WO2006040923A1 - 分波器 - Google Patents

分波器 Download PDF

Info

Publication number
WO2006040923A1
WO2006040923A1 PCT/JP2005/017768 JP2005017768W WO2006040923A1 WO 2006040923 A1 WO2006040923 A1 WO 2006040923A1 JP 2005017768 W JP2005017768 W JP 2005017768W WO 2006040923 A1 WO2006040923 A1 WO 2006040923A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductance
filter
duplexer
band
bandpass filter
Prior art date
Application number
PCT/JP2005/017768
Other languages
English (en)
French (fr)
Inventor
Ryoichi Omote
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2006540869A priority Critical patent/JPWO2006040923A1/ja
Publication of WO2006040923A1 publication Critical patent/WO2006040923A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0566Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers
    • H03H9/0571Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers including bulk acoustic wave [BAW] devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0566Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers
    • H03H9/0576Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers including surface acoustic wave [SAW] devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/703Networks using bulk acoustic wave devices
    • H03H9/706Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers

Definitions

  • the present invention relates to a duplexer used in a communication device such as a mobile phone, and more specifically, the first and second band pass filters are configured using a surface acoustic wave filter (SAW filter). This relates to the demultiplexer.
  • SAW filter surface acoustic wave filter
  • FIG. 9 is a diagram showing a circuit configuration of the duplexer described in Patent Document 1.
  • the duplexer 101 has an antenna terminal 102 connected to the antenna.
  • the common terminal 103 is connected to the antenna terminal 102.
  • One end of each of the first band pass filter F and the second band pass filter F is connected to the common terminal 103.
  • Filter F is used as a band filter on the transmission side and is connected to transmission terminal 104.
  • f the center frequency of the bandpass filter F. 1st bandpass filter F
  • the passband frequency is relatively low.
  • the bandpass filter F includes a plurality of series arm resonators S to S and a plurality of parallel arm resonators P.
  • each resonator S ⁇ S, P, P is a ladder type filter.
  • the second band pass filter F constitutes a band filter on the receiving side
  • Bandpass filter F has a relative passband frequency.
  • the bandpass filter F also has multiple series of SAW resonators.
  • the duplexer 101 in order to achieve matching with the antenna, the series inductance L connected between the antenna terminal 102 and the common terminal 103, the series inductance L, and the antenna terminal 1
  • a matching circuit having a capacitor 106 connected between the connection point 106 between the capacitor and the earth potential and the ground potential is formed.
  • the resonator that is the closest resonator to the common terminal 103 of the bandpass filter F is the resonator that is the closest resonator to the common terminal 103 of the bandpass filter F.
  • the impedance of the column arm resonator S is the capacitance in the passband of the bandpass filter F.
  • the impedance of the series arm resonator S is
  • the impedance of filter F and the impedance of bandpass filter F are capacitive.
  • Patent Document 1 Japanese Patent No. 3509773
  • 3GPP which is an international standard for mobile communication devices, is required to attenuate spurious signals of various frequencies generated on the transmission side in order to avoid interference on the reception side bandpass filter.
  • the reception frequency is Rx
  • the transmission frequency is Tx
  • attenuation of spurious signals with frequencies such as Rx Tx, 2 ⁇ —Rx, and Rx + Tx is required.
  • frequencies such as Rx Tx, 2 ⁇ —Rx, and Rx + Tx
  • Rx-Tx is 19 OMHz, which is a frequency much lower than the frequency of the transmission side passband. That is, Rx — Tx is a frequency that is orders of magnitude lower than the passband frequency! /.
  • the first is a reception-side bandpass filter.
  • the second bandpass filter F low frequency signals such as Rx—Tx are sufficiently reduced
  • an object of the present invention is to provide a frequency considerably lower than the passband of each bandpass filter of a duplexer having first and second bandpass filters having different passbands.
  • the present invention is to provide a duplexer in which the attenuation can be sufficiently increased on the side of the second bandpass filter having a relatively high passband, and the force does not easily deteriorate the insertion loss in the passband. .
  • the present invention includes a first bandpass filter having a relatively low passband frequency and a second bandpass filter having a relatively high passband frequency, and the first and second One end of the band-pass filter is connected to the antenna-side common terminal, and the first inductor connected in series between the common terminal and the antenna, the antenna, and the antenna are connected to the duplexer.
  • a capacitance connected between the connection point and the ground potential between the first inductance and a second connection connected between the connection point and the ground potential and in parallel with the capacitance.
  • a matching circuit including an inductance of the first and second inductances, wherein a resonance frequency due to parallel resonance of the capacitor and the second inductance is lower than a pass band of the first bandpass filter.
  • the second band-pass filter has a coupling-side resonator connected in series on the common terminal side.
  • a ladder having a ladder type circuit configuration having at least one series arm SAW resonator and at least one parallel arm SAW resonator is provided as the second bandpass filter force.
  • Type SAW filter
  • the duplexer further includes a third inductance, and the third inductance is connected in parallel to at least one series arm SAW resonator of the ladder-type SAW filter. Speak.
  • the second band-pass filter is a longitudinally coupled resonator SAW filter.
  • the duplexer further includes a package material on which the first and second bandpass filters are mounted or accommodated, and the first inductor
  • the capacitance, the second inductance, and the second inductance are constituted by a chip inductor, a chip capacitor, and a chip inductance element, respectively, and are connected outside the package material to constitute the matching circuit.
  • the duplexer further includes a package material in which the first and second bandpass filters are mounted or accommodated, and the first inductance and the capacitance Alternatively, at least one of the second inductances is configured using an electrode pattern in the package material.
  • the duplexer further includes a filter substrate on which the first and Z or second bandpass filters are configured, and the first inductance, At least one of a capacitance or the second inductance is formed.
  • the matching circuit includes the first inductance, the capacitance, and the second inductance, and a resonance frequency due to parallel resonance of the capacitance and the second inductance is Since the passband frequency is lower than the passband of the first bandpass filter, which is relatively low, in the passbands of the first and second bandpass filters F and F
  • the impedance of the parallel resonant circuit of the second inductance Lp and the capacitance Cp is capacitive, but inductive at a frequency lower than the pass band of the first bandpass filter, and the impedance of the parallel resonant circuit is The order is one order of magnitude lower than the passband of the first bandpass filter, extremely low in frequency, and exhibits inductive impedance. Therefore, the input signal with the antenna force also input to the common terminal flows to the ground potential and the matching circuit force hardly flows to the second bandpass filter. Therefore, the attenuation of the second bandpass filter at a frequency lower than the passband of the first bandpass filter is increased.
  • the circuit constant of the matching circuit for example, the attenuation amount in a low frequency region on the order of one digit or more smaller than the pass band of the first bandpass filter such as 190 MHz is made sufficiently large. It becomes possible to do. However, according to the present invention, the insertion loss is hardly deteriorated in the passband.
  • the second bandpass filter when the second bandpass filter has a coupling side resonator connected in series on the common terminal side, the second bandpass filter in the passband of the first bandpass filter.
