CN100472963C - 声表面波分波器 - Google Patents

声表面波分波器 Download PDF

Info

Publication number
CN100472963C
CN100472963C CNB2004800016771A CN200480001677A CN100472963C CN 100472963 C CN100472963 C CN 100472963C CN B2004800016771 A CNB2004800016771 A CN B2004800016771A CN 200480001677 A CN200480001677 A CN 200480001677A CN 100472963 C CN100472963 C CN 100472963C
Authority
CN
China
Prior art keywords
acoustic wave
surface acoustic
wave filter
receiver side
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2004800016771A
Other languages
English (en)
Other versions
CN1720659A (zh
Inventor
谷口典生
岸本恭德
比良光善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN1720659A publication Critical patent/CN1720659A/zh
Application granted granted Critical
Publication of CN100472963C publication Critical patent/CN100472963C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0566Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers
    • H03H9/0576Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers including surface acoustic wave [SAW] devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1071Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the SAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6436Coupled resonator filters having one acoustic track only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1716Comprising foot-point elements
    • H03H7/1725Element to ground being common to different shunt paths, i.e. Y-structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1758Series LC in shunt or branch path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1766Parallel LC in series path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1775Parallel LC in shunt or branch path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1783Combined LC in series path

Abstract

提供一种能够改善比发送侧通过频带以及接收侧通过频带还高频一侧的衰减量,且可实现小型化的声表面波分波器。其具有与天线端子连接的发送侧声表面波滤波器以及接收侧声表面波滤波器,发送侧声表面波滤波器以及接收侧声表面波滤波器搭载在封装部件内,还具有高频元件,其与发送侧声表面波滤波器以及接收侧声表面波滤波器连接,且至少在比发送侧通过频带以及接收侧通过频带还高频的一侧具有2个陷波衰减极。

