WO2007142275A1 - 非水電解質二次電池用正極活物質及びその製造方法 - Google Patents

非水電解質二次電池用正極活物質及びその製造方法 Download PDF

Info

Publication number
WO2007142275A1
WO2007142275A1 PCT/JP2007/061485 JP2007061485W WO2007142275A1 WO 2007142275 A1 WO2007142275 A1 WO 2007142275A1 JP 2007061485 W JP2007061485 W JP 2007061485W WO 2007142275 A1 WO2007142275 A1 WO 2007142275A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
aluminum
composite oxide
active material
Prior art date
Application number
PCT/JP2007/061485
Other languages
English (en)
French (fr)
Inventor
Yukimitsu Wakasugi
Takeshi Kawasato
Yukiko Amagasaki
Nozomi Honda
Original Assignee
Agc Seimi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc Seimi Chemical Co., Ltd. filed Critical Agc Seimi Chemical Co., Ltd.
Priority to CN200780001244XA priority Critical patent/CN101356671B/zh
Priority to JP2008520608A priority patent/JP4909347B2/ja
Publication of WO2007142275A1 publication Critical patent/WO2007142275A1/ja
Priority to US12/100,567 priority patent/US8021785B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a positive electrode active material used for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.
  • a manufacturing method thereof, and a lithium secondary battery including the positive electrode active material are provided.
  • non-aqueous electrolyte secondary batteries such as lithium secondary batteries having a small size, light weight, and high energy density have been developed with the rapid development of information-related equipment and communication equipment such as personal computers and mobile phones.
  • Positive electrode active materials for non-aqueous electrolyte secondary batteries include lithium and transition metal compounds such as LiCoO, LiNiO, LiNi CoO, and LiMnO.
  • lithium cobalt composite oxide (LiCoO) is used as a positive electrode active material
  • Lithium secondary batteries using carbon such as rum alloy, graphite, and carbon fiber as a negative electrode are particularly widely used as batteries having a high energy density because they can provide a high voltage of 4V.
  • the raw material compound which is a cobalt source of the lithium conodium complex oxide is scarce and expensive.
  • lithium nickel composite oxide (LiNiO) using relatively inexpensive nickel is expensive.
  • Lithium-manganese composite oxide with a built-in structure makes it a battery with high thermal stability.
  • lithium-nickel-manganese (Li—Ni—Mn) complex oxide lithium-nickel cobalt (Li Positive electrode active materials such as Ni—Co) composite oxide and lithium nickel manganese cobalt (Li—Ni—Mn—Co) composite oxide have attracted attention.
  • these positive electrode active materials containing two or more transition metal elements have a discharge capacity, charge / discharge cycle characteristics related to a decrease in discharge capacity due to repeated charge / discharge, and an electric capacity that can be discharged in a short time.
  • the rate characteristics and thermal stability during heating after charging in this specification, there are cases where it is simply referred to as safety) t, and those satisfying all the characteristics are obtained.
  • Patent Literature Li—Ni—Mn—Co—A1 composite oxide obtained by further mixing an aluminum compound with a lithium compound, nickel compound, cobalt compound, and manganese compound and firing the same has been proposed (Patent Literature). 1, see Patent Document 2).
  • Li Mn Ni O is dispersed in an aqueous solution of A1 (CH 2 COCHCOCH 3)
  • Synthesize oxide The lithium-containing composite oxide and powdered metal aluminum are added to water to form a slurry, which is further stirred to dissolve the metal aluminum, and then dried at 80 ° C. to obtain a surface of the obtained composite oxide.
  • a lithium-containing composite oxide covered with a layer containing aluminum hydroxide, aluminum oxide and lithium carbonate see Patent Document 4).
  • LiMn Ni Co O, Li Mn Ni Co O, or Li Mn Ni can be prepared by mixing and firing lithium carbonate, manganese dioxide, acid nickel, and acid cobalt.
  • a lithium-containing composite oxide having any composition of Co 2 O is synthesized.
  • Patent Document 5 Japanese Patent Laid-Open No. 9-237631
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-151548
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-310744
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2005-322616
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2005-346956
  • the charging voltage is generally 4.3 V.
  • the charging voltage is increased, the proportion of available positive electrode active material is increased, and the discharge capacity is further increased. Improvement is desired.
  • the utilization rate of the positive electrode active material is 50 to 60%.
  • the utilization rate can be improved to about 70% and the discharge capacity is increased. Can be dramatically improved.
  • the lithium-containing composite oxides obtained in Patent Documents 1 to 5 above do not have sufficient charge / discharge cycle characteristics at a charging voltage of 4.3 V, and are charged at a high operating voltage of a charging voltage of 4.5 V. The discharge cycle characteristics are even worse.
  • An object of the present invention is to provide a positive electrode active material for a nonaqueous electrolyte secondary battery having a high discharge capacity even at a high operating voltage with high safety and excellent charge / discharge cycle characteristics, a method for producing the same, and It is intended to provide a nonaqueous electrolyte secondary battery such as a lithium secondary battery containing the positive electrode active material.
  • the inventors of the present invention have obtained lithium-containing composite oxide particles having a specific composition, and the surface of the specific surface region containing a relatively high specific concentration of aluminum. It has been found that the above object can be achieved by a positive electrode active material comprising modified lithium-containing composite oxide particles. That is, by using a positive electrode, It has been found that even a high operating voltage with high integrity has a high discharge capacity and excellent charge / discharge cycle characteristics can be achieved.
  • the mechanism of why excellent characteristics are achieved by the above lithium-containing composite oxide particles is not necessarily clear! Is done.
  • a decomposition reaction of the electrolyte occurs at the interface between the lithium-containing composite oxide particles and the electrolyte, and a gas containing carbon dioxide is generated. Occurs.
  • the above-described conventional lithium-containing composite oxide particles contain aluminum, the aluminum content is not so large, and the aluminum content in the surface layer is not particularly large.
  • the lithium-containing composite oxide powder described in Patent Document 1 or Patent Document 2 described above is baked at a high temperature after the addition of aluminum powder, and therefore contains aluminum at substantially the same concentration throughout.
  • the atomic ratio of aluminum in the surface layer of the powder within 5 nm is at most about 0.7 with respect to the total of Ni and element M.
  • the element M represents an element containing cobalt, manganese or both contained in the lithium-containing composite oxide particles.
  • Patent Document 3 the force of impregnating aluminum by treating the surface of the lithium-containing composite oxide powder with a suspension or solution containing aluminum.
  • the amount of aluminum added is extremely small. Because it is processed at high temperature, the atomic ratio of aluminum to the total of Ni and element M within the surface layer of the particle within 5 nm is about 0.7 at most.
  • Patent Document 4 since the surface layer of the lithium-containing composite oxide includes not only aluminum hydroxide and aluminum oxide but also lithium carbonate, the surface layer of the lithium-containing composite oxide is within 5 nm. There is a tendency for the atomic ratio of aluminum to the sum of Ni and element M to be low, and the atomic ratio is at most about 0.7.
  • lithium-containing composite oxide powder and aluminum compound are mixed by a ball mill and then heat-treated at a high temperature.
  • the surface layer of the powder is within 5 nm.
  • the atomic ratio of aluminum in is about 0.7 at most with respect to the total of Ni and element M.
  • the present invention is based on the above-described novel findings and has the following gist.
  • L is an element selected from transition metals other than Ni, Co and Mn, alkaline earth metals and aluminum. 0. 9 ⁇ p ⁇ l. 1, 0.9.9 ⁇ x ⁇ l. 1, 0.2 ⁇ y ⁇ 0. 9, 0 ⁇ z ⁇ 0.3) 3) lithium-containing composite oxide particles
  • the surface-modified lithium-containing composite oxide particles whose surface layer contains aluminum and whose atomic ratio is 0.8 or more with respect to the total amount of aluminum content Ni and element M within 5 nm of the surface layer
  • the lithium-containing composite oxide particles are at least one kind of particles selected from the group consisting of lithium nickel cobaltate, lithium nickel manganate, and nickel cobalt lithium manganate, and the lithium-containing composite oxide
  • the positive electrode active material for a nonaqueous electrolyte secondary battery according to (1) having an atomic ratio of 0.0005-0.20 with respect to aluminum force S and element N contained in the entire oxide particles.
  • a lithium secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the positive electrode includes (1) to ( A lithium secondary battery using the positive electrode active material described in 5) above.
  • L is an element selected from transition metals other than Ni, Co and Mn, alkaline earth metals and aluminum. 0. 9 ⁇ p ⁇ l. 1, 0.9.9 ⁇ x ⁇ l. 1, 0.2 ⁇ y ⁇ 0. 9, 0 ⁇ z ⁇ 0.3) Then, impregnating an aqueous solution containing aluminum complex with a pH of 3 to 12, and further mixing and drying to obtain aluminum complex mixed particles, and heat treating the aluminum complex mixed particles obtained in step 1 in an oxygen-containing atmosphere
  • a non-aqueous electrolyte secondary battery comprising surface-modified lithium-containing composite oxide particles having high operating voltage, high discharge capacity, and excellent charge / discharge cycle characteristics without reducing high safety.
  • a positive electrode active material a method for producing the positive electrode active material, and a nonaqueous electrolyte secondary battery using the positive electrode active material.
  • FIG. 1 shows infrared absorption (IR) spectra of the surface-modified lithium-containing composite oxide obtained in Example 2 and the lithium-containing composite oxide obtained in Example 4.
  • the surface-modified lithium-containing composite oxide particles according to the present invention can be obtained by modifying the surface of lithium-containing composite oxide particles as a base material with an aluminum compound.
  • 2 1 — — z z contains at least one of Co or Mn
  • L is an element for which transition metals other than Ni, Co and Mn, alkaline earth metals and aluminum forces are also selected. 0. 9 ⁇ p ⁇ l. 1, 0.9.9 ⁇ x ⁇ 1.1, 0.2.2 ⁇ y ⁇ 0.9, 0 ⁇ z ⁇ 0. 3).
  • This formula is an element that contains at least one of the elements Mi, Co, or Mn.
  • element M is preferably cobalt manganese from the viewpoint of practicality.
  • p and ⁇ in the formula 0.9 ⁇ ⁇ ⁇ 1.1, preferably ⁇ 0. 95 ⁇ ⁇ ⁇ 1.05; 0. 9 ⁇ ⁇ ⁇ 1.1, preferably 0. It is expressed as 95 ⁇ 1.05.
  • element ⁇ contains either Co or Mn
  • 0.50 ⁇ y ⁇ 0.85 force is preferred.
  • element M contains Co and Mn
  • 0.30 ⁇ y ⁇ 0.70 is preferred.
  • element L can further improve battery characteristics.
  • element L contains an alkaline earth metal or aluminum
  • z is preferably in the range of 0 ⁇ z ⁇ 0.1. If an element such as aluminum is excessively present inside the lithium-containing composite oxide particles, the discharge capacity may be reduced.
  • the element L is preferably a divalent to tetravalent element such as Al, Mg, Zr, Ti, Mo, Ca, etc., among the above-described forces.
  • the element L is particularly preferably Al, Zr or Ti.
  • Specific examples of lithium-containing composite oxides in such cases include LiNi Co Al O, L
  • the surface modified lithium-containing composite oxide particles according to the present invention have an atomic ratio of 0.8 or more with respect to the total content of aluminum Ni and element M in the surface layer within 5 nm of the particle surface. It is necessary to be. Predetermined range where aluminum content is important In this case, the above-described effects of the present invention are achieved.
  • the reason why the content of aluminum in the surface layer within 5 nm from the surface of the surface-modified lithium-containing composite oxide particle is questioned is as follows.
  • the aluminum present in the vicinity of the surface of the composite oxide particles is important.
  • the aluminum content within 5 nm of the surface layer of this particle is determined by XPS analysis (X-ray photoelectron spectroscopy) as described below. It can be easily obtained.
  • lithium-containing composite Atomic ratio of surface of oxide particles (AlZNiM)”.
  • the atomic ratio (AlZNiM) on the surface-modified lithium composite oxide particle surface is 0.8 or more, preferably 1.0 or more, more preferably 1.2 or more.
  • the upper limit is not particularly limited, but the atomic ratio (AlZNiM) is preferably 15 or less, more preferably 12 or less, and particularly preferably 10 or less.
  • the atomic ratio (AlZNiM) on the particle surface of the lithium-containing composite oxide is analyzed by XPS analysis (X-ray photoelectron spectroscopy).
  • the XPS analysis method can analyze the type of elements contained in the layer very close to the surface of the particles or the abundance of the elements.
  • An example of XPS analyzer is ESCA5400 (non-monochrome type) manufactured by PHI.
  • a peak that can be detected with high sensitivity and does not overlap with the peak of other elements as much as possible.
  • cobalt, manganese, or nickel it is preferable to use the 2p3 peak for calculation because of its high sensitivity.
  • EPMA X-ray microanalyzer
  • EDS energy dispersive X-ray spectroscopy
  • the aluminum contained in the surface-modified lithium-containing composite oxide particles according to the present invention In the case of the whole particle, the content is preferably 0.0005 to 0.20, particularly preferably 0.001 to 0.15 in terms of atomic ratio with respect to the element N.
  • the aluminum content contained in the surface-modified lithium-containing composite oxide is preferably 0.05 to 0.15 in atomic ratio with respect to the element N.
  • the aluminum contained in the entire surface-modified lithium-containing composite oxide particle has an atomic ratio of 0.001 to 0.03 more than the element N. preferable
  • the surface-modified lithium-containing composite oxide particles according to the present invention preferably further contain a carbon compound in the surface layer.
  • the carbon compound is preferably a partially pyrolyzed product of a carbon-containing aluminum complex having a structure having at least a carbon-oxygen double bond.
  • the carbon compound those in which a carbon-oxygen double bond is a carbonate group or a carbonate group are particularly preferable.
  • Specific examples of the above carbon compounds include partial thermal decomposition of aluminum citrate, aluminum tartrate, aluminum oxalate, aluminum malonate, aluminum maleate, aluminum malate, aluminum phosphate, aluminum lactate or aluminum dalioxylate. I like things.
  • the carbon compound As the carbon compound, a partially pyrolyzed product of aluminum lactate is more preferable.
  • the partially pyrolyzed product is a product that has a carbon-oxygen double bond structure and that is obtained by thermally decomposing a part of the aluminum complex present on the surface of the surface-modified lithium-containing composite oxide particles. .
  • FIG. 1 is a chart of an infrared absorption (IR) spectrum of the lithium-containing composite oxide synthesized in Example 2 and Example 4.
  • the IR scan Bae Tato Le synthetic surface-modified lithium-containing composite oxide in Example 2, strong absorption peak is observed in the range of 1300 ⁇ 1700cm _1.
  • the absorption peak is an absorption peak derived from a carbon-oxygen double bond, and indicates that a carbon compound is present in the surface layer. Furthermore, it shows that the carbon compound is a partially pyrolyzed product of the carbon-containing aluminum complex used as a raw material.
  • the IR ⁇ vector of the lithium-containing composite oxide synthesized in Example 4 a strong absorption peak derived from the carbon-oxygen double bond is not observed.
  • Fig. 2 shows the change in weight when heat is applied to powder (dried powder) obtained by drying aluminum lactate. (TG and DTG) and calorific value change (DTA). From FIG. 2, it can be seen that when the aluminum lactate dry powder is heated to the range of 300 to 450 ° C, the weight of the dry powder is drastically reduced and accompanied by a rapid exothermic reaction. That is, in this temperature range, it is suggested that aluminum lactate partially undergoes thermal decomposition and releases a gas such as carbon dioxide to proceed with the decarboxylation reaction. It can also be seen that the thermal decomposition is almost complete at 500 ° C or higher. At this stage, it is suggested that the aluminum complex is converted to acid aluminum or hydroxide aluminum.
  • the surface layer of the surface-modified lithium-containing composite oxide particles synthesized by heat treatment at 350 ° C in Example 2 contains an aluminum compound having a carbon-oxygen double bond. It can be seen that a carbon compound is present in the surface layer, and that the carbon compound is a partially pyrolyzed product of the carbon-containing aluminum complex used as a raw material. The power to further improve the charge / discharge cycle characteristics due to this, and the reason why the charge / discharge cycle characteristics are further improved and the mechanism are not necessarily clear.
  • the surface-modified lithium-containing composite oxide particles according to the present invention are pre-synthesized LiNi.
  • the aluminum compound used as a raw material for the A1 aqueous solution is not particularly limited, but is used for surface modification.
  • an aluminum complex is used.
  • Compounds are preferred.
  • the aluminum complex is a compound that forms a complex by coordination with aluminum when dissolved in water. Since the carbon compound can preferably remain on the surface of the particle of the surface-modified lithium-containing composite oxide after the caloric heat treatment, the carbon-containing aluminum complex is more preferable for carbon having a carbo group or a carbon group.
  • An organic acid aluminum complex having a carbo group or a carbonate group, which is more preferable for the containing aluminum complex, is particularly preferable.
  • Aluminum xylate strength At least one selected is preferred.
  • the presence of such carbon is preferable because the charge / discharge cycle characteristics of batteries using surface-modified lithium-containing composite oxides tend to be further improved! /.
  • the A1 aqueous solution may contain a carboxylic acid.
  • the carboxylic acid is contained in the A1 aqueous solution, the above carboxylic acid is a carboxylic acid having 2 to 8 carbon atoms from the viewpoint of the solubility in the aqueous solution.
  • citrate, tartaric acid, oxalic acid, malonic acid, Maleic acid, phosphonic acid, dextrinic acid, lactic acid, and daroxylic acid are more preferable.
  • the content of the carboxylic acid in the A1 solution is preferably 0.05 to 30 weight 0/0, this Japanese ⁇ preferably from 0.1 to 20 weight 0/0.
  • the solubility of the aluminum complex contained in the A1 aqueous solution in water tends to improve, and the aluminum complex dissolved in the A1 aqueous solution tends to be more difficult to precipitate.
  • the concentration of aluminum in the A1 aqueous solution is preferably higher in terms of the point force that requires the aqueous medium to be removed by drying in a later step.
  • concentration of aluminum in the A1 aqueous solution is more preferably 0.1 to 5% by weight, even though 0.01 to 20% by weight is preferable.
  • the amount of the A1 aqueous solution is 0.1 to 80% by weight based on the base material used. It is preferable to adjust within the range, and even more preferable to adjust to 1 to 75% by weight, particularly preferable to adjust to 30 to 70% by weight.
  • the amount of the A1 aqueous solution with respect to the base material used is within the above range, the problem that the performance of the positive electrode active material varies from lot to lot when the positive electrode active material according to the present invention is synthesized in large quantities is solved. This is preferable because the active material tends to be mass-produced stably.
  • the means for impregnating the lithium-containing composite oxide particles of the base material with the A1 aqueous solution is not particularly limited, but specifically, means for spraying and impregnating the A1 aqueous solution onto the particle powder of the base material.
  • a means in which the base material particle powder is put into the A1 aqueous solution stored in the container and stirred to impregnate include a twin-screw screw kneader, an axial mixer, a paddle mixer, a turbulizer, a drum mixer Sir, solid air, Laedige mixer and so on. Of these, a drum mixer is preferable as the agitator.
  • the surface atomic ratio (AlZNiM) of the surface-modified lithium-containing composite oxide particles tends to be increased even if a small amount of aluminum compound is used as the raw material for the A1 aqueous solution. That is, a small amount of an aluminum compound is preferable because battery characteristics such as charge / discharge cycle characteristics can be improved efficiently.
  • a small stirrer of about the laboratory size can be used.
  • the drying is preferably performed at a temperature of 50 to 200 ° C, particularly preferably 80 to 140 ° C. And preferably 0.1 to: in the range of LO time.
  • Aluminum complex after drying The aqueous medium remaining in the impregnated particles is removed in a subsequent firing step, so it is not always necessary to completely remove it at this stage, but in order to vaporize moisture in the firing step. Since a large amount of energy is required, it is preferable to remove as much as possible.
  • the impregnation, mixing, and drying may be performed separately separately or all at the same time using a single Ladige mixer or the like. May be.
  • the aluminum complex-impregnated particles are preferably heat-treated in an oxygen-containing atmosphere, preferably at 200 to 450 ° C, usually for 0.1 to 24 hours.
  • the surface-modified lithium-containing composite oxide according to the present invention can be obtained.
  • a more preferable temperature range is 250 to 400 ° C.
  • the positive electrode active material comprising the surface-modified lithium-containing composite oxide particles according to the present invention obtained as described above has an average particle diameter (D50) of preferably 5 to 25 ⁇ m, particularly preferably 8 to
  • the specific surface area is preferably 20 m and 0.1 to 1.0 m 2 Zg, particularly preferably 0.2 to 0.8 m 2 Zg.
  • the (110) plane diffraction peak half-width force of 20 65.1 ⁇ 1 ° measured by X-ray diffraction using CuK as a radiation source is preferably 0.08 to 0.30 °, especially 0. 09 ⁇ 0.25 ° force S preferred ⁇ . Press density force S preferably ⁇ 2.
  • the press density means that the lithium composite oxide particles are 1.0. It means the apparent density of particles when pressed at a pressure of tons / cm 2 .
  • the lithium ion elution amount of engagement Ru surface modified lithium-containing composite Sani ⁇ the present invention is preferably 0.60 mol% or less, more preferably from 01 to 0.50 Monore 0/0 forces 0., force However, 0.01 to 0.40 mono% is particularly preferable.
  • the elution amount of lithium ions can be measured as follows. First, 10 g of the positive electrode active material powder is added to 90 g of water, and the resulting aqueous solution is stirred and dispersed for 30 minutes. The aqueous solution is filtered with ⁇ , and the obtained filtrate is titrated with hydrochloric acid.
  • a slurry in which the positive electrode active material powder is dispersed in a dispersion medium such as N-methylpyrrolidone is less likely to be gelled during the positive electrode processing of the positive electrode active material powder. This is preferable because the positive electrode force becomes easier. In addition, the charge / discharge cycle characteristics tend to be improved, which is preferable.
  • the average particle size is the particle size at which the cumulative curve is 50% in a cumulative curve in which the particle size distribution is obtained on a volume basis and the total volume is 100%.
  • Volume-based means cumulative 50% diameter (D50).
  • the particle size distribution can be obtained from the frequency distribution and cumulative volume distribution curve measured with a laser scattering particle size distribution measuring device. The particle size is measured by sufficiently dispersing the powder in an aqueous medium by ultrasonic treatment or the like and measuring the particle size distribution (for example, using Nikkiso Microtrac HRA (X-100)).
  • the average particle size may be referred to as an average particle size (D50) t.
  • a method for obtaining a positive electrode for a lithium secondary battery using the positive electrode active material of the present invention can be carried out according to a conventional method.
  • a positive electrode mixture is formed by mixing a carbon-based conductive material such as acetylene black, black lead, and ketjen black with a binder in the powder of the positive electrode active material of the present invention.
  • a binder preferably polyvinylidene fluoride, polytetrafluoroethylene, polyamide, carboxymethylcellulose, acrylic resin, etc. are used.
  • a slurry in which the above-mentioned positive electrode mixture is dispersed in a dispersion medium such as N-methylpyrrolidone is coated on a positive electrode current collector such as aluminum foil, dried and press-rolled to form a positive electrode active material layer. Formed on the current collector.
  • the electrolyte of the battery includes CIO-, CFSO-, BF-, PF