  • the impedance of the bandpass filter of 2 can be made a large capacitive impedance. Therefore, it is possible to reduce the insertion loss of the first bandpass filter.
  • the first and second band-pass filters are ladder-type SAW filters in which a plurality of SAW resonators are connected so as to have a ladder-type circuit configuration, they are lower than the passband! Therefore, it is difficult to ensure the attenuation amount of a certain frequency, and in particular, by using the present invention, it is ensured that the attenuation amount in the frequency range an order of magnitude lower than the passband is sufficiently large. It is out.
  • a third inductance is further provided, and a third inductance is connected in parallel to at least one series arm SAW resonator arranged in the series arm of the ladder-type SAW filter.
  • a third inductance is connected in parallel to at least one series arm SAW resonator arranged in the series arm of the ladder-type SAW filter.
  • the first band-pass filter is a ladder filter and the second band-pass filter is a resonator type SAW filter, the attenuation in a frequency range that is an order of magnitude lower than the pass band is obtained.
  • a wide bandwidth can be sufficient.
  • the semiconductor device further includes a packaging material on which the first and second bandpass filters are mounted, and the first inductance, the capacitance, and the second inductance are configured by a chip inductor, a chip capacitor, and a chip inductor, respectively. If these chip-type components are connected outside the knocking material to form a matching circuit, the inductance value or capacitance of these chip-type electronic components depends on the passband or application. Can be changed easily. Therefore, it is possible to easily change the circuit constant of the matching circuit, thereby reliably improving the attenuation in the frequency band lower than the pass band.
  • the duplexer including the matching circuit can be downsized. Can be planned.
  • the first and / or second band-pass filter is configured to form one or more of the first inductance, the capacitance, and the second inductance on the filter substrate.
  • the duplexer can be further downsized.
  • FIG. 1 is a circuit diagram of a duplexer according to an embodiment of the present invention.
  • FIG. 2 shows the attenuation frequency characteristics on the transmission side of the duplexer of the embodiment shown in Fig. 1, and the attenuation frequency characteristics on the transmission side of the conventional duplexer prepared for comparison.
  • FIG. 3 shows the frequency characteristics on the receiving side of the duplexer of the embodiment shown in FIG. 1 and the frequency characteristics on the receiving side of the conventional duplexer prepared for comparison.
  • FIG. 4 shows the frequency characteristics of the passband attenuation of the duplexer of the embodiment shown in FIG. 1 and the frequency characteristics of the passband attenuation of the conventional duplexer prepared for comparison.
  • FIG. 5 is a circuit diagram showing a modification of the duplexer of the present invention.
  • FIG. 6 is a diagram showing a circuit configuration of a conventional duplexer prepared for comparison with the embodiment shown in FIG.
  • FIGS. 7 (a), (b) and (c) are a front view, a front sectional view and a plan view showing a modification of the specific structure of the duplexer of the present invention.
  • FIG. 8 is a schematic plan view for explaining still another structural example of the duplexer of the present invention.
  • FIG. 9 is a circuit diagram showing an example of a conventional duplexer.
  • FIG. 1 is a circuit diagram showing a circuit configuration of a duplexer according to an embodiment of the present invention.
  • the duplexer 1 of the present embodiment has a common terminal 3 connected to the antenna 2. One end of the first bandpass filter F is electrically connected to the common terminal 3. Also, common terminal
  • the duplexer 1 of the present embodiment is used as a duplexer of a W-CDMA mobile phone. It is.
  • the first band pass filter F is a band pass filter on the transmission side, and its passband
  • the second bandpass filter F is a bandpass filter on the receiving side.
  • the passband is 2110-2170MHz.
  • the first bandpass filter F includes a plurality of series arm resonators.
  • the series arm resonators Sla to S3 are arranged in order from the common terminal 3 to the transmission terminal 4.
  • the parallel arm resonator P1 is connected between the connection point between the series arm resonator Sib and the series arm resonator S2a and the ground potential.
  • the parallel arm resonator P1 is connected to the parallel arm resonator P1.
  • An inductance L is connected to P1 directly to U!
  • the parallel arm resonator P2 is connected between a connection point between the series arm resonator S2b and the series arm resonator S3 and the ground potential.
  • an inductance L is connected in series to the parallel arm resonator P2.
  • the series arm resonators Sla to S3 and the parallel arm resonators PI and P2 are configured by SAW resonators, and are configured as shown in Table 1 below in the present embodiment.
  • the end connected to the common terminal 3 of the second bandpass filter F is on the opposite side to the opposite side.
  • the series arm resonators S4a, S4b, S5, and S6 are connected in series toward the force receiving terminal 5.
  • the parallel arm resonator P3 is connected between the connection point 6 between the series arm resonator S4b and the series arm resonator S5 and the ground potential.
  • Series arm resonator S5 and series arm resonator A parallel arm resonator P4 is connected between the connection point 7 to S6 and the ground potential.
  • an inductance L as a third inductance is connected between the connection points 6 and 7 in parallel with the series arm resonator S5.
  • Each of the pendulums P3 and P4 is composed of a SAW resonator. That is, the second bandpass filter F is also a ladder type SAW filter. Each resonator S4a ⁇ S6 and P3, P4
  • the second bandpass filter F is configured as a plurality of!
  • the resonator closest to the common terminal 3 will be appropriately abbreviated as a coupled-side resonator below.
  • the series arm resonator S4a is a coupling side resonator.
  • Second band-pass filter F force Common terminal Coupling side connected in series on the 3 side
  • a matching circuit 8 is connected between the antenna 2 and the common terminal 3.
  • the matching circuit 8 is connected between the first inductance Ls connected in series between the antenna 2 and the common terminal 3, the connection point between the first inductance Ls and the antenna terminal 2, and the ground potential. And the connection point between the second inductance Lp and the antenna 2 and the first inductance Ls. And a capacitor Cp connected in parallel with the second inductance Lp. That is, the second inductance Lp and the capacitor Cp are connected to resonate in parallel.
  • the present embodiment is characterized in that the resonance frequency of the parallel resonance is set lower than the passband of the first bandpass filter F.
  • the attenuation in the frequency region that is an order of magnitude lower than the passband of the first bandpass filter F is, in particular, 1
  • Attenuation in the vicinity of 90MHz can be greatly increased.
  • the attenuation in the frequency range considerably lower than the passband of the bandpass filter F is expanded.
  • the resonance frequency of the parallel resonance of the second inductance Lp and the capacitance Cp is lower than the passband of the first bandpass filter F.
  • the attenuation at Hz is expanded.
  • the insertion loss in the pass band and the insertion loss are unlikely to occur.
  • the impedance of the parallel circuit with the capacitor Cp is equivalent to the impedance of the capacitor Cp 1 whose capacitance value is smaller than that of the capacitor Cp. Therefore, it can be considered that a matching circuit composed of the capacitance C pi and the first inductance is connected between the antenna 2 and the common terminal 3. Capacitance C so that the first and second bandpass filters F, F and the antenna are impedance matched
  • the inductance value of the second inductance Lp and the capacitance value of the capacitance Cp which are equivalent to the capacitance Cpl, can be set as appropriate.
  • the lower limit of the resonance frequency due to the parallel resonance of the second inductance Lp and the capacitance Cp is It is appropriately determined depending on the allowable range of the insertion loss deterioration amount of the pass band.
  • the third inductance further includes an inductance L force.
