp電極12側に向けてその平面積が徐々に小さくなるように形成されている。つまり、孔31の側壁は、p電極12側から第2の主表面1a側に向けて孔31の平面積が徐々に大きくなるように、第2の主表面1aに対して傾斜するように形成されている。このようにすれば、孔31の側壁の面積を大きくすることができる。このため、第2の主表面1a側に放出される光の取出し効率を向上させることができる。
図1および図2に示すように、n電極11はワイヤ13によりリードフレームのリード部21bと電気的に接続されている。GaN基板1、積層構造、p電極12、反射膜30、n電極11からなるチップおよびワイヤ13は、封止部材としてのエポキシ系樹脂15により封止されている。上記の構成のうち、GaN基板1からp電極12に至る間の積層構造が拡大されて図3に示されている。なお、図3では、図2における積層構造が上下逆に表示されている。
図3を参照して、GaN基板1の上にn型GaNエピタキシャル層2が位置し、その上にn型AlxGa1-xN層3が形成されている。その上にAlxGa1-xN層とAlxInyGa1-x-yN層とからなる量子井戸(MQW:Multi-Quantum Well)4が形成されている。その量子井戸4をn型AlxGa1-xN層3と挟むようにp型AlxGa1-xN層5が配置されている。また、p型AlxGa1-xN層5の上にp型GaN層6が配置されている。上記の構造においては、量子井戸4において発光する。また、図2に示すように、p型GaN層6の上に、p電極12がp型GaN層6の上部表面の全面を被覆するように形成される。そして、p電極12の上部表面(図2における下面)を覆うように反射膜30が形成されている。この反射膜30とリードフレームのマウント部21aとが導電性接着剤14により接続され、チップがダウン実装されている。
次に、図4〜図8を参照して、図1〜図3に示したLEDの製造方法について簡単に説明する。図4は、図1〜図3に示したLEDの製造方法を示すフローチャートである。図5は、図1および図2に示した構造のチップをウェハから採取するときのウェハの状態を示す図である。図6は、図5におけるn電極および孔の配置を示す模式図である。図7は、図4に示した放電加工工程において用いる電極を示す断面模式図である。図8は、図4に示したチップ化工程において得られるチップの平面模式図である。
図4に示すように、図1〜図3に示したLEDの製造方法では、まず基板準備工程(S10)を実施する。この基板準備工程(S10)においては、まずGaN基板を準備する。
次に、積層構造形成工程(S20)を実施する。具体的には、GaN基板の第1の主表面上にMOCVD(Metal Organic Chemical Vapor Deposition)などの成膜方法を用いて積層構造(Siドープn型GaN層/クラッド層のSiドープn型Al0.2Ga0.8N層/GaN層とIn0.15Ga0.85N層との2層構造が複数層重ねられたMQW(Multi-Quantum Well)/クラッド層のMgドープp型Al0.2Ga0.8N層/Mgドープp型GaN層)を形成する。
次に、活性化処理工程(S30)を実施する。具体的には、Mgドープp型層の低抵抗化を行なうため、上述したGaN基板に対して活性化処理を行なう。
次に、素子分離溝形成工程(S40)を実施する。具体的には、ウェハを、フォトリソグラフィ技術とRIE(Reactive Ion Etching)により、Mgドープp型層側からSiドープn型層までCl系ガス(塩素系ガス)でエッチングする。このエッチングにより、図5に示すように、幅L3の素子分離溝25を形成し、素子分離を行なうことができる。なお、素子分離溝25の間の距離(すなわちチップ化したときの積層構造の幅)をL1としている。
次に、n電極形成工程(S50)を実施する。具体的には、GaN基板の第2の主表面である裏面のN面において、フォトリソグラフィ技術と、蒸着と、リフトオフ法とにより所定の間隔(距離L2)でほぼチップの中心となる位置に平面形状が四角形状のn電極11を形成する。n電極11としては、GaN基板1の第2の主表面1aに接して下から順に(Ti層/Al層/Ti層/Au層)という積層構造を形成してもよい。そして、n電極11とGaN基板1の第2の主表面1aとの接触抵抗を所定の値とするため、窒素(N2)雰囲気中においてGaN基板を加熱する。
次に、図4に示したp電極形成工程(S60)を実施する。具体的には、積層構造のうちp型GaN層に接して、所定の厚みを有する導電体層をp電極12として形成する。p電極12を構成する導電体層としては、たとえばGaN層に接するように所定の厚みのNi層を形成し、その上に所定の厚みのAu層を全面に形成してもよい。また、この場合p電極とp型GaN層との接触抵抗を所定の値とするため、GaN基板を不活性ガス雰囲気中で加熱処理してもよい。また、このp電極12上に反射膜30を形成する。この反射膜30の形成方法としては、反射膜30の構成材料に適合する任意の手法を用いることができる。
次に、図4に示した放電加工工程(S70)を実施する。具体的には、図7に示したような断面形状の電極32を準備する。当該電極32には、孔31の形状に沿った凸部である孔形成用凸部33が複数個形成されている。また、孔形成用凸部33の配置は、形成されるべき孔31の配置に対応している。つまり、電極32は、孔31が形成された後のチップの第2の主表面側の表面形状に沿った形状(第2の主表面側の表面形状を転写した形状)を有している。なお、図7では特に図示していないが、放電加工工程(S70)を実施するときにすでにn電極11が形成されている場合には、当該放電加工工程(S70)においてn電極11が損傷を受けないように、電極32においてn電極11に対向する部分には、n電極11の周囲に十分な空間が形成されるように凹部が形成される。また、この点は後述する各実施の形態においても同様である。
そして、GaN基板を絶縁性の媒体中に保持する(たとえば灯油中に浸漬する)。そして、当該電極32に孔形成用凸部33が形成された側がGaN基板の第2の主表面に対向するように電極32を媒体中に配置する。この状態で、GaN基板と電極32との間に電圧を印加する。電極32とGaN基板の第2の主表面との間の距離が十分小さくなると(たとえば数十μmになると)、GaN基板と電極32との間の絶縁が破壊され、火花放電が発生する。すると、火花放電が発生したところでアーク(アーク柱)が形成される。この結果、アークが形成された部分の近傍では、GaN基板の一部が高温になり溶解する。また、この時、アークを中心としてアークの周囲の媒体の温度も上昇することにより、媒体が急激な体積膨張を起こす(つまり、当該アークが形成された部分で微小な爆発現象が起きる)。この微小な爆発現象により溶解したGaN基板の一部が除去される。
その後、爆発現象が起きた領域に再び媒体が流入し、GaN基板と電極32との間が媒体により絶縁される。そして、GaN基板へ電極32をさらに近づけるとともに、GaN基板と電極32との間に電圧を印加することにより、再びGaN基板と電極32との間の絶縁が破壊される。このようにして、上述した絶縁破壊→火花放電→アーク形成→溶解→爆発現象、を繰り返すことにより、GaN基板1の第2の主表面1aから反射膜30までを貫通する孔31を形成する。この結果、電極32の形状に沿った形状にGaN基板の第2の主表面を加工することができる。なお、上述した放電加工工程の後、GaN基板1の第2の主表面1aの放電加工を受けた部分の表面層を所定の厚み(たとえば10μm)以上除去してもよい。この場合、除去する方法としてはウェットエッチング、ドライエッチングなど任意の方法を用いることができる。
次に、図4に示すように、チップ化・実装工程(S80)を実施する。具体的には、図5に示したチップ境界50が側面として現われるようにスクライブを行ない、チップ化したものを発光装置とした。その結果、図8に示すような平面形状のチップが得られる。図8は、GaN基板の第2の主表面側から見た平面模式図である。図8から分かるように、1辺の長さL4の四角形状の外形を有する第2の主表面において、n電極11を四方から囲むように孔31が形成されている。孔31の上部側(第2の主表面側)での幅L6、孔31の底部での幅L7、孔31とGaN基板の第2の主表面の端部との間の距離L5、孔31の間の距離L8は、それぞれ任意に決定することができる。ただし、孔31の側壁が第2の主表面側に面している(孔31の側壁から出射する光が第2の主表面の垂直方向に進行可能である)ことが好ましい。
そして、図2に示すように、リードフレームのマウント部21aに、上記チップのp型GaN層側が接するように搭載することにより、発光装置を形成した。このとき、マウント部21aに塗布した導電性接着剤14によって発光装置とマウントとを固定するとともに、導通が得られるようにしている。そして、n電極11とリードフレームのリード部21bとをワイヤボンドにより導通させた後、エポキシ系樹脂15により樹脂封止を行なって発光装置をランプ化した。なお、発光装置からの放熱性を良くするため、発光装置のp型GaN層上に形成された反射膜30が全面マウント部と接するように搭載してもよい。また、導電性接着剤14は、熱伝導の良いAg系のものを、またリードフレームとして熱伝導の良いCuW系のものを選択してもよい。このようにして、図1〜図3に示した発光装置を得ることができる。
図9は、図4に示した発光装置の製造方法の変形例を説明するためのフローチャートである。図10は、図9に示した放電加工による孔形成およびチップ化工程において用いる電極を示す断面模式図である。図11は、図9に示した発光装置の製造方法によって得られる発光装置としてのLEDの断面模式図である。図9〜図11を参照して、図1〜図8に示した本発明による発光装置の実施の形態1の製造方法の変形例を説明する。
図9に示した発光装置の製造方法は、基本的には図4に示した発光装置の製造方法と同様であるが、図4における放電加工工程(S70)(放電加工による孔の形成工程)と、チップ化工程(S80)とを1つの工程において実施している点が異なる。具体的には、図4に示した製造方法と同様に、基板準備工程(S10)、積層構造形成工程(S20)、活性化処理工程(S30)、素子分離溝形成工程(S40)を実施する。なお、GaN基板1および積層構造の厚み方向についてすべて後述する放電加工によりチップ化のための切断溝を形成する場合には、素子分離溝形成工程(S40)を行なわなくても良い。次に、n電極形成工程(S50)、p電極形成工程(S60)を実施する。上述した工程は、基本的に図4に示した発光装置の製造方法における、対応する工程と同様の処理を行なう。