  • the electrolyte solution or polymer electrolyte of the battery preferably contains the above-described electrolyte having lithium salt strength in a solvent or solvent-containing polymer at a concentration of 0.2 to 2.0 molZL. Beyond this range, the ionic conductivity decreases and the electrical conductivity of the electrolyte decreases. More preferably, 0.5 to 1.5 mol ZL is selected.
  • porous polyethylene or porous polypropylene film is preferred.
  • carbonate ester is preferred.
  • Carbonates can be either cyclic or chain.
  • cyclic carbonates include propylene carbonate and ethylene carbonate (EC).
  • chain carbonate include dimethyl carbonate, jetyl carbonate (DEC), ethyl methyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, and the like.
  • the carbonate ester may be used alone or in combination of two or more. Further, it may be used by mixing with other solvents. Depending on the material of the negative electrode active material, the combined use of chain carbonate and cyclic carbonate may improve discharge characteristics, charge / discharge cycle characteristics, and charge / discharge efficiency.
  • a vinylidene fluoride-hexafluoropropylene copolymer for example, Kyner manufactured by Atchem Co.
  • a vinylidene fluoride-perfluoropropyl butyl ether copolymer is used.
  • the gel polymer electrolyte may be obtained by adding the following solutes.
  • the negative electrode active material of a lithium battery using the positive electrode active material of the present invention for the positive electrode is a material capable of occluding and releasing lithium ions.
  • the material for forming the negative electrode active material is not particularly limited.
  • lithium metal, lithium alloy, carbon material, carbon compound, carbide compound, key oxide compound, titanium sulfate, boron carbide compound, periodic table Examples include acids and oxides mainly composed of Group 14 and 15 metals.
  • the carbon material those obtained by pyrolyzing an organic substance under various pyrolysis conditions, artificial graphite, natural graphite, soil graphite, expanded graphite, flake graphite, and the like can be used.
  • oxides A compound mainly composed of tin oxide can be used.
  • the negative electrode current collector copper foil, nickel foil or the like is used.
  • the shape of the lithium secondary battery using the positive electrode active material in the present invention is not particularly limited.
  • a sheet shape (so-called film shape), a folded shape, a wound-type bottomed cylindrical shape, a button shape, or the like is selected depending on the application.
  • a mixture of nickel sulfate, cobalt sulfate and manganese sulfate containing ammonium sulfate, and ammonium sulfate aqueous solution, which are prepared so that the atomic specific force of nickel, connolto, and manganese is Ni: Co: Mn l: l: l And a sodium hydroxide aqueous solution, the pH of the slurry in the reaction vessel is 11
  • the composite hydroxide powder is dispersed in a 6% by weight sodium persulfate aqueous solution containing 3% by weight of sodium hydroxide and stirred at 20 ° C. for 12 hours, thereby obtaining a nickel cobalt manganese.
  • a composite oxyhydroxide slurry was synthesized. Further, the composite oxyhydroxide slurry was filtered, washed with water, and then dried to obtain composite oxyhydroxide powder.
  • the composite oxyhydroxide powder had a specific surface area of 9.6 m 2 Zg and an average particle size of 10.
  • Lithium-containing Li (Ni Co Mn) O composition by grinding
  • a base material made of composite acid was obtained.
  • the powder X-ray diffraction spectrum using CuKa line was measured for the base material, it was found that it had a rhombohedral (R-3m) similar structure.
  • RINT 2100 type manufactured by Rigaku Corporation was used for the measurement.
  • SEM observation was performed on the particles of the base material powder, many primary particles aggregated to form secondary particles, and it was found that the shape was almost spherical or elliptical. I got it.
  • an X-ray diffraction spectrum was obtained using an X-ray diffractometer (RINT 2100 type, manufactured by Rigaku Corporation).
  • RINT 2100 type manufactured by Rigaku Corporation
  • the press density of the particles was 2.69 gZcm 3 .
  • the aluminum contained in the surface modified lithium-containing composite oxide particles had an atomic ratio of 0.002 with respect to the total of nickel, manganese, and cobalt.
  • the surface-modified lithium-containing composite oxide particles, acetylene black, and poly vinylidene powder are mixed at a weight ratio of 90/5/5, and N-methylpyrrolidone is added to form a slurry.
  • the single-sided coating was performed on a 20 m thick aluminum foil using a doctor blade. Drying and roll press rolling were performed 3 times to produce a positive electrode sheet for a lithium battery.
  • a material obtained by punching the positive electrode sheet is used for the positive electrode, a metal lithium foil having a thickness of 500 m is used for the negative electrode, a nickel foil of 20 m is used for the negative electrode current collector, and the separator is used.
  • a porous polypropylene with a thickness of 25 / zm is used, and the electrolyte contains 1M LiPF /
  • the positive electrode active material lg was charged to 4.3V at a load current of 30mA at 25 ° C, and discharged to 2.5V at a load current of 30mA for the positive electrode active material lg.
  • the initial discharge capacity was determined. Further, this battery was subsequently subjected to a charge / discharge cycle test 30 times. As a result, the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.3 V was 159 mAhZg, and the capacity retention rate after 30 charge / discharge cycles was 98.8%.
  • the same operation was performed except that the charge voltage was changed from 4.3V power to 4.5V and the charge / discharge cycle test was repeated 25 times.
  • the initial weight capacity density of the positive electrode active material at 5 V was 173 mAhZg, and the capacity retention rate after 25 charge / discharge cycles was 97.5%.
  • the other battery was charged at 4.3 V and 4.5 V for 10 hours, disassembled in an argon glove box, taken out of the positive electrode sheet after charging, and its positive electrode sheet. After washing, it was punched out to a diameter of 3 mm, sealed in an aluminum capsule with EC, and heated at a rate of 5 ° CZ with a scanning differential calorimeter to measure the heat generation start temperature.
  • the heat generation start temperature of the exothermic curve of the 4.3V charge product was 237 ° C
  • the heat generation start temperature of the 4.5V charge product was 200 ° C.
  • a thium-containing composite oxide was synthesized.
  • the dried complex-impregnated particles were heated in an oxygen-containing atmosphere at 350 ° C for 12 hours, the average particle size was 10.5 m, D10 was 5.5 / ⁇ ⁇ , D90 force was 9 m, and the specific surface area was A surface-modified lithium-containing composite oxide particle according to the present invention having a substantially spherical shape of 0.5 m 2 Zg was obtained.
  • the obtained surface-modified lithium-containing composite oxide particles were subjected to X-ray diffraction analysis in the same manner as in Example 1.
  • the vector was measured.
  • 2 0 65. 1 ⁇ 1.
  • the half value width of the diffraction peak of (110) plane was 0.226 °.
  • the press density of the particles was 2.65 gZcm 3 .
  • the aluminum contained in the surface-modified lithium-containing composite oxide particles had an atomic ratio of 0.01 relative to the total of nickel, manganese and cobalt.
  • An electrode and a battery were prepared and evaluated in the same manner as in Example 1 except that the positive electrode sheet was prepared using the above-described surface-modified lithium-containing composite oxide.
  • the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.3 V was 157 mAhZg, and the capacity retention rate after 30 charge / discharge cycles was 98.8%.
  • the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.5 V was 172 mA hZg, and the capacity retention rate after 25 charge / discharge cycles was 97.0%. .
  • the heat generation start temperature in the heat generation curve of the 3V charged product is 237 ° C.
  • the heat generation starting temperature of the 5V charged product was 199 ° C.
  • Example 3 In the same manner as in Example 1, the lithium having the composition of Li (Ni Co Mn) O as the base material is used.
  • a thium-containing composite oxide was synthesized.
  • the lithium ion elution amount was 0.50 mol%.
  • An electrode and a battery were produced and evaluated in the same manner as in Example 1 except that the positive electrode sheet was produced using the surface-modified lithium-containing composite oxide.
  • the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.3 V was 157 mAhZg, and the capacity retention rate after 30 charge / discharge cycles was 98.7%.
  • the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.5 V was 171 mA hZg, and the capacity retention rate after 25 charge / discharge cycles was 97.2%. .
  • the heat generation start temperature in the heat generation curve of the 3V charged product is 239 ° C.
  • the heat generation starting temperature of the 5V charged product was 202 ° C.
  • Example 4 Lithium with the composition of the base material Li (Ni Co Mn) O as in Example 1
  • Containing composite oxide was synthesized.
  • the base material has an average particle size of 10.5 m, D10 of 5.3 m, D90 of 13.5 m, and a specific surface area of 0.49 m 2 / g. It was a powder that also had a particle force.
  • the press density was 2.70 gZcm 3 .
  • the lithium-containing composite oxide particles as the base material were subjected to surface elemental analysis by XPS analysis in the same manner as in Example 1. As a result, aluminum was not detected.
  • the lithium-containing composite oxide has a carbon-oxygen double bond. Including the compound, it was very powerful.
  • the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.3 V was 160 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 95.0%.
  • the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.5 V was 175 mA hZg, and the capacity retention rate after 25 charge / discharge cycles was 91.0%.
  • the heat generation start temperature of the 4.3V charged product is 232 ° C, 4.5V
  • the starting temperature of the charged product was 199 ° C.
  • a thium-containing composite oxide was synthesized.
  • the body-impregnated particles were heated in an oxygen-containing atmosphere at 350 ° C for 12 hours, the average particle size was 10.6 m, D10 was 5.2 / ⁇ ⁇ , D90 force was 3 m, and the specific surface area was 0.48 m 2 A substantially spherical surface-modified lithium-containing composite oxide particle of Zg was obtained.
  • the X-ray diffraction vector was measured in the same manner as in Example 1.
  • powder X-ray diffraction using CuK o; line, 2 0 65. 1 ⁇ 1.
  • the half-value width of the diffraction peak of (110) plane was 0.227 °.
  • the press density of the particles was 2.70 gZcm 3 .
  • the aluminum contained in the surface-modified lithium-containing composite oxide particles is about 0.0002 in atomic ratio with respect to the total of nickel, manganese and cobalt.
  • the lithium ion elution amount is 0.20 mole 0 /. Met.
  • An electrode and a battery were produced and evaluated in the same manner as in Example 1 except that the positive electrode sheet was produced using the surface-modified lithium-containing composite oxide.
  • the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.3 V was 160 mAhZg, and the capacity retention rate after 30 charge / discharge cycles was 95.3%.
  • the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.5 V was 174 mA hZg, and the capacity retention rate after 25 charge / discharge cycles was 91.2%. .
  • the heat generation start temperature of the heat generation curve of the 3V charged product is 236 ° C.
  • the heat generation starting temperature of the 4.5V charged product was 200 ° C.
  • a thium-containing composite oxide was synthesized.
  • a mixed powder was obtained by mixing 100 g of the base material with a drum mixer while spraying 6 g of the A1 aqueous solution. Further, the mixed powder was dried at 120 ° C. for 4 hours to obtain aluminum complex-added particles. That The dried complex-added particles are heated in an oxygen-containing atmosphere at 350 ° C for 12 hours, and have an average particle size of 10.4 111, 010 cells. 5. O ⁇ m, D90 force of 14.5 m. A substantially spherical surface-modified lithium-containing composite oxide particle having a force of 0.50 m 2 / g was obtained.
  • An electrode and a battery were prepared and evaluated in the same manner as in Example 1 except that the positive electrode sheet was prepared using the surface-modified lithium-containing composite oxide.
  • the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.3 V was 159 mAhZg, and the capacity retention rate after 30 charge / discharge cycles was 99.0%.
  • the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.5 V was 174 mA hZg, and the capacity retention rate after 25 charge / discharge cycles was 98.0%. .
  • the heat generation start temperature of the heat generation curve of the 4V charged product is 238 ° C.
  • the heat generation starting temperature of the 5V charged product was 201 ° C.
  • a predetermined amount of lithium carbonate powder was mixed with the composite oxyhydroxide powder obtained in Example 1, and calcined and ground in the same manner as in Example 1 to obtain Li (Ni Co Mn) O as the base material.
  • a lithium-containing composite oxide having the composition was synthesized.
  • a mixed powder was obtained by mixing 100 g of the base material with a drum mixer while spraying 6 g of the A1 aqueous solution. Further, the mixed powder was dried at 120 ° C. for 4 hours to obtain aluminum complex-added particles. The dried complex-added particles were heated in an oxygen-containing atmosphere at 350 ° C for 12 hours, and the average particle size was 1 0.9 111, 010 cells 6. O ⁇ m, D90 force 15.3 m, it table ® A substantially spherical surface-modified lithium-containing composite oxide particle having a force of 0.49 m 2 / g was obtained.
  • the X-ray diffraction vector was measured in the same manner as in Example 1.
  • line, 2 0 65. 1 ⁇ 1.
  • the half-value width of the diffraction peak of (110) plane was 0.198 °.
  • the press density of the particles was 2.69 gZcm 3 .
  • the aluminum contained in the surface-modified lithium-containing composite oxide particles is 0.002 in atomic ratio with respect to the total of nickel, manganese and cobalt.
  • the lithium ion elution amount was 0.29 mol%.
  • An electrode and a battery were prepared and evaluated in the same manner as in Example 1 except that the positive electrode sheet was prepared using the surface-modified lithium-containing composite oxide.
  • the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.3 V was 157 mAhZg, and the capacity retention rate after 30 charge / discharge cycles was 98.7%.
  • the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.5 V was 172 mA hZg, and the capacity retention rate after 25 charge / discharge cycles was 96.0%. .
  • the heat generation start temperature of the heat generation curve of the 3V charged product is 235 ° C.
  • the heat generation starting temperature of the 5V charged product was 201 ° C.
  • Containing composite oxide was synthesized.
  • the base material has an average particle size of 10.8 m, D10 of 6.1 m, and D90 of 15.
  • the specific surface area is 0.47 m 2 / g.
  • Many primary particles aggregate to form secondary particles. It was a powder with a good particle force.
  • the press density was 2.70 g / cm 3 .
  • Example 1 Using the lithium-containing composite oxide particles corresponding to the base material described above, a positive electrode sheet was prepared, a battery was assembled, and evaluated in the same manner as in Example 1.
  • the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.3 V was 159 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 94.9%.
  • the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.5 V was 174 mA hZg, and the capacity retention rate after 25 charge / discharge cycles was 90.0%.
  • the heat generation start temperature of the 4.3V charged product is 230 ° C
  • the temperature of the 4.5V charged product is The heat generation starting temperature was 198 ° C.
  • a thium-containing composite oxide was synthesized.
  • the lithium ion elution amount was 0.31 mol%.
  • An electrode and a battery were prepared and evaluated in the same manner as in Example 1 except that the positive electrode sheet was prepared using the surface-modified lithium-containing composite oxide.
  • the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.3 V was 160 mAhZg, and the capacity retention rate after 30 charge / discharge cycles was 97.8%.
  • the initial weight capacity density of the positive electrode active material at 25 ° C and 2.5 to 4.5 V was 174 mA hZg, and the capacity retention rate after 25 charge / discharge cycles was 96.0%. .
  • the heat generation start temperature of the heat generation curve of the 3V charged product is 236 ° C.
  • the heat generation starting temperature of the 5V charged product was 200 ° C.
  • the average particle size was 10.3 m
  • D10 was 5.3 / ⁇ ⁇
  • D90 force was 7 m
  • the specific surface area was A substantially spherical surface-modified lithium-containing composite oxide particle of 0.52 m 2 Zg was obtained.
  • the obtained surface-modified lithium-containing composite oxide particles were measured for X-ray diffraction vectors in the same manner as in Example 1.
  • the half value width of the diffraction peak of (110) plane at 2 0 65.1 ⁇ 1 ° was 0.229 °.
  • the press density of this particle is 2 . It was 66gZcm 3.
  • the aluminum contained in the surface-modified lithium-containing composite oxide particles is 0.002 in atomic ratio with respect to the total of nickel, manganese and cobalt.
  • An electrode and a battery were prepared and evaluated in the same manner as in Example 1 except that the positive electrode sheet was prepared using the surface-modified lithium-containing composite oxide.
  • the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.3 V was 157 mAhZg, and the capacity retention rate after 30 charge / discharge cycles was 99.3%.
  • the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.5 V was 171 mA hZg, and the capacity retention rate after 25 charge / discharge cycles was 98.0%. .
  • the heat generation start temperature of the heat generation curve of the 3V charged product is 241 ° C.
  • the heat generation starting temperature of the 5V charged product was 210 ° C.
  • a thium-containing composite oxide was obtained.
  • the average particle size of the lithium-containing composite oxide particles is 10.4 / ⁇ ⁇ , D10 is 5.2 / ⁇ ⁇ , D90 force is 8 m, and the specific surface area is 0.449 m 2 / g. And it was a powder with a particle force that formed secondary particles.
  • the press density was 2.67 gZcm 3 .
  • Example 2 An electrode and a battery were prepared and evaluated in the same manner as in Example 1 except that the positive electrode sheet was prepared using the lithium-containing composite oxide.
  • the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.3 V was 157 mAhZg, and the capacity retention rate after 30 charge / discharge cycles was 98.0%.
  • the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.5 V was 172 mA hZg, and the capacity retention rate after 25 charge / discharge cycles was 97.5%. .
  • the heat generation start temperature in the heat generation curve of the 3V charged product is 239 ° C.
  • the heat generation starting temperature of the 5V charged product was 208 ° C.
  • a sulfate mixed solution containing nickel sulfate, cobalt sulfate, and manganese sulfate prepared so that the atomic ratio of nickel, cobalt, and manganese is Ni: Co: Mn 0.35: 0.40: 0.25.
  • Ammonium sulfate aqueous solution and sodium hydroxide aqueous solution were continuously added to the reaction vessel while stirring so that the slurry pH in the reaction vessel was 11.0 and the temperature was 50 ° C. Supplied.
  • the amount of liquid in the reaction system was adjusted by the overflow method, and the overflowed coprecipitation slurry was filtered, washed with water, and then dried at 80 ° C to obtain nickel cobalt mangan composite hydroxide powder.
  • the composite hydroxide powder is dispersed in a 6 wt% sodium persulfate aqueous solution containing 3 wt% of sodium hydroxide and stirred at 20 ° C. for 12 hours, thereby obtaining a nickel cobalt manganese.
  • a composite oxyhydroxide slurry was synthesized. Further, the composite oxyhydroxide slurry was filtered, washed with water, and then dried to obtain composite oxyhydroxide powder.
  • the composite oxyhydroxide powder has a specific surface area of 9.4 m 2 Zg and an average particle size of 10. O / zm.
  • the composite oxyhydroxide powder thus obtained was mixed with a predetermined amount of lithium carbonate powder having an average particle size of 20 ⁇ m, fired at 990 ° C for 16 hours in an oxygen-containing atmosphere, and then pulverized.
  • the dried complex-added particles were heated in an oxygen-containing atmosphere at 350 ° C for 12 hours, and the average particle size was 1 0.1 111, 010 calcium 5.1 / ⁇ ⁇ , D90 force 14.2 m, it A substantially spherical surface-modified lithium-containing composite oxide particle having a force of 0.45 m 2 / g was obtained.
  • the obtained surface-modified lithium-containing composite oxide particles were measured for X-ray diffraction vectors in the same manner as in Example 1.
  • powder X-ray diffraction using CuK o; line, 2 0 65. 1 ⁇ 1.
  • the half-width of the diffraction peak of (110) plane was 0.22 °.
  • the press density of the particles was 2.73 g / cm 3 .
  • the aluminum contained in the surface modified lithium-containing composite oxide particles was 0.002 in atomic ratio with respect to the total of nickel, manganese and cobalt.
  • An electrode and a battery were prepared and evaluated in the same manner as in Example 1 except that the positive electrode sheet was prepared using the surface-modified lithium-containing composite oxide.
  • the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.3 V was 159 mAhZg, and the capacity retention rate after 30 charge / discharge cycles was 99.0%.
  • a complex oxide containing selenium was synthesized.
  • the base material has an average particle size of 9.9 m, D10 of 4.9 m, D90 of 13.9 m, and a specific surface area of 0.4 m 2 / g. It was a powder that also had a particle force to form a child.
  • the press density was 2.75 gZcm 3 .
  • the lithium-containing composite oxide particles as the base material were subjected to surface elemental analysis by XPS analysis in the same manner as in Example 1. As a result, aluminum was not detected.
  • Example 1 Using the lithium-containing composite oxide particles corresponding to the base material described above, a positive electrode sheet was prepared, a battery was assembled, and evaluated in the same manner as in Example 1.
  • the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.3 V was 161 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 96.0%.
  • a sulfate mixed solution containing nickel sulfate, cobalt sulfate, and manganese sulfate prepared so that the atomic ratio of nickel, cobalt, and manganese is Ni: Co: Mn 0.50: 0.20: 0:30.
  • Ammonium sulfate aqueous solution and sodium hydroxide aqueous solution were continuously added to the reaction vessel while stirring so that the slurry pH in the reaction vessel was 11.0 and the temperature was 50 ° C. Supplied.
  • the amount of liquid in the reaction system was adjusted by the overflow method, and the overflowed coprecipitation slurry was filtered, washed with water, and then dried at 80 ° C to obtain nickel cobalt mangan composite hydroxide powder.
  • the composite hydroxide powder is dispersed in a 6% by weight sodium persulfate aqueous solution containing 3% by weight of sodium hydroxide and stirred at 20 ° C. for 12 hours, thereby obtaining a nickel cobalt manganese.
  • a composite oxyhydroxide slurry was synthesized. Further, the composite oxyhydroxide slurry was filtered, washed with water, and then dried to obtain composite oxyhydroxide powder.
  • the composite oxyhydroxide powder had a specific surface area of 10.3 m 2 Zg and an average particle size of 10.
  • the composite oxyhydroxide powder thus obtained was mixed with a predetermined amount of lithium carbonate powder having an average particle size of 20 m, baked at 950 ° C for 12 hours in an oxygen-containing atmosphere, and then pulverized.
  • the dried complex-added particles were heated in an oxygen-containing atmosphere at 350 ° C for 12 hours, and the average particle size was 11.0 111, 010 5.7 / am, D90 force 16.4 m, it table ® A substantially spherical surface-modified lithium-containing composite oxide particle having a force of 0.49 m 2 / g was obtained.
  • the surface-modified lithium-containing composite oxide particles thus obtained were measured for X-ray diffraction vectors in the same manner as in Example 1.
  • powder X-ray diffraction using CuK o; line, 2 0 65.1 ⁇ 1.
  • the half value width of the diffraction peak of the (110) plane was 0.111 °.
  • the press density of the particles was 2.78 gZcm 3 .
  • the aluminum contained in the surface-modified lithium-containing composite oxide particles is 0.002 in atomic ratio with respect to the total of nickel, manganese and cobalt.
  • An electrode and a battery were prepared and evaluated in the same manner as in Example 1 except that the positive electrode sheet was prepared using the surface-modified lithium-containing composite oxide.
  • the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.3 V was 165 mAhZg, and the capacity retention rate after 30 charge / discharge cycles was 96.1%.
  • a complex oxide containing selenium was synthesized.
  • the average particle size of the lithium-containing composite oxide is 10.5 m, D10 force S5.1 m, D90 force 15.9 ⁇ m, and it has a surface force of 0.41 m 2 / g. It was a powder consisting of particles forming secondary particles.
  • the press density was 2. 8g / cm d.
  • Example 1 Using the lithium-containing composite oxide particles corresponding to the base material described above, a positive electrode sheet was prepared, a battery was assembled, and evaluated in the same manner as in Example 1.
  • the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.3 V was 169 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 94.0%.
  • a positive electrode active for a non-aqueous electrolyte secondary battery comprising lithium-containing composite oxide particles having a high operating voltage, high discharge capacity, and excellent charge / discharge cycle characteristics without reducing high safety.
  • a material, a method for producing the positive electrode active material, and a nonaqueous electrolyte secondary battery using the positive electrode active material are provided.