  • the third arm is provided in parallel with the series arm SAW resonator S5, it is possible to increase the isolation of the duplexer compared to the case where the third inductance is provided. Obviously,
  • an A1 electrode layer having a thickness of 94 nm was formed and patterned to form first and second band-pass filters F 1 and F 2. In this way the filter
  • a substrate was obtained. Then, the filter substrate was mounted on a knocking material having a ceramic force, and the electrode pad provided on the package material and the electrode pad on the filter substrate were joined by a bonding wire.
  • the inductance values were as follows.
  • inductance L 3.3 nH
  • inductance L 3.3 nH
  • inductance L 2.
  • the first and second chip type inductors and chip type constituting the first inductance, the second inductance Lp, and the capacitance Cp were mounted and electrically connected.
  • the inductance value of the first inductance Ls was 3.3 nH
  • the capacitance of the capacitor Cp was 3.2 pF
  • the inductance value of the second inductance Lp was 3.6 nH.
  • FIG. 6 it is configured in the same manner as in the above embodiment except that it has a matching circuit 111 consisting only of a series inductance Ls and a capacitance Cp.
  • a duplexer 112 was prepared as a conventional duplexer. Note that the inductance value of the series inductance Ls and the capacitance of the capacitor Cp in the duplexer 112 of this conventional example are different from the 3.3 nH and the capacitor Cp, which are the same as the first inductance Ls in the above embodiment, and 1.3 pF. did.
  • FIGS. 2 to 4 show the number characteristics
  • Fig. 3 shows the attenuation frequency characteristics on the receiving side
  • Fig. 4 shows the attenuation frequency characteristics in the passband.
  • the solid line shows the result of the example
  • the broken line shows the result of the conventional example.
  • the expanded frequency response is the characteristic expanded by the starboard j scale.
  • the amount of attenuation is greatly expanded. That is, the attenuation amount at 190 MHz corresponding to the frequency of Rx ⁇ Tx is increased to 54.7 dB in this embodiment compared to 33.8 dB in the conventional example, and thus the attenuation amount at 190 MHz is 20. 9dB improved.
  • the attenuation in the wave band of 3840 to 3960 MHz was also 14.5 dB in the conventional example, but in this embodiment, it was improved by 20. ldB and 5.6 dB.
  • the amount of passband insertion loss deterioration compared to the conventional example is 0.07 dB on the transmitting side and 0.1 ldB on the receiving side. Tsuta.
  • the insertion loss in the passband on the transmission side stays at 1.25 dB
  • the insertion loss on the reception side stays at 2.08 dB.
  • the attenuation in the frequency band considerably lower than the pass band of the first band pass filter F hardly causes deterioration of the insertion loss of the pass band.
  • the second inductance Lp is connected in parallel with the capacitor Cp, the resistance against the surge current from the antenna 2 side can be enhanced.
  • the present invention it is possible to provide a duplexer that can easily satisfy the filter characteristics required by the 3GPP standard and can significantly improve the communication quality of communication devices. Speak.
  • the first bandpass filter F and the second bandpass filter F are identical in the above embodiment.
  • Each F is composed of a ladder type filter that connects multiple SAW resonators.
  • the first and second band pass filters may be configured by a filter other than the ladder-type SAW filter.
  • the first band-pass filter F force is composed of a ladder-type SAW filter as in the first embodiment.
  • the second bandpass filter F is configured with a resonator-type SAW filter.
  • the SAW resonator 21 and the resonator-type SAW filter 22 are connected to the common terminal 3 in this order, and are connected to the SAW resonator 21 of the resonator-type SAW filter 22 and are opposite to the opposite side. Connect the receiving end 5 to the receiving end.
  • the second bandpass filter F is configured using a resonator-type SAW filter.
  • the coupling-side resonator is the SAW resonator 21, and the resonance frequency of the SAW resonator 21 is a frequency within the passband of the second bandpass filter F.
  • the SAW In the pass band of the bandpass filter F, the SAW
  • the resonance frequency of the SAW resonator 21 is equal to or higher than the center frequency of the second bandpass filter F.
  • the second bandpass filter F is set to. It is preferable to set to. In this case, the second bandpass filter F
  • the matching circuit 9 is configured in the same manner as the matching circuit 8 of the first embodiment. Therefore, as in the first embodiment, the matching circuit 9 is more than the first bandpass filter F. Can significantly improve the attenuation in a fairly low frequency range,
  • the filter substrates constituting the first and second band-pass filters and the first and second band-pass filters are mounted or housed.
  • Appropriate structures can be used for the electronic component elements constituting the package material and the matching circuit.
  • the filter substrate on which the first and second bandpass filters are configured is accommodated in the knocking material 32, and the packaging material 32, and chip-type inductors 33 and 34 and chip-type capacitor 35 forming the matching circuit 8 It is mounted on the circuit board 36.
  • the chip type inductor 33 constitutes the first inductance Ls
  • the chip type inductor 34 constitutes the second inductance Lp
  • the chip type capacitor 35 constitutes the capacitance Cp.
  • the chip-type electronic components constituting the first inductance Ls, the second inductance Lp, and the capacitance Cp, and the knocking material may be mounted on the mounting board.
  • the first and second bandpass filters are housed in the filter substrate force package material 42, and a matching circuit is further provided.
  • the configured inductors 33A and 34A may be configured using an electrode pattern on the package inner layer 42a inside the package material 42.
  • the chip capacitor 35 constituting the matching circuit is mounted on the mounting substrate 36 outside the package material 42.
  • the mounting board 36 in FIGS. 7A, 7B, and 7C is a duplexer module board, an RF board of a mobile phone, or the like.
  • first and second band pass filters F 1 and F 2 are configured in a region B indicated by a one-dot chain line on the filter substrate 51. And the same filter base
  • a conductor coil 52 for forming the first inductance Ls, a conductor coil 53 for forming the second inductance Lp, and a comb electrode 54 for forming the capacitor Cs are formed on the filter substrate 51. Accordingly, the matching circuit 8 is also formed on the filter substrate 51.
  • the first and second band-pass filter portions surrounded by the broken line A are arranged on the filter substrate, and the matching circuit 8 is configured.
  • the electronic component element may be composed of an electronic component element different from the filter substrate, or the electronic component element itself that forms the matching circuit on the filter substrate may be formed! / ⁇ .
  • FIG. 8 the force in which the first and second band-pass filters F 1 and F 2 are formed in the portion surrounded by the alternate long and short dash line B on the filter substrate 51
  • the two band pass filters may be formed of different filter substrates.
  • the electronic component elements constituting the matching circuit 8 may be formed on any filter substrate. That is, the first inductance, the capacitance, and the second inductance can be formed on the filter substrate on which the first and / or second bandpass filter is configured.
  • the piezoelectric substrate constituting the filter substrate another piezoelectric single crystal substrate using a 55 ° rotation Y plate X propagation LiNbO substrate may be used as the piezoelectric substrate constituting the filter substrate. Also electrode
  • the present invention is not limited to the one in which the A1 electrode layer is laminated on the Ti base electrode layer, and a Cu electrode layer may be used instead of the A1 electrode layer, or the base electrode layer may not be formed.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 第1,第2のバンドパスフィルタの通過帯域よりも低い周波数域における減衰量を改善することができ、しかも通過帯域における挿入損失の劣化が生じ難い分波器を提供する。  通過帯域の周波数が相対的に低い第1のバンドパスフィルタF1及び通過帯域の周波数が相対的に高い第2のバンドパスフィルタF2の一端がアンテナ2側の共通端子3に接続されている分波器において、前記共通端子3とアンテナ2の間に直列に接続された第1のインダクタンスLsと、前記アンテナ2と前記第1のインダクタンスLsとの間の接続点とアース電位との間に接続された容量Cpと、前記接続点とアース電位との間に接続されておりかつ前記容量と並列に接続されている第2のインダクタンスLpとを含む整合回路をさらに備え、前記容量Cpと前記第2のインダクタンスLpの並列共振による共振周波数が前記第1のバンドパスフィルタF1の通過帯域よりも低くされている、分波器1。

