WO2004102798A1 - 弾性表面波分波器 - Google Patents

弾性表面波分波器 Download PDF

Info

Publication number
WO2004102798A1
WO2004102798A1 PCT/JP2004/004782 JP2004004782W WO2004102798A1 WO 2004102798 A1 WO2004102798 A1 WO 2004102798A1 JP 2004004782 W JP2004004782 W JP 2004004782W WO 2004102798 A1 WO2004102798 A1 WO 2004102798A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic wave
surface acoustic
wave filter
filter
transmitting
Prior art date
Application number
PCT/JP2004/004782
Other languages
English (en)
French (fr)
Inventor
Norio Taniguchi
Yasunori Kishimoto
Mitsuyoshi Hira
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2005506151A priority Critical patent/JP4270206B2/ja
Publication of WO2004102798A1 publication Critical patent/WO2004102798A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0566Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers
    • H03H9/0576Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers including surface acoustic wave [SAW] devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1071Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the SAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6436Coupled resonator filters having one acoustic track only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1716Comprising foot-point elements
    • H03H7/1725Element to ground being common to different shunt paths, i.e. Y-structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1758Series LC in shunt or branch path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1766Parallel LC in series path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1775Parallel LC in shunt or branch path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1783Combined LC in series path

Definitions

  • the present invention relates to a surface acoustic wave duplexer used for a wireless communication device such as a mobile phone, for example, and more particularly, to a surface acoustic wave duplexer higher than a passband.
  • the present invention relates to a surface acoustic wave duplexer provided with a configuration for suppressing harmonics.
  • a surface acoustic wave duplexer is used to separate a signal on the transmitting side from a signal on the receiving side.
  • suppression of the second and third harmonics of the transmission side frequency is required.
  • FIG. 20 is a diagram showing a circuit configuration of a surface acoustic wave duplexer described in Japanese Patent Application Laid-Open No. Hei 9-199646.
  • a transmission surface acoustic wave filter 203 and a reception surface acoustic wave filter 204 are connected to a common signal terminal 202 connected to an antenna.
  • a first low-pass filter 205 is connected between the common signal terminal 202 and the transmitting-side surface acoustic wave demultiplexer 203, and the common signal terminal 202 and the receiving-side surface
  • the second low-pass filter 206 is connected between the wave filter 204 and the wave filter 204.
  • the low-pass filters 205 and 206 have parallel capacitors C I and C 2 and an inductor L connected in series.
  • FIG. 21 is a schematic plan view showing the surface acoustic wave device 2 11.
  • surface acoustic wave filters 2 13 and 2 14 are formed on a piezoelectric substrate.
  • a capacitive element 2 15 for impedance matching is formed on the piezoelectric substrate 2 12.
  • the capacitive element 2 15 is composed of a comb-shaped electrode, and the direction in which the electrode fingers of the comb-shaped electrode are arranged is aligned with the propagation direction of the surface acoustic wave in the surface acoustic wave filters 2 13 and 2 14. 90 degrees.
  • Japanese Patent Application Laid-Open No. 5-1678388 discloses that, in a surface acoustic wave duplexer, a glass epoxy substrate or the like is provided between a surface acoustic wave filter having a relatively high frequency and an antenna-side common terminal.
  • An inductance L formed by forming a metal strip line on a ceramic substrate is connected.
  • this inductance L is a phase rotation element and acts to achieve a high impedance in the attenuation region on the low frequency side of the surface acoustic wave filter on the side to which the inductance is connected. I have.
  • a one-pass filter 200 composed of parallel capacitors C 1 and C 2 and an inductor L connected in series is provided.
  • , 206 are connected to both the transmitting surface acoustic wave filter 203 and the receiving surface acoustic wave filter 204, so that the attenuation on the high frequency side of the passband is improved overall. .
  • the attenuation on the high frequency side of the passband is improved overall.
  • not only the second and third harmonics of the transmission-side frequency but also the attenuation on the high-frequency side are improved as a whole, resulting in a problem that insertion loss increases.
  • the position of the trap is determined by the frequency of the second harmonic and the third harmonic of the transmitting side frequency. By setting the position, it is possible to improve the attenuation in the second harmonic and the third harmonic without significantly deteriorating the input loss.
  • a trap filter using an open stub shot stub is configured, the area occupied by the trap filter in the surface acoustic wave duplexer package is increased, making it difficult to reduce the size of the surface acoustic wave duplexer.
  • Japanese Patent Application Laid-Open No. 11-185852 discloses that, in a surface acoustic wave filter configured using a piezoelectric substrate, an electrode finger is disposed in a surface wave propagation direction of the surface acoustic wave filter.
  • a capacitive element is formed by arranging comb electrodes in a direction rotated by 90 degrees, but the capacitive element 2 15 is merely a surface acoustic wave filter 2 13, 2 14 Are merely used as matching elements.
  • An object of the present invention is to improve the attenuation at the second harmonic and the third harmonic of the transmitting side frequency in view of the above-mentioned state of the art, and to achieve low loss and miniaturization. It is another object of the present invention to provide a surface acoustic wave duplexer.
  • an antenna terminal a transmitting surface acoustic wave filter connected to the antenna terminal, a receiving surface acoustic wave filter connected to the antenna terminal, the transmitting surface acoustic wave filter, Receiver side A package member on which a surface acoustic wave filter is mounted, and two trap attenuation poles that are connected to the transmitting-side surface acoustic wave filter and the receiving-side surface acoustic wave filter, and that are on a higher frequency side than a transmitting-side pass band.
  • a surface acoustic wave duplexer comprising a high-frequency element.
  • the two trap attenuation poles are located at or near a second harmonic and a third harmonic of a transmission-side pass band.
  • the high-frequency element includes first and second inductors, and first to third capacitive elements. 1.
  • the two inductors and the first to third capacitive elements constitute the two trap attenuation poles.
  • the first to third capacitance elements each include two capacitors each of which is connected to each of the first to third common terminals.
  • the elements are connected in a commonly connected ⁇ type, a first inductor is connected between the first common terminal and a ground potential, and between the second and third common terminals, A second inductor is connected.
  • the anti-resonance between the second inductor and the capacitance element connected in parallel to the second inductor includes: An attenuation pole of the first trap is generated at or near a second harmonic of the pass band of the transmitting surface acoustic wave filter, and the first to third capacitance elements are obtained in a T-type connection equivalent to a ⁇ -type connection. Due to the resonance between the capacitance and the first inductor, an attenuation pole of the second trap is generated at or near the third harmonic of the pass band of the transmitting surface acoustic wave filter.
  • a second invention of the present application provides an antenna terminal, a transmitting-side surface acoustic wave filter connected to the antenna terminal, and a receiving side connected to the antenna terminal.
  • the surface acoustic wave duplexer wherein the inductor constituting the element is formed in the package material.
  • the surface acoustic wave splitter further includes a phase matching strip pane provided in the package material, and the inductor forming the high-frequency element is The strip line and the package material are formed in the same plane.
  • the inductor is arranged so as to strengthen magnetic flux over at least two or more layers in the package material.
  • both of the strip line and the inductor extend over at least two or more layers in the package material. It is formed over the same two or more layers.
  • a transmitting-side surface acoustic wave filter which is connected to the antenna terminal, is connected to the antenna terminal, is configured using a piezoelectric substrate, and is connected to the antenna terminal.
  • a receiving-side surface acoustic wave filter configured using the same, a package material on which the transmitting-side surface acoustic wave filter and the receiving-side surface acoustic wave filter are mounted, at least one inductor, and at least one capacitive element.
  • a high-frequency element, wherein the capacitive element constitutes the transmission-side and / or reception-side surface acoustic wave filter.
  • the direction along the electrode finger pitch of the comb-shaped electrode is such that a surface wave propagates in the surface acoustic wave filter on which the comb-shaped electrode is formed.
  • the direction of rotation is 90 degrees with respect to the direction, and the ripple generated by the capacitive element is the second harmonic and the third harmonic of the pass band of the transmitting surface acoustic wave filter and the pass band of the receiving surface acoustic wave filter.
  • a surface acoustic wave duplexer characterized in that it is not located at or near a harmonic.
  • the piezoelectric substrate is L i T a 0 3 substrate
  • the period of the electrode fingers of the comb-shaped electrodes constituting the capacitance element is below Equations (1) to (3) [where, in Equations (1) to (3), f H is the upper limit frequency of the pass band of the receiving surface acoustic wave filter, and i L is the transmitting surface acoustic wave filter.
  • P means the lower limit frequency of the pass band of the filter, and P is the electrode finger pitch of the comb-shaped electrode (the sum of the electrode finger width and the space between the electrode fingers).
  • the electrode finger period of the comb-shaped electrode is expressed by the following formulas (4) to (1 2) [ ⁇ , i TL is: The lower limit frequency of the pass band of the transmitting surface acoustic wave filter, ⁇ ⁇ indicates the upper limit frequency of the pass band of the transmitting surface acoustic wave filter, and ⁇ indicates the electrode finger pitch of the comb-shaped electrode. ] In the range.
  • an antenna terminal and a transmitting side connected to the antenna terminal and configured by using a piezoelectric substrate are provided.
  • a surface acoustic wave filter, a receiving surface acoustic wave filter connected to the antenna terminal and configured using a piezoelectric substrate, and the transmitting surface acoustic wave filter and the receiving surface acoustic wave filter are mounted.
  • a high-frequency device having a package material, at least one inductor, and at least one capacitive element, wherein the capacitive element constitutes the transmitting side and the Z or receiving side surface acoustic wave filter
  • An elastic surface formed by forming a laminated structure including a first electrode film, a second electrode film, and an insulating film sandwiched between the first and second electrode films on a substrate. It is a wave splitter.
  • the transmitting-side surface acoustic wave filter and the receiving-side surface acoustic wave filter are configured using independent piezoelectric substrates, respectively, and form the high-frequency element.
  • a capacitive element for performing the operation is formed on the piezoelectric substrate of the reception-side surface acoustic wave filter.
  • the capacitive element forming the high-frequency element is an antenna terminal-side end of the reception-side surface acoustic wave filter. Are formed in the vicinity.
  • the transmission-side surface acoustic wave filter and the reception-side surface acoustic wave filter are formed on the same piezoelectric substrate.
  • the capacitive element for constituting the high-frequency element is formed near an end of the receiving-side surface acoustic wave filter on the antenna terminal side.
  • a receiving-side surface acoustic wave filter configured using the same, a package material on which the transmitting-side surface acoustic wave filter and the receiving-side surface acoustic wave filter are mounted, at least one inductor, and at least one capacitive element.
  • a surface acoustic wave demultiplexer characterized by being formed in the following.
  • a transmitting-side surface acoustic wave filter connected to an antenna terminal, the antenna terminal connected to the antenna terminal, and configured using a piezoelectric substrate.
  • a receiving-side surface acoustic wave filter configured using the same, a package material on which the transmitting-side surface acoustic wave filter and the receiving-side surface acoustic wave filter are mounted, at least one inductor, and at least one capacitive element.
  • a phase adjusting strip line provided in the package material, wherein the inductor includes a plurality of layers on the same layer in the package material as the phase adjusting strip line.
  • the capacitive element is formed of a comb-shaped electrode on a piezoelectric substrate, and a direction in which the electrode fingers of the comb-shaped electrode are connected is a direction orthogonal to a direction in which the surface wave propagates in the directional surface acoustic wave filter.
  • the period of the electrode fingers of the comb-shaped electrode is expressed by the following formulas (13) to (15) [where the formula (13) In (15), fH represents the upper limit frequency of the passband of the surface acoustic wave filter on the receiving side, fL represents the lower limit frequency of the passband of the filter of the surface acoustic wave filter on the transmitting side, and P represents ,
  • the electrode finger pitch of the comb-shaped electrode (which is the sum of the width of the electrode finger and the space between the electrode fingers).
  • the seventh invention of the present application is directed to an antenna terminal, a transmitting surface acoustic wave filter connected to the antenna terminal, and a receiving side connected to the antenna terminal.
  • a surface acoustic wave duplexer comprising: a surface acoustic wave filter; a package material on which the transmission-side surface acoustic wave filter and the reception-side surface acoustic wave filter are mounted; at least one phase matching element; and a low-pass filter.
  • the low-pass filter is connected between the antenna terminal and the transmitting-side surface acoustic wave filter and the receiving-side surface acoustic wave filter, and the single-pass filter has a low-pass filter function and an antenna matching function.
  • This is a surface acoustic wave duplexer characterized by having both of the following.
  • the phase matching element is disposed between a surface acoustic wave filter having a relatively higher frequency and an antenna terminal, and The amount of phase delay caused by the matching element is less than 90 degrees at the center frequency of the surface acoustic wave filter whose frequency is relatively low.
  • the phase delay amount is preferably in a range of 60 to 80 degrees.
  • the antenna terminal of the surface acoustic wave duplexer excluding the low-pass filter is provided.
  • Impedance is inductive at least in the frequency range of 50% or more of the pass band width of each of the transmitting surface acoustic wave filter and the receiving surface acoustic wave filter, and the impedance in the pass band of the low-pass filter is Therefore, matching from the antenna side to the real axis is achieved.
  • a surface acoustic wave duplexer includes an antenna terminal, a transmitting surface acoustic wave filter connected to the antenna terminal, a receiving surface acoustic wave filter connected to the antenna terminal, A package material on which the transmitting-side surface acoustic wave filter and the receiving-side surface acoustic wave filter are mounted; at least one inductor; and at least one capacitive element; and the transmitting-side surface acoustic wave filter and the receiving-side surface acoustic wave filter.
  • the surface acoustic wave filter is connected at a resonance connection point, comprising: a high-frequency element provided only between the resonance connection point and the antenna terminal; wherein the inductor is formed in a package material.
  • the capacitive element comprises a comb-shaped electrode formed on a piezoelectric substrate, and the direction of the electrode finger pitch of the comb-shaped electrode propagates on the piezoelectric substrate. This is a direction rotated by 90 degrees with respect to the propagation direction of the surface acoustic wave device, and the ripple generated by the capacitive element is approximately the second and third harmonics of the passband of the transmitting surface acoustic wave filter and the receiving surface acoustic wave filter. It is characterized in that the high-frequency element has both a low-pass filter function and an antenna matching function without being located at or near the harmonic.
  • a surface acoustic wave duplexer includes an antenna terminal, a transmitting surface acoustic wave filter connected to the antenna terminal, a receiving surface acoustic wave filter connected to the antenna terminal,
  • a surface acoustic wave duplexer comprising: a package material on which the transmission side surface acoustic wave filter and the reception side surface acoustic wave filter are mounted; a strip line for phase adjustment provided in the package material; and a high frequency element.
  • the high-frequency element transmits It has two trap attenuation poles at or near the second harmonic and the third harmonic of the side surface acoustic wave filter, and the high-frequency element includes first and second inductors, and first to third capacitive elements.
  • first to third capacitive elements are connected in a ⁇ type in which two capacitive elements are commonly connected to each of the first to third common terminals, and A first inductor is connected between the terminal and a ground potential, a second inductor is connected between the second and third common terminals, the second inductor is connected to the package, A phase adjustment strip provided in the semiconductor material, formed on the same layer as the strip line and over a plurality of layers, a terminal connected to the transmission-side signal terminal of the strip line, and a terminal of the second inductor.
  • the terminal connected to the transmitting-side signal terminal is Characterized in that it is short-circuited in the over-di material.
  • FIG. 1 is a diagram showing a circuit configuration of a surface acoustic wave duplexer according to a first embodiment of the present invention.
  • FIG. 2 is a schematic front sectional view of the surface acoustic wave duplexer according to the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a receiving surface acoustic wave filter used in the first embodiment of the present invention and first to third capacitive elements formed in a piezoelectric substrate of the receiving surface acoustic wave filter.
  • FIG. 2 is a schematic plan sectional view of FIG.
  • FIG. 4 is a diagram illustrating a circuit configuration of a high-frequency element used in the surface acoustic wave duplexer according to the first embodiment.
  • FIG. 5 is a diagram showing the frequency characteristics of the surface acoustic wave duplexer of the first embodiment and the frequency characteristics of a surface acoustic wave duplexer of a comparative example having no high-frequency element prepared for this purpose.
  • FIG. 6 is a diagram showing the frequency characteristics of the high-frequency device shown in FIG.
  • FIG. 7 is a diagram illustrating a circuit configuration of a modification of the high-frequency element.
  • FIG. 8 is a diagram illustrating a frequency characteristic of the high-frequency device of the modification illustrated in FIG.
  • FIG. 9 is a circuit diagram showing still another modification of the high-frequency element.
  • FIG. 10 is a diagram illustrating frequency characteristics of the high-frequency device illustrated in FIG.
  • FIGS. 11A and 11B show circuit diagrams of (a) and (b) of a portion including first to third capacitance elements connected in a ⁇ type, and a case where the ⁇ type connection is replaced with a T-shaped circuit.
  • FIG. 3 is a diagram illustrating a transmission circuit.
  • FIG. 4 is a diagram showing phase-frequency characteristics in a structure in which a comb-shaped electrode is formed such that
  • Fig. 13 shows the surface acoustic wave when the electrode finger pitch of the comb-shaped electrode satisfies any of formulas (1) to (3), and when it is not included in any of formulas (1) to (3). It is a figure showing the frequency characteristic of a duplexer.
  • FIG. 14 is a diagram illustrating a circuit configuration of a surface acoustic wave duplexer in a case where a parasitic inductance component is parasitic at a portion where a high-frequency element is connected.
  • FIG. 15 is a diagram showing the frequency characteristics of the high-frequency element when the parasitic inductance component shown in FIG. 14 is not parasitic and when the parasitic inductance component is inserted.
  • Figure 16 is a Smith chart showing the impedance characteristics of the receiving surface acoustic wave filter when the phase delay amount of the phase matching circuit is 75 degrees.
  • Fig. 17 is a Smith chart for explaining the change of the matching state of the transmitting surface acoustic wave filter of the surface acoustic wave demultiplexer when the phase delay in the phase matching element is less than 90 degrees.
  • FIG. 18 is a Smith chart showing a change in the matching state of the transmitting surface acoustic wave filter when the phase delay amount of the phase matching element is about 60 degrees.
  • FIG. 19 is a Smith chart showing a change in the matching state of the transmitting-side surface acoustic wave filter when the impedance that is too dielectric is controlled by the capacitance component of the high-frequency element.
  • FIG. 20 is a circuit diagram showing an example of a conventional surface acoustic wave duplexer.
  • FIG. 21 is a schematic plan view showing a structure of a conventional surface acoustic wave filter in which a comb-shaped capacitance electrode is formed on a piezoelectric substrate for impedance matching.
  • FIG. 1 is a diagram showing a circuit configuration of a surface acoustic wave duplexer according to one embodiment of the present invention
  • FIG. 2 is a front sectional view of the surface acoustic wave duplexer.
  • the surface acoustic wave duplexer 1 of the present embodiment has a transmission band of 824 to 849 MHz on the transmitting side and a mobile phone with a passing band of 869 to 894 MHz on the receiving side. It is a utility surface wave splitter.
  • the pass band on the transmitting side and the pass band on the receiving side in the surface acoustic wave duplexer according to the present invention are not limited to these.
  • the surface acoustic wave demultiplexer 1 has an antenna terminal 2 connected to an antenna ANT, and a transmitting surface acoustic wave filter 3 and a receiving surface acoustic wave filter 4 are connected to an antenna terminal 3. It is connected.
  • the transmitting side surface acoustic wave finoletor 3 and the receiving side surface acoustic wave filter 4 are connected at the common connection point 5 at their respective antenna terminal side ends.
  • a low-pass filter 6 is connected between the antenna terminal 2 and the common connection point 5 as a high-frequency element. Details of the low-pass filter 6 will be described later.
  • phase matching element 7 is connected between the receiving-side surface acoustic wave filter 4 and the common connection point 5.
  • the package structure of the surface acoustic wave duplexer 1 of the present embodiment includes a package member 11 and a lid member 12.
  • the package member 11 has an opening 11a opened upward, and a lid member 12 is joined to the package member 11 so as to close the opening 11a.
  • the package material 11 is made of an appropriate material such as a piezoelectric ceramic or a synthetic resin.
  • the lid member 12 can be made of an appropriate material such as metal or ceramics.
  • the package material 1 is formed by a flip-chip bonding method using bumps 13 and 14, which are schematically illustrated by a transmitting surface acoustic wave finoletor 3 and a receiving surface acoustic wave filter 4.
  • the chip is mounted on the chip mounting surface 1 1b.
  • the chip mounting surface l ib is the bottom surface of the opening 11a, but when a flat package substrate is used, the chip mounting surface is the top surface.
  • an antenna terminal 2 (see FIG. 1) is provided on the side of the package material 11 on which the receiving surface acoustic wave filter 4 is provided.
  • the transmitting-side surface acoustic wave filter 3 and the receiving-side surface acoustic wave filter 4 are each formed by forming a plurality of one-port type surface acoustic wave resonators on independent piezoelectric substrates.
  • the transmitting-side surface acoustic wave filter 3 has a ladder-type circuit configuration including a plurality of series arm resonators S 1 to S 6 and a plurality of parallel arm resonators P 1 and P 2.
  • the receiving side surface acoustic wave filter 4 also includes a plurality of series arm resonators S7 to S10 and
  • a ladder-type circuit configuration including a plurality of parallel arm resonators P3 to P5 (the series arm resonators S1 to S6, S7 to S10 and the parallel arm resonators P1, P2, Each of P3 to P5 is formed of a one-port surface acoustic wave resonator as described above.
  • the receiving-side surface acoustic wave filter 4 is configured using a rectangular piezoelectric substrate 21.
  • the above-described series arm resonators S7 to S10 and the parallel arm resonators P3 to P5 are formed on the piezoelectric substrate 21.
  • the series arm resonators S7 and S8 are schematically shown in FIG. 3 as one resonator.
  • the series arm resonators S9 and S10 are shown as one resonator in FIG.
  • Each of the series arm resonators S7 to S10 and the parallel arm resonators P3 to P'5 has grating reflectors on both sides in the surface wave propagation direction of an IDT (interdigital transducer) composed of comb electrodes. It is composed of a one-port surface acoustic wave resonator formed.
  • IDT interdigital transducer
  • the transmitting-side surface acoustic wave filter 3 includes a plurality of one-port surface acoustic wave filters such that the series arm resonators S 1 to S 6 and the parallel arm resonators P 1 and P 2 are formed on a rectangular piezoelectric substrate. It has a structure in which a child is formed.
  • the piezoelectric substrate for forming the surface acoustic wave filters 3 and 4 may be formed of another piezoelectric single crystal or a piezoelectric ceramic.
  • a material for various electrodes formed on the piezoelectric substrate a material such as Au or Cu other than the force S or A1 using an A1 alloy containing A1 as a main component is used. May be used.
  • Various electrodes may be formed by laminating a plurality of metals.
  • a phase matching element 7 is connected between the receiving-side surface acoustic wave filter 4 and the common connection point 5. This phase matching element 7 is
  • strip lines 15 and 16 are formed at intermediate height positions between the chip mounting surface 11 b and the lower surface 11 c of the package material 11.
  • One end of the strip line 15 is connected to the receiving-side surface acoustic wave filter 4 by a via-hole electrode 17.
  • the other end of the strip line 15 is connected to the strip line 16 by a via hole electrode 18.
  • the strip line 16 is connected to a wiring electrode (not shown) formed on the chip mounting surface 11 b of the package material 11 by a via hole electrode 19. This wiring electrode is connected to the common connection point 5 in FIG.
  • the phase matching element 7 is configured in the package 11 constituting the surface acoustic wave duplexer 1.
  • the strip lines 15 and 16 have a characteristic impedance near 50 ⁇ .
  • the length of the strip lines 15 and 16 is such that the amount of phase shift caused by them is such that the phase rotates 75 degrees at the passband center frequency 8366.5 MHz of the transmitting surface acoustic wave filter 3. It is said.
  • the low-pass filter 6 of FIG. 1 has at least one capacitive element and at least one inductor. More specifically, as shown in FIG. 3, first to third capacitive elements 22 to 24 are formed on a piezoelectric substrate 21 constituting a receiving-side surface acoustic wave filter 4.
  • Each of the first to third capacitive elements 22 to 24 is constituted by a comb-shaped electrode.
  • the first to third capacitive elements 22 to 24 are connected to the first to third common terminals 25 to 27, respectively.
  • the one-pass filter 6 includes a capacitor obtained by connecting the first to third capacitive elements 22 to 24 with a resistor, and a package material 11 shown in FIG. It is configured to utilize resonance with the buried inductance elements 29 and 30. That is, the inductance elements 29 and 30 are formed by forming electrodes in a plurality of layers in the package material 11. The inductance elements 29, 30 can be formed in a spiral or meander shape depending on the inductance value. Inductance elements 29 and 30 are connected by via-hole electrode 31. One end of the inductance element 29 is connected to a wiring electrode (not shown) provided on the upper surface of the package material 11 by a via hole electrode 32.
  • the inductance element 30 is connected to the via-hole electrode 33, and the via-hole electrode 33 reaches the lower surface 11c of the knocking material 11 and is formed on the lower surface 11c. It is connected to a wiring electrode (not shown).
  • Another set of inductance elements is constructed in the same manner as the inductance elements 29, 30 (not shown).
  • the low-pass filter 6 having the circuit configuration shown in FIG. 4 is composed of the inductance elements 29 and 30 and another set of the inductance elements and the first to third capacitance elements 22 to 24. .
  • the inductances Ll and L2 in Fig. 4 are respectively composed of the inductance elements 29 and 30 in Fig. 2 and the other set of inductance elements described above. That is, the inductance elements 29 and 30 are connected to the capacitance elements 22 to 24 so as to form the circuit shown in FIG.
  • the inductance L has a smaller inductance value than L 2, so that it can be configured with only a single-layer via hole.
  • the low-pass filter 6 is connected between the antenna terminal 2 and the common connection point 5 as described above.
  • the low-pass filter 6 has a frequency characteristic having an attenuation pole at or near the second and third harmonics of the center frequency of the pass band of the transmission surface acoustic wave filter, and has a transmission side and a reception side elastic wave.
  • the low-pass filter 6 allows the first attenuation pole to be located at or near the second harmonic of the pass band of the transmission-side surface acoustic wave filter 3, and the second attenuation pole to be located at or near the third harmonic.
  • the second and third harmonics of the pass band of the transmitting surface acoustic wave filter can be effectively suppressed, and good frequency characteristics can be obtained.
  • the direction in which the electrode fingers of the comb-shaped electrodes constituting the capacitive elements 22 to 24 are aligned is determined by the surface acoustic wave in the receiving surface acoustic wave filter 4. They are arranged in a direction orthogonal to the propagation direction.
  • the direction in which the surface acoustic wave propagates in the receiving-side surface acoustic wave filter refers to the propagation direction of the surface wave in the series arm resonators S7 to S10 and the parallel arm resonators P3 to P5.