次に、放電加工による孔形成およびチップ化工程(S110)を実施する。具体的には、図10に示した電極32を用いて、図4に示した放電加工工程(S70)と同様の方法によりGaN基板に孔31を形成するとともに、チップ化のための溝(チップとなるべき領域を囲むように配置される、GaN基板をチップごとに分割するための溝)を形成する。図10に示した電極32には、図7に示した電極32と同様に孔形成用凸部33が形成されているとともに、上記チップ化のための溝を形成するための素子分離用凸部34が形成されている。当該素子分離用凸部34は、チップ化のためにGaN基板に形成される溝の形状を転写したような形状を有しており、たとえば電極32において格子状の凸部として素子分離用凸部24が形成される。素子分離用凸部34の高さは、チップとされる基板の厚みと実質的に同じか、当該厚みより大きくなっている。このように、孔31の形成とチップ化とを同一の工程により実施するので、発光装置の製造工程を簡略化できる。
次に、図4に示した発光装置の製造方法と同様に、実装工程(S90)を実施する。実装工程(S90)における処理内容は図4に示した実装工程(S90)と同様である。この結果、図11に示すような発光装置としてのLEDを得ることができる。
図11に示したLEDは、基本的に図1〜図3に示したLEDと同様の構造を備えるが、チップの側面35の形状が図1〜図3に示したLEDと異なる。すなわち、図11に示したLEDでは、側面35が図10に示した電極32の素子分離用凸部34の表面に沿った形状(図11ではほぼ第2の主表面1aに対して垂直な平面状)になっている。そのため、たとえば電極32の素子分離用凸部34の形状を適宜変更することにより、チップの側面35の形状を任意に変更できる。たとえば、第2の主表面1aに対して傾斜するように側面35を形成する、あるいは側面35に凸部または凹部を形成する、といったことが可能である。この結果、チップの側面35からも効率的に光を取出すことが可能になる。
(実施の形態2)
図12は、本発明に従った発光装置としてのLEDの実施の形態2を示す平面模式図である。図13は、図12の線分XIII−XIIIにおける断面模式図である。図14は、図12および図13に示したLEDの製造工程における放電加工工程において用いる電極を示す断面模式図である。図12〜図14を参照して、本発明によるLEDの実施の形態2を説明する。
図12は、本発明に従った発光装置としてのLEDの実施の形態2を示す平面模式図である。図13は、図12の線分XIII−XIIIにおける断面模式図である。図14は、図12および図13に示したLEDの製造工程における放電加工工程において用いる電極を示す断面模式図である。図12〜図14を参照して、本発明によるLEDの実施の形態2を説明する。
図12および図13に示したLEDは、基本的には図1〜図3に示したLEDと同様の構造を備えるが、孔31の形状が図1〜図3に示したLEDと異なっている。具体的には、図12および図13に示したLEDでは、孔31の深さがGaN基板1の厚みより小さくなっている。そのため、孔31は発光層4を含む積層構造にまでは到達していない。孔31の底壁40はGaN基板により構成されている。
このような構造のLEDによれば、図1に示したLEDと同様に孔31の側壁から光を取出すことができるので、孔31を形成しない場合より光の取出し効率を向上させることができる。また、発光層4を含む積層構造にまで孔31が到達していないので、図1〜図3に示したLEDのように孔31を形成することによって発光層4の面積が減少することはない。そのため、発光層4の全面から光を発生させることができる。
図12および図13に示したLEDの製造方法は、基本的には図1〜図3に示したLEDの製造方法と同様である。ただし、図4の放電加工工程(S70)において用いる電極の形状が図7に示した電極とは異なる。具体的には、図13に示したLEDの孔31の深さが図1〜図3に示したLEDの孔31の深さより浅いことに対応して、図14に示すように、電極34に形成された孔形成用凸部33の高さは、図7に示した電極32の孔形成用凸部33の高さより低くなっている。このような電極32を用いて放電加工工程(S70)を実施することにより、図13に示したような孔31を形成できる。
図15は、図12および図13に示した本発明によるLEDの実施の形態2の変形例を示す平面模式図である。図16は、図15の線分XVI−XVIにおける断面模式図である。図17は、図15および図16に示したLEDの製造工程における放電加工工程において用いる電極を示す断面模式図である。図15〜図17を参照して、本発明によるLEDの実施の形態2の変形例を説明する。
図15および図16を参照して、本発明によるLEDの実施の形態2の変形例は、基本的には図12および図13に示したLEDと同様の構造を備えるが、チップの外周部にも孔が形成されている点が異なる。具体的には、図15に示すように、チップの外周部に外周部孔36が形成されている。この外周部孔36は,チップの端面においてその一部が切断されたような状態(チップの側面の一部を外周部孔36の内周面の一部が構成する状態)になっている。このようにすれば、チップの表面積をより大きくすることができるので、光の取出し効率をより高めることができる。
図15および図16に示したLEDの製造方法は、基本的には図9に示した発光装置の製造方法と同様である。ただし、図9における放電加工による孔形成およびチップ化工程(S110)において用いる電極の形状が、実施の形態1の変形例の場合とは異なる。具体的には、図17に示すように、図15および図16に示したLEDの製造方法では、相対的に深さの浅い孔31を形成するための孔形成用凸部33と、当該孔形成用凸部33を囲むように(チップの外周部に相当する部分に)配置された素子分離用凸部34とを備える電極32を用いる。素子分離用凸部34は、外周部孔36の形状に沿った形状が転写されている。そのため、上述した放電加工による孔形成およびチップ化工程(S110)を実施することにより、孔31と外周部孔36とを同時に形成するとともに、積層構造が形成されたGaN基板1をチップ化することができる。
(実施の形態3)
図18は、本発明に従った発光装置としてのLEDの実施の形態3を示す平面模式図である。図19は、図18の線分XIX−XIXにおける断面模式図である。図20は、図18および図19に示したLEDの製造工程における放電加工工程において用いる電極を示す断面模式図である。図18〜図20を参照して、本発明によるLEDの実施の形態3を説明する。
図18は、本発明に従った発光装置としてのLEDの実施の形態3を示す平面模式図である。図19は、図18の線分XIX−XIXにおける断面模式図である。図20は、図18および図19に示したLEDの製造工程における放電加工工程において用いる電極を示す断面模式図である。図18〜図20を参照して、本発明によるLEDの実施の形態3を説明する。
図18および図19に示すように、本発明によるLEDの実施の形態3は、基本的には図1〜図3に示したLEDと同様の構造を備えているが、形成されている孔31の平面形状およびチップの側面の形状が異なる。具体的には、図18および図19に示したLEDにおいて形成されている孔31の平面形状は四角形状ではなく円形状である。また、平面形状が円形状の孔31の配置は、n電極11を中心として互いに等間隔になるように、n電極11の周囲に配置されている。孔31の内周側面は、図19からもわかるように孔31の内側へ凸となっている曲面状である。さらに、孔31はGaN基板1のみを貫通するように形成されている。したがって、孔31の底部ではn型GaN層2の表面が露出している。
また、図18および図19に示したLEDでは、チップの平面形状が円形状である。さらに、チップの側面42が外側に凸となった曲面状であって、チップの幅が第2の主表面1aから遠ざかるに従って徐々に広くなるように、側面42が第2の主表面1aに対して傾斜した状態になっている。このような構造のLEDによっても、図1〜図3に示したLEDと同様に光の取出し効率を向上させることができる。
また、図18および図19に示したLEDの製造方法は、基本的には図9に示した発光装置の製造方法と同様である。ただし、図9における放電加工による孔形成およびチップ化工程(S110)において用いる電極の形状が、実施の形態1の変形例の場合とは異なる。具体的には、図20に示すように、図18および図19に示した平面形状が円形状の孔31を形成するための孔形成用凸部33と、平面形状が円形状のチップを形成するとともに、曲面状のチップの側面を形成するための素子分離用凸部34とを備える電極32を上記工程(S110)において用いる。この図20に示したような電極32を用いて、図9における放電加工による孔形成およびチップ化工程(S110)を実施することにより、図18および図19に示したLEDを構成するチップを容易に得ることができる。そして、当該チップを用いて図9の実装工程(S90)を実施することにより、図18および図19に示したLEDを得ることができる。
図21は、図18および図19に示した本発明によるLEDの実施の形態3の変形例を示す断面模式図である。図22は、図21に示したLEDの製造工程における放電加工工程において用いる電極を示す断面模式図である。図21および図22を参照して、本発明によるLEDの実施の形態3の変形例を説明する。なお、図21は図19に対応し、図22は図20に対応する。
図21を参照して、本発明によるLEDの実施の形態3の変形例は、基本的には図18および図19に示したLEDと同様の構造を備えるが、孔31がチップを貫通している点が異なる。具体的には、図21に示したLEDでは、チップに形成された孔31の底部において導電性接着剤14が露出している。このようにすれば、孔31を形成することにより増加するチップの表面積の増加率を、図18および図19に示したLEDでの増加率より大きくできる。また、孔31が積層構造中の発光層4を貫通するように(発光層4を超えてp電極12側に孔31の底部が到達するように)形成されているので、発光層4からp電極12側へ出射した光を、発光層4よりp電極12側の孔12の側面から容易に取出すことができる。この結果、光の取出し効率を向上させることができる。
