WO2012063517A1 - 弾性波フィルタ装置 - Google Patents

弾性波フィルタ装置 Download PDF

Info

Publication number
WO2012063517A1
WO2012063517A1 PCT/JP2011/064206 JP2011064206W WO2012063517A1 WO 2012063517 A1 WO2012063517 A1 WO 2012063517A1 JP 2011064206 W JP2011064206 W JP 2011064206W WO 2012063517 A1 WO2012063517 A1 WO 2012063517A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
terminal
acoustic wave
transmission
capacitor
Prior art date
Application number
PCT/JP2011/064206
Other languages
English (en)
French (fr)
Inventor
高田 俊明
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2012063517A1 publication Critical patent/WO2012063517A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • H03H9/0047Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks
    • H03H9/0066Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks being electrically parallel
    • H03H9/0071Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks being electrically parallel the balanced terminals being on the same side of the tracks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02992Details of bus bars, contact pads or other electrical connections for finger electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0566Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers
    • H03H9/0576Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers including surface acoustic wave [SAW] devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters

Definitions

  • the present invention relates to an elastic wave filter device.
  • Patent Document 1 discloses a surface acoustic wave duplexer 100 shown in FIG.
  • the surface acoustic wave duplexer 100 includes a transmission-side filter unit 110 connected between the antenna terminal 101 and the transmission-side signal terminal 102, and an antenna terminal 101 and a reception-side signal terminal 103.
  • the transmission-side filter unit 110 is a ladder type surface acoustic wave filter unit.
  • an inductor L101 is provided between a connection point between the transmission side filter unit 110 and the reception side filter unit 104, a connection point between the antenna terminal 101, and the ground potential.
  • An inductor L100 is provided between the two parallel arms 111 and 112 and the ground potential.
  • the inductor L100 increases in size if the harmonic attenuation in the transmission-side filter unit 110 is made sufficiently large. As a result, the surface acoustic wave duplexer 100 is large. There is a problem of becoming.
  • the present invention has been made in view of such a point, and an object thereof is to provide an elastic wave filter device that is small in size and has a large attenuation amount of harmonics in the transmission-side filter unit.
  • An elastic wave filter device includes a first external terminal, a second external terminal, a series arm, a plurality of series arm resonators, a plurality of parallel arms, a parallel arm resonator, and a first arm.
  • Inductor, a second inductor, and a capacitor The serial arm connects between the first external terminal and the second external terminal.
  • the plurality of series arm resonators are connected in series in the series arm.
  • Each of the plurality of parallel arms connects the series arm and the ground potential.
  • the parallel arm resonator is provided in each of the plurality of parallel arms.
  • the first inductor is connected between the first external terminal and the ground potential.
  • the second inductor is provided between at least two parallel arms of the plurality of parallel arms and the ground potential.
  • the capacitor is connected between a connection point between the second inductor and the at least two parallel arms and the first external terminal.
  • the elastic wave filter device includes an antenna terminal configured by a first external terminal, and a transmission-side signal terminal configured by a second external terminal.
  • a transmission side filter unit having a series arm, a plurality of series arm resonators, a plurality of parallel arms, and a parallel arm resonator, connected between the reception side signal terminal and the antenna terminal and the transmission side signal terminal;
  • a receiving-side filter unit connected between the antenna terminal and the receiving-side signal terminal;
  • the capacitance value of the capacitor is set to such a magnitude that the attenuation of the second harmonic wave of the passband of the transmission-side filter unit is large.
  • the acoustic wave filter device includes a filter chip in which a plurality of series arm resonators, a plurality of parallel arm resonators, and a capacitor are formed, and the filter chip is mounted. And a wiring board on which electrodes constituting the second inductor are formed.
  • the elastic wave filter device is a surface acoustic wave device or a boundary acoustic wave device.
  • FIG. 1 is a schematic circuit diagram of a surface acoustic wave duplexer according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a surface acoustic wave duplexer according to an embodiment of the present invention.
  • FIG. 3 is a schematic perspective plan view of a transmission-side filter chip according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view enlarging a part of a transmission-side filter chip in an embodiment of the present invention.
  • FIG. 5 is a schematic perspective plan view of a reception-side filter chip according to an embodiment of the present invention.
  • FIG. 6 is a schematic perspective plan view of the surface of the first dielectric layer.
  • FIG. 7 is a schematic perspective plan view of the surface of the second dielectric layer.
  • FIG. 8 is a schematic perspective plan view of the back surface of the second dielectric layer.
  • FIG. 9 is a graph showing insertion loss characteristics between the antenna terminal and the transmission-side signal terminal of the surface acoustic wave duplexers according to Examples 1 and 2 and Comparative Example 1, respectively.
  • FIG. 10 is a graph showing insertion loss characteristics between the antenna terminal and the transmission-side signal terminal of the surface acoustic wave duplexers according to Examples 1 and 2 and Comparative Example 1.
  • FIG. 11 is a graph showing insertion loss characteristics between the antenna terminal and the transmission-side signal terminal of the surface acoustic wave duplexer according to each of Example 1 and Comparative Example 2.
  • FIG. 12 is a schematic cross-sectional view in which a part of the transmission-side filter chip in the modification is enlarged.
  • FIG. 13 is a schematic circuit diagram of the surface acoustic wave duplexer described in Patent Document 1.
  • FIG. 14 is a schematic circuit diagram of a surface acoustic wave filter device according to another embodiment of the present invention.
  • the surface acoustic wave duplexer 1 shown in FIG. 1 as a surface acoustic wave duplexer as an example.
  • the surface acoustic wave duplexer 1 is merely an example.
  • the present invention is not limited to the surface acoustic wave duplexer 1 at all.
  • the elastic wave filter device according to the present invention may have, for example, only one filter unit, a triplexer having three filter units, or the like.
  • the surface acoustic wave duplexer 1 is a surface acoustic wave duplexer used for UMTS-BAND5 (transmission frequency band: 824 MHz to 849 MHz, reception frequency band: 869 MHz to 894 MHz).