Abstract

 全性が高く、高い作動電圧においても高い放電容量を持ち、かつ充放電サイクル特性に優れた正極活物質、その製造方法、及び該正極活物質を含む非水電解質二次電池を提供する。  一般式LipNxO2(但し、N=NiyM1-y-zLz、MはCo又はMnの少なくとも一種以上を含み、LはNi、Co、Mn以外の遷移金属、アルカリ土類金属及びアルミニウムから選ばれる元素である。0.9≦p≦1.1、0.9≦x<1.1、0.2≦y≦0.9、0≦z≦0.3)で表されるリチウム含有複合酸化物粒子であり、その表面層にアルミニウムが含有され、該表面層5nm以内におけるアルミニウム含有量がNiと元素Mの合計に対して、原子比率で0.8以上である表面修飾リチウム含有複合酸化物粒子からなることを特徴とする非水電解質二次電池用正極活物質。

Description

明 細 書
非水電解質二次電池用正極活物質及びその製造方法
技術分野
[0001] 本発明は、リチウムイオン二次電池等の非水電解質二次電池に用いる正極活物質
、その製造方法、及び上記正極活物質を含むリチウム二次電池に関する。
背景技術
[0002] 近年、パソコン、携帯電話等の情報関連機器や通信機器の急速な発達が進むに つれて、小型、軽量でかつ高エネルギー密度を有するリチウム二次電池等の非水電 解質二次電池に対する要求が高まっている。非水電解質二次電池用の正極活物質 には、 LiCoO 、 LiNiO 、 LiNi Co O 、 LiMn Oなどのリチウムと遷移金属の複
2 2 0. 8 0. 2 2 2 4
合酸ィ匕物が知られている。
[0003] なかでも、リチウムコバルト複合酸化物(LiCoO )を正極活物質として用いて、リチ
2
ゥム合金、グラフアイト、カーボンファイバー等のカーボンを負極として用いたリチウム 二次電池は、 4V級の高い電圧が得られるため、高エネルギー密度を有する電池とし て特に広く使用されている。しかし、リチウムコノ レト複合酸ィ匕物のコバルト源となる 原料化合物が希少であり、また高価であると 、う問題がある。
[0004] 一方、比較的安価なニッケルを用いたリチウムニッケル複合酸ィ匕物 (LiNiO )は高
2 容量であるが、熱的安定性が低ぐ電池にしたときの安全性がリチウムコバルト複合 酸化物(LiCoO )より低いという問題がある。また安価なマンガンを用いたスピネル構
2
造を有するリチウムマンガン複合酸化物 (LiMn O )は熱的安定性が高ぐ電池にし
2 4
たときの安全性が高 、が、容量が低 、と 、う問題がある。
[0005] そこで、コバルト、ニッケル又はマンガン元素を単独で使用したときの短所を補い、 かつ長所を合わせ有するリチウムニッケルマンガン (Li— Ni—Mn)複合酸ィ匕物、リチ ゥム-ッケルコバルト(Li Ni— Co)複合酸化物、リチウムニッケルマンガンコバルト( Li— Ni—Mn— Co)複合酸化物といった正極活物質が注目されている。し力し、これ ら 2種類以上の遷移金属元素を含む正極活物質は、放電容量、充放電を繰り返すこ とによる放電容量の減少に係る充放電サイクル特性、短時間で放電できる電気容量 に係るレート特性、及び充電後の加熱時における熱的安定性 (本明細書では単に、 安全性と 、うことがある) t 、つた各特性を全て満足するものは得られて 、な 、。
[0006] これらの問題を解決するために、次のような技術が知られている。例えば、リチウム 化合物、ニッケル化合物、コバルト化合物及びマンガン化合物にさらにアルミニウム 化合物を混合して焼成することによって、得られる Li— Ni—Mn— Co— A1複合酸ィ匕 物が提案されている (特許文献 1、特許文献 2参照)。
[0007] また固相法により合成した LiMn Ni Co O又は Li Mn Ni Co O
0. 4 0. 4 0. 2 2 1. 1 0. 31 0. 38 0. 31 2 を Al (OC H ) のイソプロピルアルコール溶液に分散して撹拌した後、 600°Cで熱処
3 7 3
理することで得られる粒子表面にアルミニウムをコーティングした正極活物質が提案 されている。また Li Mn Ni Oを A1 (CH COCHCOCH ) の水溶液に分散
1. 05 0. 3 0. 7 2 3 3 3
して撹拌した後、 500°Cで熱処理することで得られる粒子表面にアルミニウムをコー ティングした正極活物質が提案されて ヽる (特許文献 3参照)。
[0008] さらには、まず、ニッケル及びコバルト又はニッケル、コバルト及びマンガンを含む 共沈複合水酸ィ匕物と水酸化リチウム · 1水和物とを混合して焼成することにより、 Li
1. 0
Ni Co O又は Li Ni Co Mn Oの組成を有するリチウム含有複合
8 0. 7 0. 3 2 1. 08 0. 34 0. 33 0. 33 2
酸化物を合成する。このリチウム含有複合酸化物と粉末状金属アルミニウムを水に加 えてスラリーにして、さらに撹拌して金属アルミニウムを溶解させた後、 80°Cで乾燥さ せることにより、得られる該複合酸化物の表面が水酸化アルミニウム、酸ィ匕アルミ-ゥ ム及び炭酸リチウムを含む層で覆われたリチウム含有複合酸化物が提案されて 、る ( 特許文献 4参照)。
[0009] また、炭酸リチウム、二酸化マンガン、酸ィ匕ニッケル及び酸ィ匕コバルトを混合して焼 成することで LiMn Ni Co O、 Li Mn Ni Co O又は Li Mn Ni
0. 4 0. 4 0. 2 2 1. 1 0. 3 0. 6 0. 1 2 1. 1 0. 25 0
Co Oのいずれかの組成を有するリチウム含有複合酸化物を合成する。さらに
. 45 0. 3 2
合成したリチウム含有複合酸ィ匕物にステアリン酸アルミニウムを添加し、ボールミルで 混合及び解砕して、 600°Cで熱処理することにより得られる、アルミニウム化合物が 粒子表面に修飾されたリチウム含有複合酸化物が提案されている (特許文献 5参照) 特許文献 1:特開平 9 - 237631号公報 特許文献 2:特開 2003— 151548号公報
特許文献 3:特開 2005 - 310744号公報
特許文献 4:特開 2005— 322616号公報
特許文献 5:特開 2005 - 346956号公報
発明の開示
発明が解決しょうとする課題
[0010] 上記の特許文献 1〜5で得られるリチウム含有複合酸化物粉末は、これをリチウム 二次電池等の非水電解質二次電池の正極活物質として使用した場合、上記各特性 のなかでも、放電容量及び充放電サイクル特性は不充分なものであり、また安全性な どの特性を同時に充分に満足できるものではなぐ更なる改善が要求されるものであ つた o
[0011] 一方、リチウム二次電池における負極がリチウムの場合、充電電圧は一般的に 4. 3 Vであるが、充電電圧を高くし、利用できる正極活物質の割合を増やし、放電容量を さらに向上させることが望まれている。例えば、充電電圧が 4. 3Vの場合の正極活物 質の利用率は 50〜60%である力 充電電圧が 4. 5Vの場合には、上記利用率を約 70%に向上でき、放電容量を飛躍的に向上させられる。しかし、上記特許文献 1〜5 で得られるリチウム含有複合酸化物では、充電電圧 4. 3Vのときの充放電サイクル特 性も充分ではない上に、充電電圧 4. 5Vの高い作動電圧下では充放電サイクル特 性はさらに悪ィ匕してしまう。
[0012] 本発明の目的は、安全性が高ぐ高い作動電圧においても高い放電容量を持ち、 かつ充放電サイクル特性に優れた非水電解質二次電池用正極活物質、その製造方 法、及び該正極活物質を含むリチウム二次電池等の非水電解質二次電池を提供す ることにめる。
課題を解決するための手段
[0013] 本発明者らは、鋭意研究を続けたところ、特定の組成を有するリチウム含有複合酸 化物粒子であり、その特定の表面領域に比較的高い特定の濃度のアルミニウムを含 有せしめた表面修飾リチウム含有複合酸化物粒子からなる正極活物質により、上記 の目的が達成し得ることを見出した。すなわち、力かる正極を使用することにより、安 全性が高ぐ高い作動電圧でも高い放電容量を持ち、かつ優れた充放電サイクル特 性が達成されることを見出した。
[0014] 本発明において、上記のリチウム含有複合酸ィ匕物粒子により、何故に優れた特性 が達成されるかのメカニズムにつ 、ては、必ずしも明らかではな!/、が次のように推定 される。すなわち、リチウム二次電池等の非水電解質二次電池において充放電を繰 り返すと、リチウム含有複合酸化物粒子と電解液との界面で電解液の分解反応が起 こり、二酸化炭素を含む気体が発生する。しかし、表面領域に比較的高い濃度のァ ルミ-ゥムを含有する表面修飾リチウム含有複合酸化物粒子を使用した場合には、リ チウム含有複合酸ィ匕物の粒子の表面上の活性点とアルミニウムが反応することで、 前記の電解液の分解反応が抑制され、高い作動電圧、高い体積容量密度及び高い 安全性が保持されるものと考えられる。同時に、リチウム含有複合酸化物粒子の表面 層内に比較的高!、濃度のアルミニウムが存在すると、リチウム含有複合酸化物粒子 中の活性成分の電解液への溶出が抑制され、その結果、作動電圧が 4. 3Vのときは もちろん、 4. 5Vといった特に高い作動電圧においても、充放電サイクル特性が顕著 に向上するものと考えられる。
[0015] 一方、上記した従来のリチウム含有複合酸化物粒子では、アルミニウムを含有する ものの、アルミニウムの含有濃度は大きくなぐ特にその表面層におけるアルミニウム 含有量は大きくない。例えば、上記した特許文献 1又は特許文献 2に記載されるリチ ゥム含有複合酸化物粉末は、アルミニウム粉末添加後に高温で焼成されて 、るため 、その全体にわたってアルミニウムがほぼ同一の濃度で含まれており、該粉末の表面 層 5nm以内におけるアルミニウムの原子比率は、 Niと元素 Mの合計に対して、いず れも高々 0. 7程度である。なお元素 Mとは、リチウム含有複合酸化物粒子に含まれる コバルト、マンガン又はその両方を含む元素を表す。
[0016] また、特許文献 3では、リチウム含有複合酸化物粉末の表面をアルミニウムを含有 する懸濁液や溶液で処理することによりアルミニウムを含浸させている力 アルミ-ゥ ムの添加量が極めて少なぐかつ高温で処理しているため、粒子の表面層 5nm以内 における、 Niと元素 Mの合計に対するアルミニウムの原子比率は、高々 0. 7程度で ある。 [0017] 特許文献 4ではリチウム含有複合酸ィ匕物の表面層に水酸ィ匕アルミニウム、酸化アル ミニゥムだけではなぐさらに炭酸リチウムも含まれているため、リチウム含有複合酸化 物の表面層 5nm以内における、 Niと元素 Mの合計に対するアルミニウムの原子比率 が低くなる傾向があり、その原子比率は高々 0. 7程度である。
[0018] さらに特許文献 5では、リチウム含有複合酸化物粉末とアルミニウムの化合物とをボ ールミルにて混合した後、高温で熱処理しているが、このような混合方法では該粉末 の表面層 5nm以内におけるアルミニウムの原子比率は、 Niと元素 Mの合計に対して 、高々 0. 7程度である。
[0019] 力べして、本発明は上記の新規な知見に基づくものであり、以下の要旨を有する。
(1)一般式 Li N O (但し、 N = Ni M L、 Mは Co又は Mnの少なくとも一種以
2 1— — z z
上を含み、 Lは Ni、 Co、 Mn以外の遷移金属、アルカリ土類金属及びアルミニウムか ら選ばれる元素である。 0. 9≤p≤l. 1、0. 9≤x< l. 1、0. 2≤y≤0. 9, 0≤z≤0 . 3)で表されるリチウム含有複合酸ィ匕物粒子であり、その表面層にアルミニウムが含 有され、かつ該表面層 5nm以内におけるアルミニウム含有量力 Niと元素 Mの合計 に対して、原子比率で 0.8以上である表面修飾リチウム含有複合酸ィ匕物粒子力もな ることを特徴とする非水電解質二次電池用正極活物質。
(2)前記リチウム含有複合酸化物粒子が、ニッケルコバルト酸リチウム、ニッケルマン ガン酸リチウム及びニッケルコバルトマンガン酸リチウム力 なる群力 選ばれる少な くとも 1種の粒子であり、かつ、前記リチウム含有複合酸化物粒子全体に含有される アルミニウム力 S、元素 Nに対して、原子比率で 0. 0005-0. 20である、(1)に記載の 非水電解質二次電池用正極活物質。
(3)前記表面修飾リチウム含有複合酸化物粒子が、 5〜25 /z mの平均粒径 (D50) を有する、(1)又は(2)に記載の非水電解質二次電池用正極活物質。
(4)前記表面修飾リチウム含有複合酸ィ匕物粒子が、その表面層に炭素化合物を含 む(1)〜(3)の ヽずれかに記載の非水電解質二次電池用正極活物質。
(5)前記炭素化合物が炭素含有アルミニウム錯体の部分熱分解物である (4)に記載 の非水電解質二次電池用正極活物質。
(6)正極と負極と非水電解液を含むリチウム二次電池であって、前記正極に(1)〜( 5)の 、ずれかに記載の正極活物質を用いることを特徴とするリチウム二次電池。
(7)一般式 Li N O (但し、 N = Ni M L、 Mは Co又は Mnの少なくとも一種以
2 1— — z z
上を含み、 Lは Ni、 Co、 Mn以外の遷移金属、アルカリ土類金属及びアルミニウムか ら選ばれる元素である。 0. 9≤p≤l. 1、0. 9≤x< l. 1、0. 2≤y≤0. 9, 0≤z≤0 . 3)で表されるリチウム含有複合酸化物粒子に対し、アルミニウム錯体を含む pHが 3 〜 12の水溶液を含浸させ、さらに混合 ·乾燥してアルミニウム錯体混合粒子を得るェ 程 1と、該工程 1で得られたアルミニウム錯体混合粒子を酸素含有雰囲気で熱処理 する工程 2と、を含む請求項 1〜5のいずれかに記載の非水電解質二次電池用正極 活物質粒子の製造方法。
(8)前記工程 2の熱処理が 200〜450°Cで行われる (7)に記載の製造方法。
(9)前記アルミニウム錯体が炭素含有アルミニウム錯体である(7)又は(8)に記載の 製造方法。
(10)前記炭素含有アルミニウム錯体が塩基性乳酸アルミニウムである(9)に記載の 製造方法。
(11)アルミニウム錯体含浸粒子を得る工程 1に含まれる、含浸及び混合'乾燥の ヽ ずれかの工程にぉ 、て、ドラムミキサーを用いることを特徴とする(7)〜(10)の 、ず れかに記載の非水電解質二次電池用正極活物質の製造方法。
発明の効果
[0020] 本発明によれば、高い安全性を低下させることなぐ高い作動電圧、高い放電容量 及び優れた充放電サイクル特性を有する表面修飾リチウム含有複合酸化物粒子から なる非水電解質二次電池用正極活物質、該正極活物質の製造方法、及び該正極 活物質を用いた非水電解質二次電池が提供される。
図面の簡単な説明
[0021] [図 1]例 2で得られた表面修飾リチウム含有複合酸化物及び例 4で得られたリチウム 含有複合酸化物の赤外吸収 (IR)スペクトル。
[図 2]乾燥させた乳酸アルミニウムの熱重量 示差熱 示差重量 (TG— DTA DT G)分析の測定結果。
符号の説明 [0022] A 例 2で得られた表面修飾リチウム含有複合酸化物のスペクトル B 例 4で得られた表面修飾リチウム含有複合酸化物のスペクトル 発明を実施するための最良の形態
[0023] 本発明に係る表面修飾リチウム含有複合酸化物粒子は、母材となるリチウム含有複 合酸ィ匕物粒子の表面をアルミニウム化合物により修飾することにより得られる。母材と なるリチウム含有複合酸化物粒子は、一般式 Li N O (但し、 N = Ni M L、 M
2 1— — z z は Co又は Mnの少なくとも一種以上を含み、 Lは Ni、 Co、 Mn以外の遷移金属、アル カリ土類金属及びアルミニウム力も選ばれる元素である。 0. 9≤p≤l. 1、0. 9≤x< 1. 1、 0. 2≤y≤0. 9、 0≤z≤0. 3)で表される。この式【こお!/ヽて、元素 Miま、 Co又 は Mnの少なくとも一種以上を含む元素である。なかでも、元素 Mは、実用性の観点 から、コバルト マンガンの場合が好ましい。
[0024] また、式中の p及び χίま、 0. 9≤ρ≤1. 1、好ましく ίま 0. 95≤ρ≤1. 05 ;0. 9≤χ< 1. 1、好ましくは 0. 95≤χ≤1. 05で表される。元素 Μが Co又は Mnのいずれか一 方を含む場合、 0. 50≤y≤0. 85力好ましい。元素 Mが Co及び Mnを含む場合、 0 . 30≤y≤0. 70が好ましい。また、元素 Lを添加することにより、さらに電池特性を向 上させることができる。なお元素 Lにアルカリ土類金属又はアルミニウムが含まれる場 合、 zは 0< z≤0. 1の範囲にあることが好ましい。リチウム含有複合酸化物の粒子内 部にアルミニウムなどの元素が過剰に存在すると、放電容量が低下する場合がある。 元素 Lは上記した元素を表す力 なかでも好ましくは、 Al、 Mg、 Zr、 Ti、 Mo、 Ca等 の 2〜4価の元素が選ばれる。元素 Lは、特に好ましくは、 Al、 Zr又は Tiである。かか る場合の具体的なリチウム含有複合酸化物の例としては、 LiNi Co Al O、 L
0. 8 0. 15 0. 05 2 iNi Co Mn Al O、 LiNi Co Mn O、 LiNi Co O、 LiNi
0. 6 0. 1 0. 25 0. 05 2 1/3 1/3 1/3 2 0. 8 0. 2 2 0. 4
Mn Co 0、Li [ (Ni Co Mn ) Zr ] O又は Li Mn
0. 4 0. 2 2 1. 02 1/3 1/3 1/3 0. 999 0. 001 0. 98 2 1. 048 0. 286
Ni Co O等が挙げられる。市販のリチウム含有複合酸ィ匕物も用いることもで
0. 571 0. 095 2
きる。
[0025] 本発明に係る表面修飾リチウム含有複合酸化物粒子は、その粒子表面カゝら 5nm 以内の表面層におけるアルミニウムの含有量力 Niと元素 Mの合計に対して、原子 比率で 0. 8以上であることが必要である。アルミニウムの含有量が力かる所定の範囲 にある場合には、上記した本発明の効果が達成される。ここで、何故に表面修飾リチ ゥム含有複合酸ィ匕物粒子の表面から 5nm以内の表面層におけるアルミニウムの含 有量が問われるかについては、本発明では、前記のように、表面修飾リチウム含有複 合酸ィ匕物粒子の表面近傍に存在するアルミニウムが重要であり、この粒子の表面層 5nm以内のアルミニウムの含有量は、下記するように、 XPS分析法 (X線光電子分光 法)により容易に求めることができる。
[0026] なお、本明細書において、「表面修飾リチウム含有複合酸ィ匕物粒子の表面から 5n m以内の表面層における Niと元素 Mの合計に対するアルミニウムの原子比率」を、 単に「リチウム含有複合酸ィ匕物粒子の表面の原子比 (AlZNiM)」と 、うことがある。
[0027] 本発明では、表面修飾リチウム複合酸化物粒子表面の原子比 (AlZNiM)は 0. 8 以上であるが、好ましくは 1. 0以上、さらに好ましくは 1. 2以上である。一方、上限は 特に限定されないが、原子比 (AlZNiM)は好ましくは 15以下、さらに好ましくは 12 以下、特に好ましくは 10以下が好適である。