Description

分波器
技術分野
[0001] 本発明は、例えば携帯電話機などの通信機器において用いられる分波器に関し、 より詳細には、弾性表面波フィルタ(SAWフィルタ)を用いて第 1,第 2のバンドパスフ ィルタが構成されて 、る分波器に関する。
背景技術
[0002] 従来より、携帯電話などの通信機器において、小型化及び低背化が強く求められ ている。そのため、携帯電話機では、 1つのアンテナを用いて送受信が行われている 。この場合、送信周波数と受信周波数とが異なっているため、アンテナには分波器が 接続されている。
[0003] 下記の特許文献 1には、このような用途に用いられる分波器の一例が開示されてい る。図 9は、特許文献 1に記載の分波器の回路構成を示す図である。図 9に示すよう に、分波器 101は、アンテナに接続されるアンテナ端子 102を有する。アンテナ端子 102に、共通端子 103が接続されている。共通端子 103に、第 1のバンドパスフィル タ Fと、第 2のバンドパスフィルタ Fとの各一端が接続されている。第 1のバンドパスフ
1 2
ィルタ Fは、送信側の帯域フィルタとして用いられており、送信端子 104に接続され
1
ている。バンドパスフィルタ Fの中心周波数を f とする。第 1のバンドパスフィルタ Fの
1 1 1 通過帯域の周波数は相対的に低くされている。
[0004] バンドパスフィルタ Fは、複数の直列腕共振子 S〜S及び複数の並列腕共振子 P
1 1 3 1
, Pを有するラダー型フィルタで構成されている。ここでは、各共振子 S〜S , P , P
2 1 3 1 2 は SAW共振子により構成されて ヽる。
[0005] 他方、第 2のバンドパスフィルタ Fは、受信側の帯域フィルタを構成しており、受信
2
端子 105に接続されている。バンドパスフィルタ Fは、その通過帯域の周波数が相対
2
的に高くされている。バンドパスフィルタ Fもまた、 SAW共振子からなる複数の直列
2
腕共振子 S〜S及び並列腕共振子 P , Pを有するラダー型フィルタにより構成され
4 6 3 4
ている。 [0006] 分波器 101では、アンテナとの整合を図るために、アンテナ端子 102と共通端子 10 3との間に接続された直列インダクタンス Lと、直列インダクタンス Lとアンテナ端子 1
1 1
02との間の接続点 106とアース電位との間に接続された容量 Cとを有する整合回路 が構成されている。
[0007] 分波器 101では、バンドパスフィルタ Fの共通端子 103に最も近い共振子である直
2
列腕共振子 Sのインピーダンスは、バンドパスフィルタ Fの通過帯域において容量
4 1
性の高インピーダンスとされている。なお、上記直列腕共振子 Sのインピーダンスは
4
、バンドパスフィルタ Fの通過帯域においても容量性である力 直列腕共振子 Sの共
2 4 振周波数にバンドパスフィルタ Fの中心周波数が近いため、バンドパスフィルタ Fの
2 2 中心周波数 f では、共振子 Sのインピーダンスは非常に小さくなる。
2 4
[0008] 共通端子 103側から見ると、中心周波数 f及び中心周波数 f において、バンドパス
1 2
フィルタ Fのインピーダンス及びバンドパスフィルタ Fのインピーダンスは容量性とな
1 2
つている。この容量性の各インピーダンス力 直列インダクタンス Lのインダクタンスの
1
値を調整することにより整合が図られている。それによつて、中心周波数 fでは、バン
1 ドパスフィルタ F力もアンテナ端子 102に電流が流れやすくなつており、中心周波数 f
1
では、アンテナ端子 102からバンドパスフィルタ Fに電流が流れやすくされている。
2 2
特許文献 1:特許第 3509773号公報
発明の開示
[0009] 近年、移動体通信機器の国際規格である 3GPPでは、受信側バンドパスフィルタで 混信を避けるために、送信側で発生した様々な周波数のスプリアス信号を減衰させ ることが求められている。受信周波数を Rx、送信周波数を Txとしたとき、例えば、 Rx Tx、 2Τχ— Rx及び Rx+Txなどの周波数のスプリアス信号の減衰が求められて おり、特に、 Rx—Txの周波数の信号を減衰させることが強く求められている。
[0010] ところで、例えば日本国の W— CDMA方式では、受信側通過帯域は 2110〜217 OMHzであり、送信側通過帯域は 1920〜1980MHzである。従って、 Rx— Txは 19 OMHzと、送信側通過帯域の周波数よりも非常に低い周波数である。すなわち、 Rx — Txは、通過帯域の周波数よりもオーダーが一桁小さ!/、ほど低 、周波数である。
[0011] 特許文献 1に記載の分波器 101を用いた場合、受信側バンドパスフィルタである第 2のバンドパスフィルタ Fにおいて、 Rx— Txのような低い周波数の信号を十分に減
2
衰させることは困難であった。
[0012] 本発明の目的は、上述した従来技術の現状に鑑み、通過帯域が異なる第 1,第 2 のバンドパスフィルタを有する分波器の各バンドパスフィルタの通過帯域よりもかなり 低い周波数における減衰量を、相対的に通過帯域が高い第 2のバンドパスフィルタ 側において十分に大きくすることができ、し力も通過帯域内における挿入損失の劣化 を招き難い、分波器を提供することにある。
[0013] 本発明は、通過帯域の周波数が相対的に低い第 1のバンドパスフィルタと、通過帯 域の周波数が相対的に高い第 2のバンドパスフィルタとを備え、前記第 1,第 2のバン ドバスフィルタの一端がアンテナ側の共通端子に接続されて 、る分波器にぉ 、て、 前記共通端子とアンテナの間に直列に接続された第 1のインダクタンスと、前記アン テナと前記第 1のインダクタンスとの間に接続点とアース電位との間に接続された容 量と、前記接続点とアース電位との間に接続されておりかつ前記容量と並列に接続 されている第 2のインダクタンスとを含む整合回路をさらに備え、前記容量と前記第 2 のインダクタンスの並列共振による共振周波数が前記第 1のバンドパスフィルタの通 過帯域よりも低くされていることを特徴とする。
本発明に係る分波器のある特定の局面では、前記第 2のバンドパスフィルタが、前 記共通端子側において直列に接続されている結合側共振子を有する。
本発明に係る分波器の他の特定の局面では、前記第 2のバンドパスフィルタ力 少 なくとも 1つの直列腕 SAW共振子及び少なくとも 1つの並列腕 SAW共振子を有する 梯子型回路構成のラダー型 SAWフィルタである。
本発明に係る分波器のさらに別の特定の局面では、第 3のインダクタンスをさらに備 え、前記ラダー型 SAWフィルタの少なくとも 1つの直列腕 SAW共振子に前記第 3の インダクタンスが並列に接続されて ヽる。
[0014] 本発明に係る分波器の他の特定の局面では、前記第 2のバンドパスフィルタが縦 結合共振子型 SAWフィルタである。
[0015] 本発明に係る分波器のさらに別の特定の局面では、前記第 1,第 2のバンドパスフ ィルタが実装もしくは収納されているパッケージ材をさらに備え、前記第 1のインダクタ ンス、前記容量及び前記第 2のインダクタンスがそれぞれチップ型インダクタ、チップ 型コンデンサ及びチップ型インダクタンス素子により構成されており、かつ前記パッケ ージ材外にお 、て接続されて前記整合回路が構成されて 、る。
[0016] 本発明に係る分波器のさらに別の特定の局面では、前記第 1,第 2のバンドパスフ ィルタが実装もしくは収納されているパッケージ材をさらに備え、前記第 1のインダクタ ンス、前記容量または前記第 2のインダクタンスのうち 1つ以上が前記パッケージ材中 に電極パターンを用いて構成されて 、る。
[0017] 本発明に係る分波器のさらに他の特定の局面では、前記第 1及び Zまたは第 2の バンドパスフィルタが構成されているフィルタ基板をさらに備え、前記第 1のインダクタ ンス、前記容量または前記第 2のインダクタンスの少なくとも 1つが形成されている。