  • FIG. 1 is a schematic circuit diagram of a surface acoustic wave duplexer according to this embodiment. First, the circuit configuration of the surface acoustic wave duplexer 1 according to the present embodiment will be described with reference to FIG.
  • the surface acoustic wave duplexer 1 includes an antenna terminal 11 that is an external terminal connected to an antenna 14, a transmission-side signal terminal 12 that is also an external terminal, and first and second reception-side signal terminals 13a and 13b.
  • a reception side filter comprising a so-called balanced longitudinally coupled resonator type surface acoustic wave filter unit having a balanced-unbalanced conversion function.
  • the unit 15 is connected.
  • a transmission side filter unit 20 including a ladder type filter unit is connected between the antenna terminal 11 and the transmission side signal terminal 12.
  • a matching inductor L3 is connected between the connection point 33 between the antenna 14 and the antenna terminal 11 and the ground potential.
  • the transmission filter unit 20 has first and second signal terminals 21 and 22.
  • the first signal terminal 21 and the second signal terminal 22 are connected by a series arm 23.
  • a plurality of series arm resonators S1 to S4 are connected in series.
  • a plurality of parallel arms 24 to 27 for connecting the series arm 23 and the ground potential are provided between the series arm 23 and the ground potential.
  • Each of the parallel arms 24 to 27 is provided with parallel arm resonators P1 to P4.
  • An inductor L1 is connected between the parallel arm 27 and the ground potential.
  • an inductor L2 is connected between at least two of the parallel arms 24 to 26 and the ground potential. Specifically, in the present embodiment, all of the parallel arms 24 to 26 and the ground potential are connected via the inductor L2.
  • a capacitor C is connected between the connection point 29 between the second inductor L2, the parallel arms 24 to 26, and the connection point 28 between the transmission filter unit 20 and the antenna terminal 11. .
  • the connection point 28 is located closer to the transmission filter unit 20 than the connection point 33.
  • the inductors L1 and L2 are configured such that the attenuation pole formed by the inductor L1 is located on the higher frequency side than the attenuation pole formed by the inductor L2. More specifically, in the present embodiment, the inductors L1 and L2 are located in a frequency band in which the attenuation pole formed by the inductor L1 corresponds to the third harmonic of the passband of the transmission-side filter unit 20, and the inductor L2 The formed attenuation pole is configured to be located in a frequency band corresponding to a second harmonic of the pass band of the transmission-side filter unit 20.
  • FIG. 2 is a schematic cross-sectional view of a surface acoustic wave duplexer.
  • FIG. 3 is a schematic perspective plan view of the transmission-side filter chip.
  • FIG. 4 is a schematic cross-sectional view in which a part of the transmission-side filter chip is enlarged.
  • FIG. 5 is a schematic perspective plan view of the receiving filter chip.
  • FIG. 6 is a schematic perspective plan view of the surface of the first dielectric layer.
  • FIG. 7 is a schematic perspective plan view of the surface of the second dielectric layer.
  • FIG. 8 is a schematic perspective plan view of the back surface of the second dielectric layer.
  • 3 and 5 schematically show IDT electrodes, capacitors, and the like. Also, drawing of some components such as reflectors is omitted.
  • the surface acoustic wave duplexer 1 includes a wiring board 40, a transmission-side filter chip 60, and a reception-side filter chip 70.
  • the transmission-side filter chip 60 and the reception-side filter chip 70 are flip-chip mounted on the die attach surface of the wiring substrate 40 via bumps 81.
  • the transmission side filter chip 60 and the reception side filter chip 70 are sealed with a sealing resin layer 82 provided on the wiring substrate 40.
  • the transmission-side filter chip 60 is formed with a transmission-side filter unit 20 and a capacitor C.
  • the transmission-side filter chip 60 includes a piezoelectric substrate 61 and an electrode 62 formed on the piezoelectric substrate 61.
  • the electrode 62 includes a pair of interdigitated interdigital teeth constituting the IDT electrode, reflector, and capacitor C constituting the series arm resonators S1 to S4 and the parallel arm resonators P1 to P4, respectively.
  • a series arm 23, parallel arms 24 to 27, first and second signal terminals 21 and 22, and ground terminals 31 and 32 are included.
  • the reception side filter chip 15 is formed in the reception side filter chip 70. Specifically, as shown in FIG. 5, it has a piezoelectric substrate 71 and an electrode 72 formed on the piezoelectric substrate 71.
  • the piezoelectric substrate 71 and the electrode 72 constitute the reception side filter unit 15.
  • Each of the piezoelectric substrates 61 and 71 can be formed of, for example, LiNbO 3 or LiTaO 3 .
  • Each of the electrodes 62 and 72 is, for example, a metal selected from the group consisting of Al, Pt, Au, Ag, Cu, Ni, Ti, Cr, and Pd, or Al, Pt, Au, Ag, Cu, Ni, It can be formed of an alloy containing one or more metals selected from the group consisting of Ti, Cr and Pd.
  • each of the electrodes 62 and 72 may be configured by a laminate of a plurality of metal layers made of the above metals or alloys.
  • Inductors L1 and L2 are formed on the wiring board 40.
  • the wiring board 40 is configured by a laminated body of first and second dielectric layers 41 and 42.
  • the reception-side filter chip 70 and the transmission-side filter chip 60 are mounted on the surface 41a of the first dielectric layer 41 that constitutes the die attach surface.
  • the electrode pad 41a1 to which the first signal terminal 21 is connected, the electrode pad 41a2 to which the ground terminal 31 is connected, the ground An electrode pad 41a3 to which the terminal 32 is connected and an electrode pad 41a4 to which the second signal terminal 22 is connected are formed.
  • the electrode pad 41a1 is connected to the electrode 42a1 (see FIG. 7) formed on the surface 42a of the second dielectric layer 42 via the via hole electrode 41a5.
  • the electrode 42a1 is connected to the antenna terminal 11 (see FIG. 8) formed on the back surface 42b of the second dielectric layer 42 through the via hole electrode 42a2.
  • the electrode pad 41a2 shown in FIG. 6 is connected to the electrode 42a3 (see FIG. 7) formed on the surface 42a of the second dielectric layer 42 via the via hole electrode 41a6.
  • This electrode 42a3 constitutes an inductor L1.
  • the electrode 42a3 is connected to ground terminals 42b1 and 42b2 (see FIG. 8) formed on the back surface 42b of the second dielectric layer 42 through via-hole electrodes 42a4 and 42a5.
  • the electrode pad 41a3 shown in FIG. 6 is connected to the electrode 42a6 (see FIG. 7) formed on the surface 42a of the second dielectric layer 42 via the via hole electrode 41a7.
  • This electrode 42a6 constitutes an inductor L2.
  • the electrode 42a6 is connected to a ground terminal 42b3 (see FIG. 8) formed on the back surface 42b of the second dielectric layer 42 via the via hole electrode 42a7.
  • the inductor L3 is configured by an external chip coil, but may be formed on the wiring board 40 in the same manner as the inductors L1 and L2. In that case, the connection point 33 is disposed between the connection point between the transmission filter unit 20 and the reception filter unit 15 and the antenna terminal 11.
  • the electrode pad 41a4 shown in FIG. 6 is connected to the electrode 42a8 (see FIG. 7) formed on the surface 42a of the second dielectric layer 42 via the via hole electrode 41a8.
  • the electrode 42a8 is connected to the transmission-side signal terminal 12 (see FIG. 8) formed on the back surface 42b of the second dielectric layer 42 via the via-hole electrode 42a9.
  • the capacitor C is provided in the present embodiment. For this reason, the inductance value required for the inductor L2 becomes small. That is, even if the inductance value of the inductor L2 is reduced, the attenuation amount of the harmonic can be increased. As a result, the electrode 42a6 constituting the inductor L2 can be shortened. Therefore, the wiring board 40 can be reduced in size. Therefore, the surface acoustic wave duplexer 1 can be downsized.
  • Example 1 a surface acoustic wave duplexer having substantially the same configuration as the surface acoustic wave duplexer 1 of the above-described embodiment is manufactured with the following design parameters, and the surface acoustic wave duplexer is manufactured.
  • the insertion loss between the antenna terminal 11 and the transmission-side signal terminal 12 was measured. The results are shown in FIGS.
  • Example 1 a surface acoustic wave duplexer similar to that of Example 1 was prepared except that the capacitor C was not provided and the inductance value of the inductor L3 was 8.2 nH.
  • the insertion loss between the antenna terminal 11 and the transmission side signal terminal 12 of the duplexer was measured. The results are shown in FIGS. In FIG. 10, since the insertion loss is substantially the same in Examples 1, 2 and Comparative Example 1, the graph of Example 1, the graph of Example 2, and the graph of Comparative Example 1 are substantially distinguished. Has become difficult.
  • Example 2 a surface acoustic wave duplexer similar to that of Example 1 except that the capacitor C is not provided and the inductance value of the inductor L2 is 0.3 nH is manufactured. The insertion loss between the antenna terminal 11 and the transmission side signal terminal 12 was measured. The results are shown in FIG.
  • FIG. 9 that the attenuation pole formed by the inductor L2 is shifted to the low frequency side by providing the capacitor C.
  • FIG. 9 It can also be seen that by increasing the capacitance of the capacitor C, the attenuation pole formed by the inductor L2 is further shifted to the low frequency side. And it turns out that the attenuation amount of the frequency band of a 2nd harmonic can be enlarged by this.
  • the attenuation pole formed by the inductor L2 is shifted to the low frequency side by providing the capacitor C as in the present embodiment, the required inductance value of the inductor L2 becomes small. For this reason, the length of the wiring which comprises the inductor L2 can be shortened. Therefore, the wiring board 40 can be reduced in size. As a result, the surface acoustic wave duplexer 1 can be reduced in size.
  • the position of the attenuation pole formed by the inductor L2 can be adjusted without changing the inductance value of the inductor L2 by adjusting the capacitance of the capacitor C. I understand. For this reason, even when the type of the transmission-side filter chip 60 is changed, the frequency of the second harmonic wave is changed without changing the design of the inductor L2 by adjusting the capacitance of the capacitor C formed in the transmission-side filter chip 60. The band attenuation can be increased. Therefore, by providing the capacitor C, it is possible to share the wiring substrate 40 in a plurality of types of surface acoustic wave duplexers having different types and required characteristics of the transmission-side filter chip 60.
  • the inductor L1 is connected between the parallel arm 27 and the ground potential. Therefore, an attenuation pole is generated in the third harmonic frequency band, and the attenuation amount in the third harmonic frequency band can be made larger than in the case where the inductor L1 is not provided.
  • the inductor L3 is provided in addition to the capacitor C. By adjusting the inductance value of the inductor L3, an increase in insertion loss in the pass band as described above can be suppressed.
  • the inductance value of the inductor L3 of the first and second embodiments having the capacitor C is made smaller than that of the inductor L3 of the first comparative example, so that the capacitor C provides insertion loss in the passband. It can also be seen from the fact that it can be reduced to the same level as in Comparative Example 1 that is not performed.
  • the transmission-side filter chip 60 is a surface acoustic wave chip.
  • the present invention is not limited to this configuration.
  • the transmission-side filter chip 60 is a so-called three-medium type in which first and second dielectric layers 63 and 64 are formed on a piezoelectric substrate 61 so as to cover an electrode 62.
  • a two-medium type boundary acoustic wave filter chip that does not have the dielectric layer 64.
  • the elastic wave filter device according to the present invention may be a boundary acoustic wave filter device using a boundary acoustic wave.
  • the material of the dielectric layer 63 and the dielectric layer 64 is not particularly limited as long as the sound speed of the dielectric layer 63 is slower than the sound speed of the dielectric layer 64.
  • the dielectric layer 63 can be formed of silicon oxide
  • the dielectric layer 64 can be formed of silicon nitride or silicon oxynitride.
  • the surface acoustic wave duplexer 1 is given as an example of the acoustic wave filter device embodying the present invention.
  • the elastic wave filter device according to the present invention is not limited to an elastic wave duplexer.
  • the acoustic wave filter device according to the present invention may be, for example, a surface acoustic wave filter device including a single filter unit as shown in FIG.
  • the filter unit 20 of the present embodiment includes the same ladder type filter unit as the transmission-side filter unit 20 of the embodiment.
  • the first signal terminal 21 of the filter unit 20 is connected to the first external terminal 211
  • the second signal terminal 22 is connected to the first external terminal 211.
  • a surge resistant inductor L3 is connected between the connection point 33 between the first signal terminal 21 and the first external terminal 211 and the ground potential.
  • the inductor L3 is configured by an electrode formed on a wiring board on which the filter chip is mounted.
  • the inductor L2 can be reduced by providing the capacitor C, the wiring board can be reduced in size.
  • the position of the attenuation pole formed by the inductor L2 can be adjusted by the capacitor C, the attenuation amount of the harmonic can be increased.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 小型でありつつ、高調波の減衰量が大きな弾性波フィルタ装置を提供する。 弾性波分波器1は、第1のインダクタL3と、第2のインダクタL2と、キャパシタCとをさらに備えている。第1のインダクタL3は、アンテナ14とアンテナ端子11との間の接続点33とグラウンド電位との間に接続されている。第2のインダクタL2は、複数の並列腕24~27のうちの少なくとも2つの並列腕24~26とグラウンド電位との間に設けられている。キャパシタCは、第2のインダクタL2と少なくとも2つの並列腕24~26との間の接続点29と、送信側フィルタ部20とアンテナ端子11との間の接続点28との間に接続されている。