  • the direction of the electrode finger pitch of each of the comb electrodes constituting the capacitive elements 22 to 24 is a direction rotated 90 degrees with respect to the surface wave propagation direction.
  • the electrode finger pitch in the capacitance elements 22 to 24, that is, the sum of the width of the electrode finger and the width of the space between the electrode fingers is set to 4.5 m in the present embodiment.
  • the inductance elements 29 and 30 are formed over a plurality of layers in the same manner as the strip lines 15 and 16 that constitute the phase matching element. , 30 and the strip lines 15, 16 are formed in the same plane. That is, in the present embodiment, the electrodes forming the inductance element and the electrodes forming the phase matching element 7 are arranged so as to extend over a plurality of layers and to be located on the same plane.
  • the other set of inductances, not shown, is configured similarly to the inductances 29 and 30.
  • a surface acoustic wave duplexer of the above embodiment and a surface acoustic wave duplexer of a comparative example in which the low-pass filter 6 was removed from the above embodiment were prepared, and frequency characteristics were measured.
  • Figure 5 shows the results.
  • the solid line in FIG. 5 shows the frequency characteristics of the surface acoustic wave duplexer 1 of the present embodiment, and the broken line shows the frequency characteristics of the surface acoustic wave duplexer of the comparative example.
  • the second and third times the center frequency of the receiving surface acoustic wave filter 4 are indicated by arrows A and B, respectively. 1, it can be seen that the second attenuation pole is generated. That is, according to the low-pass filter 6, it can be seen that the attenuation in the second and third harmonics in the pass band of the transmission-side surface acoustic wave filter 3 can be improved.
  • the low-pass filter 6 is configured to have the circuit configuration shown in FIG. 4, but in the present invention, the circuit configuration of the low-pass filter 6 can be variously modified.
  • FIG. 7 and 9 are circuit diagrams showing modified examples of the low-pass filter 6.
  • FIG. 7 In the low-pass filter 36 shown in FIG. 7, four capacitive elements 36a to 36d and two inductance elements 36e and 36f are used. That is, the inductance element 36e and the capacitance element 36b are connected in parallel, and similarly, the inductance element 36f and the capacitance element 36c are connected in parallel. Then, the parallel connection structure of the inductance element 36 e and the capacitance element 36 b and the parallel structure of the inductance element 36 f and the capacitance element 36 c are connected in series, and these parallel connection structures are provided.
  • Capacitors 36a and 36d are connected to the ground potential on the outer side of the portion indicated by the arrow.
  • capacitance elements 37a and 37c are connected to the ground potential, respectively.
  • the inductance element 37 e is connected between the capacitance element 37 c and the ground potential.
  • FIGS. 6, 8, and 10 are diagrams showing the frequency characteristics of the above-mentioned mouth-to-pass finoleta 6, 36 '37.
  • the second harmonic of the pass band of the transmission-side elastic surface acoustic wave filter 3 is used. It can be seen that the first and second attenuation poles can be generated at the third and third harmonics, respectively.
  • the amount of attenuation in the band of the attenuation pole is lower than when the low-pass filter 6 is used. It is desirable to use filter 6.
  • the first to third capacitance elements 22 to 24 are connected in a ⁇ shape as described above, and the first inductance element is connected between the first common terminal 25 and the ground potential.
  • L 1 is connected, and a second inductance element L 2 is connected between the second and third common terminals 26 and 27.
  • the second inductor L 2 and the first attenuation pole by the anti-resonance of the second inductance L 2 capacitive element 23 connected in parallel to the Ji life, and capacity C z will be described later, the first inductance A second attenuation pole is created by resonance with L 1.
  • the low-pass filter 6 when used, not only can the number of elements be reduced, but also the capacitance value and the inductance value as a whole can be reduced as compared with the low-pass filters 36 and 37. Further, the low-pass filter 6 can be configured to be smaller than the low-pass filters 36 and 37.
  • connection of the first to third capacitive elements 22 to 24 of the low-pass filter 6 is changed from, for example, a ⁇ -type connection shown in FIG. 11A to a T-type connection structure shown in FIG. 11B.
  • the position of the attenuation pole of the low-pass filter 6 can be calculated.
  • the value of the total capacitance C z is as follows.
  • the position of the second attenuation pole is determined by the inductance element L2 and the capacitance Cz . Determined by resonance. Therefore, that is, because it is determined by 1 Z (2 X ⁇ X ( L 2 XC z) 1/2), the value of the capacitance C 2 is increased, the frequency also by reducing the value of the inductance L 2 one Therefore, the size can be further reduced as compared with the low-pass filters 36 and 37.
  • the inductance element forming the one-pass filter may be provided outside the receiving-side elastic surface wave filter 4.
  • the inductance elements 29, 30, etc. in the package material 11 as in the above embodiment, further downsizing can be achieved. Further, the added value of the surface acoustic wave duplexer 1 can be increased.
  • the low-pass filter 6 needs to be configured to attenuate the second and third harmonics of the pass band of the transmitting-side surface acoustic wave filter 3.
  • the low-pass filter 6 is connected between the receiving-side surface acoustic wave filter 4 and the antenna terminal 2.
  • the frequency characteristics of the receiving surface acoustic wave filter 4 are improved. You can.
  • the high frequency characteristics of the receiving surface acoustic wave filter can be improved. Can also contribute.
  • the inductance elements 29, 30 and the like are formed in the package material 11, but if the inductance elements 29, 30 and the like are formed on the transmission side surface acoustic wave filter 3, Capacitive coupling and inductive coupling occur between the strip lines 15 and 16 for phase matching, and the characteristics of the attenuation region deteriorate extremely.
  • the inductance elements 29, 30, etc. are separated from the strip lines 15, 16 in the main surface direction of the package material 11, and the surface acoustic wave Located on the 4 side In such a case, since the above-described coupling is unlikely to occur, it is possible to suppress deterioration of characteristics in the attenuation region.
  • the electrodes 19, 20 constituting the inductance elements 29, 30, etc. can be arranged in a plurality of layers with the strip lines 15, 16 and in the same plane, and can be disposed in the same plane. It is possible to achieve miniaturization of 11 and simplification after the manufacturing process.
  • the structure in which the inductance elements 29 and 30 are arranged on the same plane as the strip lines 15 and 16 can simplify the manufacturing process as described above. It is also possible to reduce the cost and reduce the height of the surface acoustic wave duplexer 1. In particular, since the inductance elements 29, 30, etc. are formed over a plurality of layers, the inductance elements 29, 30, etc. can enhance the self-induction, thereby reducing the size. Can proceed.
  • strip lines 15 and 16 for phase matching are also formed over a plurality of layers, and are formed in the same plane as the inductance elements 29 and 30. Can be formed at the same time, so that the cost can be reduced.
  • the capacitance constituting the low-pass filter may be built in the package material 11.
  • the surface acoustic wave duplexer 1 Height can be reduced.
  • the capacitance elements 22 to 24 including the comb-shaped electrodes are used, a large capacitance can be obtained with a small area, and thus the size of the capacitance element can be reduced.
  • the capacitance elements 22 to 24 are formed using the comb-shaped electrodes, the capacitance elements can be formed simultaneously with the formation of the electrodes of the surface acoustic wave resonator. Can be reduced.
  • the capacitance element 22 Undesired responses are unlikely to occur in the comb-shaped electrodes constituting the 2424.
  • the range of the electrode finger pitch P in the comb-shaped electrodes of the capacity element 2 2-24 is the following equation (1) to (3) Therefore, it is possible to provide the surface acoustic wave duplexer 1 with even lower loss.
  • fH represents the upper limit frequency of the pass band of the reception surface acoustic wave filter
  • fL represents the lower limit frequency of the pass band of the transmission surface acoustic wave filter
  • the comb-shaped electrode finger pitch P is set to 4.5 ⁇ as described above, and thus satisfies the above conditions, and thus can obtain good filter characteristics.
  • Equation (1) to (3) will be described with reference to FIGS. '' Direction rotated by 90 degrees with respect to the X axis, which is the direction of propagation of the surface acoustic wave filter, on the 36-degree L i T a 0 3
  • a comb-shaped electrode was formed such that the electrode fingers were aligned, and the impedance of the comb-shaped electrode was measured.
  • the electrode finger pitch of the comb-shaped electrode was 1 ⁇ m, and the number of pairs of electrode fingers was 25 pairs.
  • FIG. 12 it can be seen that large ripples exist near 30 ° and 90 °.
  • the phase is determined by the ratio of reactance and resistance.
  • phase is limited to the region near the bottom and larger than 85 degrees, the frequency bands to be avoided are 275 mm, 34 mm, 825 mm, and 94 mm.
  • the electrode finger pitch is 10 zm
  • a filter having a relatively low pass band that is, a filter having a relatively high pass band from the lower limit frequency of the pass band of the surface acoustic wave filter 3 on the transmitting side, that is, a pass band of the surface acoustic wave filter 4 on the receiving side, It is necessary to deviate from the above range up to the upper limit frequency.
  • the characteristics when the electrode finger pitch is selected outside the range of Equations (1) to (3), that is, when the electrode finger pitch is selected to be 10 ⁇ , and when the electrode finger pitch is selected within the range of Equations (1) to (3), is 7 ⁇
  • Figure 13 shows the difference between the two.
  • the solid line in FIG. 13 shows the case of 7 ⁇ m, and the broken line shows the case of 10 Aim.
  • FIG. 13 when a comb-shaped electrode is formed as a capacitive element for a low-pass filter such that the direction in which the electrode fingers are arranged is rotated by 90 degrees with respect to the surface wave propagation direction, the following equation is obtained. It can be seen that loss can be reduced by satisfying (1) to (3).
  • the frequency of the 2nd and 3rd harmonics may exist. If these ripples can be avoided, the in-band characteristics of the two surface acoustic wave filters 3 and 4 and the attenuation at the attenuation pole can be prevented from deteriorating. Can be provided.
  • the electrode finger pitch P is represented by the following equations (4) to (1). It is even more desirable to set it in any of range 2) of 2).
  • Equation (1 2) For example, as in the above embodiment, the pass band on the transmission side is 824 to 849 MHz, and the pass band on the 86 9-8 For 94 MHz, the electrode finger pitch should be limited to one of the following ranges, so that ripple can be reduced to both the 2nd and 3rd harmonic regions of the pass band and the transmission band. Can be removed from
  • the capacitive element of the low-pass filter is configured by the comb-shaped electrode.
  • the capacitive element may be configured by adopting a structure other than the comb-shaped electrode.
  • a capacitive element may be formed by stacking a first electrode, a dielectric, and a second electrode on a piezoelectric substrate.
  • the Q value is determined by the ta ⁇ ⁇ of the dielectric, and the loss can be reduced by using a dielectric film having a good ta ⁇ ⁇ .
  • the capacitive elements 22 to 24 composed of the comb-shaped electrodes are arranged on the piezoelectric substrate 21 constituting the receiving-side surface acoustic wave filter 4, but are arranged in the transmitting-side surface acoustic wave finoletor 3. May be done.
  • the transmitting surface acoustic wave filter 3 is configured in more stages in order to increase power resistance. Is common. Therefore, the transmitting surface acoustic wave filter 3 generally has a larger chip size than the receiving surface acoustic wave filter 4.
  • the capacitance elements 22 to 24 in the reception-side surface acoustic wave filter 4 as in the above embodiment, the chip sizes of the reception-side surface acoustic wave filter 4 and the transmission-side surface acoustic wave filter 3 can be reduced. Can be closer or equal. As a result, it is possible to improve the handleability in manufacturing the surface acoustic wave demultiplexer 1 and to enhance the reliability of the joint between the receiving-side surface acoustic wave filter 4 and the package material 11.
  • a capacitive element for forming a low-pass filter near the antenna end of the surface acoustic wave filter 4 on the reception side, the elasticity on the transmission side can be reduced. Capacitive coupling and inductive coupling between the signal terminal of the surface acoustic wave filter 3 and the output terminal of the receiving surface acoustic wave filter can be prevented, and a surface acoustic wave duplexer with excellent isolation characteristics can be provided. it can.
  • the amount of phase delay by the phase matching element 7 was set to 75 degrees.
  • the receiving-side surface acoustic wave filter 4 appears to be an inductive element with respect to the transmitting-side surface acoustic wave filter 3. That is, inductance is added in parallel to the transmitting surface acoustic wave filter 3.
  • the impedance characteristic of the receiving-side surface acoustic wave filter 4 alone is shown in FIG. 16 by a Smith chart.
  • the capacitance falls.Therefore, by adding a parallel inductor with the optimal value, matching is achieved on the real axis. be able to. Therefore, by setting the amount of phase delay to less than 90 degrees, the matching state of the transmitting-side elastic surface wave filter is indicated by an arrow in the Smith chart in FIG. Can be brought close to 50 ⁇ matching. However, when the amount of phase delay is further reduced to about 60 degrees, the matching state of the transmitting surface acoustic wave filter is turned too much inductive as shown by the arrow in the Smith chart in Fig. 18, and conversely The condition worsens.
  • the impedance excessively turned dielectrically is controlled by the capacitance component of the low-pass filter. Impedance matching can be achieved.
  • the phase rotation amount is preferably set to 60 degrees or more. Also, downsizing can be achieved, and matching on the real axis of the filter, which has fallen into a capacitive element on its own, can be improved. In order to achieve this, it is desirable that the amount of phase rotation be less than 80 degrees. That is, by setting the angle to 60 degrees or more and less than 80 degrees, it is possible to provide a surface acoustic wave duplexer 1 that is smaller and has an excellent matching state.
  • the transmission-side surface acoustic wave filter 3 and the reception-side surface acoustic wave filter 4 are formed on independent piezoelectric substrates, but the transmission-side surface acoustic wave filter 3 and the reception-side surface acoustic wave The filter 4 may be configured on the same piezoelectric substrate.
  • the bonding method of the surface acoustic wave filters 3 and 4 to the package material 11 is not limited to the method using bumps, and a bonding method using wire bonding may be employed.
  • the receiving surface acoustic wave filter 4 and the transmitting surface acoustic wave filter 3 are connected as described above. Is desirably formed on an independent piezoelectric substrate, whereby the bonding strength between the surface acoustic wave filters 3 and 4 and the package material 11 can be increased.
  • the high-frequency element is provided on the receiving surface acoustic wave filter 4 side. It is desirable to mount a capacitive element for constituting.
  • the strip lines 15 and 16 constituting the phase matching element 7 and the inductor elements 29 and 30 constituting the high frequency element extend over a plurality of layers and are the same.
  • the strip lines 15 and 16 and the inductor elements 29 and 30 may be formed in different planes of the package material 11, although they are configured to be located in a plane.
  • the strip lines 15, 16 and the inductors Hatako 29, 30 need not necessarily be formed over multiple layers.
  • by being formed in the same plane and over a plurality of layers The structure in which the inductor element and the strip line are built can be reduced in size and cost.
  • the phase shift amount by the phase matching element 7 is set to 75 degrees.
  • the phase shift amount is not limited to this, and generally, the phase shift amount is 90 degrees from short to release.
  • a rotated phase matching element may be used.
  • the package material 11 can be reduced in size by setting the phase delay amount to a short value of 75 degrees.
  • the surface acoustic wave duplexer 1 with good impedance matching can be provided by including the impedance of the mouth-pass finoleta.
  • the surface acoustic wave duplexer according to the present invention has, as described above, a force capable of achieving various effects by various configurations.
  • the high-frequency element 6 is composed of the capacitive elements 22 to 24 of FIG. 3 and the inductance elements 29 and 30 which are two inductive elements
  • the inductance elements 29 and 30 are packaged. Since the capacitance elements 22 to 24 are built on the piezoelectric substrate constituting the surface acoustic wave filter 4, the surface acoustic wave component can be further reduced in size and height can be reduced. This has the advantage that a wave filter can be provided.
  • the inductance element 29 and 30 are incorporated in the package material 11 as in the above-described embodiment, the inductance elements 29 and 30 are formed over a plurality of layers of the package material 11, and When strip lines 15 and 16 for adjustment are formed in multiple layers and are formed in the same plane, inductors that are small and have a high Q value can be accommodated. It can be easily configured.
  • the capacitive element is formed in the package material, three capacitive elements are required especially in the high frequency element that generates a plurality of traps as in the present invention. Therefore, in a structure in which a capacitance element is embedded in a package material, it is difficult to avoid capacitive coupling with other elements such as the inductance element and the strip line, and it is disadvantageous in miniaturization and reduction in height. . Therefore, by forming the capacitive element on the piezoelectric substrate, not only can the height be reduced, but also undesired coupling with other elements in the package material can be prevented, and good low-pass characteristics can be obtained. be able to.
  • the surface acoustic wave duplexer of the present invention which combines the above various configurations, can provide a surface acoustic wave duplexer that has better characteristics and can be reduced in size and height. . '
  • the attenuation pole rapidly deteriorates when combined with a surface acoustic wave duplexer. That is, when the parasitic inductor component LX enters the position indicated by the arrow C in FIG. 14, the trap attenuation pole rapidly deteriorates.
  • the solid line in Fig. 15 shows the frequency characteristics of the single-pass filter 6 when the above parasitic component does not exist.
  • the dashed line indicates the frequency characteristics when the magnitude of the parasitic component is 0.5 InH, and the dashed line indicates the frequency characteristics when the magnitude of the parasitic component is 0.5 nH.
  • the attenuation of the 2nd harmonic of the pass band is significantly deteriorated by the parasitic inductor component LX.
  • the effect of the parasitic inductor component LX as described above in order to avoid this, in a structure in which the inductance elements 29 and 30 are built in the package material 11, the terminals connected to the transmission signal terminals of the strip lines 15 and 16 and the inductance element 2 It is desirable that the terminals connected to the transmission signal terminals of 9, 30 are parasitic not on the package material but on the surface joined by the bumps of the package material 11, thereby reducing the parasitic inductor component LX. It can be as small as possible. Industrial applicability
  • the transmitting side surface acoustic wave duplexer in the surface acoustic wave duplexer in which the transmitting side surface acoustic wave filter and the receiving side surface acoustic wave filter are mounted on a package material, the transmitting side surface acoustic wave The filter is connected to the filter and the surface acoustic wave filter on the receiving side, and has a high-frequency element with two trap attenuation poles on the higher frequency side than the pass band on the transmission side. Unwanted harmonics and ripples on the higher frequency side can be suppressed, thereby providing a surface acoustic wave duplexer having good frequency characteristics.
  • the two trap attenuation poles are located at or near the 2nd and 3rd harmonics of the transmitting passband, the attenuation of the 2nd and 3rd harmonics of the transmitting passband is suppressed can do.
  • First to third capacitance elements are connected in a ⁇ type, a first inductor is provided between a first common terminal and a ground potential, and a second inductor is provided between second and third common terminals. Is connected, the number of capacitive elements constituting the high-frequency element can be reduced, and the overall capacitance and inductance can be increased. The size of the wave filter can be reduced.
  • the first trap Due to the anti-resonance of the second inductor and the capacitive element connected in parallel to the second inductor, the first trap is attenuated at or near the second harmonic of the appropriate band of the transmitting surface acoustic wave filter.
  • a pole is generated and the transmission side surface acoustic wave filter is formed by the resonance between the first inductor and the capacitance in the case of the Y-type connection equivalently obtained from the first to third capacitance elements connected in the ⁇ -type. If the second trap attenuation pole is formed in the vicinity of or near the third harmonic of the pass band of the above, the surface acoustic wave duplexer can be downsized.
  • one end of the receiving surface acoustic wave filter and one end of the transmitting surface acoustic wave filter are connected at a common connection point, and the common connection point and the antenna resonance terminal are connected to each other.
  • the high-frequency element is provided only between them, and the inductor constituting the high-frequency element is formed in the package, so that the high-frequency characteristics on the receiving side can be improved and the elastic surface The size of the wave splitter can be reduced.
  • a phase matching strip line provided in the package material is further provided, and when the inductor constituting the high-frequency element is formed in the same plane as the strip line and the package, the surface acoustic wave
  • the size of the duplexer can be further reduced, and capacitive and inductive coupling between the stripline and the inductor is less likely to occur.
  • a surface acoustic wave duplexer that does not cause deterioration can be provided. If the inductors are arranged in at least two layers in the package so as to strengthen the induction, self-induction can be enhanced in the inductor, and the size of the surface acoustic wave duplexer can be further reduced. be able to.
  • both the stripline and the inductor are formed over two or more layers in the package material and over the same two or more layers, the surface acoustic wave duplexer is reduced in size and attenuation Deterioration can be suppressed, and in the manufacturing process, the inductor and the strip line can be formed by the same process, so that the manufacturing cost can be reduced.
  • a surface acoustic wave duplexer includes a package on which a receiving surface acoustic wave filter and a transmitting surface acoustic wave filter are mounted, and at least one inductor and at least one capacitive element.
  • a high-frequency element, and the capacitive element is formed by a comb-shaped electrode formed on a piezoelectric substrate constituting a surface acoustic wave filter, and the comb-shaped electrode is formed in a direction along the electrode finger pitch of the comb-shaped electrode.
  • the direction is rotated 90 degrees with respect to the direction in which the surface wave propagates.
  • a relatively large capacitance can be obtained in the same area in the capacitive element using the comb-shaped electrode.
  • the capacitive element is unlikely to respond to the surface acoustic wave, undesirable ripple is less likely to occur, and the ripple generated by the capacitive element is a pass band of the transmitting surface acoustic wave filter and a pass band of the receiving surface acoustic wave filter. Since it is not located at the second harmonic, third harmonic, or its vicinity, a surface acoustic wave duplexer having good frequency characteristics can be provided.
  • the third invention it piezoelectric substrate from L i T a 0 3 substrate, wherein (1) the period P is above the electrode fingers of the comb electrodes constituting the capacitance element - either a (3) Range, provide low loss surface acoustic wave duplexers.
  • the ripple due to the capacitive element causes the pass band of the receiving surface acoustic wave filter and the pass band of the transmitting surface acoustic wave filter to be smaller. It will surely deviate from the second harmonic, the third harmonic, and the area near it.
  • the capacitive element is a first electrode film and a second electrode film on a piezoelectric substrate constituting a transmitting side and a Z or receiving side surface acoustic wave filter. And an insulating film sandwiched between the first and second electrode films, so that these films can be easily formed on the piezoelectric substrate by the package manufacturing method.
  • An element can be configured.
  • the transmitting-side surface acoustic wave filter and the receiving-side surface acoustic wave filter are each configured by using an independent piezoelectric substrate to form a high-frequency element. Is formed on the piezoelectric substrate of the surface acoustic wave filter on the receiving side, it is possible to easily increase the bonding strength between each of the surface acoustic wave filters and the package material and to improve the elasticity on the transmitting side.
  • the size of the surface acoustic wave filter and the size of the surface acoustic wave filter on the receiving side can be made close to each other, and the handling property during production can be improved.
  • the capacitive element that constitutes the high-frequency element is located near the antenna terminal side of the receiving surface acoustic wave filter, the signal terminal of the transmitting surface acoustic wave filter or the receiving surface acoustic wave filter Capacitive coupling and inductive coupling with the output terminal of the IGBT can be suppressed, and the isolation and delay characteristics can be improved.
  • the transmitting-side surface acoustic wave filter and the receiving-side surface acoustic wave filter are formed on the same piezoelectric substrate, and the capacitive element for constituting the high-frequency element is connected to the antenna terminal side end of the receiving-side surface acoustic wave filter.
  • the transmitting surface acoustic wave filter and the receiving surface acoustic wave filter can be constituted by one piezoelectric substrate, so that the assembling work can be facilitated.
  • the capacitive element When the capacitive element is arranged near the antenna terminal side end of the receiving surface acoustic wave filter, the transmission signal terminal of the transmitting surface acoustic wave filter or the output terminal of the receiving surface acoustic wave filter. It is possible to suppress inductive coupling and capacitive coupling between them and improve isolation.
  • the inductor is formed in the package material, and the capacitive element constitutes the transmitting surface acoustic wave filter and / or the receiving surface acoustic wave filter.
  • the filter Formed on the substrate, it is possible to reduce the size of the surface acoustic wave demultiplexer, and because the capacitive element is formed on the piezoelectric substrate, the transmitting surface acoustic wave filter or the receiving surface acoustic wave
  • the filter can be multifunctional.
  • the piezoelectric substrate constituting the transmission surface acoustic wave filter and the reception surface acoustic wave filter is L i T a 0 3 substrate, constituting the high-frequency element
  • the capacitive element is composed of a comb-shaped electrode provided on the piezoelectric substrate, and the comb-shaped electrode is arranged in a direction rotated by 90 degrees with respect to a surface wave propagating direction in the surface acoustic wave filter. Therefore, unwanted ripples due to the comb-shaped electrodes are unlikely to occur. Further, since the period of the electrode fingers of the comb-shaped electrode is in the range of the above-described equations (1) to (3), a low-loss surface acoustic wave duplexer can be provided. .
  • a surface acoustic wave duplexer In a surface acoustic wave duplexer according to a seventh aspect, at least one phase matching element and a low-pass filter are provided, and the low-pass filter includes an antenna terminal, a transmission-side surface acoustic wave filter, and a reception-side surface acoustic surface. And a low-pass filter having both a low-pass filter function and an antenna matching function.
  • a surface acoustic wave duplexer that can improve the amount of attenuation in the antenna, has good frequency characteristics, and can easily achieve impedance matching with an antenna.
  • the phase matching element is disposed between the surface acoustic wave filter having a relatively high frequency and the antenna terminal, and the phase delay amount of the phase matching element is relatively small. If the filter is less than 90 degrees at the center frequency, the matching state at the antenna end of the surface acoustic wave demultiplexer can be approximated to 50 ⁇ matching. In particular, when the amount of phase delay is in the range of 60 to 80 degrees, an even better matching state can be realized.
  • the impedance at the antenna terminals of the surface acoustic wave duplexer excluding the low-pass filter is dielectric at least 50% of the passband of each of the transmitting surface acoustic wave filter and the receiving elastic surface wave filter. Therefore, when the impedance in the pass band of the low-pass filter is made capacitive, matching is achieved on the real axis from the antenna and tenor sides.
  • the illustrated first to fourth inventions Accordingly, it is possible to provide a surface acoustic wave duplexer which has good frequency characteristics, can be miniaturized, can further reduce the amount of attenuation at high frequencies, hardly generates undesirable ripples,
  • the high-frequency element has two trap attenuation poles at or near the second harmonic and the third harmonic of the transmission-side surface acoustic wave filter, and the high-frequency element is connected to a ⁇ -type first to a And a second inductor formed in the same layer as the phase adjustment strip line provided in the package and in a plurality of layers.
  • the attenuation of the transmitting surface acoustic wave filter in the harmonic attenuation region can be sufficiently improved according to the present invention.
  • the loss characteristics of the side surface acoustic wave filter can be effectively improved, the size and height of the surface acoustic wave duplexer can be reduced, and impedance matching is easy and manufacturing is easy. It is possible to provide a simple surface acoustic wave duplexer.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Filters And Equalizers (AREA)
  • Transceivers (AREA)