[0018] 本発明に係る分波器では、整合回路が、上記第 1のインダクタンスと、上記容量と、 第 2のインダクタンスとを含み、該容量と第 2のインダクタンスの並列共振による共振 周波数が、通過帯域の周波数が相対的に低い第 1のバンドパスフィルタの通過帯域 よりも低くされているため、第 1,第 2のバンドパスフィルタ F、 Fの通過帯域において
1 2
、上記第 2のインダクタンス Lpと容量 Cpとの並列共振回路のインピーダンスが容量性 を示すが、第 1のバンドパスフィルタの通過帯域より低い周波数では誘導性を示し、 上記並列共振回路のインピーダンスは、第 1のバンドパスフィルタの通過帯域よりもォ ーダ一が一桁低!、周波数にお!、て極めて低!、インピーダンスの誘導性を示す。その ため、共通端子にアンテナ力も入力された入力信号が、整合回路力もアース電位に 流れ、第 2のバンドパスフィルタにほとんど流れない。従って、第 1のバンドパスフィル タの通過帯域よりも低い周波数における第 2のバンドパスフィルタの減衰量が高めら れる。
[0019] よって、上記整合回路の回路定数を調整することにより、例えば 190MHzのような 第 1のバンドパスフィルタの通過帯域よりも一桁以上小さいオーダーの低い周波数域 における減衰量を十分な大きさとすることが可能となる。し力も、本発明によれば、通 過帯域における挿入損失劣化も生じ難 、。
本発明において、第 2のバンドパスフィルタが、共通端子側において直列接続され ている結合側共振子を有する場合、第 1のバンドパスフィルタの通過帯域における第 2のバンドパスフィルタのインピーダンスを容量性の大きなインピーダンスとすることが できる。従って、第 1のバンドパスフィルタの挿入損失を小さくすることが可能となる。
[0020] 第 1,第 2のバンドパスフィルタが、複数の SAW共振子を梯子型回路構成を有する ように接続してなるラダー型 SAWフィルタである場合には、上記通過帯域より低!、側 の周波数の減衰量を確保することが困難であるため、特に本発明を利用することによ り、通過帯域よりもオーダーの一桁低い周波数域における減衰量を確実に十分な大 ささとすることがでさる。
本発明において、第 3のインダクタンスがさらに備えられており、上記ラダー型 SAW フィルタの直列腕に配置されている少なくとも 1つの直列腕 SAW共振子に第 3のイン ダクタンスが並列に接続されて ヽる場合には、インダクタンスが上記直列腕 SAW共 振子に並列に接続されていない場合に比べて、分波器のアイソレーションを高めるこ とがでさる。
[0021] 第 1のバンドパスフィルタがラダー型フィルタであり、第 2のバンドパスフィルタが共 振子型 SAWフィルタである場合には、通過帯域よりもオーダーの一桁低 ヽ周波数域 における減衰量を広い帯域幅で十分な大きさとすることができる。
[0022] 第 1,第 2のバンドパスフィルタが実装されているパッケージ材をさらに備え、第 1の インダクタンス、容量及び第 2のインダクタンスがそれぞれチップ型インダクタ、チップ 型コンデンサ及びチップ型インダクタにより構成されており、これらのチップ型部品が ノ ッケージ材の外部において接続されて整合回路が構成されている場合には、通過 帯域や用途に応じて、これらのチップ型電子部品のインダクタンス値ゃ静電容量を容 易に変更することができる。従って、整合回路の回路定数を容易に変更することがで き、それによつて通過帯域よりも低 、周波数域における減衰量を確実に改善すること ができる。
[0023] 第 1のインダクタンス、容量または第 2のインダクタンスのうち 1つ以上がパターン材 中に電極パターンを用いて構成されて 、る場合には、上記整合回路を含む分波器 の小型化を図ることができる。
[0024] 第 1及び/または第 2のバンドパスフィルタが構成されて 、るフィルタ基板上にお!ヽ て、第 1のインダクタンス、容量または第 2のインダクタンスのうち 1つ以上が形成され て 、る場合には、分波器のより一層小型化を図ることができる。
図面の簡単な説明
[0025] [図 1]図 1は、本発明の一実施形態に係る分波器の回路図である。
[図 2]図 2は、図 1に示した実施形態の分波器の送信側の減衰量 周波数特性と、比 較のために用意した従来例の分波器の送信側の減衰量 周波数特性を示す図で ある。
[図 3]図 3は、図 1に示した実施形態の分波器の受信側の減衰量 周波数特性と、比 較のために用意した従来例の分波器の受信側の減衰量 周波数特性を示す図で ある。
[図 4]図 4は、図 1に示した実施形態の分波器の通過帯域の減衰量 周波数特性と、 比較のために用意した従来例の分波器の通過帯域の減衰量 周波数特性を示す 図である。
[図 5]図 5は、本発明の分波器の変形例を示す回路図である。
[図 6]図 6は、図 1に示した実施形態の比較のために用意した従来例の分波器の回路 構成を示す図である。
[図 7]図 7 (a) , (b)及び (c)は、本発明の分波器の具体的な構造の変形例を示す正 面図、正面断面図及び平面図である。
[図 8]図 8は、本発明の分波器のさらに他の構造例を説明するための模式的平面図 である。
[図 9]図 9は、従来の分波器の一例を示す回路図である。
符号の説明
[0026] 1…分波器
2· ··アンテナ
3…共通端子
4…送信端子
5…受信端子
6, 7…接続点
8…整合回路 31· ··分波器
32…パッケージ材
33· ··チップ型インダクタ
33 Α· ··インダクタ
34· ··チップ型インダクタ
34Α· ··インダクタ
35…チップ型コンデンサ
41· ··分波器
42…パッケージ材
42a…パッケージ容器
51…フイノレタ基板
52· ··導体コイル
53· ··導体コイル
54…櫛形電極
Cp…容量
F…第 1のバンドパスフィルタ
1
F…第 2のバンドパスフィルタ
2
Ls…インダクタンス
Lp…インダクタンス
発明を実施するための最良の形態
[0027] 以下、図面を参照しつつ本発明の具体的な実施形態を説明することにより、本発明 を明らかにする。
図 1は本発明の一実施形態に係る分波器の回路構成を示す回路図である。
[0028] 本実施形態の分波器 1は、アンテナ 2に接続される共通端子 3を有する。共通端子 3に、第 1のバンドパスフィルタ Fの一端が電気的に接続されている。また、共通端子
1
3には、通過帯域が相対的に高い第 2のバンドパスフィルタ Fの一端も接続されてい
2
る。
[0029] 本実施形態の分波器 1は、 W— CDMA方式の携帯電話機の分波器として用いら れる。第 1のバンドパスフィルタ Fは送信側のバンドパスフィルタであり、その通過帯
1
域は 1
920〜 1980MHzである。他方、第 2のバンドパスフィルタ Fは受信側のバンドパスフ
2
ィルタであり、その通過帯域は 2110〜2170MHzである。
[0030] 第 1のバンドパスフィルタ Fの共通端子 3に接続されている側とは反対側の端部が
1
送信端子 4に接続されている。第 1のバンドパスフィルタ Fは、複数の直列腕共振子
1
Sla, Sib, S2a, S2b, S3と、並歹 lj腕共振子 PI, P2とを有するラダー型 SAWフィ ルタである。ここで、直列腕共振子 Sla〜S3は、共通端子 3から送信端子 4に向って 順に配置されている。また、並列腕共振子 P1は、直列腕共振子 Sibと直列腕共振子 S2aとの間の接続点とアース電位との間に接続されており、該並列腕においては、並 歹 U腕共振子 P1に直歹 Uにインダクタンス Lが接続されて!ヽる。
1
[0031] また、並列腕共振子 P2は、直列腕共振子 S2bと直列腕共振子 S3との間の接続点 とアース電位との間に接続されている。この並列腕においては、並列腕共振子 P2に 直列にインダクタンス Lが接続されている。
2
[0032] 上記直列腕共振子 Sla〜S3及び並列腕共振子 PI, P2は、 SAW共振子により構 成されており、本実施形態では、下記の表 1に示すように構成されている。