図21に示したLEDの製造方法は、図18および図19に示したLEDの製造方法と同じく、基本的には図9に示した発光装置の製造方法と同様である。ただし、図9における放電加工による孔形成およびチップ化工程(S110)において用いる電極の形状が、図20に示した図18および図19に示したLEDの製造方法において用いた電極の形状と一部異なっている。具体的には、図22に示すように、孔形成用凸部33の高さが素子分離用凸部34の高さとほぼ同じになっている。このようにすれば、上記工程(S110)において放電加工を行なうことにより、図21に示したようなチップを貫通する孔31とチップ化とを同時に行なうことができる。
(実施の形態4)
図23は、本発明に従った発光装置としてのLEDの実施の形態4を示す平面模式図である。図24は、図23の線分XXIV−XXIVにおける断面模式図である。図25は、図23および図24に示したLEDの製造工程における放電加工工程において用いる電極を示す断面模式図である。図23〜図25を参照して、本発明によるLEDの実施の形態4を説明する。
図23は、本発明に従った発光装置としてのLEDの実施の形態4を示す平面模式図である。図24は、図23の線分XXIV−XXIVにおける断面模式図である。図25は、図23および図24に示したLEDの製造工程における放電加工工程において用いる電極を示す断面模式図である。図23〜図25を参照して、本発明によるLEDの実施の形態4を説明する。
図23および図24に示したLEDは、基本的には図1〜図3に示したLEDと同様の構造を備えるが、チップの平面形状が円形状である点、および光の取出し効率を向上させるための構造的な特徴が異なる。すなわち、図1〜図3に示したLEDでは、光の取出し効率を向上させるためにGaN基板1に孔31を形成していたが、図23および図24に示したLEDでは、GaN基板の第2の主表面1a側をレンズ構造としている。具体的には、GaN基板1の第2の主表面1a側は中央部(直径Dの平面形状が円形状のn電極11が形成された部分)を最も厚さの厚い部分(中央部)とし、端部に向けてGaN基板1の厚さが徐々に薄くなるように第2の主表面が曲面状の形状(凸レンズ形状)になっている。このような形状とすることにより、エポキシ樹脂15とGaN基板1の第2の主表面1aとの界面での全反射を防止することができる。この結果、光の取出し効率を向上させることができる。
図23および図24に示したLEDの製造方法は、基本的には図1〜図3に示したLEDの製造方法と同様である。ただし、図4の放電加工工程(S70)において用いる電極の形状が図7に示した電極とは異なる。具体的には、図25に示すように、電極32にはGaN基板1の第2の主表面1aの形状(レンズ構造の形状)が転写されている。すなわち、電極32には、表面が曲面状の凹部が形成されている。このような電極32を用いて放電加工工程(S70)を実施することにより、図23および図24に示したようなレンズ構造を形成できる。
(実施の形態5)
図26は、本発明に従った発光装置としてのLEDの実施の形態5を示す平面模式図である。図27は、図26の線分XXVII−XXVIIにおける断面模式図である。図28は、図26の線分XXVIII−XXVIIIにおけるチップの断面模式図である。図29は、図26および図27に示したLEDを構成するチップの斜視模式図である。図26〜図29を参照して、本発明によるLEDの実施の形態5を説明する。
図26は、本発明に従った発光装置としてのLEDの実施の形態5を示す平面模式図である。図27は、図26の線分XXVII−XXVIIにおける断面模式図である。図28は、図26の線分XXVIII−XXVIIIにおけるチップの断面模式図である。図29は、図26および図27に示したLEDを構成するチップの斜視模式図である。図26〜図29を参照して、本発明によるLEDの実施の形態5を説明する。
図26〜図29に示したLEDは、基本的には図23および図24に示したLEDと同様の構造を備えるが、チップの平面形状が四角形状である点、および第2の主表面1aの曲面形状が図23および図24に示したLEDと異なる。具体的には、n電極11が形成された部分が最もGaN基板1の厚みの厚い部分であることは図23および図24に示したLEDと同様である。しかし、図27に示した断面模式図から分かるように、チップの端部においてGaN基板1の平坦な側面48が存在している。一方、図28に示すように、図26の線分XXVIII−XXVIIIにおける断面では、GaN基板1の端部には平坦な側面は存在せず、当該端部にまで曲面状の第2の主表面が延在している。つまり、図26および図27に示したLEDを構成するチップの形状は、図29に示すように、平面形状の辺の部分には平坦な側面48が形成され、平面形状の角の部分には当該側面48は無い状態になっている。このような形状のレンズ構造を有するチップを用いてLEDを構成しても、図23および図24に示したLEDと同様の効果を得ることができる。
図26〜図29に示したLEDの製造方法は、基本的に図23および図24に示したLEDの製造方法と同様である。また、図4の放電加工工程(S70)において用いる電極の形状も基本的に図25に示した電極と同様である。具体的には、電極には図29などに示したチップのレンズ構造(曲面状の表面)を転写した構造(表面が曲面状、たとえば楕円球状の凹部)が形成される。このとき、電極においては平面形状がチップの平面形状(四角形状)を内部に包含できるような円形状の凹部を形成してもよい。このような電極を用いて放電加工工程(S70)を実施することにより、図26〜図29に示したようなレンズ構造を形成できる。
(実施の形態6)
図30は、本発明に従った発光装置としてのLEDの実施の形態6を示す平面模式図である。図31は、図30の線分XXXI−XXXIにおける断面模式図である。図32は、図30および図31に示したLEDの製造工程における放電加工工程において用いる電極を示す断面模式図である。図30〜図32を参照して、本発明によるLEDの実施の形態6を説明する。
図30は、本発明に従った発光装置としてのLEDの実施の形態6を示す平面模式図である。図31は、図30の線分XXXI−XXXIにおける断面模式図である。図32は、図30および図31に示したLEDの製造工程における放電加工工程において用いる電極を示す断面模式図である。図30〜図32を参照して、本発明によるLEDの実施の形態6を説明する。
図30および図31に示したLEDは、基本的には図23および図24に示したLEDと同様の構造を備えるが、レンズ構造を構成する半球状の凸部45が複数個(図30では7個)形成されている点が異なる。また、複数個の凸部45は、チップの中央に1つ配置される。残りの複数の凸部45は当該中央の1つの凸部45を囲むように、中央の1つの凸部45の周りを回る周方向において、隣接する凸部45の互いの中心間の間隔が等しくなるように配置されている。このような構成によっても、図23および図24に示したLEDと同様の効果を得ることができる。
図30および図31に示したLEDの製造方法は、基本的に図23および図24に示したLEDの製造方法と同様である。ただし、図4の放電加工工程(S70)において用いる電極の形状が図25に示した電極とは異なる。具体的には、図32に示すように、LEDを構成するチップに形成されたレンズ構造を構成する複数の凸部45の形状が電極32に転写されている。このため、図32に示された電極32には、レンズ構造45の位置と対応する位置に表面が曲面状の凹部47が形成されている。このような電極を用いて放電加工工程(S70)を実施することにより、図30および図31に示したようなレンズ構造を形成できる。
(実施の形態7)
図33は、本発明に従った発光装置としてのLEDの実施の形態7を示す平面模式図である。図33を参照して、本発明によるLEDの実施の形態7を説明する。
図33は、本発明に従った発光装置としてのLEDの実施の形態7を示す平面模式図である。図33を参照して、本発明によるLEDの実施の形態7を説明する。
図33に示したLEDは、基本的には図30および図31に示したLEDと同様の構造を備えるが、チップの平面形状が四角形状である点、および形成される凸部45の数が異なる。つまり、図33では、チップの第2の主表面において、9つの凸部45が3行×3列に整列するように配置されている。また、異なる観点から言えば、第2の主表面において、中央に形成された凸部45の周囲を囲むように、8個の凸部45が形成されている。中央に形成された凸部45の中央部には、平面形状が円形状のn電極11が配置されている。なお、図33の線分XXXI−XXXIにおける断面模式図は、丁度図31に示した断面模式図と同様になる。このような構造のLEDによっても、図30および図31に示したLEDと同様の効果を得ることができる。
なお、凸部45の数は、図33に示した9個に限定されず、1つまたは2つ以上の任意の数を選択できる。この場合、とくにGaN基板1の第2の主表面を凸部45で覆う面積ができるだけ大きくなることが好ましい。
また、上述した孔31を形成する構成(実施の形態1〜3)と、レンズ構造を形成する構成(実施の形態4〜7)を適宜組合せてもよい。たとえば、図30および図31に示したLEDにおいて、凸部45の間に発光層4を含む積層構造にまで到達するような孔31(図2参照)などを形成してもよい。また、凸部45の間の領域全てに孔を形成するのではなく、凸部45の間の複数の領域が、積層構造にまで到達するような孔(あるいはチップを貫通するような孔)を形成する領域と、そのような孔を形成しない領域とを含んでいてもよい。
本発明による発光装置の効果を確認するべく、以下のような試料を準備して所定の電流を入力した場合の青色光出力の値を測定した。以下、準備した試料についてまず説明する。なお、実施例1ではGaN基板の光の取出し面にレンズ構造を形成した本発明例の効果について検討している。
(本発明例1):本発明例1のLEDは、基本的に図26〜図29に示したLEDと同様の構造を備える。本発明例1のLEDの製造方法も、基本的に図26〜図29に示したLEDの製造方法と同様である。以下、具体的に説明する。
(S1−1)c面から0.5°ずらしたGaNのオフ基板を使用した。この基板の比抵抗は0.01Ω・cm、転位密度は1E7/cm2であり、厚みは400μmとした。GaN基板は酸素ドープによるn型化で低抵抗化しており、酸素濃度は5E18/cm3とした。このときGaN基板の厚み方向において波長が450nmの光がGaN基板を透過するときの透過率は77%以下であった。また比抵抗を0.01Ω・cmとしたので、最大でGaN基板1の6mm□四方に均一に電流を流すことができる。