Abstract

 送信側通過帯域及び受信側通過帯域よりも高周波側における減衰量を改善することができ、かつ小型化を図ることが可能な弾性表面波分波器を提供する。アンテナ端子に接続された送信側弾性表面波フィルタ及び受信側弾性表面波フィルタを有し、送信側弾性表面波フィルタ及び受信側弾性表面波フィルタがパッケージ材に搭載されている弾性表面波分波器であって、送信側弾性表面波フィルタ及び受信側弾性表面波フィルタに接続されており、かつ少なくとも送信側通過帯域及び受信側通過帯域よりも高周波側に2つのトラップ減衰極を有する高周波素子がさらに備えられている、弾性表面波分波器。

Description

弾性表面波分波器
技術分野
本発明は、 例えば携帯電話機のような無線通信装置に用いられる弾性 表面波分波器に関し、 より詳細には、 通過帯域よりも高域側において生 明
じる高調波を抑圧する構成が備えられた弾性表面波分波器に関する。 田
背景技術
携帯電話機では、 送信側の信号と、 受信側の信号とを分離するために 弾性表面波分波器が用いられている。 ここでは、 送信側周波数の 2倍波 及び 3倍波の抑圧が求められている。
特開平 9一 9 8 0 4 6号公報には、 このような要求を満たすために、 弾性表面波分波器において、 ローパスフィルタが接続されている回路構 成が開示されている。 図 2 0は、 特開平 9一 9 8 0 4 6号公報に記載の 弾性表面波分波器の回路構成を示す図である。 弾性表面波分波器 2 0 1 では、 アンテナに接続される共通信号端子 2 0 2に、 送信側弾性表面波 フィルタ 2 0 3及び受信側弾性表面波フィルタ 2 0 4が接続されている。 また、 共通信号端子 2 0 2と、 送信側弾性表面波分波器 2 0 3との間に 第 1のローパスフィルタ 2 0 5が接続されており、 共通信号端子 2 0 2 と受信側弾性表面波フィルタ 2 0 4との間に第 2のローパスフィルタ 2 0 6が接続されている。
ローパスフィルタ 2 0 5, 2 0 6は、 並列コンデンサ C I , C 2と、 直列に接続されたィンダクタ Lとを有する。
特開平 9— 9 8 0 4 6号公報に記載のローパスフィルタを用いる方法 の他、 従来、 オープンスタブやショートスタブを用いてトラップを構成 し、 それによつて送信側周波数の 2倍波や 3倍波の減衰量を改善する技 術が知られている。
他方、 特開平 1 1— 6 8 5 1 2号公報には、 弹性表面波装置を構成し ている圧電基板上に容量素子を構成する方法の一例が開示されている。 図 2 1は、 この弾性表面波装置 2 1 1を示す模式的平面図である。 弾性 表面波装置 2 1 1では、 圧電基板上に弾性表面波フィルタ 2 1 3, 2 1 4が構成されている。 そして、 インピーダンス整合を図るための容量素 子 2 1 5が同じく圧電基板 2 1 2上に形成されている。 容量素子 2 1 5 は、 図示のように、 櫛形電極により構成されており、 かつ該櫛形電極の 電極指が並ぶ方向が、 弾性表面波フィルタ 2 1 3, 2 1 4における表面 波伝搬方向に対して 9 0度回転された方向とされている。
また、 特開平 5— 1 6 7 3 8 8号公報には、 弹性表面波分波器におい て、 相対的に周波数が高い弾性表面波フィルタとアンテナ側共通端子と の間に、 ガラスエポキシ基板やセラミック基板上に金属ストリップライ ンを形成することにより構成されたィンダクタンス Lが接続されている。 このインダクタンス Lは、 位相回転用素子であり、 インダクタンス の 接続されている側の弾性表面波フィルタの低周波数側の減衰域高ィンピ 一ダンス化を図るように作用するとされている構造が開示されている。 特開平 9一 9 8 0 4 6号公報に記載の弾性表面波分波器 2 0 1では、 並列コンデンサ C 1, C 2及ぴ直列に接続されたインダクタ Lからなる 口一パスフィルタ 2 0 5, 2 0 6を送信側弾性表面波フィルタ 2 0 3及 び受信側弾性表面波フィルタ 2 0 4の双方に接続することにより、 通過 帯域よりも高周波側の減衰量が全体的に改善されている。 そのため、 送 信側周波数の 2倍波及び 3倍波だけでなく、 高周波側の減衰量が全体的 に改善されるため、 挿入損失が大きくなるという問題があった。 他方、 上述したオープンスタブやショートスタブなどを用いたトラッ プ型のフィルタを弾性表面波分波器に構成した場合には、 該トラップの 位置を送信側周波数の 2倍波及び 3倍波の周波数位置とすることにより、 揷入損失の悪化をさほど招くことなく、 上記 2倍波及び 3倍波における 減衰量を改善することはできる。 しかしながら、 オープンスタブゃショ 一トスタブを用いたトラップフィルタを構成した場合、 弾性表面波分波 器のパッケージ内におけるトラップフィルタの占有面積が大きくなり、 弾性表面波分波器の小型化が困難であった。
なお、 特開平 1 1一 6 8 5 1 2号公報には、 上記のように、 圧電基板 を用い 構成された弾性表面波フィルタにおいて、 弾性表面波フィルタ の表面波伝搬方向に対して電極指が並ぶ方向が 9 0度回転された方向に 櫛形電極を配置することにより、 容量素子を構成した構造が開示されて いるが、 容量素子 2 1 5はあくまでも弾性表面波フィルタ 2 1 3, 2 1 4の整合用素子として用いられているものにすぎない。
また、 特開平 5— 1 6 7 3 8 8号公報に記載の先行技術では、 弾性表 面波分波器における位相回転用素子として、 上記インダクタ Lが開示さ れているにすぎない。 発明の開示
本発明の目的は、 上述した従来技術の現状に鑑み、 送信側周波数の 2 倍波及び 3倍波における減衰量を改善することができ、 しかも低損失で あり、 かつ小型化を図ることを可能とする弾性表面波分波器を提供する ことにある。
本願の第 1の発明は、 アンテナ端子と、 前記アンテナ端子に接続され た送信側弾性表面波フィルタと、 前記アンテナ端子に接続された受信側 弾性表面波フィルタと、 前記送信側弾性表面波フィルタ及び受信側弹性 表面波フィルタが搭载されたパッケージ材と、 前記送信側弾性表面波フ ィルタ及び前記受信側弾性表面波フィルタに接続されており、 かつ送信 側通過帯域よりも高周波側に 2つのトラップ減衰極を有する高周波素子 とを備える、 弾性表面波分波器である。
第 1の発明の弾性表面波フィルタのある特定の局面では、 前記 2つの トラップ減衰極が、 送信側通過帯域の 2倍波及び 3倍波もしくはその近 傍に位置している。
第 1の発明に係る弾性表面波分波器のさらに他の特定の局面では、 前 記高周波素子が、 第 1, 第 2のインダクタと、 第 1〜第 3の容量素子と を有し、 第 1、 第 2のインダクタと第 1〜第 3の容量素子とにより、 2 つの前記トラップ減衰極が構成されている。
第 1の発明に係る弾性表面波分波器のさらに他の特定の局面では、 前 記第 1〜第 3の容量素子が、 第 1〜第 3の各共通端子に各々 2つずつの 前記容量素子が共通接続された Δ型に接続されており、 前記第 1の共通 端子と、 アース電位との間に第 1のインダクタが接続されており、 前記 第 2, 第 3の共通端子間に、 第 2のインダクタが接続されている。 第 1の発明に係る弹性表面波分波器のさらに別の特定の局面では、 前 記第 2のィンダクタと、 該第 2のィンダクタに並列に接続されている容 量素子との反共振により、 前記送信側弾性表面波フィルタの通過帯域の 2倍波もしくはその近傍に第 1のトラップの減衰極が発生され、 第 1〜 第 3の容量素子 Δ型接続と等価な T型接続において求められた容量と、 前記第 1のィンダクタとの共振によって、 前記送信側弾性表面波フィル タの通過帯域の 3倍波もしくはその近傍に第 2のトラップの減衰極が発 生される。
本願の第 2の発明は、 アンテナ端子と、 前記アンテナ端子に接続され た送信側弾性表面波フィルタと、 前記アンテナ端子に接続された受信側 弾性表面波フィルタと、 前記送信側弾性表面波フィルタ及び受信側弾性 表面波フィルタが搭載されたパッケージ材と、 少なくとも 1つのインダ クタと、 少なくとも 1つの容量素子とを有し、 前記送信側弾性表面波フ ィルタ及ぴ受信側弾性表面波フィルタの一端が共振接続点で接続されて おり、 該共振接続点と、 前記アンテナ端子との間にだけ設けられた高周 波素子とを備え、 前記高周波素子を構成している前記インダクタが、 前 記パッケージ材内に形成されていることを特徴とする、 弾性表面波分波 器である。
第 2の発明に係る弾性表面波分波器のある特定の局面では、 前記パッ ケージ材内に設けられた位相整合用ス トリ ップヲインをさらに備え、 前 記高周波素子を構成している前記インダクタが、 前記ストリップライン とパッケージ材の同一面内に形成ざれている。
第 2の発明に係る弹性表面波分波器の他の特定の局面では、 前記ィン ダクタが、 パッケージ材内の少なくとも 2つ以上の層に渡って磁束を強 め合うように配置されている。
第 2の発明に係る弾性表面波分波器のさらに他の特定の局面では、 前 記ストリップラインと前記インダクタの双方が、 前記パッケージ材内に おいて少なく とも 2つ以上の層に渡ってかつ同一の 2つ以上の層に渡つ て形成されている。
本願の第 3の発明は、 アンテナ端子と、 前記アンテナ端子に接続され ており、 圧電基板を用いて構成された送信側弾性表面波フィルタと、 前 記アンテナ端子に接続されており、 圧電基板を用いて構成された受信側 弾性表面波フィルタと、 前記送信側弾性表面波フィルタ及び受信側弾性 表面波フィルタが搭載されたパッケージ材と、 少なくとも 1つのィンダ クタと、 少なくとも 1つの容量素子とを有する高周波素子とを備え、 前 記容量素子が、 前記送信側及び または受信側弾性表面波フィルタを構 成している前記圧電基板上に形成された櫛形電極により構成されており、 前記櫛形電極の電極指ピッチに沿う方向が、 該櫛形電極が形成されてい る弾性表面波フィルタにおいて表面波が伝搬する方向に対して 90度回 転された方向とされており、前記容量素子によって発生するリップルが、 送信側弾性表面波フィルタの通過帯域及び受信側弾性表面波フィルタの 通過帯域の 2倍波及び 3倍波並びにその近傍に位置しないことを特徴と する、 弾性表面波分波器である。
第 3の発明に係る弾性表面波分波器のある特定の局面では、 前記圧電 基板が L i T a 03基板であり、 前記容量素子を構成している櫛形電極 における電極指の周期が下記の式( 1 ) 〜 (3) 〔但し、式(1) 〜(3) において、 f Hは、 受信側弾性表面波フィルタの通過帯域の上限周波数 を、 i Lは、 送信側弾性表面波フィルタのフィルタの通過帯域の下限周 波数を意味し、 Pは、 櫛形電極の電極指ピッチ (電極指の幅と、 電極指 間のスペースの和)である〕のいずれかの範囲にあることを特徴とする。
5 300 / f H≥ 2 X P …式 ( 1 )
6 800/f L≤ 2 XP≤ 1 6 500/ f H …式 (2)
1 8 800/f L 2 XP …式 (3)
第 3の発明に係る弾性表面波分波器のさらに別の特定の局面では、 前 記櫛形電極の電極指周期が、 下記の式 (4) 〜 (1 2) 〔伹し、 i TL は、 送信側弾性表面波フィルタの通過帯域の下限周波数、 ί ΤΗは、 送 信側弾性表面波フィルタの通過帯域の上限周波数、 Ρは、 櫛形電極の電 極指ピッチを示す。 〕 の範囲にある。
5 500/f H≥ 2 X P …式 (4)
6 800/ f L≤ 2 X P≤ 1 6 500/ f H …式 (5)
1 8800/f L≤ 2 X P …式 (6)
5 500/ (2 X f TH) ≥ 2 X P …式 ( 7 ) 6 800/ ( 2 X f T L ) ≤ 2 X P≤ 1 6 500/ (2 X f TH)
…式 (8)
1 8 800/ ( 2 X f T L) ≤ 2 X P …式 (9)
5 500/ ( 3 X f TH) ≥ 2 X P …式 (10) 68 00/ ( 3 X f T L) ≤ 2 X P≤ 1 6 500/ ( 3 X f TH)
…式 (1 1)
1 8 800/ ( 3 X f T L) ≤ 2 X P …式 (1 2) 本願の第 4の発明は、 アンテナ端子と、 前記アンテナ端子に接続され ており、 圧電基板を用いて構成された送信側弾性表面波フィルタと、 前 記アンテナ端子に接続されており、 圧電基板を用いて構成された受信側 弾性表面波フィルタと、 前記送信側弾性表面波フィルタ及び受信側弾性 表面波フィルタが搭載されたパッケージ材と、 少なくとも 1つのィンダ クタと、 少なくとも 1つの容量素子とを有する高周波素子とを備え、 前 記容量素子が、 前記送信側及び Zまたは受信側弾性表面波フィルタを構 成している圧電基板上において、 第 1の電極膜と、 第 2の電極膜と、 第 1, 第 2の電極膜間に挟持された絶縁膜とからなる積層構造を形成する ことにより構成されている、 弾性表面波分波器である。
第 3の, 第 4の発明のある特定の局面では、 送信側弾性表面波フィル タ及び受信側弾性表面波フィルタが、 それぞれの独立の圧電基板を用い て構成されており、 前記高周波素子を形成するための容量素子が、 前記 受信側弾性表面波フィルタの圧電基板に形成されている。
第 3, 第 4の発明に係る弾性表面波分波器のさらに他の特定の局面で は、 前記高周波素子を構成している容量素子が、 前記受信側弾性表面波 フィルタのアンテナ端子側端部の近傍に形成されている。
第 3, 第 4の発明のさらに別の特定の局面では、 前記送信側弾性表面 波フィルタ及び受信側弾性表面波フィルタが同一の圧電基板上に形成さ れており、 前記高周波素子を構成するための前記容量素子が、 受信側弾 性表面波フィルタのアンテナ端子側端部の近傍に形成されている。 本願の第 5の発明は、 アンテナ端子と、 前記アンテナ端子に接続され ており、 圧電基板を用いて構成された送信側弾性表面波フィルタと、 前 記アンテナ端子に接続されており、 圧電基板を用いて構成された受信側 弾性表面波フィルタと、 前記送信側弾性表面波フィルタ及び受信側弾性 表面波フィルタが搭載されたパッケージ材と、 少なくとも 1つのインダ クタと、 少なくとも 1つの容量素子とを有する高周波素子とを備え、 前 記インダクタが、 前記パッケージ t内に形成されており、 前記容量素子 は、 前記送信側弾性表面波フィルタ及びノまたは受信側弾性表面波フィ ルタを構成している圧電基板に形成されていることを特徴とする、 弾性 表面波分波器である。
本願の第 6の発明は、 アンテナ端子と、 前記アンテナ端子に接続され ており、 圧電基板を用いて構成された送信側弾性表面波フィルタと、 前 記アンテナ端子に接続されており、 圧電基板を用いて構成された受信側 弾性表面波フィルタと、 前記送信側弾性表面波ブイルタ及び受信側弾性 表面波フィルタが搭載されたパッケージ材と、 少なくとも 1つのインダ クタと、 少なくとも 1つの容量素子とを有する高周波素子とを備え、 前 記パッケージ材内に設けられた位相調整用ストリップラインをさらに備 え、 前記ィンダクタが、 前記位相調整用ス トリ ップラインとパッケージ 材内の同一の層に複数層に渡って形成されており、 前記受信側弾性表面 波フィルタ及ぴ送信側弾性表面波フィルタを構成している前記圧電基板 が L i T a 0 3基板であり、 前記容量素子が、 圧電基板上に櫛形電極か らなり、 該櫛形電極の電極指を結ぶ方向が、 弹性表面波フィルタにおい て表面波が伝搬する方向に対して直交する方向とされており、 前記櫛形 電極の電極指の周期が下記の式 (1 3 ) 〜 (1 5 ) 〔但し、 式 (1 3 ) 〜 (1 5) において、 f Hは、 受信側弾性表面波フィルタの通過帯域の 上限周波数を、 f Lは、 送信側弾性表面波フィルタのフィルタの通過帯 域の下限周波数を意味し、 Pは.、 櫛形電極の電極指ピッチ (電極指の幅 と、電極指間のスペースの和)である〕の範囲にあることを特徴とする、 弾性表面波分波器である。
5300/ f H≥ 2 X P …式 (1 3)
6800/f L≤ 2 X P≤ 1 6 500 / f Pi …式 (14)
1 8800/f L≤ 2 X P …式 (1 5) 本願の第 7の発明は、 アンテナ端子と、 前記アンテナ端子に接続され た送信側弾性表面波フィルタと、 前記アンテナ端子に接続きれた受信側 弾性表面波フィルタと、 前記送信側弾性表面波フィルタ及び受信側弾性 表面波フィルタが搭載されたパッケージ材と、 少なくとも 1つの位相整 合用素子と、 ローパスフィルタとを備える弾性表面波分波器であって、 前記ローパスフィルタが前記ァンテナ端子と、 前記送信側弾性表面波フ ィルタ及び受信側弾性表面波フィルタとの間に接続されており、 前記口 一パスフィルタが、 ローパスフィルタ機能とアンテナ整合機能とを併せ 持つことを特徴とする、 弾性表面波分波器である。
第 7の発明の弾性表面波分波器のある特定の局面では、 前記位相整合 用素子が、 周波数が相対的に高い側の弾性表面波フィルタと、 アンテナ 端子との間に配置され、 該位相整合用素子による位相遅延量が、 周波数 が相対的に低い側の弾性表面波フィルタの中心周波数において 90度未 満である。
第 7の発明に係る弾性表面波分波器では、 上記位相遅延量は、 好まし くは 60〜8 0度の範囲とされる。
第 7の発明に係る弾性表面波分波器のさらに別の特定の局面では、 前 記ローパスフィルタを除いた前記弾性表面波分波器のアンテナ端子にお けるインピーダンスが、 少なくとも送信側弾性表面波フィルタ及び受信 側弾性表面波フィルタの各通過帯域幅の 5 0 %以上の周波数範囲で誘導 性であり、 前記ローパスフィルタの通過域におけるインピーダンスが容 量性とされており、 それによつてアンテナ側から見て実軸に整合がとら れている。