[0033] [表 1]
Figure imgf000010_0001
[0034] 他方、第 2のバンドパスフィルタ Fの共通端子 3と接続されて 、る側とは反対側の端
2
部が受信端子 5に接続されているが、第 2のバンドパスフィルタ Fでは、共通端子 3側
2
力 受信端子 5に向って順に直列腕共振子 S4a, S4b, S5及び S6が直列に接続さ れている。そして、直列腕共振子 S4bと直列腕共振子 S5との間の接続点 6とアース 電位との間に並列腕共振子 P3が接続されている。直列腕共振子 S5と直列腕共振子 S6との間の接続点 7とアース電位との間に並列腕共振子 P4が接続されている。また 、接続点 6, 7間に、直列腕共振子 S5と並列に第 3のインダクタンスとしてのインダクタ ンス Lが接続されている。
3
[0035] 第 2のバンドパスフィルタ Fを構成している直列腕共振子 S4a〜S6及び並列腕共
2
振子 P3, P4は、それぞれ、 SAW共振子により構成されている。すなわち、第 2のバ ンドパスフィルタ Fもラダー型 SAWフィルタである。各共振子 S4a〜S6及び P3, P4
2
は、下記の表 2に示すように設計されている。
[0036] [表 2]
Figure imgf000011_0001
[0037] なお、第 2のバンドパスフィルタ Fにおいて、共通端子 3側の直列腕共振子である 2
2
個の直列腕共振子 S4a, S4bの波長 λ ί 他の直列腕共振子 S5, S6の波長 λより も小さくされているのは、帯域幅を拡大するためである。
[0038] なお、本明細書にぉ 、ては、第 2のバンドパスフィルタ Fを構成して!/、る複数の共
2
振子のうち、共通端子 3に最も近い側の共振子を、以下において結合側共振子と適 宜略称することとする。本実施形態では、直列腕共振子 S4aが結合側共振子となる。 第 2のバンドパスフィルタ F力 共通端子 3側において直列に接続されている結合側
2
共振子として直列腕共振子 S4aを有する場合、第 1のバンドパスフィルタ Fの通過帯 域における第 2のバンドパスフィルタ Fのインピーダンスを容量性が大きなインピーダ
2
ンスとすることができる。従って、第 1のバンドパスフィルタ Fの挿入損失を小さくする ことができる。
[0039] また、アンテナ 2と共通端子 3との間には、整合回路 8が接続されている。整合回路 8は、アンテナ 2と共通端子 3との間に直列に接続された第 1のインダクタンス Lsと第 1 のインダクタンス Lsとアンテナ端子 2との間の接続点とアース電位との間に接続され た第 2のインダクタンス Lpと、アンテナ 2と第 1のインダクタンス Lsとの間の接続点とァ ース電位との間に接続されておりかつ上記第 2のインダクタンス Lpと並列に接続され ている容量 Cpとを有する。すなわち、第 2のインダクタンス Lpと容量 Cpとは、並列共 振するように接続されている。そして、本実施形態は、この並列共振の共振周波数が 、第 1のバンドパスフィルタ Fの通過帯域よりも低くされていることを特徴とする。
1
[0040] 本実施形態では、整合回路 8が上記のように構成されているため、第 1のバンドパス フィルタ Fの通過帯域よりもオーダーの一桁低い周波数域における減衰量を、特に 1
1
90MHz付近における減衰量を大幅に大きくすることができる。本実施形態において 、バンドパスフィルタ Fの通過帯域よりもかなり低い周波数域における減衰量を拡大
1
し得るのは以下の理由によると考えられる。すなわち、上記第 2のインダクタンス Lpと 容量 Cpの並列共振の共振周波数が第 1のバンドパスフィルタ Fの通過帯域よりも低
1
くされているので、その共振周波数よりも高い第 1,第 2のバンドパスフィルタ F , Fの
1 2 通過帯域において、上記第 2のインダクタンス Lpと、容量 Cpとの並列共振回路のィ ンピーダンスが容量性を示す力 190MHzでは、上記並列共振回路は極めて低い インピーダンスの誘導性を示す。従って、アンテナ 2から入力された信号は、整合回 路 8においてアース電位に流れ、バンドパスフィルタ F , Fには殆ど流れなくなる。そ
1 2
のため、第 2のバンドパスフィルタ Fや第 1のバンドパスフィルタ Fにおいて、 190M
2 1
Hzにおける減衰量が拡大される。し力も通過帯域における挿入損失の低下も生じ難 い。
[0041] 第 1,第 2のバンドパスフィルタ F , Fの通過帯域において第 2のインダクタンス Lpと
1 2
容量 Cpとの並列回路のインピーダンスは、容量 Cpより容量値を小さくされた容量 Cp 1のインピーダンスと同等である。従って、アンテナ 2と共通端子 3との間には、容量 C piと第 1のインダクタンスとで構成される整合回路が接続されていると見なせる。第 1 ,第 2のバンドパスフィルタ F , Fとアンテナとがインピーダンス整合するように容量 C
1 2
p 1の容量値と第 1のインダクタンスのインダクタンス値が定められて 、るので、挿入損 失の低下が生じ難い。
[0042] 通過帯域において、容量 Cplと同等とされる、第 2のインダクタンス Lpのインダクタ ンス値と容量 Cpの容量値は適宜に設定することができる。
なお、第 2のインダクタンス Lp及び容量 Cpの並列共振による共振周波数の下限は 、通過帯域の挿入損失劣化量の許容範囲により適宜定められる。
[0043] また、上記実施形態では、第 3のインダクタンスとしてインダクタンス L力さらに備え
3
られており、直列腕 SAW共振子 S5に並列に接続されているため、該第 3のインダク タンスが設けられて ヽな 、場合に比べて、分波器のアイソレーションを高めることが可 能となる。
[0044] 次に、具体的な実験例に基づき、本実施形態の効果を説明する。まず、上記分波 器を作製するにあたり、 55° 回転 Yカット X伝搬の LiNbO基板上に、 10nmの厚み
3
の Ti下地電極層を形成した後、 94nmの厚みの A1電極層を形成し、パターニングす ることにより、第 1,第 2のバンドパスフィルタ F , Fを構成した。このようにしてフィルタ
1 2
基板を得た。そして、このフィルタ基板を、セラミックス力もなるノ ッケージ材に搭載し 、該パッケージ材に設けられた電極パッドとフィルタ基板上の電極パッドとをボンディ ングワイヤーにより接合した。
[0045] なお、第 1のバンドパスフィルタ Fにおけるインダクタンス L , L及び第 2のバンドパ
1 1 2
スフィルタ Fにおけるインダクタンス Lについては、上記パッケージ材内にコイルパタ
2 3
ーンを構成し、これらのインダクタンス値は以下の通りとした。
[0046] インダクタンス L = 3. 3nH、インダクタンス L = 3. 3nH及びインダクタンス L = 2.
1 2 3
5nH。
他方、ノ ッケージ材の外部の実装基板上に、整合回路 8を構成するために、第 1の インダクタンス、第 2のインダクタンス Lp及び容量 Cpを構成する第 1,第 2のチップ型 インダクタ及びチップ型コンデンサを実装し、電気的に接続した。この場合、第 1のィ ンダクタンス Lsのインダクタンス値を 3. 3nH、容量 Cpの静電容量は 3. 2pF、第 2の インダクタンス Lpのインダクタンス値は 3. 6nHとした。
[0047] なお、比較のために、図 6に示すように、直列インダクタンス Lsと、容量 Cpとのみか らなる整合回路 111を有することを除いては、上記実施形態と同様にして構成された 分波器 112を従来例の分波器として用意した。なおこの従来例の分波器 112におけ る直列インダクタンス Lsのインダクタンス値及び容量 Cpの静電容量は上記実施形態 の第 1のインダクタンス Lsと同様の 3. 3nH及び容量 Cpと異なる 1. 3pFとした。