Description

弾性波フィルタ装置
 本発明は、弾性波フィルタ装置に関する。
 従来、分波器として、弾性表面波や弾性境界波などの弾性波を利用した弾性波分波器が広く使用されている。そのような弾性波分波器の一種として、下記の特許文献1には、図13に示す弾性表面波分波器100が開示されている。
 図13に示すように弾性表面波分波器100は、アンテナ端子101と送信側信号端子102との間に接続されている送信側フィルタ部110と、アンテナ端子101と受信側信号端子103との間に接続されている受信側フィルタ部104とを有する。送信側フィルタ部110は、ラダー型弾性表面波フィルタ部である。送信側フィルタ部110では、送信側フィルタ部110と受信側フィルタ部104との間の接続点とアンテナ端子101との間の接続点とグラウンド電位との間にインダクタL101が設けられている。また、2つの並列腕111,112とグラウンド電位との間にインダクタL100が設けられている。
特開2007-74698号公報
 ところで、弾性波分波器においては、通過帯域の2倍波及び3倍波などの高調波の減衰量を大きくしたいという要望がある。しかしながら、弾性表面波分波器100では、送信側フィルタ部110において高調波の減衰量を十分に大きくしようとすると、インダクタL100が大型化してしまい、その結果、弾性表面波分波器100が大型化してしまうという問題がある。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、小型でありつつ、送信側フィルタ部における高調波の減衰量が大きな弾性波フィルタ装置を提供することにある。
 本発明に係る弾性波フィルタ装置は、第1の外部端子と、第2の外部端子と、直列腕と、複数の直列腕共振子と、複数の並列腕と、並列腕共振子と、第1のインダクタと、第2のインダクタと、キャパシタとを備えている。直列腕は、第1の外部端子と第2の外部端子との間を接続している。複数の直列腕共振子は、直列腕において直列に接続されている。複数の並列腕のそれぞれは、直列腕とグラウンド電位とを接続している。並列腕共振子は、複数の並列腕のそれぞれに設けられている。第1のインダクタは、第1の外部端子とグラウンド電位との間に接続されている。第2のインダクタは、複数の並列腕のうちの少なくとも2つの並列腕とグラウンド電位との間に設けられている。キャパシタは、第2のインダクタと少なくとも2つの並列腕との間の接続点と、第1の外部端子との間に接続されている。
 本発明に係る弾性波フィルタ装置のある特定の局面では、弾性波フィルタ装置は、第1の外部端子により構成されているアンテナ端子と、第2の外部端子により構成されている送信側信号端子と、受信側信号端子と、アンテナ端子と送信側信号端子との間に接続されており、直列腕、複数の直列腕共振子、複数の並列腕、並列腕共振子を有する送信側フィルタ部と、アンテナ端子と受信側信号端子との間に接続されている受信側フィルタ部とを備えている。
 本発明に係る弾性波フィルタ装置の他の特定の局面では、キャパシタの容量値は、送信側フィルタ部の通過帯域の2倍波の減衰が大きくなるような大きさに設定されている。
 本発明に係る弾性波フィルタ装置の別の特定の局面では、弾性波フィルタ装置は、複数の直列腕共振子、複数の並列腕共振子及びキャパシタが形成されているフィルタチップと、フィルタチップが実装されており、第2のインダクタを構成している電極が形成されている配線基板とを備えている。
 本発明に係る弾性波フィルタ装置のさらに他の特定の局面では、弾性波フィルタ装置は、弾性表面波装置または弾性境界波装置である。
 本発明では、小型でありつつ、送信側フィルタ部における高調波の減衰量が大きな弾性波フィルタ装置を提供することができる。
図1は、本発明を実施した一実施形態に係る弾性表面波分波器の略図的回路図である。 図2は、本発明を実施した一実施形態に係る弾性表面波分波器の略図的断面図である。 図3は、本発明を実施した一実施形態における送信側フィルタチップの略図的透視平面図である。 図4は、本発明を実施した一実施形態における送信側フィルタチップの一部を拡大した略図的断面図である。 図5は、本発明を実施した一実施形態における受信側フィルタチップの略図的透視平面図である。 図6は、第1の誘電体層の表面の略図的透視平面図である。 図7は、第2の誘電体層の表面の略図的透視平面図である。 図8は、第2の誘電体層の裏面の略図的透視平面図である。 図9は、実施例1,2及び比較例1のそれぞれに係る弾性表面波分波器のアンテナ端子及び送信側信号端子間の挿入損失特性を表すグラフである。 図10は、実施例1,2及び比較例1のそれぞれに係る弾性表面波分波器のアンテナ端子及び送信側信号端子間の挿入損失特性を表すグラフである。 図11は、実施例1及び比較例2のそれぞれに係る弾性表面波分波器のアンテナ端子及び送信側信号端子間の挿入損失特性を表すグラフである。 図12は、変形例における送信側フィルタチップの一部を拡大した略図的断面図である。 図13は、特許文献1に記載の弾性表面波分波器の略図的回路図である。 図14は、本発明を実施した他の実施形態に係る弾性表面波フィルタ装置の略図的回路図である。
 以下、本発明を実施した好ましい形態について、弾性表面波デュプレクサである、図1に示す弾性表面波分波器1を例に挙げて説明する。但し、弾性表面波分波器1は単なる例示である。本発明は、弾性表面波分波器1に何ら限定されない。本発明に係る弾性波フィルタ装置は、例えば、フィルタ部を1つのみ有するものであってもよいし、フィルタ部を3つ有するトリプレクサ等であってもよい。
 本実施形態に係る弾性表面波分波器1は、UMTS-BAND5(送信周波数帯:824MHz~849MHz、受信周波数帯:869MHz~894MHz)に用いられる弾性表面波デュプレクサである。
 図1は、本実施形態に係る弾性表面波分波器の略図的回路図である。まず、図1を参照しながら、本実施形態に係る弾性表面波分波器1の回路構成について説明する。
 弾性表面波分波器1は、アンテナ14に接続される外部端子であるアンテナ端子11と、同じく外部端子である送信側信号端子12と、第1及び第2の受信側信号端子13a、13bとを有する。アンテナ端子11と第1及び第2の受信側信号端子13a、13bとの間には、平衡-不平衡変換機能を有する所謂バランス型の縦結合共振子型弾性表面波フィルタ部からなる受信側フィルタ部15が接続されている。一方、アンテナ端子11と送信側信号端子12との間には、ラダー型フィルタ部からなる送信側フィルタ部20が接続されている。アンテナ14とアンテナ端子11との間の接続点33とグラウンド電位との間には、整合用のインダクタL3が接続されている。
 送信側フィルタ部20は、第1及び第2の信号端子21,22を有する。第1の信号端子21と第2の信号端子22とは、直列腕23によって接続されている。直列腕23においては、複数の直列腕共振子S1~S4が直列に接続されている。直列腕23とグラウンド電位との間には、直列腕23とグラウンド電位とを接続する複数の並列腕24~27が設けられている。並列腕24~27のそれぞれには、並列腕共振子P1~P4が設けられている。
 並列腕27とグラウンド電位との間には、インダクタL1が接続されている。一方、並列腕24~26のうちの少なくとも2つの並列腕とグラウンド電位との間には、インダクタL2が接続されている。具体的には、本実施形態では、並列腕24~26のすべてとグラウンド電位とがインダクタL2を介して接続されている。