Description

声表面波分波器
技术领域
本发明涉及一种有关在例如移动电话机这样的无线通信装置中采用的声表面波分波器,更详细来说,涉及一种具有对在比通过频带更高频一侧所产生的高次谐波进行抑制的结构的声表面波分波器。
背景技术
移动电话机中,采用了一种用于使发送侧的信号,和接收侧的信号分离的声表面波分波器。这里,需求对发送侧2次谐波以及3次谐波的频率进行抑制。
特开平9—98046号公报中,公开了一种为满足上述这样的需求,在声表面波分波器中,与低通滤波器连接的线路结构。图20为特开平9—98046号公报中记载的声表面波分波器的电路结构的示意图。声表面波分波器201中,与天线连接的公共信号端子202上,连接有发送侧声表面波滤波器203以及接收侧声表面波滤波器204。而且,公共信号端子202,与发送侧声表面波分波器203之间,连接有第1低通滤波器205,在公共信号端子202和接收侧声表面波滤波器204之间连接有第2低通滤波器206。
低通滤波器205、206,具有与并联电容器C1、C2串联连接的电感器L。
除采用在特开平9—98046号公报中记载的低通滤波器的方法之外,还有一种公知技术,以往,是采用开路短截线或短路短截线构成陷波器,从而改善由此产生的2次谐波或3次谐波的发送频率的衰减量。
另一方面,特开平11—68512号公报中,公开了在构成声表面波装置的压电基板上构成电容元件的方法的一个例子。图21为该声表面波装置211的模式平面图。声表面波装置211中,在压电基板上构成声表面波滤波器213、214。并且,用于实现阻抗匹配的电容元件215也在相同的压电基板212上形成。电容元件215,如图所示,由梳状电极构成,并且该梳状电极的电极指并排的方向,为相对声表面波滤波器213、214中表面波传播方向所旋转90度的方向。
还有,特开平5—167388号公报中,公开了一种结构,在声表面波分波器中,在频率相对较高的声表面波滤波器和天线侧公共端子之间,连接有通过在玻璃环氧树脂基板或陶瓷基板上形成金属带状线所构成的电感器L。该电感器L,为相位旋转用元件,其作用于实现连接电感器L一侧的声表面波滤波器在低频一侧的衰减区的高阻抗化。
特开平9—98046号公报中记载的声表面波分波器201中,通过使由并联电容器C1、C2以及串联连接的电感器L组成的低通滤波器205、206与发送侧声表面波滤波器203以及接收侧声表面波滤波器204的双方进行连接,所以能够对比通过频带更高频一侧的衰减量进行整体改善。因此,不仅是发送侧频率的2次谐波或3次谐波,还能够对高频一侧的衰减量全体进行改善,因此会产生插入损失较大的问题。
另一方面,在采用上述开路短截线或短路短截线等的陷波型滤波器构成声表面波分波器的情况下,通过使该陷波的位置定为发送侧频率的2次谐波以及3次谐波的频率的位置,就不会那样导致插入损失的恶化,且能够改善上述2次以及3次谐波的衰减量。因此,在采用开路短截线或短路短截线构成陷波滤波器的情况下,在声表面波分波器的封装件内陷波滤波器的占有面积较大,因此难以实现声表面波分波器的小型化。
另外,特开平11—68512号公报中,公布了一种结构,如上述,在采用压电基板构成的声表面波滤波器中,通过配置梳状电极使电极指并排的方向为相对声表面波滤波器的表面波传播方向所旋转90度的方向,从而构成电容元件,然而电容元件215只不过是作为声表面波滤波器213、214的匹配元件被采用而已。
还有,特开平5—167388号公报中记载的现有技术中,公开了上述电感器L,其不过是作为在声表面波分波器中的相位旋转元件而已。
发明内容
本发明鉴于上述以往技术的现状,其目的在于提供一种能够改善发送侧频率的2次谐波以及3次谐波的衰减量,并且可实现低损失以及小型化的声表面波分波器。
本发明之第一种技术方案提供一种声表面波分波器,其特征在于,包括:天线端子;发送侧声表面波滤波器,其与所述天线端子连接;接收侧声表面波滤波器,其与所述天线端子连接;封装部件,其搭载所述发送侧声表面波滤波器以及接收侧声表面波滤波器;和高频元件,其与所述发送侧声表面波滤波器以及所述接收侧声表面波滤波器连接,并且在比发送侧通过频带更高频的一侧具有2个陷波衰减极。
在第一种技术方案的一特定方式中,所述2个陷波衰减极位于发送侧通过频带的2次谐波以及3次谐波或者其附近的位置。
在第一种技术方案的另一特定方式中,所述高频元件具有第1、第2电感器和第1~第3电容元件,通过第1、第2电感器和第1~第3电容元件构成2个所述陷波衰减极。
在第一种技术方案的又一特定方式中,所述第1~第3电容元件与第1~第3公共端子为Δ型连接,每个公共端子分别连接有2个电容元件,在所述第1公共端子和接地电位之间连接有第1电感器,所述第2、第3公共端子之间连接有第2电感器。
在第一种技术方案的又一特定方式中,通过所述第2电感器和与该第2电感器并联连接的电容元件的反共振,在所述发送侧声表面波滤波器通过频带的2次谐波或者其附近发生第1陷波的衰减极;通过由与第1~第3电容元件的Δ型连接等效的T型连接中求出的电容和所述第1电感器的共振,在所述发送侧声表面波滤波器通过频带的3次谐波或者其附近发生第2陷波的衰减极。
本发明之第二种技术方案提供一种声表面波分波器,其特征在于,包括:天线端子;发送侧声表面波滤波器,其与所述天线端子连接;接收侧声表面波滤波器,其与所述天线端子连接;封装部件,其搭载所述发送侧声表面波滤波器以及接收侧声表面波滤波器;和高频元件,其具有至少1个电感器和至少1个电容元件,所述发送侧声表面波滤波器以及接收侧声表面波滤波器的一端,通过共振连接点而被连接,并只被设置在该共振连接点和所述天线端子之间;构成所述高频元件的所述电感器在所述封装部件内形成。
在第二种技术方案的一特定方式中,还具有在所述封装部件内设置的相位匹配带状线,构成所述高频元件的所述电感器和所述带状线在封装部件的同一面内形成。
在第二种技术方案的另一特定方式中,所述电感器配置为跨过封装部件内至少2层以上,以加强磁通量。
在第二种技术方案的又一特定方式中,所述带状线和所述电感器的双方,在所述封装部件内至少跨过2层以上且跨过同样的2层以上而形成。
本发明之第三种技术方案提供一种声表面波分波器,其特征在于,包括;天线端子;发送侧声表面波滤波器,其与所述天线端子连接,采用压电基板构成;接收侧声表面波滤波器,其与所述天线端子连接,采用压电基板构成;封装部件,其搭载所述发送侧声表面波滤波器以及接收侧声表面波滤波器;高频元件,其具有至少1个电感器和至少1个电容元件,所述电容元件由在构成所述发送侧以及/或者接收侧声表面波滤波器的所述压电基板上形成的梳状电极构成,沿着所述梳状电极的电极指间距的方向,为形成该梳状电极的声表面波滤波器中相对表面波传播的方向旋转90度的方向,由所述电容元件发生的波纹,不位于发送侧声表面波滤波器以及接收侧声表面波滤波器通过频带的2次谐波以及3次谐波或者其附近的位置。
在第三种技术方案的一特定方式中,所述压电基板为LiTaO3基板,构成所述电容元件的梳状电极中电极指的周期在下式(1)~(3)的任一个范围内,
5500/fH≥2×P            ……式(1)
6800/fL≤2×P≤16500/fH  ……式(2)
18800/fL≤2×P           ……式(3)
式(1)~(3)中,fH表示接收侧声表面波滤波器的通过频带的上限频率,fL表示发送侧声表面波滤波器的通过频带的下限频率,P为梳状电极的电极指间距,即电极指的宽与电极指之间的空隙之和。
在第三种技术方案的另一特定方式中,所述梳状电极的电极指周期处在下式(4)~(12)的范围内,
5500/fH≥2×P                     ……式(4)
6800/fL≤2×P≤16500/fH           ……式(5)
18800/fL≤2×P                    ……式(6)
5500/(2×fTH)≥2×P               ……式(7)
6800/(2×fTL)≤2×P≤16500/(2×fTH)……式(8)
18800/(2×fTL)≤2×P              ……式(9)
5500/(3×fTH)≥2×P               ……式(10)
6800/(3×fTL)≤2×P≤16500/(3×fTH)……式(11)
18800/(3×fTL)≤2×P              ……式(12)
式中,fTL表示发送侧声表面波滤波器的通过频带的下限频率,fTH表示发送侧声表面波滤波器的通过频带的上限频率,P表示梳状电极的电极指间距。
本发明之第四种技术方案提供一种声表面波分波器,其特征在于,包括:天线端子;发送侧声表面波滤波器,其与所述天线端子连接,采用压电基板构成;接收侧声表面波滤波器,其与所述天线端子连接,采用压电基板构成;封装部件,其搭载所述发送侧声表面波滤波器以及接收侧声表面波滤波器;高频元件,其具有至少1个电感器和至少1个电容元件。所述电容元件,在构成所述发送侧以及/或者接收侧声表面波滤波器的压电基板上,通过形成由第1电极膜、第2电极膜和挟在第1、第2电极膜之间的绝缘膜所构成的层叠结构而构成。
在第三、第四种技术方案的一特定方式中,发送侧声表面波滤波器以及接收侧声表面波滤波器分别采用各自独立的压电基板构成,用于形成所述高频元件的电容元件在所述接收侧声表面波滤波器的压电基板上形成。
在第三、第四种技术方案的另一特定方式中,构成所述高频元件的电容元件,在所述接收侧声表面波滤波器的天线端子一侧端部附近形成。
在第三、第四种技术方案的又一特定方式中,所述发送侧声表面波滤波器以及接收侧声表面波滤波器在同一压电基板上形成,用于构成所述高频元件的所述电容元件在接收侧声表面波滤波器的天线端子一侧端部附近形成。
本发明之第五种技术方案提供一种声表面波分波器,其特征在于,包括:天线端子;发送侧声表面波滤波器,其与所述天线端子连接,采用压电基板构成;接收侧声表面波滤波器,其与所述天线端子连接,采用压电基板构成;封装部件,其搭载所述发送侧声表面波滤波器以及接收侧声表面波滤波器;高频元件,其具有至少1个电感器和至少1个电容元件;所述电感器在所述封装部件内形成,所述电容元件在构成所述发送侧声表面波滤波器以及/或者接收侧声表面波滤波器的压电基板上形成。