[0048] 上記のようにして用意した実施例及び従来例の分波器の送信側の減衰量一周波 数特性を図 2に、受信側の減衰量 周波数特性を図 3に、通過帯域内の減衰量 周波数特性を図 4にそれぞれ示す。なお、図 2〜図 4において、実線が実施例の結 果を、破線が従来例の結果を示す。また、図 4においては、拡大された周波数特性 は右佃 jのスケーノレによって拡大した特'性である。
[0049] 図 3から明らかなように、本実施例によれば、従来例に比べて、 190MHz,すなわ ち第 1のバンドパスフィルタ Fの通過帯域よりもオーダーの一桁低い周波数帯域にお
1
ける減衰量が大幅に拡大されている。すなわち、 Rx—Txの周波数に相当する 190 MHzにおける減衰量は、従来例の場合の 33. 8dBに比べて、本実施例では 54. 7d Bと大きくされ、よって、 190MHzにおける減衰量が 20. 9dB改善された。
[0050] カロえて、図 2から明らかなように、送信側のバンドパスフィルタ Fの通過帯域の 2倍
1
波の帯域である 3840〜3960MHzにおける減衰量も、従来例では 14. 5dBであつ たのに対し、本実施形態では、 20. ldBと 5. 6dB改善することができた。
[0051] し力も、図 4から明らかなように、従来例に比べた通過帯域の挿入損失劣化量は、 送信側において 0. 07dB、受信側において 0. l ldBと、いずれも非常に小さ力つた 。すなわち、本実施形態では、送信側の通過帯域の挿入損失は 1. 25dBに留まり、 受信側における挿入損失も 2. 08dBに留まった。
[0052] よって、上記実施形態によれば、通過帯域の挿入損失の劣化をほとんど招くことな ぐ第 1のバンドパスフィルタ Fの通過帯域よりもかなり低い周波数域における減衰量
1
を大幅に改善することができ、加えて送信側のバンドパスフィルタ Fの特性において
1
は、通過帯域よりも高域側の 2倍波や 3倍波の周波数域における減衰量も効果的に 改善することができる。
[0053] また、第 2のインダクタンス Lpが容量 Cpに並列に接続されていることにより、アンテ ナ 2側からのサージ電流に対する耐性も高められる。
よって、本発明によれば、 3GPP規格で要求されるフィルタ特性を容易に満たすこと ができ、通信機器の通信品質の大幅な向上を図ることが可能な分波器を提供し得る ことがわ力ゝる。
[0054] なお、上記実施形態では、第 1のバンドパスフィルタ F及び第 2のバンドパスフィル
1
タ Fは、いずれも複数の SAW共振子を接続してなるラダー型フィルタにより構成され ていたが、本発明においては、第 1,第 2のバンドパスフィルタは、ラダー型 SAWフィ ルタ以外のフィルタにより構成されてもよい。例えば、図 5に回路図で示すように、第 1 のバンドパスフィルタ F力 第 1の実施形態と同様にラダー型 SAWフィルタで構成さ
1
れている場合に、第 2のバンドパスフィルタ Fを、共振子型 SAWフィルタにより構成し
2
てもよい。ここでは、共通端子 3に、 SAW共振子 21及び共振子型 SAWフィルタ 22 力 の順序で接続されており、共振子型 SAWフィルタ 22の SAW共振子 21に接続さ れて 、る側とは反対側の端部が受信端子 5に接続されて 、る。
[0055] このように、第 2のバンドパスフィルタ Fは、共振子型 SAWフィルタを用いて構成さ
2
れてもよい。なお、図 5において、結合側共振子は、上記 SAW共振子 21となり、この SAW共振子 21の共振周波数を第 2のバンドパスフィルタ Fの通過帯域内の周波数
2
に設定することにより、バンドパスフィルタ Fの通過帯域では、アンテナ 2からバンドパ
2
スフィルタ Fに電流を流れやすくし、バンドパスフィルタ Fの通過帯域では、該 SAW
2 1
共振子 21の容量性の高インピーダンスを利用してバンドパスフィルタ Fからアンテナ
1
2に電流を流れやすくすることができる。
[0056] SAW共振子 21の共振周波数は、第 2のバンドパスフィルタ Fの中心周波数以上
2
に設定するのが好ましい。この場合、第 2のバンドパスフィルタ Fの
2 帯域幅を広くでき る。
図 5に示すバンドパスフィルタ 21においても、整合回路 9は第 1の実施形態の整合 回路 8と同様に構成されており、従って第 1の実施形態と同様に、第 1のバンドパスフ ィルタ Fよりもかなり低い周波数域における減衰量を大幅に改善することができ、しか
1
も挿入損失の劣化もほとんど生じ難い。
[0057] なお、本発明における分波器を構成するに際し、第 1,第 2のバンドパスフィルタを 構成するフィルタ基板、第 1,第 2のバンドパスフィルタが搭載されたり、もしくは収納 されたりするパッケージ材及び整合回路を構成する各電子部品素子については、適 宜の構造のものを用いることができる。
[0058] 例えば、図 7 (a)に示す分波器 31では、ノ ッケージ材 32内に、第 1,第 2のバンドパ スフィルタが構成されているフィルタ基板が収納されており、該パッケージ材 32と、整 合回路 8を構成して ヽるチップ型インダクタ 33、 34及びチップ型コンデンサ 35が実 装基板 36に実装されている。チップ型インダクタ 33が第 1のインダクタンス Lsを構成 しており、チップ型インダクタ 34が第 2のインダクタンス Lpを構成しており、チップ型コ ンデンサ 35が容量 Cpを構成している。上記のように、第 1のインダクタンス Ls、第 2の インダクタンス Lp及び容量 Cpを構成する各チップ型電子部品と、ノ ッケージ材とが 実装基板に実装されて!ヽてもよ ヽ。
[0059] あるいは、図 7 (b) , (c)に示すように、第 1,第 2のバンドパスフィルタが構成されて いるフィルタ基板力パッケージ材 42内に収納されており、さらに整合回路を構成して いるインダクタ 33A, 34Aがパッケージ材 42の内部のパッケージ内層 42aに電極パ ターンを用いて構成されていてもよい。この分波器 41では、整合回路を構成している チップ型コンデンサ 35はパッケージ材 42の外部で実装基板 36に実装されている。
[0060] 図 7 (a) , (b) , (c)における実装基板 36は、分波器モジュール基板、あるいは携帯 電話機の RF基板などである。
図 8に示す変形例では、フィルタ基板 51上において、一点鎖線で示す領域 Bにお いて第 1,第 2のバンドパスフィルタ F , Fが構成されている。そして、同じフィルタ基
1 2
板 51の上面において、上記第 1のインダクタンス Lsを構成するための導体コイル 52 と、第 2のインダクタンス Lpを構成する導体コイル 53と、容量 Csを構成する櫛形電極 54とが形成されており、それによつて整合回路 8もフィルタ基板 51上に形成されてい る。
[0061] すなわち、図 1及び図 5に示す回路構成において、破線 Aで囲まれている第 1,第 2 のバンドパスフィルタ部分をフィルタ基板にぉ ヽて構成し、整合回路 8を構成する各 電子部品素子は、フィルタ基板とは別の電子部品素子で構成されてもよぐあるいは フィルタ基板上にぉ ヽて整合回路を構成する電子部品素子自体を形成してもよ!/ヽ。 また、図 8においては、フィルタ基板 51上において、一点鎖線 Bで囲まれた部分に第 1,第 2のバンドパスフィルタ F , Fが構成されていた力 本発明においては、第 1,第
1 2
2のバンドパスフィルタは、異なるフィルタ基板で構成されてもよい。そして、上記整合 回路 8を構成する各電子部品素子は、いずれのフィルタ基板に形成されてもよい。す なわち、第 1及び/または第 2のバンドパスフィルタが構成されているフィルタ基板上 において、第 1のインダクタンス、容量及び第 2のインダクタンスが形成され得る。 なお、上記実施形態では、フィルタ基板を構成する圧電基板として、 55° 回転 Y板 X伝搬の LiNbO基板を用いた力 他の圧電単結晶基板を用いてもよい。また、電極
3
についても、 Ti下地電極層上に A1電極層を積層したものに限定されず、 A1電極層に 代えて Cu電極層を用いてもよぐまた下地電極層を形成せずともよい。