 第2のインダクタL2と、並列腕24~26との間の接続点29と、送信側フィルタ部20とアンテナ端子11との間の接続点28との間には、キャパシタCが接続されている。なお、接続点28は、接続点33よりも送信側フィルタ部20側に位置している。
 本実施形態では、インダクタL1,L2は、インダクタL1により形成される減衰極がインダクタL2により形成される減衰極よりも高周波数側に位置するように構成されている。より具体的には、本実施形態では、インダクタL1,L2は、インダクタL1により形成される減衰極が送信側フィルタ部20の通過帯域の3倍波に相当する周波数帯に位置し、インダクタL2により形成される減衰極が送信側フィルタ部20の通過帯域の2倍波に相当する周波数帯に位置するように構成されている。
 図2は、弾性表面波分波器の略図的断面図である。図3は、送信側フィルタチップの略図的透視平面図である。図4は、送信側フィルタチップの一部を拡大した略図的断面図である。図5は、受信側フィルタチップの略図的透視平面図である。図6は、第1の誘電体層の表面の略図的透視平面図である。図7は、第2の誘電体層の表面の略図的透視平面図である。図8は、第2の誘電体層の裏面の略図的透視平面図である。なお、図3及び図5においては、IDT電極やキャパシタ等を模式的に記載している。また、反射器等一部の構成の描画を省略している。
 次に、図2~図8を参照しながら、本実施形態の弾性表面波分波器1の具体的構成について説明する。
 図2に示すように、弾性表面波分波器1は、配線基板40と、送信側フィルタチップ60と、受信側フィルタチップ70と備えている。送信側フィルタチップ60及び受信側フィルタチップ70は、バンプ81を介して配線基板40のダイアタッチ面の上にフリップチップ実装されている。送信側フィルタチップ60及び受信側フィルタチップ70は、配線基板40の上に設けられた封止樹脂層82により封止されている。
 送信側フィルタチップ60には、送信側フィルタ部20とキャパシタCとが形成されている。具体的には、図3及び図4に示すように、送信側フィルタチップ60は、圧電基板61と、圧電基板61の上に形成された電極62とを有する。電極62には、直列腕共振子S1~S4及び並列腕共振子P1~P4のそれぞれを構成しているIDT電極及び反射器、キャパシタCを構成している互いに間挿し合っている一対のくし歯状電極、直列腕23、並列腕24~27、第1及び第2の信号端子21,22及びグラウンド端子31,32が含まれている。
 受信側フィルタチップ70には、上記受信側フィルタ部15が形成されている。具体的には、図5に示すように、圧電基板71と、圧電基板71の上に形成されている電極72とを有する。これら圧電基板71と電極72とにより、受信側フィルタ部15が構成されている。
 なお、圧電基板61,71のそれぞれは、例えば、LiNbOやLiTaOにより形成することができる。電極62,72のそれぞれは、例えば、Al,Pt,Au,Ag,Cu,Ni,Ti,Cr及びPdからなる群から選ばれた金属、もしくは、Al,Pt,Au,Ag,Cu,Ni,Ti,Cr及びPdからなる群から選ばれた一種以上の金属を含む合金により形成することができる。また、電極62,72のそれぞれは、上記金属や合金からなる複数の金属層の積層体により構成されていてもよい。
 配線基板40には、インダクタL1,L2が形成されている。具体的には、図2に示すように、配線基板40は、第1及び第2の誘電体層41,42の積層体により構成されている。受信側フィルタチップ70と送信側フィルタチップ60とは、ダイアタッチ面を構成している第1の誘電体層41の表面41aの上に実装されている。
 図6に示すように、第1の誘電体層41の表面41aの上には、第1の信号端子21が接続されている電極パッド41a1、グラウンド端子31が接続されている電極パッド41a2、グラウンド端子32が接続されている電極パッド41a3、及び第2の信号端子22が接続されている電極パッド41a4が形成されている。
 電極パッド41a1は、ビアホール電極41a5を介して、第2の誘電体層42の表面42aの上に形成されている電極42a1(図7を参照)に接続されている。電極42a1は、ビアホール電極42a2を介して、第2の誘電体層42の裏面42bの上に形成されているアンテナ端子11(図8を参照)に接続されている。
 図6に示す電極パッド41a2は、ビアホール電極41a6を介して、第2の誘電体層42の表面42aの上に形成されている電極42a3(図7を参照)に接続されている。この電極42a3によりインダクタL1が構成されている。電極42a3は、ビアホール電極42a4,42a5を介して、第2の誘電体層42の裏面42bの上に形成されているグラウンド端子42b1,42b2(図8を参照)に接続されている。
 図6に示す電極パッド41a3は、ビアホール電極41a7を介して、第2の誘電体層42の表面42aの上に形成されている電極42a6(図7を参照)に接続されている。この電極42a6によりインダクタL2が構成されている。電極42a6は、ビアホール電極42a7を介して、第2の誘電体層42の裏面42bの上に形成されているグラウンド端子42b3(図8を参照)に接続されている。
 なお、本実施形態では、インダクタL3は外付けのチップコイルにより構成されているが、インダクタL1,L2と同様に配線基板40に形成されていてもよい。その場合、接続点33は、送信側フィルタ部20と受信側フィルタ部15との間の接続点とアンテナ端子11との間に配置される。
 図6に示す電極パッド41a4は、ビアホール電極41a8を介して、第2の誘電体層42の表面42aの上に形成されている電極42a8(図7を参照)に接続されている。電極42a8は、ビアホール電極42a9を介して、第2の誘電体層42の裏面42bの上に形成されている送信側信号端子12(図8を参照)に接続されている。
 以上説明したように、本実施形態では、キャパシタCが設けられている。このため、インダクタL2に要求されるインダクタンス値が小さくなる。すなわち、インダクタL2のインダクタンス値を小さくしても高調波の減衰量を大きくできる。その結果、インダクタL2を構成している電極42a6を短くすることができる。よって、配線基板40を小型化することができる。従って、弾性表面波分波器1を小型化することができる。
 この効果について、具体的な実施例及び比較例に基づいて詳細に説明する。
 まず、実施例1として、以下の設計パラメータで、上記実施形態の弾性表面波分波器1と実質的に同様の構成を有する弾性表面波分波器を作製し、その弾性表面波分波器のアンテナ端子11と送信側信号端子12との間の挿入損失を測定した。結果を図9~図11に示す。
 (実施例1の設計パラメータ)
 直列腕共振子の交差幅:
 S1:80μm、S2:50μm、S3:50μm、S4:50μm
 並列腕共振子の交差幅:
 P1:100μm、P2:160μm、P3:100μm、P4:100μm
 直列腕共振子の対数:
 S1:70対、S2:100対、S3:100対、S4:90対
 並列腕共振子の対数:
 P1:100対、P2:50対、P3:100対、P4:60対
 キャパシタCの容量:1.0pF
 インダクタL1のインダクタンス値:0.7nH
 インダクタL2のインダクタンス値:0.23nH
 インダクタL3のインダクタンス値:6.8nH
 実施例2として、キャパシタCの容量を0.5pFとし、インダクタL3のインダクタンス値を7.5nHとしたこと以外は、上記実施例1と同様の弾性表面波分波器を作製し、その弾性表面波分波器のアンテナ端子11と送信側信号端子12との間の挿入損失を測定した。結果を図9及び図10に示す。
 比較例1として、キャパシタCが設けられておらず、インダクタL3のインダクタンス値が8.2nHであること以外は、上記実施例1と同様の弾性表面波分波器を作製し、その弾性表面波分波器のアンテナ端子11と送信側信号端子12との間の挿入損失を測定した。結果を図9及び図10に示す。なお、図10においては、実施例1,2及び比較例1で挿入損失が実質的に同じであるため、実質上、実施例1のグラフ、実施例2のグラフ及び比較例1のグラフの区別が困難となっている。
 比較例2として、キャパシタCを設けず、インダクタL2のインダクタンス値を0.3nHとした以外は、上記実施例1と同様の弾性表面波分波器を作製し、その弾性表面波分波器のアンテナ端子11と送信側信号端子12との間の挿入損失を測定した。結果を図11に示す。
 図9に示す結果から、キャパシタCを設けることにより、インダクタL2により形成される減衰極が低周波数側にシフトすることが分かる。また、キャパシタCの容量を大きくすることにより、インダクタL2により形成される減衰極が低周波数側にさらに大きくシフトすることが分かる。そして、これにより、2倍波の周波数帯の減衰量を大きくできることが分かる。
 なお、図11に示す結果から分かるように、キャパシタCを設けない場合であっても、インダクタL2のインダクタンス値を大きくすることによりインダクタL2により形成される減衰極を低周波数側にシフトさせることは可能である。しかしながら、インダクタL2のインダクタンス値を大きくするためには、インダクタL2を構成する配線の長さを長くする必要がある。このため、配線基板40が大型化する傾向にある。
 それに対して、本実施形態のようにキャパシタCを設けることによりインダクタL2により形成される減衰極を低周波数側にシフトさせるのであれば、要求されるインダクタL2のインダクタンス値が小さくなる。このため、インダクタL2を構成している配線の長さを短くすることができる。従って、配線基板40を小型化することができる。その結果、弾性表面波分波器1を小型化することができる。
 また、図9に示す結果から、キャパシタCを設けた場合、キャパシタCの容量を調整することにより、インダクタL2のインダクタンス値を変更することなく、インダクタL2により形成される減衰極の位置を調整できることが分かる。このため、送信側フィルタチップ60の種類を変更した場合においても、送信側フィルタチップ60に形成されたキャパシタCの容量を調整することにより、インダクタL2の設計を変更することなく2倍波の周波数帯の減衰量を大きくすることができる。従って、キャパシタCを設けておくことによって、送信側フィルタチップ60の種類や要求特性等が異なる複数種類の弾性表面波分波器において配線基板40を共通化することが可能となる。
 また、本実施形態では、並列腕27とグラウンド電位との間に接続されているインダクタL1を有している。このため、3倍波の周波数帯に減衰極が発生し、インダクタL1を設けない場合よりも3倍波の周波数帯の減衰量を大きくすることができる。
 ところで、キャパシタCを設けるとアンテナ端子11とグラウンド端子32との間に容量を付加することとなる。このため、信号ラインである直列腕23の接地容量が増大する。よって、通過帯域において、インピーダンスが容量性にシフトする。従って、通過帯域における挿入損失が増大する虞がある。しかしながら、上記実施形態では、キャパシタCに加えてインダクタL3が設けられている。このインダクタL3のインダクタンス値を調整することにより、上記のような通過帯域における挿入損失の増大を抑制することができる。
 このことは、図10に示すように、キャパシタCを設けた実施例1,2のインダクタL3のインダクタンス値を比較例1のインダクタL3より小さくすることで、通過帯域における挿入損失をキャパシタCが設けられていない比較例1と同程度にまで低減することができることからも分かる。
 以下、上記実施形態の変形例について説明する。以下の説明において、上記実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。
 上記実施形態では、送信側フィルタチップ60が弾性表面波チップである例について説明した。但し、本発明は、この構成に限定されない。例えば、図12に示すように、送信側フィルタチップ60は、圧電基板61の上に、電極62を覆うように、第1及び第2の誘電体層63,64が形成された所謂3媒質型の弾性境界波フィルタチップや、誘電体層64を有さない2媒質型の弾性境界波フィルタチップであってもよい。すなわち、本発明に係る弾性波フィルタ装置は、弾性境界波を利用した弾性境界波フィルタ装置であってもよい。
 誘電体層63と誘電体層64との材質は、誘電体層63の音速が誘電体層64の音速よりも遅い限り特に限定されない。たとえば、誘電体層63を酸化ケイ素により形成し、誘電体層64を窒化ケイ素や酸窒化ケイ素により形成することができる。
 また、上記実施形態では、並列腕24~26がインダクタL2に接続され、並列腕27がインダクタL1に接続されている例について説明した。但し、本発明は、この構成に限定されない。本発明においては、全ての並列腕がインダクタL2に接続されていてもよい。
 (他の実施形態)
 次に、本発明の他の実施形態について説明する。以下の説明において、上記実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。
 上記実施形態では、本発明を実施した弾性波フィルタ装置の例として、弾性表面波分波器1を挙げた。但し、本発明に係る弾性波フィルタ装置は、弾性波分波器に限定されない。本発明に係る弾性波フィルタ装置は、例えば、図14に示すような1つのフィルタ部からなる弾性表面波フィルタフィルタ装置であってもよい。
 図14に示すように、本実施形態のフィルタ部20は、前記実施形態の送信側フィルタ部20と同じラダー型フィルタ部からなる。フィルタ部20の第1の信号端子21は第1の外部端子211と接続され、第2の信号端子22は第1の外部端子211と接続されている。そして、第1の信号端子21と第1の外部端子211との間の接続点33とグラウンド電位との間には、耐サージ用のインダクタL3が接続されている。本実施形態では、インダクタL3はフィルタチップを実装する配線基板に形成されている電極により構成されている。
 本実施形態でも、キャパシタCを設けることにより、インダクタL2を小さくできるため、配線基板を小型化できる。また、キャパシタCによって、インダクタL2により形成される減衰極の位置を調整することができるため、高調波の減衰量を大きくすることができる。
1…弾性表面波分波器
11…アンテナ端子
12…送信側信号端子
13a、13b…受信側信号端子
14…アンテナ
15…受信側フィルタ部
20…送信側フィルタ部
21…第1の信号端子
22…第2の信号端子
23…直列腕
24~27…並列腕
28,29,33…接続点
31,32…グラウンド端子
40…配線基板
41…第1の誘電体層
41a…第1の誘電体層の表面
42…第2の誘電体層
42a…第2の誘電体層の表面
42b…第2の誘電体層の裏面
41a1~41a4…電極パッド
41a5~41a8,42a2,42a4,42a5,42a7,42a9…ビアホール電極
42a1,42a3,42a6,42a8…電極
42b1~42b3…グラウンド端子
60…送信側フィルタチップ
61,71…圧電基板
62,72…電極
63…第1の誘電体層
64…第2の誘電体層
70…受信側フィルタチップ
81…バンプ
L1~L3…インダクタ
C…キャパシタ
P1~P4…並列腕共振子
S1~S4…直列腕共振子