(S1−2)MOCVD(Metal Organic Chemical Vapor Deposition)でGaN基板の第1の主面であるGa面上に次の積層構造を形成した。(Siドープn型GaN層/クラッド層のSiドープn型Al0.2Ga0.8N層/GaN層とIn0.15Ga0.85N層との2層構造が3層重ねられたMQW(Multi-Quantum Well)/クラッド層のMgドープp型Al0.2Ga0.8N層/Mgドープp型GaN層)
(S1−3)発光波長は450nmであり、低温4.2KでのPL(Photo Luminescence)強度と室温298KでのPL強度を比較することにより便宜的に算出した内部量子効率は50%であった。
(S1−4)このウェハを活性化処理して、Mgドープp型層の低抵抗化を行なった。ホール測定によるキャリア濃度は、Mgドープp型Al0.2Ga0.8N層が5E17/cm3、Mgドープp型GaN層が1E18/cm3であった。
(S1−5)このウェハをさらに、フォトリソグラフィ技術とRIE(Reactive Ion Etching)により、Mgドープp型層側からSiドープn型層までCl系ガスでエッチングする。このエッチングにより、図5に示すような素子分離溝25を形成し、素子分離を行なった。素子分離溝の幅L3は100μmである。
(S1−6)GaN基板の第2の主面である裏面のN面には、フォトリソグラフィ技術と、蒸着と、リフトオフ法とにより、図5に示した距離L2=2mmおきにチップの中心に平面形状が円形状であるn電極をつけた。n電極の直径Dを500μmとした。n電極として、GaN基板1に接して下から順に(Ti層20nm/Al層100nm/Ti層20nm/Au層200nm)の積層構造を形成した。これを窒素(N2)雰囲気中で加熱することにより、接触抵抗を1E−5Ω・cm2以下とした。
(S1−7)p電極としてはp型GaN層に接して厚み4nmのNi層を形成し、その上に厚み4nmのAu層を全面に形成した。これを不活性ガス雰囲気中で加熱処理することにより、接触抵抗を5E−4Ω・cm2とした。また、p電極上に反射膜を形成した。反射膜としては金属膜を用いることができるが、ここでは厚みが100nmのアルミニウム膜を反射膜として形成した。
(S1−8)その後、GaN基板の第2の主表面である裏面のN面に放電加工を施した。形状転写用のツール(電極)の材質は銀タングステン(Ag:W=35:65)を用いた。そしてGaN基板にレンズ構造を形成できるように、ツール(電極)には、図25に示すように楕円球状の凹部を形成した。図25に示すように、当該凹部の幅D1(直径)は2.83mm、高さT1は0.4mmとした。そして、絶縁性の媒体としての灯油中に試料であるGaN基板を浸漬した。さらに、灯油中においてGaN基板の第2の主表面に対向するようにツールを配置し、ツールとGaN基板との間に電圧を印加することにより、放電加工を行なった。なお、印加した電圧(加工電圧)は60Vとした。加工の結果、GaN基板の第2の主表面には図26〜図29に示したようなレンズ構造が形成された。この放電加工を施したGaN基板の第2の主表面の最表面を、反応ガスを塩素ガスとした反応性イオンエッチング(RIE)で10μm除去した。
(S1−9)その後に、チップ境界50(図5参照)が側面として現れるようにスクライブを行ない、チップ化したものを発光装置とした。チップ化した発光装置は、光の放出面が1.9mm□(1辺の長さが1.9mmの四角形)の形状で、発光層が1.9mm□の形状をとる。すなわち図6において、L1=1.9mmであり、L2=2mmである。
(S1−10)図27を参照して、リードフレームのマウント部21aに、上記チップのp型GaN層側が接するように搭載して、発光装置を形成した。マウント部に塗布した導電性接着剤14によって発光装置とマウントとを固定するとともに、導通が得られるようにしている。
(S1−11)発光装置からの放熱性を良くするために、発光装置のp型GaN層上に形成された反射膜30が全面マウント部と接するように搭載した。また接着剤は熱伝導の良いAg系のものを、またリードフレームも熱伝導の良いCuW系のものを選択した。これにより、得られた熱抵抗は8℃/Wであった。
(S1−12)さらに、n電極とリードフレームのリード部とをワイヤボンドにより導通させた後、エポキシ系樹脂により樹脂封止を行なって発光装置をランプ化した。
(S1−1)c面から0.5°ずらしたGaNのオフ基板を使用した。この基板の比抵抗は0.01Ω・cm、転位密度は1E7/cm2であり、厚みは400μmとした。GaN基板は酸素ドープによるn型化で低抵抗化しており、酸素濃度は5E18/cm3とした。このときGaN基板の厚み方向において波長が450nmの光がGaN基板を透過するときの透過率は77%以下であった。また比抵抗を0.01Ω・cmとしたので、最大でGaN基板1の6mm□四方に均一に電流を流すことができる。
(S1−2)MOCVD(Metal Organic Chemical Vapor Deposition)でGaN基板の第1の主面であるGa面上に次の積層構造を形成した。(Siドープn型GaN層/クラッド層のSiドープn型Al0.2Ga0.8N層/GaN層とIn0.15Ga0.85N層との2層構造が3層重ねられたMQW(Multi-Quantum Well)/クラッド層のMgドープp型Al0.2Ga0.8N層/Mgドープp型GaN層)
(S1−3)発光波長は450nmであり、低温4.2KでのPL(Photo Luminescence)強度と室温298KでのPL強度を比較することにより便宜的に算出した内部量子効率は50%であった。
(S1−4)このウェハを活性化処理して、Mgドープp型層の低抵抗化を行なった。ホール測定によるキャリア濃度は、Mgドープp型Al0.2Ga0.8N層が5E17/cm3、Mgドープp型GaN層が1E18/cm3であった。
(S1−5)このウェハをさらに、フォトリソグラフィ技術とRIE(Reactive Ion Etching)により、Mgドープp型層側からSiドープn型層までCl系ガスでエッチングする。このエッチングにより、図5に示すような素子分離溝25を形成し、素子分離を行なった。素子分離溝の幅L3は100μmである。
(S1−6)GaN基板の第2の主面である裏面のN面には、フォトリソグラフィ技術と、蒸着と、リフトオフ法とにより、図5に示した距離L2=2mmおきにチップの中心に平面形状が円形状であるn電極をつけた。n電極の直径Dを500μmとした。n電極として、GaN基板1に接して下から順に(Ti層20nm/Al層100nm/Ti層20nm/Au層200nm)の積層構造を形成した。これを窒素(N2)雰囲気中で加熱することにより、接触抵抗を1E−5Ω・cm2以下とした。
(S1−7)p電極としてはp型GaN層に接して厚み4nmのNi層を形成し、その上に厚み4nmのAu層を全面に形成した。これを不活性ガス雰囲気中で加熱処理することにより、接触抵抗を5E−4Ω・cm2とした。また、p電極上に反射膜を形成した。反射膜としては金属膜を用いることができるが、ここでは厚みが100nmのアルミニウム膜を反射膜として形成した。
(S1−8)その後、GaN基板の第2の主表面である裏面のN面に放電加工を施した。形状転写用のツール(電極)の材質は銀タングステン(Ag:W=35:65)を用いた。そしてGaN基板にレンズ構造を形成できるように、ツール(電極)には、図25に示すように楕円球状の凹部を形成した。図25に示すように、当該凹部の幅D1(直径)は2.83mm、高さT1は0.4mmとした。そして、絶縁性の媒体としての灯油中に試料であるGaN基板を浸漬した。さらに、灯油中においてGaN基板の第2の主表面に対向するようにツールを配置し、ツールとGaN基板との間に電圧を印加することにより、放電加工を行なった。なお、印加した電圧(加工電圧)は60Vとした。加工の結果、GaN基板の第2の主表面には図26〜図29に示したようなレンズ構造が形成された。この放電加工を施したGaN基板の第2の主表面の最表面を、反応ガスを塩素ガスとした反応性イオンエッチング(RIE)で10μm除去した。
(S1−9)その後に、チップ境界50(図5参照)が側面として現れるようにスクライブを行ない、チップ化したものを発光装置とした。チップ化した発光装置は、光の放出面が1.9mm□(1辺の長さが1.9mmの四角形)の形状で、発光層が1.9mm□の形状をとる。すなわち図6において、L1=1.9mmであり、L2=2mmである。
(S1−10)図27を参照して、リードフレームのマウント部21aに、上記チップのp型GaN層側が接するように搭載して、発光装置を形成した。マウント部に塗布した導電性接着剤14によって発光装置とマウントとを固定するとともに、導通が得られるようにしている。
(S1−11)発光装置からの放熱性を良くするために、発光装置のp型GaN層上に形成された反射膜30が全面マウント部と接するように搭載した。また接着剤は熱伝導の良いAg系のものを、またリードフレームも熱伝導の良いCuW系のものを選択した。これにより、得られた熱抵抗は8℃/Wであった。
(S1−12)さらに、n電極とリードフレームのリード部とをワイヤボンドにより導通させた後、エポキシ系樹脂により樹脂封止を行なって発光装置をランプ化した。
(本発明例2):本発明例2のLEDは、基本的に図26〜図29に示したLEDと同様の構造を備えるが、エポキシ系樹脂による樹脂封止を行なっていない点が異なる。また、本発明例2のLEDの製造方法は、基本的に上述した本発明例1の製造方法と同様である。以下、具体的に説明する。
(S2−1)〜(S2−11):基本的に本発明例1の(S1−1)〜(S1−11)と同様である。
(S2−12)さらに、n電極とリードフレームのリード部とをワイヤボンドにより導通させた後、エポキシ系樹脂による樹脂封止を行なわずに、発光装置をランプ化した。
(S2−1)〜(S2−11):基本的に本発明例1の(S1−1)〜(S1−11)と同様である。
(S2−12)さらに、n電極とリードフレームのリード部とをワイヤボンドにより導通させた後、エポキシ系樹脂による樹脂封止を行なわずに、発光装置をランプ化した。
(比較例1):比較例1のLEDは、基本的に上記本発明例1のLEDと類似の構造を備えるが、図34に示すようにGaN基板1のN面にレンズ構造などは形成されていない点が異なる。図34は、比較例1のLEDを示す模式図である。図34に示した比較例1のLEDでは、GaN基板1のN面は平坦な表面形状を有している。なお、図34に示したLEDにおけるn電極11の直径は500μmである。
