WO2003005031A1 - Latex a particules supports pour reactif d'essai, et reactif d'essai - Google Patents

Latex a particules supports pour reactif d'essai, et reactif d'essai Download PDF

Info

Publication number
WO2003005031A1
WO2003005031A1 PCT/JP2002/006669 JP0206669W WO03005031A1 WO 2003005031 A1 WO2003005031 A1 WO 2003005031A1 JP 0206669 W JP0206669 W JP 0206669W WO 03005031 A1 WO03005031 A1 WO 03005031A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier particles
measurement
carrier
reagent
latex
Prior art date
Application number
PCT/JP2002/006669
Other languages
English (en)
French (fr)
Inventor
Satoshi Obana
Original Assignee
Sekisui Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co., Ltd. filed Critical Sekisui Chemical Co., Ltd.
Priority to DE60236089T priority Critical patent/DE60236089D1/de
Priority to CA2452766A priority patent/CA2452766C/en
Priority to JP2003510956A priority patent/JP3708942B2/ja
Priority to US10/482,302 priority patent/US7338813B2/en
Priority to AU2002313319A priority patent/AU2002313319B2/en
Priority to AT02738899T priority patent/ATE465409T1/de
Priority to EP02738899A priority patent/EP1416277B1/en
Priority to KR1020047000037A priority patent/KR100894947B1/ko
Publication of WO2003005031A1 publication Critical patent/WO2003005031A1/ja
Priority to US11/969,107 priority patent/US7867785B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • G01N33/5434Magnetic particles using magnetic particle immunoreagent carriers which constitute new materials per se
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54393Improving reaction conditions or stability, e.g. by coating or irradiation of surface, by reduction of non-specific binding, by promotion of specific binding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
    • G01N33/545Synthetic resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • the present invention relates to a carrier particle latex for a measuring reagent, which can measure a biological sample in a wide concentration range in an immunoserologic test and can be stably stored for a long period of time, and a measuring reagent using the same.
  • various diseases are diagnosed using biological samples (blood, urine, etc.), and various measuring methods have been developed and used as methods for diagnosing them.
  • Representative methods of these measurement methods include a biochemical measurement method using an enzyme reaction and an immunoassay method using an antigen-antibody reaction.
  • Reagents used for these diagnoses include, for example, a pregnancy diagnostic test, an RA test for detecting rheumatoid factor, a CRP test for detecting C-reactive protein, hepatitis B surface antigen (HBs antigen), and anti-HBs antibody.
  • Antimicrobial antibodies, mycoplasma antigens, nucleic acids, nuclear proteins, estrogen, anti-estrogen antibodies, etc. have been developed. Examples of such measurement methods include immunoturbidimetry (TIA method), latex turbidimetry (LIA method), enzyme immunoassay method (EIA method), and radioimmunoassay method (RIA method). They are used according to the purpose.
  • the LIA method sensitizes antigens or antibodies to latex carrier particles in which carrier particles are dispersed in an aqueous dispersion, and uses this to agglutinate the reaction with the corresponding antibodies or antigens in the serum using carrier particles. It is detected as a reaction, and because of its simplicity and speed, it has been applied to the detection of many types of antigens or antibodies.
  • the JP-B 5 8 _ 5 0 6 4 5 discloses, a styrene sulfonate 1 0 weight 0/0 or less with respect to styrene emission and the styrene as a polymerization initiator a persulfate under non existence of emulsifier
  • a method for producing a latex which comprises copolymerizing in water and then heating under alkaline conditions, is disclosed.
  • a carrier having a particle diameter of 0.3 to 0.3 is increased by increasing the amount of a catalyst for a styrene monomer. It is said that a latex composed of particles is obtained.
  • Japanese Patent Publication No. 1-364484 discloses a method for producing a diagnostic agent by synthesizing latex in an aqueous solution containing an oxide or hydroxide of a divalent metal. I have.
  • Japanese Patent Application Laid-Open No. 63-36569 discloses that a latex consisting of two or three or more types of carrier particles having different average particle diameters is sensitized with an antibody or an antigen, respectively, and a certain amount is obtained.
  • a method using a latex reagent mixed in the following ratio is disclosed. This aims to achieve performance that combines the two characteristics of a wide measurement range for latex composed of carrier particles with a small particle diameter and high sensitivity in the low concentration region of latex composed of carrier particles with a large particle diameter. Things.
  • Japanese Patent Publication No. 63-14783 discloses a rattus consisting of carrier particles of two different particle size ranges loaded with at least two different amounts of the same antigen or antibody. Have been.
  • Patent No. 2 588 174 discloses a latex obtained by sensitizing two or more types of particles having different average particle sizes with an antibody or an antigen, or a carrier having two or more types having different average particle sizes. After mixing the particles, the latex obtained by sensitizing the antibody or antigen is reacted with the antigen against the sensitized antibody or the antibody against the sensitized antigen in an aqueous solvent, and irradiated with light to measure the change in absorbance.
  • a measurement method utilizing an antibody reaction has been disclosed.
  • Japanese Patent Application Laid-Open No. Hei 5-18973 discloses that, according to the amount of a component to be measured by an immunological reaction, the particle size in which the component to react with the component to be measured is insolubilized is 0.
  • An immunological measurement method characterized by reacting with a sample containing a component and a reagent used for the measurement method are disclosed.
  • An object of the present invention is to provide a carrier particle latex for a measurement reagent, which can measure a biological sample in a wide concentration range in an immunoserologic test and can be stably stored for a long period of time, and a measurement reagent using the same. It is to provide.
  • the first present invention relates to a polymerizable monomer having a phenyl group, a phenyl group and a sulfo group.
  • a carrier particle latex for a measuring reagent comprising carrier particles comprising a copolymer with a polymerizable monomer having a phosphate, wherein the carrier particles have a surface sulfonic acid group content of 0.005 to 0.7 ⁇ 1 / m 2 It is a carrier particle latex for a measuring reagent having an average particle diameter of 0.01 to 1. ⁇ .
  • a measuring reagent carrier comprising carrier particles comprising a copolymer of a polymerizable monomer having a fuel group and a polymerizable monomer having a phenyl group and a sulfonate.
  • the carrier particles preferably have a surface sulfonic acid group content of 0.005 to 0.7 ⁇ mo 1 / m 2 .
  • the carrier particles, carrier particles sulfonic acid groups of the surface is less than 0. 005 ⁇ mo 1 Zm 2 or 0. 1 2 ⁇ mo 1 / m 2 and (a), it is preferable that the sulfonic acid groups of the surface is from a 0. 1 2 ⁇ lZm 2 or 0. 7 ⁇ 1 Zm 2 or less is carrier particles (B), the carrier particle element (a) and carrier
  • the third present invention provides a measuring reagent comprising carrier particles comprising a copolymer of a polymerizable monomer having a phenyl group and a polymerizable monomer having a phenyl group and a sulfonate.
  • a carrier particle latex for a measuring reagent wherein the carrier particles have an average particle diameter of 0.04 to 0.1 Zm and a CV value of the particle diameter of 8 to 20%.
  • the carrier particles preferably have a surface sulfonic acid group content of 0.005 to 0.7 ⁇ 1 / m 2 .
  • the first, second or third carrier particle latex for a measurement reagent of the present invention does not substantially contain an emulsifier.
  • the polymerizable monomer having a phenyl group is styrene and has a phenyl group and a sulfonate.
  • the polymerizable monomer is a styrene sulfonate.
  • the fourth aspect of the present invention relates to a carrier particle latex for a measuring reagent according to the first, second or third aspect of the present invention.
  • This is a measurement reagent in which a substance that specifically binds to the substance to be measured is supported on carrier particles of the sample.
  • FIG. 1 is a diagram showing the results of performing a sample measurement immediately after preparing the measurement reagents prepared in Examples 1 to 3 and Comparative Examples 1 to 4.
  • FIG. 2 is a diagram showing the results of performing a sample measurement after the stability test on the measurement reagents prepared in Examples and 1 to 3 and Comparative Examples 1 to 4.
  • FIG. 3 is a diagram showing a result of performing a sample measurement immediately after adjusting the measurement reagents prepared in Example 4 and Comparative Example 5.
  • FIG. 4 is a diagram showing the results of sample measurement performed on the measurement reagents prepared in Examples and Comparative Example 5 after the stability test.
  • FIG. 5 is a diagram showing the results of a sample measurement performed using the measurement reagents prepared in Examples 5 to 7.
  • FIG. 1 is a diagram showing the results of performing a sample measurement immediately after preparing the measurement reagents prepared in Examples 1 to 3 and Comparative Examples 1 to 4.
  • FIG. 2 is a diagram showing the results of performing a sample measurement after the stability test on the measurement
  • FIG. 6 is a diagram showing the results of a sample measurement performed using the measurement reagents prepared in Comparative Examples 6 to 8.
  • FIG. 7 is a diagram showing the results of sample measurement using the measurement reagents prepared in Examples 8 to 11.
  • FIG. 8 is a diagram showing the results of a sample measurement performed using the measurement reagents prepared in Comparative Examples 9 to 12.
  • FIG. 9 is a diagram showing the results of sample measurement using the measurement reagents prepared in Example 12 (i), Comparative Example 13 and Example 13.
  • FIG. 10 is a diagram showing the results of sample measurement using the measurement reagents prepared in Example 12 (j), Comparative Example 13 and Example 14.
  • FIG. 11 is a diagram showing the results of sample measurement using the measurement reagents prepared in Examples 15 to 18.
  • FIG. 12 is a diagram showing the results of performing a sample measurement using the measurement reagents prepared in Examples 14 to 18. Detailed Disclosure of the Invention
  • the carrier particle latex for a measurement reagent comprises a carrier particle comprising a copolymer of a polymerizable monomer having a fuel group and a polymerizable monomer having a fuel group and a sulfonate. It is composed.
  • the polymerizable monomer having a fluorine group is not particularly limited, and includes, for example, styrene, dibininolebenzene, ethynolestyrene, polymethyl styrene, p-methynolestyrene, -chlorostyrene, and chloromethylstyrene. . They are They may be used alone or in combination of two or more. Among them, styrene is preferably used.
  • the polymerizable monomer having a phenyl group and a sulfonic acid salt is not particularly limited as long as it is a monomer capable of containing a sulfonic acid group on the surface of the carrier particle after polymerization.
  • Salts dibutylbenzenesulfonate, ethylstyrenesulfonate, ⁇ -methylsulfonate and the like.
  • the salt is not particularly limited, and examples thereof include a sodium salt, a potassium salt, a lithium salt, and an ammonium salt. These may be used alone or in combination of two or more. Of these, styrene sulfonate is preferred, and sodium styrene sulfonate is more preferably used.
  • the carrier particles are obtained by copolymerizing the polymerizable monomer having a phenyl group and the polymerizable monomer having a phenyl group and a sulfonic acid salt.
  • a conventionally known method can be used as the method of copolymerization.
  • a polymerizable monomer having a fluorine group, a phenyl group and a sulfonic acid in a reaction vessel charged with water as a solvent examples thereof include a method in which a polymerizable monomer having a salt, a polymerization initiator, and an emulsifier are added as necessary, followed by stirring under a nitrogen atmosphere.
  • the polymerization temperature is preferably from 50 to 100 ° C, more preferably from 60 to 85 ° C.
  • the polymerization time is usually 5 to 50 hours, depending on conditions such as the composition, concentration, and polymerization initiator of the polymerizable monomer.
  • the polymerization initiator is not particularly limited, and examples thereof include persulfates.
  • persulfates for example, potassium persulfate, sodium persulfate, ammonium persulfate and the like are suitable.
  • the amount of the polymerization initiator used is not particularly limited, but is usually in the range of 0.01 to 1% by weight based on the amount of the polymerizable monomer.
  • the emulsifier is generally not preferably used, because if the emulsifier is contained in the carrier particle latex for a measurement reagent of the first invention, there is a disadvantage that the measurement accuracy is impaired. It is used as necessary, for example, when it is necessary to adjust the amount of sulfonic acid groups. However, in consideration of removal by a post-treatment step after polymerization, it is preferably 1% by weight or less, more preferably 1% by weight, based on the polymerizable monomer having a phenol group. Or less, preferably 0.5% by weight or less, more preferably 0.01% to 0.02% by weight.
  • the amount of the phenyl group and the polymerizable monomer having a sulfonic acid salt with respect to the polymerizable monomer having a fluorinated group is 0.005 to 0.7 /
  • the content is preferably 2% by weight or less, more preferably 0.0001 to 1.5% by weight, and still more preferably 0.001 to 1.2% by weight. is there.
  • the amount of sulfonic acid groups on the surface of the carrier particles can be adjusted to 0.005 to 0.7 zmol / m 2 .
  • a polymerizable unsaturated monomer may be further added at the time of the above copolymerization.
  • the polymerizable unsaturated monomer is not particularly limited as long as it can be used for ordinary radical polymerization. Examples thereof include (meth) acrylic acid, (meth) acrylic acid ester, styrene derivative, and (meth) acrylic acid. A acrylonitrile, (meth) acrylamide, halogenated butyl, vinyl ester, (meth) acrolein, maleic acid derivative, fumaric acid derivative and the like.
  • (meth) acrylic acid means acrylic acid or methacrylic acid.
  • the carrier particles, sulfonic acid group amount of surface from 0.005 to 0.7 is ⁇ 1 / ⁇ 2.
  • the present inventors have found that the measurement sensitivity is dramatically improved when the amount of sulfonic acid groups on the surface of the carrier particles is within the above range, and the concentration of the trace protein to be measured is measured over a wide range from a low concentration region to a high concentration region. They have found that this is possible and have completed the present invention. If the amount of sulfonic acid groups on the surface of the carrier particles is less than 0.005 ⁇ m ⁇ 1 / m 2 , non-specific aggregation is likely to occur, and if it exceeds 0.7 ⁇ 0 1 / m 2 , the aggregation reactivity is reduced.
  • the amount of sulfonic acid groups on the surface of the carrier particles can be determined by an electric conductivity titration method (Journa 1 of Colloid and Interface ences. 49 (3) 425, 1974).
  • the average particle size of the carrier particles is 0.01 to 1.5 m. If it is less than 0.01 ⁇ m, the optical change due to aggregation is too small to obtain the sensitivity required for measurement, and the centrifugation at the time of reagent preparation takes a lot of time and increases the reagent cost. I will. If it exceeds 1.5 ⁇ , the optical change due to the aggregation of the carrier particles exceeds the measurable range when the analyte is at a high concentration, and the optical variation according to the amount of the analyte Can not be obtained. It is preferably from 0.3 to 0.8 m, more preferably from 0.05 to 0.5 ⁇ m, depending on the measuring method and the measuring device using the carrier particle latex for the measuring reagent.
  • the coefficient of variation (CV value) of the particle diameter of the carrier particles is preferably 10% or less. If it exceeds 10%, the reproducibility of lots during reagent preparation is poor, and the reproducibility of measurement reagents may be reduced. It is more preferably at most 5%, further preferably at most 3%.
  • the coefficient of variation of the particle diameter can be calculated by the following equation.
  • the carrier particle latex for a measurement reagent of the first invention is obtained by suspending the carrier particles in water or an aqueous solvent.
  • the carrier particle concentration in the carrier particle latex for a measurement reagent of the first invention is not particularly limited, but is usually preferably 1 to 20% by weight. If it is less than 1% by weight, it must be concentrated at the time of reagent preparation, and if it exceeds 20% by weight, it may aggregate.
  • the carrier particle latex for a measurement reagent of the first aspect of the present invention does not substantially contain an emulsifier because it has disadvantages such as impairing measurement accuracy.
  • substantially means that when an emulsifier is used in the production of the carrier particles, there may be no trace of the emulsifier remaining after the removal step.
  • the carrier particle latex for a measurement reagent of the first invention since the amount of sulfonic acid groups on the surface of the carrier particles is in the above range, the measurement sensitivity is dramatically improved, and the concentration of the trace protein to be measured is in a low concentration region. It can be measured over a wide range from to high concentration. In addition, it has excellent long-term stability, and is particularly suitable for optical measurement equipment. Further, it is not necessary to add bran or the like for increasing the liquid specific gravity in order to prevent sedimentation as in the conventional case.
  • the second invention is constituted by carrier particles comprising a copolymer of a polymerizable monomer having a phenyl group and a polymerizable monomer having a phenol group and a sulfonate.
  • a carrier particle latex for a measurement reagent wherein the carrier particles are composed of two or more types of particles having different amounts of sulfonic acid groups on the surface and substantially do not contain an emulsifier. This is a carrier particle latex for a measurement reagent.
  • the polymerizable monomer having a phenyl group and the polymerizable monomer having a phenyl group and a sulfonate are the same as those in the first embodiment of the present invention. ⁇
  • the second carrier particle latex for a measurement reagent of the present invention carrier particles composed of two or more types of particles having different amounts of sulfonic acid groups on the surface are used.
  • the resulting carrier particle latex for measurement reagents has high sensitivity and high sensitivity over a wide concentration range from low concentration to high concentration.
  • Measurement reagents that can measure antigen-antibody reactions with high accuracy and have excellent long-term stability, especially suitable for optical measurement devices such as spectrophotometers, turbidimeters, and light scattering measurement devices It is suitable for obtaining reagents.
  • the amount of sulfonate groups on the surface of the carrier particles used in the carrier particle latex for a measurement reagent of the second invention is preferably 0.005 to 0.7: mo 1 Zm 2 .
  • mo 1 Zm 2 When it is less than 0,05 ⁇ mo 1 Zm 2 , non-specific aggregation is liable to occur, and when it exceeds 0.7 / xmo 1 / m 2 , the agglutination reactivity is lowered and the sensitivity may be lowered.
  • Carrier particles for use in the measurement reagent carrier particles latexes of the second invention the surface of the scan sulfonic acid group amount of 0. 005 / X mo 1 _ m 2 or more 0. 1 2 ⁇ mo 1 / m 2 less than Der Carrier particles (A), and carrier particles (B) having a surface sulfonic acid group content of 0.12 ⁇ 1 / m 2 or more and 0.7 / zmo 1 Zm 2 or less.
  • a sulfonic acid group amount of the carrier particle (A) surface is less than 0. 005 mo 1 / m 2, long-term stability for the resulting measurement reagent carrier particles latex and finally obtained measurement reagent is lowered However, the non-specific agglutination reaction may easily occur in the measurement reagent, and if it is more than 0.12 ⁇ molZm 2 , it may be difficult to perform measurement in a low concentration region. Further, the amount of sulfonic acid groups on the surface of the carrier particles (B) is 0.12 ⁇ 1 / m If it is less than 2, there may be difficult to measure in a high density region, when more than 0. 1 / m 2, immunological serological agglutination of the finally obtained measurement reagent is lowered, Measurement sensitivity and measurement accuracy may be insufficient.
  • a carrier particle latex for a measurement reagent suitable for obtaining a measurement reagent having the above-described excellent performance may not be obtained.
  • the average particle size of the carrier particles used in the carrier particle latex for a measurement reagent of the second invention is preferably 0.01 to 1.5 ⁇ . If it is less than 0.01 ⁇ m, the optical change due to aggregation may be too small to obtain the sensitivity required for measurement, and it may take a lot of time for centrifugation during reagent preparation. Reagent costs increase. If it exceeds 1.5 ⁇ , the amount of optical change due to particle aggregation exceeds the measurable area when the amount of the substance to be measured is large, and the amount of optical change corresponding to the amount of the substance to be measured is obtained in the high concentration area. May not be possible. It is more preferably from 0.03 to 0.8 m, and still more preferably from 0.05 to 0.5 ⁇ .
  • the coefficient of variation (CV value) of the particle diameter of the carrier particles used in the carrier particle latex for a measuring reagent of the second invention is preferably 10% or less. If it exceeds 10%, the lot reproducibility during reagent preparation is poor, and the reproducibility of the measurement reagent may be reduced. It is more preferably at most 5%, further preferably at most 3%.
  • the average particle diameter of the carrier particles ( ⁇ ) and the carrier particles ( ⁇ ) may be the same or different.
  • the method for preparing carrier particles used for the measurement reagent carrier particle latex of the second invention and the method for preparing the measurement reagent carrier particles latetus of the second invention are described in the first section. Same as for latex.
  • the carrier particle latex for a measuring reagent of the second invention has high sensitivity over a wide concentration range from low concentration to high concentration by using carrier particles composed of two or more types of particles having different amounts of sulfonic acid groups on the surface.
  • Measurement reagents that can measure antigen-antibody reactions with high accuracy and have excellent long-term stability, especially suitable for optical measurement devices such as spectrophotometers, turbidimeters, and light scattering measurement devices It is suitable for obtaining reagents.
  • the third present invention provides a measurement reagent comprising carrier particles comprising a copolymer of a polymerizable monomer having a fuunyl group and a polymerizable monomer having a fuunyl group and a sulfonate.
  • the polymerizable monomer having a fluorine group and the polymerizable monomer having a funyl group and a sulfonate are the same as those in the first embodiment of the present invention.
  • the carrier particles used in the carrier particle latex for measurement reagents of the third invention have an average particle size of 0.04 to 0.1 m and a CV value of the particle size of 8 to 20%.
  • an average particle size 0.04 to 0.1 m and a CV value of the particle size of 8 to 20%.
  • the CV value of the particle size is less than 8%, it is impossible to measure over a wide range from a low concentration region to a high concentration region, and if it exceeds 20%, the particles after centrifugation and during reagent preparation Recovery becomes difficult.
  • it is 10 to 16%.
  • the amount of sulfonate groups on the surface of the carrier particles used in the carrier particle latex for a measuring reagent of the third invention is preferably from 0.05 to 0.7 mo 1 Zm 2 . 0. 0 0
  • the carrier particle latex for a measuring reagent according to the third invention has an average particle diameter and a particle diameter C.
  • carrier particles whose V value range is adjusted to a certain range it is possible to measure antigen-antibody reactions over a wide concentration range, and to ensure long-term stability after reagent preparation. It is excellent and is particularly useful as an immunoserologic test reagent applicable to an optical measurement device.
  • the fourth invention is a measurement reagent in which a substance that specifically binds to a substance to be measured is supported on carrier particles of the carrier particle latex for a measurement reagent of the first, second, and third inventions.
  • substances that specifically bind to the above-mentioned analyte include immunoserologic test reagents (used in immunological agglutination reactions and agglutination inhibition reactions) and physiologically active substances usually used in biochemical assays. There is no particular limitation as long as it can be used. Among them, those which can be used for an antigen-antibody reaction are preferable.
  • antigens or antibodies such as proteins, nucleic acids, nucleoproteins, and estrogen lipids.
  • antigen include various antigens, receptors, enzymes, etc., such as 2 microglobulin, C-reactive protein (CRP), human fibrinogen, ferritin, rheumatoid factor (RA), ⁇ -fetoprotein (AFP), mycoplasma antigen, HBs antigen, and the like.
  • Antibodies include, for example, antibodies against various toxins, pathogens, etc. HBs antibody, HBc antibody, HBe antibody and the like.
  • the antibody may be a fragment such as F (ab ') 2 in addition to the immunopurine molecule itself.
  • the method for supporting the substance specifically binding to the substance to be measured on the carrier particles is not particularly limited, and may be supported by physical and / or chemical bonding by a conventionally known method.
  • the amount of the substance specifically bound to the analyte to be carried on the carrier particles varies depending on the type of the substance specifically bound to the analyte to be used, and is not particularly limited.
  • the measurement reagent of the fourth aspect of the present invention may contain various sensitizers for improving the measurement sensitivity and promoting the antigen-antibody reaction.
  • the sensitizer include alkylated polysaccharides such as methylcellulose and ethylcellulose described in JP-A-2-173657, and JP-A-5-180708. Pullulan and Polyvi described in the gazette Nilpyrrolidone and the like.
  • the fourth measurement reagent of the present invention is an albumin (bovine serum albumin, ovalbumin) for suppressing a non-specific agglutination reaction caused by other substances present in a sample or for enhancing the stability of the reagent. ), Casein, gelatin and other proteins and their degradation products, amino acids or surfactants.
  • albumin bovine serum albumin, ovalbumin
  • the fourth measurement reagent of the present invention may be diluted with an appropriate diluent.
  • diluent any buffer having a pH of 5.0 to 9.0 can be used.
  • a phosphate buffer, a glycine buffer, a Tris buffer, a borate buffer, Citrate buffer and the like can be used.
  • the degree of aggregation of the carrier particles caused by the reaction between the analyte in the sample and the substance specifically bound to the analyte carried on the carrier particles can be measured optically.
  • the reaction amount of the analyte in the sample can be measured.
  • any optical device capable of detecting scattered light intensity, transmitted light intensity, absorbance, etc., in particular, any general biochemical automatic analyzer can be used.
  • a method of optically measuring the degree of aggregation As a method of optically measuring the degree of aggregation, a conventionally known method is used.For example, a turbidity method in which the formation of aggregation is regarded as an increase in turbidity, the formation of aggregation is referred to as a change in particle size distribution or average particle diameter. Integrating sphere turbidity method in which the change in forward scattered light due to the formation of agglomeration is measured using an integrating sphere and the ratio to the transmitted light intensity is compared.
  • a speed test in which at least two measured values are obtained at different time points and the degree of aggregation is determined based on an increase (rate of increase) of the measured value between these time points;
  • One measurement value is obtained at a time point (usually considered as the end point of the reaction), and an end point test (end point assay) for determining the degree of aggregation based on this measurement value may be mentioned.
  • a turbidimetric speed test is preferred from the viewpoint of simplicity and speed of measurement.
  • a glass reaction vessel (capacity: 2 L) equipped with a stirrer, reflux condenser, temperature detector, nitrogen inlet tube and jacket was charged with 1,500 g of distilled water, 280 g of styrene, 0.9 g of sodium styrene sulfonate, Further, an aqueous solution in which 0.5 g of potassium persulfate was dissolved in 1 Og of distilled water was charged, and the inside of the vessel was replaced with nitrogen gas, and then polymerized for 24 hours while stirring at 70 ° C.
  • the above solution was subjected to a filtration treatment with a paper filter paper to take out carrier particles.
  • the particle size and the amount of sulfonic acid groups on the surface of the obtained carrier particles were measured by the following methods. Table 1 shows the results.
  • the carrier particles were photographed using a transmission electron microscope, and the particles were measured by image analysis.
  • the carrier particles were dialyzed against purified water for 48 hours using a cellophane tube dialysis membrane to remove residual monomers.
  • the particles were collected in a 4 glass glass container so as to have a dry weight of 10 g, diluted with distilled water to a volume of 15 OmL, and stirred using a stirrer chip. This was designated as solution A.
  • N / 100-sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) was set in the AT-B-310 electric burette of the potentiometric conductivity meter (AT-310, manufactured by Kyoto Denshi Kogyo). Further, the conductivity electrode was immersed in the solution A, and a nitrogen inlet tube, a degassing tube, and a pH electrode were set. Then, NZ100-sodium hydroxide was added dropwise (amount of addition: 0.05 mlZl 50-500 seconds: adjusted according to the amount of sulfonic acid to be measured), and the conductivity was measured using a potentiometric electrical conductivity titrator (AT-310). The equivalent point was measured from the change in the amount of sulfonic acid, and the target amount of sulfonic acid was calculated. [Preparation of measurement reagent]
  • the suspension after the blocking treatment is collected in an 8 mL centrifuge tube, centrifuged at 15000 rpm at 4 ° C for 30 minutes, and the supernatant is removed to obtain 1.0 weight. /.
  • the suspension was re-dispersed using a glycine buffer solution containing BSA (pH 8.5), and the excess antibody treatment was performed twice.
  • the amount of change in absorbance at the time of sample measurement was measured.
  • 132 L of measurement reagent, 1 32 ⁇ L of 1% BSA-containing glycine buffer as a sample diluent, and 2 samples of CRP concentration of 0.08 to 20 mg / dL are used for measurement.
  • the amount of change in absorbance of each sample was measured using ⁇ L.
  • An automatic biochemical analyzer (Hitachi, Ltd., Model 7170 automatic analyzer) was used as the measuring instrument, the measurement wavelength was 800 nm, and the photometric point was 2 poin t-end 21-34. The result is shown in FIG.
  • the obtained measurement reagent was able to perform highly sensitive measurement from a low to a high concentration of the test sample.
  • the obtained measurement reagent is stored at a temperature of 4 ° C for 6 months, and the measurement sensitivity of samples with a C-scale concentration of 0.08 to 2 Omg / dL is evaluated in the same manner as above. Was. The results are shown in FIG.
  • high-sensitivity measurement can be performed from low to high concentrations of the test sample, even after the reagent has been stored for a long period of time, just like immediately after preparation, and the performance is stably maintained over a long period of time. I found out.
  • Carrier particles were produced in the same manner as in Example 1 except that distilled water, styrene and sodium styrene sulfonate were charged as shown in Table 1.
  • the measurement reagents prepared in Examples 2 and 3 showed good measurement results as in Example 1.
  • the measurement reagents prepared in Comparative Examples 1 to 4 had low measurement sensitivity.
  • the prepared measurement reagent was stored at a temperature of 4 ° C. for 6 months, and the stability of the reagent was evaluated in the same manner as in Example 1. The results are shown in FIG.
  • the measurement reagents prepared in Examples 2 and 3 showed high sensitivity even after storage for a long period of time, just after preparation, from low to high concentrations, as in Example 1. It was found that accurate measurement was possible and that the performance was stably maintained over a long period of time. On the other hand, it was found that the measurement reagents prepared in Comparative Examples 1 to 4 had reduced measurement sensitivity after storage for a long period of time as compared to immediately after preparation, and had deteriorated reagent performance.
  • the sensitizing amount of the antibody to the carrier particles prepared in Example 3 and Comparative Example 3 was adjusted so that the sensitizing amount per surface area was 80% for each of Example 3 and Comparative Example 3, respectively. (PH 8.5) was adjusted to prepare a measurement reagent, which was designated as Example 4 and Comparative Example 5.
  • the measurement sensitivity of the obtained measurement reagent was evaluated in the same manner as in Example 1, and the results are shown in FIG.
  • the measurement reagent prepared in Example 4 showed good measurement results as in Example 1. In contrast, the measurement reagent prepared in Comparative Example 5 had low measurement sensitivity. Further, the obtained measurement reagent was stored at a temperature of 4 ° C. for 6 months, and the stability of the reagent was evaluated in the same manner as in Example 1. The results are shown in FIG.
  • the measurement reagent prepared in Example 4 can perform high-sensitivity measurement from low to high concentrations of the analyte as in the case immediately after preparation, and the performance is stable over a long period of time. It was found to be retained. On the other hand, it was found that the measurement reagent prepared in Comparative Example 5 had reduced measurement sensitivity and deteriorated reagent performance after storage for a long period of time as compared to immediately after preparation.
  • the resulting carrier particles were taken out, and the particle diameter and the amount of sulfonic acid groups on the surface were measured in the same manner as in Example 1.
  • a buffer solution (pH 8.5) was added to adjust the final solution volume to 3 OmL to prepare a measurement reagent.
  • the carrier particles prepared in Examples 6 and 7 and Comparative Examples 6 to 8 were prepared in the same manner as in Example 6, except that the BSA-containing glycine buffer (pH 8.5) was adjusted so that the antibody sensitization amount was the same per carrier particle surface area.
  • a measurement reagent was prepared in the same manner as in 5.
  • the amount of change in absorbance at the time of sample measurement from a CRP concentration of 0.08 to 20 mg / dL was measured under the following measurement conditions.
  • a glass reactor (capacity: 2 L) equipped with a stirrer, cooling coil, temperature detector, jacket, etc. was charged with the prescribed amounts of distilled water, styrene and sodium styrenesulfonate shown in Table 3 and further distilled.
  • An aqueous solution in which 0.5 g of potassium persulfate (polymerization initiator) was dissolved in 10 g of water was added, and the atmosphere was replaced with nitrogen. After stirring, the mixture was copolymerized for 48 hours while controlling the reaction temperature at 71 to 73 ° C. And six types of carrier particles (a) to carrier particles ( ⁇ ) were obtained.
  • the particle size and the amount of sulfonic acid groups on the surface of the obtained carrier particles were measured in the same manner as in Example 1. Table 3 shows the results. Table 3
  • Distilled water was used to adjust the solid content to 10% by weight using carrier particles mixed to 1/10, and 250 ⁇ L was collected in an 8 ml glass tube, and anti-human CRP goat serum (protein Concentration: 18 mg ZmL DAKO: hereinafter also referred to as antibody solution)
  • antibody solution protein Concentration: 18 mg ZmL DAKO: hereinafter also referred to as antibody solution
  • Add 170 L stir at 37 ° C for 1 hour to adsorb, and then add glycine buffer containing BSA (bovine serum albumin) ((8 .5) 2080 / zL was added to the mixture, and the mixture was stirred at 37 ° C for 60 minutes as a blocking treatment.
  • BSA bovine serum albumin
  • the blocking product is collected in an 8 m1 centrifuge tube, and centrifuged at 15000 rpm for 50 minutes.The supernatant is discarded, and the glycine buffer solution containing BSA (pH 8.5) is used. After re-dispersing and treating with excess antibody twice, add 2.5 mL of BSA-containing glycine buffer (pH 8.5), sonicate, and further add BSA-containing glycine buffer ( ⁇ > ⁇ 8.5) was added to make the final solution volume 5 mL, and the measurement reagent was prepared.
  • the amount of change in absorbance at the time of sample measurement from a CRP concentration of 0.08 to 20 mg / dL was measured under the following measurement conditions.
  • a measurement reagent was prepared in the same manner as described above.
  • Example 8 except that the carrier particles (c) and the carrier particles (d) were mixed so that the weight ratio in terms of solid content was (c) / (d)-1/10.
  • a measurement reagent was prepared in the same manner as described above.
  • Example 8 was the same as Example 8 except that carrier particles (c) and carrier particles (d) were mixed so that the weight ratio in terms of solid content was (c) / (d) -10 Z1. Similarly, a measurement reagent was prepared. The performance (sensitivity) of the measurement reagents obtained in Examples 9 to 11 was evaluated in the same manner as in Example 8. The results are shown in FIG.
  • Carrier particles (a) Except for using BAS-containing glycine buffer (pH 8.5) so that the amount of antibody sensitization per surface area of carrier particles was the same as in Example 8 using carrier particles alone, A measurement reagent was prepared in the same manner as in Example 8. (Comparative Example 10)
  • Carrier particles (d) The BAS-containing glycine buffer (pH 8.5) was adjusted so that the antibody sensitization amount per surface area of the carrier particles was the same as in Example 8 using carrier particles alone. Further, a measurement reagent was prepared in the same manner as in Example 8 except that the conditions for the centrifugation treatment were changed to 15,000 rpm for 38 minutes.
  • Example 8 Except that carrier particles (e) were used alone as carrier particles, and the BAS-containing glycine buffer (pH 8.5) was adjusted so that the amount of antibody sensitization per surface area of the carrier particles was the same as in Example 8. A measurement reagent was prepared in the same manner as in Example 8.
  • the BAS-containing glycine buffer pH 8.5 was adjusted so that the carrier particles (f) alone were used as the carrier particles, and the amount of antibody sensitization per surface area of the carrier particles was the same as in Example 8. Further, a measurement reagent was prepared in the same manner as in Example 8 except that the conditions of the centrifugation treatment were set at 15000 r for 38 minutes.
  • Comparative Examples 9 and 11 prepared using carrier particles (a), carrier particles (e) and carrier particles (f) alone as carrier particles, respectively.
  • the absorbance change was small and the sensitivity was inferior in all of the CRP concentrations of 0.02 to 2 OmgZd L in a wide concentration range.
  • the measurement reagent of Comparative Example 10 prepared using carrier particles (d) alone as the carrier particles had a CRP concentration of The change in absorbance in the high concentration range of 5-20 mgZdL was small, and the sensitivity in the high concentration range was poor.
  • Carrier particles (g) An aqueous solution adjusted to a concentration of 10% (w / v) is placed in an 8 mL glass tube at 250 / L, and anti-human CRP goat serum (manufactured by DAKO, protein concentration: 18 mgZm L: below, antibody Add 17 0 / L, stir and adsorb at 37 for 1 hour, and add glycine buffer ( ⁇ ⁇ 8.5) 2 0 8 0 / z L containing BSA (bovine serum albumin). In addition, the mixture was stirred at 37 ° C. for 60 minutes to perform a blocking treatment solution.
  • anti-human CRP goat serum manufactured by DAKO, protein concentration: 18 mgZm L: below
  • BSA bovine serum albumin
  • the block-treated product is collected in an 8 mL centrifuge tube, centrifuged at 180,000 rpm for 60 minutes, the supernatant is discarded, and the glycine buffer solution containing BSA ( ⁇ ⁇ 8.5) is removed. Used redispersed After repeating the antibody treatment twice, add 2.5 mL of BSA-containing glycine buffer (pH 8.5), and after sonication, add BSA-containing glycine buffer (pH 8.5). The final reagent volume was adjusted to 5 mL to prepare a measurement reagent.
  • the glycine buffer solution (pH 8.5) containing BSA was adjusted so that the amount of antibody sensitized per carrier particle surface area was the same.
  • a measurement reagent was prepared in the same manner as in (2). Regarding the centrifugation conditions, the carrier particles (h) were set at 18000 rpm for 45 minutes, the carrier particles (i)) were set at 150 O rpm for 30 minutes, and the carrier particles (k) were set at 18000 rpm for 60 minutes.
  • Example 12 Absorbance change during sample measurement up to CRP concentration 0.5 to 3 Omg / dL under the following measurement conditions using the measurement reagent consisting of the obtained carrier particles (i) and (j) The amount was measured. The results are shown in FIGS. 9 and 10.
  • the amount of change in absorbance at the time of sample measurement from a CRP concentration of 0.5 to 3 Omg / dL was measured. .
  • Example 13 Measurement reagent comprising carrier particles (g) obtained and measurement reagent comprising carrier particles (i) Using a mixed measurement reagent obtained by mixing 1:10 with the above, under the same measurement conditions as in Example 12, the amount of change in absorbance at the time of sample measurement from a CRP concentration of 0.5 to 30 mgZdL was measured. The results are shown in FIG.
  • Example 14 Using a mixed measuring reagent obtained by mixing the measuring reagent consisting of the obtained carrier particles (h) and the measuring reagent consisting of the carrier particles ⁇ ) in a ratio of 1:10, under the same measuring conditions as in Example 12 hand,
  • Example 15 Example 16 Example 17 Example 18 Example 18 Comparative example 14 Comparative example 15 Comparative distilled water 1500 1500 1600 2000 2300 1600 160 pairs
  • aqueous solution adjusted to a concentration of 10% (w / v) using the carrier particles obtained in Example 15 was placed at 250 / zmL in an 8 mL glass tube, and anti-human CRP goat serum (DAKO, protein concentration 18 mg / mL: hereinafter also referred to as antibody solution)
  • DAKO anti-human CRP goat serum
  • Add 170 ⁇ L stir at 37 ° C for 1 hour, and add 2080 / z L of glycine buffer (pH 8.5) containing BSA (bovine serum albumin)
  • BSA bovine serum albumin
  • the blocking-treated product is collected in an 8 mL centrifuge tube, centrifuged at 18000 rpm for 60 minutes, and the supernatant is discarded.
  • 2.5 mL of glycine buffer containing BSA (pH 8.5) was added, and after sonication, the glycine buffer containing BSA (pH 8.5) was further added to final volume.
  • BSA-containing glycine buffer ( ⁇ 8.5) was adjusted so that the amount of antibody sensitization per surface area of the carrier particles was the same, and the same as in Example 15
  • the measurement reagent was prepared by the method described above.
  • the amount of change in absorbance at the time of sample measurement from a CRP concentration of 0.5 to 30 mg / dL was measured under the following measurement conditions.
  • Measurement reagent 90 L Measurement wavelength: 800 nm
  • a carrier particle latetase for a measurement reagent which can measure a biological sample in a wide concentration range in an immunoserologic test and can be stably stored for a long period of time, and a measurement reagent using the same Can be provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

明細書
測定試薬用担体粒子ラテッタス及び測定試薬 技術分野
本発明は、 免疫血清学的検査において広い濃度範囲の生体試料を測定すること ができ、 長期間安定して保存することができる測定試薬用担体粒子ラテックス及 びそれを用いた測定試薬に関する。 背景技術
臨床検査の分野では、 生体試料 (血液、 尿等) を用いて種々の疾患の診断を行 つているが、 これらを診断する方法として、 種々の測定法が開発され利用されて いる。 これらの測定法の代表的方法として、 酵素反応を利用する生化学測定方法 や抗原抗体反応を利用する免疫測定方法が挙げられる。 これらの診断に用いる試 薬としては、 例えば、 妊娠診断テスト、 リウマチ因子を検出する R Aテスト、 C 一反応性タンパクを検出する C R Pテスト、 B型肝炎表面抗原 (H B s抗原) 、 抗 H B s抗体、 0 2ミクログロブリン抗体、 マイコプラズマ抗原、 核酸、 核タン パク、 エストロゲン、 抗エストロゲン抗体等のためのものが開発されている。 このような測定法としては、 例えば、 免疫比濁法 (T I A法) 、 ラテックス比 濁法 (L I A法) 、 酵素免疫測定法 (E I A法) 、 放射免疫測定法 (R I A法) 等が挙げられ、 目的に応じて使い分けされている。
なかでも L I A法は、 担体粒子を水性分散液に分散させたラテックスの担体粒 子に抗原又は抗体を感作させ、 これを用いて血清中の対応する抗体又は抗原との 反応を担体粒子の凝集反応として検出するものであり、 その簡便性と迅速性のた め、 多くの種類の抗原又は抗体の検出に応用されている。
近年、 医療現場では、 従来行われてきた病気の診断から病気予防へと方向転換 してきている。 即ち、 病気として発病する以前に血液等の検査を行うことにより、 病気傾向を早期に発見し、 予防しょうとするものである。 このような予防医療へ の応用のためには、 L I A法等に対しても、 より高感度な測定が可能であること が求められてきている。 もともと、 抗原抗体反応等の免疫血清学的検査は微量物 質の評価を行うものであつたが、 予防医療に使用するための測定試薬は、 従来の ものより更に低濃度の病気に起因する微量タンパク (抗原'抗体) を検出できる ものでなくてはならず、 このため測定試薬としては、 現在使用されているものよ り、 更に高感度なものが必須となってきている。
このような問題点から、 免疫検査に使用される免疫自動分析測定機器において も、 少量検体 '少量試薬による測定を行うための機器類の改良が進んでおり、 こ れに伴って、 上記機器類に使用するための測定試薬もより高感度な性能が求めら ている。
このような測定試薬の感度を上げる方法としては、 例えば、 使用する担体粒子 の粒子径を大きくすることで光学的変化量を大きくし、 被測定物質をより感度よ く測定する方法が試みられている。 特公昭 5 8 _ 5 0 6 4 5号公報には、 スチレ ンと該スチレンに対し 1 0重量0 /0以下のスチレンスルホン酸塩とを乳化剤の不存 在下で過硫酸塩を重合開始剤として水中で共重合させ、 次いでアルカリ性の条件 下で加熱することを特徴とするラテックスの製造方法が開示されており、 スチレ ンモノマーに対する触媒量を増加することにより 0 . 3〜0 . の粒子径の 担体粒子からなるラテックスが得られるとされている。 また、 特公平 1—3 6 4 8 4号公報には、 原子価が 2価の金属の酸化物又は水酸化物を含有する水溶液中 でラテックスを合成し診断薬を製造する方法が開示されている。
し力 しながら、 粒子径の大きな担体粒子からなるラテックスを用いる方法では、 被測定物質が高濃度である場合には、 担体粒子の凝集による光学的変化量が測定 可能領域を超えてしまい被測定物質の量に応じた光学的変化量が得られないこと、 また、 非特異凝集反応を示す確率が高いという問題点があり、 更に、 安定性に欠 け長期保存ができないという問題があつた。
これに対して、 特開昭 6 3 - 6 5 3 6 9号公報には、 平均粒子径の異なる 2種 類又は 3種類以上の担体粒子からなるラテックスにそれぞれ抗体又は抗原を感作 し、 一定の比率で混合したラテックス試薬を使用する方法が開示されている。 こ れは、 粒子径の小さな担体粒子からなるラテックスの測定範囲の広さと、 粒子径 の大きな担体粒子からなるラテックスの低濃度領域での高感度という 2つの特徴 を併せ持った性能を実現しようとするものである。 また、 特公昭 6 3 - 1 4 7 8 3号公報には、 少なくとも二つの異なった量の同 一抗原又は抗体を負荷された 2種の異なつた粒子径範囲の担体粒子からなるラテ ッタスが開示されている。
また、 特許第 2 5 8 8 1 7 4号には、 平均粒子径の異なる 2種類以上の粒子に 抗体又は抗原を感作して混合したラテックス、 又は、 平均粒子径の異なる 2種類 以上の担体粒子を混合した後、 抗体又は抗原を感作して得たラテックスと、 感作 した抗体に対する抗原又は感作した抗原に対する抗体とを水溶媒中で反応させ、 光を照射しその吸光度変化を測定して抗原抗体反応を測定する方法において、 平 均粒子径が 0 . 0 5〜 0 . 3 j mの範囲にある担体粒子と平均粒子径が 0 . 3〜 1 . 0 μ πιの範囲にある担体粒子とを混合すること、 及び、 混合した粒子の平均 粒子径の少なくとも 2 . 5倍であり、 かつ、 0 . 6〜2 . 4 μ πιの波長の光を照 射することを特徴とする抗原抗体反応を利用した測定法が開示されている。 更に、 特開平 5— 1 8 9 7 3号公報には、 免疫学的反応により測定しょうとす る成分の量に応じて、 測定しょうとする成分と反応する成分を不溶化した粒子径 が 0 . 1 μ πι以下の担体粒子と、 測定しょうとする成分と反応する成分、 反応す る成分を不溶化した粒子径が 0 . 1 / mよりも大きい担体粒子の少なくとも 1種 とを組み合わせ、 測定しようとする成分を含む検体と反応させることを特徴とす る免疫学的測定方法及びこの測定方法に用いる試薬が開示されている。
しかしながら、 これらの平均粒子径の異なる複数種類の担体粒子からなるラテ ックスを用いる方法は、 ラテックス試薬の調製が困難であり、 同一の試薬調製者 同じ平均粒子径、 C V値の粒子を用いて、 定められた試薬プロトコールに従 つて試薬調製を行っても、 調製するごとに性能の異なる試薬しか得られないとい う問題点があった。 発明の要約
本発明の目的は、 免疫血清学的検査において広い濃度範囲の生体試料を測定す ることができ、 長期間安定して保存することができる測定試薬用担体粒子ラテツ クス及びそれを用いた測定試薬を提供することである。
第 1の本発明は、 フエ二ル基を有する重合性単量体と、 フエニル基及びスルホ ン酸塩を有する重合性単量体との共重合体からなる担体粒子により構成される測 定試薬用担体粒子ラテックスであって、 前記担体粒子は、 表面のスルホン酸基量 が 0. 005〜0. 7 μπιο 1 /m2 平均粒子径が 0. 01〜1. δ μΐηであ る測定試薬用担体粒子ラテックスである。
第 2の本発明は、 フエエル基を有する重合性単量体と、 フエニル基及びスルホ ン酸塩を有する重合性単量体との共重合体からなる担体粒子により構成される測 定試薬用担体粒子ラテックスであって、 前記担体粒子は、 表面のスルホン酸基量 が異なる 2種類以上の粒子からなるものである測定試薬用担体粒子ラテッタスで ある。 第 2の本発明の測定試薬用担体粒子ラテックスにおいて、 担体粒子は、 表 面のスルホン酸基量が 0. 005〜0. 7 μ mo 1 /m2であることが好ましい。 第 2の本発明の測定試薬用担体粒子ラテックスにおいては、 担体粒子は、 表面の スルホン酸基量が 0. 005 μ m o 1 Zm2以上 0. 1 2 μ m o 1 /m 2未満で ある担体粒子 (A) と、 表面のスルホン酸基量が 0. 1 2 μπιο lZm2以上 0. 7 πιο 1 Zm 2以下である担体粒子 (B) とからなることが好ましく、 担体粒 子 (A) と担体粒子 (B) との含有比率は、 重量比で、 担体粒子 (A) Z担体粒 子 (B) = 1/10〜: L 0/1であることが好ましい。 第 3の本発明は、 フエ-ル基を有する重合性単量体と、 フエニル基及びスルホ ン酸塩を有する重合性単量体との共重合体からなる担体粒子により構成される測 定試薬用担体粒子ラテックスであって、 前記担体粒子は、 平均粒子径が 0. 04 〜 0. 1 Z m、 粒子径の C V値が 8〜 20 %である測定試薬用担体粒子ラテック スである。 第 3の本発明の測定試薬用担体粒子ラテックスにおいては、 担体粒子 は、 表面のスルホン酸基量が 0. 005〜0. 7 μπιο 1 /m2であることが好 ましい。
第 1、 第 2又は第 3の本発明の測定試薬用担体粒子ラテックスは、 乳化剤を実 質的に含有しないものであることが好ましい。 また、 第 1、 第 2又は第 3の本発 明の測定試薬用担体粒子ラテツクスにおいては、 フエ二ル基を有する重合性単量 体がスチレンであり、 かつ、 フエニル基及びスルホン酸塩を有する重合性単量体 がスチレンスルホン酸塩であることが好ましい。
第 4の本発明は、 第 1、 第 2又は第 3の本努明の測定試薬用担体粒子ラテック スの担体粒子に、 被測定物質と特異的に結合する物質が担持されてなる測定試薬 である。 図面の簡単な説明
図 1は、 実施例 1〜 3及び比較例 1〜 4で調製した測定試薬を調製直後に検体 測定を行った結果を示す図である。 図 2は、 実施例及 1〜 3ぴ比較例 1〜 4で調 製した測定試薬を安定性試験後に検体測定を行った結果を示す図である。 図 3は、 実施例 4及び比較例 5で調製した測定試薬を調整直後に検体測定を行った結果を 示す図である。 図 4は、 実施例及 4び比較例 5で調製した測定試薬を安定性試験 後に検体測定を行った結果を示す図である。 図 5は、 実施例 5〜7で調製した測 定試薬を用いて検体測定を行った結果を示す図である。 図 6は、 比較例 6〜 8で 調製した測定試薬を用いて検体測定を行った結果を示す図である。 図 7は、 実施 例 8〜 1 1で調製した測定試薬を用いて検体測定を行った結果を示す図である。 図 8は、 比較例 9〜1 2で調製した測定試薬を用いて検体測定を行った結果を示 す図である。 図 9は、 実施例 1 2 ( i ) 、 比較例 1 3及び実施例 1 3で調製した 測定試薬を用いて検体測定を行った結果を示す図である。 図 1 0は、 実施例 1 2 ( j ) 、 比較例 1 3及び実施例 1 4で調製した測定試薬を用いて検体測定を行つ た結果を示す図である。 図 1 1は、 実施例 1 5〜1 8で調製した測定試薬を用い て検体測定を行った結果を示す図である。 図 1 2は、 実施例 1 4〜 1 8で調製し た測定試薬を用いて検体測定を行った結果を示す図である。 発明の詳細な開示
以下に本発明を詳述する。
第 1の本発明の測定試薬用担体粒子ラテックスは、 フエ-ル基を有する重合性 単量体と、 フユュル基及びスルホン酸塩を有する重合性単量体との共重合体から なる担体粒子により構成されるものである。
上記フ 二ル基を有する重合性単量体としては特に限定されず、 例えば、 スチ レン、 ジビニノレベンゼン、 ェチノレスチレン、 ひ一メチノレスチレン、 p—メチノレス チレン、 ークロロスチレン、 クロロメチルスチレン等が挙げられる。 これらは 単独で用いられてもよく、 2種以上が併用されてもよい。 なかでも、 スチレンが 好ましく用いられる。
上記フエニル基及びスルホン酸塩を有する重合性単量体としては、 重合後の担 体粒子表面にスルホン酸基を含有せしめることができる単量体であれば特に限定 されず、 例えば、 スチレンスルホン酸塩、 ジビュルベンゼンスルホン酸塩、 ェチ ルスチレンスルホン酸塩、 α—メチルスルホン酸塩等が挙げられる。 また、 この 場合の塩としては特に限定されず、 ナトリウム塩、 カリウム塩、 リチウム塩、 ァ ンモニゥム塩等が挙げられる。 これらは単独で用いられてもよく、 2種以上が併 用されてもよい。 なかでも、 スチレンスルホン酸塩が好適であり、 スチレンスル ホン酸ナトリウムがより好適に用いられる。
上記担体粒子は、 上記フ エル基を有する重合性単量体と上記フエニル基及び スルホン酸塩を有する重合性単量体とを共重合することにより得られる。 上記共 重合の方法としては従来公知の方法を用いることができ、 例えば、 溶媒として水 が仕込まれた反応容器内に上記フ 二ル基を有する重合性単量体、 上記フ ニル 基とスルホン酸塩を有する重合性単量体、 重合開始剤及び必要に応じて乳化剤を 添加し、 窒素雰囲気下で攪拌する方法等が挙げられる。 この場合、 重合温度とし ては 5 0〜 1 0 0 °Cが好ましく、 より好ましくは 6 0〜8 5 °Cである。 また、 重 合時間としては、 重合性単量体の組成、 濃度、 及び、 重合開始剤等の条件にもよ るが、 通常 5〜5 0時間である。
上記重合開始剤としては特に限定されず、 例えば、 過硫酸塩類等が挙げられる。 上記過硫酸塩類としては、 例えば、 過硫酸力リウム、 過硫酸ナトリウム、 過硫酸 アンモニゥム等が好適である。 上記重合開始剤の使用量としては特に限定されな いが、 通常は重合性単量体量に対して 0 . 0 1〜1重量%の範囲である。
上記乳化剤は、 第 1の本発明の測定試薬用担体粒子ラテックスに乳化剤が含ま れると測定精度を阻害する等の不都合があることから、 通常は用いないことが好 ましいが、 上記担体粒子表面のスルホン酸基量の調整に必要である場合等、 必要 に応じて用いる。 ただし、 重合後の後処理工程により除去することを考慮すれば、 フエ-ル基を有する重合性単量体に対して好ましくは 1重量%以下、 より好まし くは 0. 5重量%以下、 更に好ましくは 0. 01〜0. 02重量%用いる。
上記フ 二ル基を有する重合性単量体に対する上記フエニル基とスルホン酸塩 を有する重合性単量体の配合量としては、 粒子表面のスルホン酸基量が 0. 00 5〜0. 7 /zmo 1 Zm2の範囲になるようにするために、 2重量%以下である ことが好ましく、 より好ましくは 0. 0001〜1. 5重量%、 更に好ましくは 0. 001〜1. 2重量%である。 この比率で両者を共重合することにより、 上 記担体粒子表面のスルホン酸基量を 0. 005〜0. 7 zmo l /m2に調整す ることができる。
また、 本 明の測定試薬用担体粒子ラテックスの用途によっては、 上記共重合 の際に、 更に重合性不飽和単量体を添加してもよい。 上記重合性不飽和単量体と しては通常のラジカル重合に使用可能なものであれば特に限定されず、 例えば、 (メタ) アクリル酸、 (メタ) アクリル酸エステル、 スチレン誘導体、 (メタ) ァ クリロニトリル、 (メタ) アクリル酸アミド、 ハロゲン化ビュル、 ビニルエステ ル、 (メタ) ァクロレイン、 マレイン酸誘導体、 フマル酸誘導体等が挙げられる。 なお、 本発明において (メタ) アクリル酸とは、 アクリル酸又はメタクリル酸を 意味する。
上記担体粒子は、 表面のスルホン酸基量が 0. 005〜0. 7 ιηο 1/ηι2 である。 本発明者らは、 担体粒子表面のスルホン酸基量が上記範囲にあることに より測定感度が飛躍的に向上し、 測定対象である微量タンパク濃度が低濃度領域 から高濃度領域まで広範囲にわたって測定可能であることを見出し、 本発明を完 成するに至った。 上記担体粒子表面のスルホン酸基量が 0. 005 μ m ο 1 /m 2未満であると、 非特異凝集を起こしやすく、 0. 7 μιη0 1 /m2を超えると、 凝集反応性が低下し感度が鈍くなる。 好ましくは 0. 02〜 0. 5 μ m o 1 Zm 2である。 なお、 上記担体粒子表面のスルホン酸基量は、 電気伝導度滴定法 (J o u r n a 1 o f C o l l o i d a n d I n t e r f a c e a c ι e n c e s . 49 (3) 425, 1 974) により求めることができる。
上記担体粒子の平均粒子径は、 0.01〜 1. 5 mである。 0.01 μ m未満 であると、 凝集による光学的変化量が小さすぎて測定に必要な感度が得られず、 また、 試薬調製時の遠心分離の際に多くの時間がかかり試薬コストが高くなつて しまう。 1 . 5 μ ιηを超えると、 被測定物質が高濃度であるときに担体粒子の凝 集による光学的変化量が測定可能領域を越えてしまい、 被測定物質の量に応じた 光学的変化量が得られない。 測定試薬用担体粒子ラテックスを使用する測定方法、 測定機器によって異なるが、 好ましくは 0 . 0 3〜0 . 8 m、 より好ましくは 0 . 0 5〜0 . 5 μ mである。
上記担体粒子の粒子径の変動係数 ( C V値) は、 1 0 %以下であることが好ま しい。 1 0 %を超えると、 試薬調製時のロット再現性が悪く、 測定試薬の再現性 が低下することがある。 より好ましくは 5 %以下であり、 更に好ましくは 3 %以 下である。 なお、 上記粒子径の変動係数は、 下記式により算出することができる。
粒子径の変動係数 (c v値) =粒子径の標準偏差 Z平均粒子径
第 1の本発明の測定試薬用担体粒子ラテックスは、 上記担体粒子を水又は水系 溶媒に懸濁させることにより得られる。 第 1の本発明の測定試薬用担体粒子ラテ ックスにおける担体粒子濃度としては特に限定されないが、 通常は 1〜2 0重量 %であることが好ましい。 1重量%未満であると、 試薬調製時に濃縮する必要が あり、 2 0重量%を超えると、 凝集してしまうことがある。
第 1の本発明の測定試薬用担体粒子ラテックスは、 測定精度を阻害する等の不 都合があることから、 乳化剤を実質的に含有しないことが好ましい。 ここで実質 的にとは、 担体粒子の製造の際に乳化剤を使用した場合に、 その除去工程を経た 後にも痕跡程度に残留する乳化剤の存在はかまわないという意味である。
第 1の本発明の測定試薬用担体粒子ラテックスは、 担体粒子表面のスルホン酸 基量が上記範囲にあることにより、 測定感度が飛躍的に向上し、 測定対象である 微量タンパク濃度が低濃度領域から高濃度領域まで広範囲にわたっている場合に も測定することが可能である。 また、 長期安定性に優れるため、 特に光学系測定 装置に最適である。 更に、 従来のように沈降防止のために、 液比重を上げるため の糠類等を添加する必要もない。
第 2の本発明は、 フエ二ル基を有する重合性単量体と、 フエ-ル基及ぴスルホ ン酸塩を有する重合性単量体との共重合体からなる担体粒子により構成される測 定試薬用担体粒子ラテックスであって、 担体粒子は、 表面のスルホン酸基量が異 なる 2種類以上の粒子からなるものであり、 乳化剤を実質的に含有しないもので ある測定試薬用担体粒子ラテックスである。
上記フエ二ル基を有する重合性単量体、 フェ -ル基及びスルホン酸塩を有する 重合性単量体については第 1の本発明の場合と同様である。 ·
第 2の本発明の測定試薬用担体粒子ラテックスでは、 表面のスルホン酸基量が 異なる 2種類以上の粒子からなる担体粒子を用いる。 担体粒子表面のスルホン酸 基量が異なる 2種類以上の担体粒子を用いることにより、 得られる測定試薬用担 体粒子ラテックスは、 低濃度から高濃度までの広い濃度範囲にわたつて高感度か つ高精度で抗原抗体反応を測定することが可能であり、 長期安定性にも優れる測 定試薬、 特に、 分光光度計、 濁度計、 光散乱測定装置等の光学的測定装置用とし て好適な測定試薬を得るに適するものとなる。
第 2の本発明の測定試薬用担体粒子ラテックスに用いる担体粒子表面のスルホ ン酸基量は、 0. 005〜0. 7 : m o 1 Zm2であることが好ましい。 0, 0 05 μ mo 1 Zm2未満であると、 非特異凝集を起こしやすく、 0. 7 /x m o 1 /m2を超えると、 凝集反応性が低下し感度が鈍くなることがある。 好ましくは 0. 02〜0. 5 / m o 1 Zm2である。
第 2の本発明の測定試薬用担体粒子ラテツクスに用いる担体粒子は、 表面のス ルホン酸基量が 0. 005 /X m o 1 _ m2以上 0. 1 2 μ m o 1 /m2未満であ る担体粒子 (A) と、 表面のスルホン酸基量が 0. 1 2 μπιο 1 /m2以上 0. 7 /zmo 1 Zm2以下である担体粒子 (B) とからなることが好ましい。 このよ うな担体粒子 (A) と担体粒子 (B) とを混合して用いることにより、 得られる 測定試薬用担体粒子ラテックスは、 更に低濃度から更に高濃度までの極めて広い 濃度範囲にわたって高感度かつ高精度に抗原抗体反応を測定することが可能であ り、 長期安定性も更に向上する。
上記担体粒子 (A) 表面のスルホン酸基量が 0. 005 m o 1 /m2未満で あると、 得られる測定試薬用担体粒子ラテックスや最終的に得られる測定試薬の 長期安定性が低下して、 測定試薬が非特異凝集反応を起こし易くなることがあり、 0. 1 2^mo lZm2以上であると、 低濃度領域での測定が困難となることが ある。 また、 上記担体粒子 (B) 表面のスルホン酸基量が 0. 12μπιο 1 /m 2未満であると、 高濃度領域での測定が困難となることがあり、 0. 1 /m2を超えると、 最終的に得られる測定試薬の免疫血清学的凝集反応性が低下 して、 測定感度や測定精度が不充分となることがある。
上記担体粒子 (A) と担体粒子 (B) との含有比率は、 重量比で、 担体粒子 ( A) Z担体粒子 (B) = 1/10〜: L 0/1であることが好ましい。 この範囲外 であると、 上述の優れた性能を兼備する測定試薬を得るに適する測定試薬用担体 粒子ラテックスが得られないことがある。
第 2の本発明の測定試薬用担体粒子ラテックスに用いる担体粒子の平均粒子径 は 0. 01〜1. 5 μπιであることが好ましい。 0. 01 μ m未満であると、 凝 集による光学的変化量が小さすぎて測定に必要な感度が得られないことがあり、 また、 試薬調製時の遠心分離の際に多くの時間がかかり試薬コストが高くなつて しまう。 1. 5 μπιを超えると、 被測定物質が多いときに粒子の凝集による光学 的変化量が測定可能領域を越えてしまい、 高濃度領域では被測定物質の量に応じ た光学的変化量が得られないことがある。 より好ましくは 0. 03~0. 8 m、 更に好ましくは 0. 05〜0. 5 μπιである。 また、 第 2の本発明の測定試薬用 担体粒子ラテックスに用いる担体粒子の粒子径の変動係数 (CV値) は、 10% 以下であることが好ましい。 10%を超えると、 試薬調製時のロット再現性が悪 く、 測定試薬の再現性が低下することがある。 より好ましくは 5%以下であり、 更に好ましくは 3%以下である。 なお、 担体粒子 (Α) と担体粒子 (Β) の平均 粒子径は、 同じであってもよいし、 異なっていてもよい。
第 2の本発明の測定試薬用担体粒子ラテツクスに用いる担体粒子の作製方法及 び第 2の本発明の測定試薬用担体粒子ラテツタスの調製方法については、 第 1の 本発明の測定試薬用担体粒子ラテックスの場合と同様である。
第 2の本発明の測定試薬用担体粒子ラテックスは、 表面のスルホン酸基量が異 なる 2種類以上の粒子からなる担体粒子を用いることにより、 低濃度から高濃度 までの広い濃度範囲にわたって高感度かつ高精度で抗原抗体反応を測定すること が可能であり、 長期安定性にも優れる測定試薬、 特に、 分光光度計、 濁度計、 光 散乱測定装置等の光学的測定装置用として好適な測定試薬を得るに適するものと なる。 第 3の本発明は、 フユ二ル基を有する重合性単量体と、 フユニル基及びスルホ ン酸塩を有する重合性単量体との共重合体からなる担体粒子により構成される測 定試薬用担体粒子ラテックスであって、 担体粒子は、 平均粒子径が 0, 04〜0. 1 μχη, 粒子径の CV値が 8〜20%であり、 乳化剤を実質的に含有しないもの である測定試薬用担体粒子ラテックスである。
上記フユ二ル基を有する重合性単量体及びフュニル基及びスルホン酸塩を有す る重合性単量体については第 1の本発明の場合と同様である。
第 3の本発明の測定試薬用担体粒子ラテツクスに用いる担体粒子は、 平均粒子 径が 0. 04〜0. 1 m、 粒子径の CV値が 8〜2 0 %である。 このような平 均粒子粒子径及ぴ粒子径の C V値の幅を一定の範囲に調整した担体粒子を用いる ことにより、 広い濃度範囲にわたって抗原抗体反応の測定が可能であり、 かつ、 試薬調製後の長期安定性にも優れ、 特に光学的測定装置に適用し得る免疫血清学 的検査試薬用として有用なものになる。 平均粒子径が 0. 04 m未満であると、 試薬調製に長時間を要し、 0. を超えると、 バックグラウンドが高くなる ため低濃度領域での測定精度が低下してしまう。 好ましくは 0. 0 5〜0. 0 9
5 /z mである。 また、 粒子径の C V値が 8 %未満であると、 低濃度領域から高濃 度領域まで広範囲での測定が不可能であり、 2 0 %を超えると、 遠心分離後及び 試薬調製時の粒子回収が困難となる。 好ましくは 1 0〜 1 6%である。
第 3の本発明の測定試薬用担体粒子ラテックスに用いる担体粒子表面のスルホ ン酸基量は 0. 0 0 5〜0. 7 mo 1 Zm2であることが好ましい。 0. 0 0
5 /zmo 1 Zm2未満であると、 非特異凝集を起こしやすく、 0. 7 m o 1 / m 2を超えると、 凝集反応性が低下し感度が鈍くなることがある。 好ましくは 0.
0 2〜0. 5 μ πιο 1 /m2である。 第 3の本発明の測定試薬用担体粒子ラテツクスに用いる担体粒子の作製方法及 び第 3の本発明の測定試薬用担体粒子ラテックスの調製方法については、 第 1の 本発明の測定試薬用担体粒子ラテックスの場合と同様である。
第 3の本発明の測定試薬用担体粒子ラテックスは、 平均粒子径及び粒子径の C
V値の幅を一定の範囲に調整した担体粒子を用いることにより、 広い濃度範囲に わたって抗原抗体反応の測定が可能であり、 かつ、 試薬調製後の長期安定性にも 優れ、 特に光学的測定装置に適用し得る免疫血清学的検査試薬用として有用なも のになる。
第 4の本発明は、 第 1、 第 2及び第 3の本発明の測定試薬用担体粒子ラテック スの担体粒子に被測定物質と特異的に結合する物質が担持されてなる測定試薬で ある。
上記被測定物質と特異的に結合する物質としては、 免疫血清学的検査試薬 (免 疫学的凝集反応及び凝集阻止反応において使用されるもの) 、 生化学測定法とし て通常使用される生理活性物質であれば特に限定されないが、 なかでも、 抗原抗 体反応に利用できるものが好適である。
上記抗原抗体反応に利用できるものとしては、 例えば、 タンパク質、 核酸、 核 タンパク質、 エス トロゲン脂質等の抗原又は抗体が挙げられる。 抗原としては、 例えば、 各種抗原、 レセプター、 酵素等が挙げられ、 2マイクログロブリン、 C—反応性蛋白質 (C R P ) 、 ヒ トフイブリノ一ゲン、 フェリチン、 リウマチ因 子 (R A) 、 α—フエトプロテイン (A F P ) 、 マイコプラズマ抗原、 H B s抗 原等が挙げられる。 また、 抗体としては、 例えば、 各種の毒素や病原菌等に対す る抗体が挙げられ、 抗ストレプトリジン O抗体、 抗エストロゲン抗体、 ]3 2マイ クログロプリン抗体、 梅毒トレポネーマ抗体、 梅毒脂質抗原に対する抗体、 H B s抗体、 H B c抗体、 H B e抗体等が挙げられる。 なお、 抗体としては、 免疫グ 口プリン分子自体の他、 例えば、 F ( a b ' ) 2のような断片であってもよレヽ。 上記担体粒子に被測定物質と特異的に結合する物質を担持させる方法としては 特に限定されず、 従来公知の方法により物理的及び/又は化学的結合により担持 させればよレ、。
上記担体粒子に担持される被測定物質と特異的に結合する物質の量としては、 用いられる被測定物質と特異的に結合する物質の種類により異なり、 特に限定さ れない。
第 4の本発明の測定試薬は、 測定感度の向上や抗原抗体反応の促進のために種 々の增感剤を含有してもよい。 上記増感剤としては、 例えば、 特開平 2— 1 7 3 5 6 7号公報に記載されているメチルセルロース、 ェチルセルロース等のアルキ ル化多糖類、 特開平 5 _ 1 8 0 8 3 8号公報に記載されているプルラン、 ポリビ ニルピロリ ドン等が挙げられる。
第 4の本発明の測定試薬は、 検体中に存在する他の物質により起こる非特異的 凝集反応を抑制するため、 又は、 試薬の安定性を高めるために、 アルブミン (牛 血清アルブミン、 卵性アルブミン) 、 カゼイン、 ゼラチン等のタンパク質やその 分解物、 アミノ酸又は界面活性剤等を含有してもよい。
第 4の本発明の測定試薬を使用するにあたっては、 適当な希釈液で希釈しても よい。 上記希釈液としては p H 5 . 0〜9 . 0の緩衝液であればどのようなもの でも用いることができ、 例えば、 リン酸緩衝液、 グリシン緩衝液、 トリス緩衝液、 ホゥ酸緩衝液、 クェン酸緩衝液等が挙げられる。
第 4の本発明の測定試薬を用いれば、 検体中の被測定物質と担体粒子に担持さ れた被測定物質に特異的に結合する物質との反応により生じる担体粒子の凝集の 度合いを光学的に測定することにより、 検体中の被測定物質の反応量を測定する ことができる。 上記光学的測定には、 散乱光強度、 透過光強度、 吸光度等を検出 できる光学機器、 特に一般の生化学自動分析機であればいずれも使用することが できる。
上記凝集の度合いを光学的に測定する方法としては従来公知の方法が用いられ、 例えば、 凝集の形成を濁度の増加としてとらえる比濁法、 凝集の形成を粒度分布 又は平均粒径の変化としてとらえる方法、 凝集の形成による前方散乱光の変化を 積分球を用いて測定し透過光強度との比を比較する積分球濁度法等が挙げられる。 また、 測定法としては、 例えば、 異なる時点で少なくとも 2つの測定値を得、 こ れらの時点間における測定値の増加分 (増加速度) に基づき凝集の程度を求める 速度試験 (レートアツセィ) ;ある時点 (通常は反応の終点と考えられる時点) で 1つの測定値を得、 この測定値に基づき凝集の程度を求める終点試験 (エンド ポイントアツセィ) 等が挙げられる。 なかでも、 測定の簡便性、 迅速性の点から 比濁法による速度試験が好適である。
発明を実施するための最良の形態
以下に実施例を掲げて本発明を更に詳しく説明するが、 本発明はこれら実施例 のみに限定されるものではない。 (実施例 1 )
[担体粒子の作製]
攪拌機、 還流用冷却器、 温度検出器、 窒素導入管及びジャケットを備えたガラ ス製反応容器 (容量 2 L) に、 蒸留水 1 500 g、 スチレン 280 g、 スチレン スルホン酸ナトリウム 0. 9 g、 及び、 蒸留水 1 Og に過硫酸カリウム 0. 5 g を溶解した水溶液とを仕込み、 容器内を窒素ガスで置換した後、 70°Cで攪拌し ながら 24時間重合した。
重合終了後、 上記溶液をペーパーろ紙にてろ過処理し、 担体粒子を取り出した。 得られた担体粒子の粒子径及ぴ表面のスルホン酸基量を下記の方法により測定し た。 その結果を表 1に示した。
(担体粒子の粒子径の測定方法)
透過型電子顕微鏡装置を用 、て担体粒子を撮影し、 これを画像解析することに より粒子径を測定した。
(担体粒子表面のスルホン酸基量の測定方法)
担体粒子をセロファンチューブ透析膜を用い 48時間、 精製水にて透析し残存 単量体を除去した。 この粒子を乾燥重量で 10 gになるように 4ッロガラス容器 に採取後、 蒸留水で 15 OmLになるように希釈しスターラーチップを用い攪拌 した。 これを溶液 Aとした。
次に、 電位差電気伝導度滴定処理装置 (AT— 310、 京都電子工業社製) の 付属装置 AT B— 310電動ビュレッ トに、 N/100—水酸化ナトリウム (和 光純薬社製) をセットし、 更に導電率電極を溶液 Aに浸し、 窒素導入管、 脱気管 及び pH電極を設定した。 そして、 NZ100—水酸化ナトリウムを滴下 (滴下 量 0. 05m lZl 50〜500秒:測定するスルホン酸量により調整) し、 電 位差電気伝導度滴定処理装置 (AT— 310) を用いた伝導度の変化量から当量 点を測定し、 目的とするスルホン酸量を算出した。 [測定試薬の調製]
得られた担体粒子を用いて濃度を 5 % (w/v) に調整した水溶液 250 // L を 8mLガラス管に入れた。 これに抗ヒト CRP山羊血清 (DAKO社製、 蛋白 濃度: 1 2mg/mL) 550 Lを一気に添加し、 37 °Cで緩やかに 1時間攪 拌し吸着させた。 次に 1. 0重量%の牛血清アルブミン (以下、 BSAともいう ) を含むグリシン緩衝液 (pH8. 5) 450 /^Lを一気に添加し、 更に 37°C で 1時間攪拌しブロッキング処理を行つた。
ブロッキング処理後の懸濁液を 8 mLの遠心管に分取し、 1 5000 r pm、' 4 °Cにて 30分間遠心分離し、 上清液を除き、 1. 0重量。/。 B S A含有グリシン 緩衝液 (pH8. 5) を用い再分散させ余剰抗体処理を 2回行った。
次に、 余剰抗体処理を終えた粒子に 1. 0重量%B S A含有グリシン緩衝液 ( pH8. 5) 2. 5mLを添加し、 超音波処理後、 更に 1. 0重量%BSA含有 グリシン緩衝液 ( p H 8. 5) を追加し、 最終液量が 30mLになるようにして 測定試薬を調製した。
[測定試薬の性能評価]
1) 測定感度の評価
得られた測定試薬を用いて、 検体測定時の吸光度変化量を測定した。 測定には、 1検体測定につき、 測定試薬を 132 L、 検体希釈液として 1 % B S A含有グ リシン緩衝液 1 32 μ L、 測定検体として C R P濃度が 0. 08〜20mg/d Lのものを 2 μ Lを使用し、 各検体の吸光度変化量を測定した。 測定機器には、 生化学自動分析機 (日立製作所社製、 7170型自動分析装置) を使用し、 測定 波長は 800 n m、 測光ポィント 2 p o i n t-e n d 21- 34 で行った。 この結果を図 1に示した。
図 1より、 得られた測定試薬は、 測定検体濃度が低濃度から高濃度の範囲まで高 感度な測定が可能であった。 2 ) 試薬安定性の評価
得られた測定試薬を、 温度 4 °Cにて 6ヶ月間保管し、 上記方法と同様にして C 尺 濃度が0 . 0 8〜2 O m g / d L範囲の検体の測定感度の評価を行った。 結果を図 2に示した。
図 2より、 長期間保管後の測定試薬でも、 調製直後と同様に、 測定検体濃度が 低濃度から高濃度の範囲まで高感度な測定が可能であり、 長期間にわたって性能 が安定的に保持されることがわかった。
(実施例 2〜3、 比較例 1〜4 )
蒸留水、 スチレン及びスチレンスルホン酸ナトリウムを表 1に示したように仕 込んだ以外は、 実施例 1と同様にして担体粒子の作製を行った。
得られた担体粒子の粒子径及び表面のスルホン酸基量を実施例 1と同様の方法 により測定し、 その結果を表 1に示した。
次に実施例 1と表面積当たりの感作量が同じになるように B S A含有グリシン 緩衝液 (p H 8 . 5 ) を調整し、 各実施例及び比較例の測定試薬を調製した。 得られた測定試薬の測定感度の評価を実施例 1と同様の方法により行った。 結 果を図 1に示した。
図 1より、 実施例 2、 3で調製した測定試薬では、 実施例 1と同様に良好な測 定結果を示した。 これに対して、 比較例 1〜4で調製した測定試薬では、 測定感 度が低かった。
更に作製した測定試薬を、 温度 4 °Cにて 6ヶ月間保管し、 実施例 1と同様の方 法により試薬安定性の評価を行った。 結果を図 2に示した。
図 2より、 実施例 2、 3で調製した測定試薬は、 実施例 1と同様に、 長期間保 管後にも、 調製直後と同様に、 測定検体濃度が低濃度から高濃度の範囲まで高感 度な測定が可能であり、 長期間にわたって性能が安定的に保持されることがわか つた。 これに対して、 比較例 1〜4で調製した測定試薬は、 長期間保管後は調製 直後と比較して測定感度が低下し、 試薬性能が悪くなつていることがわかった。 突施例 1 実施例 2 実施例 3 比較例 1 比較例 2 比較例 3 比較例 4 蒸留水 1500 1500 1500 1500 1 500 1500 1500 組
成 スチレン 280 250 250 280 250 250 250 g スチレンスルホン
0. 9 3. 0 2. 0 5. 5 5. 5 4. 7 0. 4 酸ナトリウム
平均粒子径(M m) 0. 151 0. 217 0. 405 0. 153 0. 222 0. 401 0. 400 表面のスルホン酸基量
0. 02 0. 30 0. 15 0. 84 0. 95 0. 90 0. 003 M moレ m2)
(実施例 4、 比較例 5 )
実施例 3及び比較例 3で作製した担体粒子への抗体感作量を、 表面積当たりの 感作量が、 実施例 3及び比較例 3のそれぞれ 8 0 %となるように B S A含有グリ シン緩衝液 (p H 8 . 5 ) を調整し、 測定試薬を調製し、 これを実施例 4及び比 較例 5とした。
得られた測定試薬の測定感度評価を実施例 1と同様の方法により行い、 結果を 図 3に示した。
図 3より、 実施例 4で調製した測定試薬は、 実施例 1と同様に良好な測定結果 を示した。 これに対して、 比較例 5で調製した測定試薬は、 測定感度が低かった。 また、 得られた測定試薬を、 温度 4 °Cにて 6ヶ月間保管し、 実施例 1と同様の 方法により試薬安定性の評価を行った。 結果を図 4に示した。
図 4より、 実施例 4で調製した測定試薬は、 調製直後と同様に、 測定検体濃度 が低濃度から高濃度の範囲まで高感度な測定が可能であり、 長期間にわたって性 能が安定的に保持されることがわかった。 これに対して、 比較例 5で調製した測 定試薬は、 長期間保管後には調製直後と比較して、 測定感度が低下し、 試薬性能 が悪くなっていることがわかった。
(実施例 5〜 7、 比較例 6〜8 )
[担体粒子の作製]
攪拌機、 冷却コイル、 温度検出器、 ジャケット等を装備したガラス反応器 (容 量 2 L) に表 2に示した組成の原料を仕込み、 窒素置換した後攪拌しながら反応 温度を 70 °C〜 Ί 1 °Cに制御しながら 48時間共重合した。 なお、 重合時に使用 する触媒としては、 蒸留水 1 0 g に過硫酸力リウム 0. 5 g を溶解した水溶液 を用いた。 また、 実施例 5、 6及ぴ比較例 6では、 ノニオン系乳化剤 (エマルゲ ン 804 S、 花王社製) を、 実施例 7及び比較例 7はでァニオン系乳化剤 (ネオ ペレックス F— 2 5、 花王社製) を用いた。
得られた担体粒子を取り出し、 実施例 1と同様の方法により粒子径及ぴ表面の スルホン酸基量を測定した。
結果を表 2に示した。 表 2
Figure imgf000019_0001
[測定試薬の調製] 実施例 5で得られた担体粒子を用いて 5 %濃度水溶液を調製した後 8 m Lガラ ス管に 2 5 0 L入れ、 これに抗ヒト CR P山羊血清 (DAKO社製、 蛋白濃度
1 2mg/mL :以下、 抗体溶液ともいう) 5 50 μ Lを添加し、 3 7¾で1時 間攪拌吸着後、 B SA (牛血清アルブミン) を含むグリシン緩衝液 (ρΗ8. 5 ) 4 5 0 μ L加えブロッキング処理を 3 7°Cにて 6 0分攪拌処理を行った。 次にブロッキング処理品を、 8 m 1遠心管に分取し 1 5 000 r p mで 5 0分 間遠心分離処理後、 上清を廃棄し B S A含有グリシン緩衝液 (pH8. 5) を用 い再分散させ余剰抗体処理を 2回繰り返し行なつた後、 B S A含有グリシン緩衝 液 ( p H 8. 5) を 2. 5 m L添カ卩し、 超音波処理後更に B S A含有グリシン緩 衝液 (pH8. 5) を追加し最終液量を 3 OmLにして測定試薬を調製した。 実施例 6、 7及び比較例 6〜8で作製した担体粒子については、 抗体感作量が 担体粒子表面積当たり同じになるよう B S A含有グリシン緩衝液 (pH8. 5) を調整した以外は、 実施例 5と同様の方法にて測定試薬を調製した。
なお、 遠心分離条件に関しては、 実施例 5及ぴ比較例 6では 1 5000 r p m で 50分間、 実施例 6及び比較例 7では 1 5000 r p mで 45分間、 実施例 7 '及び比較例 8では 1 5000 r p mで 38分間とした。
[測定試薬の性能評価]
得られた各測定試薬を用いて、 以下の測定条件にて、 CRP濃度 0. 08〜2 0 m g / d Lまでの検体測定時の吸光度変化量を測定した。
結果を図 5及び図 6に示した。
測定機種: 日立製作所社製、 71 70形自動分析装置
試薬液量:サンプル: 2 L
希釈液(R 1 ) : 1 32 ^ L (希釈液組成 1 °/0 B S A含有グリシン 緩衝液)
測定試薬: 1 32 μ L
測定波長: 800 nm
測光ポィント : 2 p o i n t - e n d 21 - 34 p
〔担体粒子の作製〕
撹拌機、 冷却コイル、 温度検出器、 ジャケット等を装備したガラス反応器 (容 量 2 L) に、 表 3に示した所定量の蒸留水、 スチレン及ぴスチレンスルホン酸ナ トリウムを仕込み、 更に蒸留水 10 gに過硫酸カリウム (重合開始剤) 0. 5 g を溶解した水溶液を添加し、 窒素置換した後、 撹拌状態で反応温度を 71〜 73 °Cに制御しながら 48時間共重合して、 6種類の担体粒子 ( a ) 〜担体粒子 ( ί ) を得た。 得られた担体粒子の粒子径及び表面のスルホン酸基量を実施例 1と同 様の方法により測定した。 結果を表 3に示した。 表 3
Figure imgf000021_0001
(実施例 8 )
[測定試薬の調製] '
担体粒子 (a) と担体粒子 (b) とを固形分換算の重量比で (a) / (b) =
1/10となるように混合した担体粒子を用い、 蒸留水を添加して固形分を 10 重量%に調整した後、 8m 1ガラス管に 250 μ L採取し、 抗ヒト CRP山羊血 清 (蛋白濃度: 18mgZmL DAKO社製:以下、 抗体溶液ともいう) 1 7 0 Lを添加して、 37 で 1時間攪拌して吸着させた後、 B S A (牛血清アル ブミン) を含むグリシン緩衝液 ( Η 8. 5) 2080 /z Lを添カ卩し、 プロッ キング処理として 37 °Cで 60分間攪拌処理を行った。 次に、 ブロッキング処理 品を 8 m 1遠心管に分取し、 1 5000 r pmで 50分間遠心分離処理した後、 上澄み液を廃棄し、 BS A含有グリシン緩衝液 (pH8. 5) を用いて再分散さ せ、 余剰抗体処理を 2回繰り返し行なつた後、 B S A含有グリシン緩衝液 ( p H 8. 5) 2. 5 mLを添加し、 超音波処理した後、 更に B S A含有グリシン緩衝 液 (ΐ>Η8. 5) を追加し、 最終液量を 5 m Lとして、 測定試薬を調製した。
[測定試薬の性能評価]
得られた各測定試薬を用いて、 以下の測定条件にて、 CRP濃度 0. 08から 20mg/d Lまでの検体測定時の吸光度変化量を測定した。
結果を図 7に示した。
測定機種: 日立製作所社製、 71 50型自動分析装置 試薬液量: サンプル: 3 μ L
希釈液 (R 1 ) : 270 μ L (組成: 1重量% B S Α含有グリシ ン緩衝液)
測定試薬: 90 μ L
測定波長: 800 n m
測光ポィント : 2ポイント 30_ 50 ρ
(実施例 9 )
担体粒子 (a) と担体粒子 (b) とを固形分換算の重量比で (a) / (b) = 10 Z 1となるように混合した担体粒子を用いたこと以外は実施例 8の場合と同 様にして測定試薬を調製した。
(実施例 10 )
担体粒子 (c) と担体粒子 (d) とを固形分換算の重量比で (c) / (d) - 1/10となるように混合した担体粒子を用いたこと以外は実施例 8の場合と同 様にして測定試薬を調製した。
(実施例 1 1)
担体粒子 (c) と担体粒子 (d) を固形分換算の重量比で (c) / (d) - 10 Z 1となるように混合した担体粒子を用いたこと以外は実施例 8の場合と同様に して測定試薬を調製した。 実施例 9〜実施例 1 1で得られた測定試薬の性能 (感度) を実施例 8の場合と 同様にして評価した。 その結果を図 7に示した。
(比較例 9 )
担体粒子 (a) 単独を担体粒子として用い、 担体粒子の表面積当たりの抗体感 作量が実施例 8の場合と同じになるように B A S含有グリシン緩衝液 (pH8. 5 ) を調整したこと以外は実施例 8の場合と同様にして測定試薬を作製した。 (比較例 10 )
担体粒子 (d) 単独を担体粒子として用い、 担体粒子の表面積当たりの抗体感 作量が実施例 8の場合と同じになるように B A S含有グリシン緩衝液 ( p H 8. 5 ) を調整し、 更に遠心分離処理の条件を 15000 r p mで 38分間としたこ と以外は実施例 8の場合と同様にして測定試薬を作製した。
(比較例 1 1 )
担体粒子 (e) 単独を担体粒子として用い、 担体粒子の表面積当たりの抗体感 作量が実施例 8の場合と同じになるように BAS含有グリシン緩衝液 (pH8. 5 ) を調整したこと以外は実施例 8の場合と同様にして測定試薬を作製した。
(比較例 12)
担体粒子 (f ) 単独を担体粒子として用い、 担体粒子の表面積当たりの抗体感 作量が実施例 8の場合と同じになるように BAS含有グリシン緩衝液 ( p H 8. 5) を調整し、 更に遠心分離処理の条件を 15000 r で 38分間としたこ と以外は実施例 8の場合と同様にして測定試薬を作製した。
比較例 9〜比較例 12で得られた測定試薬の性能 (感度) を実施例 8の場合と 同様にして評価した。 その結果を図 8に示した。 図 7から明らかなように、 実施例 8~11で調製した測定試薬は、 いずれも C ?濃度0. 08〜2 OmgZd Lの広い濃度範囲において吸光度変化量が大き く、 優れた感度を発現した。
これに対し、 図 8から明らかなように、 担体粒子として担体粒子 (a) 、 担体 粒子 (e) 及び担体粒子 (f ) をそれぞれ単独で用いて調製した比較例 9、 11、
12の測定試薬は、 いずれも CRP濃度 0. 08~2 OmgZd Lの広い濃度範 囲の全てにおいて吸光度変化量が小さく、 感度が劣っていた。 また、 担体粒子と して担体粒子 (d) を単独で用いて調製した比較例 10の測定試薬は、 CRP濃 度 5〜20mgZdLの高濃度領域における吸光度変化量が小さく、 高濃度領域 における感度が劣っていた。
[担体粒子の作製]
攪拌機、 冷却コイル、 温度検出器、 ジャケット等を装備したガラス反応器 (容 量 2 L) に表 4に示した組成の原料を仕込み、 窒素置換した後攪拌しながら反 応温度を 71°C~ 7 3°Cに制御し 4 8時間共重合して、 5種類の担体粒子 ( g ) 〜担体粒子 (k) を得た。 得られた担体粒子の粒子径及び表面のスルホン酸基量 を実施例 1と同様の方法により測定した。 結果を表 4に示した。 なお、 重合時に 使用する触媒は、 蒸留水 1 0g に過硫酸カリウム 0. 5 g を溶解した水溶液を 用いた。 表 4
Figure imgf000024_0001
[測定試薬の調製]
担体粒子 (g) 1 0% (w/v) 濃度に調整した水溶液を 8mLガラス管に 2 5 0 / L入れ、 抗ヒト CR P山羊血清 (DAKO社製、 蛋白濃度 1 8mgZm L:以下、 抗体溶液ともいう) 1 7 0 / Lを添加し、 3 7でで 1時間攪拌吸着後、 B SA (牛血清アルブミン) を含むグリシン緩衝液 (ρ Η 8. 5) 2 0 8 0 /z L を加え、 3 7°Cにて 6 0分攪拌してブロッキング処理液を行なった。 次にブロ ッキング処理品を、 8 m L遠心管に分取し 1 8 0 0 0 r pmで 6 0分間遠心分離 処理後、 上清を廃棄し B S A含有グリシン緩衝液 (ρ Η8 · 5) を用い再分散さ せ余剰抗体処理を 2回繰り返し行なつた後、 B S A含有グリシン緩衝液 ( p H 8. 5) を 2. 5mL添加し、 超音波処理後、 更に B S A含有グリシン緩衝液 (pH 8. 5) を追加し最終液量を 5 mLにして、 測定試薬を調製した。
なお、 担体粒子 (h) ( i) ( j ) (k) については、 担体粒子表面積当たり の抗体感作量が同じになるよう B S A含有グリシン緩衝液 (pH8. 5) を調整 し担体粒子 (g)と同じ方法にて測定試薬を調製した。 遠心分離条件に関しては、 担体粒子 (h) は 18000 r p mで 45分間、 担体粒子 ( i ) ) は 1 50 O O r pmで 30分間、 担体粒子 (k) は 1 8000 r p mで 60分間とした。 (実施例 1 2 ) 得られた担体粒子 (i) (j ) からなる測定試薬を用いて以下の測定条件にて、 CRP濃度 0. 5〜3 Omg/d Lまでの検体測定時の吸光度変化量を測定した。 結果を図 9及び図 10に示した。
測定機種: 日立製作所社製、 71 50型自動分析装置
試薬液量: サンプル: 3 Z L
希釈液 (R 1 ) : 270 L (組成: 1重量% B S A含有グリシ ン緩衝液)
測定試薬: 90 L
測定波長: 800 nm
測光ポィント : 2ポイント 30_ 50 p
(比較例 1 3 )
得られた担体粒子 (k) からなる測定試薬を用いて実施例 12と同様の測定条件 にて、 CRP濃度 0. 5〜3 Omg/d Lまでの検体測定時の吸光度変化量を測 定した。
結果を図 9及び図 10に示した。
(実施例 1 3 ) 得られた担体粒子 (g) からなる測定試薬と担体粒子 (i) からなる測定試薬 とを 1 : 10で混合した混合測定試薬を用い、 実施例 12と同様の測定条件にて、 C R P濃度 0. 5〜30mgZdLまでの検体測定時の吸光度変化量を測定した。 結果を図 9に示した。
(実施例 14) 得られた担体粒子 (h) からなる測定試薬と担体粒子 Π) からなる測定試薬 とを 1 : 10で混合した混合測定試薬を用い、 実施例 1 2と同様の測定条件にて、
CRP濃度 0. 5~3 Omg/d Lまでの検体測定時の吸光度変化量を測定した。 結果を図 10に示した。
(実施例 1 5〜; 1 8、 比較例 14〜 1 8 )
[担体粒子の作製]
撹拌機、 冷却コイル、 温度検出器、 ジャケット等を装備したガラス反応器 ( 容量 2 L) に、 表 5に示した組成の原料を仕込み、 更に蒸留水 10g に過硫酸 カリウム (開始剤) 0. 5g を溶解した水溶液を加え窒素置換した後、 撹拌状 態で反応温度を 71〜 73 °Cに制御しながら 48時間共重合し、 担体粒子を得た。 得られた担体粒子をペーパー濾紙にて濾過処理後、 担体粒子の粒子径を測定 し、 平均粒子径及び CV値を求めた。 なお、 粒子径は透過型電子顕微鏡にて撮影 した画像をもとに、 画像解析装置にて測定した。 また、 実施例 1と同様の方法に より表面のスルホン酸基量を測定した。
結果を表 5に示した。
o
実施例 15 実施例 16 実施例 17 実施例 18 比較例 14 比較例 15 比較 蒸留水 1500 1500 1600 2000 2300 1600 160 組
成 スチレン 260 260 280 280 280 280 28 g スチレンスルホン
— , 3. 1 2. 7 2. 4 2. 5 3. 0 3. 3 3. 酸ナトリウム
平均粒子径 m) 0. 045 0. 075 0. 095 0. 091 0. 049 0. 048 0. 0
CV値 (%) 12. 68 15. 49 8. 49
Figure imgf000027_0001
7. 25 21. 04 6. 0 表面のスルホン酸基量
0. 683 0. 516 0. 458 0. 462 0. 680 0. 689 0. 5 \ μ: moレ m2)
[測定試薬の調製]
実施例 1 5で得られた担体粒子を用い 10% (w/v) 濃度に調整した水溶液 を 8 mLガラス管に 250 /zmL入れ、 抗ヒ ト CRP山羊血清 (DAKO社製、 蛋白濃度 18mg/mL :以下、 抗体溶液ともいう) 1 70 ^ Lを添加し、 37 °Cで 1時間攪拌吸着後、 BSA (牛血清アルブミン) を含むグリシン緩衝液 (p H8. 5) 2080 /z Lを加え、 37°Cにて 60分攪拌してブロッキング処理液 を行なつた。 次にブロッキング処理品を、 8 m L遠心管に分取し 18000 r p mで 60分間遠心分離処理後、 上清を廃棄 LB S A含有グリシン緩衝液 ( p H 8. 5) を用い再分散させ余剰抗体処理を 2回繰り返し行なった後、 B SA含有 グリシン緩衝液 (pH8. 5) を 2. 5mL添加し、 超音波処理後、 更に B SA 含有グリシン緩衝液 (pH8. 5) を追加し最終液量を 5 m Lにして、 測定試薬 を調製した。
実施例 1 6〜 18及び比較例 14〜 18については、 担体粒子の表面積当たり の抗体感作量が同じになるよう B S A含有グリシン緩衝液 (ρΗ8· 5) を調整 し、 実施例 1 5と同様の方法にて測定試薬を調製した。
なお、 遠心分離条件に関しては、 実施例 1 5及び比較例 18は 18000 r p mで 60分間、 実施例 1 6、 1 7及び比較例 16、 17は 18000 r pmで 7
0分間とした。
[測定試薬の性能評価]
得られた測定試薬を用いて以下の測定条件にて、 CRP濃度 0. 5〜30mg /d Lまでの検体測定時の吸光度変化量を測定した。
結果を図 1 1及び図 1 2に示した。
測定機種: 日立製作所社製、 71 50型自動分析装置
試薬液量:サンプル: 3 /X L
希釈液 (R 1 ) : 270 μ L (組成: 1重量。/。 B S Α含有グリシ ン緩衝液)
測定試薬: 90 L 測定波長: 800 nm
測光ポィント : 2ポイント 30— 501) 産業上の利用可能性
本発明によれば、 免疫血清学的検査において広い濃度範囲の生体試料を測定す ることができ、 長期間安定して保存することができる測定試薬用担体粒子ラテツ タス及びそれを用いた測定試薬を提供できる。

Claims

請求の範囲
1. フエ-ル基を有する重合性単量体と、 フエニル基及びスルホン酸塩を有する 重合性単量体との共重合体からなる担体粒子により構成される測定試薬用担体粒 子ラテックスであって、
前記担体粒子は、 表面のスルホン酸基量が 0. 0 0 5〜0. 7 μ ιηο ΐ /ιη2、 平均粒子径が 0. 0 1〜 1. 5 μ mである
ことを特徴とする測定試薬用担体粒子ラテックス。
2. フエ-ル基を有する重合性単量体と、 フユニル基及びスルホン酸塩を有する 重合性単量体との共重合体からなる担体粒子により構成される測定試薬用担体粒 子ラテックスであって、
前記担体粒子は、 表面のスルホン酸基量が異なる 2種類以上の粒子からなるもの である
ことを特徴とする測定試薬用担体粒子ラテックス。
3. 担体粒子は、 表面のスルホン酸基量が 0. 0 0 5〜0. 7 m o 1 /m 2で あることを特徴とする請求の範囲第 2項記載の測定試薬用担体粒子ラテックス。
4. 担体粒子は、 表面のスルホン酸基量が 0. 0 0 5 μπιο 1 Zm2以上 0. 1 2 ΐα ο 1 /m 2未満である担体粒子 (A) と、 表面のスルホン酸基量が 0. 1 2 μπιο ΐ Ζηι2以上 0. 7 μ τη ο 1 2以下である担体粒子 (B) とからな ることを特徴とする請求の範囲第 2又は 3項記載の測定試薬用担体粒子ラテック ス。
5. 担体粒子 (A) と担体粒子 (B) との含有比率が、 重量比で、 担体粒子 (A ) Z担体粒子 (B) = lZl 0〜1 0/1であることを特徴とする請求の範囲第 4項記載の測定試薬用担体粒子ラテッタス。
6. フエ二ル基を有する重合性単量体と、 フエニル基及びスルホン酸塩を有する 重合性単量体との共重合体からなる担体粒子により構成される測定試薬用担体粒 子ラテックスであって、
前記担体粒子は、 平均粒子径が 0. 04〜0. l im、 粒子径の C V値が 8〜 2 0%である
ことを特徴とする測定試薬用担体粒子ラテックス。
7. 担体粒子は、 表面のスルホン酸基量が 0. 005〜0. 7 mo 1 /m 2で あることを特徴とする請求の範囲第 6項記載の測定試薬用担体粒子ラテックス。
8. 乳化剤を実質的に含有しないものであることを特徴とする請求の範囲第 1、 2、 3、 4、 5、 6又は 7記載の測定試薬用担体粒子ラテックス。
9. フエ-ル基を有する重合性単量体がスチレンであり、 かつ、 フエニル基及び スルホン酸塩を有する重合性単量体がスチレンスルホン酸塩であることを特徴と する請求の範囲第 1、 2、 3、 4、 5、 6、 7又は 8項記載の測定試薬用担体粒 子ラテツクス。
10. 請求の範囲第 1、 2、 3、 4、 5、 6、 7、 8又は 9項記載の測定試薬用 担体粒子ラテックスの担体粒子に、 被測定物質と特異的に結合する物質が担持さ れてなることを特徴とする測定試薬。
PCT/JP2002/006669 2001-07-02 2002-07-02 Latex a particules supports pour reactif d'essai, et reactif d'essai WO2003005031A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE60236089T DE60236089D1 (de) 2001-07-02 2002-07-02 Latex-trägerpartikel für ein testreagenz, und testreagenz
CA2452766A CA2452766C (en) 2001-07-02 2002-07-02 Carrier particle latex for assay reagent and assay reagent
JP2003510956A JP3708942B2 (ja) 2001-07-02 2002-07-02 測定試薬用担体粒子ラテックス及び測定試薬
US10/482,302 US7338813B2 (en) 2001-07-02 2002-07-02 Carrier particle latex for assay reagent and assay reagent
AU2002313319A AU2002313319B2 (en) 2001-07-02 2002-07-02 Carrier particle latex for assay reagent and assay reagent
AT02738899T ATE465409T1 (de) 2001-07-02 2002-07-02 Latex-trägerpartikel für ein testreagenz, und testreagenz
EP02738899A EP1416277B1 (en) 2001-07-02 2002-07-02 Carrier particle latex for assay reagent and assay reagent
KR1020047000037A KR100894947B1 (ko) 2001-07-02 2002-07-02 측정 시약용 담체 입자 라텍스 및 측정 시약
US11/969,107 US7867785B2 (en) 2001-07-02 2008-01-03 Carrier particle latex for assay reagent and assay reagent

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2001201119 2001-07-02
JP2001-201119 2001-07-02
JP2001-275229 2001-09-11
JP2001275229 2001-09-11
JP2002049957 2002-02-26
JP2002-49957 2002-02-26

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10/482,302 Continuation US7338813B2 (en) 2001-07-02 2002-07-02 Carrier particle latex for assay reagent and assay reagent
US10482302 A-371-Of-International 2002-07-02
US11/969,107 Division US7867785B2 (en) 2001-07-02 2008-01-03 Carrier particle latex for assay reagent and assay reagent

Publications (1)

Publication Number Publication Date
WO2003005031A1 true WO2003005031A1 (fr) 2003-01-16

Family

ID=27347071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006669 WO2003005031A1 (fr) 2001-07-02 2002-07-02 Latex a particules supports pour reactif d'essai, et reactif d'essai

Country Status (10)

Country Link
US (2) US7338813B2 (ja)
EP (2) EP2023141B1 (ja)
JP (1) JP3708942B2 (ja)
KR (2) KR100924625B1 (ja)
CN (1) CN100396331C (ja)
AT (1) ATE465409T1 (ja)
AU (1) AU2002313319B2 (ja)
CA (1) CA2452766C (ja)
DE (1) DE60236089D1 (ja)
WO (1) WO2003005031A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325416A (ja) * 2003-04-28 2004-11-18 Sekisui Chem Co Ltd 測定試薬用担体粒子ラテックス及び測定試薬
JP2006329958A (ja) * 2005-05-30 2006-12-07 Sekisui Chem Co Ltd 測定試薬用担体粒子及び測定試薬
JP2006329959A (ja) * 2005-05-30 2006-12-07 Sekisui Chem Co Ltd 測定試薬用担体粒子及び測定試薬
WO2010055883A1 (ja) 2008-11-12 2010-05-20 積水メディカル株式会社 抗リン脂質抗体測定試薬に用いる不溶性担体、抗リン脂質抗体測定試薬、及び、抗リン脂質抗体の測定方法
WO2012133482A1 (ja) 2011-03-28 2012-10-04 積水メディカル株式会社 Psaの測定方法及びその試薬
WO2012133771A1 (ja) 2011-03-31 2012-10-04 積水メディカル株式会社 測定試薬用ラテックス粒子、感作ラテックス粒子及び免疫比濁法用測定試薬
WO2013100146A1 (ja) * 2011-12-28 2013-07-04 積水メディカル株式会社 粒子凝集測定用ラテックス粒子
WO2014051098A1 (ja) * 2012-09-27 2014-04-03 積水メディカル株式会社 粒子凝集測定用ラテックス粒子
WO2018216784A1 (ja) 2017-05-24 2018-11-29 積水化学工業株式会社 測定試薬用ラテックス粒子、感作ラテックス粒子及び免疫比濁法用測定試薬

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9182391B2 (en) 2008-05-09 2015-11-10 Arkray, Inc. Method of producing insoluble carrier particles, insoluble carrier particles, measurement reagent, specimen analyzing tool, and immunoturbidimetric assay
US9678005B1 (en) 2008-12-03 2017-06-13 Arizona Board Of Regents On Behalf Of The University Of Arizona Devices and methods for detection of microorganisms
US9562855B1 (en) 2009-12-03 2017-02-07 The Arizona Board Of Regents On Behalf Of The University Of Arizona Devices and methods for detection of microorganisms via MIE scattering
WO2010065669A1 (en) * 2008-12-03 2010-06-10 Jeong-Yeol Yoon Methods and microfluidic devices for single cell detection of escherichia coli
MX2011003927A (es) * 2009-07-21 2011-07-20 Sekisui Medical Co Ltd Metodo de medicion de insulina.
CN104335048B (zh) * 2012-03-30 2017-05-17 积水医疗株式会社 凝集测定用胶乳粒子
WO2014192963A1 (ja) * 2013-05-31 2014-12-04 積水メディカル株式会社 免疫凝集測定法
CN105067615B (zh) * 2015-08-28 2018-02-23 深圳市汇松科技发展有限公司 一种基于酰胺基团纳米胶乳增强比浊法动物c‑反应蛋白的检测试剂盒及检测方法
US20180282491A1 (en) * 2015-09-30 2018-10-04 Sekisui Chemical Co., Ltd. Polymer microparticles provided with microphase separation structure grains, reagent for particle immunoassay using same, and particle immunoassay method
JP6224217B1 (ja) * 2016-12-27 2017-11-01 Jsr株式会社 ラテックス粒子分散液の保管方法
CN115015559A (zh) * 2022-06-17 2022-09-06 山东博科生物产业有限公司 一种c反应蛋白检测试剂盒

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048215A (ja) * 1996-07-31 1998-02-20 Sekisui Chem Co Ltd 着色粒子
JP2000355553A (ja) * 1999-06-14 2000-12-26 Jsr Corp 診断薬用担体粒子および診断薬

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850645B2 (ja) 1979-03-30 1983-11-11 積水化学工業株式会社 ラテツクスの製造方法
DE2918342A1 (de) * 1979-05-07 1980-11-20 Behringwerke Ag Latex-reagenz
JPS57135361A (en) * 1981-02-13 1982-08-20 Sekisui Chem Co Ltd Latex reagent and measuring method of latex coagulation reaction
JPS5850645A (ja) 1981-09-18 1983-03-25 Toshiba Corp ロジツク化テ−プレコ−ダの誤動作防止回路
JPS58198508A (ja) 1982-05-14 1983-11-18 Sekisui Chem Co Ltd 診断試薬用ラテツクスの製造方法
JPS60192706A (ja) * 1984-03-13 1985-10-01 Sekisui Chem Co Ltd 診断試薬用ラテツクスの製造方法
US4605686A (en) * 1984-03-13 1986-08-12 Sekisui Kagaku Kogyo Kabushiki Kaisha Latex for immunoserological tests and a method for the production of the same
HU196394B (en) 1986-06-27 1988-11-28 Richter Gedeon Vegyeszet Process for preparing 2-halogenated ergoline derivatives
JP2588174B2 (ja) 1986-09-08 1997-03-05 三菱化学株式会社 抗原−抗体反応の測定法
JPS6424918A (en) 1987-07-20 1989-01-26 Ishikawajima Harima Heavy Ind Foundation improvement work of storage tank
JP2531959B2 (ja) 1987-07-31 1996-09-04 株式会社リコー 感熱記録材料
JPH01104621A (ja) * 1987-09-18 1989-04-21 Eastman Kodak Co ポリマーラテックス組成物の製造方法
JPH0750108B2 (ja) 1988-12-26 1995-05-31 積水化学工業株式会社 免疫反応測定法
JPH0518973A (ja) * 1991-07-12 1993-01-26 Shima Kenkyusho:Kk 免疫学的測定方法及び試薬
JP3396231B2 (ja) 1992-01-08 2003-04-14 積水化学工業株式会社 免疫反応測定用試薬および免疫反応測定法
EP0898169B1 (en) * 1997-08-11 2002-02-06 F. Hoffmann-La Roche Ag Microparticle enhanced light scattering assay and microparticle reagents therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048215A (ja) * 1996-07-31 1998-02-20 Sekisui Chem Co Ltd 着色粒子
JP2000355553A (ja) * 1999-06-14 2000-12-26 Jsr Corp 診断薬用担体粒子および診断薬

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325416A (ja) * 2003-04-28 2004-11-18 Sekisui Chem Co Ltd 測定試薬用担体粒子ラテックス及び測定試薬
JP2006329958A (ja) * 2005-05-30 2006-12-07 Sekisui Chem Co Ltd 測定試薬用担体粒子及び測定試薬
JP2006329959A (ja) * 2005-05-30 2006-12-07 Sekisui Chem Co Ltd 測定試薬用担体粒子及び測定試薬
WO2010055883A1 (ja) 2008-11-12 2010-05-20 積水メディカル株式会社 抗リン脂質抗体測定試薬に用いる不溶性担体、抗リン脂質抗体測定試薬、及び、抗リン脂質抗体の測定方法
JP2010249846A (ja) * 2008-11-12 2010-11-04 Sekisui Medical Co Ltd 抗リン脂質抗体測定試薬に用いる不溶性担体、抗リン脂質抗体測定試薬、及び、抗リン脂質抗体の測定方法
KR20110093763A (ko) 2008-11-12 2011-08-18 세키스이 메디칼 가부시키가이샤 항인지질 항체 측정 시약에 사용하는 불용성 담체, 항인지질 항체 측정 시약, 및 항인지질 항체의 측정 방법
WO2012133482A1 (ja) 2011-03-28 2012-10-04 積水メディカル株式会社 Psaの測定方法及びその試薬
JP5170806B2 (ja) * 2011-03-31 2013-03-27 積水メディカル株式会社 測定試薬用ラテックス粒子、感作ラテックス粒子及び免疫比濁法用測定試薬
WO2012133771A1 (ja) 2011-03-31 2012-10-04 積水メディカル株式会社 測定試薬用ラテックス粒子、感作ラテックス粒子及び免疫比濁法用測定試薬
KR20140030164A (ko) 2011-03-31 2014-03-11 세키스이 메디칼 가부시키가이샤 측정 시약용 라텍스 입자, 감작 라텍스 입자 및 면역 비탁법용 측정 시약
US10048268B2 (en) 2011-03-31 2018-08-14 Sekisui Medical Co., Ltd. Latex particle for measurement reagent, coated latex particle, and measurement reagent for immunoturbidimetric method
WO2013100146A1 (ja) * 2011-12-28 2013-07-04 積水メディカル株式会社 粒子凝集測定用ラテックス粒子
JPWO2013100146A1 (ja) * 2011-12-28 2015-05-11 積水メディカル株式会社 粒子凝集測定用ラテックス粒子
US9939433B2 (en) 2011-12-28 2018-04-10 Sekisui Medical Co., Ltd. Latex particles for measuring particle agglutination
WO2014051098A1 (ja) * 2012-09-27 2014-04-03 積水メディカル株式会社 粒子凝集測定用ラテックス粒子
JP5566557B1 (ja) * 2012-09-27 2014-08-06 積水メディカル株式会社 粒子凝集測定用ラテックス粒子
US9383356B2 (en) 2012-09-27 2016-07-05 Sekisui Medical Co., Ltd. Latex particles for particle agglutination assay
WO2018216784A1 (ja) 2017-05-24 2018-11-29 積水化学工業株式会社 測定試薬用ラテックス粒子、感作ラテックス粒子及び免疫比濁法用測定試薬
US11867694B2 (en) 2017-05-24 2024-01-09 Sekisui Medical Co., Ltd. Latex particles for measurement reagents, sensitized latex particles, and measurement reagent for turbidimetric immunoassay

Also Published As

Publication number Publication date
EP2023141A3 (en) 2010-01-06
AU2002313319B2 (en) 2007-05-10
US7867785B2 (en) 2011-01-11
JP3708942B2 (ja) 2005-10-19
KR20090013238A (ko) 2009-02-04
KR100894947B1 (ko) 2009-04-27
US7338813B2 (en) 2008-03-04
EP2023141B1 (en) 2014-04-09
ATE465409T1 (de) 2010-05-15
DE60236089D1 (de) 2010-06-02
US20080113452A1 (en) 2008-05-15
CN1522370A (zh) 2004-08-18
EP1416277A4 (en) 2005-11-16
EP1416277A1 (en) 2004-05-06
JPWO2003005031A1 (ja) 2005-04-07
CA2452766C (en) 2011-06-14
KR20040062527A (ko) 2004-07-07
CA2452766A1 (en) 2003-01-16
KR100924625B1 (ko) 2009-11-02
EP1416277B1 (en) 2010-04-21
CN100396331C (zh) 2008-06-25
EP2023141A2 (en) 2009-02-11
US20040171176A1 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
US7867785B2 (en) Carrier particle latex for assay reagent and assay reagent
JP4853666B2 (ja) 標的物質の検出方法、混合粒子、および標的物質の検出試薬
JP2012022005A (ja) 凝集反応安定化方法
US20220227984A1 (en) Particle and method for producing particle
US6548310B1 (en) Particle for diagnostic agent and turbidmetric immunoassay using the same
JP3771413B2 (ja) 抗リン脂質抗体測定試薬及びその製造方法ならびに抗リン脂質抗体測定方法
JP5348724B2 (ja) 抗リン脂質抗体測定試薬に用いる不溶性担体、抗リン脂質抗体測定試薬、及び、抗リン脂質抗体の測定方法
EP2902785B1 (en) Latex particles for particle aggregation measurement
JP2001074742A (ja) ラテックス免疫比濁法および測定キット
JPH0228603B2 (ja)
JP2004212383A (ja) 測定試薬用担体粒子及び測定試薬
JP2006329959A (ja) 測定試薬用担体粒子及び測定試薬
JP2006329958A (ja) 測定試薬用担体粒子及び測定試薬
JP2004325415A (ja) 測定試薬用担体粒子ラテックス及び測定試薬
JP2005241363A (ja) 測定試薬用担体粒子及び測定試薬
JP2008215816A (ja) 免疫診断用中空ポリマー粒子およびその製造方法、ならびに免疫診断用試薬
JP2001289854A (ja) 高分子球状体、免疫学的測定試薬及び免疫測定法
JP2005300355A (ja) 測定試薬用担体粒子及び測定試薬
JP2004117068A (ja) 免疫測定試薬および免疫測定方法
JPS6366464A (ja) 診断試薬用担体ラテツクス
JP2005069891A (ja) 測定試薬用担体粒子及び測定試薬
JP2001074741A (ja) ラテックス免疫比濁測定方法および測定キット
JP2004325416A (ja) 測定試薬用担体粒子ラテックス及び測定試薬
JP2000088853A (ja) 診断薬用粒子
JPH09304389A (ja) 免疫測定試薬および免疫測定法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003510956

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002313319

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2452766

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 028133528

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047000037

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002738899

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10482302

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002738899

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002313319

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020087031028

Country of ref document: KR