本願の第 8の発明に係る弾性表面波分波器は、 アンテナ端子と、 前記 ァンテナ端子に接続された送信側弾性表面波フィルタと、 前記アンテナ 端子に接続された受信側弾性表面波フィルタと、 前記送信側弾性表面波 フィルタ及び受信側弹性表面波フィルタが搭載されたパッケージ材と、 少なく とも 1つのインダクタと、 少なくとも 1つの容量素子とを有し、 前記送信側弾性表面波フィルタ及び受信側弾性表面波フィルタの一端が 共振接続点で接続されており、 該共振接続点と、 前記アンテナ端子との 間にだけ設けられた高周波素子とを備え、 前記インダクタが、 パッケ一 ジ材内に形成されており、 前記容量素子が、 圧電基板上に形成された櫛 形電極からなり、 該櫛形電極の電極指ピッチの方向が、 該圧電基板上に おいて伝搬する表面波装置の伝搬方向に対して 9 0度回転された方向で あり、 該容量素子によって生じるリップルが送信側弾性表面波フィルタ 及ぴ受信側弾性表面波フィルタの通過域の約 2倍波及び 3倍波並びにそ の近傍に位置せず、 前記高周波素子がローパスフィルタ機能とアンテナ 整合機能とを併せ持つことを特徴とする。
本願の第 9の発明に係る弾性表面波分波器は、 アンテナ端子と、 前記 アンテナ端子に接続された送信側弾性表面波フィルタと、 前記アンテナ 端子に接続された受信側弾性表面波フィルタと、 前記送信側弾性表面波 フィルタ及び受信側弾性表面波フィルタが搭載されたパッケージ材と、 前記パッケージ材内に設けられた位相調整用ストリップラインと、 高周 波素子とを備える弾性表面波分波器であって、 前記高周波素子が、 送信 側弾性表面波フィルタの 2倍波及び 3倍波もしくはその近傍に 2つのト ラップ減衰極を有し、 該高周波素子は、 第 1, 第 2のインダクタと、 第 1〜第 3の容量素子とを少なくとも備え、前記第 1〜第 3の容量素子が、 第 1〜第 3の各共通端子に各々 2つずつの容量素子が共通接続された Δ 型に接続されており、 前記第 1の共通端子と、 アース電位との間に第 1 のインダクタが接続されており、 前記第 2, 第 3の共通端子間に、 第 2 のィンダクタが接続されている、 前記第 2のィンダクタが、 前記パッケ ージ材内に設けられた位相調整 ストリップラインと同一の層にかつ複 数層に渡って形成されており、 前記ストリップラインの送信側信号端子 と接続される端子と、 前記第 2のインダクタの送信側信号端子と接続さ れる端子とが、 前記パッケージ材において短絡されていることを特徴と する。 図面の簡単な説明
図 1は、 本発明の第 1の実施形態に係る弾性表面波分波器の回路構成 を示す図である。
図 2は、 本発明の第 1の実施形態の弹性表面波分波器の略図的正面断 面図である。
図 3は、 本発明の第 1の実施形態に用いられる受信側弾性表面波ブイ ルタ及び該受信側弾性表面波フィルタの圧電基板内に形成される第 1〜 第 3の容量素子を説明するための模式的平面断面図である。
図 4は、 第 1の実施形態の弾性表面波分波器で用いられている高周波 素子の回路構成を示す図である。
図 5は、 第 1の実施形態の弾性表面波分波器周波数特性、 並びにこの ために用意した高周波素子を有しない比較例の弾性表面波分波器の周波 数特性を示す図である。 図 6は、 図 4に示した高周波素子の周波数特性を示す図である。
図 7は、 高周波素子の変形例の回路構成を示す図である。
図 8は、 図 7に示した変形例の高周波素子の周波数特性を示す図であ る。
図 9は、 高周波素子のさらに他の変形例を示す回路図である。
図 1 0は、 図 9に示した高周波素子の周波数特性を示す図である。 図 1 1は、 (a ) 及び (b ) は、 Δ型接続された第 1〜第 3の容量素 子からなる部分の回路図と、 該 Δ型接続を T字型回路に置き換えた場合 の透過回路を示す図である。
図 1 2は、 3 6度 L i T a 0 3基板上に弾性表面波フィルタ及び櫛形 電極を、 弾性表面波伝搬方向に対して櫛形電極の電極指ピッチの方向が 9 0度回転された方向となるように櫛形電極が形成されている構造にお ける位相一周波数特性を示す図である。
図 1 3は、 櫛形電極の電極指ピッチが式 (1 ) 〜 (3 ) のいずれかを 満たす場合、 及び式 (1 ) 〜 (3 ) のいずれの範囲にも含まれない場合 の弾性表面波分波器の周波数特性を示す図である。
図 1 4は、 高周波素子が接続されている部分に寄生インダクタンス成 分が寄生されている場合の弾性表面波分波器の回路構成を示す図である。 図 1 5は、 図 1 4に示した寄生ィンダクタンス成分が寄生されていな い場合、 寄生インダクタンス成分が挿入されている場合の高周波素子の 周波数特性を示す図である。
図 1 6は、 位相整合用回路の位相遅延量が 7 5度の場合の受信側弾性 表面波フィルタのインピーダンス特性を示すスミスチヤ一トである。 図 1 7は、 位相整合用素子における位相遅延量が 9 0度未満とした場 合の弾性表面波分波器の送信側弾性表面波フィルタの整合状態の変化を 説明するためのスミスチャートである。 図 1 8は、 位相整合用素子の位相遅延量が 6 0度程度になった場合の 送信側弾性表面波フィルタの整合状態の変化を示すスミスチャートであ る。
図 1 9は、 誘電性に回り過ぎたインピーダンスを高周波素子の容量成 分によつて制御した場合の送信側弾性表面波フィルタの整合状態の変化 を示すスミスチャートである。
図 2 0は、 従来の弾性表面波分波器の一例を示す回路図である。 図 2 1は、 従来の弾性表面波フィルタにおいて、 インピーダンス整合 を図るために櫛形の容量電極が圧電基板上に形成されている構造を示す 模式的平面図である。 発明を実施するための最良の形態
以下、 本発明の具体的な実施形態を説明することにより、 本発明を明 らかにする。
図 1は、 本発明の一実施形態に係る弾性表面波分波器の回路構成を示 す図であり、 図 2は、 該弹性表面波分波器の正面断面図である。
本実施形態の弾性表面波分波器 1は、 送信側の通過帯域が 8 2 4〜 8 4 9 MH zであり、 受信側の通過帯域が 8 6 9〜8 9 4 MH zの携帯電 話用弹性表面波分波器である。 もっとも、 本発明に係る弾性表面波分波 器における送信側の通過帯域及び受信側の通過帯域はこれらに限定され るものではない。
図 1に示すように、 弾性表面波分波器 1は、 アンテナ A N Tに接続さ れるァンテナ端子 2を有し、 ァンテナ端子 3に送信側弾性表面波フィル タ 3及び受信側弾性表面波フィルタ 4が接続されている。
送信側弾性表面波フイノレタ 3と受信側弹性表面波フィルタ 4とは、 共 通接続点 5において各々のアンテナ端子側の端部が共通に接続されてい
3 る。 そして、 アンテナ端子 2と、 共通接続点 5との間に高周波素子とし てローパスフィルタ 6が接続されている。 ローパスフィルタ 6の詳細は 後程説明する。
また、 受信側弾性表面波フィルタ 4と共通接続点 5との間には、 位相 整合用素子 7が接続されている。
図 2に示すように、 本実施形態の弾性表面波分波器 1のパッケージ構 造は、パッケージ材 1 1と、蓋材 1 2とからなる。パッケージ材 1 1は、 上方に開いた開口 1 1 aを有し、 該開口 1 1 aを閉成するように蓋材 1 2がパッケージ材 1 1に接合されている。 パッケージ材 1 1は、 圧電性 セラミックスあるいは合成樹脂等の適宜の材料により構成される。また、 蓋材 1 2は、 金属もしくはセラミックスなどの適宜の材料により構成さ れ得る。
パッケージ材 1 1の開口 1 1 a内には、 送信側弾性表面波フイノレタ 3 及び受信側弾性表面波フィルタ 4が略図的に示すバンプ 1 3, 1 4を用 いてフリップチップボンディング工法によりパッケージ材 1 1のチップ 搭載面 1 1 bに実装されている。 なお、 チップ搭載面 l i bは、 開口 1 1 aの底面であるが、 平板状パッケージ基板を用いた場合には、 チ、;プ 搭載面は上面となる。
また、 パッケージ材 1 1の受信側弾性表面波フィルタ 4が設けられて いる側においてアンテナ端子 2 (図 1参照) が設けられている。
送信側弾性表面波フィルタ 3及び受信側弾性表面波フィルタ 4は、 そ れぞれ、 独立の圧電基板上に複数の 1ポート型弹性表面波共振子を形成 することにより構成されている。 また、 図 1から明らかなように、 送信 側弾性表面波フィルタ 3は、 複数の直列腕共振子 S 1〜S 6と、 複数の 並列腕共振子 P 1 , P 2とからなるラダー型回路構成を有する。同様に、 受信側弹性表面波フィルタ 4も、 複数の直列腕共振子 S 7〜S 1 0及び
4 複数の並列腕共振子 P 3〜P 5からなるラダー型回路構成を備えている ( 上記直列腕共振子 S 1〜S 6, S 7〜S 1 0及び並列腕共振子 P 1 , P 2 , P 3〜 P 5は、 それぞれ、 前述したように 1ポート型の弾性表面 波共振子により構成されている。
図 3に示すように、 受信側弾性表面波フィルタ 4は、 矩形の圧電基板 2 1を用いて構成されている。 上記圧電基板 2 1上に、 上述した直列腕 共振子 S 7〜S 1 0及び並列腕共振子 P 3〜P 5が形成されている。 な お、 直列腕共振子 S 7, S 8は、 図 3では 1つの共振子として略図的に 示す。 同様に、 直列腕共振子 S 9, S 1 0も図 3では 1つの共振子とし て示す。 各直列腕共振子 S 7〜S 1 0及び並列腕共振子 P 3〜P '5は、 いずれも、 櫛形電極からなる I D T (インターデジタルトランスデュー サ) の表面波伝搬方向両側にグレーティング反射器を形成してなる 1ポ 一ト型弾性表面波共振子により構成されている。
送信側弾性表面波フィルタ 3も同様に、 矩形の圧電基板上に直列腕共 振子 S 1〜S 6及び並列腕共振子 P 1, P 2を構成するように複数の 1 ポート型弾性表面波共振子が形成されている構造を有する。
本実施形態では、 上記送信側弾性表面波フィルタ 3及び受信側弾性表 面波フィルタ 4を構成している圧電基板として、 3 6度 L i T a 0 3基 板が用いられている。 もっとも、 本発明においては、 弾性表面波フィル タ 3, 4を構成するための圧電基板は、 他の圧電単結晶あるいは圧電セ ラミックスにより構成されていてもよい。 また、 本実施形態では、 圧電 基板上に形成された各種電極の材料として A 1を主成分とする A 1合金 が用いられている力 S、 A 1以外の A uや C uなどの材料を用いてもよい。 また、 複数の金属を積層することにより、 各種電極を形成してもよい。 図 1に戻り、受信側弾性表面波フィルタ 4と共通接続点 5 との間には、 位相整合用素子 7が接続されている。 この位相整合用素子 7は、 より具
5 体的には、 パッケージ材 1 1内に埋設されたストリップラインにより構 成されている。 すなわち、 図 2に示すように、 パッケージ材 1 1のチッ プ搭載面 1 1 bと下面 1 1 cとの間の中間高さ位置に、 ストリップライ ン 1 5, 1 6が形成されている。 ス トリ ップライン 1 5の一端が、 ビア ホール電極 1 7により受信側弾性表面波フィルタ 4に接続されている。 ス トリ ップライン 1 5の他端は、 ビアホール電極 1 8によりストリップ ライン 1 6に接続されている。 ス トリ ップライン 1 6は、 ビアホール電 極 1 9によりパッケージ材 1 1のチップ搭載面 1 1 bに形成された配線 電極 (図示せず) に接続されている。 この配線電極が、 図 1の共通接続 点 5に接続されている。
すなわち、 上記位相整合用素子 7は、 弾性表面波分波器 1を構成する パッケージ材 1 1内に構成されている。 上記ストリップライン 1 5, 1 6は 5 0 Ω付近の特性インピーダンスを有する。 また、 ストリップライ ン 1 5 , 1 6の長さは、 これらによる位相シフト量が、 送信側弾性表面 波フィルタ 3の通過帯域中心周波数 8 3 6 . 5 MH zにおいて位相が 7 5度回転する長さとされている。
他方、 図 1のローパスフィルタ 6は、 少なくとも 1つの容量素子と、 少なくとも 1つのィンダクタとを有する。 より具体的には、 図 3に示す ように、 受信側弾性表面波フィルタ 4を構成する圧電基板 2 1上に、 第 1〜第 3の容量素子 2 2〜 2 4が形成されている。
第 1〜第 3の容量素子 2 2〜2 4は、 いずれも櫛形電極により構成さ れている。 そして、 第 1〜第 3の容量素子 2 2〜 2 4は、 第 1〜第 3の 共通端子 2 5〜2 7にそれぞれ 2つの容量素子が共通接続されて、 厶型 に接続されている。
口一パスフィルタ 6は、 前記第 1〜第 3の容量素子 2 2〜 2 4の厶型 接続により得られる容量と、 図 2に示されているパッケージ材 1 1内に 埋設されたインダクタンス素子 2 9, 3 0との共振を利用するように構 成されている。 すなわち、 インダクタンス素子 2 9 , 3 0は、 パッケ一 ジ材 1 1内において、 複数の層において電極を形成することにより構成 されている。 ィンダクタンス素子 2 9, 3 0は、 インダクタンス値に応 じてらせん状またはミアンダ状などの形状に構成され得る。 インダクタ ンス素子 2 9, 3 0はビアホール電極 3 1で接続されている。 インダク タンス素子 2 9の一端は、 ビアホール電極 3 2によりパッケージ材 1 1 の上面に設けられた配線電極 (図示せず) に接続されている。 また、 ィ ンダクタンス素子 3 0は、 ビアホール電極 3 3に接続されており、 ビア ホール電極 3 3は、 ノ ッケージ材 1 1の下面 1 1 cに至っており、 該下 面 1 1 cに形成された配線電極 (図示せず) に接続されている。 上記ィ ンダクタンス素子 2 9, 3 0と同じようにして、 もう一組のインダクタ ンス素子を構成する (図示せず) 。
上記ィンダクタンス素子 2 9 , 3 0及びもう一組のィンダクタンス素 子と、 第 1〜第 3の容量素子 2 2〜 2 4により、 図 4に示す回路構成の ローパスフィルタ 6が構成されている。 なお、 図 4におけるインダクタ ンス L l, L 2は図 2のインダクタンス素子 2 9, 3 0と前述のもう一 組のィンダクタンス素子とによりそれぞれ構成されている。 すなわち、 図 4に示す回路を構成するように、 インダクタンス素子 2 9, 3 0が容 量素子 2 2〜 2 4と接続されている。 なお、 インダクタンス Lは、 L 2 に比べて、 インダクタンス値が小さいため、 一層構造のビアホールのみ でも構成することができる。
上記ローパスフィルタ 6は、 上述したように、 アンテナ端子 2と共通 接続点 5との間に接続されている。 ローパスフィルタ 6は、 送信側弾性 表面波フィルタの通過帯域の中心周波数の 2倍波及び 3倍波もしくはそ の近傍に減衰極を有する周波数特性を有し、 かつ送信側及び受信側弾性
7 表面波フィルタの通過帯域におけるインピーダンス整合を図るように作 用する。 すなわち、 本実施形態では、 上記ローパスフィルタ 6により、 送信側弾性表面波フィルタ 3の通過帯域の 2倍波及びその近傍に第 1の 減衰極が 3倍波もしくはその近傍に第 2の減衰極が発生されるため、 送 信側弾性表面波フィルタの通過帯域の 2倍波及び 3倍波を効果的に抑圧 することができ、 良好な周波数特性を得ることができる。
図 3に示すように、 容量素子 2 2〜2 4を構成している櫛形電極の電 極指の並んでいる方向、 すなわち、 電極指ピッチの方向は、 受信側弾性 表面波フィルタ 4における表面波伝搬方向と直交する方向に配置されて いる。 なお、 受信側弹性表面波フィルタにおいて表面波が伝搬する方向 とは、 直列腕共振子 S 7〜S 1 0及び並列腕共振子 P 3〜P 5における 表面波伝搬方向をいう。 言い換えれば、 容量素子 2 2〜 2 4を構成して いる各櫛形電極の電極指ピッチの方向は、 上記表面波伝搬方向に対して 9 0度回転された方向とされている。
また、 容量素子 2 2〜2 4における電極指ピッチ、 すなわち、 電極指 の幅と電極指間のスペースの幅の合計は本実施形態では 4 . 5 mとさ れている。
図 2から明らかなように、 インダクタンス素子 2 9, 3 0は、 位相整 合用素子を構成するストリップライン 1 5, 1 6と同様に複数の層に渡 つて形成されており、 かつインダクタンス素子 2 9 , 3 0及ぴス ト リ ツ プライン 1 5 , 1 6は、 それぞれ同一平面内に形成されている。 すなわ ち、 本実施形態では、 インダクタンス素子を構成する電極と; 位相整合 用素子 7を構成する電極とが、 複数の層に渡り、 かつ同一平面内に位置 するように配置されている。 なお、 図示していない前述のもう一組のィ ンダクタンスは、 インダクタンス 2 9 , 3 0と同様に構成されている。 次に、 弾性表面波分波器 1の作用効果につき説明する。 上記実½形態の弾性表面波分波器と、 上記実施形態から上記ローパス フィルタ 6が取り除かれた比較例の弾性表面波分波器を用意し、 周波数 特性を測定した。 図 5は結果を示す。 図 5の実線が本実施形態の弾性表 面波分波器 1の周波数特性を、 破線が比較例の弾性表面波分波器の周波 数特性を示す。
図 5から明らかなように、 本実施形態の弾性表面波分波器 1では、 受 信側弾性表面波フィルタ 4の中心周波数の 2倍及び 3倍の周波数位置に、 矢印 A, Bで示す第 1 , 第 2の減衰極が生じていることがわかる。 すな わち、 ローパスフィルタ 6によれば、 送信側弾性表面波フィルタ 3の通 過帯域の 2倍波及び 3倍波における減衰量を改善し得ることがわかる。 上記実施形態では、 ローパスフィルタ 6は、 図 4に示す回路構成を有 するように構成されていたが、 本発明においては、 上記ローパスフィル タ 6の回路構成は種々変形することができる。
図 7及ぴ図 9は、ローパスフィルタ 6の変形例を示す各回路図である。 図 7に示すローパスフィルタ 3 6では、 4個の容量素子 3 6 a〜 3 6 dと、 2個のインダクタンス素子 3 6 e, 3 6 f とが用いられている。 すなわち、 インダクタンス素子 3 6 eと容量素子 3 6 bとが並列に接続 されており、 同様にインダクタンス素子 3 6 f と容量素子 3 6 cとが並 列に接続されている。 そして、 インダクタンス素子 3 6 e及び容量素子 3 6 bの並列接続構造と、 インダクタンス素子 3 6 f 及び容量素子 3 6 cの並列構造が直列に接続されており、 これらの並列接続構造が設けら れている部分の外側においてアース電位との間に、 それぞれ、 容量素子 3 6 a , 3 6 dが接続されている。
また、 図 9に示すローパスフィノレタ 3 7では、 3個の容量素子 3 7 a 〜 3 7 cと、 2個のィンダクタンス素子 3 7 d, 3 7 eとが用いられて いる。 ここでは、 ィンダクタンス素子 3 7 dと、 容量素子 3 7 bとが並
9 列に接続されている。 この並列接続構造の外側において、 それぞれ、 ァ ース電位との間に、 容量素子 3 7 a , 3 7 cが接続されている。 また、 容量素子 3 7 cとアース電位との間に、 上記ィンダクタンス素子 3 7 e が接続されている。
図 6, 図 8及び図 1 0は、 上記口一パスフィノレタ 6 , 3 6 ' 3 7の周 波数特性を示す図である。
なお、 図 6, 図 8, 図 1 0に示したローパスフィルタ 6, 3 6 , 3 7 の特性は、 上記ローパスフィルタにおけるインダクタンス素子及び容量 素子の仕様を下記の表 1に示す通りとした場合の特性である。 表
パラメータ
Figure imgf000022_0001
図 8及び図 1 0から明らかなように、 ローパスフィルタ 3 6, 3 7を 用いた場合においても、 ローパスフィルタ 6の場合と同様に、 送信側弾 性表面波フィルタ 3の通過帯域の 2倍波及び 3倍波においてそれぞれ、 第 1, 第 2の減衰極が発生され得ることがわかる。
しかしながら、 ローパスフィルタ 3 6 , 3 7では、 減衰極の帯域にお ける減衰量がローパスフィルタ 6を用いた場合に比べて低くなるため、 通過帯域における損失を最小限に抑制するには、 上記ローパスフィルタ 6を用いることが望ましい。
上記のように、図 4に示したローパスフィルタ 6を用いることにより、 少なく とも 3つの容量素子と少なく とも 2つのインダクタ ス素子とを 組み合わせることにより、 送信側弾性表面波フィルタの通過帯域である 800〜90 OMH z付近で整合が取れ、 その 2倍波及び 3倍波に減衰 極を有するフィルタ特性の得られることがわかる。
特に、 ローパスフィルタ 6では、 第 1〜第 3の容量素子 22〜24が 上記のように Δ型に接続されており、 第 1の共通端子 25とアース電位 との間に第 1のィンダクタンス素子 L 1が接続されており、 第 2, 第 3 の共通端子 26, 2 7間に第 2のインダクタンス素子 L 2が接続されて いる。 ここでは、 第 2のインダクタンス L 2と第 2のインダクタンス L 2に並列に接続された容量素子 23との反共振により第 1の減衰極が生 じ、 後述の容量 Czと、 第 1のインダクタンス L 1 との共振により第 2 の減衰極が生じる。 従ってローパスフィルタ 6を用いた場合、 ローパス フィルタ 3 6, 3 7に比べて、 素子数の低減を測り得るだけでなく、 全 体としての容量値及びィンダクタンス値を小さくすることができる。 ま た、 ローパスフィルタ 6は、 ローパスフィルタ 36, 3 7に比べてより 小型に構成することができる。
ローパスフィルタ 6の第 1〜第 3の容量素子 22〜 24の接続を、 例 えば、 図 1 1 (a) に示す Δ型の接続から、 図 1 1 (b) に示す T型の 接続構造に変形することにより、 ローパスフィルタ 6の減衰極の位置を 計算することができる。 T型の接続構造では、 全体の容量 Czの値は以 下の通りとなる。
C z = (C a牛 C b + C a XC c/C b)
表 1に示した場合に準じて、 C a = l . 3 p F、 C b = 1. 3 p F及 ぴ C c = 2. 3 5 p Fを代入すると、 C z= 3. 3 p Fと大きな値とな る。
また、 第 2の減衰極の位置は、 インダクタンス素子 L 2と容量 Czの 共振により決定される。 従って、 すなわち、 1 Z ( 2 X π X ( L 2 X C z ) 1 / 2 ) により決定されるため、 容量 C 2の値が大きくなると、 イン ダクタンス L 2の値を小さく しても周波数が一致し、 ローパスフィルタ 3 6 , 3 7に比べて、 より一層小型化を図ることができる。
なお、 口一パスフィルタを形成するィンダクタンス素子は、 受信側弾 性表面波フィルタ 4外に設けられてもよい。 しかしながら、 上記実施形 態のように、 パッケージ材 1 1内にインダクタンス素子 2 9 , 3 0等を 内蔵させることにより、 より一層の小型化を図ることができる。 また、 弾性表面波分波器 1の付加価値を高めることができる。
本実施形態においては、 ローパスフィルタ 6は、 送信側弾性表面波フ ィルタ 3の通過帯域 2倍波及び 3倍波を減衰させるように構成ざれるこ とが必要である。 このローパスフィルタ 6は、 本実施形態では、 受信側 弾性表面波フィルタ 4とアンテナ端子 2との間に接続されていた。 これ に対して、 ローパスフィルタ 6を、 受信側弾性表面波フィルタ 4と出力 端子 4 1 (図 1参照) との間に接続した場合にも、 受信側弾性表面波フ ィルタ 4の周波数特性を改善することはできる。 しかしながら、 好まし くは、 上記実施形態のように、 受信側弾性表面波フィルタ 4のアンテナ 側に口一パスフィルタ 6を接続することにより、 受信側弾性表面波フィ ルタの高周波数特性の改善にも寄与することができる。
また、 インダクタンス素子 2 9 , 3 0等は、 パッケージ材 1 1内に形 成されていたが、 インダクタンス素子 2 9 , 3 0等が、 送信側弾性表面 波フィルタ 3側において構成されていると、 位相整合用のストリップラ イン 1 5, 1 6との間で容量結合や誘導結合が生じ、 減衰域の特性が極 端に悪化する。 これに対して、 本実施形態のように、 インダクタンス素 子 2 9, 3 0等がストリップライン 1 5 , 1 6とはパッケージ材 1 1の 主面方向において隔てられて、 受信用弾性表面波フィノレタ 4側に位置さ れた場合には、 上記のような結合が生じ難いため、 減衰域の特性の悪化 を抑制することができる。 しかも、 インダクタンス素子 2 9 , 3 0等を 構成する電極 1 9, 2 0を、 ス ト リ ップライン 1 5, 1 6と複数の層に 渡り、 かつ同一面内に配置することができ、 パッケージ材 1 1の小型化 及び製造工程後の簡略化を果たすことができる。
.加えて、 上記ィンダクタンス素子 2 9 , 3 0を、 ストリップライン 1 5 , 1 6とそれぞれ同一面内に配置した構造では、 上記のように製造ェ 程の簡略化を果たすことができるので、 コストの低減及び弾性表面波分 波器 1の低背化を果たすことも可能となる。 特に、 インダクタンス素子 2 9, 3 0等が複数の層に渡り形成されているため、 インダクタンス素 子 2 9, 3 0·等では、自己誘導を高め合うことができ、それによつても、 小型化を進めることができる。
加えて、 位相整合用のストリップライン 1 5, 1 6も同様に複数層に 渡って形成されており、 かつ上記インダクタンス素子 2 9, 3 0等と同 一面内に形成されているので、 同一プロセスにより同時に形成すること ができるので、 コス トを低減することができる。
なお、 上記ローパスフィルタを構成する容量は、 パッケージ材 1 1内 に内蔵されてもよい。 しかしながら、 上記実施形態のように弾性表面波 フィルタ 4を構成する圧電基板 2 1上に容量素子を形成することにより、 パッケージ材 1 1内に内蔵させた場合に比べて弾性表面波分波器 1の低 背化を進めることができる。 特に、 上記のように、 櫛形電極からなる容 量素子 2 2〜 2 4を用いた場合には、 小さな面積で大きな容量を得るこ とができるため、 容量素子の小型化を図ることができる。 また、 上記櫛' 形電極を用いて容量素子 2 2〜2 4が構成されているので、容量素子を、 弾性表面波共振子の電極形成と同時に形成することができ、 それによつ てもコストを低減することができる。 上記実施形態では、 上記容量素子 22〜 24を構成する櫛形電極の電 極指ピッチの方向が、 前述した表面波伝搬方向に対して 90度回転され た方向とされているので、 容量素子 2 2〜 24を構成している櫛形電極 において所望でない応答が生じ難い。
好ましくは、 圧電基板として L i T a 03基板を用いる場合には、 容 量素子 2 2〜24を構成する櫛形電極における電極指ピッチ Pの範囲は、 下記の式 (1) 〜 (3) の範囲とするこ.とが望ましく、 それによつてよ り一層低損失の弾性表面波分波器 1を提供することができる。
なお、 f Hは、受信側弾性表面波フィルタの通過帯域の上限周波数を、 f Lは、 送信側弾性表面波フィルタのフィルタの通過帯域の下限周波数 を意味する。
5 3 00/ f H≥ 2 X P …式 (1)
6 800/f L≤ 2 XP≤ 1 6 500/ f H …式 (2)
1 88 O 0/f L≤ 2 XP …式 (3)
上記実施形態では、 f H= 8 94MH zであり f L= 824MH z であるため、
. 6. 1 5 X 10_6≥ 2 X P
8. 25 X 10_6≤ 2 X P≤ 1 8. 5 X 10-6
2 2. 8 X 1 0~6≤ 2 X P
のいずれかを満たすように櫛形電極を構成すればよい。 上記実施形態 では、 櫛形の電極指ピッチ Pは、 前述したように 4. 5 μπιとされてい るため、 上記条件を満たし、 従って、 良好なフィルタ特性を得ることが できる。
次に、 式 (1) 〜 (3) にっき、 図 1 2を参照して説明する。 ' 弹性表面波フィルタが形成されている 3 6度 L i T a 03基板上に、 表面波フィルタ表面波伝搬方向である X軸に対して 90度回転した方向 に電極指が並ぶように櫛形電極を形成し、 該櫛形電極のインピーダンス を測定した。 結果を図 1 2に示す。 この場合、 櫛形電極の電極指ピッチ は 1 Ο.μ in、電極指の対数は 2 5対とした。図 1 2から明らかなように、 3 0 ΟΜΗ ζ付近及び 90 ΟΜΗ ζ付近に大きなリップルが存在するこ とがわかる。 位相はリアクタンス分と抵抗分の比率により決定される。 位相が一 90度に近ければ近い程、 抵抗分が小さく、 良好な容量が得ら れることを示し、位相が大きくなるに従って抵抗分が増えることを示す。 従って、 ローパスフィルタの容量素子では、 上記リップルが現れる周波 数帯を避ける必要のあることがわかる。 位相がボトム付近である一 8 5 度よりも大きくなる領域に限定すると、 避けるべき周波数帯は 27 5Μ Η ζ、 34 ΟΜΗ ζ、 8 25ΜΗ ζ、 及び 94 ΟΜΗ ζとなる。
電極指ピッチが 10 zmであるため、 上記周波数位置を音速に換算す ると、 5 500、 6800、 1 6 500及ぴ 1 8800m/秒となる。 従って、 通過帯域の相対的に低いフィルタ、 すなわち、 送信側弾性表面 波フィルタ 3の通過帯域の下限周波数から、 通過帯域が相対的に高いフ ィルタ、 すなわち、 受信側弾性表面波フィルタ 4の通過帯域の上限周波 数までを、 上記範囲から外す必要がある。 ここで、 式 (1) 〜 (3) の 範囲外、 すなわち、 電極指ピッチを 10 μιη選択した場合と、 式 (1) 〜 (3) の範囲内である 7 μπιに選択した場合との特性の差を図 1 3に 示す。 図 1 3の実線が 7 x mの場合を示し、 破線が 1 0 Ai mの場合を示 す。図 1 3から明らかなように、ローパスフィルタ用の容量素子として、 電極指の並ぶ方向が表面波伝搬方向に対して 90度回転された方向とな るように櫛形電極を形成した場合、 式 (1) 〜 (3) を満たすことによ り、 損失を低減し得ることがわかる。
また、 ローパスフィルタ 6を用いて送信側の通過帯域の 2倍波及び 3 倍波付近に減衰極を得る場合、 さらに 2倍波及び 3倍波の周波数におい ても上述したリップルが存在することがある。 これらのリップルを回避 することができれば、 2つの弾性表面波フィルタ 3, 4の帯域内特性と、 減衰極における減衰量の悪化を防ぐことができ、 より一般一層良好な弾 性表面波分波器を提供することができる。
また、 本発明においては、 送信側弾性表面波フィルタ 3の通過帯域の 下限周波数を f TL、 通過帯域の上限周波数 f THとすると、 電極指ピ ツチ Pは、 下記の式 (4) 〜 (1 2) のいずれかの範囲內に設定するこ とがより一層望ましい。
5 ,5 0 0/ f H≥ 2 X P "式 (4) ·
6 8 0 0ん f L≤ 2 X p≤ 1 6 5 00/ f H · "式 (5)
1 8 8 0 0/ f L≤ 2 X P ··式 (6)
5 5 0 0/ ( 2 X f TH) ≥ 2 X P · '·式 (7)
6 8 0 0/ ( 2 X f T L) ≤ 2 X P≤ 1 6 500/ ( 2 X f TH)
…式 (8)
1 8 8 0 O ( 2 X f T L) ≤ 2 X P ■ "式 (9)
5 5 0 0/ (3 X f TH) ≥ 2 X P ■ -'式 (10)
6 8 0 0Z ( 3 X f T L) ≤ 2 X P≤ 1 6 500/ ( 3 X f TH)
…式 (1 1)
1 8 8 0 0/ ( 3 X f T L) ≤ 2 X P . "式 (1 2) 例えば、 上記実施形態のように、 送信側の通過帯域が 8 24〜 849 MH z、 受信側の通過帯域が 86 9〜 8 94MH zの場合、 電極指ピッ チは、 下記のいずれかの範囲に限定することが望ましく、 それによつて リップルを通過帯域及び送信帯域の 2倍波及び 3倍波の領域の双方から 外すことができる。
① 1. 08 / m以下
② 1. 3 7〜: L . ③ 2 . 0 6〜 3 . 0 8 μ τα
④ 4 . 1 3〜4 . 8 6 μ τη
⑤ 5 . 7 0〜 9 . 2 2 μ m
© 1 1 . 4 μ m以上
また、 上記実施形態では、 櫛形電極により、 ローパスフィルタの容量 素子が構成されていたが、 櫛形電極以外の構造を採用することにより容 量素子を構成してもよい。 例えば、 圧電基板上に、 第 1の電極、 誘電体 及び第 2の電極を積層した構造により容量素子を形成してもよい。 この 場合には、 誘電体の t a η δで Q値が決定され、 t a η δの良好な誘電 体膜を用いることにより、 損失の低減を図ることができる。
本実施形態では、 上記櫛形電極からなる容量素子 2 2〜2 4は、 受信 側弾性表面波フィルタ 4を構成する圧電基板 2 1上に配置されていたが、 送信側弾性表面波フイノレタ 3に構成されてもよい。 もっとも、 弾性表面 波分波器では、送信側弾性表面波フィルタ 3に大電力が投入されるため、 耐電力を高めるために、 送信側弾性表面波フィルタ 3は、 より多段に構 成されるのが普通である。 従って、 送信側弾性表面波フィルタ 3は、 受 信側弾性表面波フィルタ 4に比べてチップサイズが大きいのが普通であ る。 よって、 上記実施形態のように、 受信側弾性表面波フィルタ 4に容 量素子 2 2〜2 4を構成することにより、 受信側弾性表面波フィルタ 4 と送信側弾性表面波フィルタ 3のチップサイズを近づけることができ、 あるいは等しくすることができる。 それによつて、 弾性表面波分波器 1 の製造に際しての取扱い性を高めるこができるとともに、 受信側弾性表 面波フィルタ 4のパッケージ材料 1 1との接合部の信頼性を高めること ができる。
さらに、 ローパスフィルタを構成するための容量素子を、 受信側弾性 表面波フィルタ 4のアンテナ端近傍に配置することにより、 送信側弾性 表面波フィルタ 3の信号端子や受信側弾性表面波フィルタの出力端との 間の容量結合や誘導結合を防ぐことができ、 アイソレーション特性に優 れた弾性表面波分波器を提供することができる。
上記実施形態の弾性表面波分波器 1では、 位相整合用素子 7による位 相遅延量は 7 5度とされていた。 この場合には、 送信側弾性表面波フィ ルタ 3にとつて、 受信側弾性表面波フィルタ 4が誘導性の素子にみえる こととなる。 すなわち、 送信側弾性表面波フィルタ 3に並列にィンダク タンスが付加されたこととなる。 この場合の受信側弾性表面波フィルタ 4のみのインピーダンス特'["生を図 1 6にスミスチヤ一トで示す。
弾性表面波フィルタを設計する場合、 弾性表面波フィルタ単体の特性 で帯域を拡げようとした場合、 容量性に落ち込むため、 最適な値の並列 ィンダクタを付加することにより、 実軸的に整合をとることができる。 従って、 位相遅延量を 9 0度未満とすることにより、 図 1 7に送信側弾 性表面波フィルタの整合状態をスミスチャートで矢印で示すように、 弾 性表面波分波器 1のアンテナ端における整合状態を 5 0 Ω整合に近づけ ることができる。 もっとも、 位相遅延量がさらに小さくなり、 6 0度程 度になると、 図 1 8に送信側弾性表面波フィルタの整合状態をスミスチ ヤートで矢印で示すように、 誘導性に回り過ぎ、 逆に整合状態が悪化す る。 この場合には、 図 1 9に送信側弾性表面波フィルタの整合状態をス ミスチャートで矢印で示すように、 誘電性に回り過ぎたインピーダンス を、 ローパスフィルタの容量成分により制御し、 それによつてインピー ダンス整合を図ることができる。