本发明之第六种技术方案提供一种声表面波分波器,其特征在于,包括:天线端子;发送侧声表面波滤波器,其与所述天线端子连接,采用压电基板构成;接收侧声表面波滤波器,其与所述天线端子连接,采用压电基板构成;封装部件,其搭载所述发送侧声表面波滤波器以及接收侧声表面波滤波器;高频元件,其具有至少一个电感器,和至少一个电容元件;还具有在所述封装部件内设置的相位调整用带状线,所述电感器与所述相位调整用带状线在封装部件的同一层跨过多层形成,构成所述接收侧声表面波滤波器以及发送侧声表面波滤波器的所述压电基板为LiTaO3基板,所述电容元件在压电基板上由梳状电极组成,连接该梳状电极的电极指的方向为声表面波滤波器中与表面波传播方向正交的方向,所述梳状电极的电极指的周期在下式(13)~(15)的范围内,
5500/fH≥2×P               ……式(13)
6800/fL≤2×P≤16500/fH     ……式(14)
18800/fL≤2×P              ……式(15)
式(13)~(15)中,fH表示接收侧声表面波滤波器的通过频带的上限频率,fL表示发送侧声表面波滤波器的通过频带的下限频率,P为梳状电极的电极指间距,即电极指的宽和电极指之间的空隙之和。
本发明之第七种技术方案提供一种声表面波分波器,其特征在于,包括:天线端子;发送侧声表面波滤波器,其与所述天线端子连接;接收侧声表面波滤波器,其与所述天线端子连接;封装部件,其搭载所述发送侧声表面波滤波器以及接收侧声表面波滤波器;至少一个相位匹配元件;和低通滤波器,所述低通滤波器连接在所述天线端子和所述发送侧声表面波滤波器以及接收侧声表面波滤波器之间,所述低通滤波器同时具有低通滤波功能和天线匹配功能。
在第七种技术方案的一特定方式中,所述相位匹配元件,配置在频率相对较高的声表面波滤波器和天线端子之间,该相位匹配元件形成的相位延迟量,对于频率相对较低一侧的声表面波滤波器的中心频率,不足90度。
在第七种技术方案的另一特定方式中,所述相位延迟量在60~80度范围内。
在第七种技术方案的又一特定方式中,在除去所述低通滤波器之后的所述声表面波分波器在天线端子的阻抗,至少在发送侧声表面波滤波器以及接收侧声表面波滤波器的各通过频带的50%以上的频率范围内为电感性,所述低通滤波器的通过区中阻抗为电容性,因此从天线侧观察,在实轴上取得匹配。
本发明之第八种技术方案提供一种声表面波滤波器,其特征在于,包括:天线端子;发送侧声表面波滤波器,其与所述天线端子连接;接收侧声表面波滤波器,其与所述天线端子连接;封装部件,其搭载所述发送侧声表面波滤波器以及接收侧声表面波滤波器;高频元件,其具有至少一个电感器和至少一个电容元件,所述发送侧声表面波滤波器以及接收侧声表面波滤波器的一端在共振连接点被连接,并只被设置在该共振连接点与所述天线端子之间,所述电感器在封装部件内部形成,所述电容元件由在压电基板上形成的梳状电极构成,该梳状电极的电极指间距的方向,为相对于在该压电基板上传播的表面波装置的传播方向旋转90度的方向,由该电容元件产生的波纹,不位于发送侧声表面波滤波器以及接收侧声表面波滤波器的通过区域的约2次谐波以及3次谐波者其附近的位置,所述高频元件同时具有低通滤波功能和天线匹配功能。
本发明之第九种技术方案提供一种声表面波分波器,其特征在于,包括:天线端子;发送侧声表面波滤波器,其与所述天线端子连接;接收侧声表面波滤波器,其与所述天线端子连接;封装部件,其搭载所述发送侧声表面波滤波器以及接收侧声表面波滤波器;相位调整用带状线,其设置在所述封装部件内;和高频元件;所述高频元件在发送侧声表面波滤波器的2次谐波以及3次谐波或者其附近具有2个陷波衰减极,该高频元件至少具有第1、第2电感器和第1~第3电容元件,所述第1~第3电容元件与第1~第3公共端子为Δ型连接,每个公共端子上分别连接有2个电容元件,在所述第1公共端子和接地电位之间连接有第1电感器,在所述第2、第3公共端子之间连接有第2电感器,所述第2电感器与在所述封装部件内设置的相位调整用带状线在同一层并且跨过多层而形成,与所述带状线的发送侧信号端子连接的端子和与所述第2电感器的发送侧信号端子连接的端子在所述封装部件中被短路。
附图说明
图1为本发明第1实施方式中声表面波分波器的电路构成的示意图。
图2为本发明第1实施方式中声表面波分波器的概略图的正视截面图。
图3为用于说明本发明第1实施方式中采用的接收侧声表面波滤器以及在该接收侧声表面波滤波器的压电基板内形成的第1~第3电容元件的平面截面模式图。
图4为第1实施方式的声表面波分波器中采用的高频元件的电路构成的示意图。
图5为第1实施方式的声表面波分波器频率特性、以及为此准备的不具有高频元件的比较例的声表面波分波器的频率特性的示意图。
图6为如图4所示的高频元件的频率特性的示意图。
图7为高频元件的变形例的电路构成。
图8为如图7所示的变形例的高频元件的频率特性的示意图。
图9表示高频元件中另一变形例的电路图。
图10为如图9所示的高频元件的频率特性的示意图。
图11(a)为由Δ型连接的第1~第3电容元件组成的部分电路图;(b)为将该Δ型连接置换为T型电路的情况下的穿透电路的示意图。
图12为在36度LiTaO3基板上形成有声表面波滤波器以及梳状电极的结构中的相位—频率特性,其梳状电极指间距的方向为相对声表面波传播方向旋转90度的方向。
图13为梳状电极的电极指间距满足式(1)~(3)中某一个的情况下,以及不属于式(1)~(3)中任何一个的范围内的情况下的声表面波分波器的频率特性的示意图。
图14为在与高频元件连接的部分存在寄生电感成分的情况下的声表面波分波器的电路构成。
图15为在不存在如图14所示的寄生电感成分的情况下,插入寄生电感成分的情况下的高频元件的频率特性。
图16为相位匹配电路的相位延迟量为75度的情况下,接收侧声表面波滤波器的阻抗特性的史密斯圆图。
图17为相位匹配元件中相位延迟量不足90度的情况下,用于说明声表面波分波器的发送侧声表面波滤器的匹配状态的变化的史密斯圆图。
图18为相位匹配元件中相位延迟量为60度的情况下,发送侧声表面波滤波器的匹配状态的变化的史密斯圆图。
图19为根据高频元件的电容成分对旋转过多而成的电感性的阻抗进行控制的情况下发送侧声表面波的匹配状态的变化的史密斯圆图。
图20为以往的声表面波分波器一例的示意图。
图21为以往的声表面波滤波器中,在压电基板上形成用于实现阻抗匹配的梳状电容电极的结构的平面模式图。
具体实施方式
下面,通过说明本发明的具体实施方式,使本发明更加明了。
图1为本发明第1实施方式中声表面波分波器的电路构成的示意图,图2为该声表面波分波器的正视截面图。
本实施方式的声表面波分波器1,是一种移动电话机用声表面波分波器,其在发送侧的通过频带为824~849MHz,在接收侧的通过频带为869~894MHz。然而,本发明的声表面波分波器中发送侧的通过频带以及接收侧的通过频带并不限于此。
如图1所示,声表面波分波器1,具有与天线ANT连接的天线端子2,与天线端子2连接有发送侧声表面波滤波器3以及接收侧声表面波滤波器4。
发送侧声表面波滤波器3和接收侧声表面波滤波器4,由公共连接点5与各个天线端子一侧的端部共同连接。并且,在天线端子2,和公共连接点5之间连接有作为高频元件的低通滤波器6。详细的低通滤波器6见后述。
而且,在接收侧声表面波滤波器4和公共连接点5之间,连接有相位匹配元件7。
如图2所示,本实施方式的声表面波分波器1的封装结构,由封装部件11和盖部件12组成。封装部件11具有在上方开设的开口部11a,盖部件11与封装部件11结合以使该开口11a被封住。封装部件11,由压电性陶瓷或者合成树脂等适宜的材料构成。而且,盖部件12,由金属或者陶瓷等适当的材料构成。
封装部件11的开口11a内,发送侧声表面波滤波器3以及接收侧声表面波滤波器4通过采用省略性表示的凸起部13、14根据倒装式接合工序被安装在封装部件11的芯片搭载面11b上。另外,芯片搭载面11b,为开口11a的的底面,在采用平板状封装基板的情况下,芯片搭载面为上面。
而且,在封装部件11中设置接收侧声表面波滤波器4的一侧设置天线端子2(参照图1)。
发送侧声表面波滤波器3以及接收侧声表面波滤波器4,其结构为,分别在独立的压电基板上形成多个单端口型的声表面波谐振子。而且,根据图1可知,发送侧声表面波滤波器3,具有由多个串联臂谐振子S1~S6,和多个并联臂谐振子P1、P2组成的梯型电路结构。同样地,接收侧声表面波滤波器4,也具有多个串联臂谐振子S7~S10以及多个并联臂谐振子P3~P5组成的梯型电路结构。
上述串联臂谐振子S1~S6、S7~S10以及并联臂谐振子P1、P2、P3~5,分别如上述由单端口型的声表面波谐振子构成。
如图3所示,接收侧声表面波滤波器4,采用矩形的压电基板21构成。在上述压电基板21上,形成上述串联臂谐振子S7~S10以及并联臂谐振子P3~P5。另,串联臂谐振子S7、S8,在图3中省略性表示为1个谐振子。同样地,串联臂谐振子S9、S10在图3中也省略性表示为1个谐振子。各串联臂谐振子S7~S10以及并联臂谐振子P3~P5任何一个都是根据在由梳状电极构成的IDT(inter-digitated transducer,叉指式换能器)的表面波传播方向的两侧形成栅状反射器(grating reflector)所构成的单端口型声表面波谐振子构成的。
发送侧声表面波滤波器3也同样,具有形成多个单端口型的声表面波谐振子,从而在矩形压电基板上构成串联臂谐振子S1~S6以及并联臂谐振子P1、P2。