Claims

請求の範囲
[1] 通過帯域の周波数が相対的に低い第 1のバンドパスフィルタと、通過帯域の周波 数が相対的に高い第 2のバンドパスフィルタとを備え、前記第 1,第 2のバンドパスフィ ルタの一端がアンテナ側の共通端子に接続されている分波器において、
前記共通端子とアンテナの間に直列に接続された第 1のインダクタンスと、前記アン テナと前記第 1のインダクタンスとの間の接続点とアース電位との間に接続された容 量と、前記接続点とアース電位との間に接続されておりかつ前記容量と並列に接続 されている第 2のインダクタンスとを含む整合回路をさらに備え、前記容量と前記第 2 のインダクタンスの並列共振による共振周波数が前記第 1のバンドパスフィルタの通 過帯域よりも低くされていることを特徴とする、分波器。
[2] 前記第 2のバンドパスフィルタ力 前記共通端子側にお!、て直列に接続されて!、る 結合側共振子を有することを特徴とする、請求項 1に記載の分波器。
[3] 前記第 2のバンドパスフィルタが、複数の SAW共振子を梯子型回路構成を有する ように接続してなるラダー型 SAWフィルタである、請求項 1または 2に記載の分波器。
[4] 第 3のインダクタンスをさらに備え、前記ラダー型 SAWフィルタの少なくとも 1つの直 列腕 SAW共振子に前記第 3のインダクタンスが並列に接続されていることを特徴と する、請求項 3に記載の分波器。
[5] 前記第 2のバンドパスフィルタが縦結合共振子型 SAWフィルタである、請求項 1ま たは 2に記載の分波器。
[6] 前記第 1,第 2のバンドパスフィルタが実装もしくは収納されているノ ッケージ材をさ らに備え、前記第 1のインダクタンス、前記容量及び前記第 2のインダクタンスがそれ ぞれチップ型インダクタ、チップ型コンデンサ及びチップ型インダクタンス素子により 構成されており、かつ前記パッケージ材外において接続されて前記整合回路が構成 されている、請求項 1〜5のいずれか 1項に記載の分波器。
[7] 前記第 1,第 2のバンドパスフィルタが実装もしくは収納されているノ ッケージ材をさ らに備え、前記第 1のインダクタンス、前記容量または前記第 2のインダクタンスのうち 1つ以上が前記パッケージ材中に電極パターンを用いて構成されている、請求項 1 〜5の 、ずれか 1項に記載の分波器。 前記第 1及び/または第 2のバンドパスフィルタが構成されているフィルタ基板をさ らに備え、前記第 1のインダクタンス、前記容量または前記第 2のインダクタンスのうち 1つ以上が前記フィルタ基板上に形成されている、請求項 1〜5のいずれか 1項に記 載の分波器。
PCT/JP2005/017768 2004-10-08 2005-09-27 分波器 WO2006040923A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006540869A JPWO2006040923A1 (ja) 2004-10-08 2005-09-27 分波器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-296486 2004-10-08
JP2004296486 2004-10-08

Publications (1)

Publication Number Publication Date
WO2006040923A1 true WO2006040923A1 (ja) 2006-04-20

Family

ID=36148220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017768 WO2006040923A1 (ja) 2004-10-08 2005-09-27 分波器

Country Status (2)

Country Link
JP (1) JPWO2006040923A1 (ja)
WO (1) WO2006040923A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206375A (ja) * 2009-03-02 2010-09-16 Ube Ind Ltd 分波器
WO2014208145A1 (ja) * 2013-06-25 2014-12-31 株式会社村田製作所 分波装置
JP2015070605A (ja) * 2013-09-27 2015-04-13 サムソン エレクトロ−メカニックス カンパニーリミテッド. ダイプレクサ及びその製造方法
JP5943158B1 (ja) * 2014-08-12 2016-06-29 株式会社村田製作所 高周波モジュール
CN107026631A (zh) * 2016-01-29 2017-08-08 Tdk株式会社 分波器
KR20190037295A (ko) * 2016-09-07 2019-04-05 가부시키가이샤 무라타 세이사쿠쇼 탄성파 필터 장치 및 복합 필터 장치

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6708177B2 (ja) * 2017-07-21 2020-06-10 株式会社村田製作所 高周波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321573A (ja) * 1996-05-27 1997-12-12 Toshiba Corp 弾性表面波フィルタ装置
JP2003060483A (ja) * 2001-06-05 2003-02-28 Murata Mfg Co Ltd 弾性表面波装置およびその製造方法、通信装置
JP2003152588A (ja) * 2001-08-31 2003-05-23 Hitachi Metals Ltd マルチバンドアンテナスイッチ回路およびマルチバンドアンテナスイッチ積層モジュール複合部品並びにそれを用いた通信装置
JP2003163570A (ja) * 2001-11-26 2003-06-06 Fujitsu Media Device Kk 分波器及びこれを用いた電子装置
JP2003249842A (ja) * 2001-12-21 2003-09-05 Fujitsu Media Device Kk 分波器及びこれを用いた電子装置
JP2003332885A (ja) * 2002-05-16 2003-11-21 Murata Mfg Co Ltd 弾性表面波分波器およびそれを有する通信装置
JP2003347964A (ja) * 2002-05-16 2003-12-05 Tdk Corp アンテナデュプレクサおよびそれを用いた通信用電話機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321573A (ja) * 1996-05-27 1997-12-12 Toshiba Corp 弾性表面波フィルタ装置
JP2003060483A (ja) * 2001-06-05 2003-02-28 Murata Mfg Co Ltd 弾性表面波装置およびその製造方法、通信装置
JP2003152588A (ja) * 2001-08-31 2003-05-23 Hitachi Metals Ltd マルチバンドアンテナスイッチ回路およびマルチバンドアンテナスイッチ積層モジュール複合部品並びにそれを用いた通信装置
JP2003163570A (ja) * 2001-11-26 2003-06-06 Fujitsu Media Device Kk 分波器及びこれを用いた電子装置
JP2003249842A (ja) * 2001-12-21 2003-09-05 Fujitsu Media Device Kk 分波器及びこれを用いた電子装置
JP2003332885A (ja) * 2002-05-16 2003-11-21 Murata Mfg Co Ltd 弾性表面波分波器およびそれを有する通信装置
JP2003347964A (ja) * 2002-05-16 2003-12-05 Tdk Corp アンテナデュプレクサおよびそれを用いた通信用電話機

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206375A (ja) * 2009-03-02 2010-09-16 Ube Ind Ltd 分波器
WO2014208145A1 (ja) * 2013-06-25 2014-12-31 株式会社村田製作所 分波装置
JP2015070605A (ja) * 2013-09-27 2015-04-13 サムソン エレクトロ−メカニックス カンパニーリミテッド. ダイプレクサ及びその製造方法
JP5943158B1 (ja) * 2014-08-12 2016-06-29 株式会社村田製作所 高周波モジュール
CN107026631A (zh) * 2016-01-29 2017-08-08 Tdk株式会社 分波器
KR20190037295A (ko) * 2016-09-07 2019-04-05 가부시키가이샤 무라타 세이사쿠쇼 탄성파 필터 장치 및 복합 필터 장치
KR102200356B1 (ko) 2016-09-07 2021-01-07 가부시키가이샤 무라타 세이사쿠쇼 탄성파 필터 장치 및 복합 필터 장치

Also Published As

Publication number Publication date
JPWO2006040923A1 (ja) 2008-05-15

Similar Documents

Publication Publication Date Title
US10615775B2 (en) Multiplexer, transmission apparatus, and reception apparatus
CN106253877B (zh) 梯型弹性波滤波器和天线共用器
US7683736B2 (en) Resonant circuit, filter, and antenna duplexer
JP3855842B2 (ja) 弾性表面波分波器およびそれを有する通信装置
US7084718B2 (en) Band elimination filter, filter device, antenna duplexer and communication apparatus
JP4270206B2 (ja) 弾性表面波分波器
CN1913348B (zh) 分波器和梯形滤波器
KR100434411B1 (ko) 탄성 표면파 장치
US7479846B2 (en) Duplexer
US8179207B2 (en) Resonator device, filter including the same, and duplexer
EP1758247A2 (en) Duplexer having matching circuit
JP6669681B2 (ja) フィルタ回路、マルチプレクサおよびモジュール
JP5354028B2 (ja) 弾性表面波フィルタ装置
US9093980B2 (en) Elastic wave filter device
US7479848B2 (en) Acoustic wave filter device
US20060139125A1 (en) Filter device
JP6835041B2 (ja) マルチプレクサ
WO2006040927A1 (ja) 分波器
WO2011061904A1 (ja) 弾性波フィルタ装置とこれを用いたアンテナ共用器
JP2018129680A (ja) フィルタ回路、マルチプレクサおよびモジュール
WO2006040923A1 (ja) 分波器
US6552631B2 (en) Resonator-type saw filter with independent ground patterns for interdigital transducers and reflectors
JP4207836B2 (ja) 弾性表面波分波器
WO2004112246A1 (ja) 弾性表面波分波器
US7023297B2 (en) Surface acoustic wave branching filter

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006540869

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase