WO2003041193A1 - Materiau a plaque positive et cellule le comprenant - Google Patents

Materiau a plaque positive et cellule le comprenant Download PDF

Info

Publication number
WO2003041193A1
WO2003041193A1 PCT/JP2002/011667 JP0211667W WO03041193A1 WO 2003041193 A1 WO2003041193 A1 WO 2003041193A1 JP 0211667 W JP0211667 W JP 0211667W WO 03041193 A1 WO03041193 A1 WO 03041193A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
capacity
charge
discharge
Prior art date
Application number
PCT/JP2002/011667
Other languages
English (en)
French (fr)
Inventor
Guohua Li
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to US10/466,014 priority Critical patent/US9054378B2/en
Priority to KR10-2003-7009123A priority patent/KR20040052463A/ko
Priority to EP02780051A priority patent/EP1443575B1/en
Priority to CA2431948A priority patent/CA2431948C/en
Publication of WO2003041193A1 publication Critical patent/WO2003041193A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention comprises lithium (L i) and at least two of the first elements of the group consisting of manganese (),), nickel (N i) and cobalt (Co), and aluminum (A 1)
  • the present invention relates to a positive electrode material containing a lithium composite oxide containing at least one second element of the group consisting of: titanium (T i), magnesium (Mg) and boron (B), and a battery using the same.
  • lithium ion secondary battery for example, metal oxides, metal sulfides or polymers are used as positive electrode materials.
  • metal oxides, metal sulfides or polymers are used as positive electrode materials.
  • lithium-free compounds such as T i S 2 , Mo S 2 , Nb S e 2 or V 2 O 5 , or L i C o O 2, L i N i 0 2 , L i Mn 0 such as lithium complex oxide containing lithium, such as 2 or L i Mn 2 0 4 is known.
  • L i CO 2 is widely used as a positive electrode material having a potential of about 4 V with respect to the lithium metal potential, has high energy density and high voltage, and is ideal in various aspects. Positive electrode material.
  • Co cobalt
  • L i M n 2 ⁇ 4 having a space group shown in F d 5 m may obtain a high battery capacity has L i C O_ ⁇ 2 and same high potential, Although the synthesis is easy, the capacity deterioration at the time of high temperature storage is large, and furthermore, there is a problem that the stability or cycle characteristics may not be sufficient when Mn dissolves in the electrolyte. .
  • L i M n ⁇ ⁇ ⁇ 2 having a layered structure can obtain higher capacity than L i M n 2 0 4, but synthesis is difficult, and the structure becomes unstable when charge and discharge are repeated. In addition, there was a problem that capacity decreased.
  • the present invention has been made in view of such problems, and an object thereof is to provide a positive electrode material capable of realizing a large discharge capacity and a high discharge voltage and obtaining excellent charge and discharge characteristics, and a battery using the same. It is to provide. Disclosure of the invention
  • the positive electrode material according to the present invention comprises lithium, at least two first elements of the group consisting of manganese, nickel and cobalt, and at least one of the group consisting of aluminum, titanium, magnesium and boron.
  • the composition ratio of lithium to the sum of the first element and the second element is 1 in molar ratio, containing a lithium complex oxide containing the second element It is larger than that.
  • the battery according to the present invention comprises an electrolyte together with a positive electrode and a negative electrode, and the positive electrode comprises lithium, at least two of the first elements of the group consisting of manganese, nickel and cobalt, and aluminum.
  • the composition ratio of lithium to the total of the first element and the second element is greater than 1 in molar ratio, so A capacity is obtained, and after charging, a certain amount of lithium remains in the crystal structure to maintain the stability of the crystal structure.
  • FIG. 1 is a cross-sectional view showing a configuration of a secondary battery using a positive electrode material according to an embodiment of the present invention.
  • FIG. 2 is a characteristic diagram showing an X-ray diffraction pattern of the positive electrode material according to Examples 1 to 4 of the present invention.
  • FIG. 3 is a characteristic diagram showing an X-ray diffraction pattern of a positive electrode material according to Example 3 of the present invention.
  • FIG. 4 is a characteristic diagram showing a charge / discharge curve according to Example 3 of the present invention.
  • FIG. 5 is a characteristic diagram showing the relationship between the firing temperature and the discharge capacity according to Example 3 of the present invention.
  • FIG. 6 is a characteristic diagram showing the relationship between the composition of lithium and the discharge capacity according to Examples 1 to 4 of the present invention.
  • FIG. 7 is a characteristic diagram showing the relationship between the number of charge and discharge cycles and the discharge capacity according to Example 3 of the present invention.
  • FIG. 8 is a characteristic diagram showing an X-ray diffraction pattern of a positive electrode material according to Comparative Example 1.
  • FIG. 9 is a characteristic diagram showing an X-ray diffraction pattern of a positive electrode material according to Comparative Example 2.
  • FIG. 10 is a characteristic diagram showing a charge / discharge curve according to Comparative Example 1.
  • FIG. 11 is a characteristic diagram showing a charge / discharge curve according to Comparative Example 2.
  • FIG. 12 is a characteristic diagram showing an X-ray diffraction pattern of the positive electrode material according to Comparative Example 3.
  • FIG. 13 c is a characteristic diagram showing a charge / discharge curve according to Comparative Example 3.
  • FIG. 14 is a characteristic diagram showing an X-ray diffraction pattern of a positive electrode material according to Example 5.
  • FIG. 15 is a characteristic diagram showing a charge / discharge curve according to Example 5.
  • the positive electrode material according to one embodiment of the present invention comprises lithium, at least two of the first elements of the group consisting of manganese, nickel and cobalt, and the group consisting of aluminum, titanium, magnesium and boron. It contains a lithium composite oxide containing at least one second element.
  • the lithium composite oxide has, for example, a layered structure.
  • the first element functions as a redox main component, and by including at least two members of the group consisting of manganese, nickel and cobalt, a large capacity and high potential can be realized. .
  • the second element is for stabilizing the crystal structure, and is substituted for the first element at a part of the site of the first element.
  • the chemical formula of this lithium composite oxide is represented by, for example, chemical formula 1.
  • 1 ⁇ 1 is a first element
  • Mil is a second element
  • a, b, c and d are 1.0, a, and 1.5.
  • 1. 8 ⁇ d ⁇ 2.5 is preferably satisfied.
  • composition a of lithium in the chemical formula 1 can be selected in the range of 1 to 2, but a larger capacity than 1 can obtain a large capacity, and conversely, when it is 1.5 or more, the crystal structure becomes It will change and the capacity will decrease.
  • a more preferable range of composition a is 1.1 a ⁇ l.5.
  • the total composition b + c of the first element and the second element in the chemical formula 1 and the composition d of oxygen are not limited within this range, but have a single-phase layered structure outside this range This is because the compound is difficult to form, the crystal structure becomes unstable, and the battery characteristics deteriorate.
  • the lithium composite oxide also contains an excess of lithium, and the composition ratio of lithium to the total of the first element and the second element (the sum of the first and second elements of lithium) is a molar ratio It is bigger than one.
  • a, b and c have a relationship of a> b + c.
  • composition ratio of lithium to the total of the first element and the second element is preferably greater than 1 and less than 1.5 in molar ratio, It is more preferable that it is larger than 1.1 and smaller than 1.5.
  • a, b and c be in the range of 1 az (b + c) ⁇ 1.5, 1.1 ⁇ a / (b + c) It is more preferable if it is within the range of ⁇ 1.5. It is because larger capacity can be obtained within this range.
  • the positive electrode material having such a structure can be produced by various methods, for example, lithium hydroxide (L I_ ⁇ _H), manganese sesquioxide (Mn 2 ⁇ 3), nickel hydroxide (N i (OH) 2 ), cobalt hydroxide (C o (OH) 2 ), aluminum nitrate (Al (N 0 3 ) ⁇ 9 H 2 O), titanium dioxide (T i ⁇ 2 ), magnesium succinate (Mg C 2 ⁇ 4 ⁇ 2 ⁇ 2 ⁇ ) or Ru can be prepared by firing mixed as necessary raw materials, such as boron oxide (beta 2 0).
  • these raw materials are mixed at a predetermined ratio, mixed with ethanol as a dispersion medium and pulverized by a pole mill, and then fired in the air or in an oxygen atmosphere.
  • Various carbonates, nitrates, borates, phosphates, oxides or hydroxides can be used.
  • the positive electrode material manufactured in this manner is used, for example, for the following positive electrode of a secondary battery.
  • FIG. 1 also shows the cross-sectional structure of a secondary battery using the positive electrode material according to the present embodiment.
  • the secondary battery is a so-called coin type, and a disk-shaped positive electrode 12 housed in an outer can 1 1 and a disk-shaped negative electrode 14 housed in an outer cup 13 It is laminated through the separator 15.
  • the inside of the outer can 1 1 and the outer cup 13 is filled with the electrolyte 16 that is a liquid electrolyte, and the peripheral portion of the outer can 1 1 and the outer cup 1 3 is made through the insulating gasket 1 7 It is sealed by being tightened.
  • the outer can 11 and the outer cup 13 are respectively made of, for example, a metal such as stainless steel or aluminum.
  • the outer can 11 functions as a current collector of the positive electrode 12, and the outer cup 13 functions as a current collector of the negative electrode 14.
  • the positive electrode 12 contains, for example, the positive electrode material according to the present embodiment as a positive electrode active material, and is configured together with a conductive agent such as a single pump rack or graphite and a binder such as poly (vinyl fluoride). There is. That is, this positive electrode 12 contains the lithium composite oxide described above. Incidentally, this positive electrode 12 is produced, for example, by mixing a positive electrode material, a conductive agent, and a binder to prepare a positive electrode mixture, and then compressing and molding the positive electrode mixture to form a pellet.
  • the positive electrode material in addition to the positive electrode material, the conductive agent and the binder, a solvent such as N-methyl-2-pyrrolidone is added and mixed to prepare a positive electrode mixture, and after drying the positive electrode mixture, it is compressed and molded. You may do so.
  • the positive electrode material may be used as it is or may be used after drying, but since it reacts when it comes in contact with water and the function as the positive electrode material is impaired, it is preferable to sufficiently dry it.
  • the negative electrode 14 contains, for example, any one or more of lithium metal, a lithium alloy, and a material capable of inserting and extracting lithium.
  • the material capable of absorbing and desorbing lithium include carbonaceous materials, metal compounds, silica, caying compounds, and conductive polymers, and any one or more of these may be mixed. Used.
  • the carbonaceous material, graphite, such as non-graphitizable carbon and graphitizable carbon can be cited, in the metal compound include oxides such as S n S I_ ⁇ 3 or S n 0 2, conductive Examples of the polymer include polyacetylene and polypyrrole.
  • the negative electrode 14 contains a material capable of absorbing and desorbing lithium
  • the negative electrode 14 is configured with a binder such as polyvinylidene fluoride, for example.
  • the negative electrode 14 is prepared, for example, by mixing a material capable of absorbing and desorbing lithium and a binder to prepare a negative electrode mixture, and then compressing and molding the obtained negative electrode mixture to obtain a pellet shape.
  • a negative electrode mixture was prepared by adding and mixing a solvent such as N-methyl 1 / 2-pyrrolidon in addition to materials and binders capable of absorbing and desorbing lithium, and the negative electrode mixture was dried. It may be compression molded later.
  • the separator 15 separates the positive electrode 12 and the negative electrode 14 and allows lithium ions to pass while preventing the short circuit of the current due to the contact of the two electrodes.
  • the separator 15 is made of, for example, a porous film made of synthetic resin made of polytetrafluoroethylene, polypropylene or polyethylene, or a porous film made of inorganic material such as ceramic non-woven fabric. It may be a stacked structure of two or more types of porous membranes.
  • the electrolytic solution 16 is a solution in which a lithium salt is dissolved as an electrolyte salt in a solvent, and exhibits ion conductivity by ionizing the lithium salt.
  • a lithium salt L i PF 6 , L i C 10 4 , L i As F 6 , L i BF 4 , L i CF 3 S 3 or L i N (CF 3 S 0 2 ) 2 etc. are suitable. And one or more of these may be used as a mixture.
  • Non-aqueous solvents such as methyl-1, 3-dioxolane, methyl propionate, methyl butyrate, dimethyl carbonate, jetyl carbonate, dipropyl carbonate, etc. are preferred, and any one or two of them may be mixed. Used.
  • This secondary battery works as follows.
  • this secondary battery when charged, for example, lithium ions are separated from the positive electrode 12 and stored in the negative electrode 14 via the electrolytic solution 16.
  • lithium ions When discharged, for example, lithium ions are released from the negative electrode 14 and inserted in the positive electrode 12 through the electrolytic solution 16.
  • the positive electrode 12 contains a lithium composite oxide containing at least two of the group consisting of manganese, nickel and cobalt as the first element, a large discharge capacity and a high discharge potential can be obtained.
  • this lithium composite oxide contains the second element, the crystal structure is stable, and the decrease in discharge capacity due to charge and discharge cycles is small.
  • the lithium composite oxide contains an excess of lithium, the charge capacity is improved and a large discharge capacity is obtained, and a certain amount of lithium remains on the positive electrode 12 even after the charge, and the lithium composite oxide The stability of the crystal structure of is further improved, and better charge / discharge cycle characteristics can be obtained.
  • the lithium composite oxide containing at least two of the group consisting of manganese, nickel and cobalt as the first element is contained. Good economics can also be obtained, as well as capacity and high potential can be obtained.
  • the lithium composite oxide contains the second element since the lithium composite oxide contains the second element, the crystal structure can be stabilized, and charge / discharge cycle characteristics can be improved.
  • the composition ratio of lithium to the total of the first element and the second element in the lithium composite oxide (the sum of the first element and the second element of lithium Z) is made to be greater than 1 in molar ratio. The electric capacity at the time of charge can be further improved, and a certain amount of lithium remains in the crystal structure even after charge, and the stability of the crystal structure can be further improved.
  • this electrode material is used, it is possible to obtain a secondary battery which has a large discharge capacity, a high discharge potential, and excellent charge and discharge cycle characteristics, and is also economically excellent.
  • the composition of the lithium composite oxide is in the range of 1.0 ⁇ a ⁇ 1.5, 0.9 ⁇ b + c ⁇ l.l, 1.8 ⁇ d ⁇ 2.5. If you try to The capacity can be further improved.
  • lithium hydroxide monohydrate Li i OH ⁇ H 2 O
  • dimanganese trioxide dimanganese trioxide
  • nickel hydroxide nickel hydroxide
  • cobalt oxide aluminum nitrate
  • the blending molar ratio of the raw materials was changed as shown in Table 1 in Examples 1 to 5.
  • the obtained mixture is calcined in air at 600 ° C. to 900 ° C. for 12 hours, and the lithium composite oxide L a a MI b MII C 0 2 having the composition shown in Table 2 Is L i a Mn. , 5 Ni. . 2 C o 0. 2 A 1 o., Was synthesized ⁇ 2.
  • the powder X-ray diffraction pattern of each of the lithium composite oxides of Examples 1 to 4 obtained was measured.
  • a rotating anticathode type of RIGAKU I NT 2 500 was used.
  • This X-ray diffractometer is equipped with a goniometer having a vertical standard radius of 185 mm, and no filter such as a K filter is used, and a combination of a wave height analyzer and a power monochromator produces a monochromatic X-ray. To detect specific X-rays with a synchronization counter.
  • the incident angle DS with respect to the sample surface and the angle RS formed by the diffraction line with the sample surface are each 1 °, and the width SS of the entrance slit is 0.
  • Example 1 shows the diffraction pattern of Example 3 for the cases of 750 ° C. and 700 ° C. and the cases of 750 ° C. and 800 ° C., respectively.
  • Example 1 peaks slightly showing impurities at 21 ° and 33 ° to 34 ° were observed, but in Examples 2 to 4, almost no peaks were observed.
  • the positive electrode 12 of the battery was produced as follows. First, synthesized lithium complex oxide Objects L i a MI b MII C ⁇ 2 is dried 6 as a positive electrode material Omg ⁇ Ri, polyvinylidene fluoride is a graphite and a binder as a conductive agent (Arudoritsuchi #
  • the mixture was mixed with 1 300) using N-methyl-2-pyrrolidone as a solvent to obtain a paste-like positive electrode mixture.
  • the proportions of the positive electrode material, Graphite and polyvinylidene fluoride were 5% by mass of the positive electrode material, 10% by mass of Graphite and 5% by mass of polyvinylidene fluoride.
  • this positive electrode mixture was pelletized with a mesh-like current collector made of aluminum, and dried at 100 ° C. for 1 hour in a dry argon (Ar) stream to obtain a positive electrode 12.
  • a lithium metal plate punched into a disk shape is used for the negative electrode 14, a porous film made of polypropylene is used for the separete 15, and an ethylene solution and dimethyl carbonate for the electrolyte 16 are used.
  • the door 1 the L i PF 6 as a lithium salt were used as dissolved at a concentration of 1 mo 1 Z 1 in mixed solvent at a volume ratio.
  • the size of the battery is
  • the length was 20 mm and the length was 1.6 mm.
  • charging and discharging were performed as follows. First, constant-current charging was performed until the battery voltage reached 4.5 V at a constant current, and then constant-voltage charging was performed at a constant voltage of 4.5 V until the current was less than 0.50 mAZ cm 2 . Next, constant current discharge was performed at a constant current until the battery voltage reached 2.5 V. At that time, this charge and discharge were performed at normal temperature (23).
  • FIG. 4 representatively shows the charge / discharge curve at the firing temperature of 700 ° C. in Example 3, and Table 3 shows the charge capacity and the discharge capacity in the first cycle in that case.
  • the solid line is the first cycle
  • the short broken line is the second cycle
  • the long broken line is the third cycle charge / discharge curve.
  • FIG. 5 shows the relationship between the firing temperature and the discharge capacity at the first cycle for Example 3
  • FIG. 6 shows the relationship between the composition a of lithium and the discharge capacity at the first cycle.
  • the case of the firing temperature of 700 ° C. of 4 is shown, and the relationship between the charge / discharge cycle number and the discharge capacity is shown in the case of the firing temperature of 70 Ot in Example 3 in FIG.
  • Comparative Examples 1 and 2 for Examples 1 to 4 lithium having the composition shown in Table 2 in the same manner as in Examples 1 to 4 except that the blending molar ratio of the raw materials was changed as shown in Table 1 composite oxide L i a MI b MII C ⁇ 2, in particular L i Mn 0. 5 N i 0. 2 C o 0. 2 A 1 o 0, 0 2 or L i N i Q. 8 C o 0. 2 0 2 was synthesized.
  • Comparative Example 1 is the same as Examples 1 to 4 except that the composition a of lithium is 1.0 and the composition ratio (b + c) of lithium to the total of the first element and the second element is 1. It is the same thing.
  • the composition a of lithium is 1.0
  • the composition ratio a / (b + c) of lithium to the total of the first element and the second element is 1, and manganese, which is the first element, is used.
  • the second element is not included.
  • FIG. 8 shows the diffraction pattern of Comparative Example 1 for the cases of the sintering temperatures of 650 V, 700 ° C. and 750 ° C.
  • FIG. 9 shows the diffraction pattern of Comparative Example 2 at the sintering temperature 7 8 The case of 0 is shown.
  • Comparative Example 1 a peak indicating impurities was observed as in Example 1.
  • FIG. 10 representatively shows the charge / discharge curve in the case of the firing temperature 700 in Comparative Example 1
  • FIG. 11 shows the charge / discharge curve in the case of the firing temperature 780 in Comparative Example 2.
  • Table 3 shows the charge capacity and discharge capacity in the first cycle in those cases.
  • the charge and discharge curve in Fig. 10 and Fig. 11 is for the first cycle.
  • the composition ratio a / (b + c) of lithium to the total of the first element and the second element is 1.3.
  • Example 3 larger values were obtained for the charge capacity and the discharge capacity than in Comparative Examples 1 and 2 in which the composition ratio aZ (b + c) is 1.0. That is, if the composition ratio a / (b + c) of lithium to the total of the first element and the second element is made larger than 1.0, the charge capacity can be increased, and the discharge capacity is also large. In addition, in Comparative Example 1, the voltage at the end of discharge was low. This is considered to be due to the change in crystal structure. In other words, if the composition ratio a / (b + c) of lithium to the total of the first element and the second element is made larger than 1.0, it seems that the stability of the crystal structure can be improved. Be
  • the firing temperature is set to 700.degree. A discharge capacity was obtained.
  • the discharge capacity increased as the composition a of lithium was increased, and tended to decrease after exhibiting a maximum value at around 1.3. That is, when the composition a of lithium is in the range of 1.0 ⁇ a ⁇ 1.5, and further in the range of 1.1 ⁇ a ⁇ 1.5, or with respect to the total of the first element and the second element
  • the composition ratio of lithium aZ (b + c) should be within the range of 1.0 ⁇ aZ (b + c) ⁇ 1.5, or within the range of 1. l ⁇ aZ (b + c) ⁇ 1.5. For example, it was found that a larger discharge capacity could be obtained.
  • Example 3 containing manganese as the first element was able to obtain a higher battery voltage than Comparative Example 2 containing no manganese. That is, it was found that higher discharge voltage can be obtained by containing manganese as the first element.
  • the powder X-ray diffraction pattern of the lithium composite oxide of Comparative Example 3 was also measured in the same manner as in Examples 1 to 4. As a result, it was found that the lithium composite oxide of Comparative Example 3 also has a layered structure.
  • the diffraction pattern of Comparative Example 3 is shown in FIG. Further, a coin-type battery was produced in the same manner as in Examples 1 to 4 using the lithium composite oxide of Comparative Example 3 and the characteristics were evaluated in the same manner.
  • the charge and discharge curve of Comparative Example 3 is shown in FIG. In Fig. 13, the solid line indicates the first cycle, the short broken line the second cycle, the long broken line the third cycle, the first broken line the fourth cycle, and the dotted line the fifth cycle It is a curve.
  • the charge capacity of the first cycle was as large as 252 mAh Zg in Comparative Example 3 containing chromium as the second element, as compared with Example 3 containing aluminum as the second element.
  • the discharge capacity at the first cycle was as small as 148 mAh Zg.
  • the charge capacity and the discharge capacity decreased, and the discharge voltage also decreased. That is, it was found that while the crystal structure can be stabilized if aluminum is contained as the second element, such an effect can not be obtained even if chromium is contained as the second element.
  • Example 5 The mixing molar ratio of the raw materials except that were changed as shown in Table 5, Examples 1-4 and in the same way the lithium composite oxide having the composition shown in Table 6 L i a MI b MII C ⁇ 2 Specifically, L i, .3 ⁇ ⁇ . 5 N i. 4 A 1 0. , 0 2 was synthesized.
  • the composition of Example 5 is the same as that of Example 3 except that the composition of the first element is (Mn 5/9 N i 4/9 ).
  • the powder X-ray diffraction pattern of the lithium composite oxide of Example 5 was measured in the same manner as in Examples 1 to 4. As a result, it was found that the lithium composite oxide of Example 5 also has a layered structure.
  • the diffraction pattern of Example 5 is representatively shown in FIG. 14 for the case of the firing temperature 750.
  • FIG. 15 representatively shows the charge-discharge curve in the case of the firing temperature 600 in Example 5 and Table 7 shows the charge capacity and the discharge capacity in the first cycle in that case with the results of Example 3. Show it together.
  • Example 3 containing cobalt as the first element has larger values for both charge capacity and discharge capacity than Example 5 containing no cobalt. Was obtained. That is, it was found that a larger capacity could be obtained by further including cobalt in the first element.
  • composition of the lithium composite oxide will be described by way of an example. However, within the range of the composition described in the above embodiment, the same effect can be obtained with other compositions.
  • the present invention has been described above by the embodiment and the examples. However, the present invention is not limited to the above embodiment and the examples, and can be variously modified. For example, although the case where the lithium composite oxide contains lithium, the first element, the second element, and oxygen has been described in the above embodiment and examples, other elements may be further contained.
  • lithium composite oxide of the above-described composition is included as the positive electrode material
  • Li C 0 0 2 in addition to the lithium composite oxide, Li C 0 0 2 , Other lithium composite oxides such as L i N i 0 2 , L i M n O 2 or L i M n 2 O 4 , or lithium sulfides, or lithium such as L i M n x F e Y P o 4 Containing phosphate, or a polymer material may be mixed.
  • electrolytes include, for example, gel electrolytes in which an electrolytic solution is held by a polymer compound, organic solid electrolytes in which an electrolyte salt is dispersed in a polymer compound having ion conductivity, ion conductive ceramics, ion conductive Inorganic solid electrolytes comprising inorganic glass or ionic crystals, or mixtures of these inorganic solid electrolytes with an electrolytic solution, or mixtures of these inorganic solid electrolytes and gel electrolytes or organic solid electrolytes It can be mentioned.
  • the coin type secondary battery has been specifically mentioned and described in the above embodiment and examples, the present invention is not limited to other types such as a cylindrical type, a potan type or a square type, and the like. The same applies to secondary batteries having a shape, or secondary batteries having other structures such as a wound structure.
  • the present invention can be similarly applied to other batteries such as a primary battery.
  • a lithium composite containing at least two of the group consisting of manganese, nickel and cobalt as the first element Since the oxide is contained, not only large capacity and high potential can be obtained, but also good economy can be obtained. Further, since the lithium composite oxide contains the second element, the crystal structure can be stabilized, and charge / discharge cycle characteristics can be improved. Furthermore, the composition ratio of lithium to the total of the first element and the second element in the lithium composite oxide (the total of lithium Z first element and the second element) is made to be greater than 1 in molar ratio. The electric capacity at the time of charge can be further improved, and a certain amount of lithium remains in the crystal structure even after charge, and the stability of the crystal structure can be further improved.
  • the positive electrode material in one aspect of the present invention since manganese is contained as the first element, a large capacity and a high potential can be realized inexpensively.
  • the composition of the lithium composite oxide is expressed by the chemical formula 1 as follows: 1.0 ⁇ a 1.5, 0. 9 ⁇ b + c ⁇ 1. Since the range of 1, a> b + c, and 1.8 ⁇ d ⁇ 2.5 can be achieved, the capacity can be further improved.
  • the positive electrode material of the present invention since the positive electrode material of the present invention is used, a large discharge capacity, high discharge potential and excellent charge / discharge cycle characteristics can be obtained, and an excellent economy is achieved. Sex can also be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

明細書 正極材料おょぴそれを用いた電池 技術分野
本発明は、 リチウム (L i ) と、 マンガン (Μη) , ニッケル (N i ) および コバルト (Co) からなるの群のうちの少なくとも 2種の第 1元素と、 アルミ二 ゥム (A 1 ) , チタン (T i ) , マグネシウム (Mg) およびホウ素 (B) から なる群のうちの少なくとも 1種の第 2元素とを含むリチウム複合酸化物を含有す る正極材料およびそれを用いた電池に関する。 背景技術
近年、 電子技術の進歩により、 電子機器の高性能化、 小型化およびポータブル 化が飛躍的に進んでいる。 それに伴い、 長時間便利にかつ経済的に使用すること ができる電源として、 再充電が可能な二次電池の研究が進められている。 従来よ り、 二次電池としては、 鉛蓄電池、 アルカリ蓄電池あるいはリチウムイオン二次 電池などが広く知られている。 中でも、 リチウムイオン二次電池は、 高出力およ び高工ネルギ一密度を実現できるものとして注目されている。
このリチウムイオン二次電池では、 正極材料として、 例えば金属酸化物, 金属 硫化物あるいはポリマーが用いられている。 具体的には、 T i S2, Mo S2 , Nb S e2あるいは V205などのリチウムを含まない化合物、 または L i C o O 2 , L i N i 02 , L i Mn 02あるいは L i Mn 204などのリチウムを含むリ チウム複合酸化物などが知られている。
このうち L i C o 02は、 リチウム金属電位に対して約 4 Vの電位を有する正 極材料として広く実用化されており、 高エネルギー密度および高電圧を有し、 様々な面において理想的な正極材料である。 しかし、 資源としての Co (コバル ト) が地球上に偏在しかつ稀少であるために、 安定供給が難しく材料コストが高 くなつてしまうという問題があつた。
そこで、 L i C o〇2に代わり、 資源として豊富に存在し安価なニッケル (N i ) あるいはマンガン (M n ) をベースとしたリチウム複合酸化物が期待されて いる。
しかしながら、 L i N i〇2は、 理論容量が大きくかつ高放電電位を有するも のの、 充放電サイクルの進行に伴って結晶構造が崩壊するので、 放電容量の低下 を招き、 熱安定性も悪いといった問題があった。
また、 正スピネル構造をもち、 F d 5mに示した空間群を有する L i M n 24 は、 L i C o〇2と同等の高い電位を有し高い電池容量を得ることができ、 合成 も容易であるが、 高温保存時における容量劣化が大きく、 更には M nが電解液中 へ溶解してしまうといつた安定性あるいはサイクル特性が十分でないといつた問 題が残されている。
更に、 層状構造を有する L i M n〇2は、 L i M n 2 04よりも高容量を得るこ とができるが、 合成が困難であり、 しかも充放電を繰り返すと構造が不安定とな り、 容量が低下してしまうという問題があった。
本発明はかかる問題点に鑑みてなされたもので、 その目的は、 大きい放電容量 および高い放電電圧を実現し、 かつ優れた充放電特性を得ることができる正極材 料およびそれを用いた電池を提供することにある。 発明の開示
本発明による正極材料は、 リチウムと、 マンガン, ニッケルおよびコバルトか らなるの群のうちの少なくとも 2種の第 1元素と、 アルミニウム, チタン, マグ ネシゥムおよびホウ素からなる群のうちの少なくとも 1種の第 2元素とを含むリ チウム複合酸化物を含有し、 第 1元素と第 2元素との合計に対するリチウムの組 成比 (リチウム 第 1元素と第 2元素との合計) は、 モル比で 1よりも大きいも のである。
本発明による電池は、 正極および負極と共に電解質を備えたものであって、 正 極は、 リチウムと、 マンガン, ニッケルおよびコバルトからなるの群のうちの少 なくとも 2種の第 1元素と、 アルミニウム, チタン, マグネシウムおよびホウ素 からなる群のうちの少なくとも 1種の第 2元素とを含むリチウム複合酸化物を含 有し、 第 1元素と第 2元素との合計に対するリチウムの組成比 (リチウムノ第 1 元素と第 2元素との合計) は、 モル比で 1よりも大きいものである。
本発明による正極材料では、 第 1元素と第 2元素との合計に対するリチウムの 組成比 (リチウム 第 1元素と第 2元素との合計) がモル比で 1よりも大きいの で、 充電時に大きな電気容量が得られ、 また、 充電後には結晶構造中に一定量の リチウムが残り、 結晶構造の安定性が保たれる。
本発明による電池では、 本発明の正極材料を用いているので、 大きな放電容量 および優れた充放電特性が得られる。 図面の簡単な説明
第 1図は、 本発明の一実施の形態に係る正極材料を用いた二次電池の構成を表 す断面図である。
第 2図は、 本発明の実施例 1〜4に係る正極材料の X線回折パターンを表す特 性図である。
第 3図は、 本発明の実施例 3に係る正極材料の X線回折パターンを表す特性図 である。
第 4図は、 本発明の実施例 3に係る充放電曲線を表す特性図である。
第 5図は、 本発明の実施例 3に係る焼成温度と放電容量との関係を表す特性図 である。
第 6図は、 本発明の実施例 1 ~ 4に係るリチウムの組成と放電容量との関係を 表す特性図である。
第 7図は、 本発明の実施例 3に係る充放電サイクル数と放電容量との関係を表 す特性図である。
第 8図は、 比較例 1に係る正極材料の X線回折パターンを表す特性図である。 第 9図は、 比較例 2に係る正極材料の X線回折パターンを表す特性図である。 第 1 0図は、 比較例 1に係る充放電曲線を表す特性図である。
第 1 1図は、 比較例 2に係る充放電曲線を表す特性図である。
第 1 2図は、 比較例 3に係る正極材料の X線回折パターンを表す特性図である c 第 1 3図は、 比較例 3に係る充放電曲線を表す特性図である。
第 1 4図は、 実施例 5に係る正極材料の X線回折パターンを表す特性図である < 第 1 5図は、 実施例 5に係る充放電曲線を表す特性図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について図面を参照して詳細に説明する。
本発明の一実施の形態に係る正極材料は、 リチウムと、 マンガン, ニッケルお よびコバルトからなる群のうちの少なくとも 2種の第 1元素と、 アルミニウム, チタン, マグネシウムおよびホウ素からなる群のうちの少なくとも 1種の第 2元 素とを含むリチウム複合酸化物を含有している。 このリチウム複合酸化物は、 例 えば層状構造を有している。
第 1元素は、 レドックス主体として機能するものであり、 マンガン, ニッケル およびコバルトからなる群のうちの少なくとも 2種を含むことにより、 大容量お よび高電位を実現することができるようになつている。 特に、 第 1元素としてマ ンガンを含むようにすれば、 大容量および高電位を安価で実現することができる ので好ましい。 また、 第 1元素として更にコバルトを含むようにすれば、 より容 量を大きくすることができるので好ましい。 第 2元素は、 結晶構造を安定化させ るためのものであり、 第 1元素のサイトの一部に第 1元素と置換されて存在して いる。
このリチウム複合酸化物の化学式は、 例えば化学式 1で表される。
(化学式 1 )
L i a M I b MIIC Od
式中、 1^ 1は第1元素、 Mil は第 2元素をそれぞれ表し、 a, b, cおよび dは、 1. 0く aく 1. 5, 0. 9 <b + c < 1. 1, 1. 8<d<2. 5をそ れぞれ満たす範囲内であることが好ましい。
化学式 1におけるリチウムの組成 aは 1から 2の範囲内で選択することができ るが、 1よりも大きい方が大きな容量を得ることができ、 また逆に、 1. 5以上 となると結晶構造が変化し、 容量が低下してしまうからである。 より好ましい組 成 aの範囲は、 1. 1く a<l. 5である。
また、 化学式 1における第 1元素と第 2元素の合計の組成 b + c、 および酸素 の組成 dもこの範囲内に限らないが、 この範囲外では単一相の層状構造を有する 化合物が生成しにくく、 結晶構造が不安定となり、 電池特性が低下してしまうか らである。
このリチウム複合酸化物は、 また、 リチウムを過剰に含んでおり、 第 1元素と 第 2元素との合計に対するリチウムの組成比 (リチウムノ第 1元素と第 2元素と の合計) は、 モル比で 1よりも大きくなつている。 例えば、 化学式 1に示した化 学式であれば、 a, bおよび cは a>b + cの関係を有している。 リチウムを過 剰に含むことにより、 充電時により大きな電気容量を得ることができると共に、 充電後にはリチウム複合酸化物の結晶構造中に一定量のリチウムが残り、 結晶構 造の安定性を保つことができるからである。
なお、 第 1元素と第 2元素との合計に対するリチウムの組成比 (リチウム Z第 1元素と第 2元素との合計) は、 モル比で 1よりも大きく 1. 5よりも小さい方 が好ましく、 1. 1よりも大きく 1. 5よりも小さい方がより好ましい。 例えば、 化学式 1に示した化学式であれば、 a, bおよび cは 1く aZ (b + c) < 1. 5の範囲内であることが好ましく、 1. 1 < a/ (b + c) < 1. 5の範囲内で あればより好ましい。 この範囲内でより大きな容量を得ることができるからであ る。
このような構成を有する正極材料は、 種々の方法により製造することができる が、 例えば、 水酸化リチウム (L i〇H) 、 三酸化二マンガン (Mn23 ) 、 水酸化ニッケル (N i (OH) 2 ) 、 水酸化コバルト (C o (OH) 2 ) 、 硝酸 アルミニウム (A l (N03 ) · 9 H2 O) 、 二酸化チタン (T i〇2 ) 、 シュ ゥ酸マグネシウム (Mg C24 · 2Η2 〇) あるいは三酸化二ホウ素 (Β20 ) などの原料を必要に応じて混合して焼成することにより製造することができ る。 具体的には、 これらの原料を所定比で混合し、 エタノールを分散媒に用いて ポールミルにより混合および粉砕した後、 空気中または酸素雰囲気中で焼成する なお、 原料には上述したものの他にも、 各種炭酸塩, 硝酸塩, 蓚酸塩, リン酸塩, 酸化物あるいは水酸化物を用いることができる。
このようにして製造される正極材料は、 例えば、 次のような二次電池の正極に 用いられる。
第 1図は、 本実施の形態に係る正極材料を用いた二次電池の断面構造を表すも のである。 この二次電池はいわゆるコイン型といわれるものであり、 外装缶 1 1 内に収容された円板状の正極 1 2と外装カップ 1 3内に収容された円板状の負極 1 4とが、 セパレー夕 1 5を介して積層されたものである。 外装缶 1 1および外 装カップ 1 3の内部は液状の電解質である電解液 1 6により満たされており、 外 装缶 1 1および外装カップ 1 3の周縁部は絶縁ガスケット 1 7を介してかしめら れることにより密閉されている。
外装缶 1 1および外装カップ 1 3は、 例えば、 ステンレスあるいはアルミニゥ ムなどの金属によりそれぞれ構成されている。 外装缶 1 1は正極 1 2の集電体と して機能し、 外装カップ 1 3は負極 1 4の集電体として機能するようになってい る。
正極 1 2は、 例えば、 正極活物質として本実施の形態に係る正極材料を含有し ており、 力一ポンプラックあるいはグラフアイトなどの導電剤と、 ポリフッ化ビ 二リデンなどのバインダと共に構成されている。 すなわち、 この正極 1 2は、 上 述したリチウム複合酸化物を含有している。 ちなみに、 この正極 1 2は、 例えば、 正極材料と導電剤とバインダとを混合して正極合剤を調製したのち、 この正極合 剤を圧縮成型してペレット形状とすることにより作製される。 また、 正極材料, 導電剤およびバインダに加えて、 N—メチル— 2—ピロリドンなどの溶剤を添加 して混合することにより正極合剤を調製し、 この正極合剤を乾燥させたのち圧縮 成型するようにしてもよい。 その際、 正極材料はそのまま用いても、 乾燥させて 用いてもどちらでもよいが、 水と接触すると反応し、 正極材料としての機能が損 なわれるため、 充分に乾燥させることが好ましい。
負極 1 4は、 例えば、 リチウム金属、 リチウム合金、 あるいはリチウムを吸蔵 および離脱することが可能な材料のうちのいずれか 1種または 2種以上を含んで 構成されている。 リチウムを吸蔵 ·離脱可能な材料としては、 例えば、 炭素質材 料, 金属化合物, ケィ素, ケィ素化合物あるいは導電性ポリマーが挙げられ、 こ れらのいずれか 1種または 2種以上が混合して用いられる。 炭素質材料としては、 黒鉛, 難黒鉛化性炭素あるいは易黒鉛化性炭素などが挙げられ、 金属化合物とし ては S n S i〇3あるいは S n 02などの酸化物が挙げられ、 導電性ポリマーと してはポリアセチレンあるいはポリピロ一ルなどが挙げられる。 中でも、 炭素質 材料は、 充放電時に生じる結晶構造の変化が非常に少なく、 高い充放電容量を得 ることができると共に、 良好なサイクル特性を得ることができるので好ましい。 ちなみに、 負極 14にリチウムを吸蔵 ·離脱可能な材料を含む場合には、 負極 14は例えばポリフッ化ビニリデンなどのバインダと共に構成される。 この場合、 負極 14は、 例えばリチウムを吸蔵 ·離脱可能な材料とバインダとを混合して負 極合剤を調整したのち、 得られた負極合剤を圧縮成型してペレツ卜形状とするこ とにより作製される。 また、 リチウムを吸蔵 ·離脱可能な材料およびバインダに 加えて、 N—メチル一 2—ピロリ ドンなどの溶剤を添加して混合することにより 負極合剤を調整し、 この負極合剤を乾燥させたのちに圧縮成型するようにしても よい。
セパレ一夕 1 5は、 正極 1 2と負極 14とを隔離し、 両極の接触による電流の 短絡を防止しつつ、 リチウムイオンを通過させるものである。 このセパレ一タ 1 5は、 例えば、 ポリテトラフルォロエチレン, ポリプロピレンあるいはポリェチ レンなどよりなる合成樹脂製の多孔質膜、 またはセラミック製の不織布などの無 機材料よりなる多孔質膜により構成されており、 これら 2種以上の多孔質膜を積 層した構造とされていてもよい。
電解液 1 6は、 溶媒に電解質塩としてリチウム塩を溶解させたものであり、 リ チウム塩が電離することによりイオン伝導性を示すようになつている。 リチウム 塩としては、 L i P F6 , L i C 104 , L i A s F6 , L i B F4, L i C F3 S〇3あるいは L i N (CF3 S 02 ) 2などが適当であり、 これらのうちのいず れか 1種または 2種以上が混合して用いられる。
溶媒としては、 プロピレンカーボネート、 エチレンカーボネー卜、 プチレン力 ーポネート、 ビニレン力一ポネート、 ァープチロラクトン、 スルホラン、 1, 2 ージメトキシェタン、 1, 2—ジエトキシェタン、 2—メチルテトラヒドロフラ ン、 3—メチルー 1, 3—ジォキソラン、 プロピオン酸メチル、 酪酸メチル、 ジ メチルカーボネート、 ジェチルカーポネートあるいはジプロピルカーボネートな どの非水溶媒が好ましく、 これらのうちのいずれか 1種または 2種 ¾上が混合し て用いられる。
この二次電池は次のように作用する。 この二次電池では、 充電を行うと、 例えば、 正極 1 2からリチウムイオンが離 脱し、 電解液 1 6を介して負極 1 4に吸蔵される。 放電を行うと、 例えば、 負極 1 4からリチウムイオンが離脱し、 電解液 1 6を介して正極 1 2に吸蔵される。 ここでは、 正極 1 2が第 1元素としてマンガン, ニッケルおよびコバルトからな るの群のうちの少なくとも 2種を含むリチウム複合酸化物を含有しているので、 大きな放電容量および高い放電電位が得られる。 また、 このリチウム複合酸化物 は第 2元素を含んでいるので、 結晶構造が安定しており、 充放電サイクルによる 放電容量の低下が少ない。 更に、 このリチウム複合酸化物は過剰のリチウムを含 んでいるので、 充電容量が向上し、 かつ大きな放電容量が得られると共に、 充電 後でも正極 1 2に一定量のリチウムが残り、 リチウム複合酸化物の結晶構造の安 定性がより向上し、 より優れた充放電サイクル特性が得られる。
このように本実施の形態に係る正極材料によれば、 第 1元素としてマンガン, ニッケルおよびコバルトからなるの群のうちの少なくとも 2種を含むリチウム複 合酸化物を含有するようにしたので、 大容量およぴ高電位を得ることができると 共に、 良好な経済性も得ることができる。 また、 リチウム複合酸化物が第 2元素 を含むようにしたので、 結晶構造を安定化させることができ、 充放電サイクル特 性を向上させることができる。 更に、 リチウム複合酸化物における第 1元素と第 2元素との合計に対するリチウムの組成比 (リチウム Z第 1元素と第 2元素との 合計) がモル比で 1よりも大きくなるようにしたので、 充電時の電気容量をより 向上させることができると共に、 充電後でも結晶構造中に一定量のリチゥムが残 り、 結晶構造の安定性をより向上させることができる。
よって、 この 極材料を用いれば、 大きな放電容量、 高い放電電位および優れ た充放電サイクル特性を有し、 かつ経済的にも優れた二次電池を得ることができ る。
特に、 第 1元素としてマンガンを含むようにすれば、 大容量および高電位を安 価で実現することができ、 第 1元素として更にコバルトを含むようにすれば、 よ り容量を大きくすることができる。
また、 リチウム複合酸化物の組成を化学式 1に示したように 1 . 0 < a < l . 5 , 0 . 9 < b + c < l . 1 , 1 . 8 < dく 2 . 5の範囲内とするようにすれば、 より容量を向上させることができる。
更に、 本発明の具体的な実施例について詳細に説明する。
(実施例 1〜4)
まず、 水酸化リチウム一水和物 (L i OH · H2 O) と三酸化二マンガンと水 酸化ニッケルと水酸化コバルトと硝酸アルミニウムとを、 エタノールを分散媒に 用いてポールミルにより十分に混合および粉枠した。 その際、 原料の配合モル比 を、 実施例 1〜 5で表 1に示したように変化させた。 次いで、 得られた混合物を 空気中において 600°C〜 900°Cで 12時間焼成し、 表 2に示した組成を有す るリチウム複合酸化物 L i a M I b MIIC 02、 具体的には L i a Mn。,5 N i。.2 C o0.2 A 1 o., 〇2 を合成した。
得られた実施例 1〜4のリチウム複合酸化物について、 粉末 X線回折パターン を測定した。 X線回折装置にはリガク R I NT 2 500の回転対陰極型を用いた。 なお、 この X線回折装置は、 ゴニォメータとして縦標準型半径 185mmのもの を備えていると共に、 K フィルタなどのフィルタは使用せず波高分析器と力 ゥンタモノクロメータとの組み合わせにより X線の単色化を行い、 シンチレ一シ ヨンカウンタにより特定 X線を検出するタイプのものである。 測定は、 特定 X線 として CuKo! (40 k V, 1 0 OmA) を用い、 試料面に対する入射角度 D S および試料面に対する回折線のなす角度 R Sをそれぞれ 1 ° 、 入射スリットの幅 S Sを 0. 1 5 mmとし、 連続スキャン (走査範囲 20 = 1 0° 〜90° , 走査 速度 4° /m i n) で反射法により行った。
その結果、 得られた実施例 1〜4のリチウム複合酸化物はいずれも層状構造を 有することが分かった。 第 2図に実施例 1〜4の回折パターンを焼成温度 7 0 0°Cの場合について代表して示す。 また、 第 3図に実施例 3の回折パターンを焼 成温度 650°C, 700で, 7 50°Cおよび 800 °Cの場合についてそれぞれ示 す。 なお、 実施例 1では 2 1 ° および 33° 〜34° などに不純物を示すピーク がわずかに見られたが、 実施例 2〜 4ではほとんど見られなかった。
更に、 得られた実施例 1〜4のリチウム複合酸化物を用いて、 第 1図に示した ようなコイン型の電池を作製し、 充放電特性を調べ正極材料の特性評価を行った。 電池の正極 1 2は次のようにして作製した。 まず、 合成したリチウム複合酸化 物 L i a MI b MIIC2を乾燥させて正極材料として 6 Omg抨取り、 導電剤で あるグラフアイトおよびバインダであるポリフッ化ビニリデン (アルドリツチ #
1 300 ) と共に、 溶剤である N—メチルー 2—ピロリ ドンを用いて混練し、 ぺ 一スト状の正極合剤とした。 なお、 正極材料, グラフアイトおよびポリフッ化ビ 二リデンの割合は、 正極材料 8 5質量%、 グラフアイト 1 0質量%、 ポリフッ化 ビニリデン 5質量%とした。 次いで、 この正極合剤をアルミニウムよりなる網状 の集電体と共にペレット化し、 乾燥アルゴン (A r) 気流中において 1 00°Cで 1時間乾燥させ、 正極 1 2とした。
負極 14には円板状に打ち抜いたリチウム金属板を用い、 セパレ一夕 1 5には ポリプロピレン製の多孔質膜を用い、 電解液 1 6にはエチレン力一ポネ一トとジ メチルカ一ポネートとを 1 : 1の体積比で混合した溶媒にリチウム塩として L i P F6を 1 mo 1 Z 1の濃度で溶解させたものを用いた。 電池の大きさは、 直径
20 mm, 咼さ 1. 6mmとした。
また、 充放電は次のようにして行った。 まず、 定電流で電池電圧が 4. 5Vに 達するまで定電流充電を行ったのち、 4. 5Vの定電圧で電流が 0. 0 5mAZ c m2以下となるまで定電圧充電を行った。 次いで、 定電流で電池電圧が 2. 5 Vに達するまで定電流放電を行った。 その際、 この充放電は常温 (23 ) 中で 行った。
第 4図に実施例 3における焼成温度 700°Cの場合の充放電曲線を代表して示 すと共に、 表 3にその場合の 1サイクル目における充電容量および放電容量を示 す。 なお、 第 4図において実線は 1サイクル目、 短破線は 2サイクル目、 長破線 は 3サイクル目の充放電曲線である。
また、 第 5図に焼成温度と 1サイクル目の放電容量との関係を実施例 3につい て示し、 第 6図にリチウムの組成 aと 1サイクル目の放電容量との関係を実施例 :!〜 4の焼成温度 700°Cの場合について示し、 第 7図に充放電サイクル数と放 電容量との関係を実施例 3における焼成温度 70 Otの場合について示す。
実施例 1〜4に対する比較例 1 , 2として、 原料の配合モル比を表 1に示した ように変えたことを除き、 実施例 1〜4と同様にして表 2に示した組成を有する リチウム複合酸化物 L i a M I b MIIC2、 具体的には L i Mn0.5 N i 0.2 C o0.2 A 1 o., 02または L i N i Q.8 C o 0.2 02を合成した。 比較例 1はリチウムの組成 aを 1. 0とし、 第 1元素と第 2元素との合計に対するリチウムの組成比 (b + c) を 1としたことを除き、 実施例 1〜4と組成が同一のものである。 比 較例 2はリチウムの組成 aを 1. 0とし、 第 1元素と第 2元素との合計に対する リチウムの組成比 a/ (b + c) を 1とすると共に、 第 1元素であるマンガンお よび第 2元素を含まないものである。
比較例 1, 2のリチウム複合酸化物についても、 実施例 1〜4と同様にして粉 末 X線回折パターンを測定した。 その結果、 比較例 1 , 2のリチウム複合酸化物 についても層状構造を有することが分かった。 第 8図に比較例 1の回折パターン を焼成温度 6 5 0 V, 7 0 0°Cおよび 7 5 0 °Cの場合についてそれぞれ示し、 第 9図に比較例 2の回折パターンを焼成温度 7 8 0での場合について示す。 なお、 比較例 1では、 実施例 1と同様に不純物を示すピークが見られた。
また、 比較例 1, 2のリチウム複合酸化物を用いて、 実施例 1〜4と同様にし てコイン型の電池を作製し、 同様にして特性評価を行った。 第 1 0図に比較例 1 における焼成温度 7 0 0での場合の充放電曲線を代表して示し、 第 1 1図に比較 例 2における焼成温度 7 8 0での場合の充放電曲線を代表して示すと共に、 表 3 にそれらの場合の 1サイクル目における充電容量および放電容量を示す。 なお、 第 1 0図おょぴ第 1 1図における充放電曲線は 1サイクル目のものである。 第 4図, 第 1 0図, 第 1 1図および表 3から分かるように、 第 1元素と第 2元 素との合計に対するリチウムの組成比 a/ (b + c) が 1. 3である実施例 3に よれば、 組成比 aZ (b + c) が 1. 0の比較例 1 , 2よりも、 充電容量および 放電容量について大きな値が得られた。 すなわち、 第 1元素と第 2元素との合計 に対するリチウムの組成比 a/ (b + c) を 1. 0よりも大きくするようにすれ ば、 充電容量を大きくすることができ、 放電容量も大きくできることが分かった また、 比較例 1では、 放電末期の電圧が低かった。 これは結晶構造に変化が起こ つたためであると考えられる。 すなわち、 第 1元素と第 2元素との合計に対する リチウムの組成比 a/ (b + c) を 1. 0よりも大きくするようにすれば、 結晶 構造の安定性を向上させることができると思われる。
なお、 第 5図から分かるように、 焼成温度は 7 0 0°Cとした場合により大きな 放電容量が得られた。
また、 第 6図から分かるように、 放電容量はリチウムの組成 aを大きくすると 大きくなり、 aが 1. 3前後において極大値を示したのち、 小さくなる傾向が見 られた。 すなわち、 リチウムの組成 aを 1. 0く a<l. 5の範囲内、 更には 1. l<a<l. 5の範囲内とすれば、 または第 1元素と第 2元素との合計に対する リチウムの組成比 aZ (b + c) を 1. 0<aZ (b + c) < 1. 5の範囲内、 更には 1. l<aZ (b + c) <1. 5の範囲内とすれば、 より大きな放電容量 を得られることが分かった。
更に、 第 7図から分かるように、 実施例 3によれば、 充放電を繰り返しても放 電容量の劣化はほとんど見られなかった。 すなわち、 第 1元素と第 2元素との合 計に対するリチウムの組成比 aノ (b + c) を 1. 0よりも大きくするようにす れば、 優れた充放電サイクル特性を得られることも分かった。
加えて、 第 4図および第 1 1図から分かるように、 第 1元素としてマンガンを 含む実施例 3の方が、 マンガンを含まない比較例 2よりも、 高い電池電圧を得る ことができた。 すなわち、 第 1元素としてマンガンを含むようにすれば、 より高 い放電電圧を得られることが分かつた。
また、 実施例 1〜4に対する比較例 3として、 水酸化リチウム一水和物と三酸 化二マンガンと硝酸クロム (C r (N03 ) 3 · 9 H2 O) とを表 4に示した配合 モル比で配合し、 エタノールを分散媒に用いてポールミルにより十分に混合およ び粉碎したのち、 空気中において 1000°Cで 1 2時間焼成することにより、 第 2元素としてクロム (C r) を含むリチウム複合酸化物 L i Mn。.9 C!:。., 〇2 を合成した。
比較例 3のリチウム複合酸化物についても、 実施例 1〜4と同様にして粉末 X 線回折パターンを測定した。 その結果、 比較例 3のリチウム複合酸化物について も層状構造を有することが分かった。 第 12図に比較例 3の回折パターンを示す。 また、 比較例 3のリチウム複合酸化物を用いて、 実施例 1〜4と同様にしてコ イン型の電池を作製し、 同様にして特性評価を行った。 第 1 3図に比較例 3の充 放電曲線を示す。 第 1 3図において実線は 1サイクル目、 短破線は 2サイクル目、 長破線は 3サイクル目、 1点破線は 4サイクル目、 点線は 5サイクル目の充放電 曲線である。
第 4図および第 13図から分かるように、 第 2元素としてアルミニウムを含む 実施例 3に対して、 第 2元素としてクロムを含む比較例 3では、 1サイクル目の 充電容量は 252mAhZgと大きかったが、 1サイクル目の放電容量は 148 mAhZgと小さかった。 また、 充放電サイクルを繰り返すと、 充電容量および 放電容量が減少すると共に、 放電電圧も低くなつた。 すなわち、 第 2元素として アルミニウムを含むようにすれば結晶構造を安定化させることができるのに対し て、 第 2元素としてクロムを含むようにしてもそのような効果は得られないこと が分かった。
(実施例 5)
原料の配合モル比を表 5に示したように変えたことを除き、 実施例 1 ~4と同 様にして表 6に示した組成を有するリチウム複合酸化物 L i a M I b MIIC2、 具体的には L i ,.3 Μηβ.5 N i。.4 A 10., 02を合成した。 実施例 5は第 1元素の 組成を (Mn5/9 N i4/9 ) としたことを除き、 実施例 3と組成が同一のものであ る。
実施例 5のリチウム複合酸化物についても、 実施例 1〜4と同様にして粉末 X 線回折パターンを測定した。 その結果、 実施例 5のリチウム複合酸化物について も層状構造を有することが分かった。 第 14図に実施例 5の回折パターンを焼成 温度 750での場合について代表して示す。
また、 実施例 5のリチウム複合酸化物を用いて、 実施例 1〜4と同様にしてコ イン型の電池を作製し、 同様にして特性評価を行った。 第 15図に実施例 5にお ける焼成温度 600での場合の充放電曲線を代表して示すと共に、 表 7にその場 合の 1サイクル目における充電容量および放電容量を実施例 3の結果と合わせて 示す。
第 4図, 第 15図および表 7から分かるように、 第 1元素としてコバルトを含 む実施例 3の方が、 コバルトを含まない実施例 5よりも、 充電容量および放電容 量について共に大きな値を得られた。 すなわち、 第 1元素にコバルトを更に含む ようにすれば、 より大きな容量を得られることが分かった。
なお、 上記実施例では、 リチウム複合酸化物の組成について一例を挙げて説明 したが、 上記実施の形態で説明した組成の範囲内であれば、 他の組成を有するも のでも同様の効果を得ることができる。
以上、 実施の形態および実施例を挙げて本発明を説明したが、 本発明は上記実 施の形態および実施例に限定されるものではなく、 種々変形可能である。 例えば、 上記実施の形態および実施例では、 リチウム複合酸化物がリチウムと、 第 1元素 と、 第 2元素と、 酸素とを含む場合について説明したが、 更に他の元素を含んで いてもよい。
また、 上記実施の形態およ ^実施例では、 正極材料として上述した組成のリチ ゥム複合酸化物を含む場合について説明したが、 このリチウム複合酸化物に加え て、 L i C o 02 , L i N i 〇2 , L i M n O 2あるいは L i M n 2 O 4などの他 のリチウム複合酸化物、 またはリチウム硫化物、 または L i M n x F e Y P〇4な どのリチウム含有リン酸塩、 または高分子材料などが混合されてもよい。
更に、 上記実施の形態および実施例では、 液状の電解質である電解液を用いる 場合について説明したが、 他の電解質を用いるようにしてもよい。 他の電解質と しては、 例えば、 電解液を高分子化合物に保持させたゲル状電解質、 イオン伝導 性を有する高分子化合物に電解質塩を分散させた有機固体電解質、 イオン伝導性 セラミックス, ィォン伝導性ガラスあるいはィォン性結晶などよりなる無機固体 電解質、 またはこれらの無機固体電解質と電解液とを混合したもの、 またはこれ らの無機固体電解質とゲル状の電解質あるいは有機固体電解質とを混合したもの が挙げられる。
加えて、 上記実施の形態および実施例では、 コイン型の二次電池を具体的に挙 げて説明したが、 本発明は他の構造を有する円筒型や、 ポタン型あるいは角型な ど他の形状を有する二次電池、 または巻回構造などの他の構造を有する二次電池 についても同様に適用することができる。
更にまた、 上記実施の形態および実施例では、 本発明の正極材料を二次電池に 用いる場合について説明したが、 一次電池などの他の電池についても同様に適用 することができる。
以上説明したように本発明の正極材料によれば、 第 1元素としてマンガン, 二 ッケルおよびコバルトからなるの群のうちの少なくとも 2種を含むリチウム複合 酸化物を含有するようにしたので、 大容量および高電位を得ることができると共 に、 良好な経済性も得ることができる。 また、 リチウム複合酸化物が第 2元素を 含むようにしたので、 結晶構造を安定化させることができ、 充放電サイクル特性 を向上させることができる。 更に、 リチウム複合酸化物における第 1元素と第 2 元素との合計に対するリチウムの組成比 (リチウム Z第 1元素と第 2元素との合 計) がモル比で 1よりも大きくなるようにしたので、 充電時の電気容量をより向 上させることができると共に、 充電後でも結晶構造中に一定量のリチウムが残り、 結晶構造の安定性をより向上させることができる。
特に、 本発明の一局面における正極材料によれば、 第 1元素としてマンガンを 含むようにしたので、 大容量および高電位を安価で実現することができる。
また、 本発明の他の局面における正極材料によれば、 リチウム複合酸化物の組 成を化学式 1 に示したように 1 . 0 < aく 1 . 5 , 0 . 9 < b + c < 1 . 1, a > b + c, 1 . 8 < d < 2 . 5の範囲内とするようにしたので、 より容量を向上 させることができる。
更に、 本発明の他の局面における電池によれば、 本発明の正極材料を用いるよ うにしたので、 大きな放電容量、 高い放電電位および優れた充放電サイクル特性 を得ることができると共に、 優れた経済性も得ることができる。
以上の説明に基づき、 本発明の種々の態様や変形例を実施可能であることは明 らかである。 したがって、 以下のクレームの均等の範囲において、 上記の詳細な 説明における態様以外の態様で本発明を実施することが可能である。
0 01 ΟΊ Z M鹏
ΓΟ 6·0 O'T (6/¾
IV つ 6/¾iN6/SU]/J)
T I)細 ro 6Ό t IV (6/¾36, 6/SuW)
ΙΌ 6Ό ε·ΐ IV (6/ つ 6 iN6/¾w)
ε画牽 ro 6·0 ζ-\ IV (6, つ6/ 6, ]A[) ro 6Ό VI IV
0 腦 m
q
20°I q Bn
( s挲)
Figure imgf000018_0001
( X挲)
L99ll/Z0d£/∑Jd 9ΐ £61贿£0 OAV (表 3 )
Figure imgf000019_0001
(表 4 )
Figure imgf000019_0002
(表 5 ) 配合モル比
LiOH-H20 Mn203 Ni(OH)2 Co(OH)2 Α1(Ν03)3·9Η20 実施例 5 1.3 0.25 0.4 0 0.1
(表 6 )
Figure imgf000020_0001
(表 7 ) 充電容量 放電容量 (mAh/g) (mAh/g) 実施例 3 250 203 実施例 5 215 175

Claims

請求の範囲
1. リチウム (L i ) と、 マンガン (Mn) , ニッケル (N i ) およびコバルト (Co) からなるの群のうちの少なくとも 2種の第 1元素と、 アルミニウム (A 1 ) , チタン (T i) , マグネシウム (Mg) およぴホウ素 (B) からなる群の うちの少なくとも 1種の第 2元素とを含むリチウム複合酸化物を含有し、 前記第 1元素と前記第 2元素との合計に対する前記リチウムの組成比 (リチウ ム Z第 1元素と第 2元素との合計) は、 モル比で 1よりも大きい
ことを特徴とする正極材料。
2. 前記第 1元素はマンガンを含むことを特徴とする請求の範囲第 1項記載の正 極材料。
3. 前記リチウム複合酸化物の化学式は、 化学式 2で表されることを特徴とする 請求の範囲第 1項記載の正極材料。
(化学式 2)
L i a M I b MIICd
(式中、 M Iは第1元素、 Mil は第 2元素をそれぞれ表し、 a, b, cおよび dは、 1. 0<aく 1. 5, 0. 9く b + cく 1. 1, a>b + c , 1. 8く d ぐ 2. 5をそれぞれ満たす範囲内である。 )
4. 正極および負極と共に電解質を備えた電池であって、
前記正極は、 リチウム (L i ) と、 マンガン (Μη) , ニッケル (N i ) およ ぴコバルト (Co) からなるの群のうちの少なくとも 2種の第 1元素と、 アルミ ニゥム (A 1) , チタン (T i ) , マグネシウム (Mg) およびホウ素 (B) か らなる群のうちの少なくとも 1種の第 2元素とを含むリチウム複合酸化物を含有 し、
前記第 1元素と前記第 2元素との合計に対する前記リチウムの組成比 (リチウ ム /第 1元素と第 2元素との合計) は、 モル比で 1よりも大きい
ことを特徴とする電池。
5. 前記第 1元素はマンガンを含むことを特徴とする請求の範囲第 4項記載の電 池。
6. 前記リチウム複合酸化物の化学式は、 化学式 3で表されることを特徴とする 請求の範囲第 4項記載の電池。
(化学式 3)
L i a M I b MIIC Od
(式中、 1^ 1は第1元素、 Mil は第 2元素をそれぞれ表し、 a, b, cおよび dは、 1. 0<aく 1. 5, 0. 9<b + cく 1. 1, a>b + c , 1. 8<d < 2. 5をそれぞれ満たす範囲内である。 )
PCT/JP2002/011667 2001-11-09 2002-11-08 Materiau a plaque positive et cellule le comprenant WO2003041193A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/466,014 US9054378B2 (en) 2001-11-09 2002-11-08 Positive plate material and cell comprising it
KR10-2003-7009123A KR20040052463A (ko) 2001-11-09 2002-11-08 양극 재료 및 그것을 사용한 전지
EP02780051A EP1443575B1 (en) 2001-11-09 2002-11-08 Positive plate material and cell comprising it
CA2431948A CA2431948C (en) 2001-11-09 2002-11-08 Positive plate material and cell comprising it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001344224A JP3873717B2 (ja) 2001-11-09 2001-11-09 正極材料およびそれを用いた電池
JP2001-344224 2001-11-09

Publications (1)

Publication Number Publication Date
WO2003041193A1 true WO2003041193A1 (fr) 2003-05-15

Family

ID=19157779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/011667 WO2003041193A1 (fr) 2001-11-09 2002-11-08 Materiau a plaque positive et cellule le comprenant

Country Status (8)

Country Link
US (1) US9054378B2 (ja)
EP (1) EP1443575B1 (ja)
JP (1) JP3873717B2 (ja)
KR (1) KR20040052463A (ja)
CN (1) CN1293655C (ja)
CA (1) CA2431948C (ja)
TW (1) TWI285975B (ja)
WO (1) WO2003041193A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040404A1 (fr) 2000-11-16 2002-05-23 Hitachi Maxell, Ltd. Oxyde composite a teneur en lithium et cellule secondaire non aqueuse utilisant cet oxyde, et procede de fabrication associe
US20050042489A1 (en) * 2003-07-11 2005-02-24 Kenji Fukuta Laminate useful as a membrane-electrode assembly for fuel cells, production process therefor and a fuel cell provided with the laminate
US8119285B2 (en) * 2003-10-27 2012-02-21 Mitsui Engineering & Shipbuilding Co., Ltd. Cathode material for secondary battery, method for producing cathode material for secondary battery and secondary battery
CN100438154C (zh) * 2004-04-30 2008-11-26 清美化学股份有限公司 锂二次电池正极用含锂复合氧化物的制造方法
US7381496B2 (en) * 2004-05-21 2008-06-03 Tiax Llc Lithium metal oxide materials and methods of synthesis and use
JP2005339887A (ja) * 2004-05-25 2005-12-08 Sanyo Electric Co Ltd 非水電解質二次電池
CN1316652C (zh) * 2004-10-21 2007-05-16 北京化工大学 一种层间掺杂碱土金属的钴酸锂电池材料及其制备方法
CN100377390C (zh) * 2004-12-07 2008-03-26 深圳市比克电池有限公司 含锰钴镍的锂复合氧化物的制备方法
JP4995424B2 (ja) * 2005-02-08 2012-08-08 セイコーインスツル株式会社 リチウム二次電池
KR20070065803A (ko) * 2005-12-20 2007-06-25 소니 가부시끼 가이샤 정극 활물질과 리튬 이온 2차 전지
CN101443273B (zh) 2006-02-17 2014-05-07 株式会社Lg化学 锂-金属复合氧化物的制备方法
CN101426728B (zh) * 2006-02-17 2012-10-03 株式会社Lg化学 锂金属复合氧化物和使用其的电化学装置
WO2007142275A1 (ja) 2006-06-09 2007-12-13 Agc Seimi Chemical Co., Ltd. 非水電解質二次電池用正極活物質及びその製造方法
US20080280205A1 (en) * 2007-05-07 2008-11-13 3M Innovative Properties Company Lithium mixed metal oxide cathode compositions and lithium-ion electrochemical cells incorporating same
FR2937633B1 (fr) * 2008-10-24 2010-11-19 Saft Groupe Sa Materiau d'electrode positive pour accumulateur lithium-ion
CN103069623B (zh) 2010-08-09 2015-07-22 株式会社村田制作所 电极活性物质及具备该电极活性物质的非水电解质二次电池
KR20120030774A (ko) * 2010-09-20 2012-03-29 삼성에스디아이 주식회사 양극 활물질, 이의 제조방법 및 이를 이용한 리튬 전지
KR20130139941A (ko) 2010-10-29 2013-12-23 아사히 가라스 가부시키가이샤 리튬 이온 이차 전지용 정극 활물질, 정극, 전지 및 제조 방법
JP2012142157A (ja) * 2010-12-28 2012-07-26 Sony Corp リチウムイオン二次電池、正極活物質、正極、電動工具、電動車両および電力貯蔵システム
JP2012142155A (ja) * 2010-12-28 2012-07-26 Sony Corp リチウム二次電池、正極活物質、正極、電動工具、電動車両および電力貯蔵システム
JP2012142154A (ja) 2010-12-28 2012-07-26 Sony Corp リチウムイオン二次電池、電動工具、電動車両および電力貯蔵システム
JP2014075177A (ja) * 2011-01-27 2014-04-24 Asahi Glass Co Ltd リチウムイオン二次電池用の正極活物質およびその製造方法
CN104205434B (zh) * 2012-03-26 2017-01-18 索尼公司 正极活性材料、正极、二次电池、电池组、电动车辆、电力存储系统、电动工具、以及电子设备
CN112614988B (zh) * 2020-12-15 2021-10-19 蜂巢能源科技有限公司 一种正极材料及其制备方法与用途

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05242891A (ja) * 1991-11-13 1993-09-21 Sanyo Electric Co Ltd 非水系電池
JPH0878007A (ja) 1994-09-07 1996-03-22 Yuasa Corp リチウム二次電池
JPH0878006A (ja) * 1994-09-06 1996-03-22 Yuasa Corp リチウム二次電池
JPH0878009A (ja) * 1994-09-07 1996-03-22 Yuasa Corp リチウム二次電池
JPH08315819A (ja) * 1995-05-23 1996-11-29 Yuasa Corp 二次電池
JPH09237624A (ja) * 1996-02-27 1997-09-09 Sanyo Electric Co Ltd リチウム電池
JPH10294100A (ja) * 1997-04-21 1998-11-04 Fuji Photo Film Co Ltd リチウムイオン非水電解質二次電池
JPH10316431A (ja) * 1997-05-14 1998-12-02 Fuji Chem Ind Co Ltd リチウムニッケル複合酸化物及びその製造方法並びにリチウム二次電池用正極活物質
JPH1116571A (ja) * 1997-06-23 1999-01-22 Hitachi Ltd 電池およびそれを用いた電気装置
JP2000315502A (ja) * 1999-04-30 2000-11-14 Dowa Mining Co Ltd 正極活物質と該正極活物質を用いたリチウム二次電池
JP2000323143A (ja) * 1999-04-30 2000-11-24 Dowa Mining Co Ltd 正極活物質と該正極活物質を用いたリチウム二次電池
JP2000340229A (ja) * 1999-05-31 2000-12-08 Hitachi Maxell Ltd 非水二次電池
JP2000340230A (ja) * 1999-05-31 2000-12-08 Dowa Mining Co Ltd 正極活物質および非水系二次電池
JP2000348724A (ja) 1999-06-07 2000-12-15 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウムニッケル複合酸化物およびそれを用いたリチウム二次電池
JP2001135314A (ja) * 1999-11-05 2001-05-18 Mitsubishi Chemicals Corp リチウム二次電池用正極材料並びにこれを用いた正極及びリチウム二次電池
JP2002124261A (ja) * 1999-11-29 2002-04-26 Mitsui Chemicals Inc リチウム二次電池用正極活物質および電池
JP2002124257A (ja) * 2000-10-13 2002-04-26 Denso Corp 非水電解質二次電池
JP2002222648A (ja) * 2001-01-24 2002-08-09 Toshiba Corp 正極活物質,その製造方法およびリチウムイオン二次電池

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE443531B (sv) * 1978-11-27 1986-03-03 Asea Ab Industrirobotutrustning
FR2461556A1 (fr) * 1979-07-18 1981-02-06 Bretagne Atel Chantiers Bras de manipulation a distance
JP2713899B2 (ja) * 1987-03-30 1998-02-16 株式会社日立製作所 ロボツト装置
JPH01252389A (ja) * 1988-03-31 1989-10-09 Agency Of Ind Science & Technol マニピュレータ及びその制御方法
CA2057744C (en) 1990-12-17 2003-09-23 David B. Tuckerman Multichip module
CA2162456C (en) * 1994-11-09 2008-07-08 Keijiro Takanishi Cathode material, method of preparing it and nonaqueous solvent type secondary battery having a cathode comprising it
US5993998A (en) * 1996-12-20 1999-11-30 Japan Storage Battery Co., Ltd. Positive active material for lithium battery, lithium battery having the same and method for producing the same
JP3624663B2 (ja) * 1996-12-24 2005-03-02 株式会社日立製作所 電池
US6207325B1 (en) * 1997-05-19 2001-03-27 Showa Denko K.K. Lithium-containing complex metal oxide, preparation methods thereof, and cathode electroactive material using the same and lithium secondary cells
US6517974B1 (en) * 1998-01-30 2003-02-11 Canon Kabushiki Kaisha Lithium secondary battery and method of manufacturing the lithium secondary battery
JPH11307094A (ja) * 1998-04-20 1999-11-05 Chuo Denki Kogyo Co Ltd リチウム二次電池用正極活物質とリチウム二次電池
FR2784233B1 (fr) * 1998-10-01 2000-12-15 Cit Alcatel Matiere active cathodique pour generateur electrochimique rechargeable au lithium
JP4110435B2 (ja) * 1998-11-04 2008-07-02 戸田工業株式会社 リチウムイオン二次電池用正極活物質
EP1137598B2 (en) * 1998-11-13 2016-03-16 Umicore Layered lithium metal oxides free of localized cubic spinel-like structural phases and methods of making same
JP3600051B2 (ja) * 1998-12-25 2004-12-08 三洋電機株式会社 リチウム二次電池
JP3869605B2 (ja) * 1999-03-01 2007-01-17 三洋電機株式会社 非水電解質二次電池
JP4159212B2 (ja) * 1999-11-12 2008-10-01 三洋電機株式会社 非水電解質二次電池
US6998069B1 (en) * 1999-12-03 2006-02-14 Ferro Gmbh Electrode material for positive electrodes of rechargeable lithium batteries
US6266565B1 (en) * 1999-12-06 2001-07-24 Pacesetter, Inc. Method and apparatus for detecting and displaying P-wave and R-wave histograms for an implant medical device
US6623886B2 (en) * 1999-12-29 2003-09-23 Kimberly-Clark Worldwide, Inc. Nickel-rich quaternary metal oxide materials as cathodes for lithium-ion and lithium-ion polymer batteries
KR100542184B1 (ko) * 2001-07-19 2006-01-10 삼성에스디아이 주식회사 전지용 활물질 및 그의 제조 방법

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05242891A (ja) * 1991-11-13 1993-09-21 Sanyo Electric Co Ltd 非水系電池
JPH0878006A (ja) * 1994-09-06 1996-03-22 Yuasa Corp リチウム二次電池
JPH0878007A (ja) 1994-09-07 1996-03-22 Yuasa Corp リチウム二次電池
JPH0878009A (ja) * 1994-09-07 1996-03-22 Yuasa Corp リチウム二次電池
JPH08315819A (ja) * 1995-05-23 1996-11-29 Yuasa Corp 二次電池
JPH09237624A (ja) * 1996-02-27 1997-09-09 Sanyo Electric Co Ltd リチウム電池
JPH10294100A (ja) * 1997-04-21 1998-11-04 Fuji Photo Film Co Ltd リチウムイオン非水電解質二次電池
JPH10316431A (ja) * 1997-05-14 1998-12-02 Fuji Chem Ind Co Ltd リチウムニッケル複合酸化物及びその製造方法並びにリチウム二次電池用正極活物質
JPH1116571A (ja) * 1997-06-23 1999-01-22 Hitachi Ltd 電池およびそれを用いた電気装置
JP2000315502A (ja) * 1999-04-30 2000-11-14 Dowa Mining Co Ltd 正極活物質と該正極活物質を用いたリチウム二次電池
JP2000323143A (ja) * 1999-04-30 2000-11-24 Dowa Mining Co Ltd 正極活物質と該正極活物質を用いたリチウム二次電池
JP2000340229A (ja) * 1999-05-31 2000-12-08 Hitachi Maxell Ltd 非水二次電池
JP2000340230A (ja) * 1999-05-31 2000-12-08 Dowa Mining Co Ltd 正極活物質および非水系二次電池
JP2000348724A (ja) 1999-06-07 2000-12-15 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウムニッケル複合酸化物およびそれを用いたリチウム二次電池
JP2001135314A (ja) * 1999-11-05 2001-05-18 Mitsubishi Chemicals Corp リチウム二次電池用正極材料並びにこれを用いた正極及びリチウム二次電池
JP2002124261A (ja) * 1999-11-29 2002-04-26 Mitsui Chemicals Inc リチウム二次電池用正極活物質および電池
JP2002124257A (ja) * 2000-10-13 2002-04-26 Denso Corp 非水電解質二次電池
JP2002222648A (ja) * 2001-01-24 2002-08-09 Toshiba Corp 正極活物質,その製造方法およびリチウムイオン二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1443575A4 *

Also Published As

Publication number Publication date
CN1484866A (zh) 2004-03-24
EP1443575B1 (en) 2012-02-01
TWI285975B (en) 2007-08-21
JP2003151548A (ja) 2003-05-23
CN1293655C (zh) 2007-01-03
CA2431948A1 (en) 2003-05-15
US9054378B2 (en) 2015-06-09
TW200301581A (en) 2003-07-01
JP3873717B2 (ja) 2007-01-24
CA2431948C (en) 2011-01-11
US20040053133A1 (en) 2004-03-18
KR20040052463A (ko) 2004-06-23
EP1443575A1 (en) 2004-08-04
EP1443575A4 (en) 2009-04-01

Similar Documents

Publication Publication Date Title
WO2003041193A1 (fr) Materiau a plaque positive et cellule le comprenant
KR100778649B1 (ko) 양극 재료 및 그것을 사용한 전지
US6814764B2 (en) Method for producing cathode active material and method for producing non-aqueous electrolyte cell
JP2004319105A (ja) 正極活物質及びそれを用いた非水電解質二次電池
WO2002054512A1 (en) Positive electrode active material and nonaqueous electrolyte secondary cell
JPH08213052A (ja) 非水電解質二次電池
JP2011129442A (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2004362934A (ja) 正極材料および電池
JP2002025617A (ja) 非水電解質二次電池
JP2006024415A (ja) 正極材料および電池
JP4106651B2 (ja) リチウム二次電池用の正極材料およびその製造方法、並びにそれを用いたリチウム二次電池
KR101083860B1 (ko) 양극 재료 및 그의 제조 방법, 및 그것을 이용한 전지
JPH09199172A (ja) 非水電解液二次電池
JP4250889B2 (ja) 正極材料の製造方法
JP2018107117A (ja) 負極活物質、および、電気化学デバイス
JP6931796B2 (ja) 電気化学デバイス
JP2002184404A (ja) 正極材料および非水電解質電池
JP4244427B2 (ja) 非水電解質電池
JP2569664B2 (ja) 非水電解液二次電池
KR100405884B1 (ko) 음전극탄소질재료와그제조방법및그를이용한비수용성전해질형2차전지
JPH1021910A (ja) 非水電解液二次電池
JP2004234957A (ja) リチウム二次電池及びリチウム二次電池用正極活物質の製造方法
JPH09245796A (ja) リチウム二次電池用正極材料
JP2001035491A (ja) 正極材料およびそれを用いた電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

WWE Wipo information: entry into national phase

Ref document number: 2431948

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002780051

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020037009123

Country of ref document: KR

Ref document number: 028035224

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10466014

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020037009123

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002780051

Country of ref document: EP