本实施方式中,作为构成上述发送侧声表面波滤波器3以及接收侧声表面波滤波器4的压电基板,采用36度的LiTaO3基板。因此,本发明中,用于构成声表面波滤波器3,4的压电基板,可由其他的压电单晶体或者压电陶瓷构成。而且,本实施方式中,作为在压电基板上形成的各种电极材料可采用以Al为主要成分的Al合金,也可以采用Al以外的Au或Cu等材料。而且,还可以通过使多种金属层叠,从而形成各种电极。
返回图1,在接收侧声表面波滤波器4和公共连接点5之间,连接有相位匹配元件7。该相位匹配元件7,更具体来说,由埋设在封装部件11内的带状线构成。即,如图2所示,在封装部件11的芯片搭载面11b和下面11c之间的处于中间高度的位置,形成带状线15、16。带状线15的一端,通过过孔电极17与接收侧声表面波滤波器4连接。带状线15的另一端,通过过孔电极18与带状线16连接。带状线16,通过过孔电极19与在封装部件11的芯片搭载面11b上形成的布线电极(未图示)连接。该布线电极与图1的公共连接点5连接。
即,上述相位匹配元件7,在构成声表面波分波器1的封装部件11内形成。上述带状线15、16具有阻抗在50Ω左右的特性。而且,带状线15、16的长度,为使由此产生的相移量,在发送侧声表面波滤波器3的通过频带中心频率为836.5MHz时相位旋转75度情况下的长度。
另一方面,图1的低通滤波器6,具有至少1个电容元件和至少1个电感器。更具体来说,如图3所示,在构成接收侧声表面波滤波器4的压电基板21上,形成第1~第3电容元件22~24。
第1~第3电容元件22~24任何一个都由梳状电极构成。并且,第1~第3电容元件22~24与第1~第3公共端子25~27的各个端子为Δ型连接,其每个端子分别共同连接2个电容元件。
低通滤波器6,是通过利用上述第1~第3电容元件22~24的Δ型连接得到的电容和在如图2所示的封装部件11内埋入的电感元件29、30的谐振而构成。即,电感元件29、30由在封装部件11内通过在多层内形成电极而构成。电感元件29、30根据电感值,构成为螺旋状或者弯曲状等。电感元件29、30由过孔电极31进行连接。电感元件29的一端,通过过孔电极32与在封装部件11的上面设置的布线电极(未图示)连接。而且,电感元件30与过孔电极33连接。过孔电极33,延伸至封装部件11的下面11c,与在该下面11c形成的布线电极(未图示)连接。与上述电感元件29、30同样构成另外一组电感元件(未图示)。
通过上述电感元件29、30以及另外一组电感元件,和第1~第3电容元件22~24,构成如图4所示的电路结构的低通滤波器6。另,如图4所示的电感器L1、L2分别由图2的电感元件29、30和上述另外一组电感元件而构成。即,电感元件29、30与电容元件22~24连接,以构成如图4所示的结构。另外,电感器L1,与L2相比,由于电感值较小,即使由仅一层结构的过孔也能构成。
上述低通滤波器,如上述,在天线端子2和公共连接点5之间连接。低通滤波器6,具有在发送侧声表面波滤波器的通过频带的中心频率的2次谐波及3次谐波或其附近含有衰减极的频率特性,并且作用于实现发送侧以及接收侧声表面波滤波器的通过频带中的阻抗匹配。即,本实施方式中,由于通过上述低通滤波器6,在发送侧声表面波滤波器3的通过频带的2次谐波及其附近发生第1衰减极,在3次谐波或其附近产生第2衰减极,因此能够有效地抑制发送侧声表面波滤波器的通过频带的2次谐波以及3次谐波,能够得到良好的频率特性。
如图3所示,构成电容元件22~24的梳状电极的电极指并排方向,即,电极指间距的方向,配置在接收侧声表面波滤波器4中与表面波传播方向正交的方向。另,在接收侧声表面波滤波器中表面波传播方向,为串联臂谐振子S7~S10以及并联臂谐振子P3~P5中表面波传播的方向。换言之,构成电容元件22~24的各梳状电极的电极指间距的方向,为使相对上述表面波传播方向旋转90度的方向。
而且,电容元件22~24中电极指间距,即电极指的宽和电极指之间的空隙的宽之合计,在本实施方式中为4.5μm。
由图2可看出,电感元件29、30与构成相位匹配元件的带状线15、16同样跨过多层后形成,并且电感元件29、30以及带状线15、16分别在同一平面内形成。即,本实施方式中,构成电感元件的电极和构成相位匹配元件7的电极配置为跨过多层并且位于同一平面内。另,未图示的上述另外一组电感元件与电感元件29、30同样构成。
接着,关于声表面波分波器1的作用效果进行说明。
准备上述实施方式的声表面波分波器和从上述实施方式中除去上述低通滤波器6的作为比较例的声表面波分波器,对频率特性进行测定。图5表示结果,图5的实线表示本实施方式的声表面波分波器1的频率特性,虚线表示比较例的声表面波分波器的频率特性。
由图5可看出,本实施方式的声表面波分波器1中,接收侧声表面波滤波器4的中心频率的2倍以及3倍频率位置,会产生箭头A、B所示的第1、第2衰减极。即,根据低通滤波器6,能够使发送侧声表面波滤波器3的通过频带的2次谐波以及3次谐波中的衰减量得到改善。
上述实施方式中,低通滤波器6虽然构成为具有如图4所示的电路结构,本发明中,上述低通滤波器6的电路结构可有各种变形。
图7以及图9为表示低通滤波器6的变形例的各电路图。
如图7所示的低通滤波器36中,采用4个电容元件36a~36d和2个电感元件36e、36f。即,电感元件36e和电容元件36b并联连接,同样地电感元件36f和电容元件36c并联连接。然后,将电感元件36e以及电容元件36b的并联连接结构和电感元件36f以及电容元件36c的并联结构串联连接,在设置这些并联连接结构部分的外侧与接地电位之间,分别连接有电容元件36a、36d。
而且,如图9所示的低通滤过器37,采用3个电容元件37a~37c,2个电感元件37d,37e。这里,电感元件37d和电容元件37b并联连接。在该并联连接结构的外侧与接地电位之间,分别连接有电容元件37a、37c。而且,在电容元件37c和接地电位之间,连接有上述电感元件37e。
图6、图8以及图10为上述低通滤波器6、36、37的频率特性示意图。
另,如图6、图8、图10所示的低通滤波器6、36、37的特性,在上述低通滤波器中电感元件以及电容元件的规格如下表1所示情况下的特性。
表1:参数
Figure C200480001677D00181
由图8以及图10可看出,在采用低通滤波器36、37的情况下,与低通滤波器6的情况相同,发送侧声表面波滤波器3的通过频带的2次谐波以及3次谐波中分别会发生第1、第2衰减极。
但是,由于低通滤波器36、37中,衰减极的频带中的衰减量比采用低通滤波器6时低,因此要使通过频带的损失抑制在最小限度,优选采用上述低通滤波器。
如上述,根据如图4所述的低通滤波器6,通过使至少3个电容元件和至少2个电感元件组合一起,就能够在作为发送侧声表面波滤波器的通过频带的800~900MHz附近取得匹配,得到在其2次谐波以及3次谐波中有衰减极的滤波特性。
尤其,在低通滤波器6中,第1~第3电容元件22~24如上述为Δ型连接,第1共同端子25和接地电位之间连接有第1电感元件L1,第2、第3共同端子26、27之间连接有第2电感元件L2。这里,通过第2电感元件L2和与第2电感元件L2并联连接的电容元件23之间的反共振会产生第1衰减极,通过后述的电容Cz,和第1低通滤波器L1之间的共振,会产生第2衰减极。由此在采用低通滤波器6的情况下,与低通滤波器36、37相比,不仅能实现元件数量的减少,还能够使全体的电容值以及电感值变小。并且,低通滤波器6,与低通滤波器36、37相比,结构为小型。
通过将低通滤波器6的第1~第3电容元件22~24的连接,由例如图11(a)所示的Δ型连接,变形为图11(b)所示的T型连接结构,就能够计算出低通滤波器6的衰减极的位置。T型连接结构中,所有的电容Cz的值如下:
Cz=(Ca+Cb+Ca×Cc/Cb)
根据表1所示的情况,将Ca=1.3pF、Cb=1.3pF以及Cc=2.35pF代入,就得到Cz为较大的值3.3pF。
还有,第2衰减极的位置,根据电感元件L2与电容Cz的谐振而决定。即,由1/(2×π×(L2×Cz)1/2)决定,即使电容Cz的值变大,则电感L2的值变小后频率也会一致,与低通滤波器36、37相比,能够实现更加小型化。
另,形成低通滤波器的电感元件,也可设置在接收侧声表面波滤波器4外。但是,如上述实施方式,通过在封装部件11内设置电感元件29、30等,就能够实现更加小型化。并且,能够提高声表面波分波器1的附加价值。
本实施方式中,低通滤波器6,其结构必需是使发送侧声表面波滤波器3的通过频带的2次谐波以及3次谐波得到衰减。该低通滤波器6,在本实施方式中,连接在接收侧表面滤波器4和天线端子2之间。对此,即使在低通滤波器6,连接在接收侧声表面波滤波器4和输出端子41(参照图1)之间的情况下,也能够改善接收侧声表面波滤波器4的频率特性。因此,优选,如上述实施方式,通过使低通滤波器6与接收侧声表面波滤波器4的天线侧连接,也能够有助于改善接收侧声表面波滤波器的高频特性。
并且,若使电感元件29、30等,在封装部件11内形成,电感元件29、30等,在发送侧声表面波滤波器3一侧构成,则相位匹配带状线15、16之间会产生电容耦合或电感耦合,使衰减区的特性变得极端恶化。这样,如本实施方式,在使电感元件29、30等在封装部件11的正面方向与带状线15、16隔开,位于接收侧声表面波滤波器4一侧的情况下,就难以产生上述耦合,因此能够抑制衰减区的特性恶化。并且,使构成电感元件29、30等的电极19、17,和带状线15、16一样跨过多层,并且都配置在同一平面,就能够实现封装部件11的小型化以及制造工序后的简单化。
加之,使上述电感元件29、30,和带状线15、16分别配置在同一平面内的结构中,由于能够实现如上述制造工序的简单化,因此能够实现成本的降低以及声表面波分波器1的薄型化。尤其,由于电感元件29、30等跨过多层而形成,因此在电感元件29、30等中,能够加强自感应,由此更加有助于小型化。
加之,相位匹配带状线15、16也同样跨过多层而形成,并且与上述电感元件29、30等在同一平面内形成,因此根据同一流程能够同时形成,因此能够降低成本。
另,构成上述低通滤波器的电容器,也可内置于封装部件11内。因此,如上述实施方式通过在构成声表面波滤波器4的压电基板21上形成电容元件,与内置于封装部件11内的情况相比,有助于声表面波分波器1的薄型化。尤其,如上述,在采用由梳状电极组成的电容元件22~24的情况下,由于能够以较小的面积获得较大的电容,因此能够实现电容元件的小型化。而且,由于采用上述梳状电极构成电容元件22~24,因此能使电容元件,与声表面波谐振子的电极同时形式,由此可降低成本。
上述实施方式中,由于构成上述电容元件22~24的梳状电极的电极指间距的方向,为相对上述表面波传播的方向旋转90度的方向,因此,构成电容元件22~24的梳状电极中难以产生不希望的响应。
优选,在采用作为压电基板的LiTaO3基板的情况下,构成电容元件22~24的梳状电极中电极指间距P的范围,在下式(1)~(3)的范围内,由此能够提供一种更进一步降低损失的声表面波分波器1。
另,fH是指接收侧声表面波滤波器的通过频带的上限频率,fL是指发送侧声表面波滤波器的通过频带的下限频率。
5500/fH≥2×P           ……式(1)
6800/fL≤2×P≤16500/fH ……式(2)
18800/fL≤2×P          ……式(3)
上述实施方式中,由于fH=894MHz,fL=824MHz,则只要满足
6.15×10-6≥2×P
8.25×10-6≤2×P≤18.5×10-6
22.8×10-6≤2×P
中任何一个构成梳状电极即可。上述实施方式中,由于梳状电极指间距P,如上述为4.5μm,因满足上述条件,因此能够得到良好的滤波器特性。
接着,关于式(1)~(3),参照图12进行说明。
在形成声表面波滤波器的36度LiTaO3基板上,在使作为表面波滤波器的表面波传播方向的X轴旋转90度的方向,按照电极指并排那样形成梳状电极,测定出该梳状电极的阻抗。结果如图12所示,这种情况下,令梳状电极的电极指间距为10μm,电极指的对数为25。由图12可看出,在300MHz附近及900MHz附近存在较大的波纹。相位由电抗成分和电阻成分的比率而决定。相位与—90度越相近,电阻成分越小,得到的电容越好,表示随相位变大则电阻成分增加。因此,可看出低通滤波器的电容元件中,需要避免出现上述波纹的频带。若相位限制在比作为低部的—85度大的段,则应避免的频带为275MHz、340MHz、825MHz、以及940MHz。
由于电极指间距为10μm,若将上述频率位置换算成音速,则为5500、6800、16500、以及18800m/秒。因此,从通过频带相对较低的滤波器,即发送侧声表面波滤波器3的通过频带的下限频率,到通过频带相对较高的滤波器,即,接收侧声表面波滤波器4的通过频带的上限频率为止,需要从上述范围内除去。这里,式(1)~(3)的范围,即选择电极指间距为10μm的情况,和选择在式(1)~(3)的范围内的7μm的情况的特性差别如图13所示。图13的实线表示7μm的情况,虚线表示10μm的情况。根据图13可知,作为低通滤波器的电容元件,在形成梳状电极使电极指并排方向为对于表面波传播方向旋转90度的方向的情况下,由于满足式(1)~(3),因此能够降低损失。
还有,采用低通滤波器6在发送侧通过频带的2次谐波以及3次谐波附近获得衰减极的情况下,在2次谐波以及3次谐波的频率中也还存在上述的波纹。假如能避免这些波纹,就能够防止2个声表面波滤波器3、4的频带内特性和衰减极中的衰减量的恶化,同时提供一种更加良好的声表面波分波器。
还有,本发明中,若发送侧声表面波滤波器3的通过频带的下限频率为fTL,通过频带的上限频率为fTH,则优选电极指间距P,设定在下式(4)~(12)中任何一个的范围内。
5500/fH≥2×P                               ……式(4)
6800/fL≤2×P≤16500/fH                     ……式(5)
18800/fL≤2×P                              ……式(6)
5500/(2×fTH)≥2×P                         ……式(7)
6800/(2×fTL)≤2×P≤16500/(2×fTH)         ……式(8)
18800/(2×fTL)≤2×P                        ……式(9)
5500/(3×fTH)≥2×P                         ……式(10)
6800/(3×fTL)≤2×P≤16500/(3×fTH)         ……式(11)
18800/(3×fTL)≤2×P                        ……式(12)
例如,如上述实施方式,在发送侧通过频带为824~849MHz,接收侧通过频带为869~894的情况下,优选电极指间距,限定在下述某一个范围内,并能够从通过频带以及发送频带的2次谐波以及3次谐波双方中除去波纹。
①、1.08μm以下
②、1.37~1.62μm
③、2.06~3.08μm
④、4.13~4.86μm
⑤、5.70~9.22μm
⑥、11.4μm以上
并且,上述实施方式中,通过梳状电极,构成低通滤波器的电容元件,还可以通过采用梳状电极以外的结构构成电容元件。例如,在压电基板上,通过层叠第1电极、电介质以及第2电极的结构形成电容元件。这种情况下,由电介质的tanδ决定Q值,通过采用tanδ值良好的电介质膜,实现降低损失。
本实施方式中,由上述梳状电极组成的电容元件22~24,配置在构成接收侧声表面波滤波器4的压电基板21上,也可以配置在发送侧声表面波滤波器3上。并且,在声表面波分波器中,由于向发送侧声表面波滤波器3中投入大功率,为提高耐电力,一般发送侧声表面波滤波器3由多段构成。因此,一般发送侧声表面波滤波器3,与接收侧声表面波滤波器4相比,芯片尺寸会较大。因此,上述实施方式中,通过在接收侧声表面波滤波器4中构成电容元件22~24,从而使接收侧声表面波滤波器4和发送侧声表面波滤波器3的芯片尺寸相近,或者相等。这样,在制造声表面波分波器1时能够提高操作性,同时提高接收侧声表面波滤波器4的封装部件11的接合部的可靠性。
还有,通过将构成低通滤波器的电容元件配置在接收侧声表面波滤波器4的天线端附近,能够防止发送侧声表面波滤波器3的信号端子或接收侧声表面波滤波器的输出端之间的电容耦合或电感耦合,提供一种绝缘特性良好的声表面波分波器。
上述实施方式的声表面波分波器1中,通过相位匹配元件7使相位延迟量为75度。这种情况下,对于发送侧声表面波滤波器3,接收侧声表面波滤波器4可看作电感性元件。即,与发送侧声表面波滤波器3附加并联的电感器。这种情况下只有接收侧声表面波滤波器4的阻抗特性如图16史密斯圆图所示。
设计声表面波滤波器时,和以声表面波滤波器单体的特性扩展频带时,由于落入电容性,通过附加并联最佳值的电感器,就能够在实轴上取得匹配。因此,通过使相位延迟量不足90度,如图17发送侧声表面波滤波器的匹配状态如史密斯圆图中箭头所示,声表面波分波器1的天线端的匹配状态为匹配接近于50Ω。因此,若相位延迟量再变小,接近于60度之多,如图18所示的发送侧声表面波滤波器的匹配状态在史密斯圆图中如箭头所示,旋转过多成为电感性,相反,匹配状态恶化。这种情况下,如图19所示发送侧声表面波滤波器的匹配状态在史密斯圆图中如箭头所示,旋转过多至电感性的阻抗,通过低通滤波器的电容成分进行控制,由此实现阻抗匹配。
但是,若相位延迟量过小,则电导器部分过大,随之产生发送侧声表面波滤波器3的损失劣化。因此,优选相位旋转量在60度以上。而且,为实现小型化,使单体下落入电容性的滤波器在实轴上取得匹配,优选相位旋转量不足80度。即,提供一种在60度以上80度以下的小型化的匹配状态良好的声表面波分波器1。
另,上述实施方式中,发送侧声表面波滤波器3和接收侧声表面波滤波器4虽然分别在独立的压电基板上构成,但发送侧声表面波滤波器3以及接收侧声表面波滤波器4也可在相同压电基板上构成。
还有,关于声表面波滤波器3、4与封装部件11的接合方法,不限定于采用凸起部的方法,还可以是采用引线结合法。
另外,上述实施方式中,通过凸起部使声表面波滤波器3、4与封装部件11连接的结构中,优选如上述使接收侧声表面波滤波器4与发送侧声表面波滤波器3在独立的压电基板上构成,由此能够提高声表面波滤波器3、4与凸起部的结合强度。并且,如上述,在接收侧声表面波滤波器4和发送侧声表面波滤波器3在独立的压电基板上构成的情况下,优选在接收侧声表面波滤波器4一侧搭载用于构成上述高频元件的电容元件。
并且,上述实施方式中,构成相位匹配元件7的带状线15、16和构成高频元件的电感元件29、30的结构虽然均为跨过多层,并且分别位于同一平面内。带状线15、16和上述电感元件29、30,也可以在与封装部件11不同的平面内形成,且带状线15、16以及电感元件29、30,也不是必须跨过多层而形成。但是,如上述实施方式,通过在同一平面内且跨过多层而形成,就能够实现内置电感元件以及带状线的结构的小型化以及低成本化。
上述实施方式中,根据相位匹配元件7使相移量为75度,但相移量也不限于此,一般地从短路到开放为止可采用相位旋转90度的相位匹配元件。因此,如上述实施方式,通过设定使相位延迟量缩短设定为75度,从而实现封装部件11的小型化。此外,根据低通滤波器含有的阻抗,能够提供一种阻抗匹配良好的声表面波分波器1。
本发明中的声表面波分波器,如上述,根据各种不同的结构能够实现不同的效果,但本发明中,优选,如上述实施方式,由采用第1~第3电容元件22~24和作为2个感应元件的电感元件29、30构成高频元件6,即电感元件29、30内置于封装部件,电容元件22~24在构成声表面波滤波器4的压电基板上形成,因此提供一种优点在于更加小型且更薄的声表面波分波器。