比較例1のLEDの製造方法は、以下の通りである。
(S3−1)〜(S3−11):基本的に本発明例1の(S1−1)〜(S1−7)、(S1−9)〜(S1−12)と同様である。つまり、上記本発明例1の(S1−8)に示した放電加工工程を除いて、本発明例1の製造工程と同様の工程を実施することにより、比較例1のLEDを得ることができる。
(S3−1)〜(S3−11):基本的に本発明例1の(S1−1)〜(S1−7)、(S1−9)〜(S1−12)と同様である。つまり、上記本発明例1の(S1−8)に示した放電加工工程を除いて、本発明例1の製造工程と同様の工程を実施することにより、比較例1のLEDを得ることができる。
(試験およびその結果)
本発明例1、2および比較例1を、それぞれ積分球内に搭載した後所定の電流(4A)を印加して、集光されディテクタから出力される光出力値の比較を行なった。その結果、本発明例1では2.1Wの出力が得られ、本発明例2では1.6Wの出力が得られた。一方、比較例1の出力は1.6Wであった。
本発明例1、2および比較例1を、それぞれ積分球内に搭載した後所定の電流(4A)を印加して、集光されディテクタから出力される光出力値の比較を行なった。その結果、本発明例1では2.1Wの出力が得られ、本発明例2では1.6Wの出力が得られた。一方、比較例1の出力は1.6Wであった。
このように、発明例1では比較例1より高い出力が得られた。これは、GaN基板1の光の取出し面であるN面をレンズ構造(凸レンズ形状)とすることで、GaN基板1とエポキシ系樹脂15との界面での光の全反射を抑制できた効果であると考えられる。また、発明例2は、エポキシ系樹脂からなる樹脂レンズが配置されていないにも関わらず、比較例1と同等の光の出力を得ることができた。これは、GaN基板1の光の取出し面であるN面をレンズ構造とすることで、樹脂レンズと同等の効果を得ることができた結果であると考えられる。
次に、GaN基板の光の取出し面に孔を形成した本発明例の効果について検討するべく、以下のような試料を準備して所定の電流を入力した場合の青色光出力の値を測定した。以下、準備した試料についてまず説明する。
(本発明例3):本発明例3のLEDは、基本的に図1〜図3に示したLEDと同様の構造を備える。具体的には、図8に示すように、n電極11の周囲に4つの孔31が形成されている。孔31は図2に示すようにチップを貫通するように形成されている。形成された孔31などの具体的な寸法は、以下の通りである。図8を参照して、GaN基板1を含むチップの1辺の長さL4を1.9mm、孔31の上部側(第2の主表面側)での幅L6を0.5mm、孔31の底部での幅L7を0.1mm、孔31とGaN基板の第2の主表面の端部との間の距離L5を0.3mm、孔31の間の距離L8を0.3mmとした。なお、孔31の平面形状は正方形状である。また、本発明例3のLEDの製造方法も、基本的に図1〜図3に示したLEDの製造方法(図4〜図8に示したLEDの製造方法)と同様である。以下、具体的に説明する。
(S4−1)〜(S4−5):基本的に本発明例1の(S1−1)〜(S1−5)と同様である。
(S4−6)GaN基板の第2の主面である裏面のN面には、フォトリソグラフィ技術と、蒸着と、リフトオフ法とにより、図5に示した距離L2=2mmおきにチップの中心に平面形状が四角形状であるn電極をつけた。n電極の平面形状の1辺の幅Dを300μmとした。n電極として、GaN基板1に接して下から順に(Ti層20nm/Al層100nm/Ti層20nm/Au層200nm)の積層構造を形成した。これを窒素(N2)雰囲気中で加熱することにより、接触抵抗を1E−5Ω・cm2以下とした。
(S4−7):基本的に本発明例1の(S1−7)と同様である。
(S4−8)その後、GaN基板の第2の主表面である裏面のN面に放電加工を施した。形状転写用のツール(電極)の材質は銀タングステン(Ag:W=35:65)を用いた。そして、GaN基板に四角錘台の形状の貫通孔を形成できるように、ツール(電極)に形状が四角錘台状の孔形成用凸部33(図7参照)を複数設けた。そして、絶縁性の媒体としての灯油中に試料であるGaN基板を浸漬した。さらに、灯油中においてGaN基板の第2の主表面に対向するようにツールを配置し、ツールとGaN基板との間に電圧を印加することにより、放電加工を行なった。なお、印加した電圧(加工電圧)は60Vとした。加工の結果、GaN基板の第2の主表面には図1および図2に示したような貫通孔が形成された。
(S4−9)〜(S4−12):基本的に本発明例1の(S1−9)〜(S1−12)と同様である。
(S4−1)〜(S4−5):基本的に本発明例1の(S1−1)〜(S1−5)と同様である。
(S4−6)GaN基板の第2の主面である裏面のN面には、フォトリソグラフィ技術と、蒸着と、リフトオフ法とにより、図5に示した距離L2=2mmおきにチップの中心に平面形状が四角形状であるn電極をつけた。n電極の平面形状の1辺の幅Dを300μmとした。n電極として、GaN基板1に接して下から順に(Ti層20nm/Al層100nm/Ti層20nm/Au層200nm)の積層構造を形成した。これを窒素(N2)雰囲気中で加熱することにより、接触抵抗を1E−5Ω・cm2以下とした。
(S4−7):基本的に本発明例1の(S1−7)と同様である。
(S4−8)その後、GaN基板の第2の主表面である裏面のN面に放電加工を施した。形状転写用のツール(電極)の材質は銀タングステン(Ag:W=35:65)を用いた。そして、GaN基板に四角錘台の形状の貫通孔を形成できるように、ツール(電極)に形状が四角錘台状の孔形成用凸部33(図7参照)を複数設けた。そして、絶縁性の媒体としての灯油中に試料であるGaN基板を浸漬した。さらに、灯油中においてGaN基板の第2の主表面に対向するようにツールを配置し、ツールとGaN基板との間に電圧を印加することにより、放電加工を行なった。なお、印加した電圧(加工電圧)は60Vとした。加工の結果、GaN基板の第2の主表面には図1および図2に示したような貫通孔が形成された。
(S4−9)〜(S4−12):基本的に本発明例1の(S1−9)〜(S1−12)と同様である。
(比較例2):比較例2のLEDは、基本的に上記本発明例3のLEDと類似の構造を備えるが、比較例1の場合と同様に、GaN基板1に貫通孔などは形成されていない点が異なる。そのため、比較例2のLEDの構造は、上記実施例1における比較例1のLEDと基本的に同様である。なお、比較例2の平面形状が四角形状のn電極11の幅Dは300μmである。
比較例2のLEDの製造方法は、以下の通りである。
(S5−1)〜(S5−11):基本的に本発明例3の(S4−1)〜(S4−7)、(S4−9)〜(S4−12)と同様である。つまり、上記本発明例1の(S4−8)に示した放電加工工程を除いて、本発明例3の製造工程と同様の工程を実施することにより、比較例2のLEDを得ることができる。
(S5−1)〜(S5−11):基本的に本発明例3の(S4−1)〜(S4−7)、(S4−9)〜(S4−12)と同様である。つまり、上記本発明例1の(S4−8)に示した放電加工工程を除いて、本発明例3の製造工程と同様の工程を実施することにより、比較例2のLEDを得ることができる。
(試験およびその結果)
本発明例3および比較例2を、それぞれ積分球内に搭載した後所定の電流(4A)を印加して、集光されディテクタから出力される光出力値の比較を行なった。その結果、本発明例3では2.0Wの出力が得られた。一方、比較例2の出力は1.6Wであった。また、本発明例3と比較例2とで、それぞれのチップの光がエポキシ系樹脂15へと出射する面積(孔31の内周面の面積も含めたチップの表面積)は7.6mm2と6.7mm2であった。
本発明例3および比較例2を、それぞれ積分球内に搭載した後所定の電流(4A)を印加して、集光されディテクタから出力される光出力値の比較を行なった。その結果、本発明例3では2.0Wの出力が得られた。一方、比較例2の出力は1.6Wであった。また、本発明例3と比較例2とで、それぞれのチップの光がエポキシ系樹脂15へと出射する面積(孔31の内周面の面積も含めたチップの表面積)は7.6mm2と6.7mm2であった。
本発明例3が比較例2よりも高い出力が得られたのは、図1や図2に示したような孔31を形成することにより、孔の内周側面からも光を取出すことができること(つまり、光の出射面積が増えたこと)や、形成された孔31(貫通孔)の側面が第2の主表面に対して傾斜しているので、光の全反射を少なくして効率的に光を取出すことができること、といった理由によるものであると考えられる。
次に、上記の実施例と重複するものもあるが本発明の実施例を羅列的に挙げて説明する。
この発明に従った発光装置は、図23、図24、図27〜図31、図33などに示すように、窒化物半導体基板(GaN基板1)と、窒化物半導体基板の第1の主表面の側に、n型窒化物半導体層(n型AlxGa1-xN層3)と、窒化物半導体基板から見てn型窒化物半導体層より遠くに位置するp型窒化物半導体層(p型AlxGa1-xN層5)と、n型窒化物半導体層およびp型窒化物半導体層の間に位置する発光層(量子井戸(MQW:Multi-Quantum Well)4)とを備えた発光装置である。発光装置は、p型窒化物半導体層の側をダウン実装し、窒化物半導体基板の第1の主表面と反対側の主表面である第2の主表面1aから光を放出する。第2の主表面にはレンズ構造(図24などに示す凸レンズ状のGaN基板1の第2の主表面や図30などに示すレンズ状の凸部)が形成されている。
このようにすれば、光の出射面である第2の主表面1aにレンズ構造を形成しているので、第2の主表面における光の全反射を防止することができる。また、第2の主表面1aが単純な平面である場合より、第2の主表面の面積を大きくできるので、第2の主表面1aからの光の取出し効率を向上させることができる。また、光の取出しに際して第2の主表面1a上に樹脂を配置する場合があるが、GaN基板1自体の構造としてのレンズ構造の形状などを調整することでこのような樹脂を不用とすることが可能になる。