[0028] 本発明にお 、て、リチウム含有複合酸化物の粒子表面の原子比 (AlZNiM)は、 X PS分析法 (X線光電子分光法)により分析される。 XPS分析法は、粒子の極めて表 面に近い層に含有される元素の種類又は元素の存在割合を分析できる。なお、 XPS 分析装置の例としては、 PHI社製 ESCA5400 (ノンモノクロタイプ)が挙げられる。な お、本発明において、 XPS分析法を用いて粒子表面の原子比 (AlZNiM)を求める 際には、高い感度で検出でき、かつできる限り他の元素のピークと重ならないピーク を用いるのが好ましい。具体的には、アルミニウムを分析する際には、感度の高い 2p のピークを計算に用いるのが好ましい。なお、コバルト、マンガン又はニッケルを分析 する際には、感度の高 、2p3のピークを計算に用いるのが好ま 、。
[0029] また、粉末表面の元素分析に、しばしば使用される EPMA (X線マイクロアナライザ 一)分析又は EDS (エネルギー分散型 X線分光法)分析は、粒子表面力も表面層 50 〜: LOOnmの比較的深い範囲の元素に関わる情報が得られる分析法である。そのた め、本発明に係るリチウム含有複合酸ィ匕物の粒子表面の原子比 (Al/NiM)を測定 するには好ましくない。
[0030] 本発明に係る表面修飾リチウム含有複合酸化物粒子中に含まれるアルミニウムの 含有量は、粒子全体の場合、元素 Nに対して、原子比率で好ましくは 0. 0005〜0. 20、特には、 0. 001-0. 15が好ましい。元素 Nに含まれる元素 Lがアルミニウムを 含有する場合、表面修飾リチウム含有複合酸化物に含まれるアルミニウム含有量は、 元素 Nに対して、原子比率で 0. 05〜0. 15が好ましい。また元素 Nに含まれる元素 Lがアルミニウムを含有しな 、場合、表面修飾リチウム含有複合酸化物粒子全体に 含まれるアルミニウムは、元素 Nに対して、原子比率で 0. 001-0. 03がより好ましい
[0031] また、本発明に係る表面修飾リチウム含有複合酸化物粒子は、表面層にさらに炭 素化合物を含んでいると好ましい。該炭素化合物としては、少なくとも炭素—酸素の 二重結合を有する構造を持つ炭素含有アルミニウム錯体の部分熱分解物であるもの が好ましい。なかでも、上記炭素化合物としては、炭素—酸素の二重結合がカーボ ネート基、カルボ-ル基であるものが特に好ましい。上記炭素化合物として、具体的 な化合物としては、クェン酸アルミニウム、酒石酸アルミニウム、シユウ酸アルミニウム 、マロン酸アルミニウム、マレイン酸アルミニウム、リンゴ酸アルミニウム、ブドウ酸アル ミニゥム、乳酸アルミニウム又はダリオキシル酸アルミニウムの部分熱分解物が好まし い。上記炭素化合物としては、なかでも乳酸アルミニウムの部分熱分解物がより好ま しい。なお本明細書において部分熱分解物とは、炭素—酸素の二重結合構造を有 し、かつ表面修飾リチウム含有複合酸化物粒子表面に存在するアルミニウム錯体の 一部が熱分解したものを 、う。
[0032] 図 1は、例 2および例 4で合成したリチウム含有複合酸ィ匕物の赤外吸収 (IR)スぺク トルのチャートである。例 2で合成した表面修飾リチウム含有複合酸化物の IRスぺタト ルでは、 1300〜1700cm_1の範囲に強い吸収ピークが見られる。該吸収ピークは 炭素 酸素の二重結合に由来する吸収ピークであり、表面層に炭素化合物が存在 することを示す。更にその炭素化合物は、原料として用いた炭素含有アルミニウム錯 体の部分熱分解物であることを示す。一方、例 4で合成したリチウム含有複合酸化物 の IR ^ベクトルには、前記した炭素 酸素の二重結合に由来する強い吸収ピークが 見られない。
[0033] また図 2は乳酸アルミニウムを乾燥した粉末 (乾燥粉)に熱を加えたときの重量変化 (TG及び DTG)と発熱量の変化(DTA)を測定したものである。図 2より、乳酸アルミ -ゥム乾燥粉を 300〜450°Cの範囲まで加熱したとき、該乾燥粉の重量が急激に減 少し、かつ急激な発熱反応を伴っていることがわかる。すなわち該温度範囲におい て、乳酸アルミニウムが部分的に熱分解を起こし、二酸化炭素などの気体を放出して 脱炭酸反応が進行していることを示唆している。また、 500°C以上では殆ど熱分解が 完結していることが判る。この段階ではアルミニウム錯体は、酸ィ匕アルミニウムまたは 水酸ィ匕アルミニウムに転ィ匕して 、ることを示唆して 、る。
[0034] これらのことから、例 2において 350°Cにて熱処理することにより合成した表面修飾 リチウム含有複合酸ィヒ物粒子の表面層には、炭素 酸素の二重結合を有するアルミ ニゥム化合物が存在しており、表面層に炭素化合物が存在し、更にはその炭素化合 物は、原料として用いた炭素含有アルミニウム錯体の部分熱分解物であることがわか る。このことにより充放電サイクル特性がさらに向上する力 何故に充放電サイクル特 性がさらに向上するかという理由及びそのメカニズムについては必ずしも明らかでな い。
[0035] 本発明に係る表面修飾リチウム含有複合酸化物粒子は、予め合成された LiNi
1/3
Co Mn Oなどのリチウム含有複合酸ィ匕物に対して、アルミニウム錯体を含む p
1/3 1/3 2
H3〜l 2の水溶液 (本明細書にぉ 、て、この水溶液を A1水溶液と ヽぅことがある)を 含浸させ、さらに混合 '乾燥して、熱処理することによって得られる。
[0036] A1水溶液の原料とするアルミニウム化合物は特に限定されないが、表面修飾に用 V、るアルミニウムを含む水溶液中に存在するアルミニウムの溶解性向上の点から、ァ ルミ-ゥムの錯体ィ匕合物が好ましい。なお、このアルミニウムの錯体ィ匕合物とは水に 溶解したときに、アルミニウムに配位して錯体を形成する化合物を示す。さら〖こはカロ 熱処理後に表面修飾リチウム含有複合酸ィ匕物の粒子表面に、前記した炭素化合物 を好ましく残存できるため、炭素含有アルミニウム錯体がより好ましぐカルボ-ル基 や炭酸基を有する炭素含有アルミニウム錯体がさらに好ましぐカルボ-ル基ゃ炭酸 基を有する有機酸アルミニウム錯体が特に好ましい。具体的には、クェン酸アルミ- ゥム、酒石酸アルミニウム、シユウ酸アルミニウム、マロン酸アルミニウム、マレイン酸ァ ルミ-ゥム、リンゴ酸アルミニウム、ブドウ酸アルミニウム、乳酸アルミニウム及びダリオ キシル酸アルミニウム力 選ばれる少なくとも 1種が好ましい。このような炭素の存在 は、表面修飾リチウム含有複合酸ィ匕物を用いた電池の充放電サイクル特性がさらに 向上する傾向が見られ好まし!/、。
[0037] さらに前記 A1水溶液は、カルボン酸を含んで 、てもよ 、。 A1水溶液にカルボン酸が 含まれる場合、前記のカルボン酸は、水溶液への溶解度の点から、炭素数 2〜8の力 ルボン酸が好ましぐなかでもクェン酸、酒石酸、シユウ酸、マロン酸、マレイン酸、リ ンゴ酸、ブドウ酸、乳酸、ダリオキシル酸がさらに好ましい。 A1水溶液中のカルボン酸 の含有量は好ましくは 0. 05〜30重量0 /0であり、特〖こ好ましくは 0. 1〜20重量0 /0で ある。 A1水溶液にカルボン酸が含まれる場合、 A1水溶液中に含有されるアルミニウム 錯体の水に対する溶解性が向上し、 A1水溶液に溶解して ヽるアルミニウム錯体がさ らに析出しにくくなる傾向がある。
[0038] A1水溶液のアルミニウムの濃度は、後の工程で乾燥により水媒体を除去する必要 がある点力も高濃度の方が好ましい。しかし、水溶液中のアルミニウムの濃度が、高 濃度過ぎると粘度が高くなり、前記の母材との接触処理もしくは水溶液の取り扱いが 煩雑になる傾向がある。このため、 A1水溶液中のアルミニウムの濃度は、 0. 01〜20 重量%が好ましぐなかでも 0. 1〜5重量%がさらに好ましい。
[0039] 母材のリチウム含有複合酸ィ匕物粒子に対して A1水溶液を含浸させる工程にぉ 、て 、 A1水溶液の量は、使用する母材に対して、 0. 1〜80重量%の範囲内に調整する ことが好ましぐさらに 1〜75重量%に調整するとより好ましぐなかでも、 30〜70重 量%に調製すると特に好ましい。使用する母材に対する A1水溶液の量が、前記範囲 内にあると、本発明に係る正極活物質を大量に合成する際に、ロット間で正極活物 質の性能がばらつく問題が解消され、正極活物質を安定して量産できる傾向がある ため、好ましい。
[0040] 母材のリチウム含有複合酸化物粒子に対して A1水溶液を含浸させる手段としては 、特に問わないが、具体的には A1水溶液を母材の粒子粉末にスプレー噴霧して含 浸させる手段、又は、容器に収納された A1水溶液中に母材の粒子粉末を投入し、攪 拌して含浸させる手段などが使用できる。撹拌に用いる具体的な攪拌機には、 2軸ス クリューニーダー、アキシァノレミキサー、パドルミキサー、タービュライザ一、ドラムミキ サー、ソリッドエアー、レーディゲミキサーなどが挙げられる。なかでも、撹拌機として は、ドラムミキサーが好ましい。撹拌機としてドラムミキサーを用いると、 A1水溶液の原 料に用いるアルミニウム化合物が少量であっても、表面修飾リチウム含有複合酸化物 粒子の表面の原子比(AlZNiM)を高くできる傾向がある。すなわち、少量のアルミ -ゥム化合物で、充放電サイクル特性などの電池特性を、効率的に向上できるため 好ましい。なお、上記した撹拌機には、市販されているものの他に、ラボサイズ程度 の、小型の撹拌機を用いることもできる。
[0041] 母材のリチウム含有複合酸化物粒子に A1水溶液を含浸させて、さらに混合'乾燥 する工程において、乾燥は好ましくは 50〜200°C、特に好ましくは 80〜140°Cの温 度にて、また好ましくは 0. 1〜: LO時間の範囲で行われる。乾燥後のアルミニウム錯体 含浸粒子中に残存する水媒体は後の焼成工程で除去されるために、この段階で必 ずしも完全に除去する必要はないが、焼成工程で水分を気化させるのに多量のエネ ルギ一が必要になるので、できる限り除去しておくのが好ましい。
[0042] なお、 A1水溶液を含浸させて、さらに混合 ·乾燥してアルミニウム錯体含浸粒子を 得る工程において、含浸、混合、乾燥は順次別々に行っても、またレーディゲミキサ 一などを用いて全て同時に行っても良い。
[0043] さらに、前記アルミニウム錯体含浸粒子力 水媒体をできるだけ除去した後、酸素 含有雰囲気において好ましくは 200〜450°C、通常 0. 1〜24時間、アルミニウム錯 体含浸粒子を熱処理することによって、本発明に係る表面修飾リチウム含有複合酸 化物を得ることができる。なお、上記含浸粉末を熱処理するにあたり、さらに好ましい 温度範囲は 250〜400°Cの範囲である。
[0044] 前記のようにして得られる本発明に係る表面修飾リチウム含有複合酸化物粒子から なる正極活物質は、その平均粒径 (D50)が好ましくは 5〜25 μ m、特に好ましくは 8 〜20 m、比表面積が好ましくは 0. 1〜1. 0m2Zg、特に好ましくは 0. 2〜0. 8m2 Zgである。さらに CuKひを線源とする X線回折によって測定される 2 0 =65. 1 ± 1 ° の(110)面回折ピーク半値幅力 S好ましく ίま 0. 08〜0. 30° 、特に 0. 09〜0. 25 ° 力 S好まし ヽ。プレス密度力 S好ましく ίま 2. 40〜3. 50g/cm3、特に 2. 50〜3. 30g Zcm3が好ましい。本発明において、プレス密度とはリチウム複合酸ィ匕物粒子を 1. 0 トン /cm2の圧力でプレスしたときの粒子の見かけ密度を意味する。また、本発明に係 る表面修飾リチウム含有複合酸ィ匕物のリチウムイオン溶出量は 0. 60モル%以下が 好ましく、さらには 0. 01〜0. 50モノレ0 /0力より好ましく、な力でも 0. 01〜0. 40モノレ %が特に好ましい。
[0045] 本発明にお 、て、リチウムイオン溶出量は次のようにして測定できる。まず、正極活 物質の粉末 10gを水 90gに加えて、得られる水溶液を 30分間撹拌させ分散させる。 っ ヽで該水溶液をろ過して、得られたろ液を塩酸で滴定することで求められる。
[0046] リチウムイオン溶出量が前記の範囲内にあると、正極活物質粉末の正極加工時に、 正極活物質粉末を N—メチルピロリドンなどの分散媒に分散させたスラリーがゲル状 になりにくい傾向が見られ、正極力卩ェがより容易になるため好ましい。また充放電サイ クル特性が向上する傾向が見られて好ましい。
[0047] 本発明にお ヽて、平均粒径とは、体積基準で粒度分布を求め、全体積を 100%と した累積カーブにおいて、その累積カーブが 50%となる点の粒径である、体積基準 累積 50%径 (D50)を意味する。粒度分布は、レーザー散乱粒度分布測定装置で 測定した頻度分布及び累積体積分布曲線で求められる。粒径の測定は、粉末を水 媒体中に超音波処理などで充分に分散させて粒度分布を測定する (例えば、日機装 社製マイクロトラック HRA (X— 100)などを用いる)ことで行なわれる。なお本明細書 にお 、て、上記平均粒径を平均粒径 (D50) t 、うことがある。
[0048] 本発明の正極活物質を用いて、リチウム二次電池用の正極を得る方法は、常法に 従って実施できる。例えば、本発明の正極活物質の粉末に、アセチレンブラック、黒 鉛、ケッチェンブラック等のカーボン系導電材と、結合材とを混合することにより正極 合剤が形成される。上記結合材には、好ましくはポリフッ化ビ-リデン、ポリテトラフル ォロエチレン、ポリアミド、カルボキシメチルセルロース、アクリル榭脂等が用いられる
[0049] 上記の正極合剤を、 N—メチルピロリドンなどの分散媒に分散させたスラリーをアル ミニゥム箔等の正極集電体に塗工'乾燥及びプレス圧延せしめて正極活物質層を正 極集電体上に形成する。
[0050] 本発明の正極活物質を正極に使用するリチウム二次電池において、電池の電解質 溶液又はポリマー電解質に含まれる電解質としては、 CIO―、 CF SO―、 BF―、 PF
4 3 3 4
_、 AsF―、 SbF―、 CF CO―、 (CF SO ) N—等をァニオンとするリチウム塩のい
6 6 6 3 2 3 2 2
ずれか 1種以上を使用することが好ま ヽ。電池の電解質溶液又はポリマー電解質 には、上記のリチウム塩力もなる電解質を溶媒又は溶媒含有ポリマーに 0. 2〜2. 0 molZLの濃度で含まれているのが好ましい。この範囲を逸脱すると、イオン伝導度 が低下し、電解質の電気伝導度が低下する。より好ましくは 0. 5〜1. 5molZLが選 定される。セパレータには多孔質ポリエチレン、多孔質ポリプロピレンフィルムが好ま しい。
[0051] また、電解質溶液の溶媒としては炭酸エステルが好ま 、。炭酸エステルは環状、 鎖状いずれも使用できる。環状炭酸エステルとしては、プロピレンカーボネート、ェチ レンカーボネート (EC)等が例示される。鎖状炭酸エステルとしては、ジメチルカーボ ネート、ジェチルカーボネート(DEC)、ェチルメチルカーボネート、メチルプロピル力 ーボネート、メチルイソプロピルカーボネート等が例示される。
[0052] 上記炭酸エステルは単独でも 2種以上を混合して使用してもよ 、。また、他の溶媒 と混合して使用してもよい。また、負極活物質の材料によっては、鎖状炭酸エステル と環状炭酸エステルを併用すると、放電特性、充放電サイクル特性、充放電効率が 改良できる場合がある。
[0053] また、これらの有機溶媒にフッ化ビ-リデン一へキサフルォロプロピレン共重合体( 例えばアトケム社製カイナー)、フッ化ビ-リデン—パーフルォロプロピルビュルエー テル共重合体を添加し、下記の溶質をカ卩えることによりゲルポリマー電解質としてもよ い。
[0054] 本発明の正極活物質を正極に使用するリチウム電池の負極活物質は、リチウムィ オンを吸蔵、放出可能な材料である。負極活物質を形成する材料は特に限定されな いが、例えばリチウム金属、リチウム合金、炭素材料、炭素化合物、炭化ケィ素化合 物、酸化ケィ素化合物、硫ィ匕チタン、炭化ホウ素化合物、周期表 14、 15族の金属を 主体とした酸ィ匕物等が挙げられる。
[0055] 炭素材料としては、様々な熱分解条件で有機物を熱分解したものや人造黒鉛、天 然黒鉛、土壌黒鉛、膨張黒鉛、鱗片状黒鉛等を使用できる。また、酸化物としては、 酸化スズを主体とする化合物が使用できる。負極集電体としては、銅箔、ニッケル箔 等が用いられる。
[0056] 本発明における正極活物質を使用するリチウム二次電池の形状には、特に制約は ない。シート状 (いわゆるフィルム状)、折り畳み状、卷回型有底円筒形、ボタン形等 が用途に応じて選択される。
実施例
[0057] 以下に本発明を具体的に説明するが、本発明はこれらの実施例に限定して解釈さ れないことはもちろんである。例 1〜3、 6、 7、 9、 10、 12及び 14は本発明の実施例 であり、例 4、 5、 8、 11、 13及び 15は比較例である。
[例 1]
ニッケル、コノルト、マンガンの原子比力 Ni: Co : Mn= l : l : lとなるように調合し た硫酸ニッケルと硫酸コバルトと硫酸マンガンを含有する硫酸塩混合水溶液と、硫酸 アンモ-ゥム水溶液と、水酸ィ匕ナトリウム水溶液とを、反応槽内のスラリーの pHが 11
. 0、温度が 50°Cになるように攪拌しつつそれぞれ連続的に反応槽に供給した。ォー バーフロー方式で反応系内の液量を調節し、オーバーフローした共沈スラリーをろ過
、水洗し、次いで、 80°Cで乾燥することにより、ニッケルコバルトマンガン複合水酸ィ匕 物粉末を得た。
[0058] 次に該複合水酸化物粉末を、水酸ィ匕ナトリウムを 3重量%含有する 6重量%過硫酸 ナトリウム水溶液に分散させ、 20°Cで 12時間攪拌することにより、ニッケルコバルトマ ンガン複合ォキシ水酸ィ匕物スラリーを合成した。さらに該複合ォキシ水酸化物スラリ 一を、ろ過、水洗し、次いで、乾燥することにより、複合ォキシ水酸化物粉末を得た。 該複合ォキシ水酸ィ匕物粉末の比表面積は 9. 6m2Zg、平均粒径は 10. であ つた o
[0059] こうして得られた複合ォキシ水酸化物粉末に平均粒径 20 μ mの炭酸リチウム粉末 を所定量混合し、酸素濃度が 40体積%の雰囲気中で 1000°C、 16時間焼成した後 、粉砕することにより、 Li (Ni Co Mn ) Oの組成を有するリチウム含有
1. 02 1/3 1/3 1/3 0. 98 2
複合酸ィ匕物からなる母材を得た。該母材に関して、 CuK a線を使用した粉末 X線回 折スペクトルを測定したところ、菱面体系(R— 3m)の類似構造であることがわ力つた 。なお測定には理学電機社製 RINT 2100型を用いた。この母材粉末の粒子に関 して、 SEM観察を行ったところ、一次粒子が多数凝集して二次粒子を形成したもの であり、かつその形状がおおむね球状もしくは楕円状であることがわ力つた。
[0060] 次いで、アルミニウム含量が 4. 4重量%の塩基性乳酸アルミニウム水溶液 1. 27g に、水 48. 73gを加えて、 pH5の A1水溶液を調製した。前記母材 100gを、前記の A1 水溶液 50gに浸漬した後ゆっくり混合することにより、混合粉末を得た。さらに該混合 粉末を 120°Cで 4時間乾燥してアルミニウム錯体含浸粒子を得た。その乾燥した錯 体含浸粒子を、酸素含有雰囲気下 350°C、 12時間、加熱し、平均粒径 10. 3 m、 D10が 5. 1 m、 D90力 1 μ mであり、比表面積が 0. 51m2Zgの略球状の本 発明に係る表面修飾リチウム含有複合酸化物粒子を得た。