Claims (5)

  1.  第1の外部端子と、
     第2の外部端子と、
     前記第1の外部端子と前記第2の外部端子との間を接続している直列腕と、
     前記直列腕において直列に接続されている複数の直列腕共振子と、
     前記直列腕と前記グラウンド電位とを接続している複数の並列腕と、
     前記複数の並列腕のそれぞれに設けられた並列腕共振子と、
     前記第1の外部端子とグラウンド電位との間に接続されている第1のインダクタと、
     前記複数の並列腕のうちの少なくとも2つの並列腕とグラウンド電位との間に設けられた第2のインダクタと、
     前記第2のインダクタと前記少なくとも2つの並列腕との間の接続点と、前記第1の外部端子との間に接続されているキャパシタと、
    を備える、弾性波フィルタ装置。
  2.  前記第1の外部端子により構成されているアンテナ端子と、
     前記第2の外部端子により構成されている送信側信号端子と、
     受信側信号端子と、
     前記アンテナ端子と前記送信側信号端子との間に接続されており、前記直列腕、前記複数の直列腕共振子、前記複数の並列腕、前記並列腕共振子を有する送信側フィルタ部と、
     前記アンテナ端子と前記受信側信号端子との間に接続されている受信側フィルタ部と、
    を備える、請求項1に記載の弾性波フィルタ装置。
  3.  前記キャパシタの容量値は、前記送信側フィルタ部の通過帯域の2倍波の減衰が大きくなるような大きさに設定されている、請求項1または請求項2に記載の弾性波フィルタ装置。
  4.  前記複数の直列腕共振子、前記複数の並列腕共振子及び前記キャパシタが形成されているフィルタチップと、
     前記フィルタチップが実装されており、前記第2のインダクタを構成している電極が形成されている配線基板と、
    を備える、請求項1~3のいずれか一項に記載の弾性波フィルタ装置。
  5.  弾性表面波装置または弾性境界波装置である、請求項1~4のいずれか一項に記載の弾性波フィルタ装置。
PCT/JP2011/064206 2010-11-09 2011-06-22 弾性波フィルタ装置 WO2012063517A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010251033A JP2014017537A (ja) 2010-11-09 2010-11-09 弾性波フィルタ装置
JP2010-251033 2010-11-09