但し、 位相遅延量が小さくなり過ぎると、 コンダクタ分が大きくなり 過ぎ、 送信側弾性表面波フィルタ 3の損失の劣化につながる。 従って、 位相回転量は、 好ましくは、 6 0度以上とされる。 また、 小型化を図る ことができ、 単体では容量性に落ち込んだフィルタの実軸上で整合がと れるようにするには、 位相回転量は 8 0度未満とすることが望ましい。 すなわち 6 0度以上、 8 0度未満とすることにより、 より小型であり、 整合状態に優れた弾性表面波分波器 1を提供することができる。
なお、 上記実施形態では、 送信側弾性表面波フィルタ 3と受信側弾性 表面波フィルタ 4とは、 それぞれ独立の圧電基板に構成されていたが、 送信側弾性表面波フィルタ 3及び受信側弾性表面波フィルタ 4は、 同一 の圧電基板に構成されていてもよい。
また、 弾性表面波フィルタ 3, 4のパッケージ材 1 1への接合方法に ついても、 バンプを用いたものに限定されず、 ワイヤボンディングを用 いた接合方法を採用してもよい。
なお、 上記実施形態のように、 バンプにより弹性表面^フィルタ 3, 4をパッケージ材 1 1に接合した構造では、 上記のように受信側弾性表 面波フィルタ 4と送信側弾性表面波フィルタ 3とを独立の圧電基板に構 成することが望ましく、 それによつて弾性表面波フィルタ 3 , 4とパッ ケージ材 1 1との接合強度を高めることができる。 また、 前述したよう に、 受信側弾性表面波フィルタ 4と送信側弾性表面波フィルタ 3とを独 立の圧電基板上に構成した場合には、 受信側弾性表面波フィルタ 4側に 上記高周波素子を構成するための容量素子を搭載することが望ましい。 また、 上記実施形態では、 位相整合用素子 7を構成するス トリ ップラ イン 1 5, 1 6と、高周波素子を構成するインダクタ素子 2 9, 3 0が、 複数の層に渡り、 かつそれぞれが同一平面内に位置するように構成され ていたが、 ストリップライン 1 5 , 1 6と上記インダクタ素子 2 9, 3 0とは、 パッケージ材 1 1の異なる平面内に形成されていてもよく、 ま たストリップライン 1 5, 1 6及びィンダクタ秦子 2 9, 3 0は、 複数 の層に渡り形成される必要は必ずしもない。 しかしながら、 上記実施形 態のように、同一平面内にかつ複数層に渡るように形成することにより、 ィンダクタ素子及ぴストリップラインが内蔵されている構造の小型化及 び低コスト化を図ることができる。
上記実施形態では、 位相整合用素子 7による位相シフ ト量が、 7 5度 とされていたが、 位相シフ ト量は、 これに限定されず、 一般的に短絡か ら解放まで 9 0度位相回転される位相整合用素子を用いてもよい。 もつ とも、 上記実施形態のように、 7 5度と位相遅延量を短めに設定するこ とにより、 パッケージ材 1 1の小型化を図ることができる。 加えて、 口 ーパスフイノレタのインピーダンスを含めることにより、 インピーダンス 整合が良好な弾性表面波分波器 1を提供することができる。
本発明に係る弾性表面波分波器は、 上記のように、 種々の構成により 様々な効果を果たし得るものである力 本発明においては、好ましくは、 上記実施形態のように、 第 1〜第 3の容量素子 2 2〜 2 4と 2つの誘導 素子であるインダクタンス素子 2 9 , 3 0とを用いて高周波素子 6が構 成されているため、 すなわちィンダクタンス素子 2 9, 3 0がパッケ一 ジ材に内蔵され、 容量素子 2 2〜 2 4が弾性表面波フィルタ 4を構成す る圧電基板上に形成されているため、 より一層小型であり、 かつ低背化 を進め得る弾性表面波分波器を提供することができるという利点を有す る。
上記ィンダクタンス素子が弾性表面波フィルタを構成する圧電基板上 に形成される場合には、 薄膜プロセスなどによりインダクタンス素子を 形成する必要がある。 この場合には、 Q値の高いインダクタンス素子を 得ることが困難である。 これに対して、 上記実施形態のようにインダク タンス素子 2 9 , 3 0がパッケージ材 1 1に内蔵されている場合、 特に パッケージ材 1 1の複数の層に渡って形成されており、 かつ位相調整用 のストリップライン 1 5, 1 6を複数の層に渡ってかっさらに同一平面 内に形成されている場合には、 小型であり、 Q値が高いインダクタを容 易に構成することができる。
さらに、 弾性表面波分波器に付加される上記ィンダクタの Q値が悪い と、 減衰極の減衰量が十分な大きさとならないだけでなく、 通過帯域に おける損失の劣化が生じるおそれがある。 また、 容量素子をパッケージ 材内に形成した場合には、 特に本願発明のように複数のトラップを発生 させる上記高周波素子では、 3つの容量素子が必要となる。 従って、 容 量素子をパッケージ材を内臓した構造では、 上記ィンダクタンス素子や ストリップラインなどの他の素子との容量結合が避け難くなり、 かつ小 型化や低背化を進める上でも不利となる。 よって、 圧電基板上に容量素 子を形成することにより、 低背化を進め得るだけでなく、 パッケージ材 内の他の素子との所望でない結合を防ぐことができ、 良好なローパス特 性を得ることができる。
また、 圧電基板上に容量電極を形成して容量素子を構成する場合、 上 記櫛形電極の電極素子の並ぶ方向を表面波伝搬方向に対して 9 0度回転 させた構造では、 前述したように、 容量素子の容量に起因するリップル を弾性表面波フィルタ 3 , 4の通過帯域に表れないように抑制すること ができ、より一層低損失かつ減衰量の抑圧素子を構成することができる。 従って、 上記種々の構成を組み合わせた本発明の弾性表面波分波器で は、 より一層特性が良好であり、 小型化及び低背化が可能な弾性表面波 分波器を提供することができる。 '
特に、 図 4に示した 2つの減衰極を有するローパスフィルタ 6では、 弾性表面波分波器に複合される場合、 特定の部分に寄生成分が入ると、 急激に減衰極の悪化がみられる。 すなわち、 図 1 4に矢印 Cで示す位置 に寄生ィンダクタ成分 L Xが入ると、 トラップ減衰極の急激な悪化が生 じる。 これを、 図 1 5を参照して説明する。 図 1 5の実線は、 上記寄生 成分が存在しない場合の口一パスフィルタ 6の周波数特性を示し、 一点
3 鎖線は、 寄生成分の大きさが 0 . I n Hの場合、 破線は寄生成分の大き さが 0 . 5 n Hの場合の周波数特性をそれぞれ示す。
図 1 5から明らかなように、 通過帯域の 2倍波の減衰量が上記寄生ィ ンダクタ成分 L Xが揷入されることにより極端に悪化することがわかる, 上記のような寄生インダクタ成分 L Xの影響を回避するには、 パッケ ージ材 1 1内にインダクタンス素子 2 9 , 3 0を内蔵させた構造におい て、 ストリップライン 1 5, 1 6の送信信号端子と接続される端子と、 インダクタンス素子 2 9 , 3 0の送信側信号端子と接続される端子が、 パッケージ材内ではなく、 パッケージ材 1 1のバンプにより接合される 面に寄生されることが望ましく、 それによつて上記寄生インダクタ成分 L Xを極力小さくすることができる。 産業上の利用可能性
本願の第 1の発明に係る弾性表面波分波器では、 送信側弹性表面波フ ィルタ及び受信側弾性表面波フィルタがパッケージ材に搭載された弾性 表面波分波器において、 送信側弹性表面波フィルタ及び受信側弾性表面 波フィルタに接続されており、 かつ送信側通過帯域よりも高周波側に 2 つのトラップ減衰極を有する高周波素子が備えられているため、 2つの トラップ減衰極により送信側通過帯域よりも高周波側の所望でない高調 波やリ ップル等を抑圧することができ、 それによつて良好な周波数特性 の弾性表面波分波器を提供することができる。
2つのトラップ減衰極が、 送信側通過帯域の 2倍波及び 3倍波もしく はその近傍に位置している場合には、 送信側通過帯域の 2倍波及び 3倍 波の減衰量を抑制することができる。
高周波素子が、 第 1, 第 2のインダクタと、 第 1〜第 3の容量素子と を有し、 第 1 , 第 2のインダクタと第 1〜第 3の容量素子とにより、 2 つのトラップ減衰極が構成されている場合には、 5個の素子のみで上記 2つのトラップ減衰極を有する高周波素子を構成することができる。 第 1〜第 3の容量素子が、 Δ型に接続されており、 第 1の共通端子と アース電位との間に第 1のインダクタが、 第 2, 第 3の共通端子間に第 2のィンダクタが接続されている構成を有する場合には、 高周波素子を 構成する容量素子の数を低減することができ、 かつ全体の静電容量及び ィンダクタンスの値を大きくすることができ、 弾性表面波分波器の小型 化を進めることができる。 第 2のインダクタと、 第 2のインダクタに並 列に接続されている容量素子との反共振により送信側弾性表面波フィル タの通適帯域の 2倍波もしくはその近傍に第 1のトラップの減衰極が発 生し、 Δ型に接続された第 1〜第 3の容量素子から等価的に求められた Y型接続の場合の容量と第 1のィンダクタとの共振により、 送信側弾性 表面波フィルタの通過帯域の 3倍波もく しはその近傍に第 2のトラップ 減衰極が生じるように構成されている場合には、 弾性表面波分波器の小 型化を計ることができる。
また、 第 2の発明に係る弾性表面波分波器では、 受信側弾性表面波フ ィルタ及び送信側弾性表面波フィルタの一端が共通接続点で接続されて おり、 共通接続点とァンテナ共振端子との間にだけ高周波素子が設けら れており、 該高周波素子を構成しているインダクタがパッケージ内に形 成されているため、 受信側の高周波特性を改善することができるととも に、 弾性表面波分波器の小型化を進めることができる。
パッケージ材内に設けられた位相整合用ストリップラインがさらに備 えられ、 上記高周波素子を構成しているインダクタがストリップライン とパッケージ内の同一の面内に形成されている場合には、 弾性表面波分 波器の小型化をさらに進めることができるとともに、 ストリップライン とインダクタとの間の容量結合や誘導結合が生じ難く、 従って減衰域の 悪化を招かない、 弾性表面波分波器を提供することができる。 インダク タが誘導を強め合うようにパッケージ材内の少なくとも 2つの層以上に 配置されている場合には、 ィンダクタにおいて自己誘導を高めることが でき、 より一層弾性表面波分波器の小型化を図ることができる。
ストリップラインとインダクタの双方がパッケージ材内において 2つ の層以上に渡ってかつ同一の 2つ以上の層に渡って形成されている場合 には、 弾性表面波分波器の小型化、 減衰域の悪化を抑制することができ るとともに、 製造工程において、 インダクタ及びストリップラインを同 一プロセスで形成することができ、 製造コストの低減を図ることができ る。
第 3の発明に係る弾性表面波分波器では、 受信側弾性表面波フィルタ 及び送信側弾性表面波フィルタが搭載されたパッケージ材と、 少なくと も 1つのィンダクタ 少なく とも 1つの容量素子とを有する高周波素子 とを備え、 容量素子が、 弾性表面波フィルタを構成している圧電基板上 に形成された櫛形電極により形成されており、 櫛形電極の電極指ピッチ に沿う方向が、 櫛形電極が形成されている弹性表面波フィルタにおいて 表面波が伝搬する方向に対して 9 0度回転された方向とされている。 従 つて、 櫛形電極による容量素子では、 同一面積で相対的に大きな静電容 量を得ることができる。また、上記容量素子が表面波に応答し難いため、 所望でないリップルが生じ難く、 また容量素 によって発生するリップ ルが送信側弾性表面波フィルタの通過帯域及び受信側弾性表面波フィル タの通過帯域の 2倍波、 3倍波及びその近傍に位置しないため、 良好な 周波数特性を有する弾性表面波分波器を提供することができる。
第 3の発明において、 圧電基板が L i T a 0 3基板からなり、 容量素 子を構成している櫛形電極の電極指の周期 Pが上述した式(1 ) 〜 (3 ) のいずれかの範囲にある場合には、 低損失の弾性表面波分波器を提供す ることができ、 特に、 上述した式 ( 4 ) 〜 (1 2 ) を満たす場合には、 容量素子によるリップルが受信側弾性表面波フィルタの通過帯域及び送 信側弾性表面波フィルタの通過帯域の 2倍波、 3倍波及びその近傍の領 域から確実に外れることになる。
第 4の発明に係る弾性表面波分波器では、 容量素子は、 送信側及び Z または受信側弾性表面波フィルタを構成している圧電基板上において、 第 1の電極膜と第 2の電極膜と、 第 1, 第 2の電極膜間に挟持された絶 縁膜とからなる積層構造により構成されているので、 圧電基板上にパッ ケージ製法によりこれらの膜を形成することにより、 容易に容量素子を 構成することができる。
第 3, 第 4の発明に係る弾性表面波分波器において、 送信側弾性表面 波フィルタ及び受信側弾性表面波フィルタが、 それぞれ独立の圧電基板 を用いて構成されており、 高周波素子を形成するための容量素子が、 受 信側弾性表面波フィルタの圧電基板に形成されている場合には、 各弹性 表面波フィルタとパッケージ材との接合強度を容易に高めることができ るとともに、 送信側弾性表面波フィルタと受信側弾性表面波フィルタの サイズを近づけることができ、 生産に際しての取扱い性を高めることが 可能となる。
高周波素子を構成している容量素子が、 受信側弾性表面波フィルタの アンテナ端子側部の近傍に配置されている場合には、 送信側弾性表面波 フィルタの信号端子や、 受信側弾性表面波フィルタの出力端子との間の 容量結合や誘導結合を抑制することができ、 アイソレーションゃ遅延特 性を改善することができる。
送信側弾性表面波フィルタ及び受信側弾性表面波フィルタが同一の圧 電基板上に形成されており、 高周波素子を構成するための容量素子が、 受信側弾性表面波フィルタのアンテナ端子側の端部の近傍に形成されて いる場合には、 1つの圧電基板で送信側弾性表面波フィルタ及び受信側 弾性表面波フィルタを構成することができるため、 組み立て作業を容易 とすることができる。
また、 容量素子が、 受信側弾性表面波フィルタのアンテナ端子側の端 部近傍に配置されている場合には、 送信側弾性表面波フィルタの送信信 号端子や受信側弾性表面波フィルタの出力端との間の誘導結合や容量結 合を抑制することができ、 アイソレーションを改善することができる。 第 5の発明に係る弾性表面波分波器では、 インダクタがパッケージ材 内に形成されており、 容量素子が送信側弾性表面波フィルタ及び/また は受信側弾性表面波フィルタを構成している圧電基板に形成されている ために、 弾性表面波分波器の小型化を図ることかできるとともに、 容量 素子が圧電基板に形成されているため、 送信側弾性表面波フィルタまた は受信側弾性表面波フィルタの多機能化を図ることができる。
第 6の発明に係る弾性表面波分波器では、 送信側弾性表面波フィルタ 及び受信側弾性表面波フィルタを構成している圧電基板が L i T a 0 3 基板であり、 高周波素子を構成する容量素子が、 該圧電基板上に設けら れた櫛形電極からなり、 該櫛形電極が、 弾性表面波フィルタにおいて表 面波を伝搬する方向に対して 9 0度回転された方向に配置されているた め、 櫛形電極による所望でないリップルを発生し難い。 また、 櫛形電極 の電極指の周期が、 上述した式 (1 ) 〜 (3 ) の範囲にあるため、 低損 失の弾性表面波分波器を提供するこができる。 .
第 7の発明に係る弾性表面波分波器では、 少なくとも 1つの位相整合 用素子と、 ローパスフィルタとが備えられており、 ローパスフィルタが ァンテナ端子と、 送信側弾性表面波フィルタ及び受信側弾性表面波ブイ ルタとの間に接続されており、 ローパスフィルタは、 ローパスフィルタ 機能とアンテナ整合機能とを併せ持つため、 本発明に従って、 通過帯域 における減衰量を改善することができ、 良好な周波数特性を有するとと もに、 アンテナとのインピーダンス整合を容易に図り得る弾性表面波分 波器を提供することができる。
位相整合用素子が、周波数が相対的に高い側の弾性表面波フィルタと、 アンテナ端子との間に配置され、位相整合用素子における位相遅延量が、 周波数が相対的に低い側の弾性表面波フィルタが中心周波数において 9 0度未満である場合には、 弾性表面波分波器のアンテナ端における整合 状態を 5 0 Ω整合に近づけることができる。 特に、 位相遅延量が 6 0〜 8 0度の範囲にある場合には、 より一層良好な整合状態を実現すること ができる。
ローパスフィルタを除いた弾性表面波分波器のアンテナ端子における インピーダンスが、 少なくとも送信側弾性表面波フィルタ及び受信側弾 性表面波フィルタの各通過帯域の 5 0 %以上の周波数配置で誘電性であ り、 ローパスフィルタの通過域におけるィンピーダンスが容量性とされ ている場合には、それによつてアン,テナ側から実軸上に整合が図られる。 第 8, 第 9の発明に係る弾性表面波分波器は、 本願の第 1〜第 4の発 明に係る弾性表面波分波器の構成を備えるため、 図示した第 1〜第 4の 発明に従って、 良好な周波数特性を有し、 小型化を図ることができ、 さ らに高周波における減衰量を改善することができ、 所望でないリップル が生じ難い、 弾性表面波分波器を提供することができ、 特に、 高周波素 子が、 送信側弾性表面波フィルタの 2倍波及び 3倍波もしくはその近傍 に 2つのトラップ減衰極を有し、 高周波素子が、 Δ型に接続された第 1 〜第 3の容量素子と、 上記第 1, 第 2のインダクタとを有し、 第 2のィ ンダクタがパッケージ内に設けられた位相調整用ストリップラインと同 一の層にかつ複数層に渡って形成されており、 ストリップラインの送信 側信号端子と接続される端子と、 第 2のインダクタの送信側信号端子と 接続される端子とがパッケージ材において短絡されている構成を有する 場合には、 本発明に従って、 送信側弾性表面波フィルタの高調波の減衰 域における減衰量を十分に改善することができ、 従って受信側弾性表面 波フィルタの損失特性を効果的に改善することができるとともに、 弾性 表面波分波器の小型化及び低背化を図ることができ、 さらにインピーダ ンス整合が容易であり、 かつ製造容易な弾性表面波分波器を提供するこ とが可能となる。

Claims

1 . アンテナ端子と、
前記ァンテナ端子に接続された送信側弾性表面波フィルタと、 前記アンテナ端子に接続された受信側弾性表面波フィルタと、 前記送信側弾性表面波フィルタ及び受信側弾性表面波フィルタが搭載 されたパッケージ材と、 請 ·
前記送信側弾性表面波フィルタ及び前記受信側弾性表面波フィルタに 接続されており、 かつ送信側通過帯の域よりも高周波側に 2つのトラップ 減衰極を有する高周波素子とを備える、 弾性表面波分波器。
2 . 前記 2つのトラップ減衰極が、 .送信囲側通過帯域の 2倍波及び 3 倍波もしくはその近傍に位置していることを特徴とする、 請求項 1に記 載の弾性表面波分波器。
3 . 前記高周波素子が、 第 1, 第 2のインダクタと、 第 1〜第 3の 容量素子とを有し、 第 1、 第 2のインダクタと第 1〜第 3の容量素子と により、 2つの前記トラップ減衰極が構成されている、 請求項 1または 2に記載の弾性表面波分波器。
4 . 前記第 1〜第 3の容量素子が、 第 1〜第 3の各共通端子に各々 2つずつの前記容量素子が共通接続された Δ型に接続されており、 前記 第 1の共通端子と、 アース電位との間に第 1のイシダクタが接続されて おり、 前記第 2 , 第 3の共通端子間に、 第 2のインダクタが接続されて いる、 請求項 3に記載の弾性表面波分波器。
5 . 前記第 2のインダクタと、 該第 2のインダクタに並列に接続さ れている容量素子との反共振により、 前記送信側弾性表面波フィルタの 通過帯域の 2倍波もしくはその近傍に第 1のトラップの減衰極が発生さ れ、 第 1〜第 3の容量素子 Δ型接続と等価な T型接続において求められた 容量と、 前記第 1のインダクタとの共振によって、 前記送信側弾性表面 波フィルタの通過帯域の 3倍波もしくはその近傍に第 2のトラップの減 衰極が発生される、 請求項 4に記載の弾性表面波分波器。
6 . アンテナ端子と、
前記ァンテナ端子に接続された送信側弾性表面波フィルタと、 前記ァンテナ端子に接続された受信側弾性表面波フィルタと、 前記送信側弾性表面波ブイルタ及び受信側弾性表面波フィルタが搭載 されたパッケージ材と、
少なくとも 1つのィンダクタと、少なくとも 1つの容量素子とを有し、 前記送信側弾性表面波フィルタ及び受信側弾性表面波フィルタの一端が 共振接続点で接続されており、 該共振接続点と、 前記アンテナ端子との 間にだけ設けられた高周波素子とを備え、
前記高周波素子を構成している前記ィンダクタが、 前記パッケージ材 内に形成されていることを特徴とする、 弾性表面波分波器。
7 . 前記パッケージ材内に設けられた位相整合用ストリップライン をさらに備え、 前記高周波素子を構成している前記インダクタが、 前記 ストリップラインとパッケージ材の同一面内に形成されている、 請求項 6に記載の弾性表面波分波器。
8 . 前記インダクタが、 パッケージ材内の少なくとも 2つ以上の層 に渡って磁束を強め合うように配置されていることを特徴とする、 請求 項 6または 7に記載の弾性表面波分波器。
9 . 前記ス ト リ ップラインと前記インダクタの双方が、 前記パッケ ージ材内において少なくとも 2つ以上の層に渡ってかつ同一の 2つ以上 の層に渡って形成されていることを特徴とする、 請求項 7または 8に記 載の弾性表面波分波器。
1 0 . アンテナ端子と、
前記アンテナ端子に接続されており、 圧電基板を用いて構成された送 信側弾性表面波フィルタと、
前記アンテナ端子に接続されており、 圧電基板を用いて構成された受 信側弾性表面波フィノレタと、
前記送信側弾性表面波フィルタ及び受信側弾性表面波フィルタが搭載 されたパッケージ材と、
少なくとも 1つのィンダクタと、 少なくとも 1つの容量素子とを有す る高周波素子とを備え、
前記容量素子が、 前記送信側及び または受信側弾性表面波フィルタ を構成している前記圧電基板上に形成された櫛形電極により構成されて おり、
前記櫛形電極の電極指ピッチに沿う方向が、 該櫛形電極が形成されて いる弾性表面波フィルタにおいて表面波が伝搬する方向に対して 9 0度 回転された方向とされており、
. 前記容量秦子によって発生するリップルが、 送信側弾性表面波フィル タの通過帯域及び受信側弾性表面波フィルタの通過帯域の 2倍波及び 3 倍波並びにその近傍に位置しないことを特徴とする、弾性表面波分波器。
1 1 . 前記圧電基板が L i T a 0 3基板であり、 前記容量素子を構成 している櫛形電極における電極指の周期が下記の式 (1 ) 〜 (3 ) 〔伹 し、 式 (1 ) 〜 ( 3 ) において、 f Hは、 受信側弾性表面波フィルタの 通過帯域の上限周波数を、 f Lは、 送信側弾性表面波フィルタのフィル タの通過帯域の下限周波数を意味し、 Pは、櫛形電極の電極指ピッチ(電 極指の幅と、 電極指間のスペースの和) である〕 のいずれかの範囲にあ ることを特徴とする、 請求項 1 0に記載の弾性表面波分波器。
5 3 0 0 / f H≥ 2 X P …式 ( 1 )
4 6 800//f L≤ 2 X P≤ 1 6 500/ f H …式 (2)
1 8 800/ f L≤ 2 X P …式 (3)
1 2. 前記櫛形電極の電極指周期が、 下記の式 (4) 〜 (1 2) 〔伹 し、 f TLは、 送信側弾性表面波フィルタの通過帯域の下限周波数、 f THは、 送信側弾性表面波フィルタの通過帯域の上限周波数、 Pは、 櫛 形電極の電極指ピッチを示す。 〕 の範囲にあることを特徴とする、 請求 項 1 1に記載の弾性表面波分波器。
5 5 0 0/ f H≥ 2 X P 式 (4)
6 8 0 0/ f L≤ 2 X P≤ 1 6 5 00/ f H · ··式 (5)
8 8 0 0/ f L≤ 2 X P ··式 (6)
5 5 0 OX ( 2 X f TH) > 2 X P - 式 (7)
6 8 0 0/ ( 2 X f T L) < 2 X P≤ 1 6 500/ ( 2 X f TH)
…式 (8)
8 8 0 0/ ( 2 X f T L) < 2 X P - 式 (9)
5 5 0 0/ ( 3 X f TH) > 2 X P - ··式 (10)
6 8 0 0/ ( 3 X f T L) < 2 X P≤ 1 6 500/ ( 3 X f TH)
…式 (1 1)
8 8 0 0/ ( 3 X f T L) < 2 X P · ··式 (1 2)
1 3. アンテナ端子と、
前記アンテナ端子に接続されており、 圧電基板を用いて構成された送 信側弾性表面波フィルタと、
前記アンテナ端子に接続されており、 圧電基板を用いて構成された受 ■信側弾性表面波フイノレタと、
前記送信側弾性表面波フィルタ及び受信側弾性表面波フィルタが搭載 されたパッケージ材と、
少なくとも 1つのインダクタと、 少なくとも 1つの容量素子とを有す る高周波素子とを備え、
前記容量素子が、 前記送信側及びノまたは受信側弾性表面波フィルタ を構成している圧電基板上において、第 1の電極膜と、第 2の電極膜と、 第 1, 第 2の電極膜間に挟持された絶縁膜とカゝらなる積層構造を形成す ることにより構成されている、 弾性表面波分波器。
1 4 . 送信側弾性表面波フィルタ及び受信側弾性表面波フィルタが、 それぞれの独立の圧電基板を用いて構成されており、 前記高周波素子を 形成するための容量素子が、 前記受信側弾性表面波フィルタの圧電基板 に形成されている、 請求項 1 0〜 1 3のいずれかに記載の弾性表面波分 波器。
1 5 . 前記高周波素子を構成している容量素子が、 前記受信側弾性表 面波フィルタのアンテナ端子側端部の近傍に形成されている、 請求項 1 4に記載の弾性表面波分波器。
1 6 . 前記送信側弾性表面波フィルタ及ぴ受信側弾性表面波フィルタ が同一の圧電基板上に形成されており、 前記高周波素子を構成するため の前記容量素子が、 受信側弾性表面波フィルタのアンテナ端子側端部の 近傍に形成されていることを特徴とする請求項 1 0〜 1 3のいずれかに 記載の弹性表面波分波器。
1 7 . アンテナ端子と、
前記アンテナ端子に接続されており、 圧電基板を用いて構成された送 信側弾性表面波フィルタと、
前記アンテナ端子に接続されており、 圧電基板を用いて構成された受 信側弾性表面波フィルタと、
前記送信側弹性表面波フィルタ及び受信側弾性表面波フィルタが搭載 されたパッケージ材と、
少なくとも 1つのィンダクタと、 少なくとも 1つの容量素子とを有す る高周波素子とを備え、
前記インダクタが、 前記パッケージ材内に形成されており、 前記容量 素子は、 前記送信側弾性表面波フィルタ及び Zまたは受信側弾性表面波 フィルタを構成している圧電基板に形成されていることを特徵とする、' 弾性表面波分波器。
1 8 . アンテナ端子と、
前記アンテナ端子に接続されており、 圧電基板を用いて構成された送 信側弾性表面波フィルタと、
前記アンテナ端子に接続されており、 圧電基板を用いて構成された受 信側弾性表面波フィルタと、
前記送信側弾性表面波フィルタ及ぴ受信側弾性表面波フィルタが搭載 されたパッケージ材と、
少なく とも 1つのィンダクタと、 少なくとも 1つの容量素子とを有す る高周波素子とを備え、
前記パッケージ材内に設けられた位相調整用ストリップラインをさら に備え、
.前記インダクタが、 前記位相調整用ストリップラインとパッケージ材 内の同一の層に複数層に渡って形成されており、
前記受信側弾性表面波フィルタ及び送信側弾性表面波フィルタを構成 している前記圧電基板が L i T a 0 3基板であり、'
前記容量素子が、 圧電基板上に櫛形電極からなり、 該櫛形電極の電極 指を結ぶ方向が、 弾性表面波フィルタにおいて表面波が伝搬する方向に 対して直交する方向とされており、
前記櫛形電極の電極指の周期が下記の式 (1 3 ) 〜 (1 5 ) 〔但し、 式 (1 3 ) ~ ( 1 5 ) において、 ί Ηは、 受信側弾性表面波フィルタの 通過帯域の上限周波数を、 i Lは、 送信側弹性表面波フィルタのフィル タの通過帯域の下限周波数を意味し、 Pは、櫛形電極の電極指ピッチ(電 極指の幅と、 電極指間のスペースの和) である] の範囲にあることを特 徴とする、 弾性表面波分波器。
5 300/ f H≥ 2 X P …式 (1 3) 6 800// f L≤ 2 X P≤ 1 6 500 / f H …式 (14)
1 8 800/ f L≤ 2 X P …式 (1 5)
1 9. アンテナ端子と、
前記ァンテナ端子に接続された送信側弾性表面波フィルタと、 前記ァンテナ端子に接続された受信側弾性表面波フィルタと、 前記送信側弾性表面波フィルタ及び受信側弾性表面波フィルタが搭載 されたパッケージ材と、
少なくとも 1つの位相整合用素子と、
ローパスフィルタとを備える弾性表面波分波器であって、
前記ローパスフィルタが前記ァンテナ端子と、 前記送信側弾性表面波 フィルタ及び受信側弾性表面波フィルタとの間に接続されており、 前記ローパスフィルタが、 ローパスフィルタ機能とァンテナ整合機能 とを併せ持つことを特徴とする、 弾性表面波分波器。
2 0. 前記位相整合用素子が、 周波数が相対的に高い側の弾性表面波 フィルタと、 アンテナ端子との間に配置され、 該位相整合用素子による 位相遅延量が、 周波数が相対的に低い側の弾性表面波フィルタの中心周 波数において 90度未満であることを特徴とする、 請求項 1 9に記載の 弾性表面波分波器。
2 1. 前記位相遅延量が 60〜80度の範囲にある、 請求項 20に記 載の弾性表面波分波器。
22. 前記ローパスフィルタを除いた前記弾性表面波分波器のアンテ ナ端子におけるインピーダンスが、 少なくとも送信側弾性表面波フィル タ及び受信側弾性表面波フィルタの各通過帯域幅の 5 0 %以上の周波数 範囲で誘導性であり、 前記ローパスフィルタの通過域におけるインピー ダンスが容量性とされており、 それによつてアンテナ側から見て実軸に 整合がとられていることを特徴とする、 請求項 1 9〜2 1のいずれかに 記載の弾性表面波分波器。
2 3 . アンテナ端子と、
前記ァンテナ端子に接続された送信側弾性表面波フィルタと、 前記ァンテナ端子に接続された受信側弾性表面波フィルタと、 前記送信側弾性表面波フィルタ及び受信側弾性表面波フィルタが搭載 されたパッケージ材と、
少なく とも 1つのインダクタと、少なくとも 1つの容量素子とを有し、 前記送信側弾性表面波フィルタ及び受信側弾性表面波フィルタの一端が 共振接続点で接続されており、 該共振接続点と、 前記アンテナ端子との 間にだけ設けられた高周波素子とを備え、 .
前記インダクタが、 パッケージ材内に形成されており、 前記容量素子 力 圧電基板上に形成された櫛形電極からなり、 該櫛形電極の電極指ピ ツチの方向が、 該圧電基板上において伝搬する表面波装置の伝搬方向に 対して 9 0度回転された方向であり、 該容量素子によって生じるリップ ルが送信側弾性表面波フィルタ及び受信側弾性表面波フィルタの通過域 の約 2倍波及び 3倍波並びにその近傍に位置せず、
前記高周波素子が口一パスフィルタ機能とァンテナ整合機能とを併せ 持つことを特徴とする、 弾性表面波分波器。
2 4 . アンテナ端子と、
前記ァンテナ端子に接続された送信側弾性表面波フィルタと、 前記ァンテナ端子に接続された受信側弾性表面波フィルタと、 前記送信側弾性表面波フィルタ及び受信側弾性表面波ブイルタが搭載 されたパッケージ材と、
前記パッケージ材内に設けられた位相調整用ストリップラインと、 高周波素子とを備える弾性表面波分波器であって、
前記高周波素子が、 送信側弾性表面波フィルタの 2倍波及び 3倍波も しくはその近傍に 2つのトラップ減衰極を有し、
該高周波素子は、 第 1, 第 2のインダクタと、 第 1〜第 3の容量素子 とを少なく とも備え、 前記第 1〜第 3の容量素子が、 第 1〜第 3の各共 通端子に各々 2つずつの容量素子が共通接続された Δ型に接続されてお り、 前記第 1の共通端子と、 アース電位との間に第 1のインダクタが接 続されており、 前記第 2, 第 3の共通端子間に、 第 2のインダクタが接 続されている、
前記第 2のインダクタが、 前記パッケージ材内に設けられた位相調整 用ストリップラインと同一の層にかつ複数層に渡って形成されており、 前記ストリップラインの送信側信号端子と接続される端子と、 前記第 2のインダクタの送信側信号端子と接続される端子とが、 前記パッケ一 ジ材において短絡されていることを特徴とする、 弾性表面波分波器。
PCT/JP2004/004782 2003-05-14 2004-04-01 弾性表面波分波器 WO2004102798A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005506151A JP4270206B2 (ja) 2003-05-14 2004-04-01 弾性表面波分波器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-135329 2003-05-14
JP2003135329 2003-05-14