[0061] 得られた表面修飾リチウム含有複合酸ィ匕物粒子について、 X線回折装置 (理学電 機社製 RINT 2100型)を用いて X線回折スペクトルを得た。 CuK o;線を使用した 粉末 X線回折において、 2 0 =65. 1 ± 1° の(110)面の回折ピーク半値幅は 0. 22 8° であった。この粒子のプレス密度は 2. 69gZcm3であった。また該表面修飾リチ ゥム含有複合酸ィ匕物粒子に含まれるアルミニウムは、ニッケル、マンガン及びコバル トの合計に対して、原子比率で 0. 002であった。
[0062] さらに得られた表面修飾リチウム含有複合酸ィ匕物粒子について、 XPS分析法により 、該複合酸ィ匕物の原子比 (AlZNiM)を測定したところ、 (Al/NiM) = l. 37であつ た。またリチウムイオン溶出量は 0. 20モノレ%であった。
[0063] 前記の表面修飾リチウム含有複合酸化物粒子と、アセチレンブラックと、ポリフツイ匕 ビ-リデン粉末とを 90/5/5の重量比で混合し、 N—メチルピロリドンを添加してス ラリーを作製し、厚さ 20 mのアルミニウム箔にドクターブレードを用いて片面塗工し た。乾燥し、ロールプレス圧延を 3回行うことによりリチウム電池用の正極体シートを作 製した。
[0064] 次に、前記の正極体シートを打ち抜いたものを正極に用い、厚さ 500 mの金属リ チウム箔を負極に用い、負極集電体にニッケル箔 20 mを使用し、セパレータには 厚さ 25 /z mの多孔質ポリプロピレンを用い、さらに電解液には、濃度 1Mの LiPF /
6
EC + DEC (1: 1)溶液 (LiPFを溶質とする ECと DECとの重量比(1: 1)の混合溶液 を意味する。後記する溶媒もこれに準じる。)を用いてステンレス製簡易密閉セル型リ チウム電池をアルゴングローブボックス内で 4個組み立てた。
[0065] 前記 1個の電池については、 25°Cにて正極活物質 lgにっき 30mAの負荷電流で 4. 3Vまで充電し、正極活物質 lgにっき 30mAの負荷電流にて 2. 5Vまで放電して 初期放電容量を求めた。また、この電池について、引き続き充放電サイクル試験を 3 0回行った。その結果、 25°C、 2. 5〜4. 3Vにおける正極活物質の初期重量容量密 度は、 159mAhZgであり、 30回充放電サイクル後の容量維持率は 98. 8%であつ た。さらにもう一つの電池については、充電電圧を 4. 3V力ら 4. 5Vに変更して充放 電サイクル試験を 25回にしたこと以外は、同様の操作を行った結果、 2. 5〜4. 5V における正極活物質の初期重量容量密度は、 173mAhZgであり、 25回充放電サ イタル後の容量維持率は 97. 5%であった。
[0066] また、他方の電池については、それぞれ 4. 3V、及び 4. 5Vで 10時間充電し、アル ゴングローブボックス内で解体し、充電後の正極体シートを取り出し、その正極体シ ートを洗滌後、直径 3mmに打ち抜き、 ECとともにアルミニウム製カプセルに密閉し、 走査型差動熱量計にて 5°CZ分の速度で昇温して発熱開始温度を測定した。その 結果、 4. 3V充電品の発熱曲線の発熱開始温度は 237°Cであり、 4. 5V充電品の発 熱開始温度は 200°Cであった。
[0067] [例 2]
例 1と同様にして母材にあたる Li (Ni Co Mn ) Oの組成を有するリ
1. 02 1/3 1/3 1/3 0. 98 2
チウム含有複合酸化物を合成した。
ついで、アルミニウム含量が 4. 4重量%の塩基性乳酸アルミニウム水溶液 6. 36g に、水 43. 64gを加えて、 pH5の A1水溶液を調製した。前記母材 100gを、前記の A1 水溶液 50gに浸漬した後ゆっくり混合することにより、混合粉末を得た。さらに該混合 粉末を 120°Cで 4時間乾燥してアルミニウム錯体含浸粒子を得た。その乾燥した錯 体含浸粒子を、酸素含有雰囲気下 350°C、 12時間、加熱し、平均粒径 10. 5 m、 D10が 5. 5 /ζ πι、 D90力 9 mであり、比表面積が 0. 49m2Zgの略球状の本 発明に係る表面修飾リチウム含有複合酸化物粒子を得た。
[0068] 得られた表面修飾リチウム含有複合酸ィ匕物粒子について、例 1と同様に X線回折ス ベクトルを測定した。 CuK a線を使用した粉末 X線回折において、 2 0 =65. 1 ± 1 。 の(110)面の回折ピーク半値幅は 0. 226° であった。この粒子のプレス密度は 2 . 65gZcm3であった。また該表面修飾リチウム含有複合酸化物粒子に含まれるアル ミニゥムは、ニッケル、マンガン及びコバルトの合計に対して、原子比率で 0. 01であ つた o
[0069] さらに得られた表面修飾リチウム含有複合酸ィ匕物粒子について、例 1と同様に XPS 分析法により、該複合酸ィ匕物の原子比 (Al/NiM)を測定したところ、 (Al/NiM) = 3. 25であった。またリチウムイオン溶出量は 0. 32モル%であった。
[0070] また前述したように、図 1の IRスペクトルのチャートにおいて、 1300〜1700cm_1の 範囲に強い吸収ピークを持っていることから、該表面修飾リチウム含有複合酸 化物の表面層には炭素 酸素の二重結合を有する炭素化合物が存在することがわ かった。
さらに図 2より乳酸アルミニウムは 300°C〜450°Cで分解反応が進行して、 500°Cで は分解がほぼ完結することがわ力つた。
さらに、これらのことから、例 2において 350°Cにて熱処理することにより合成した表 面修飾リチウム含有複合酸化物粒子の表面層には、炭素化合物が存在して ヽること がわかった。また該炭素化合物が原料として用いた炭素含有アルミニウム錯体の部 分熱分解物であることがわ力つた。
[0071] 正極体シートが、上記の表面修飾リチウム含有複合酸ィ匕物を用いて作製されたも のである以外は、例 1と同様に電極及び電池を作製し、評価を行った。
その結果、 25°C、 2. 5〜4. 3Vにおける正極活物質の初期重量容量密度は、 157 mAhZgであり、 30回充放電サイクル後の容量維持率は 98. 8%であった。
[0072] 一方、 25°C、 2. 5〜4. 5Vにおける正極活物質の初期重量容量密度は、 172mA hZgであり、 25回充放電サイクル後の容量維持率は 97. 0%であった。
また、走査型差動熱量計にて 5°CZ分の速度で昇温して発熱開始温度を測定した 結果、 4. 3V充電品の発熱曲線の発熱開始温度は 237°Cであり、 4. 5V充電品の発 熱開始温度は 199°Cであった。
[0073] [例 3] 例 1と同様にして母材にあたる Li (Ni Co Mn ) Oの組成を有するリ
1. 02 1/3 1/3 1/3 0. 98 2
チウム含有複合酸化物を合成した。
ついで、アルミニウム含量が 4. 4重量%の塩基性乳酸アルミニウム水溶液 12. 71g に、水 37. 29gをカ卩えて、 pH5の A1水溶液を調製した。前記母材 100gを、前記の A1 水溶液 50gに浸漬した後ゆっくり混合することにより、混合粉末を得た。さらに該混合 粉末を 120°Cで 4時間乾燥してアルミニウム錯体含浸粒子を得た。その乾燥した錯 体含浸粒子を、酸素含有雰囲気下 350°C、 12時間、加熱し、平均粒径 10. 6 m、 D10力 S5. 4 /ζ πι、 D90力 14. であり、 it表 ® 力0. 48m2/gの略 の φ: 発明に係る表面修飾リチウム含有複合酸化物粒子を得た。
[0074] 得られた表面修飾リチウム含有複合酸ィ匕物粒子について、例 1と同様に X線回折ス ベクトルを測定した。 CuK o;線を使用した粉末 X線回折において、 2 0 =65. 1 ± 1 。 の(110)面の回折ピーク半値幅は 0. 230° であった。この粒子のプレス密度は 2 . 65gZcm3であった。また該表面修飾リチウム含有複合酸化物粒子に含まれるアル ミニゥムは、ニッケル、マンガン及びコバルトの合計に対して、原子比率で 0. 02であ つた o
[0075] さらに得られた表面修飾リチウム含有複合酸ィ匕物粒子について、例 1と同様に XPS 分析法により、該複合酸ィ匕物の原子比 (Al/NiM)を測定したところ、 (Al/NiM) =
9. 0であった。またリチウムイオン溶出量は、 0. 50モル%であった。
[0076] 正極体シートが、上記の表面修飾リチウム含有複合酸化物を用いて作製されたも のである以外は、例 1と同様に電極及び電池を作製し、評価を行った。
その結果、 25°C、 2. 5〜4. 3Vにおける正極活物質の初期重量容量密度は、 157 mAhZgであり、 30回充放電サイクル後の容量維持率は 98. 7%であった。
[0077] 一方、 25°C、 2. 5〜4. 5Vにおける正極活物質の初期重量容量密度は、 171mA hZgであり、 25回充放電サイクル後の容量維持率は 97. 2%であった。
また、走査型差動熱量計にて 5°CZ分の速度で昇温して発熱開始温度を測定した 結果、 4. 3V充電品の発熱曲線の発熱開始温度は 239°Cであり、 4. 5V充電品の発 熱開始温度は 202°Cであった。
[0078] [例 4] 例 1と同様にして母材の Li (Ni Co Mn ) Oの組成を有するリチウム
1. 02 1/3 1/3 1/3 0. 98 2
含有複合酸化物を合成した。該母材の平均粒径は 10. 5 m、 D10が 5. 3 m、 D 90が 13. 5 mであり、また比表面積が 0. 49m2/gの一次粒子が多数凝集し二次 粒子を形成した粒子力もなる粉末であった。当該複合酸ィ匕物粒子について、 X線回 折装置 (理学電機社製 RINT 2100型)を用いて X線回折スペクトルを得た。 CuK α線を使用した粉末 X線回折において、 2 Θ =65. 1 ± 1° 付近の(110)面の回折 ピーク半値幅は 0. 225° であった。またプレス密度は 2. 70gZcm3であった。
[0079] 前記した母材にあたるリチウム含有複合酸ィ匕物粒子に対して、例 1と同様に XPS分 析法により、表面元素分析したところ、アルミニウムは検出されな力つた。
また前述したように、図 1の IR ^ベクトルのチャートにおいて、 1300〜1700cm_1の 範囲に強い吸収ピークが見られないことから、該リチウム含有複合酸ィ匕物は炭素 酸素の二重結合を有する化合物を含んで 、な 、ことがわ力つた。
[0080] 前記した母材にあたるリチウム含有複合酸ィ匕物粒子を使用し、例 1と同様にして、 正極シートを作成し、電池を組み立てて、評価を行った。
その結果、 25°C、 2. 5〜4. 3Vにおける正極活物質の初期重量容量密度は、 160 mAh/g, 30回充放電サイクル後の容量維持率は 95. 0%であった。
一方、 25°C、 2. 5〜4. 5Vにおける正極活物質の初期重量容量密度は、 175mA hZg、 25回充放電サイクル後の容量維持率は 91. 0%であった。
[0081] また、走査型作動熱量計にて 5°CZ分の速度で昇温して発熱開始温度を測定した 結果、 4. 3V充電品の発熱開始温度は 232°Cであり、 4. 5V充電品の発熱開始温度 は 199°Cであった。
[0082] [例 5]
例 1と同様にして母材にあたる Li (Ni Co Mn ) Oの組成を有するリ
1. 02 1/3 1/3 1/3 0. 98 2
チウム含有複合酸化物を合成した。
ついで、アルミニウム含量が 4. 4重量%の塩基性乳酸アルミニウム水溶液 0. 13g に、水 49. 87gを加えて、 pH5の A1水溶液を調製した。前記母材 100gを、前記の A1 水溶液 50gに浸漬した後ゆっくり混合することにより、混合粉末を得た。さらに該混合 粉末を 120°Cで 4時間乾燥してアルミニウム錯体含浸粒子を得た。その乾燥した錯 体含浸粒子を、酸素含有雰囲気下 350°C、 12時間、加熱し、平均粒径 10. 6 m、 D10が 5. 2/ζ πι、 D90力 3 mであり、比表面積が 0. 48m2Zgの略球状の表 面修飾リチウム含有複合酸化物粒子を得た。
[0083] 得られた表面修飾リチウム含有複合酸ィ匕物粒子について、例 1と同様に X線回折ス ベクトルを測定した。 CuK o;線を使用した粉末 X線回折において、 2 0 =65. 1 ± 1 。 の(110)面の回折ピーク半値幅は 0. 227° であった。この粒子のプレス密度は 2 . 70gZcm3であった。また該表面修飾リチウム含有複合酸化物粒子に含まれるアル ミニゥムは、ニッケル、マンガン及びコバルトの合計に対して、原子比率で 0. 0002で めつに。
[0084] さらに得られた表面修飾リチウム含有複合酸ィ匕物粒子について、例 1と同様に XPS 分析法により、当該複合酸ィ匕物の原子比 (AlZNiM)を測定したところ、 (Al/NiM)
= 0.16であった。またリチウムイオン溶出量は、 0. 20モル0 /。であった。
[0085] 正極体シートが、前記の表面修飾リチウム含有複合酸化物を用いて作製されたも のである以外は、例 1と同様に電極及び電池を作製し、評価を行った。
その結果、 25°C、 2. 5〜4. 3Vにおける正極活物質の初期重量容量密度は、 160 mAhZgであり、 30回充放電サイクル後の容量維持率は 95. 3%であった。
[0086] 一方、 25°C、 2. 5〜4. 5Vにおける正極活物質の初期重量容量密度は、 174mA hZgであり、 25回充放電サイクル後の容量維持率は 91. 2%であった。
[0087] また、走査型差動熱量計にて 5°CZ分の速度で昇温して発熱開始温度を測定した 結果、 4. 3V充電品の発熱曲線の発熱開始温度は 236°Cであり、 4. 5V充電品の発 熱開始温度は 200°Cであった。
[0088] [例 6]
例 1と同様にして母材にあたる Li (Ni Co Mn ) Oの組成を有するリ
1. 02 1/3 1/3 1/3 0. 98 2
チウム含有複合酸化物を合成した。
ついで、アルミニウム含量が 4. 4重量%の塩基性乳酸アルミニウム水溶液 1. 27g に、水 4. 73gをカ卩えて、 pH5の A1水溶液を調製した。前記母材 100gを、前記の A1 水溶液 6gを噴霧しながら、ドラムミキサーにて混合することにより、混合粉末を得た。 さらに該混合粉末を 120°Cで 4時間乾燥してアルミニウム錯体添加粒子を得た。その 乾燥した錯体添加粒子を、酸素含有雰囲気下 350°C、 12時間、加熱し、平均粒径 1 0. 4 111、010カ 5. O ^ m, D90力 14. 5 mであり、 it表 ® 力0. 50m2/gの略 球状の表面修飾リチウム含有複合酸化物粒子を得た。
[0089] 得られた表面修飾リチウム含有複合酸ィ匕物粒子について、例 1と同様に X線回折ス ベクトルを測定した。 CuK o;線を使用した粉末 X線回折において、 2 0 =65. 1 ± 1 。 の(110)面の回折ピーク半値幅は 0. 227° であった。この粒子のプレス密度は 2 . 68gZcm3であった。また該表面修飾リチウム含有複合酸化物粒子に含まれるアル ミニゥムは、ニッケル、マンガン及びコバルトの合計に対して、原子比率で 0. 002で めつに。
[0090] さらに得られた表面修飾リチウム含有複合酸ィ匕物粒子について、例 1と同様に XPS 分析法により、当該複合酸ィ匕物の原子比 (AlZNiM)を測定したところ、 (Al/NiM) = 1. 4であった。またリチウムイオン溶出量は、 0. 19モル%であった。
正極体シートが、前記の表面修飾リチウム含有複合酸ィ匕物を用いて作製されたも のである以外は、例 1と同様に電極及び電池を作製し、評価を行った。
その結果、 25°C、 2. 5〜4. 3Vにおける正極活物質の初期重量容量密度は、 159 mAhZgであり、 30回充放電サイクル後の容量維持率は 99. 0%であった。
[0091] 一方、 25°C、 2. 5〜4. 5Vにおける正極活物質の初期重量容量密度は、 174mA hZgであり、 25回充放電サイクル後の容量維持率は 98. 0%であった。
また、走査型差動熱量計にて 5°CZ分の速度で昇温して発熱開始温度を測定した 結果、 4. 3V充電品の発熱曲線の発熱開始温度は 238°Cであり、 4. 5V充電品の発 熱開始温度は 201°Cであった。
[0092] [例 7]
例 1で得られた複合ォキシ水酸化物粉末に炭酸リチウム粉末を所定量混合し例 1と 同様に焼成、粉砕することにより、母材にあたる Li (Ni Co Mn ) Oの
1. 05 1/3 1/3 1/3 0. 95 2 組成を有するリチウム含有複合酸化物を合成した。
ついで、アルミニウム含量が 4. 4重量%の塩基性乳酸アルミニウム水溶液 1. 29g に、水 4. 71gをカ卩えて、 pH5の A1水溶液を調製した。前記母材 100gを、前記の A1 水溶液 6gを噴霧しながら、ドラムミキサーにて混合することにより、混合粉末を得た。 さらに該混合粉末を 120°Cで 4時間乾燥してアルミニウム錯体添加粒子を得た。その 乾燥した錯体添加粒子を、酸素含有雰囲気下 350°C、 12時間、加熱し、平均粒径 1 0. 9 111、010カ 6. O ^ m, D90力 15. 3 mであり、 it表 ® 力0. 49m2/gの略 球状の表面修飾リチウム含有複合酸化物粒子を得た。
[0093] 得られた表面修飾リチウム含有複合酸ィ匕物粒子について、例 1と同様に X線回折ス ベクトルを測定した。 CuK o;線を使用した粉末 X線回折において、 2 0 =65. 1 ± 1 。 の(110)面の回折ピーク半値幅は 0. 198° であった。この粒子のプレス密度は 2 . 69gZcm3であった。また該表面修飾リチウム含有複合酸化物粒子に含まれるアル ミニゥムは、ニッケル、マンガン及びコバルトの合計に対して、原子比率で 0. 002で めつに。
さらに得られた表面修飾リチウム含有複合酸化物粒子につ ヽて、例 1と同様に XPS 分析法により、当該複合酸ィ匕物の原子比 (AlZNiM)を測定したところ、 (Al/NiM) = 1. 39であった。またリチウムイオン溶出量は、 0. 29モル%であった。
正極体シートが、前記の表面修飾リチウム含有複合酸ィ匕物を用いて作製されたも のである以外は、例 1と同様に電極及び電池を作製し、評価を行った。
その結果、 25°C、 2. 5〜4. 3Vにおける正極活物質の初期重量容量密度は、 157 mAhZgであり、 30回充放電サイクル後の容量維持率は 98. 7%であった。
[0094] 一方、 25°C、 2. 5〜4. 5Vにおける正極活物質の初期重量容量密度は、 172mA hZgであり、 25回充放電サイクル後の容量維持率は 96. 0%であった。
また、走査型差動熱量計にて 5°CZ分の速度で昇温して発熱開始温度を測定した 結果、 4. 3V充電品の発熱曲線の発熱開始温度は 235°Cであり、 4. 5V充電品の発 熱開始温度は 201°Cであった。
[0095] [例 8]
例 7と同様にして母材の Li (Ni Co Mn ) Oの組成を有するリチウム
1. 05 1/3 1/3 1/3 0. 95 2
含有複合酸化物を合成した。該母材の平均粒径は 10. 8 m、 D10が 6. 1 m、 D 90が 15. であり、また比表面積が 0. 47m2/gの一次粒子が多数凝集し二次 粒子を形成した粒子力もなる粉末であった。当該複合酸ィ匕物粒子について、 X線回 折装置 (理学電機社製 RINT 2100型)を用いて X線回折スペクトルを得た。 CuK α線を使用した粉末 X線回折において、 2 θ =65. 1 ± 1° 付近の(110)面の回折 ピーク半値幅は 0. 199° であった。またプレス密度は 2. 70g/cm3であった。
[0096] 前記した母材にあたるリチウム含有複合酸ィ匕物粒子に対して、例 1と同様に XPS分 析法により、表面元素分析したところ、アルミニウムは検出されな力つた。
前記した母材にあたるリチウム含有複合酸ィ匕物粒子を使用し、例 1と同様にして、 正極シートを作成し、電池を組み立てて、評価を行った。
その結果、 25°C、 2. 5〜4. 3Vにおける正極活物質の初期重量容量密度は、 159 mAh/g, 30回充放電サイクル後の容量維持率は 94. 9%であった。
[0097] 一方、 25°C、 2. 5〜4. 5Vにおける正極活物質の初期重量容量密度は、 174mA hZg、 25回充放電サイクル後の容量維持率は 90. 0%であった。
また、走査型作動熱量計にて 5°CZ分の速度で昇温して発熱開始温度を測定した 結果、 4. 3V充電品の発熱開始温度は 230°Cであり、 4. 5V充電品の発熱開始温度 は 198°Cであった。
[0098] [例 9]
例 1と同様にして母材にあたる Li (Ni Co Mn ) Oの組成を有するリ
1. 02 1/3 1/3 1/3 0. 98 2
チウム含有複合酸化物を合成した。
ついで、アルミニウム含量が 4. 4重量%の塩基性乳酸アルミニウム水溶液 0. 13kg に、水 7. 37kgを加えて、 pH5の A1水溶液を調製した。前記母材 10kgを、レーディ ゲミキサーに充填して、混合しながら 80°Cに加熱し、前記 A1水溶液 7. 5kgを噴霧し ながら、混合 '乾燥することにより、アルミニウム錯体添加粒子を得た。錯体添加粒子 を、酸素含有雰囲気下 350°C、 12時間、加熱し、平均粒径 10. 0 m、 D10が 4. 8 ^ m, D90が 14. 0 mであり、比表面積が 0. 52m2Zgの略球状の表面修飾リチウ ム含有複合酸化物粒子を得た。
[0099] 得られた表面修飾リチウム含有複合酸ィ匕物粒子について、例 1と同様に X線回折ス ベクトルを測定した。 CuK o;線を使用した粉末 X線回折において、 2 0 =65. 1 ± 1 。 の(110)面の回折ピーク半値幅は 0. 227° であった。この粒子のプレス密度は 2 . 66gZcm3であった。また該表面修飾リチウム含有複合酸化物粒子に含まれるアル ミニゥムは、ニッケル、マンガン及びコバルトの合計に対して、原子比率で 0. 002で あった。
[0100] さらに得られた表面修飾リチウム含有複合酸ィ匕物粒子について、例 1と同様に XPS 分析法により、当該複合酸ィ匕物の原子比 (AlZNiM)を測定したところ、 (Al/NiM) =0. 81であった。またリチウムイオン溶出量は、 0. 31モル%であった。
正極体シートが、前記の表面修飾リチウム含有複合酸ィ匕物を用いて作製されたも のである以外は、例 1と同様に電極及び電池を作製し、評価を行った。
その結果、 25°C、 2. 5〜4. 3Vにおける正極活物質の初期重量容量密度は、 160 mAhZgであり、 30回充放電サイクル後の容量維持率は 97. 8%であった。
[0101] 一方、 25°C、 2. 5〜4. 5Vにおける正極活物質の初期重量容量密度は、 174mA hZgであり、 25回充放電サイクル後の容量維持率は 96. 0%であった。
また、走査型差動熱量計にて 5°CZ分の速度で昇温して発熱開始温度を測定した 結果、 4. 3V充電品の発熱曲線の発熱開始温度は 236°Cであり、 4. 5V充電品の発 熱開始温度は 200°Cであった。
[0102] [例 10]
例 1と同様にして得られた複合ォキシ水酸ィ匕物粉末に平均粒径 20 μ mの炭酸リチ ゥム粉末と酸化ジルコニウムを所定量混合し、酸素濃度が 40体積%の雰囲気中で 1 000°C、 16時間焼成した後、粉砕することにより、 Li [(Ni Co Mn ) Z
1. 02 1/3 1/3 1/3 0. 999 r ] Oの組成を有するリチウム含有複合酸化物からなる母材を得た。
0. 001 0. 98 2
ついで、アルミニウム含量が 4. 4重量%の塩基性乳酸アルミニウム水溶液 1. 27g に、水 48. 73gを加えて、 pH5の A1水溶液を調製した。前記母材 100gを、前記の A1 水溶液 50gに浸漬した後ゆっくり混合することにより、混合粉末を得た。さらに該混合 粉末を 120°Cで 4時間乾燥してアルミニウム錯体含浸粒子を得た。その乾燥した錯 体含浸粒子を、酸素含有雰囲気下 350°C、 12時間、加熱し、平均粒径 10. 3 m、 D10が 5. 3 /ζ πι、 D90力 7 mであり、比表面積が 0. 52m2Zgの略球状の表 面修飾リチウム含有複合酸化物粒子を得た。
[0103] 得られた表面修飾リチウム含有複合酸ィ匕物粒子について、例 1と同様に X線回折ス ベクトルを測定した。 CuK o;線を使用した粉末 X線回折において、 2 0 =65. 1 ± 1 ° の(110)面の回折ピーク半値幅は 0. 229° であった。この粒子のプレス密度は 2 . 66gZcm3であった。また該表面修飾リチウム含有複合酸化物粒子に含まれるアル ミニゥムは、ニッケル、マンガン及びコバルトの合計に対して、原子比率で 0. 002で めつに。
[0104] さらに得られた表面修飾リチウム含有複合酸ィ匕物粒子について、例 1と同様に XPS 分析法により、当該複合酸ィ匕物の原子比 (AlZNiM)を測定したところ、 (Al/NiM) = 1. 35であった。またリチウムイオン溶出量は、 0. 25モル%であった。
正極体シートが、前記の表面修飾リチウム含有複合酸ィ匕物を用いて作製されたも のである以外は、例 1と同様に電極及び電池を作製し、評価を行った。
その結果、 25°C、 2. 5〜4. 3Vにおける正極活物質の初期重量容量密度は、 157 mAhZgであり、 30回充放電サイクル後の容量維持率は 99. 3%であった。
[0105] 一方、 25°C、 2. 5〜4. 5Vにおける正極活物質の初期重量容量密度は、 171mA hZgであり、 25回充放電サイクル後の容量維持率は 98. 0%であった。
また、走査型差動熱量計にて 5°CZ分の速度で昇温して発熱開始温度を測定した 結果、 4. 3V充電品の発熱曲線の発熱開始温度は 241°Cであり、 4. 5V充電品の発 熱開始温度は 210°Cであった。
[0106] [例 11]
例 10と同様にして Li [ (Ni Co Mn ) Zr ] Oの組成を有するリ
1. 02 1/3 1/3 1/3 0. 999 0. 001 0. 98 2
チウム含有複合酸化物を得た。
該リチウム含有複合酸化物粒子の平均粒径は 10. 4 /ζ πι、 D10が 5. 2 /ζ πι、 D90 力 8 mであり、比表面積が 0. 49m2/gの一次粒子が多数凝集し二次粒子を 形成した粒子力もなる粉末であった。当該複合酸ィ匕物粒子について、 X線回折装置 (理学電機社製 RINT 2100型)を用いて X線回折スペクトルを得た。 CuK o;線を使 用した粉末 X線回折において、 2 0 =65. 1 ± 1° 付近の(110)面の回折ピーク半 値幅は 0. 228° であった。またプレス密度は 2. 67gZcm3であった。
前記したリチウム含有複合酸ィ匕物粒子に対して、例 1と同様に XPS分析法により、 表面元素分析したところ、アルミニウムは検出されな力つた。
正極体シートが、前記のリチウム含有複合酸ィ匕物を用いて作製されたものである以 外は、例 1と同様に電極及び電池を作製し、評価を行った。 その結果、 25°C、 2. 5〜4. 3Vにおける正極活物質の初期重量容量密度は、 157 mAhZgであり、 30回充放電サイクル後の容量維持率は 98. 0%であった。
[0107] 一方、 25°C、 2. 5〜4. 5Vにおける正極活物質の初期重量容量密度は、 172mA hZgであり、 25回充放電サイクル後の容量維持率は 97. 5%であった。
また、走査型差動熱量計にて 5°CZ分の速度で昇温して発熱開始温度を測定した 結果、 4. 3V充電品の発熱曲線の発熱開始温度は 239°Cであり、 4. 5V充電品の発 熱開始温度は 208°Cであった。
[0108] [例 12]
ニッケル、コバルト、マンガンの原子比が、 Ni: Co : Mn=0. 35 : 0. 40 : 0. 25とな るように調合した硫酸ニッケルと硫酸コバルトと硫酸マンガンを含有する硫酸塩混合 水溶液と、硫酸アンモ-ゥム水溶液と、水酸ィ匕ナトリウム水溶液とを、反応槽内のスラ リーの pHが 11. 0、温度が 50°Cになるように攪拌しつつそれぞれ連続的に反応槽に 供給した。オーバーフロー方式で反応系内の液量を調節し、オーバーフローした共 沈スラリーをろ過、水洗し、次いで、 80°Cで乾燥することにより、ニッケルコバルトマン ガン複合水酸化物粉末を得た。
[0109] 次に該複合水酸化物粉末を、水酸ィ匕ナトリウムを 3重量%含有する 6重量%過硫酸 ナトリウム水溶液に分散させ、 20°Cで 12時間攪拌することにより、ニッケルコバルトマ ンガン複合ォキシ水酸ィ匕物スラリーを合成した。さらに該複合ォキシ水酸化物スラリ 一を、ろ過、水洗し、次いで、乾燥することにより、複合ォキシ水酸化物粉末を得た。 該複合ォキシ水酸ィ匕物粉末の比表面積は 9. 4m2Zg、平均粒径は 10. O /z mであ つた o
[0110] こうして得られた複合ォキシ水酸化物粉末に平均粒径 20 μ mの炭酸リチウム粉末 を所定量混合し、酸素含有雰囲気中で 990°C、 16時間焼成した後、粉砕することに より、 Li (Ni Co Mn ) Oの組成を有するリチウム含有複合酸化物か
1. 02 0. 35 0. 40 0. 25 0. 98 2
らなる母材を得た。該母材に関して、 CuK a線を使用した粉末 X線回折スペクトルを 測定したところ、菱面体系(R— 3m)の類似構造であることがわ力つた。なお測定に は理学電機社製 RINT 2100型を用いた。この母材粉末の粒子に関して、 SEM観 察を行ったところ、一次粒子が多数凝集して二次粒子を形成したものであり、かつそ の形状がおおむね球状もしくは楕円状であることがわ力つた。
[0111] ついで、アルミニウム含量が 4. 4重量%の塩基性乳酸アルミニウム水溶液 1. 27g に、水 4. 73gをカ卩えて、 pH5の A1水溶液を調製した。前記母材 lOOgを、前記の A1 水溶液 6gを噴霧しながら、ドラムミキサーにて混合することにより、混合粉末を得た。 さらに該混合粉末を 120°Cで 4時間乾燥してアルミニウム錯体添加粒子を得た。その 乾燥した錯体添加粒子を、酸素含有雰囲気下 350°C、 12時間、加熱し、平均粒径 1 0. 1 111、010カ 5. 1 /ζ πι、 D90力 14. 2 mであり、 it表 ® 力 0. 45m2/gの略 球状の表面修飾リチウム含有複合酸化物粒子を得た。
[0112] 得られた表面修飾リチウム含有複合酸ィ匕物粒子について、例 1と同様に X線回折ス ベクトルを測定した。 CuK o;線を使用した粉末 X線回折において、 2 0 =65. 1 ± 1 。 の(110)面の回折ピーク半値幅は 0. 22° であった。この粒子のプレス密度は 2. 73g/cm3であった。また該表面修飾リチウム含有複合酸化物粒子に含まれるアルミ -ゥムは、ニッケル、マンガン及びコバルトの合計に対して、原子比率で 0. 002であ つた o
[0113] さらに得られた表面修飾リチウム含有複合酸ィ匕物粒子について、例 1と同様に XPS 分析法により、当該複合酸ィ匕物の原子比 (AlZNiM)を測定したところ、 (Al/NiM) = 1. 39であった。
正極体シートが、前記の表面修飾リチウム含有複合酸ィ匕物を用いて作製されたも のである以外は、例 1と同様に電極及び電池を作製し、評価を行った。
その結果、 25°C、 2. 5〜4. 3Vにおける正極活物質の初期重量容量密度は、 159 mAhZgであり、 30回充放電サイクル後の容量維持率は 99. 0%であった。
[0114] [例 13]
例 12と同様にして母材の Li (Ni Co Mn ) Oの組成を有するリチウ
1. 02 0. 35 0. 40 0. 25 0. 98 2
ム含有複合酸化物を合成した。該母材の平均粒径は 9. 9 m、 D10が 4. 9 m、 D 90が 13. 9 mであり、また比表面積が 0. 4m2/gの一次粒子が多数凝集し二次粒 子を形成した粒子力もなる粉末であった。当該複合酸ィ匕物粒子について、 X線回折 装置 (理学電機社製 RINT 2100型)を用いて X線回折スペクトルを得た。 CuK a 線を使用した粉末 X線回折において、 2 0 =65. 1 ± 1° 付近の(110)面の回折ピ ーク半値幅は 0. 22° であった。またプレス密度は 2. 75gZcm3であった。
前記した母材にあたるリチウム含有複合酸ィ匕物粒子に対して、例 1と同様に XPS分 析法により、表面元素分析したところ、アルミニウムは検出されな力つた。
前記した母材にあたるリチウム含有複合酸ィ匕物粒子を使用し、例 1と同様にして、 正極シートを作成し、電池を組み立てて、評価を行った。
その結果、 25°C、 2. 5〜4. 3Vにおける正極活物質の初期重量容量密度は、 161 mAh/g, 30回充放電サイクル後の容量維持率は 96. 0%であった。
[0115] [例 14]
ニッケル、コバルト、マンガンの原子比が、 Ni: Co : Mn=0. 50 : 0. 20 : 0. 30とな るように調合した硫酸ニッケルと硫酸コバルトと硫酸マンガンを含有する硫酸塩混合 水溶液と、硫酸アンモ-ゥム水溶液と、水酸ィ匕ナトリウム水溶液とを、反応槽内のスラ リーの pHが 11. 0、温度が 50°Cになるように攪拌しつつそれぞれ連続的に反応槽に 供給した。オーバーフロー方式で反応系内の液量を調節し、オーバーフローした共 沈スラリーをろ過、水洗し、次いで、 80°Cで乾燥することにより、ニッケルコバルトマン ガン複合水酸化物粉末を得た。
[0116] 次に該複合水酸化物粉末を、水酸ィ匕ナトリウムを 3重量%含有する 6重量%過硫酸 ナトリウム水溶液に分散させ、 20°Cで 12時間攪拌することにより、ニッケルコバルトマ ンガン複合ォキシ水酸ィ匕物スラリーを合成した。さらに該複合ォキシ水酸化物スラリ 一を、ろ過、水洗し、次いで、乾燥することにより、複合ォキシ水酸化物粉末を得た。 該複合ォキシ水酸ィ匕物粉末の比表面積は 10. 3m2Zg、平均粒径は 10. であ つた o
[0117] こうして得られた複合ォキシ水酸化物粉末に平均粒径 20 mの炭酸リチウム粉末 を所定量混合し、酸素含有雰囲気中で 950°C、 12時間焼成した後、粉砕することに より、 Li (Ni Co Mn ) Oの組成を有するリチウム含有複合酸化物か
1. 01 0. 50 0. 20 0. 30 0. 99 2
らなる母材を得た。該母材に関して、 CuK a線を使用した粉末 X線回折スペクトルを 測定したところ、菱面体系(R— 3m)の類似構造であることがわ力つた。なお測定に は理学電機社製 RINT 2100型を用いた。この母材粉末の粒子に関して、 SEM観 察を行ったところ、一次粒子が多数凝集して二次粒子を形成したものであり、かつそ の形状がおおむね球状もしくは楕円状であることがわ力つた。
[0118] ついで、アルミニウム含量が 4. 4重量%の塩基性乳酸アルミニウム水溶液 1. 27g に、水 4. 73gをカ卩えて、 pH5の A1水溶液を調製した。前記母材 lOOgを、前記の A1 水溶液 6gを噴霧しながら、ドラムミキサーにて混合することにより、混合粉末を得た。 さらに該混合粉末を 120°Cで 4時間乾燥してアルミニウム錯体添加粒子を得た。その 乾燥した錯体添加粒子を、酸素含有雰囲気下 350°C、 12時間、加熱し、平均粒径 1 1. 0 111、010カ 5. 7 /a m、 D90力 16. 4 mであり、 it表 ® 力 0. 49m2/gの略 球状の表面修飾リチウム含有複合酸化物粒子を得た。
[0119] 得られた表面修飾リチウム含有複合酸ィ匕物粒子について、例 1と同様に X線回折ス ベクトルを測定した。 CuK o;線を使用した粉末 X線回折において、 2 0 = 65. 1 ± 1 。 の(110)面の回折ピーク半値幅は 0. 111° であった。この粒子のプレス密度は 2 . 78gZcm3であった。また該表面修飾リチウム含有複合酸化物粒子に含まれるアル ミニゥムは、ニッケル、マンガン及びコバルトの合計に対して、原子比率で 0. 002で めつに。
[0120] さらに得られた表面修飾リチウム含有複合酸ィ匕物粒子について、例 1と同様に XPS 分析法により、当該複合酸ィ匕物の原子比 (AlZNiM)を測定したところ、 (Al/NiM) = 1. 38であった。
正極体シートが、前記の表面修飾リチウム含有複合酸ィ匕物を用いて作製されたも のである以外は、例 1と同様に電極及び電池を作製し、評価を行った。
その結果、 25°C、 2. 5〜4. 3Vにおける正極活物質の初期重量容量密度は、 165 mAhZgであり、 30回充放電サイクル後の容量維持率は 96. 1%であった。
[0121] [例 15]
例 14と同様にして母材の Li (Ni Co Mn ) Oの組成を有するリチウ
1. 01 0. 50 0. 2 0 0. 30 0. 99 2
ム含有複合酸化物を合成した。該リチウム含有複合酸化物の平均粒径は 10. 5 m 、 D10力 S5. 1 m、 D90力 15. 9 μ mであり、また it表面 力 0. 41m2/gの一次 子が多数凝集し二次粒子を形成した粒子カゝらなる粉末であった。当該複合酸化物粒 子につ 、て、 X線回折装置 (理学電機社製 RINT 2100型)を用いて X線回折スぺ タトルを得た。 CuK o;線を使用した粉末 X線回折において、 2 Θ = 65. 1 ± 1。 付近 の(110)面の回折ピーク半値幅は 0. 11° であった。またプレス密度は 2. 8g/cmd であった。
[0122] 前記した母材にあたるリチウム含有複合酸ィ匕物粒子に対して、例 1と同様に XPS分 析法により、表面元素分析したところ、アルミニウムは検出されな力つた。
前記した母材にあたるリチウム含有複合酸ィ匕物粒子を使用し、例 1と同様にして、 正極シートを作成し、電池を組み立てて、評価を行った。
その結果、 25°C、 2. 5〜4. 3Vにおける正極活物質の初期重量容量密度は、 169 mAh/g, 30回充放電サイクル後の容量維持率は 94. 0%であった。
産業上の利用可能性
[0123] 本発明によれば、高い安全性を低下させることなぐ高い作動電圧、高い放電容量 及び優れた充放電サイクル特性を有するリチウム含有複合酸化物粒子からなる非水 電解質二次電池用正極活物質、該正極活物質の製造方法、及び該正極活物質を 用いた非水電解質二次電池が提供される。 なお、 2006年 6月 9曰に出願された曰本特許出願 2006— 161390号の明細書、 特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として、取り入れるものである。