なお、レンズ構造とは、窒化物半導体基板(GaN基板1)の第2の主表面1aの形状がレンズの表面のように成形された構造をいい、GaN基板1自体が光を集光または拡散させるようなレンズと同様の機能を発揮し得る構造であれば、どのような形状であってもよい。たとえば、第2の主表面1aにおいて表面が曲面状(球面状、あるいはドーム状)の凸部(GaN基板1の一部が凸レンズとなるような形状)が1つ(図23、図24、図26〜図29参照)または複数個(図30、図31、図33参照)形成されているような構造、あるいは第2の主表面に形成されたフレネルレンズのような構造、または第2の主表面において表面が曲面状の凹部(GaN基板1の一部が凹レンズとなるような形状)が1つまたは複数個形成されたような構造などが、レンズ構造に含まれる。
また、異なる観点から言えば、レンズ構造とは、GaN基板1の第2の主表面1aに表面が曲面状の凸部が形成され、GaN基板1の厚み方向における当該凸部の断面において、凸部の端部から中央部にかけて徐々にGaN基板1の厚みが増加するような構造、あるいは第2の主表面1aに表面が曲面状の凹部が形成され、GaN基板1の厚み方向における当該凹部の断面において、凹部の端部から中央部にかけて徐々にGaN基板1の厚みが減少するような構造を言う。また、レンズ構造の平面形状は円形状、三角形や四角形などの多角形状など、任意の形状を採用できる。
また、異なる観点から言えば、本発明におけるレンズ構造は、放電加工により形成された構造である。この場合、放電加工に用いる電極32(図25参照)の形状を適宜変更することにより、任意の形状のレンズ構造を得ることができる。また、電極32の表面形状を曲面状としておけば、表面が曲面状のレンズ構造を精度よく形成できる。
上記発光装置において、GaN基板1の平面形状が円形状および多角形状のいずれかであってもよい。この場合、製造する発光装置の装置構成に合せてGaN基板の平面形状を適宜選択することで、発光装置の装置構成の自由度を大きくできる。
上記発光装置において、多角形状とは、外周に3つ以上の角部を有する形状であって、たとえば三角形状、四角形状、六角形状、十二角形状などが挙げられる。また、角部の間をつなぐ辺は直線状であっても曲線状であってもよい。
上記発光装置では、GaN基板1の厚み方向において、レンズ構造が形成された部分におけるGaN基板1の厚みが0.3mm以上4.0mm以下であってもよい。この場合、レンズ構造の高さ(GaN基板1の厚み方向における高さ)を十分大きくすることができる。したがって、レンズ構造の表面積を十分大きくできるので、第2の主表面1aにおける光の取出し効率を効果的に向上させることができる。
上記発光装置において、図30などに示すように、レンズ構造は表面が曲面状の複数の凸部45を含んでいてもよい。また、上記凸部45の平面形状は円形状であってもよい。凸部45の底部における半径(r)に対する凸部45の高さ(h)の比(h/r)は0.2以上2.0以下であることが好ましい。
この場合、複数の凸部45を形成することで光の取出し効率を効果的に向上させることができる。また、上記のような形状のレンズ構造(凸部45)によって光の取出し効率を確実に向上させることができる。なお、上記比(h/r)の値が0.2未満と小さすぎる(凸部45の幅に対して高さが低すぎる)と、レンズ構造の効果が小さくなり、レンズ構造を形成していない直方体のチップと光の取出し効率という面でほとんど変わらなくなる。そのため、上記比(h/r)の下限は0.2とした。また、上記比(h/r)が2.0を超えて大きくなると、レンズ構造における光の集光効果は大きくなるが、側面での光の取出しがかえって小さくなるので、トータルとしての光の取出し効率の向上効果はほとんど無くなってしまう。そのため、上記比(h/r)の上限を2.0とした。なお、この比(h/r)の数値範囲の下限は好ましくは0.3、より好ましくは0.5であり、当該数値範囲の上限は、好ましくは1.5、より好ましくは1である。
この発明に従った発光装置は、図1〜図3、図11〜図13、図15、図16、図18、図19、図21に示すように、窒化物半導体基板(GaN基板1)と、窒化物半導体基板の第1の主表面の側に、n型窒化物半導体層(n型AlxGa1-xN層3)と、窒化物半導体基板から見てn型窒化物半導体層より遠くに位置するp型窒化物半導体層(p型AlxGa1-xN層5)と、n型窒化物半導体層およびp型窒化物半導体層の間に位置する発光層(MQW:Multi-Quantum Well)4)とを備えた発光装置である。発光装置は、p型窒化物半導体層の側をダウン実装し、窒化物半導体基板の第1の主表面と反対側の主表面である第2の主表面1aから光を放出する。第2の主表面には孔31が形成されている。
このようにすれば、第2の主表面1aのみではなく、孔31の側壁からも光を取出すことができる。また、GaN基板1の第2の主表面1aからの全反射を防止することもできる。そのため、光の取出し効率を向上させることができる。
上記発光装置において、孔31の深さは、GaN基板1の厚みの1/4以上1以下であることが好ましい。この場合、光の取出し効率を十分向上させることができる。なお、孔31の深さがGaN基板の厚みの1/4より小さいと、孔31を形成しない場合と光の取出し効率があまり変わらなくなる。そのため、孔31の深さの下限をGaN基板1の厚みの1/4とした。また、GaN基板1の第1の主表面側に形成された積層構造を維持するとともに積層構造の発光層4に十分な電流を供給できれば、孔31の深さは深いほどよい。そのため、孔31の深さの上限をGaN基板1の厚みと同じとした(孔31がGaN基板1を貫通した状態を、孔の深さを最大にした状態とした)。
なお、上記発光装置において、図2などに示すように、積層構造に到達する(積層構造に食い込む、あるいは積層構造を貫通する)ように孔31を形成してもよい。また、上記発光装置において、孔31は、第2の主表面1aから、GaN基板1のp型窒化物半導体層に面する側に形成された発光層4を含む積層構造において、GaN基板1に対向する面と反対側の表面にまで到達する貫通孔であってもよい。この場合、孔31の側壁の面積をより大きくできるので、チップ(GaN基板上に積層構造が形成され、当該GaN基板1を個々の素子単位に分割したもの)の表面積をより増加させることができる。このため、光の取出し効率をより向上させることができる。たとえば、積層構造におけるGaN基板1側の表面において、元の面積に対する、孔31を形成することにより消失した面積の割合が25%以下であることが好ましい。この場合、孔31を形成しない場合に比べて積層構造中の発光層4内の電流密度が極端に大きくならず、発光層4での発光効率が低下することを抑制できる。なお、上記割合が25%を超えると、発光層4内の電流密度が大きくなり、発光層4での単位面積当たりの発熱量が増加するため、発光効率が低下する。また、上記割合は、より好ましくは20%以下、さらに好ましくは15%以下である。
上記発光装置において、孔31の側壁の延びる方向と第2の主表面1aとのなす角度が40°以上80°以下であってもよい。この場合、孔31の形成によりチップの表面積を増加させることができるとともに、発光層4に供給される電流をGaN基板1内において十分広げることが可能なように孔31を形成できる。なお、上記角度が40°未満である場合、孔31の側壁の傾斜が小さすぎるため、十分に深い孔31を形成することが難しくなる。また、上記角度が80°超えの場合、孔31の側壁の傾斜が急すぎるため、孔31の側壁からの光の取出し効率が低下する。そのため、結果的にチップ全体としての光の取出し効率が返って低下する恐れがある。
上記発光装置において、図15に示すように、GaN基板1の第2の主表面1aにおける端部に孔としての外周部孔36が形成されていてもよい。上記発光装置において、GaN基板1の第2の主表面1aにおける端部に形成された外周部孔36は、外周部孔36の側壁がGaN基板1の側壁の一部を構成するように形成されていてもよい。また、異なる観点から言えば、GaN基板1の側壁は、外周部孔36が第2の主表面1aにおける端部に形成されることにより凹凸状になっていてもよい。
この場合、外周部孔36を形成することによりGaN基板1の端面の面積を増加させることができる。さらに、端面において外周部孔36の側壁により構成される部分が、第2の主表面1aに対して傾斜することになるので、第2の主表面1aから光が出射する方向への光の取出し効率をより向上させることができる。
上記発光装置において、発光層4を含む積層構造とGaN基板1とからなるチップの表面積について、孔31または外周部孔36を形成することに起因する表面積の増加率が2%以上20%以下であることが好ましい。ここで、表面積の増加率とは、(孔形成前のチップの表面積(すなわち、孔31または外周部孔36を形成する前のGaN基板1の第2の主表面1aの面積+チップの端面の面積)+孔31または外周部孔36の側壁の面積−孔31または外周部孔36を形成することにより消失したチップの表面の面積)/(孔形成前のチップの表面積)と表すことができる。
この場合、チップからの光の取出し効率を確実に向上させることができる。なお、表面積の増加率が2%未満である場合には、チップの表面積の増加による光の取出し効率の向上効果がほとんど見られない。また、表面積の増加率が20%を超える場合、形成される孔31または外周部孔36の側壁によりチップの表面積は増えるものの、孔31または外周部孔36の形成により発光層4に供給される電流をチップ内(特にGaN基板1内)において十分に広げることができなくなる。この結果、発光層4での電流密度が局所的に高くなり、当該領域での発熱量が増加することによって結果的に発光効率が低下する。したがって、トータルでは光の取出し効率が低下することになる。なお、面積の増加率の下限は好ましくは5%以上、より好ましくは10%以上である。また、面積の増加率の上限は、好ましくは15%以下である。
上記発光装置において、孔31または外周部孔36の平面形状は円形状および多角形状のいずれかであってもよい。
上記発光装置では、GaN基板1の厚み方向において、波長が430nm以上490nm以下の光がGaN基板1を透過するときの透過率は60%以上95%以下であってもよい。この場合、発光層4から放出される光の波長が上述のような波長であるときに、当該GaN基板1において発光層4から放出された光が吸収されてしまうことを抑制できる。このため、光の取出し効率がGaN基板1での光の吸収により大幅に低下することを抑制できる。