Publications (1)

Publication Number Publication Date
WO2004102798A1 true WO2004102798A1 (ja) 2004-11-25

Family

ID=33410703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004782 WO2004102798A1 (ja) 2003-05-14 2004-04-01 弾性表面波分波器

Country Status (4)

Country Link
US (1) US20040227585A1 (ja)
JP (2) JP4270206B2 (ja)
CN (1) CN100472963C (ja)
WO (1) WO2004102798A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033733A (ja) * 2007-06-29 2009-02-12 Nippon Dempa Kogyo Co Ltd アンテナ分波器
JP2009508417A (ja) * 2005-09-12 2009-02-26 エプコス アクチエンゲゼルシャフト 電気的なモジュール
JP2010011300A (ja) * 2008-06-30 2010-01-14 Murata Mfg Co Ltd 共振器、該共振器を用いるフィルタ及びデュプレクサ
JP2010087586A (ja) * 2008-09-29 2010-04-15 Fujitsu Media Device Kk 弾性波デバイス
WO2010061477A1 (ja) * 2008-11-28 2010-06-03 富士通株式会社 フィルタ、デュプレクサおよび電子装置
JP2010206375A (ja) * 2009-03-02 2010-09-16 Ube Ind Ltd 分波器
WO2013008435A1 (ja) * 2011-07-08 2013-01-17 株式会社村田製作所 回路モジュール
JPWO2012046481A1 (ja) * 2010-10-06 2014-02-24 株式会社村田製作所 弾性波フィルタ装置
WO2019138786A1 (ja) * 2018-01-10 2019-07-18 株式会社村田製作所 マルチプレクサおよび通信装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7890891B2 (en) * 2005-07-11 2011-02-15 Peregrine Semiconductor Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
DE102006033709B4 (de) * 2006-07-20 2010-01-14 Epcos Ag Elektrisches Modul
JP2009278192A (ja) * 2008-05-12 2009-11-26 Sony Ericsson Mobilecommunications Japan Inc アンテナ装置及び通信端末装置
FR2964830B1 (fr) 2010-09-22 2013-04-05 Didier Lepretre Procede pour fabriquer des graines ayant un effet repulsif envers les oiseaux et graine associee obtenue par le procede
JP2014017537A (ja) * 2010-11-09 2014-01-30 Murata Mfg Co Ltd 弾性波フィルタ装置
DE102011018918B4 (de) * 2011-04-28 2017-01-05 Epcos Ag Schaltungsanordnung
JP5673818B2 (ja) * 2011-06-17 2015-02-18 株式会社村田製作所 分波器
JP6133216B2 (ja) 2011-11-30 2017-05-24 スカイワークスフィルターソリューションズジャパン株式会社 ラダー型弾性波フィルタと、これを用いたアンテナ共用器
CN105978523B (zh) * 2012-08-10 2018-07-13 株式会社村田制作所 电缆及通信装置
JP6187583B2 (ja) 2013-04-11 2017-08-30 株式会社村田製作所 高周波モジュール
CN105122645B (zh) * 2013-04-11 2018-02-13 株式会社村田制作所 高频模块
CN105850042B (zh) 2014-01-07 2017-06-06 株式会社村田制作所 滤波器装置
WO2016111315A1 (ja) * 2015-01-07 2016-07-14 株式会社村田製作所 弾性波装置
WO2016158094A1 (ja) * 2015-04-01 2016-10-06 株式会社村田製作所 デュプレクサ
CN107710615B (zh) * 2015-06-25 2021-10-08 株式会社村田制作所 多工器、高频前端电路以及通信装置
JP6516018B2 (ja) * 2015-10-26 2019-05-22 株式会社村田製作所 スイッチモジュール
US11211711B2 (en) 2016-06-30 2021-12-28 Hrl Laboratories, Llc Antenna dynamically matched with electromechanical resonators
US11145982B2 (en) 2016-06-30 2021-10-12 Hrl Laboratories, Llc Antenna loaded with electromechanical resonators
US11309867B2 (en) 2017-01-30 2022-04-19 Kyocera Corporation Acoustic wave filter, multiplexer, and communication apparatus
JP6790907B2 (ja) * 2017-02-23 2020-11-25 株式会社村田製作所 マルチプレクサ、送信装置および受信装置
US11528009B2 (en) 2017-12-01 2022-12-13 Kyocera Corporation Acoustic wave filter, multiplexer, and communication apparatus
WO2020013157A1 (ja) 2018-07-13 2020-01-16 株式会社村田製作所 マルチプレクサ
CN112511126B (zh) * 2020-10-30 2022-03-15 诺思(天津)微系统有限责任公司 多工器和改善多工器隔离度的方法以及通信设备
US20230062981A1 (en) * 2021-08-27 2023-03-02 Skyworks Solutions, Inc. Packaged multilayer piezoelectric surface acoustic wave device with conductive pillar

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115409A (ja) * 1984-06-29 1986-01-23 Matsushita Electric Ind Co Ltd トラツプ回路
JPH05259720A (ja) * 1992-03-12 1993-10-08 Ngk Insulators Ltd マイクロ波用共振器内蔵配線基板
JPH0936305A (ja) * 1995-07-20 1997-02-07 Rohm Co Ltd ダイオードとコンデンサとを備えたチップ型複合素子の構造
JPH10270976A (ja) * 1998-05-07 1998-10-09 Fujitsu Ltd 分波器パッケージ
JPH1168512A (ja) * 1997-08-22 1999-03-09 Japan Radio Co Ltd 弾性表面波フィルタ
JPH11112264A (ja) * 1997-10-08 1999-04-23 Murata Mfg Co Ltd フィルタ
JP2001313542A (ja) * 2000-04-28 2001-11-09 Oki Electric Ind Co Ltd 分波器
JP2003115748A (ja) * 2001-07-30 2003-04-18 Murata Mfg Co Ltd 弾性表面波分波器、通信装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04270206A (ja) * 1991-02-25 1992-09-25 Kurabo Ind Ltd 鳥類忌避用材料
DE69217147T2 (de) * 1991-09-04 1997-06-05 Nippon Electric Co Funksendeempfänger
JP3088801B2 (ja) * 1991-09-19 2000-09-18 国際電気株式会社 弾性表面波フィルタ
JP2905094B2 (ja) * 1994-07-01 1999-06-14 富士通株式会社 分波器パッケージ
JPH09284093A (ja) * 1996-04-13 1997-10-31 Toyo Commun Equip Co Ltd マルチバンドsawフィルタ
JP2000209061A (ja) * 1999-01-12 2000-07-28 Toshiba Corp 弾性表面波素子および弾性表面波装置
JP3363870B2 (ja) * 2000-05-29 2003-01-08 沖電気工業株式会社 弾性表面波分波器
JP4245265B2 (ja) * 2000-09-29 2009-03-25 京セラ株式会社 複数のフィルタを有する多層配線基板
JP2002353775A (ja) * 2001-03-23 2002-12-06 Sanyo Electric Co Ltd フィルタユニット及び該フィルタユニットを用いたデュプレクサ
JP3509773B2 (ja) * 2001-04-26 2004-03-22 株式会社村田製作所 弾性表面波装置、通信装置
JP2002330055A (ja) * 2001-04-27 2002-11-15 Tdk Corp 表面弾性波フィルタ、表面弾性波フィルタ用パッケージ及び表面弾性波フィルタモジュール

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115409A (ja) * 1984-06-29 1986-01-23 Matsushita Electric Ind Co Ltd トラツプ回路
JPH05259720A (ja) * 1992-03-12 1993-10-08 Ngk Insulators Ltd マイクロ波用共振器内蔵配線基板
JPH0936305A (ja) * 1995-07-20 1997-02-07 Rohm Co Ltd ダイオードとコンデンサとを備えたチップ型複合素子の構造
JPH1168512A (ja) * 1997-08-22 1999-03-09 Japan Radio Co Ltd 弾性表面波フィルタ
JPH11112264A (ja) * 1997-10-08 1999-04-23 Murata Mfg Co Ltd フィルタ
JPH10270976A (ja) * 1998-05-07 1998-10-09 Fujitsu Ltd 分波器パッケージ
JP2001313542A (ja) * 2000-04-28 2001-11-09 Oki Electric Ind Co Ltd 分波器
JP2003115748A (ja) * 2001-07-30 2003-04-18 Murata Mfg Co Ltd 弾性表面波分波器、通信装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8064843B2 (en) 2005-09-12 2011-11-22 Epcos Ag Electrical component for the front end circuit of a transceiver
JP2009508417A (ja) * 2005-09-12 2009-02-26 エプコス アクチエンゲゼルシャフト 電気的なモジュール
JP2009033733A (ja) * 2007-06-29 2009-02-12 Nippon Dempa Kogyo Co Ltd アンテナ分波器
JP2010011300A (ja) * 2008-06-30 2010-01-14 Murata Mfg Co Ltd 共振器、該共振器を用いるフィルタ及びデュプレクサ
US8179207B2 (en) 2008-06-30 2012-05-15 Murata Manufacturing Co., Ltd. Resonator device, filter including the same, and duplexer
JP2010087586A (ja) * 2008-09-29 2010-04-15 Fujitsu Media Device Kk 弾性波デバイス
JP4663770B2 (ja) * 2008-09-29 2011-04-06 太陽誘電株式会社 弾性波デバイス
WO2010061477A1 (ja) * 2008-11-28 2010-06-03 富士通株式会社 フィルタ、デュプレクサおよび電子装置
JP5122655B2 (ja) * 2008-11-28 2013-01-16 太陽誘電株式会社 デュプレクサおよび電子装置
KR101276037B1 (ko) * 2008-11-28 2013-06-20 다이요 유덴 가부시키가이샤 필터, 듀플렉서 및 전자 장치
US8912971B2 (en) 2008-11-28 2014-12-16 Taiyo Yuden Co., Ltd. Filter, duplexer and electronic device
JP2010206375A (ja) * 2009-03-02 2010-09-16 Ube Ind Ltd 分波器
JPWO2012046481A1 (ja) * 2010-10-06 2014-02-24 株式会社村田製作所 弾性波フィルタ装置
WO2013008435A1 (ja) * 2011-07-08 2013-01-17 株式会社村田製作所 回路モジュール
JP5510613B2 (ja) * 2011-07-08 2014-06-04 株式会社村田製作所 回路モジュール
JPWO2013008435A1 (ja) * 2011-07-08 2015-02-23 株式会社村田製作所 回路モジュール
WO2019138786A1 (ja) * 2018-01-10 2019-07-18 株式会社村田製作所 マルチプレクサおよび通信装置
US11689187B2 (en) 2018-01-10 2023-06-27 Murata Manufacturing Co., Ltd. Multiplexer and communication apparatus

Also Published As

Publication number Publication date
JP4270206B2 (ja) 2009-05-27
CN100472963C (zh) 2009-03-25
CN1720659A (zh) 2006-01-11
US20040227585A1 (en) 2004-11-18
JPWO2004102798A1 (ja) 2006-07-13
JP2008245310A (ja) 2008-10-09

Similar Documents

Publication Publication Date Title
WO2004102798A1 (ja) 弾性表面波分波器
CN106253877B (zh) 梯型弹性波滤波器和天线共用器
JP4000960B2 (ja) 分波器、通信装置
CN100477518C (zh) 天线双工器和表面声波滤波器
CN1913348B (zh) 分波器和梯形滤波器
JP5354028B2 (ja) 弾性表面波フィルタ装置
US8970320B2 (en) Filter circuit, duplexer and RF module
WO2016181701A1 (ja) 高周波モジュール
US20070046395A1 (en) Duplexer having matching circuit
US9093980B2 (en) Elastic wave filter device
US9083314B2 (en) Elastic wave filter device and antenna duplexer using same
WO2012026157A1 (ja) フィルタ及びデュープレクサ
JP2008504756A (ja) デュプレクサ
JPWO2006016544A1 (ja) デュプレクサ及び通信装置
US10666229B2 (en) Duplexer
US20130222077A1 (en) Elastic wave filter device
US8988162B2 (en) Filter and duplexer
JP6512365B2 (ja) 複合フィルタ装置、高周波フロントエンド回路及び通信装置
WO2006040923A1 (ja) 分波器
WO2004112246A1 (ja) 弾性表面波分波器
US7023297B2 (en) Surface acoustic wave branching filter
US11323098B2 (en) Duplexer
WO2007088683A1 (ja) フィルタ装置
WO2023189835A1 (ja) 複合フィルタ装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005506151

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048016771

Country of ref document: CN

122 Ep: pct application non-entry in european phase