Claims

請求の範囲
[1] 一般式 Li N O (但し、 N=Ni M L、 Mは Co又は Mnの少なくとも一種以上 を含み、 Lは Ni、 Co、 Mn以外の遷移金属、アルカリ土類金属及びアルミニウムから 選ばれる元素である。 0. 9≤p≤l. 1、0. 9≤x< l. 1、0. 2≤y≤0. 9, 0≤z≤0. 3)で表されるリチウム含有複合酸ィ匕物粒子であり、その表面層にアルミニウムが含有 され、かつ該表面層 5nm以内におけるアルミニウム含有量力 Niと元素 Mの合計に 対して、原子比率で 0.8以上である表面修飾リチウム含有複合酸ィ匕物粒子力 なるこ とを特徴とする非水電解質二次電池用正極活物質。
[2] 前記リチウム含有複合酸ィ匕物粒子が、ニッケルコバルト酸リチウム、ニッケルマンガ ン酸リチウム及びニッケルコノ レトマンガン酸リチウム力 なる群力 選ばれる少なくと も 1種の粒子であり、かつ、前記リチウム含有複合酸化物粒子全体に含有されるアル ミニゥムカ S、元素 Nに対して、原子比率で 0. 0005-0. 20である請求項 1に記載の 非水電解質二次電池用正極活物質。
[3] 前記表面修飾リチウム含有複合酸化物粒子が、 5〜25 μ mの平均粒径 (D50)を 有する請求項 1又は 2に記載の非水電解質二次電池用正極活物質。
[4] 前記表面修飾リチウム含有複合酸化物粒子が、その表面層に炭素化合物を含む 請求項 1〜3のいずれかに記載の非水電解質二次電池用正極活物質。
[5] 前記炭素化合物が炭素含有アルミニウム錯体の部分熱分解物である請求項 4に記 載の非水電解質二次電池用正極活物質。
[6] 正極と負極と非水電解液を含むリチウム二次電池であって、前記正極に請求項 1 〜5の 、ずれかに記載の正極活物質を用いることを特徴とするリチウム二次電池。
[7] 一般式 Li N O (但し、 N = Ni M L、 Mは Co又は Mnの少なくとも一種以上 を含み、 Lは Ni、 Co、 Mn以外の遷移金属、アルカリ土類金属及びアルミニウムから 選ばれる元素である。 0. 9≤p≤l. 1、0. 9≤x< l. 1、0. 2≤y≤0. 9, 0≤z≤0. 3)で表されるリチウム含有複合酸化物粒子に対し、アルミニウム錯体を含む pHが 3 〜12の水溶液を含浸させ、さらに混合'乾燥してアルミニウム錯体含浸粒子を得るェ 程 1と、該工程 1で得られたアルミニウム錯体含浸粒子を酸素含有雰囲気で熱処理 する工程 2と、を含む請求項 1〜5のいずれかに記載の非水電解質二次電池用正極 活物質粒子の製造方法。
[8] 前記工程 2の熱処理が 200〜450°Cで行われる請求項 7に記載の非水電解質二 次電池用正極活物質の製造方法。
[9] 前記アルミニウム錯体が炭素含有アルミニウム錯体である請求項 7又は 8に記載の 非水電解質二次電池用正極活物質の製造方法。
[10] 前記炭素含有アルミニウム錯体が塩基性乳酸アルミニウムである請求項 9に記載の 非水電解質二次電池用正極活物質の製造方法。
[11] アルミニウム錯体含浸粒子を得る工程 1に含まれる、含浸及び混合 ·乾燥の 、ずれ かの工程にぉ 、て、ドラムミキサーを用いることを特徴とする請求項 7〜: LOの 、ずれ かに記載の非水電解質二次電池用正極活物質の製造方法。
PCT/JP2007/061485 2006-06-09 2007-06-06 非水電解質二次電池用正極活物質及びその製造方法 WO2007142275A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200780001244XA CN101356671B (zh) 2006-06-09 2007-06-06 非水电解质二次电池用正极活性物质及其制造方法
JP2008520608A JP4909347B2 (ja) 2006-06-09 2007-06-06 非水電解質二次電池用正極活物質の製造方法。
US12/100,567 US8021785B2 (en) 2006-06-09 2008-04-10 Cathode active material for non-aqueous electrolyte secondary battery and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006161390 2006-06-09
JP2006-161390 2006-06-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/100,567 Continuation US8021785B2 (en) 2006-06-09 2008-04-10 Cathode active material for non-aqueous electrolyte secondary battery and its production method

Publications (1)

Publication Number Publication Date
WO2007142275A1 true WO2007142275A1 (ja) 2007-12-13

Family

ID=38801522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061485 WO2007142275A1 (ja) 2006-06-09 2007-06-06 非水電解質二次電池用正極活物質及びその製造方法

Country Status (6)

Country Link
US (1) US8021785B2 (ja)
JP (2) JP4909347B2 (ja)
KR (1) KR20080038163A (ja)
CN (1) CN101356671B (ja)
TW (1) TW200822424A (ja)
WO (1) WO2007142275A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016334A1 (ja) * 2009-08-04 2011-02-10 Agcセイミケミカル株式会社 リチウムイオン二次電池用正極材料の製造方法
JP2011154879A (ja) * 2010-01-27 2011-08-11 Sanyo Electric Co Ltd 非水系二次電池
JP2011154983A (ja) * 2010-01-28 2011-08-11 Sanyo Electric Co Ltd リチウムイオンポリマー電池
WO2012073551A1 (ja) * 2010-12-03 2012-06-07 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
WO2012073548A1 (ja) * 2010-12-03 2012-06-07 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP2012131744A (ja) * 2010-12-22 2012-07-12 Taki Chem Co Ltd 塩基性乳酸アルミニウム水溶液及びその製造方法
JP2012142155A (ja) * 2010-12-28 2012-07-26 Sony Corp リチウム二次電池、正極活物質、正極、電動工具、電動車両および電力貯蔵システム
JP2012142154A (ja) * 2010-12-28 2012-07-26 Sony Corp リチウムイオン二次電池、電動工具、電動車両および電力貯蔵システム
JP2012142157A (ja) * 2010-12-28 2012-07-26 Sony Corp リチウムイオン二次電池、正極活物質、正極、電動工具、電動車両および電力貯蔵システム
JP2012146639A (ja) * 2010-12-22 2012-08-02 Tanaka Chemical Corp 非水電解質二次電池用の正極活物質、その製造方法、及びそれを用いた非水電解質二次電池
WO2012141258A1 (ja) * 2011-04-14 2012-10-18 戸田工業株式会社 Li-Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP2013500554A (ja) * 2009-07-24 2013-01-07 エンビア・システムズ・インコーポレイテッド 長期サイクル性能を備えるリチウムイオン電池
CN103280569A (zh) * 2013-02-04 2013-09-04 刘剑洪 一种类石墨烯包覆富锂层状镍锰酸锂及制备方法和应用
JP2015069958A (ja) * 2013-10-01 2015-04-13 日立マクセル株式会社 非水二次電池用正極材料及びその製造方法、並びに該非水二次電池用正極材料を用いた非水二次電池用正極合剤層、非水二次電池用正極及び非水二次電池
JP2017007918A (ja) * 2015-06-25 2017-01-12 株式会社豊田自動織機 リチウム複合金属酸化物部及び導電性酸化物部を含有する材料
KR20170045148A (ko) 2014-09-03 2017-04-26 미쓰이금속광업주식회사 리튬 이차전지용 양극 활물질
JP2017511965A (ja) * 2014-03-06 2017-04-27 ユミコア 自動車用電池のためのドープし、かつコーティングしたリチウム遷移金属酸化物カソード材料
KR20170048244A (ko) 2014-09-03 2017-05-08 미쓰이금속광업주식회사 리튬 금속 복합 산화물 분체

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142275A1 (ja) * 2006-06-09 2007-12-13 Agc Seimi Chemical Co., Ltd. 非水電解質二次電池用正極活物質及びその製造方法
KR101147601B1 (ko) * 2008-12-17 2012-05-21 주식회사 엘지화학 표면이 개질되어 있는 양극 활물질
WO2010090185A1 (ja) 2009-02-05 2010-08-12 Agcセイミケミカル株式会社 リチウムイオン二次電池用正極活物質用の表面修飾リチウム含有複合酸化物及びその製造方法
KR101757490B1 (ko) * 2009-10-22 2017-07-12 도다 고교 가부시끼가이샤 니켈·코발트·망간계 화합물 입자 분말 및 그의 제조 방법, 리튬 복합 산화물 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지
BR112012012914A2 (pt) * 2009-12-04 2017-03-07 Univ Kanagawa material de eletrodo positivo para dispositivo elétrico, e dispositivo elétrico produzido usando o mesmo.
JP6216965B2 (ja) * 2012-01-31 2017-10-25 住友大阪セメント株式会社 電極材料と電極板及びリチウムイオン電池並びに電極材料の製造方法、電極板の製造方法
CN102623690A (zh) * 2012-03-29 2012-08-01 天津巴莫科技股份有限公司 高镍非对称型氧化镍钴锰锂材料的水洗包覆方法
KR101666879B1 (ko) 2012-08-14 2016-10-17 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 리튬 이차 전지용 양극 활물질의 제조 방법 및 상기 양극 활물질을 포함하는 리튬 이차 전지
JP5607189B2 (ja) * 2013-01-28 2014-10-15 三洋電機株式会社 ニッケル複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
KR102044735B1 (ko) * 2013-04-12 2019-11-15 에스케이이노베이션 주식회사 층상 구조 리튬 니켈 금속 산화물의 제조방법 및 상기 산화물을 포함하는 리튬 이차 전지
US8968669B2 (en) * 2013-05-06 2015-03-03 Llang-Yuh Chen Multi-stage system for producing a material of a battery cell
JP6370885B2 (ja) 2013-07-30 2018-08-08 エルジー・ケム・リミテッド 電解液との反応を防止するためのコーティング層を含む電極
WO2015073745A2 (en) 2013-11-13 2015-05-21 R.R. Donnelley & Sons Company Battery
US10553869B2 (en) * 2013-12-09 2020-02-04 Honda Motor Co., Ltd. Lithium battery cathode
WO2016000982A1 (en) * 2014-06-30 2016-01-07 Basf Se Process for making cathode materials for lithium ion batteries
CN104103825A (zh) * 2014-08-06 2014-10-15 于英超 一种富锂三元锂离子电池正极材料及其制备方法
US10224539B2 (en) * 2014-08-07 2019-03-05 Council Of Scientific And Industrial Research Surface modified cathode with improved lithium intercalation behavior
CN104201375B (zh) * 2014-09-15 2017-01-18 无锡晶石新型能源有限公司 镍钴锰酸锂材料的生产方法
JP6605518B2 (ja) 2017-01-27 2019-11-13 ユミコア 高性能のリチウムイオン電池用正極活物質及びその製造方法
US11670754B2 (en) 2017-12-04 2023-06-06 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11777075B2 (en) 2017-12-04 2023-10-03 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
KR102424398B1 (ko) 2020-09-24 2022-07-21 삼성에스디아이 주식회사 리튬 이차 전지용 양극, 그 제조 방법, 및 이를 포함한 리튬 이차 전지
US11522189B2 (en) 2017-12-04 2022-12-06 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, preparing method thereof, and rechargeable lithium battery comprising positive electrode
WO2019112279A2 (ko) * 2017-12-04 2019-06-13 삼성에스디아이 주식회사 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
KR20200070647A (ko) * 2018-12-10 2020-06-18 주식회사 엘지화학 고-니켈 양극 활물질, 그 제조 방법, 이를 포함하는 양극 및 리튬이차전지
CN110492097B (zh) * 2019-08-30 2021-04-27 中南大学 一种ncm三元复合正极材料及其制备和应用
WO2021095360A1 (ja) * 2019-11-14 2021-05-20 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143708A (ja) * 1999-11-17 2001-05-25 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2001196063A (ja) * 1999-10-26 2001-07-19 Sumitomo Chem Co Ltd 非水二次電池用活物質およびこれを用いた非水二次電池
JP2003017055A (ja) * 2001-07-02 2003-01-17 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウム遷移金属複合酸化物およびその製造方法
JP2003331841A (ja) * 2002-05-15 2003-11-21 Toyota Central Res & Dev Lab Inc リチウムイオン二次電池用正極活物質及びその製造方法,並びにリチウムイオン二次電池
JP2005019063A (ja) * 2003-06-24 2005-01-20 Canon Inc リチウム二次電池用の電極材料、電極構造体及びリチウム二次電池
JP2005310744A (ja) * 2004-03-24 2005-11-04 Hitachi Metals Ltd 非水系リチウム二次電池用正極活物質とその製造方法及びその正極活物質を用いた非水系リチウム二次電池
JP2005346956A (ja) * 2004-05-31 2005-12-15 Hitachi Metals Ltd 非水系リチウム二次電池用正極活物質とその製造方法及びその正極活物質を用いた非水系リチウム二次電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3897387B2 (ja) 1995-12-29 2007-03-22 株式会社ジーエス・ユアサコーポレーション リチウム二次電池用正極活物質の製造方法
JP3873717B2 (ja) 2001-11-09 2007-01-24 ソニー株式会社 正極材料およびそれを用いた電池
TW200423458A (en) * 2002-11-29 2004-11-01 Seimi Chem Kk Method for preparing positive electrode active material for lithium secondary cell
US20050220700A1 (en) * 2003-03-14 2005-10-06 Seimi Chemical Co., Ltd. Positive electrode active material powder for lithium secondary battery
CN100334758C (zh) * 2003-08-21 2007-08-29 清美化学股份有限公司 锂二次电池用的正极活性物质粉末
JP4794866B2 (ja) * 2004-04-08 2011-10-19 パナソニック株式会社 非水電解質二次電池用正極活物質およびその製造方法ならびにそれを用いた非水電解質二次電池
JP4943145B2 (ja) * 2004-06-16 2012-05-30 Agcセイミケミカル株式会社 リチウム二次電池用正極活物質粉末
WO2007142275A1 (ja) * 2006-06-09 2007-12-13 Agc Seimi Chemical Co., Ltd. 非水電解質二次電池用正極活物質及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196063A (ja) * 1999-10-26 2001-07-19 Sumitomo Chem Co Ltd 非水二次電池用活物質およびこれを用いた非水二次電池
JP2001143708A (ja) * 1999-11-17 2001-05-25 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2003017055A (ja) * 2001-07-02 2003-01-17 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウム遷移金属複合酸化物およびその製造方法
JP2003331841A (ja) * 2002-05-15 2003-11-21 Toyota Central Res & Dev Lab Inc リチウムイオン二次電池用正極活物質及びその製造方法,並びにリチウムイオン二次電池
JP2005019063A (ja) * 2003-06-24 2005-01-20 Canon Inc リチウム二次電池用の電極材料、電極構造体及びリチウム二次電池
JP2005310744A (ja) * 2004-03-24 2005-11-04 Hitachi Metals Ltd 非水系リチウム二次電池用正極活物質とその製造方法及びその正極活物質を用いた非水系リチウム二次電池
JP2005346956A (ja) * 2004-05-31 2005-12-15 Hitachi Metals Ltd 非水系リチウム二次電池用正極活物質とその製造方法及びその正極活物質を用いた非水系リチウム二次電池

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013500554A (ja) * 2009-07-24 2013-01-07 エンビア・システムズ・インコーポレイテッド 長期サイクル性能を備えるリチウムイオン電池
WO2011016334A1 (ja) * 2009-08-04 2011-02-10 Agcセイミケミカル株式会社 リチウムイオン二次電池用正極材料の製造方法
JP2011154879A (ja) * 2010-01-27 2011-08-11 Sanyo Electric Co Ltd 非水系二次電池
JP2011154983A (ja) * 2010-01-28 2011-08-11 Sanyo Electric Co Ltd リチウムイオンポリマー電池
WO2012073551A1 (ja) * 2010-12-03 2012-06-07 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
WO2012073548A1 (ja) * 2010-12-03 2012-06-07 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP5973352B2 (ja) * 2010-12-03 2016-08-23 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JPWO2012073548A1 (ja) * 2010-12-03 2014-05-19 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP2012131744A (ja) * 2010-12-22 2012-07-12 Taki Chem Co Ltd 塩基性乳酸アルミニウム水溶液及びその製造方法
JP2012146639A (ja) * 2010-12-22 2012-08-02 Tanaka Chemical Corp 非水電解質二次電池用の正極活物質、その製造方法、及びそれを用いた非水電解質二次電池
JP2012142155A (ja) * 2010-12-28 2012-07-26 Sony Corp リチウム二次電池、正極活物質、正極、電動工具、電動車両および電力貯蔵システム
JP2012142157A (ja) * 2010-12-28 2012-07-26 Sony Corp リチウムイオン二次電池、正極活物質、正極、電動工具、電動車両および電力貯蔵システム
JP2012142154A (ja) * 2010-12-28 2012-07-26 Sony Corp リチウムイオン二次電池、電動工具、電動車両および電力貯蔵システム
JP2016197611A (ja) * 2011-04-14 2016-11-24 戸田工業株式会社 Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
WO2012141258A1 (ja) * 2011-04-14 2012-10-18 戸田工業株式会社 Li-Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP2012230898A (ja) * 2011-04-14 2012-11-22 Toda Kogyo Corp Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
US9764962B2 (en) 2011-04-14 2017-09-19 Toda Kogyo Corporation Li—Ni composite oxide particles and process for producing the same, and non-aqueous electrolyte secondary battery
JP2019108264A (ja) * 2011-04-14 2019-07-04 戸田工業株式会社 Li−Ni複合酸化物粒子粉末、並びに非水電解質二次電池
CN103280569A (zh) * 2013-02-04 2013-09-04 刘剑洪 一种类石墨烯包覆富锂层状镍锰酸锂及制备方法和应用
JP2015069958A (ja) * 2013-10-01 2015-04-13 日立マクセル株式会社 非水二次電池用正極材料及びその製造方法、並びに該非水二次電池用正極材料を用いた非水二次電池用正極合剤層、非水二次電池用正極及び非水二次電池
JP2017511965A (ja) * 2014-03-06 2017-04-27 ユミコア 自動車用電池のためのドープし、かつコーティングしたリチウム遷移金属酸化物カソード材料
KR20170045148A (ko) 2014-09-03 2017-04-26 미쓰이금속광업주식회사 리튬 이차전지용 양극 활물질
KR20170048244A (ko) 2014-09-03 2017-05-08 미쓰이금속광업주식회사 리튬 금속 복합 산화물 분체
US10141570B2 (en) 2014-09-03 2018-11-27 Mitsui Mining & Smelting Co., Ltd. Positive electrode active material for lithium secondary cell
US10312508B2 (en) 2014-09-03 2019-06-04 Mitsui Mining & Smelting Co., Ltd. Lithium metal composite oxide powder
JP2017007918A (ja) * 2015-06-25 2017-01-12 株式会社豊田自動織機 リチウム複合金属酸化物部及び導電性酸化物部を含有する材料

Also Published As

Publication number Publication date
JPWO2007142275A1 (ja) 2009-10-29
CN101356671A (zh) 2009-01-28
US8021785B2 (en) 2011-09-20
JP5486582B2 (ja) 2014-05-07
KR20080038163A (ko) 2008-05-02
TW200822424A (en) 2008-05-16
TWI357679B (ja) 2012-02-01
JP2012079703A (ja) 2012-04-19
CN101356671B (zh) 2010-12-15
JP4909347B2 (ja) 2012-04-04
US20080248391A1 (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP5486582B2 (ja) 非水電解質二次電池に用いる正極活物質及びその製造方法、
JP5192818B2 (ja) 非水電解質二次電池用正極活物質及びその製造方法
JP4666653B2 (ja) リチウム二次電池正極用のリチウム含有複合酸化物の製造方法
JP4896034B2 (ja) リチウム含有複合酸化物及びその製造方法
JP4854982B2 (ja) リチウム二次電池正極用のリチウム含有複合酸化物の製造方法
JP5253808B2 (ja) リチウム二次電池正極用のリチウム含有複合酸化物の製造方法
WO2010090185A1 (ja) リチウムイオン二次電池用正極活物質用の表面修飾リチウム含有複合酸化物及びその製造方法
US20130318780A1 (en) Method for producing cathode active material for lithium ion secondary battery
JP5210531B2 (ja) 非水電解質二次電池用リチウム含有複合酸化物粒子及びその製造方法
WO2012020769A1 (ja) ニッケル含有複合化合物の製造方法
JP4927369B2 (ja) リチウム二次電池正極用のリチウム含有複合酸化物の製造方法
WO2008013208A1 (fr) Matériau actif d&#39;électrode positive pour batterie secondaire à électrolyte non aqueux et procédé de production de celui-ci
JP4777543B2 (ja) リチウムコバルト複合酸化物の製造方法
JP2007119340A (ja) リチウム含有複合酸化物の製造方法
JP2006298699A (ja) 大粒径のリチウムコバルト複合酸化物の製造方法
JP2007145695A (ja) リチウム含有複合酸化物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780001244.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2008520608

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07744824

Country of ref document: EP

Kind code of ref document: A1