上記発光装置において、窒化物半導体基板はGaN基板1であってもよく、当該GaN基板1は酸素ドープによりn型化されていてもよく、酸素濃度が、酸素原子2E18(2×1018)個/cm3以上2E19(2×1019)個/cm3以下の範囲にあってもよい。この場合、GaN基板1の全体に均一に電流を流すことができるので、発光装置においてGaN基板1の第2の主表面1aのほぼ全体から十分な光を出射することができる。またGaN基板1の厚み方向において、波長が430nm以上490nm以下の光がGaN基板1を透過するときの透過率を実用上問題のない程度まで高くすることができる。
上記発光装置において、GaN基板1の平面形状は四角形状であってもよい。GaN基板1の平面形状における1辺の長さは0.3mm以上4.0mm以下であってもよい。この場合、最終的に得られる発光装置のサイズに合せてGaN基板1のサイズを選択できる。
上記発光装置において、GaN基板1の比抵抗が5×10-4Ω・cm以上0.1Ω・cm以下であってもよい。なお、比抵抗は4端子法による電気抵抗の測定結果より決定した。この場合、電極から導入された電流をGaN基板1に十分広げることができる。このため、発光層4の広い領域に十分な電流を供給することが可能になる。したがって、発光層4での発光効率を向上させることができる。
この発明に従った発光装置の製造方法は、窒化物半導体基板(GaN基板1)と、窒化物半導体基板の第1の主表面の側に、n型窒化物半導体層(n型AlxGa1-xN層3)と、窒化物半導体基板から見てn型窒化物半導体層より遠くに位置するp型窒化物半導体層(p型AlxGa1-xN層5)と、n型窒化物半導体層およびp型窒化物半導体層の間に位置する発光層(量子井戸(MQW:Multi-Quantum Well)4)とを備えた発光装置の製造方法であって、窒化物半導体基板(GaN基板1)を準備する工程(基板準備工程(S10))と、加工工程(放電加工工程(S70))とを備える。放電加工工程(S70)では、GaN基板1の第2の主表面1aと対向するように配置した電極32とGaN基板1との間に電圧を印加することによって、電極32とGaN基板1との間で放電を発生させることにより、GaN基板1の第2の主表面1aを部分的に除去する。
このようにすれば、放電加工を利用してGaN基板1の第2の主表面1aに任意の構造を形成できる。そのため、本発明に従った発光装置におけるレンズ構造や孔31などを容易に精度よく形成できる。
上記加工工程では、放電を利用してGaN基板の第2の主表面1aにレンズ構造を形成してもよい。また、上記加工工程では、放電を利用してGaN基板1の第2の主表面1aに孔31または外周部孔36を形成してもよい。この場合、本発明に従った発光装置を容易に形成できる。
上記発光装置の製造方法において、電極32の形状は、第2の主表面1aに形成されるべき構造の形状が転写された形状であってもよい。放電加工工程(S70)では、GaN基板1の第2の主表面1aが部分的に除去されることにより、電極32の形状に沿った形状にGaN基板1の第2の主表面1aが加工されてもよい。この場合、電極32の形状をレンズ構造や孔31または外周部孔36の形状を転写した形状としておくことで、当該レンズ構造や孔31または外周部孔36を放電加工により容易に形成できる。
上記発光装置の製造方法は、放電加工工程(S70)の後、GaN基板1の第2の主表面1aの表面層を10μm以上除去する工程をさらに備えていてもよい。この場合、放電加工工程(S70)により第2の主表面1aの表面層に加工変質層などが形成されていても、当該加工変質層などを除去することができる。このため、加工変質層などが存在することに起因して第2の主表面1aからの光の取出し効率が低下するといった問題の発生を抑制できる。
上記発光装置の製造方法では、第2の主表面1aの表面層を10μm以上除去する工程(除去工程)において、エッチングにより第2の主表面1aの表面層を除去することが好ましい。この場合、新たな加工変質層などを形成することなく第2の主表面1aの表面層を所定の厚みだけ除去することができる。このため、除去工程の後における第2の主表面1aの表面層において光の取出し効率を低減させるような変質層が残存する可能性を低減できる。
上記発光装置の製造方法において、GaN基板1には、発光装置を構成するチップが複数個形成されていてもよい。加工工程においては、GaN基板1がチップに分割されてもよい。この場合、加工工程において、第2の主表面1aにおいて所定の構造(レンズ構造や孔など)を形成すると同時に、GaN基板1をチップに分割することができる。したがって、チップに分割する工程を放電加工工程(S70)とは別工程として実施する場合より、発光装置の製造工程を簡略化できる。この結果、発光装置の製造コストを低減できる。
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本発明の発光装置は、導電性の高い窒化物半導体基板を用い、光の出射面においてレンズ構造や孔などを形成し、pダウン実装した構造を用いた結果、(1)光の取出し効率を向上させることができ、(2)放熱性に優れ、複雑な電極構造を設ける必要がなく、大出力の発光を可能にし、(3)導電性に優れ、過渡電圧や静電放電から発光素子を保護するための保護回路を設ける必要がなく、大面積発光および静電耐圧に優れ、(4)発光層から基板にかけて屈折率の大から小への大きな不連続性がないため、発光層から放出面にいたる間で全反射が生じ難く、したがって全反射に起因する、効率低下や側面部の樹脂劣化がなく、(5)その構造が簡単なために、製造しやすく安価であり、メインテナンス性にも優れている。このため、今後、自動車の照明装置を含めて各種の照明製品に広範に利用されることが期待される。
1 GaN基板、1a 光放出面(第2の主表面)、2 n型GaN層、3 n型AlxGa1-xN層、4 MQW(発光層)、5 p型AlxGa1-xN層、6 p型GaN層、11 n電極、12 p電極、13 ワイヤ、14 導電性接着剤、15 エポキシ系樹脂、21a リードフレームのマウント部、21b リードフレームのリード部、25 素子分離溝、30 反射膜、31 孔、32 電極、33 孔形成用凸部、34 素子分離用凸部、35,48 側面、36 外周部孔、40 孔の底壁、42 傾斜した側面、45 凸部、47 凹部、50 チップ境界、L1 p電極辺長さ、L2 スクライブ線間隔(チップ辺長さ)、L3 素子分離溝幅、D n電極直径。
Claims (17)
- 窒化物半導体基板と、前記窒化物半導体基板の第1の主表面の側に、n型窒化物半導体層と、前記窒化物半導体基板から見て前記n型窒化物半導体層より遠くに位置するp型窒化物半導体層と、前記n型窒化物半導体層およびp型窒化物半導体層の間に位置する発光層とを備えた発光装置であって、
前記p型窒化物半導体層の側をダウン実装し、前記窒化物半導体基板の前記第1の主表面と反対側の主表面である第2の主表面から光を放出し、
前記第2の主表面にはレンズ構造が形成されている、発光装置。 - 前記窒化物半導体基板の平面形状が円形状および多角形状のいずれかである、請求項1に記載の発光装置。
- 前記窒化物半導体基板の厚み方向において、前記レンズ構造が形成された部分における前記窒化物半導体基板の厚みは0.3mm以上4.0mm以下である、請求項1または2に記載の発光装置。
- 前記レンズ構造は表面が曲面状の複数の凸部を含む、請求項1〜3のいずれか1項に記載の発光装置。
- 窒化物半導体基板と、前記窒化物半導体基板の第1の主表面の側に、n型窒化物半導体層と、前記窒化物半導体基板から見て前記n型窒化物半導体層より遠くに位置するp型窒化物半導体層と、前記n型窒化物半導体層およびp型窒化物半導体層の間に位置する発光層とを備えた発光装置であって、
前記p型窒化物半導体層の側をダウン実装し、前記窒化物半導体基板の前記第1の主表面と反対側の主表面である第2の主表面から光を放出し、
前記第2の主表面には孔が形成されている、発光装置。 - 前記孔の深さは、前記窒化物半導体基板の厚みの1/4以上1以下である、請求項1〜5のいずれか1項に記載の発光装置。
- 前記孔は、前記第2の主表面から、前記窒化物半導体基板の前記p型窒化物半導体層の側に形成された前記発光層を含む積層構造において、前記窒化物半導体基板に対向する面と反対側の表面にまで到達する貫通孔である、請求項6に記載の発光装置。
- 前記孔の側壁の延びる方向と前記第2の主表面とのなす角度が40°以上80°以下である、請求項6または7に記載の発光装置。
- 前記窒化物半導体基板の前記第2の主表面における端部に前記孔が形成されている、請求項6〜8のずれか1項に記載の発光装置。
- 前記発光層を含む積層構造と前記窒化物半導体基板とからなるチップの表面積について、前記孔を形成することに起因する前記表面積の増加率が2%以上20%以下である、請求項6〜9のいずれか1項に記載の発光装置。
- 前記窒化物半導体基板の厚み方向において、波長が430nm以上490nm以下の光が前記窒化物半導体基板を透過するときの透過率は60%以上95%以下である、請求項1〜10のいずれか1項に記載の発光装置。
- 前記窒化物半導体基板はGaN基板であり、
前記GaN基板は酸素ドープによりn型化されており、酸素濃度が、酸素原子2E18個/cm3以上2E19個/cm3以下の範囲にある、請求項1〜11のいずれか1項に記載の発光装置。 - 前記窒化物半導体基板の平面形状が四角形状であり、
前記窒化物半導体基板の平面形状における1辺の長さは0.3mm以上4.0mm以下である、請求項1〜12のいずれか1項に記載の発光装置。 - 窒化物半導体基板と、前記窒化物半導体基板の第1の主表面の側に、n型窒化物半導体層と、前記窒化物半導体基板から見て前記n型窒化物半導体層より遠くに位置するp型窒化物半導体層と、前記n型窒化物半導体層およびp型窒化物半導体層の間に位置する発光層とを備えた発光装置の製造方法であって、
窒化物半導体基板を準備する工程と、
前記窒化物半導体基板の第2の主表面と対向するように配置した電極と、前記窒化物半導体基板との間に電圧を印加することによって、前記電極と前記窒化物半導体基板との間で放電を発生させることにより、前記窒化物半導体基板の前記第2の主表面を部分的に除去する加工工程とを備える、発光装置の製造方法。 - 前記電極の形状は、前記第2の主表面に形成されるべき構造の形状が転写された形状であり、
前記加工工程では、前記窒化物半導体基板の前記第2の主表面が部分的に除去されることにより、前記電極の形状に沿った形状に前記窒化物半導体基板の第2の主表面が加工される、請求項14に記載の発光装置の製造方法。 - 前記加工工程の後、前記窒化物半導体基板の前記第2の主表面の表面層を10μm以上除去する工程をさらに備える、請求項14または15に記載の発光装置の製造方法。
- 前記窒化物半導体基板には、発光装置を構成するチップが複数個形成されており、
前記加工工程においては、前記窒化物半導体基板が前記チップに分割される、請求項14〜16のいずれか1項に記載の発光装置の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005196572A JP2007019099A (ja) | 2005-07-05 | 2005-07-05 | 発光装置およびその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005196572A JP2007019099A (ja) | 2005-07-05 | 2005-07-05 | 発光装置およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007019099A true JP2007019099A (ja) | 2007-01-25 |
Family
ID=37756029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005196572A Pending JP2007019099A (ja) | 2005-07-05 | 2005-07-05 | 発光装置およびその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007019099A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018525821A (ja) * | 2015-08-27 | 2018-09-06 | エルジー イノテック カンパニー リミテッド | 発光素子及びこれを含む発光素子パッケージ |
WO2024101127A1 (ja) * | 2022-11-10 | 2024-05-16 | 国立研究開発法人情報通信研究機構 | 半導体発光素子、半導体発光素子の製造方法、発光モジュール及び発光モジュールの製造方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999047290A1 (fr) * | 1998-03-18 | 1999-09-23 | Mitsubishi Denki Kabushiki Kaisha | Matrice de profilage et procede de traitement de la surface d'une matrice de profilage |
JP2000196152A (ja) * | 1998-12-24 | 2000-07-14 | Toshiba Corp | 半導体発光素子およびその製造方法 |
JP2002368261A (ja) * | 2001-06-05 | 2002-12-20 | Sharp Corp | 窒化物系化合物半導体発光素子 |
JP2003258301A (ja) * | 2002-03-01 | 2003-09-12 | Nichia Chem Ind Ltd | 窒化物系半導体発光素子及びその製造方法 |
JP2004079972A (ja) * | 2002-08-22 | 2004-03-11 | Fuji Photo Film Co Ltd | 面発光型発光素子 |
JP2004096113A (ja) * | 2002-09-02 | 2004-03-25 | Samsung Electro Mech Co Ltd | 発光ダイオード及びその製造方法 |
WO2005020337A1 (ja) * | 2003-08-26 | 2005-03-03 | Sumitomo Electric Industries, Ltd. | 発光装置 |
JP2005096037A (ja) * | 2003-09-25 | 2005-04-14 | Seiko Epson Corp | 工具電極、工具電極を備えた放電加工装置、放電加工方法、及び工具電極によって形成される加工物 |
JP2005136311A (ja) * | 2003-10-31 | 2005-05-26 | Matsushita Electric Ind Co Ltd | 窒化物半導体基板及びその製造方法 |
-
2005
- 2005-07-05 JP JP2005196572A patent/JP2007019099A/ja active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999047290A1 (fr) * | 1998-03-18 | 1999-09-23 | Mitsubishi Denki Kabushiki Kaisha | Matrice de profilage et procede de traitement de la surface d'une matrice de profilage |
JP2000196152A (ja) * | 1998-12-24 | 2000-07-14 | Toshiba Corp | 半導体発光素子およびその製造方法 |
JP2002368261A (ja) * | 2001-06-05 | 2002-12-20 | Sharp Corp | 窒化物系化合物半導体発光素子 |
JP2003258301A (ja) * | 2002-03-01 | 2003-09-12 | Nichia Chem Ind Ltd | 窒化物系半導体発光素子及びその製造方法 |
JP2004079972A (ja) * | 2002-08-22 | 2004-03-11 | Fuji Photo Film Co Ltd | 面発光型発光素子 |
JP2004096113A (ja) * | 2002-09-02 | 2004-03-25 | Samsung Electro Mech Co Ltd | 発光ダイオード及びその製造方法 |
WO2005020337A1 (ja) * | 2003-08-26 | 2005-03-03 | Sumitomo Electric Industries, Ltd. | 発光装置 |
JP2005096037A (ja) * | 2003-09-25 | 2005-04-14 | Seiko Epson Corp | 工具電極、工具電極を備えた放電加工装置、放電加工方法、及び工具電極によって形成される加工物 |
JP2005136311A (ja) * | 2003-10-31 | 2005-05-26 | Matsushita Electric Ind Co Ltd | 窒化物半導体基板及びその製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018525821A (ja) * | 2015-08-27 | 2018-09-06 | エルジー イノテック カンパニー リミテッド | 発光素子及びこれを含む発光素子パッケージ |
WO2024101127A1 (ja) * | 2022-11-10 | 2024-05-16 | 国立研究開発法人情報通信研究機構 | 半導体発光素子、半導体発光素子の製造方法、発光モジュール及び発光モジュールの製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9293655B2 (en) | Semiconductor light emitting element | |
JP4244953B2 (ja) | 発光装置およびその製造方法 | |
JP4765916B2 (ja) | 半導体発光素子 | |
KR101978968B1 (ko) | 반도체 발광소자 및 발광장치 | |
KR102276207B1 (ko) | 반도체 발광 소자 및 반도체 발광 장치 | |
JP4804485B2 (ja) | 窒化物半導体発光素子及び製造方法 | |
JP4297084B2 (ja) | 発光装置の製造方法および発光装置 | |
JP5694215B2 (ja) | 半導体発光素子 | |
JP2006324324A (ja) | 発光装置、発光装置の製造方法および窒化物半導体基板 | |
KR20060070437A (ko) | 발광 장치 | |
CN102456796B (zh) | 半导体发光装置 | |
US20140001510A1 (en) | Light emitting element and method of producing the same | |
KR20130112330A (ko) | 발광 소자, 발광 소자 제조방법 및 조명 시스템 | |
JP2005327979A (ja) | 半導体発光素子および半導体発光装置 | |
KR20150056559A (ko) | 서로 나란히 배치되는 복수의 활성 영역을 포함한 광전자 반도체 칩 | |
JP4449919B2 (ja) | 発光装置の製造方法 | |
KR101777516B1 (ko) | 고전압 엘이디 플립 칩 및 그 제조 방법 | |
CN110021691B (zh) | 一种半导体发光器件 | |
JPWO2017154975A1 (ja) | 半導体発光装置 | |
US20190355888A1 (en) | Light emitting chip and associated package structure | |
KR102237144B1 (ko) | 발광 소자 및 발광 소자 패키지 | |
JP2007019099A (ja) | 発光装置およびその製造方法 | |
US9299901B2 (en) | Semiconductor light emitting device | |
KR101457036B1 (ko) | 반도체 발광 소자 및 이를 제조하는 방법 | |
KR20130014255A (ko) | 발광 소자, 발광 소자 제조방법 및 조명 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080123 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110419 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110823 |