在上述电感元件在构成声表面波滤波器的压电基板上形成的情况下,需要根据薄膜工艺等形成电感元件。这时,比较难得到Q值高的电感元件。对此,如上述实施方式在电感元件29、30内置于封装部件11的情况下,尤其,是跨过封装部件11的多层而形成的,且还位于同一平面内的情况下,则能够容易构成小型且Q值高的电感器。
还有,若在声表面波分波器上附加的上述电感器的Q值较差,则不仅衰减极的衰减量达不到足够大,而且还会产生通过频带的损失劣化。并且,在电容元件在封装部件内形成的情况下,尤其如本发明在发生多个陷波的上述高频元件中,需要3个电容元件。因此,在将电容元件内置封装部件的结构中,难以避免与上述电感元件或带状线等其他元件的电容耦合,且不利于促进小型化和薄型化。由此,通过在压电基板上形成电容元件,不仅能够促进薄型化,还能够防止封装部件内其他元件发生不希望的耦合,能够获得良好的低通特性。
并且,在压电基板上形成电容电极并构成电容元件时,上述梳状电极的电极元件并列方向为相对表面波传播方向旋转90度的方向的结构中,如上述,这样能够抑制使由电容元件的电容引起的波纹不会出现在声表面波滤波器3、4的通过频带内,能够构成进一步降低损失且抑制衰减量的元件。
因此,对上述各种结构进行组合的本发明的声表面波分波器中,提供一种特性更加良好的、能够小型化以及薄型化的声表面波分波器。
尤其,如图4所示的具有2个衰减极的低通滤波器6中,声表面波分波器被复合的情况下,若在特定的部分加入寄生成分,则可看出衰减极急剧恶化。即,在如图14所示的箭头C所示的位置上加入寄生电感成分Lx,则会产生陷波衰减极的急剧恶化。参照图15对此进行说明。图15的实线表示不存在上述寄生成分的情况下低通滤波器6的频率特性。点虚线表示在寄生成分的大小为0.1nH的情况下的频率特性,另外虚线表示寄生成分的大小为0.5nH情况下的频率特性。
由图15可看出,通过插入上述寄生电感成分Lx会使通过频带的2次谐波的衰减量极端恶化。
为避免上述这样的寄生成分Lx的影响,在封装部件11内内置电感元件29、30的结构中,优选与带状线15、16的发送信号端子连接的端子,和与电感元件29、30的发送侧信号端子连接的端子,不在封装部件内,而是寄生在通过封装部件11的凸起部结合的面,由此能够使上述寄生电感成分Lx尽可能变小。
产业上的利用可能性
有关本发明之第一种技术方案的声表面波分波器,在封装部件中搭载发送侧声表面波滤波器以及接收侧声表面波分波器的声表面波分波器中,由于具有高频元件,其与发送侧声表面波分波器以及接收侧声表面波分波器连接且在比发送侧通过频带更高频一侧具有2个陷波衰减极,通过这2个衰减极能够抑制在比发送侧通过通过频带更高频一侧产生的不希望的高次谐波或波纹等,这样,可以提供一种良好频率特性的声表面波分波器。
在2个陷波衰减极位于发送侧通过频带的2次谐波以及3次谐波或者其附近的位置时,能够抑制发送侧通过频带的2次谐波以及3次谐波的衰减量。
高频元件具有第1、第2电感器和第1~第3电容元件,由第1、第2电感器和第1~第3电容元件构成2个陷波衰减极时,可以只由该5个元件构成具有上述2个陷波衰减极的高频元件。
当第1~第3电容元件连接成Δ型,在第1公共端子和接地电位之间连接有第1电感器,第2、第3公共端子之间连接有第2电感器时,能够降低构成高频元件的电容元件的数量,且可以增大所有的静电电容以及电感值的值,促进声表面波分波器的小型化。通过第2电感器和与第2电感器并列连接的电容元件的反谐振,在发送侧声表面波滤波器的通过频带的2次谐波或者其附近会产生第1陷波的衰减极,通过由Δ型连接的第1~第3电容元件等效求出的Y型连接的情况下的电容与第1电感器的谐振,在发送侧声表面波滤波器波通过频带的3次谐波或者其附近产生第2陷波的衰减极,这样构成时,可实现声表面波分波器的小型化。
有关本发明之第二种技术方案的声表面波分波器,由于接收侧声表面波滤波器以及发送侧声表面波滤波器的一端通过公共连接点而被连接,只在公共连接点和天线共振端子之间设置高频元件,构成该高频元件的电感器在封装部件内形成,因此能够改善接收侧高频波特性,同时促进声表面波分波器的小型化。
当还具有在封装部件内设置的相位匹配带状线,构成上述高频元件的电感器与带状线在封装部件内同一平面内形成时,能够促进声表面波分波器的进一步小型化,同时在带状线和电感器之间难以产生电容耦合或者感应耦合,因此不会导致衰减极恶化。在电感器配置为在封装部件内至少跨过2层以上以使感通量加强的情况下,能够提高电感器中的自感应,能够实现进一步小型化的声表面波分波器。
当带状线和电感器双方在封装部件内跨过2层以上并跨过相同的2层以上而形成时,实现声表面波分波器的小型化,且抑制衰减区的恶化,同时在制造工序中,能够以同一工艺形成电感器以及带状线,实现制造成本的降低。
有关本发明之第三种技术方案的声表面波分波器,其包含:搭载接收侧声表面波滤波器以及发送侧声表面波滤波器的封装部件;具有至少1个电感器和至少1个电容元件的高频元件,电容元件由在构成声表面波滤波器的压电基板上形成的梳状电极形成,沿着梳状电极的电极指间距的方向,为在形成梳状电极的声表面波滤波器中相对表面波传播的方向旋转90度的方向。因此,由梳状电极形成的电容元件中,由同一面积可得到相对较大的静电电容。而且,由于上述电容元件难以响应表面波,因此难以产生不希望的波纹,且由电容元件产生的波纹不位于发送侧声表面波滤波器以及接收侧声表面波滤波器通过频带的2次谐波、3次谐波及其附近的位置,因此可以提供具有良好频率特性的声表面波分波器。
在第三种技术方案中,当压电基板由LiTaO3基板构成,构成电容元件的梳状电极的电极指的周期P在上述式(1)~(3)的任一个范围内时,能够提供一种低损失的声表面波分波器。尤其,在满足上述式(4)~(12)时,可以确切地从接收侧声表面波滤波器以及发送侧声表面波滤波器通过频带的2次谐波、3次谐波及其附近的领域中除去由电容元件产生的波纹。
在有关本发明之第四种技术方案的声表面波分波器中,电容元件在构成发送侧以及/或者接收侧声表面波滤波器的压电基板上,通过根据由第1电极膜、第2电极膜和在第1、第2电极膜之间挟持的绝缘膜构成的层叠结构所构成,因此根据封装制法通过在压电基板上形成这些膜,能够很容易构成电容元件。
在有关本发明之第三、第四种技术方案的声表面波分波器中,发送侧声表面波滤波器以及接收侧声表面波分波器,分别采用独立的压电基板构成,当用于形成高频元件的电容元件在接收侧声表面波滤波器的压电基板上形成时,能够容易提高各声表面波滤波器与封装部件的结合强度,同时能够使发送侧声表面波滤波器和接收侧声表面波滤波器的尺寸接近,因此能够提高生产时的操作性。
当构成高频元件的电容元件被配置在接收侧声表面波滤波器的天线端子一侧附近时,能够抑制发送侧声表面波滤波器的信号端子和接收侧声表面波滤波器的输出端子之间的电容耦合或电感耦合,改善绝缘性或延迟特性。
当发送侧声表面波滤波器以及接收侧声表面波滤波器在同一压电基板上形成,用于构成高频元件的电容元件在接收侧声表面波滤波器的天线端子一侧端部附近形成时,由于能够由1个压电基板构成发送侧声表面波滤波器以及接收侧声表面波滤波器,因此容易组装作业。
并且,当电容元件被配置在接收侧声表面波滤波器的天线端子一侧端部附近时,能够抑制在发送侧声表面波滤波器的发送信号端子和接收侧声表面波滤波器的输出端子之间的电感耦合或电容耦合,能够改善绝缘性。
在有关本发明之第五种技术方案的声表面波分波器中,由于电感器在封装部件内形成,电容元件在构成发送侧声表面波滤波器以及/或者接收侧声表面波滤波器的压电基板上形成,因此能够实现声表面波分波器的小型化,同时由于在压电基板上形成电容元件,因此能够实现发送侧声表面波滤波器或者接收侧声表面波滤波器的多功能化。
在有关本发明之第六种技术方案的声表面波分波器中,构成发送侧声表面波滤波器以及接收侧声表面波滤波器的压电基板为LiTaO3基板,构成高频元件的电容元件由在该压电基板上设置的梳状电极组成,由于该梳状电极被配置在声表面波滤波器中相对表面波传播的方向旋转90度的方向,因此难以产生因梳状电极引起的不希望的波纹。并且,由于梳状电极的电极指的周期处在上述式(1)~(3)的范围内,因此能够提供一种低损失的声表面波分波器。
在有关本发明之第七种技术方案的声表面波分波器中,具有至少1个相位匹配元件和低通滤波器,低通滤波器连接在天线端子和发送侧声表面波滤波器以及接收侧声表面波滤波器之间,低通滤波器同时具有低通滤波功能和天线匹配功能,根据本发明,可以提供一种改善通过频带的衰减量,具有良好的频率特性,同时容易实现天线和阻抗的匹配的声表面波分波器。
当相位匹配元件被配置在频率相对高的一侧的声表面波滤波器和天线端子之间,对于频率相对较低的一侧声表面波滤波器的中心频率,相位匹配元件中的相位延迟量不足90度时,则声表面波分波器的天线端的匹配状态为匹配接近50Ω。尤其,在相位延迟量在60~80度的范围内的情况下,能够实现更加良好的匹配状态。
在除去低通滤波器之后的声表面波滤波器的天线端子中的阻抗,在至少发送侧声表面波滤波器以及接收侧声表面波滤波器的各个通过频带的50%以上的频率配置中为电感性,低通滤波器的通过频带中阻抗为电容性的情况下,由此实现从天线侧观察在实轴上得到匹配。
有关本发明之第八、第九种技术方案的声表面波分波器,由于具有本发明之第一~第四种技术方案的声表面波分波器的结构,根据图示的第一~第四种技术方案,可以提供一种实现良好的频率特性以及小型化,改善高频的衰减量,难以产生不希望的波纹的声表面波分波器,尤其,高频元件在发送侧声表面波滤波器的2次谐波以及3次谐波或者其附近具有2个陷波衰减极,高频元件具有Δ型连接的第1~第3电容元件和上述第1、第2电感器,第2电感器与在封装部件内设置的相位调整带状线在相同的层并且跨过多层而形成,在与带状线的发送侧信号端子连接的端子和与第2电感器的发送侧信号端子连接的端子具有在封装部件内短路的结构的情况下,依据本发明,能够充分改善发送侧声表面波滤波器的高次谐波的衰减区的衰减量,因此可以提供一种能有效改善接收侧声表面波滤波器的损失特性,实现声表面波分波器的小型化以及薄型化,进而容易进行阻抗匹配且容易制造的声表面波分波器。

Claims (8)

1、一种声表面波分波器,其特征在于,包括;
天线端子;
发送侧声表面波滤波器,其与所述天线端子连接,采用压电基板构成;
接收侧声表面波滤波器,其与所述天线端子连接,采用压电基板构成;
封装部件,其搭载所述发送侧声表面波滤波器以及所述接收侧声表面波滤波器;
高频元件,其具有至少1个电感器和至少1个电容元件,
所述电容元件由在构成所述发送侧声表面波滤波器以及/或者所述接收侧声表面波滤波器的所述压电基板上形成的梳状电极构成,
沿着所述梳状电极的电极指间距的方向,为形成该梳状电极的声表面波滤波器中相对表面波传播的方向旋转90度的方向,
由所述电容元件发生的波纹,不位于所述发送侧声表面波滤波器以及所述接收侧声表面波滤波器通过频带的2次谐波以及3次谐波或者其附近的位置,
所述压电基板为LiTaO3基板,构成所述电容元件的梳状电极中电极指的周期在下式(1)~(3)的任一个范围内,
5500/fH≥2×P         ……式(1)
6800/fL≤2×P≤16500/fH        ……式(2)
18800/fL≤2×P                 ……式(3)
式(1)~(3)中,fH表示接收侧声表面波滤波器的通过频带的上限频率,fL表示发送侧声表面波滤波器的通过频带的下限频率,P为梳状电极的电极指间距,即电极指的宽与电极指之间的空隙之和。
2、根据权利要求1所述的声表面波分波器,其特征在于,所述发送侧声表面波滤波器以及所述接收侧声表面波滤波器分别采用各自独立的压电基板构成,用于形成所述高频元件的电容元件在所述接收侧声表面波滤波器的压电基板上形成。
3、根据权利要求2所述的声表面波分波器,其特征在于,
构成所述高频元件的电容元件,在所述接收侧声表面波滤波器的天线端子一侧端部形成。
4、根据权利要求1~3任一项所述的声表面波分波器,其特征在于,所述发送侧声表面波滤波器以及所述接收侧声表面波滤波器在同一压电基板上形成,用于构成所述高频元件的所述电容元件在所述接收侧声表面波滤波器的天线端子一侧端部形成。
5、一种声表面波分波器,其特征在于,包括:
天线端子;
发送侧声表面波滤波器,其与所述天线端子连接,采用压电基板构成;
接收侧声表面波滤波器,其与所述天线端子连接,采用压电基板构成;
封装部件,其搭载所述发送侧声表面波滤波器以及所述接收侧声表面波滤波器;
高频元件,其具有至少一个电感器,和至少一个电容元件;
还具有在所述封装部件内设置的相位调整用带状线,
所述电感器与所述相位调整用带状线在封装部件的同一层跨过多层形成,
构成所述接收侧声表面波滤波器以及所述发送侧声表面波滤波器的所述压电基板为LiTaO3基板,
所述电容元件在压电基板上由梳状电极组成,连接该梳状电极的电极指的方向为声表面波滤波器中与表面波传播方向正交的方向,
所述梳状电极的电极指的周期在下式(13)~(15)的范围内,
5500/fH≥2×P          ……式(13)
6800/fL≤2×P≤16500/fH          ……式(14)
18800/fL≤2×P                   ……式(15)
式(13)~(15)中,fH表示接收侧声表面波滤波器的通过频带的上限频率,fL表示发送侧声表面波滤波器的通过频带的下限频率,P为梳状电极的电极指间距,即电极指的宽和电极指之间的空隙之和。
6、一种声表面波分波器,其特征在于,包括:
天线端子;
发送侧声表面波滤波器,其与所述天线端子连接;
接收侧声表面波滤波器,其与所述天线端子连接;
封装部件,其搭载所述发送侧声表面波滤波器以及所述接收侧声表面波滤波器;
至少一个相位匹配元件;和
低通滤波器,
所述低通滤波器连接在所述天线端子和所述发送侧声表面波滤波器以及所述接收侧声表面波滤波器之间,
所述低通滤波器同时具有低通滤波功能和天线匹配功能,
所述相位匹配元件,配置在频率相对较高的声表面波滤波器和天线端子之间,该相位匹配元件形成的相位延迟量,对于频率相对较低一侧的声表面波滤波器的中心频率,不足90度。
7、根据权利要求6所述的声表面波分波器,其特征在于,
所述相位延迟量在60~80度范围内。
8、根据权利要求6~7任一项所述的声表面波分波器,其特征在于,
在除去所述低通滤波器之后的所述声表面波分波器在天线端子的阻抗,至少在所述发送侧声表面波滤波器以及所述接收侧声表面波滤波器的各通过频带的50%以上的频率范围内为电感性,所述低通滤波器的通过区中阻抗为电容性,因此从天线侧观察,在实轴上取得匹配。
CNB2004800016771A 2003-05-14 2004-04-01 声表面波分波器 Expired - Lifetime CN100472963C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003135329 2003-05-14
JP135329/2003 2003-05-14

Publications (2)

Publication Number Publication Date
CN1720659A CN1720659A (zh) 2006-01-11
CN100472963C true CN100472963C (zh) 2009-03-25

Family

ID=33410703

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800016771A Expired - Lifetime CN100472963C (zh) 2003-05-14 2004-04-01 声表面波分波器

Country Status (4)

Country Link
US (1) US20040227585A1 (zh)
JP (2) JP4270206B2 (zh)
CN (1) CN100472963C (zh)
WO (1) WO2004102798A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103636124A (zh) * 2011-07-08 2014-03-12 株式会社村田制作所 电路模块

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7890891B2 (en) * 2005-07-11 2011-02-15 Peregrine Semiconductor Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US8064843B2 (en) * 2005-09-12 2011-11-22 Epcos Ag Electrical component for the front end circuit of a transceiver
DE102006033709B4 (de) * 2006-07-20 2010-01-14 Epcos Ag Elektrisches Modul
JP5081742B2 (ja) * 2007-06-29 2012-11-28 日本電波工業株式会社 アンテナ分波器
JP2009278192A (ja) * 2008-05-12 2009-11-26 Sony Ericsson Mobilecommunications Japan Inc アンテナ装置及び通信端末装置
JP2010011300A (ja) * 2008-06-30 2010-01-14 Murata Mfg Co Ltd 共振器、該共振器を用いるフィルタ及びデュプレクサ
JP4663770B2 (ja) * 2008-09-29 2011-04-06 太陽誘電株式会社 弾性波デバイス
WO2010061477A1 (ja) * 2008-11-28 2010-06-03 富士通株式会社 フィルタ、デュプレクサおよび電子装置
JP2010206375A (ja) * 2009-03-02 2010-09-16 Ube Ind Ltd 分波器
FR2964830B1 (fr) 2010-09-22 2013-04-05 Didier Lepretre Procede pour fabriquer des graines ayant un effet repulsif envers les oiseaux et graine associee obtenue par le procede
WO2012046481A1 (ja) * 2010-10-06 2012-04-12 株式会社村田製作所 弾性波フィルタ装置
JP2014017537A (ja) * 2010-11-09 2014-01-30 Murata Mfg Co Ltd 弾性波フィルタ装置
DE102011018918B4 (de) * 2011-04-28 2017-01-05 Epcos Ag Schaltungsanordnung
DE112012002502B4 (de) * 2011-06-17 2018-06-07 Murata Manufacturing Co., Ltd. Demultiplexer
WO2013080461A1 (ja) 2011-11-30 2013-06-06 パナソニック株式会社 ラダー型弾性波フィルタと、これを用いたアンテナ共用器
CN106169920B (zh) * 2012-08-10 2019-02-12 株式会社村田制作所 层叠体及通信装置
CN105453428B (zh) * 2013-04-11 2018-08-28 株式会社村田制作所 高频模块
JP6183456B2 (ja) * 2013-04-11 2017-08-23 株式会社村田製作所 高周波モジュール
KR101672342B1 (ko) * 2014-01-07 2016-11-03 가부시키가이샤 무라타 세이사쿠쇼 필터 장치
CN107005227B (zh) * 2015-01-07 2021-10-26 株式会社村田制作所 弹性波装置
CN107431478B (zh) * 2015-04-01 2020-10-13 株式会社村田制作所 双工器
DE112016002829B4 (de) * 2015-06-25 2024-03-07 Murata Manufacturing Co., Ltd. Multiplexer, Hochfrequenz-Frontend-Schaltkreis und Kommunikationsvorrichtung
CN108352852B (zh) * 2015-10-26 2021-01-29 株式会社村田制作所 开关模块
US11145982B2 (en) * 2016-06-30 2021-10-12 Hrl Laboratories, Llc Antenna loaded with electromechanical resonators
US11309867B2 (en) 2017-01-30 2022-04-19 Kyocera Corporation Acoustic wave filter, multiplexer, and communication apparatus
JP6790907B2 (ja) * 2017-02-23 2020-11-25 株式会社村田製作所 マルチプレクサ、送信装置および受信装置
WO2019107280A1 (ja) 2017-12-01 2019-06-06 京セラ株式会社 弾性波フィルタ、分波器および通信装置
WO2019138786A1 (ja) * 2018-01-10 2019-07-18 株式会社村田製作所 マルチプレクサおよび通信装置
WO2020013157A1 (ja) 2018-07-13 2020-01-16 株式会社村田製作所 マルチプレクサ
CN112511126B (zh) * 2020-10-30 2022-03-15 诺思(天津)微系统有限责任公司 多工器和改善多工器隔离度的方法以及通信设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561406A (en) * 1994-07-01 1996-10-01 Fujitsu Limited Duplexer package
US20020158708A1 (en) * 2001-04-27 2002-10-31 Kenji Inoue Surface acoustic wave filter, package for surface acoustic wave filter and surface acoustic wave filter module
US6489861B2 (en) * 2000-04-28 2002-12-03 Oki Electric Industry Co., Ltd. Antenna duplexer with divided and grounded transmission line
CN1383268A (zh) * 2001-04-26 2002-12-04 株式会社村田制作所 弹性表面波装置及通信装置
CN1400736A (zh) * 2001-07-30 2003-03-05 株式会社村田制作所 弹性表面波分波器及通信装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115409A (ja) * 1984-06-29 1986-01-23 Matsushita Electric Ind Co Ltd トラツプ回路
JPH04270206A (ja) * 1991-02-25 1992-09-25 Kurabo Ind Ltd 鳥類忌避用材料
DE69217147T2 (de) * 1991-09-04 1997-06-05 Nec Corp Funksendeempfänger
JP3088801B2 (ja) * 1991-09-19 2000-09-18 国際電気株式会社 弾性表面波フィルタ
JPH05259720A (ja) * 1992-03-12 1993-10-08 Ngk Insulators Ltd マイクロ波用共振器内蔵配線基板
JPH0936305A (ja) * 1995-07-20 1997-02-07 Rohm Co Ltd ダイオードとコンデンサとを備えたチップ型複合素子の構造
JPH09284093A (ja) * 1996-04-13 1997-10-31 Toyo Commun Equip Co Ltd マルチバンドsawフィルタ
JP4331277B2 (ja) * 1997-08-22 2009-09-16 日本無線株式会社 弾性表面波フィルタ
JPH11112264A (ja) * 1997-10-08 1999-04-23 Murata Mfg Co Ltd フィルタ
JP3525408B2 (ja) * 1998-05-07 2004-05-10 富士通株式会社 分波器パッケージ
JP2000209061A (ja) * 1999-01-12 2000-07-28 Toshiba Corp 弾性表面波素子および弾性表面波装置
JP3363870B2 (ja) * 2000-05-29 2003-01-08 沖電気工業株式会社 弾性表面波分波器
JP4245265B2 (ja) * 2000-09-29 2009-03-25 京セラ株式会社 複数のフィルタを有する多層配線基板
JP2002353775A (ja) * 2001-03-23 2002-12-06 Sanyo Electric Co Ltd フィルタユニット及び該フィルタユニットを用いたデュプレクサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561406A (en) * 1994-07-01 1996-10-01 Fujitsu Limited Duplexer package
US6489861B2 (en) * 2000-04-28 2002-12-03 Oki Electric Industry Co., Ltd. Antenna duplexer with divided and grounded transmission line
CN1383268A (zh) * 2001-04-26 2002-12-04 株式会社村田制作所 弹性表面波装置及通信装置
US20020158708A1 (en) * 2001-04-27 2002-10-31 Kenji Inoue Surface acoustic wave filter, package for surface acoustic wave filter and surface acoustic wave filter module
CN1400736A (zh) * 2001-07-30 2003-03-05 株式会社村田制作所 弹性表面波分波器及通信装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103636124A (zh) * 2011-07-08 2014-03-12 株式会社村田制作所 电路模块
CN103636124B (zh) * 2011-07-08 2017-02-22 株式会社村田制作所 电路模块

Also Published As

Publication number Publication date
JPWO2004102798A1 (ja) 2006-07-13
US20040227585A1 (en) 2004-11-18
WO2004102798A1 (ja) 2004-11-25
JP2008245310A (ja) 2008-10-09
CN1720659A (zh) 2006-01-11
JP4270206B2 (ja) 2009-05-27

Similar Documents

Publication Publication Date Title
CN100472963C (zh) 声表面波分波器
JP3855842B2 (ja) 弾性表面波分波器およびそれを有する通信装置
CN106253877B (zh) 梯型弹性波滤波器和天线共用器
JP4000960B2 (ja) 分波器、通信装置
JP5039290B2 (ja) フィルタおよびアンテナ分波器
CN1913348B (zh) 分波器和梯形滤波器
JP3478264B2 (ja) 弾性表面波装置
CN105453429B (zh) 高频模块
US9093980B2 (en) Elastic wave filter device
JP4177389B2 (ja) フィルタおよび分波器
CN107078715A (zh) 高频模块
JP2007036856A (ja) 共振器、フィルタおよびアンテナ分波器
JP6832871B2 (ja) マルチプレクサ
CN105075118B (zh) 双工器
US20130222077A1 (en) Elastic wave filter device
CN105453427B (zh) 高频模块
WO2012063517A1 (ja) 弾性波フィルタ装置
JPH0998056A (ja) 弾性表面波装置
JPH09321573A (ja) 弾性表面波フィルタ装置
WO2006040923A1 (ja) 分波器
US7023297B2 (en) Surface acoustic wave branching filter
JP4830037B2 (ja) フィルタおよびその製造方法並びにアンテナ分波器
CN217522815U (zh) 声波芯片装置及射频前端模组
CN103973256B (zh) 模块
JPH0832402A (ja) 弾性表面波装置、移動無線機用分波器および移動無線装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20090325

CX01 Expiry of patent term