Publications (1)

Publication Number Publication Date
WO2012063517A1 true WO2012063517A1 (ja) 2012-05-18

Family

ID=46050676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064206 WO2012063517A1 (ja) 2010-11-09 2011-06-22 弾性波フィルタ装置

Country Status (2)

Country Link
JP (1) JP2014017537A (ja)
WO (1) WO2012063517A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015040921A1 (ja) * 2013-09-17 2015-03-26 株式会社村田製作所 デュプレクサ
WO2015040922A1 (ja) * 2013-09-17 2015-03-26 株式会社村田製作所 デュプレクサ
CN109314504A (zh) * 2016-06-24 2019-02-05 株式会社村田制作所 弹性波滤波器装置
US20190273521A1 (en) * 2016-12-27 2019-09-05 Murata Manufacturing Co., Ltd. Radio-frequency module and communication apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6365436B2 (ja) 2015-06-24 2018-08-01 株式会社村田製作所 弾性波装置
JP6411292B2 (ja) 2015-06-26 2018-10-24 太陽誘電株式会社 ラダー型フィルタ、デュプレクサおよびモジュール
JP6421748B2 (ja) 2015-12-25 2018-11-14 株式会社村田製作所 弾性波装置
JP6604293B2 (ja) 2016-09-20 2019-11-13 株式会社村田製作所 弾性波装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245310A (ja) * 2003-05-14 2008-10-09 Murata Mfg Co Ltd 弾性表面波分波器
JP2010192974A (ja) * 2009-02-16 2010-09-02 Ube Ind Ltd 分波器
JP2010239612A (ja) * 2009-03-09 2010-10-21 Nippon Dempa Kogyo Co Ltd デュプレクサの低域側フィルタ、デュプレクサの高域側フィルタ及びデュプレクサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245310A (ja) * 2003-05-14 2008-10-09 Murata Mfg Co Ltd 弾性表面波分波器
JP2010192974A (ja) * 2009-02-16 2010-09-02 Ube Ind Ltd 分波器
JP2010239612A (ja) * 2009-03-09 2010-10-21 Nippon Dempa Kogyo Co Ltd デュプレクサの低域側フィルタ、デュプレクサの高域側フィルタ及びデュプレクサ

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015040921A1 (ja) * 2013-09-17 2015-03-26 株式会社村田製作所 デュプレクサ
WO2015040922A1 (ja) * 2013-09-17 2015-03-26 株式会社村田製作所 デュプレクサ
CN105531927A (zh) * 2013-09-17 2016-04-27 株式会社村田制作所 双工器
CN105556841A (zh) * 2013-09-17 2016-05-04 株式会社村田制作所 双工器
US9762209B2 (en) 2013-09-17 2017-09-12 Murata Manufacturing Co., Ltd. Duplexer with a series trap element and a specifically connected capacitance or elastic wave resonator
US9806693B2 (en) 2013-09-17 2017-10-31 Murata Manufacturing Co., Ltd. Duplexer with a ladder filter portion and a specifically connected capacitor or elastic wave resonator
CN105556841B (zh) * 2013-09-17 2018-01-02 株式会社村田制作所 双工器
CN109314504A (zh) * 2016-06-24 2019-02-05 株式会社村田制作所 弹性波滤波器装置
CN109314504B (zh) * 2016-06-24 2022-07-29 株式会社村田制作所 弹性波滤波器装置
US20190273521A1 (en) * 2016-12-27 2019-09-05 Murata Manufacturing Co., Ltd. Radio-frequency module and communication apparatus
US10873352B2 (en) * 2016-12-27 2020-12-22 Murata Manufacturing Co., Ltd. Radio-frequency module and communication apparatus

Also Published As

Publication number Publication date
JP2014017537A (ja) 2014-01-30

Similar Documents

Publication Publication Date Title
JP5310873B2 (ja) 弾性波フィルタ装置
WO2012063517A1 (ja) 弾性波フィルタ装置
JP5423931B2 (ja) 弾性波分波器
CN106253877B (zh) 梯型弹性波滤波器和天线共用器
JP5394847B2 (ja) 分波器
JP5354028B2 (ja) 弾性表面波フィルタ装置
JP6116120B2 (ja) 弾性波デバイス及び弾性波デバイスの製造方法
JP4270206B2 (ja) 弾性表面波分波器
JP4816710B2 (ja) 分波器
JP2010011300A (ja) 共振器、該共振器を用いるフィルタ及びデュプレクサ
JP4905614B1 (ja) 弾性波分波器
JP2012147175A (ja) 弾性波分波器
JP5700121B2 (ja) 弾性波フィルタ装置
JPWO2011061904A1 (ja) 弾性波フィルタ装置とこれを用いたアンテナ共用器
US20130222077A1 (en) Elastic wave filter device
US20140176258A1 (en) Elastic wave device
JP6512365B2 (ja) 複合フィルタ装置、高周波フロントエンド回路及び通信装置
JP5170262B2 (ja) 分波器
US8791774B2 (en) Branching filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11839268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP