WO2018216784A1 - 測定試薬用ラテックス粒子、感作ラテックス粒子及び免疫比濁法用測定試薬 - Google Patents

測定試薬用ラテックス粒子、感作ラテックス粒子及び免疫比濁法用測定試薬 Download PDF

Info

Publication number
WO2018216784A1
WO2018216784A1 PCT/JP2018/020076 JP2018020076W WO2018216784A1 WO 2018216784 A1 WO2018216784 A1 WO 2018216784A1 JP 2018020076 W JP2018020076 W JP 2018020076W WO 2018216784 A1 WO2018216784 A1 WO 2018216784A1
Authority
WO
WIPO (PCT)
Prior art keywords
latex particles
skeleton
measurement
latex
compound
Prior art date
Application number
PCT/JP2018/020076
Other languages
English (en)
French (fr)
Inventor
理 杉本
脇屋 武司
北原 慎一郎
真亜紗 池上
祐也 稲葉
Original Assignee
積水化学工業株式会社
積水メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社, 積水メディカル株式会社 filed Critical 積水化学工業株式会社
Priority to EP18805331.8A priority Critical patent/EP3633374A4/en
Priority to JP2019520316A priority patent/JP7161213B2/ja
Priority to US16/616,371 priority patent/US11867694B2/en
Priority to CN201880032945.8A priority patent/CN110637232B/zh
Publication of WO2018216784A1 publication Critical patent/WO2018216784A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
    • G01N33/545Synthetic resin
    • G01N33/546Synthetic resin as water suspendable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/32Monomers containing only one unsaturated aliphatic radical containing two or more rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/10Esters
    • C08F22/12Esters of phenols or saturated alcohols
    • C08F22/20Esters containing oxygen in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F28/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur
    • C08F28/06Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur by a heterocyclic ring containing sulfur
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
    • G01N33/545Synthetic resin

Definitions

  • the present invention relates to latex particles for measurement reagents that enable highly sensitive measurement even when measuring a measurement sample with a low concentration of the test substance.
  • the present invention also relates to sensitized latex particles using measurement reagent latex particles and an immunoturbidimetric measurement reagent.
  • immunological measurement methods using antigen-antibody reaction are widely used as methods for quantifying a small amount of a test substance in a measurement reagent.
  • the latex immunoturbidimetric method using latex particles as an antigen or antibody carrier is easy to operate and requires a short time for measurement. Then, the kind of the trace amount test substance which employ
  • Quantification of test substances such as antigens or antibodies in a measurement sample by latex immunoturbidimetry is a change in absorbance caused by aggregation of latex particles carrying antigens or antibodies (hereinafter also referred to as “sensitized latex particles”). Is detected optically. This change in absorbance is based on a change in the apparent particle diameter derived from the aggregate formed by the aggregation of the sensitized latex particles.
  • latex particles used as a carrier in latex immunoturbidimetry are mainly polystyrene because it is easy to sensitize (immobilize) an antigen or antibody, is relatively inexpensive, and can easily control the polymerization reaction.
  • Polystyrene latex particles as a component have been used (Patent Document 1, etc.).
  • Patent Document 1 Patent Document 1
  • the concentration of the test substance in the measurement sample is dilute, the number of aggregates formed decreases, and Since the apparent particle size is smaller than that in the case where the concentration of the test substance with respect to the number of latex particles is within an appropriate range, there is a problem that sufficient sensitivity cannot be obtained.
  • the first is to increase the particle size of latex particles. When the particle size is large, the extinction coefficient becomes large, so that even a dilute concentration makes it easy to detect the difference in change in aggregation.
  • the second is to increase the refractive index of the latex particles and consequently increase the extinction coefficient. This is because latex particles having a higher refractive index have a higher extinction coefficient, so that detection sensitivity can be maintained even in a dilute environment if the particle diameter is the same.
  • the particle size of the latex particles becomes too large, the latex particles settle during measurement, or sink to the bottom of the storage stool during storage. There has been a problem of seriously damaging.
  • Patent Document 2 proposes a method using latex particles having a single-hole hollow structure.
  • Patent Documents 3 and 4 propose a method for improving sensitivity by using latex particles made of a material having a high refractive index.
  • a material having a high refractive index generally has a large specific gravity and a heavy particle, it can be put into practical use only as a reagent with a particle size of less than 300 nm, and there is a limit to improving sensitivity.
  • An object of the present invention is to provide latex particles for a measurement reagent that enables highly sensitive measurement even when measuring a measurement sample with a low concentration of a test substance.
  • the present inventors have found that the sedimentation of particles is suppressed by lowering the specific gravity of latex particles containing a compound having a refractive index of 1.6 or more. Based on this knowledge, by using particles in a large particle size range that could not be put into practical use as a conventional reagent, the absorbance is greatly improved, and even when measuring a measurement sample with a low concentration of the test substance, it is highly effective.
  • the inventors have found that latex particles for measuring reagents that enable sensitive measurement can be obtained, and have completed the present invention.
  • Latex particles for measurement reagents having a coefficient of variation of particle size of 10% or less and an average particle size of 250 to 1000 nm, wherein the latex particles contain 20% by weight or more of a compound having a refractive index of 1.60 or more, Depth of the supernatant when the dispersion having a solid content of 1% by weight obtained by dispersing the latex particles in ultrapure water is placed in a cylindrical 10 ml graduated cylinder having a barrel inner diameter of 10.8 mm and left standing for 10 days. Latex particles for measurement reagent with a length of 5 mm or less.
  • the compound having a refractive index of 1.60 or more includes a compound having at least one skeleton selected from the group consisting of a fluorene skeleton, a dinaphthothiophene skeleton, a naphthalene skeleton, an anthracene skeleton, a phenanthrene skeleton, and a carbazole skeleton.
  • a fluorene skeleton a dinaphthothiophene skeleton
  • a naphthalene skeleton an anthracene skeleton
  • a phenanthrene skeleton a carbazole skeleton.
  • Latex particles for measurement reagent [3] The latex particle for measurement reagent according to [2], wherein the compound having a refractive index of 1.60 or more is a polymerizable compound.
  • the present invention it is possible to provide latex particles for a measuring reagent that enables highly sensitive measurement even with a measurement sample having a low concentration of the test substance.
  • the latex particles for measuring reagent of the present invention suppress the sedimentation by lowering the specific gravity compared to the conventional latex particles and enable the use of particles having a larger particle size, so that the test can be performed in a dilute concentration range.
  • the measurement sensitivity of a substance can be improved.
  • FIG. 1 is a diagram showing the significance of absorbance.
  • the present invention relates to latex particles for measuring reagents containing a compound having a refractive index of 1.60 or more and a particle diameter variation coefficient (CV value) of 10% or less, an average particle size of 250 to 1000 nm, and 20% by weight or more.
  • a dispersion having a latex particle concentration of 1.0% by weight obtained by dispersing latex particles for reagent in pure water was placed in a cylindrical 10 ml graduated cylinder having a barrel inner diameter of 10.8 mm and allowed to stand at room temperature for 10 days.
  • the present invention relates to latex particles for measuring reagent in which the depth of the supernatant liquid is within 5 mm.
  • the depth of the supernatant liquid is within 5 mm means that the depth of the supernatant liquid is 0 mm to 5 mm, and describes the lower limit of the sedimentation degree in the practical range of latex particles for measuring reagents. is there.
  • the “supernatant liquid” refers to a state in which the turbidity is less than 5% when the original value is 100.
  • the supernatant liquid collected with a pipette is a spectrophotometer (U-3900 manufactured by Hitachi). It can be confirmed by measuring using.
  • “Ultrapure water” refers to water having a non-resistance value of 18.2 M ⁇ ⁇ cm and a TOC value of 5 ppb or less. “Ultrapure water” can be obtained by, for example, a tap water direct connection type ultrapure water device Milli-Q Integral MT instrument analysis type (manufactured by Merck).
  • polymer latex As one aspect of the latex particle for reagent measurement of the present invention, a polymer of a polymerizable compound (hereinafter also referred to as “polymer”) and a compound having a refractive index of 1.60 or more (hereinafter referred to as “high refractive index compound”). ”) And at least a latex particle.
  • the polymer contained in the latex particle for reagent measurement of the present invention is a polymer of one or more polymerizable compounds, and the composition containing the polymerizable compound is subjected to a polymerization treatment such as light irradiation or heating. Can be obtained.
  • a polymerizable compound is a compound containing one or more polymerizable functional groups in one molecule, and even if it is a monofunctional polymerizable compound containing one polymerizable functional group in one molecule, the polymerizable functional group May be a polyfunctional polymerizable compound containing two or more per molecule.
  • the polymerizable compound may be a monomer or a multimer such as an oligomer or a prepolymer.
  • the said polymeric compound may be single 1 type, and may be a combination of 2 or more arbitrary ratios.
  • the combination of two or more kinds of polymerizable compounds is a combination of two or more kinds of monofunctional polymerizable compounds, a combination of two or more kinds of polyfunctional polymerizable compounds, and one or more kinds. Any combination of the monofunctional polymerizable compound and one or more polyfunctional polymerizable compounds may be used.
  • the molecular weight of these polymers is, for example, from 80 to 50,000, but is not particularly limited.
  • molecular weight shall mean the weight average molecular weight measured in gel conversion by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the weight average molecular weight described later is a value measured by the following measurement.
  • GPC device GPC system (manufactured by Shimadzu Corporation) Column: K-804L (manufactured by shodex) Eluent: Tetrahydrofuran (THF)
  • the polymerizable functional group may be a radical polymerizable functional group, an ion polymerizable functional group, or a coordination polymerizable functional group, and is preferably a radical polymerizable functional group.
  • polymerizable groups such as an ethylenically unsaturated bond-containing group, an epoxy group, an oxetane group, and a methylol group can be exemplified, and an ethylenically unsaturated bond-containing group is more preferable.
  • Examples of the ethylenically unsaturated bond-containing group include a (meth) acryloyloxy group, a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group, and a (meth) acryloyl group, a vinyl group, and a styryl group are more preferable. preferable.
  • the description of “(meth) acryloyl group” is used to mean at least one of an acryloyl group and a methacryloyl group.
  • the number of the polymeric groups contained in a compound is two or more in 1 molecule.
  • the monofunctional polymerizable compound having an ethylenically unsaturated bond-containing group are not particularly limited.
  • a vinyl compound a styrene monomer such as styrene, ⁇ -methylstyrene, or chlorostyrene; 1 -Naphthalene compounds such as vinylnaphthalene and 2-vinylnaphthalene; anthracenyl compounds such as 2-vinylanthracene and 9-vinylanthracene; phenanthrene compounds such as 3-vinylphenanthrene and 9-vinylphenanthrene; 6-vinyldinaphthothiophene, 6 A dinaphthothiophene compound such as vinyl ether dinaphthothiophene; a carbazole compound such as 9-vinylcarbazole; a vinyl ether compound such as methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether; vinyl a
  • polyfunctional polymerizable compound having an ethylenically unsaturated bond-containing group examples include vinyl compounds such as divinylbenzene, 2,12-divinyldinaphthothiophene, and 3,11-divinyldiethylene.
  • Single vinyl monomers such as naphthothiophene, 5,9-divinyldinaphthothiophene, 2,12-divinyloxymethyldinaphthothiophene, 3,11-divinyloxydinaphthothiophene, 1,4-divinyloxybutane, divinylsulfone Body: 2,12-di (meth) acryloyloxymethyldinaphthothiophene, 3,11-di (meth) acryloyloxymethyldinaphthothiophene, tetramethylolmethanetetra (meth) acrylate, tetramethylol as (meth) acrylic compounds Methanetri (meth) acrylate, Lamethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythri
  • aromatic vinyl compounds such as styrene and divinylbenzene; polycyclic aromatic vinyl compounds such as vinylnaphthalene, vinylanthracene, vinylphenanthrene, vinyldinaphthothiophene, and vinylcarbazole; And (meth) acrylic acid esters having an aromatic or polycyclic aromatic skeleton such as benzyl acrylate, fluorene di (meth) acrylate, naphthyl (meth) acrylate, and phenanthryl (meth) acrylate.
  • examples of the substituent of the aromatic ring include an alkyl group, a hydroxy group, a carboxyl group, and a halogen group (for example, a fluorine group, a chlorine group, a bromine group, and an iodine group). Can be mentioned.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, t-butyl group, n-pentyl group, 1- Methyl-n-butyl group, 2-methyl-n-butyl group, 3-methyl-n-butyl group, 1,1-dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2 -Dimethyl-n-propyl group, 1-ethyl-n-propyl group, n-hexyl group, 1-methyl-n-pentyl group, 2-methyl-n-pentyl group, 3-methyl-n-pentyl group, 4 -Methyl-n-pentyl group, 1,1-dimethyl-n-butyl group, 1,2-dimethyl-n-butyl group, 1,3-dimethyl
  • a cyclic alkyl group can also be used as the alkyl group.
  • the cyclic alkyl group having 1 to 10 carbon atoms includes a cyclopropyl group, a cyclobutyl group, a 1-methyl-cyclopropyl group, a 2-methyl-cyclopropyl group.
  • Cyclopentyl group 1-methyl-cyclobutyl group, 2-methyl-cyclobutyl group, 3-methyl-cyclobutyl group, 1,2-dimethyl-cyclopropyl group, 2,3-dimethyl-cyclopropyl group, 1-ethyl-cyclo Propyl group, 2-ethyl-cyclopropyl group, cyclohexyl group, 1-methyl-cyclopentyl group, 2-methyl-cyclopentyl group, 3-methyl-cyclopentyl group, 1-ethyl-cyclobutyl group, 2-ethyl-cyclobutyl group, 3 -Ethyl-cyclobutyl group, 1,2-dimethyl-cyclobutyl group, 1, -Dimethyl-cyclobutyl group, 2,2-dimethyl-cyclobutyl group, 2,3-dimethyl-cyclobutyl group, 2,4-dimethyl-cyclobutyl group, 3,3-dimethyl-cyclobutyl group,
  • the reagent measuring latex particles of the present invention contain a high refractive index compound (a compound having a refractive index of 1.60 or more).
  • the high refractive index compound is not particularly limited, but a compound having at least one skeleton selected from the group consisting of a fluorene skeleton, dinaphthothiophene skeleton, naphthalene skeleton, anthracene skeleton, phenanthrene skeleton, pyrene skeleton, and carbazole skeleton is preferable.
  • Preferred skeleton combinations include a fluorene skeleton, a dinaphthothiophene skeleton, and a naphthalene skeleton.
  • Specific examples of the high refractive index compound include fluorene, dinaphthothiophene, naphthalene, anthracene, phenanthrene, carbazole and the like. Of these, fluorene, dinaphthothiophene, and naphthalene are preferable.
  • the high refractive index compound is a polymerizable compound having a polymerizable functional group
  • a polymer by homopolymerization may be formed, or a polymer copolymerized with another polymerizable compound may be formed.
  • the polymerizable compound include 9,9-bis (4- (meth) acryloyloxyphenyl) fluorene, 9,9-bis (4- (meth) acryloyloxymethoxyphenyl) fluorene, 9,9-bis ( 4- (2- (meth) acryloyloxyethoxy) phenyl) fluorene, 6-vinyldinaphthothiophene, 6-vinyl ether dinaphthothiophene, 2,12-divinyldinaphthothiophene, 3,11-divinyldinaphthothiophene, 5, 9-divinyldinaphthothiophene, 2,12-divinyloxymethyldinaph
  • the high refractive index compound is preferably contained in the reagent measuring latex by 20% by weight or more. If it is less than 20% by weight, the decrease in absorbance derived from the hollowing of the reagent measuring latex, which will be described later, cannot be compensated for, and the sensitivity may decrease. More preferably, it is 30 weight% or more, More preferably, it is 50 weight% or more. The upper limit is not particularly limited, but it is 96% by weight or less.
  • the latex particles for reagent measurement of the present invention have a porous hollow structure.
  • the specific gravity is lighter than latex particles that are not porous hollow structures.
  • the term “porous” means a structure having two or more hollow structures when the particle cross section is observed, more preferably 5 or more, and still more preferably 10 or more.
  • the hollow structure may be a single hole or a continuous hole. Particles having a porous hollow structure can suppress sedimentation, improve reagent reproducibility, and suppress a decrease in the refractive index of the particles as compared with a single-hole structure, thereby enabling highly sensitive measurement.
  • the pore diameter of the porous hollow structure is preferably 100 nm or less, more preferably 50 nm or less, still more preferably 10 nm or less.
  • As an aspect of the hole in addition to the uneven shape formed on the surface of the latex particle, there may be mentioned a gap between polymer chains forming the latex particle and an aspect including both the former and the latter.
  • Examples of the method for confirming the porous hollow structure of the latex particles for reagent measurement include observation methods using SEM (scanning electron microscope) and TEM (transmission electron microscope).
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the porous hollow structure can be confirmed by measuring the specific gravity of the dry powder described above, for example.
  • the specific surface area of the particles becomes large, so that the porous hollow structure can be confirmed by measuring the BET specific surface area using, for example, “NOVA4200e” manufactured by Cantachrome Instruments.
  • the BET specific surface area becomes larger than the theoretical value 6 / ⁇ D ( ⁇ : density, D: particle size).
  • it is 1.5 times or more, More preferably, it is 2 times or more, More preferably, it is 5 times or more.
  • the porous hollow structure As another method for confirming the porous hollow structure, there is a method that takes advantage of the feature of latex particles for reagent measurement that the surface area is large due to the porous hollow structure. Specifically, first, latex particles having a porous hollow structure are impregnated in a predetermined metallic dye, and then the residual metal weight obtained by firing the latex particles is measured. In addition, the residual metal weight is similarly measured for latex particles having the same average particle diameter and the like as those of the above-mentioned latex particles but not having a porous structure. The presence of the porous hollow structure can be confirmed from the difference in the residual metal weight of the latex particles thus obtained.
  • the method of performing cross-sectional observation of a latex particle is mentioned.
  • latex particles for reagent measurement are impregnated in a predetermined dye, the pores of the porous hollow structure are dyed, and then embedded in an epoxy resin, and the particles are obtained with a cross section polisher (IB-19520CCP manufactured by JEOL). After the section is taken out, it can be observed with an FE-SEM (S-4800, manufactured by Hitachi High-Technology Corporation) equipped with a high-sensitivity YAG backscattered electron detector.
  • the latex particles for reagent measurement of the present invention preferably contain a cross-linking material because it is easy to maintain a porous structure.
  • the cross-linking material is preferably a polyfunctional polymerizable compound.
  • the polyfunctional polymerizable compound is not particularly limited, and those described above can be used, but those having an aromatic skeleton or a polycyclic aromatic skeleton are preferable because they do not lower the refractive index.
  • those having at least one skeleton selected from the group consisting of a phenyl skeleton, a naphthalene skeleton, a fluorene skeleton, a dinaphthothiophene skeleton, an anthracene skeleton, a phenanthrene skeleton, a pyrene skeleton, and a carbazole skeleton are more preferable.
  • polyfunctional polymerizable compound examples include divinylbenzene, divinylnaphthalene, 9,9-bis (4- (meth) acryloyloxyphenyl) fluorene, 9,9-bis (4- (meth) acryloyloxymethoxyphenyl) fluorene, 9,9-bis (4- (2- (meth) acryloyloxyethoxy) phenyl) fluorene, 2,12-divinyldinaphthothiophene, 3,11-divinyldinaphthothiophene, 5,9-divinyldinaphthothiophene, 2 , 12-divinyloxymethyldinaphthothiophene, 3,11-divinyloxydinaphthothiophene, 2,12-di (meth) acryloyloxymethyldinaphthothiophene, 3,11-di (meth) acryloyloxymethyldinaphthothi
  • the latex particles preferably contain a homopolymer of a polyfunctional polymerizable compound or a copolymer with another polymerizable monomer.
  • the polyfunctional polymerizable compound is preferably 5% by weight or more, and preferably 10% by weight or more from the viewpoint of easily maintaining the porous structure. Is more preferable.
  • the method for producing the latex particles for reagent measurement of the present invention is not particularly limited, and is an emulsion polymerization method, a miniemulsion polymerization method, a suspension polymerization method, a microsuspension polymerization method, a soap-free polymerization method, a seed method, a submerged drying method, a transfer method. Phase emulsification methods and combinations thereof are used.
  • the particle size of the obtained reagent measuring latex particles can be made uniform, and the content of the high refractive index compound can be made uniform.
  • the method is preferably used. Furthermore, since the porous structure is easily formed, the method (4) is more preferably used.
  • the hydrophobic solvent used in the production methods (1), (2), (3), and (4) is not particularly limited as long as it is a hydrophobic solvent in which seed particles or a polymerizable compound and a high refractive index compound can be dissolved.
  • the solubility parameter (SP value) is 10 or less, and the boiling point is preferably lower than that of water in order to distill off the hydrophobic solvent later.
  • ethyl acetate (SP value: 9.1, boiling point: 77.1 ° C.), benzene (SP value: 9.2, boiling point: 80.1 ° C.), diisopropyl ether (SP value: 6.9, Boiling point: 69 ° C.), chloroform (SP value: 9.1, boiling point: 61.2 ° C.), and the like.
  • SP value is expressed by the following formula (A) using the ⁇ F and ⁇ v values of various atomic groups by Okitsu described in Toshinao Okitsu, “Adhesion”, Kobunshi Kyokai, Vol. 40, No.
  • solubility parameter ⁇ calculated by In the case of a mixture or copolymer, the solubility parameter ⁇ mix calculated by the following formula (B) is meant.
  • ⁇ F / ⁇ v (A)
  • ⁇ mix ⁇ 1 ⁇ 1 + ⁇ 2 ⁇ 2 +... ⁇ n ⁇ n (B)
  • ⁇ F and ⁇ v represent ⁇ F and molar volume ⁇ v of various atomic groups by Okitsu, respectively.
  • represents a volume fraction or a mole fraction
  • ⁇ 1 + ⁇ 2 +... ⁇ n 1.
  • the hydrophobic solvent is not particularly limited, and in addition to the above, for example, dodecane, decane, isododecane, nonane, n-hexyl ether, octane, isooctane, cyclooctane, diphenyl ether, hexane, propylbenzene, o-dichlorobenzene Ethylbenzene, p-xylene, toluene, diethyl ether, butyl acetate, carbon tetrachloride, methylene chloride, cyclohexane, heptane and the like.
  • the hydrophobic solvent swells the particles and acts as a bulking agent.
  • the polymer constituting the seed particles is not particularly limited as long as it is a polymer of a monofunctional polymerizable compound, and the above-mentioned compounds can be used as the mono-capable polymerizable compound.
  • the monofunctional polymerizable compound is a polymer composed of one or more of styrene, 1-vinylnaphthalene, and benzyl (meth) acrylate. Is preferred.
  • soap-free polymerization As a method for producing seed particles, known methods such as emulsion polymerization, miniemulsion polymerization, suspension polymerization, microsuspension polymerization, soap-free polymerization, and dispersion polymerization can be used. Among these, soap-free polymerization having excellent particle size controllability is preferably used.
  • soap-free polymerization having excellent particle size controllability is preferably used.
  • the polymerizable initiator used for soap-free polymerization water-soluble peroxides, peroxides, and azo compounds are used.
  • the molecular weight of the seed particles is preferably 80 or more and 50,000 or less, for example, as described in the column of “polymer of polymerizable compound”.
  • the particle diameter of the seed particles is preferably 10% to 93% of the particle diameter of the target measurement reagent latex particles. If it exceeds 93%, the required amount of the high refractive index compound or polyfunctional polymerizable compound cannot be contained, and if it is less than 10%, the predetermined amount of high refractive index compound or polyfunctional polymerizable compound cannot be absorbed.
  • the target particle size may not be obtained.
  • the method for preparing the seed particles is not particularly limited, and a known method can be used, but a soap-free emulsion polymerization method using no emulsifier (surfactant) is preferable.
  • the polymerization initiator used in this emulsion polymerization method include potassium persulfate and ammonium persulfate, and potassium persulfate is preferable.
  • ion-exchanged water for example, a monomer and a polymerization initiator are charged in a reaction vessel, and the reaction vessel is purged with nitrogen while stirring, and then reacted at 65 ° C. to 80 ° C. for 12 to 42 hours. be able to.
  • the resulting particles have a low CV value and excellent dispersion stability.
  • the polymerization initiator used in the production methods (1) and (4) is not particularly limited as long as it is a water-insoluble initiator that can be dissolved in the hydrophobic solvent. Specifically, benzoyl peroxide, cumyl peroxyneodecanoate, di-tert-butyl peroxyhexahydroterephthalate, tert-butyl peroxypivalate, 1,1,3,3-tetramethylbutyl Peroxy-2-ethylhexanoate, tert-butyl peroxyisopropyl carbonate, di-2-ethylhexyl peroxydicarbonate, di- ⁇ -cumyl peroxide, tert-butyl peroxybenzoate, tert-Butyl- ⁇ -cumyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, 2,
  • the average particle size of the latex particles for measurement reagent of the present invention may be appropriately selected depending on the specific method of the latex immunoturbidimetric method and the specifications of the measuring instrument to be used, but the preferred lower limit is 0.25 ⁇ m (250 nm), preferably The upper limit is 1 ⁇ m (1000 nm). If the average particle size is 0.25 ⁇ m or less, the optical change due to aggregation may be too small to obtain the sensitivity required for measurement.
  • the “particle diameter” is a value of an average particle diameter of volume statistics measured using a particle size distribution measuring device “LS 13 320” manufactured by Beckman Coulter.
  • a more preferable lower limit is 0.3 ⁇ m (300 nm), and a more preferable upper limit is 0.8 ⁇ m (800 nm).
  • a more preferred lower limit is 0.35 ⁇ m (350 nm), and a still more preferred upper limit is 0.6 ⁇ m (600 nm).
  • the coefficient of variation (CV value) of the particle diameter of the latex particles for measuring reagent of the present invention is not particularly limited, and may be appropriately selected depending on the specific method of the latex immunoturbidimetric method and the specifications of the measuring instrument used. Preferably it is 10% or less. When the CV value exceeds 10%, the production reproducibility at the time of preparing the sensitized latex particles may be lowered, and the performance of the measurement reagent (measurement reproducibility) may be lowered.
  • the coefficient of variation of the particle diameter is calculated by the following (1) for 500 particles obtained from a transmission electron microscope (TEM) image.
  • Formula (1): coefficient of variation of particle diameter (CV value) standard deviation of particle diameter / average particle diameter
  • the specific gravity of the dry powder is preferably less than 1.17 g / cm 3 . Although there is no restriction
  • the specific gravity is more preferably 1.05 to 1.15 g / cm 3 .
  • Specific gravity refers to a value measured using a true specific gravity meter (for example, Accupic II 1340 manufactured by Shimadzu Corporation).
  • the absorbance does not exceed 5% below the value represented by the following formula (1).
  • Formula (1): Absorbance 3.28 ⁇ particle diameter ( ⁇ m) ⁇ 0.28 As shown in FIG. 1, “not lower than 5%” means that the particle diameter is taken on the horizontal axis and the absorbance is taken on the vertical axis, and Equation (1) is a solid line L1 and a lower boundary line 5% below L1. When represented by a chain line L2, it means that the hatched region X below L2 is removed.
  • Sensitized latex particles can be produced by using a latex particle for measurement reagent of the present invention as a carrier and supporting a substance that specifically binds to a test substance.
  • Sensitized latex particles in which the latex particles for measurement reagent of the present invention carry a substance that specifically binds to the test substance are also one aspect of the present invention.
  • the sensitized latex particles are preferably dispersed in a buffer solution.
  • Substances that specifically bind to the test substance include immunoserologic measurement reagents (used in immunological agglutination and agglutination inhibition reactions) and physiologically active substances commonly used as biochemical measurement methods. If there is no particular limitation. Among these, substances that can be used for antigen-antibody reaction are preferable.
  • Examples of substances that can be used in the antigen-antibody reaction in the present invention include proteins, nucleic acids, nuclear proteins, hormones such as estrogen, and antigens or antibodies such as lipids.
  • Examples of the antigen include various antigens, receptors, enzymes and the like. More specifically, examples include ⁇ 2 microglobulin, C-reactive protein (CRP), human fibrinogen, ferritin, rheumatoid factor (RA), ⁇ -fetoprotein (AFP), mycoplasma plasma antigen, HBs antigen and the like.
  • Examples of the antibody include antibodies against various toxins and pathogenic bacteria.
  • anti-streptridine O antibody anti-estrogen antibody, ⁇ 2 microglobulin antibody, syphilis treponema antibody, antibody against syphilis lipid antigen, anti-HBs antibody, anti-HBc antibody, anti-Hbe antibody, anti-PSA antibody, anti-PSA antibody
  • examples include CRP antibodies.
  • the antibody carried on the measurement reagent latex particles for preparing the sensitized latex particles may be, for example, a fragment such as F (ab ') 2 in addition to the immunoglobulin molecule itself.
  • the antibody may be either a polyclonal antibody or a monoclonal antibody.
  • a commonly used method can be used.
  • the terms “antigen-antibody reaction”, “antigen”, “antibody” are used, in addition to the usual meaning, the above-mentioned concept / form capable of aggregating sensitized latex particles by a specific binding reaction Any of these may be included, and should not be interpreted in a limited way.
  • the method for producing a sensitized latex particle by carrying a substance that specifically binds to a test substance on the latex particle for measurement reagent of the present invention is not particularly limited, and conventionally known physical and / or chemical bonds. Can be used.
  • the amount of the substance that specifically binds to the test substance in the sensitized latex particles of the present invention varies depending on the type of substance that specifically binds to the test substance to be used, and an optimal amount is appropriately set experimentally. be able to.
  • the terms “support”, “sensitization”, and “immobilization” have ordinary meanings and are used synonymously.
  • the sensitized latex particles of the present invention obtained by such a method are coated (blocking) with bovine serum albumin or the like, if necessary, and dispersed in an appropriate buffer to be used as a sensitized latex particle dispersion.
  • the sensitized latex particle dispersion can be used as a measurement reagent for immunoturbidimetry.
  • a measurement reagent for immunoturbidimetry in which the sensitized latex particles of the present invention are dispersed in a buffer is also one aspect of the present invention.
  • the measurement reagent for immunoturbidimetry of the present invention can be used as a measurement reagent kit in combination with a diluent (buffer solution), a standard substance and the like used for measurement.
  • the above diluent is used to dilute the measurement sample.
  • any buffer solution of H5.0 to 9.0 can be used. Specific examples include phosphate buffer, glycine buffer, Tris buffer, borate buffer, citrate buffer, and Good's buffer.
  • the immunoturbidimetric measurement reagent or diluent of the present invention may contain various sensitizers in order to improve measurement sensitivity and promote antigen-antibody reaction.
  • the sensitizer include alkylated polysaccharides such as methylcellulose and ethylcellulose, pullulan, and polyvinylpyrrolidone.
  • the immunoturbidimetric measurement reagent or diluent of the present invention is used.
  • Proteins such as albumin (bovine serum albumin, egg albumin), casein, gelatin and the like, degradation products thereof, amino acids or surfactants may be contained.
  • the sensitized latex particle produced by the reaction between the test substance in the measurement sample and the substance that specifically binds to the test substance supported on the sensitized latex particle By optically measuring the degree of aggregation, the amount of the test substance in the measurement sample can be measured.
  • an optical apparatus that can detect scattered light intensity, transmitted light intensity, absorbance, or the like, or an optical apparatus that includes a plurality of these detection methods can be used.
  • any biochemical automatic analyzer widely used in clinical tests can be used.
  • a conventionally known method for example, a turbidimetric method in which the formation of aggregates is regarded as an increase in turbidity, and the formation of aggregates as a change in particle size distribution or average particle size.
  • a turbidimetric method in which the formation of aggregates is regarded as an increase in turbidity, and the formation of aggregates as a change in particle size distribution or average particle size.
  • an integrating sphere turbidity method in which a change in forward scattered light due to the formation of aggregates is measured using an integrating sphere, and the ratio to the transmitted light intensity is compared.
  • a measurement method for example, a speed test (rate assay) in which at least two measurement values are obtained at different time points, and the degree of aggregation is obtained based on the increment (increase rate) of the measurement values between these time points
  • a speed test rate assay
  • Examples include an end point test (end point assay) in which one measurement value is obtained at a certain time point (usually considered as the end point of the reaction), and the degree of aggregation is determined based on this measurement value.
  • the end point test by the turbidimetric method is preferable from the viewpoint of simplicity of measurement and rapidity.
  • the terms “immunoturbidity” and “immunoturbidimetry” are intended to include any of the above concepts and forms and should not be interpreted in a limited manner.
  • the latex particles containing at least a polymer of a polymerizable compound and a compound having a refractive index of 1.60 or more are mainly used.
  • the present invention is not limited to these embodiments.
  • the above-described polymer may have the same composition as the above-described high refractive index compound.
  • seed particles (polymer of a polymerizable compound) and a swelling monomer (a compound having a refractive index of 1.60 or more) included in the seed particles. ) Are of the same composition.
  • Example 1 Regarding the latex particles for measuring reagent of the present invention, first, seed particles were prepared by a soap-free emulsion polymerization method. To the reaction vessel, 1200 mL of ion-exchanged water and 120 mL of 1-vinylnaphthalene as a monomer were added and stirred, and then the inside of the reaction vessel was purged with nitrogen. After the temperature in the reaction vessel reached 70 ° C., 13 mL of 3% (w / v) aqueous potassium persulfate solution was added dropwise. 24 hours after the dropwise addition of the 3% (w / v) aqueous potassium persulfate solution, the reaction was stopped and filtered to obtain a poly-1-vinylnaphthalene-based seed particle suspension.
  • the latex particles for measuring reagent of the present invention were prepared using seed swelling polymerization. 8.0 g of 1-vinylnaphthalene and 0.08 g of benzoyl peroxide were dissolved in 10 g of ethyl acetate and stirred at room temperature for 6 hours to obtain a solution. The solution was mixed with 20 g of the seed particle suspension and stirred at room temperature for 24 hours so that the seed particles contained the solution. Thereafter, the mixture is heated and stirred at 70 ° C. for 10 hours to polymerize 1-vinylnaphthalene, and then heated and stirred at 90 ° C. for 10 hours to dry ethyl acetate in the liquid. Got. The obtained latex particles had an average particle size of 0.398 ⁇ m and a CV value of the particle size of 5.3%.
  • the particle size of latex particles is the average particle size value of the volume statistic value measured using a particle size distribution measuring device “LS 13 320” manufactured by Beckman Coulter, Inc., and the CV value is determined by placing latex particles on the collodion membrane according to a conventional method.
  • the particle image was obtained by taking a particle image with a transmission electron microscope and measuring 500 or more particles observed on the image.
  • Example 2 Seed particles were obtained in the same manner as in Example 1. 8.0 g of 1-vinylnaphthalene, 1.0 g of divinylbenzene and 0.09 g of benzoyl peroxide are dissolved in 10 g of ethyl acetate, stirred at room temperature for 6 hours to form a solution, and then mixed with 10 g of the seed particle suspension. In the same manner as in Example 1, latex particles were obtained by seed swelling polymerization. The obtained latex particles had an average particle size of 0.411 ⁇ m and a CV value of the particle size of 4.5%.
  • Example 3 Seed particles were obtained in the same manner as in Example 1. After dissolving 2.0 g of 6-vinyldinaphthothiophene, 3.0 g of divinylbenzene and 0.05 g of benzoyl peroxide in 10 g of ethyl acetate and stirring at room temperature for 6 hours to obtain a solution, After mixing, latex particles were obtained by seed swelling polymerization in the same manner as in Example 1. The obtained latex particles had an average particle size of 0.420 ⁇ m and a CV value of the particle size of 6.0%.
  • Example 4 Seed particles were obtained in the same manner as in Example 1 except that styrene was used as the monomer. 5.0 g of 9,9-bis (4- (2- (meth) acryloyloxyethoxy) phenyl) fluorene (EA-0200 made by Osaka Gas Chemical Co., Ltd.) and 0.05 g of benzoyl peroxide were dissolved in 10 g of ethyl acetate. The mixture was stirred for 6 hours to obtain a solution, mixed with 50 g of the seed particle suspension, and latex particles were obtained by seed swelling polymerization in the same manner as in Example 1. The obtained latex particles had an average particle size of 0.436 ⁇ m and a CV value of the particle size of 6.1%.
  • Example 5 Seed particles were obtained in the same manner as in Example 1.
  • Example 1 After dissolving 9.0 g of 6-vinyldinaphthothiophene and 0.09 g of benzoyl peroxide in 10 g of ethyl acetate and stirring at room temperature for 6 hours to form a solution, the mixture was mixed with 10 g of the above seed particle suspension.
  • latex particles were obtained by seed swelling polymerization. The obtained latex particles had an average particle size of 0.463 ⁇ m and a CV value of the particle size of 7.2%.
  • Latex particles were obtained in the same manner as in Example 2 except that the particle size was adjusted.
  • the obtained latex particles had an average particle size of 0.301 ⁇ m and a CV value of the particle size of 3.6%.
  • Latex particles were obtained in the same manner as in Example 2 except that the particle size was adjusted.
  • the obtained latex particles had an average particle size of 0.600 ⁇ m and a particle size CV value of 4.3%.
  • [Comparative Example 1] Made using soap-free emulsion polymerization. To the reaction vessel, 1200 mL of ion-exchanged water and 120 mL of 1-vinylnaphthalene as a monomer were added and stirred, and then the inside of the reaction vessel was purged with nitrogen. After the temperature in the reaction vessel reached 70 ° C., 13 mL of 3% (w / v) aqueous potassium persulfate solution was added dropwise. After 24 hours from the dropwise addition of the 3% (w / v) aqueous potassium persulfate solution, the reaction was stopped and filtered to obtain a poly-1-vinylnaphthalene-based latex particle suspension. The obtained latex particles had an average particle size of 0.404 ⁇ m and a CV value of the particle size of 4.9%.
  • This comparative example corresponds to the latex particles described in Patent Documents 3 and 4.
  • Example 2 Seed particles were obtained in the same manner as in Example 1 except that methyl methacrylate was used as the monomer.
  • the obtained latex particles had an average particle size of 0.410 ⁇ m and a CV value of the particle size of 3.9%.
  • This comparative example corresponds to the latex particles described in Patent Document 2.
  • Formula (1): Absorbance 3.28 ⁇ particle diameter ( ⁇ m) ⁇ 0.28
  • the purpose of the present invention is to obtain particles with high sensitivity (high absorbance). Therefore, based on the formula (2), when it is + 20% or more, ⁇ , +20 to ⁇ 5% is ⁇ , and ⁇ 5% or less. Evaluation was performed as x. The results are shown in Tables 1 and 2.
  • the specific gravity of the particles of Example 1 was confirmed to be lower than the particles of Comparative Example 1 and improved in sedimentation, and achieved a practical range of 3 mm or less. Moreover, because of the porous hollow structure, high sensitivity (high absorbance) is achieved without lowering the refractive index of the particles. In Example 2, the effect of lowering the specific gravity by adding a crosslinking agent was confirmed. In the particles of Comparative Example 2, although the specific gravity is reduced and the sedimentation degree is improved, since the particles have a single-hole hollow structure, the refractive index is greatly reduced, and the sensitivity (absorbance) is lower than that of ordinary styrene particles. I can not.
  • the latex particles for measurement reagent of the present invention increase the measurement sensitivity by using a material having a high refractive index, and have a porous hollow structure, thereby reducing the specific gravity and suppressing the sedimentation of the particles. It was confirmed that high-sensitivity measurement is possible even when measuring a measurement sample with a low concentration of the test substance.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

粒子径の変動係数が10%以下、平均粒子径が250~1000nmの測定試薬用ラテックス粒子であって、上記ラテックス粒子は、屈折率1.60以上の化合物を20重量%以上含み、上記ラテックス粒子を超純水に分散させて得られた固形分濃度1重量%の分散液を胴内径10.8mmの円筒状の10mlメスシリンダーに入れて10日間静置したときの上澄み液の深さが5mm以内となる、測定試薬用ラテックス粒子に関する。係る粒子によれば、被検物質の濃度が希薄な測定試料を測定する場合であっても高感度な測定を行うことができる。

Description

測定試薬用ラテックス粒子、感作ラテックス粒子及び免疫比濁法用測定試薬
 本発明は、被検物質の濃度が希薄な測定試料を測定する場合であっても高感度な測定を可能にする測定試薬用ラテックス粒子に関する。また本発明は測定試薬用ラテックス粒子を用いた感作ラテックス粒子及び免疫比濁法用測定試薬にも関する。
 臨床検査をはじめとする種々の分野において、測定試薬中の微量な被検物質を定量する方法として、抗原抗体反応を利用した免疫学的測定法が広く使用されている。なかでもラテックス粒子を抗原又は抗体の担体として用いたラテックス免疫比濁法は、操作が簡便で、かつ、測定に要する時間が短い。そこで、測定方法としてラテックス免疫比濁法を採用する微量被検物質の種類が更に増加している。
 ラテックス免疫比濁法による測定試料中の抗原又は抗体等の被検物質の定量は、抗原又は抗体を担持したラテックス粒子(以下、「感作ラテックス粒子」ともいう。)の凝集により生ずる吸光度の変化を光学的に検出することにより行われる。この吸光度の変化は、感作ラテックス粒子の凝集によって形成される凝集塊に由来する見かけの粒子径の変化に基づくものである。
 従来、ラテックス免疫比濁法において担体として用いられるラテックス粒子には、抗原又は抗体の感作(固定化)が容易であり、比較的安価で、かつ重合反応も制御しやすいことから、ポリスチレンを主成分とするポリスチレン系ラテックス粒子が用いられてきた(特許文献1等)。しかし、ポリスチレン系ラテックス粒子をラテックス免疫比濁法における担体として用いた場合、測定試料中の被検物質の濃度が希薄であると、形成される凝集塊の数が少なくなり、また、凝集塊の見かけの粒子径もラテックス粒子数に対する被検物質の濃度が適当な範囲である場合に比べ小さくなることから、十分な感度が得られないという問題があった。
国際公開第2003-005031号 特開2008-215816号 特開2001-296299号 国際公開第2012-133771号
 感度を上げる方法としては、大きく二つある。(1)一つ目は、ラテックス粒子の粒径を大きくすることである。粒径が大きいと、吸光係数が大きくなるため、希薄濃度でも、凝集の変化の差が検出しやすくなる。(2)二つ目は、ラテックス粒子の屈折率を上げ、結果として、吸光係数を上げることである。同じ粒径であれば、屈折率が高いラテックス粒子の方が、吸光係数が高いため、より希薄な環境でも検出感度を維持できるためである。
 しかしながら、(1)については、ラテックス粒子の粒径が大きくなりすぎると、ラテックス粒子が測定中に沈降したり、保存中に保存便の底に沈むため、測定誤差を拡大したり、貯蔵安定性を著しく損なうという問題があった。
 これを改善するため、特許文献2には、単孔中空構造を有するラテックス粒子を用いる方法が提案されているが、沈降問題は解決するも、単孔中空構造由来の吸光係数の低下が、検出の感度を下げるため、実質的な感度向上は達成できない。(2)については、例えば、特許文献3、4に、屈折率が高い材料で構成されたラテックス粒子を用いることで、感度を向上する方法が提案されている。しかしながら、屈折率の高い材料は一般的に比重が大きく、粒子の重量が重くなるため、粒径300nm未満でしか試薬として実用化できず、感度向上に限界があった。
 本発明は、被検物質の濃度が希薄な測定試料を測定する場合であっても高感度な測定を可能にする測定試薬用ラテックス粒子を提供することを目的とする。
 本発明者らは鋭意検討した結果、屈折率が1.6以上の化合物を含有したラテックス粒子の比重を下げることにより、粒子の沈降が抑制されることを知見した。この知見に基づき、従来試薬として実用化できなかった大粒径域の粒子を使用することで、吸光度を大きく向上させ、被検物質の濃度が希薄な測定試料を測定する場合であっても高感度な測定を可能にする測定試薬用ラテックス粒子が得られることを見出し、本発明を完成するに至った。
 本発明は以下の内容に関する。
[1]粒子径の変動係数が10%以下、平均粒子径が250~1000nmの測定試薬用ラテックス粒子であって、上記ラテックス粒子は、屈折率1.60以上の化合物を20重量%以上含み、上記ラテックス粒子を超純水に分散させて得られた固形分濃度1重量%の分散液を胴内径10.8mmの円筒状の10mlメスシリンダーに入れて10日間静置したときの上澄み液の深さが5mm以内となる、測定試薬用ラテックス粒子。
[2]上記屈折率1.60以上の化合物が、フルオレン骨格、ジナフトチオフェン骨格、ナフタレン骨格、アントラセン骨格、フェナントレン骨格、カルバゾール骨格からなる群から選ばれる少なくとも1つの骨格を有する化合物を含む、[1]記載の測定試薬用ラテックス粒子。
[3]上記屈折率1.60以上の化合物が、重合性化合物である、[2]記載の測定試薬用ラテックス粒子。
[4]上記屈折率1.60以上の化合物が、重合性化合物の重合体である、[1]~[3]のいずれか1つに記載の測定試薬用ラテックス粒子。
[5]上記ラテックス粒子が、フェニル骨格、ナフタレン骨格、フルオレン骨格、ジナフトチオフェン骨格、アントラセン骨格、フェナントレン骨格及びカルバゾール骨格からなる群から選ばれる少なくとも1つの骨格を有する多官能重合性化合物を10重量%以上含む、[1]~[4]のいずれか1つに記載の測定試薬用ラテックス粒子。
[6]上記ラテックス粒子において、乾燥粉体の比重が1.17g/cm未満である、[1]~[5]のいずれか1つに記載の測定試薬用ラテックス粒子。
[7]上記ラテックス粒子において、吸光度が下記式(1)で示す値を、5%を越えて下回らない、[1]から[6]のいずれか1項に記載の測定試薬用ラテックス粒子。
 式(1):吸光度=3.28×粒子径(μm)-0.28
[8][1]から[7]のいずれか1つに記載の測定試験用ラテックス粒子に、被検物質と特異的に結合する物質を担持させた、感作ラテックス粒子。
[9][8]に記載の感作ラテックス粒子が緩衝液中に分散している、免疫比濁法用測定試薬。
 本発明によれば、被検物質の濃度が希薄な測定試料であっても高感度な測定を可能にする測定試薬用ラテックス粒子を提供することができる。本発明の測定試薬用ラテックス粒子は、従来のラテックス粒子に対して、比重を低下させることで沈降を抑制し、より大粒径の粒子の使用を可能にすることで、希薄濃度域における被検物質の測定感度を向上させることができる。
図1は、吸光度の意義を表す図である。
 以下に、実施形態を挙げて本発明の説明を行うが、本発明は以下の実施形態に限定されるものではない。
[測定試薬用ラテックス粒子]
 本発明は、粒子径の変動係数(CV値)が10%以下、平均粒子径が250~1000nmの、屈折率1.60以上の化合物を20重量%以上含む測定試薬用ラテックス粒子であり、測定試薬用ラテックス粒子を純水に分散させて得られたラテックス粒子濃度1.0重量%の分散液を、胴内径10.8mmの円筒状の10mlメスシリンダーに入れて室温下に10日間静置したときの上澄み液の深さが5mm以内となる測定試薬用ラテックス粒子に関する。なお、「上澄み液の深さが5mm以内」とは、上澄み液の深さが0mm~5mmであることを意味し、測定試薬用ラテックス粒子の実用範囲の沈降度の下限値を記載したものである。また、「上澄み液」とは、濁度が元の値を100としたとき5%未満になった状態をいい、例えばピペットにて採取した上澄み液を、分光光度計(日立製U-3900)を用いて測定することで確認することが出来る。「超純水」とは、非抵抗値18.2MΩ・cm、TOC値5ppb以下の水をいう。「超純水」は、例えば、水道水直結型超純水装置 Milli-Q Integral MT 機器分析タイプ(メルク社製)によって得ることができる。
[粒子]
[ポリマーラテックス]
 本発明の試薬測定用ラテックス粒子の一態様としては、重合性化合物の重合体(以下、「重合体」とも記載する。)と、屈折率1.60以上の化合物(以下、「高屈折率化合物」とも記載する)と、を少なくとも含む、ラテックス粒子が挙げられる。
[重合性化合物の重合体]
 本発明の試薬測定用ラテックス粒子に含まれる重合体は、一種または二種以上の重合性化合物の重合体であり、上記重合性化合物を含む組成物に光照射や加熱等の重合処理を施すことにより得ることができる。
 重合性化合物とは、1分子中に1つ以上の重合性官能基を含む化合物であり、重合性官能基を1分子中に1つ含む単官能重合性化合物であっても、重合性官能基を1分子中に2つ以上含む多官能重合性化合物であってもよい。また、重合性化合物は、モノマーであっても、オリゴマーやプレポリマー等の多量体であってもよい。
 上記重合性化合物は、一種単独であってもよく、二種以上の任意の割合の組み合わせでもよい。また、二種以上の重合性化合物を用いる場合、二種以上の重合性化合物の組み合わせは、二種以上の単官能重合性化合物の組み合わせ、二種以上の多官能重合性化合物の組み合わせ、一種以上の単官能重合性化合物と一種以上の多官能重合性化合物との組み合わせ、のいずれであってもよい。
 これらの重合体の分子量は、例えば80以上50,000以下であるが、特に限定されるものではない。尚、本発明及び本明細書において分子量とは、ゲル浸透クロマトグラフィー(GPC)によりポリスチレン換算で測定される重量平均分子量をいうものとする。後述する、重量平均分子量は、下記測定により測定された値である。
  GPC装置:GPCシステム(島津製作所社製)
  カラム:K-804L(shodex社製)
  溶離液:テトラヒドロフラン(THF)
[重合性官能基]
 重合性官能基は、ラジカル重合性官能基、イオン重合性官能基、配位重合性官能基であってもよく、ラジカル重合性官能基が好ましい。重合反応の反応性の観点からは、エチレン性不飽和結合含有基、エポキシ基、オキセタン基、メチロール基等の重合性基を挙げることができ、エチレン性不飽和結合含有基がより好ましい。エチレン性不飽和結合含有基としては、(メタ)アクリロイルオキシ基、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基を挙げることができ、(メタ)アクリロイル基、ビニル基、スチリル基がより好ましい。なお、本発明及び本明細書において、「(メタ)アクリロイル基」との記載は、アクリロイル基、とメタクリロイル基の少なくともいずれかの意味で用いるものとする。「(メタ)アクリロイルオキシ基」、「(メタ)アクリレート」、「(メタ)アクリル」等も同様である。多官能重合性化合部については、化合物に含まれる重合性基の数は1分子中に2つ以上である。
 上記エチレン性不飽和結合含有基を有する単官能重合性化合物の具体例としては、特に限定されず、例えば、ビニル化合物として、スチレン、α-メチルスチレン、クロルスチレン等のスチレン系単量体;1-ビニルナフタレン、2-ビニルナフタレン等のナフタレン系化合物;2-ビニルアントラセン、9-ビニルアントラセン等のアントラセニル化合物;3-ビニルフェナントレン、9-ビニルフェナントレン等のフェナントレン化合物;6-ビニルジナフトチオフェン、6-ビニルエーテルジナフトチオフェン等のジナフトチオフェン系化合物;9-ビニルカルバゾール等のカルバゾール化合物;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル化合物;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル化合物;塩化ビニル、フッ化ビニル、等のハロゲン含有単量体;(メタ)アクリル化合物として、(メタ)アクリル酸ベンジル等の芳香族(メタ)アクリレート化合物;2-(1-ナフチル)(メタ)アクリル酸メチル、(メタ)アクリル酸フェナンチル、6-(メタ)アクリロイルオキシメチルジナフトチオフェン、6-(メタ)アクリロイルオキシエチルジナフトチオフェン等の多環芳香族(メタ)アクリレート化合物;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート化合物;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート化合物;(メタ)アクリロニトリル等のニトリル含有単量体;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート等のハロゲン含有(メタ)アクリレート化合物;α-オレフィン化合物として、ジイソブチレン、イソブチレン、リニアレン、エチレン、プロピレン等のオレフィン化合物;共役ジエン化合物として、イソプレン、ブタジエン等が挙げられる。
 上記エチレン性不飽和結合含有基を有する多官能重合性化合物の具体例としては、特に限定されず、例えば、ビニル化合物として、ジビニルベンゼン、2,12-ジビニルジナフトチオフェン、3,11-ジビニルジナフトチオフェン、5,9-ジビニルジナフトチオフェン、2,12-ジビニルオキシメチルジナフトチオフェン、3,11-ジビニルオキシジナフトチオフェン、1,4-ジビニロキシブタン、ジビニルスルホン等のビニル系単量体;(メタ)アクリル化合物として、2,12-ジ(メタ)アクリロイルオキシメチルジナフトチオフェン、3,11-ジ(メタ)アクリロイルオキシメチルジナフトチオフェン、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、9,9-ビス(4-(メタ)アクリロイルオキシフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシメトキシフェニル)フルオレン、9,9-ビス(4-(2-(メタ)アクリロイルオキシエトキシ)フェニル)フルオレン;アリル化合物として、トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、9,9’-ビス(4-アリルオキシフェニル)フルオレン;シリコーン化合物として、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソプロピルトリメトキシシラン、イソブチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、n-ヘキシルトリメトキシシラン、n-オクチルトリエトキシシラン、n-デシルトリメトキシシラン、フェニルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジイソプロピルジメトキシシラン、トリメトキシシリルスチレン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、1,3-ジビニルテトラメチルジシロキサン、メチルフェニルジメトキシシラン、ジフェニルジメトキシシラン等のシランアルコキシド化合物;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ジメトキシメチルビニルシシラン、ジメトキシエチルビニルシラン、ジエトキシメチルビニルシラン、ジエトキシエチルビニルシラン、エチルメチルジビニルシラン、メチルビニルジメトキシシラン、エチルビニルジメトキシシラン、メチルビニルジエトキシシラン、エチルビニルジエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン等の重合性二重結合含有シランアルコキシド;デカメチルシクロペンタシロキサン等の環状シロキサン;片末端シリコーンオイル、両末端シリコーンオイル、側鎖型シリコーンオイル等の変性(反応性)シリコーンオイル;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体等が挙げられる。
 これらの中でも、屈折率を低下させないことから、スチレン、ジビニルベンゼン等の芳香族ビニル化合物;ビニルナフタレン、ビニルアントラセン、ビニルフェナントレン、ビニルジナフトチオフェン、ビニルカルバゾール等の多環芳香族ビニル化合物;(メタ)アクリル酸ベンジル、ジ(メタ)アクリル酸フルオレン、(メタ)アクリル酸ナフチル、(メタ)アクリル酸フェナンチル等の芳香族又は多環芳香族骨格を有する、(メタ)アクリル酸エステルが挙げられる。
 上記芳香族ビニル化合物及び多環芳香族ビニル化合物において、芳香族環の置換基としてはアルキル基、ヒドロキシ基、カルボキシル基、ハロゲン基(例えば、フッ素基、塩素基、臭素基、ヨウ素基)等が挙げられる。上記アルキル基としては、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、1,1-ジメチル-n-プロピル基、1,2-ジメチル-n-プロピル基、2,2-ジメチル-n-プロピル基、1-エチル-n-プロピル基、n-ヘキシル基、1-メチル-n-ペンチル基、2-メチル-n-ペンチル基、3-メチル-n-ペンチル基、4-メチル-n-ペンチル基、1,1-ジメチル-n-ブチル基、1,2-ジメチル-n-ブチル基、1,3-ジメチル-n-ブチル基、2,2-ジメチル-n-ブチル基、2,3-ジメチル-n-ブチル基、3,3-ジメチル-n-ブチル基、1-エチル-n-ブチル基、2-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、1,2,2-トリメチル-n-プロピル基、1-エチル-1-メチル-n-プロピル基及び1-エチル-2-メチル-n-プロピル基等が挙げられる。また上記アルキル基として環状アルキル基を用いることもでき、例えば炭素原子数1~10の環状アルキル基としては、シクロプロピル基、シクロブチル基、1-メチル-シクロプロピル基、2-メチル-シクロプロピル基、シクロペンチル基、1-メチル-シクロブチル基、2-メチル-シクロブチル基、3-メチル-シクロブチル基、1,2-ジメチル-シクロプロピル基、2,3-ジメチル-シクロプロピル基、1-エチル-シクロプロピル基、2-エチル-シクロプロピル基、シクロヘキシル基、1-メチル-シクロペンチル基、2-メチル-シクロペンチル基、3-メチル-シクロペンチル基、1-エチル-シクロブチル基、2-エチル-シクロブチル基、3-エチル-シクロブチル基、1,2-ジメチル-シクロブチル基、1,3-ジメチル-シクロブチル基、2,2-ジメチル-シクロブチル基、2,3-ジメチル-シクロブチル基、2,4-ジメチル-シクロブチル基、3,3-ジメチル-シクロブチル基、1-n-プロピル-シクロプロピル基、2-n-プロピル-シクロプロピル基、1-i-プロピル-シクロプロピル基、2-i-プロピル-シクロプロピル基、1,2,2-トリメチル-シクロプロピル基、1,2,3-トリメチル-シクロプロピル基、2,2,3-トリメチル-シクロプロピル基、1-エチル-2-メチル-シクロプロピル基、2-エチル-1-メチル-シクロプロピル基、2-エチル-2-メチル-シクロプロピル基及び2-エチル-3-メチル-シクロプロピル基等が挙げられる。
[屈折率1.60以上の化合物]
 本発明の試薬測定用ラテックス粒子は、高屈折率化合物(屈折率1.60以上の化合物)を含む。高屈折率化合物としては特に限定されないが、フルオレン骨格、ジナフトチオフェン骨格、ナフタレン骨格、アントラセン骨格、フェナントレン骨格、ピレン骨格、カルバゾール骨格からなる群から選ばれる少なくとも1つの骨格を有する化合物が好ましい。好ましい骨格の組み合わせとしては、フルオレン骨格、ジナフトチオフェン骨格、ナフタレン骨格が挙げられる。
 高屈折率化合物の具体例としては、フルオレン、ジナフトチオフェン、ナフタレン、アントラセン、フェナントレン、カルバゾール等が挙げられる。中でも、フルオレン、ジナフトチオフェン、ナフタレンが好ましい。
 高屈折率化合物が重合性官能基を有する重合性化合物の場合、単独重合による重合体を形成してもよく、また、他の重合性化合物と共重合された重合体を形成してもよい。前記重合性化合物は具体例としては9,9-ビス(4-(メタ)アクリロイルオキシフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシメトキシフェニル)フルオレン、9,9-ビス(4-(2-(メタ)アクリロイルオキシエトキシ)フェニル)フルオレン、6-ビニルジナフトチオフェン、6-ビニルエーテルジナフトチオフェン、2,12-ジビニルジナフトチオフェン、3,11-ジビニルジナフトチオフェン、5,9-ジビニルジナフトチオフェン、2,12-ジビニルオキシメチルジナフトチオフェン、3,11-ジビニルオキシジナフトチオフェン、2,12-ジ(メタ)アクリロイルオキシメチルジナフトチオフェン、3,11-ジ(メタ)アクリロイルオキシメチルジナフトチオフェン、1―ビニルナフタレン、2-ビニルナフタレン、ジビニルナフタレン、ナフチルメタクリレート等の、ナフチル化合物;2-ビニルアントラセン、9-ビニルアントラセン等のアントラセニル化合物;ビニルフェナントレン;ビニルピレン、N-ビニルカルバゾールが挙げられる。中でも、フルオレン骨格、ジナフトチオフェン骨格、ナフタレン骨格からなる群から選ばれる少なくとも一つの骨格を有する化合物が好ましい。
[高屈折率化合物含有量]
 高屈折率化合物は、試薬測定用ラテックス中に20重量%以上含まれることが好ましい。20重量%未満であると、後述する、試薬測定用ラテックスの中空化由来の吸光度の低下を補うことができず、感度が低下することがある。より好ましくは、30重量%以上、さらに好ましくは50重量%以上である。なお、上限に特に制限はないが、96重量%以下である。
[多孔中空構造]
 本発明の試薬測定用ラテックス粒子は、多孔中空構造を有している。多孔中空構造を有することで、多孔中空構造ではないラテックス粒子に対し、比重が軽い。
 多孔とは、粒子断面を観察したときに、中空構造が2個以上あるものを言い、より好ましくは5個以上、更に好ましくは10個以上の中空構造を有する。なお、中空構造は独孔でも良く、連孔でも良い。多孔中空構造を有する粒子は、沈降を抑制することができ、試薬再現性を高められる上、単孔構造に比べ粒子の屈折率低下を抑制し、高感度な測定を可能にする。上記多孔中空構造の孔の直径は100nm以下が好ましく、より好ましくは50nm以下、更に好ましくは10nm以下が好ましい。
 孔の態様としては、ラテックス粒子の表面に形成された凹凸形状の他に、ラテックス粒子を形成するポリマー鎖間の空隙や、前者と後者を共に備える態様が挙げられる。
 試薬測定用ラテックス粒子の多孔中空構造の確認方法としては、SEM(走査型電子顕微鏡)やTEM(透過型電子顕微鏡)を用いた観察方法が挙げられる。孔が小さく観察が困難な場合、例えば上記に記載の乾燥粉体の比重を測定することで多孔中空構造を確認することができる。また、連孔の場合、粒子の比表面積が大きくなることから、例えばカンタクローム・インスツルメンツ社製「NOVA4200e」等を用いたBET比表面積を測定することで多孔中空構造を確認することができる。この場合、BET比表面積は理論値6/ρD(ρ:密度、D:粒径)よりも大きくなる。好ましくは1.5倍以上、より好ましくは2倍以上、更に好ましくは5倍以上である。
 その他の多孔中空構造の確認方法としては、多孔中空構造に起因して表面積が大きいという試薬測定用ラテックス粒子の特徴を生かした方法が挙げられる。具体的には、まず、多孔中空構造を有するラテックス粒子を所定の金属系染料に含漬させた後、このラテックス粒子を焼成して得られる金属残重量を測定する。また上述のラテックス粒子と同様の平均粒子径等を有する、多孔構造ではないラテックス粒子についても同様に金属残重量を測定する。このようにして得られた各ラテックス粒子の金属残重量差から多孔中空構造の存在が確認できる。
 また、試薬測定用ラテックス粒子の多孔中空構造部分を染色した後に、ラテックス粒子の断面観察を行う方法が挙げられる。具体的には、試薬測定用ラテックス粒子を所定の染料に含漬させ、多孔中空構造の孔部分を染色した後に、エポキシ樹脂に埋包し、クロスセクションポリッシャー(JEOL社製IB-19520CCP)で粒子断面を出した後、高感度YAG反射電子検出器を取り付けたFE-SEM(S-4800、株式会社日立ハイテクノロジー社製)により観察することができる。
 一般に、粒子径が小さいラテックス粒子が、溶媒の入った容器の底に沈降もしくは凝集した場合、ラテックス粒子同士が密に充填され合うため、いくら溶媒を撹拌してもラテックス粒子を再分散させることは難しい。しかし、ポリマー鎖間の空隙によりラテックス粒子に多孔中空構造が形成されている場合、ラテックス粒子が毛糸球状となることに起因して、ラテックス粒子同士が緩やかに充填され合う。そのため、多孔中空構造を有するラテックス粒子が溶媒の入った容器の底に沈降もしくは凝集した場合であっても、溶媒を撹拌することにより、ラテックス粒子を容易に再分散させることができる。
[架橋材]
 本発明の試薬測定用ラテックス粒子は、多孔構造を維持しやすくなるため、架橋材を含むことが好ましい。上記架橋材としては多官能重合性化合物が好ましい。
 上記多官能重合性化合物は特に限定されず、上述のものが使用可能であるが、屈折率を低下させないことから、芳香族骨格若しくは多環芳香族骨格を有するものが好ましい。中でもフェニル骨格、ナフタレン骨格、フルオレン骨格、ジナフトチオフェン骨格、アントラセン骨格、フェナントレン骨格、ピレン骨格、カルバゾール骨格からなる群から選ばれる少なくとも1つの骨格を有するものがより好ましい。
 上記多官能重合性化合物としては、ジビニルベンゼン、ジビニルナフタレン、9,9-ビス(4-(メタ)アクリロイルオキシフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシメトキシフェニル)フルオレン、9,9-ビス(4-(2-(メタ)アクリロイルオキシエトキシ)フェニル)フルオレン、2,12-ジビニルジナフトチオフェン、3,11-ジビニルジナフトチオフェン、5,9-ジビニルジナフトチオフェン、2,12-ジビニルオキシメチルジナフトチオフェン、3,11-ジビニルオキシジナフトチオフェン、2,12-ジ(メタ)アクリロイルオキシメチルジナフトチオフェン、3,11-ジ(メタ)アクリロイルオキシメチルジナフトチオフェン等が挙げられる。
 上記ラテックス粒子は多官能重合性化合物による単独重合体もしくは他の重合性単量体との共重合体を含有することが好ましい。上記他の重合性単量体との共重合体の場合、多孔構造をより維持しやすくする観点から、多官能重合性化合物は5重量%以上であることが好ましく、10重量%以上であることがより好ましい。
[製造方法]
 本発明の試薬測定用ラテックス粒子の製造方法は特に限定されず、乳化重合法、ミニエマルション重合法、懸濁重合法、マイクロサスペンション重合法、ソープフリー重合法、シード法、液中乾燥法、転相乳化法、および、これらの組み合わせが用いられる。
 より具体的に、高屈折率化合物を20重量%以上含有させる好ましい方法としては、
(1)重合性化合物、高屈折率化合物、重合開始剤と、重合性化合物、高屈折率化合物の双方が溶解可能な疎水性溶媒を混合し重合性化合物溶液を調整する工程;前記重合性化合物溶液を、界面活性剤や分散安定剤が溶解した水溶液に添加後、乳化、転送乳化、懸濁等により液滴を形成する工程;加熱等により、重合性化合物を重合する工程;疎水性溶媒を留去する工程;フィルトレーション、分級等で、粒径を揃える工程を含む方法[乳化、懸濁重合法]、
(2)重合体と高屈折率化合物とを双方溶解可能な疎水性溶媒に溶解させ、疎水性溶液を調製する工程;前記疎水性溶液を界面活性剤や分散安定剤が溶解した水溶液中にて、液滴を形成する工程;疎水性溶媒を留去する工程;フィルトレーション、分級等で粒径を揃える工程を含む方法[液中乾燥法]、
(3)界面活性剤及び/又は分散安定剤が溶解した水に、テンプレートとなる単官能重合性単量体の重合体からなる粒子(以下、「シード粒子」とも記載する)を分散させる工程;シード粒子と高屈折率化合物の双方を可溶化可能な疎水性溶媒に高屈折率化合物を溶解させた疎水性溶液を添加する工程;前記粒子内に、疎水性溶媒と共に高屈折率化合物を吸収させる工程;疎水性溶媒を留去する工程を含む方法[シード膨潤法]および
(4)界面活性剤及び/又は分散安定剤が溶解した水に、シード粒子を分散させる工程;シード粒子と高屈折率化合物の双方が溶解可能な疎水性溶媒に高屈折率化合物、重合性化合物、重合開始剤を溶解させた疎水性溶液を添加する工程;シード粒子内に、疎水性溶媒と共に高屈折率化合物、重合性化合物、重合開始剤を吸収させる工程;加熱等により、重合性化合物を重合する工程:疎水性溶媒を留去する工程を含む方法[シード膨潤重合法]が例示される。
 シード粒子に、粒径の揃った粒子を用いることで、得られる試薬測定用ラテックス粒子の粒径が揃えられること、高屈折率化合物の含有量が均一にできることから、(3)、(4)の方法が好適に用いられる。更に、多孔構造が容易に形成しやすいことから、(4)の方法がさらに好適にもちいられる。
[疎水性溶媒]
 前記(1)(2)(3)(4)の製法で用いられる、疎水性溶媒としては、シード粒子または重合性化合物と高屈折率化合物の溶解可能な疎水性溶媒であれば、特に限定されないが、溶解性パラメータ(SP値)が10以下であり、後に疎水性溶媒を留去するために、沸点が水より低いことが好ましい。
 具体的には、酢酸エチル(SP値:9.1、沸点:77.1℃)、ベンゼン(SP値:9.2、沸点:80.1℃)、ジイソプロピルエーテル(SP値:6.9、沸点:69℃)、クロロホルム(SP値:9.1、沸点:61.2℃)等が挙げられる。これらは、単独で用いてもよく、2種類以上を併用してもよい。なかでも、酢酸エチルが好ましい。
 SP値とは、沖津俊直、「接着」、高分子刊行会、40巻8号(1996)p342-350に記載された、沖津による各種原子団のΔF、Δv値を用い、下記式(A)により算出した溶解性パラメーターδを意味する。また、混合物、共重合体の場合は、下記式(B)により算出した溶解性パラメーターδmixを意味する。
 δ=ΣΔF/ΣΔv  (A)
 δmix=φδ+φδ+・・・φδ  (B)
 式中、ΔF、Δvは、それぞれ、沖津による各種原子団のΔF、モル容積Δvを表す。φは、容積分率又はモル分率を表し、φ+φ+・・・φ=1である。
 上記疎水性溶媒としては特に限定されず、上述の他にも、例えば、ドデカン、デカン、イソドデカン、ノナン、n-ヘキシルエーテル、オクタン、イソオクタン、シクロオクタン、ジフェニルエーテル、ヘキサン、プロピルベンゼン、oージクロロベンゼン、エチルベンゼン、p-キシレン、トルエン、ジエチルエーテル、酢酸ブチル、四塩化炭素、塩化メチレン、シクロヘキサン、ヘプタン等が挙げられる。上記疎水性溶媒は粒子を膨潤させ、嵩増し剤の役割をする。重合には関与せず、重合後に液中乾燥法等で除去しても良い。この場合は、沸点が100℃以下のシクロヘキサン等が好ましい。また、除去せずそのまま粒子内に留める場合、水への溶解が低く、比重が軽いデカンやヘプタン等が好ましい。
[シード粒子]
 前記シード粒子を構成する重合体としては単官能重合性化合物の重合体であれば特に限定されず、単可能重合性化合物としては、前述の化合物が使用可能である。ラテックス粒子の屈折率を可能な限り維持する観点から,前記単官能重合性化合物としては、スチレン、1-ビニルナフタレン、(メタ)アクリル酸ベンジルの1種または2種以上からなる重合体であることが好ましい。
 シード粒子の製造方法としては、乳化重合、ミニエマルション重合、懸濁重合、マイクロサスペンジョン重合、ソープフリー重合、分散重合等、公知の方法が使用可能である。中でも、粒径制御性に優れる、ソープフリー重合が好適に用いられる。
 ソープフリー重合に用いられる、重合性開始剤としては、水溶性の過硫酸化物、過酸化物、アゾ化合物が用いられる。具体的には、過硫酸カリウム、過硫酸アンモニウム、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2'-アゾビス(2-メチルプロピオンアミジン)、2,2'-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]、2,2'-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、4,4'-アゾビス(4-シアノ吉草酸)、キュメンヒドロパ-オキサイド、t-ブチルヒドロパ-オキサイドが例示される。
 なお、シード粒子の分子量は、上述の「重合性化合物の重合体」の欄で記載されたと同様に、例えば80以上50,000以下であることが好ましい。
 シード粒子の粒径としては、目的とする測定試薬ラテックス粒子の粒径の10%~93%が好ましい。93%より大きくなると、必要量の高屈折率化合物や多官能重合性化合物を含有させることができず、10%より小さくなると、所定量の高屈折率化合物や多官能重合性化合物を吸収できず、狙いの粒径が得られなかったりする。
 上記シード粒子を調製する方法としては特に限定されず、公知の方法を用いることができるが、乳化剤(界面活性剤)を使用しないソープフリー乳化重合法が好ましい。この乳化重合法に用いられる重合開始剤としては過硫酸カリウム、過硫酸アンモニウムなどが挙げられるが、好ましくは過硫酸カリウムが良い。本発明では、反応容器にイオン交換水、例えば、モノマー、重合開始剤を仕込み、攪拌しながら反応容器内を窒素置換した後、65℃~80℃で12~42時間反応を行うことにより製造することができる。得られた粒子は低いCV値、優れた分散安定性を有する。
[シード重合の開始剤]
 前記(1)及び(4)の製造方法に用いられる重合開始剤としては、前記疎水性溶媒に溶解可能な非水溶性の開始剤であれば特に限定されない。具体的には、過酸化ベンゾイル、クミルパーオキシネオデカノエート、ジ-tert-ブチルパ-オキシヘキサハイドロテレフタレ-ト、tert-ブチルパ-オキシピバレ-ト、1,1,3,3-テトラメチルブチルパ-オキシ2-エチルヘキサノエイト、tert-ブチルパ-オキシイソプロピルカ-ボネ-ト、ジ-2-エチルヘキシルパ-オキシジカ-ボネ-ト、ジ-α-クミルパ-オキサイド、tert-ブチルパ-オキシベンゾエート、tert-ブチル-α-クミルパ-オキサイド、ジ-tert-ブチルパ-オキサイド、2,5-ジメチル-2,5-ジ(tert-ブチルパ-オキシ)ヘキサン、2,5-ジメチル-2,5-ジ(tert-ブチルパ-オキシ)ヘキシン-3、4,4-ジ-tert-ブチルパ-オキシ吉草酸n-ブチルエステル、1,1-ビス(tert-ブチルパ-オキシ)シクロヘキサン、tert-ブチルパ-オキシネオデカノエ-ト、t-ブチルパーオキシジエチルアセテート、ビス(3,5,5-トリメチルヘキサノイル)パ-オキサイド、tert-ブチルパ-オキシ-3,5,5-トリメチルヘキサノエ-ト、tert-ブチルパ-オキシ2-エチルヘキシルカ-ボネ-ト、tert-ブチルパーオキシネオヘプタノエート、2,2-ジ-tert-ブチルパ-オキシブタン、ビス(tert-ブチルジオキシイソプロピル)ベンゼン、ジ-(4-tert-ブチルシクロヘキシル)パ-オキシジカ-ボネ-ト、過酸化ジベンゾイル、ラウロイルパ-オキサイド、メチルエチルケトンパーオキサイド等の過酸化物、2,2'-アゾビス(イソブチロニトリル)、2,2'-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2'-アゾビス(2,4-ジメチルバレロニトリル)、2,2'-アゾビス(イソ酪酸メチル)、2,2'-アゾビス(2-メチルブチロニトリル)、1,1'-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2'-アゾビス(2-メチルプロピオン酸)ジメチル等のアゾ系化合物が挙げられるが、好ましくは過酸化ベンゾイルが良い。
[測定試薬用ラテックス粒子の平均粒子径等]
 本発明の測定試薬用ラテックス粒子の平均粒子径は、ラテックス免疫比濁法の具体的な方法や用いる測定機器の仕様等によって適宜選択すればよいが、好ましい下限は0.25μm(250nm)、好ましい上限は1μm(1000nm)である。
 平均粒子径が0.25μm以下であると、凝集による光学的変化量が小さすぎて測定に必要な感度が得られないことがある。平均粒子径が1μmを超えると、測定試薬中の被検物質が高濃度であるときに感作ラテックス粒子の凝集による光学的変化量が光学的測定機器の測定可能領域を超えてしまい、被検物質の量に応じた光学的変化量が得られないことがある。なお、「粒子径」は、ベックマンコールター社製粒度分布測定装置「LS 13 320」を用いて測定した体積統計値の平均粒子径の値である。より好ましい下限は0.3μm(300nm)、より好ましい上限は0.8μm(800nm)である。よりさらに好ましい下限は0.35μm(350nm)、よりさらに好ましい上限は0.6μm(600nm)である。
 本発明の測定試薬用ラテックス粒子の粒子径の変動係数(CV値)は特に限定はされず、ラテックス免疫比濁法の具体的な方法や用いる測定機器の仕様等によって適宜選択すればよいが、好ましくは10%以下である。CV値が10%を超えると、感作ラテックス粒子の調製時の製造再現性が低下し、測定試薬の性能(測定再現性)が低下することがある。なお、上記粒子径の変動係数は、透過電子顕微鏡(TEM)画像より得られた500個の粒子について、下記(1)により算出される。
 式(1):粒子径の変動係数(CV値)=粒子径の標準偏差/平均粒子径
 ラテックス粒子において、乾燥粉体の比重が1.17g/cm未満であることが好ましい。下限について得に制限はないが、1.01g/cm程度である。比重は1.05~1.15g/cmがより好ましい。なお、「比重」とは、真比重計(例えば、島津製作所製アキュピックII1340)を用いて測定した値をいう。
 ラテックス粒子において、吸光度が下記式(1)で示す値を、5%を越えて下回らないことが好ましい。
 式(1):吸光度=3.28×粒子径(μm)-0.28
 なお、「5%を越えて下回らない」とは、図1に示すとおり、粒子径を横軸、吸光度を縦軸に取り、式(1)を実線L1、L1より5%の下方境界線を鎖線L2で表した場合に、L2以下の斜線領域Xが除かれることを意味する。
[感作ラテックス粒子/免疫比濁法用測定試薬]
 本発明の測定試薬用ラテックス粒子を担体として、被検物質と特異的に結合する物質を担持させて、感作ラテックス粒子を製造することができる。本発明の測定試薬用ラテックス粒子に、被検物質と特異的に結合する物質を担持させた感作ラテックス粒子もまた、本発明の1つである。感作ラテックス粒子は緩衝液中に分散していることが好ましい。
 上記被検物質と特異的に結合する物質としては、免疫血清学的測定試薬(免疫学的凝集反応及び凝集阻止反応において使用されるもの)、生化学測定法として通常使用される生理活性物質であれば特に限定されない。なかでも、抗原抗体反応に利用できる物質が好適である。
 本発明における抗原抗体反応に利用できる物質としては、例えば、たんぱく質、核酸、核たんぱく質、エストロゲン等のホルモン、脂質等の抗原又は抗体が挙げられる。上記抗原としては、例えば、各種抗原、レセプター、酵素等が挙げられる。より具体的には、例えば、β2マイクログロブリン、C-反応性タンパク(CRP)、ヒトフィブリノーゲン、フェリチン、リウマチ因子(RA)、α-フェトプロテイン(AFP)、マイコ プラズマ抗原、HBs抗原等が挙げられる。 上記抗体としては、例えば、各種の毒素や病原菌等に対する抗体が挙げられる。より具体的には、例えば、抗ストレプトリジンO抗体、抗エストロゲン抗体、β2マイクログロブリン抗体、梅毒トレポネーマ抗体、梅毒脂質抗原に対する抗体、抗HBs抗体、抗HBc抗体、抗Hbe抗体、抗PSA抗体、抗CRP抗体等が挙げられる。
 なお、感作ラテックス粒子を作製するため測定試薬用ラテックス粒子に担持させる抗体としては、免疫グロブリン分子自体の他、例えば、F(ab’)2のような断片であってもよい。また、上記抗体は、ポリクローナル抗体又はモノクローナル抗体のどちらを用いてもかまわない。上記抗体の取得方法も通常使用される方法を用いることができる。本明細書において「抗原抗体反応」、「抗原」、「抗体」の語を用いる場合、通常の意味に加え、特異的な結合反応により感作ラテックス粒子を凝集させることができる上記の概念・形態のいずれをも含む場合があり、限定的に解釈してはならない。
 本発明の測定試薬用ラテックス粒子に被検物質と特異的に結合する物質を担持させて、感作ラテックス粒子を製造する方法としては特に限定されず、従来公知の物理的及び/又は 化学的結合により担持させる方法を用いることができる。本発明の感作ラテックス粒子における被検物質と特異的に結合する物質の担持量は、用いられる被検物質と特異的に結合する物質の種類により異なり、実験的に最適な量を適宜設定することができる。
 なお、本明細書において「担持」、「感作」、「固定化」の語は、通常の意味を有し、同義に使用している。
 このような方法により得られた本発明の感作ラテックス粒子は、必要に応じてウシ血清アルブミン等で被覆(ブロッキング)処理を施し、適当な緩衝液に分散して感作ラテックス粒子分散液として用いる。感作ラテックス粒子分散液は、免疫比濁法用測定試薬として用いることができる。本発明の感作ラテックス粒子が緩衝液中に分散している免疫比濁法用測定試薬もまた、本発明の1つである。本発明の免疫比濁法用測定試薬は、測定に用いる希釈液(緩衝液)や標準物質等を組み合わせて、測定試薬キットとして用いることができる。
 上記希釈液は、測定試料等を希釈するのに用いられる。上記希釈液としては、H5.0~9.0の緩衝液であればどのようなものでも用いることができる。具体的には、例えば、リン酸緩衝液、グリシン緩衝液、トリス緩衝液、ホウ酸緩衝液、クエン酸緩衝液、グッド緩衝液等が挙げられる。
 本発明の免疫比濁法用測定試薬や希釈液は、測定感度の向上や抗原抗体反応の促進のために、種々の増感剤を含有してもよい。上記増感剤としては、例えば、メチルセルロース、エチルセルロース等のアルキル化多糖類や、プルラン、ポリビニルピロリドン等が挙げられる。
 本発明の免疫比濁法用測定試薬や希釈液は、測定試料中に存在する被検物質以外の物質により起こる非特異的凝集反応を抑制するためや、測定試薬の安定性を高めるために、アルブミン(牛血清アルブミン、卵性アルブミン)、カゼイン、ゼラチン等のタンパク質やその分解物、アミノ酸又は界面活性剤等を含有してもよい。
 本発明の免疫比濁法用測定試薬を用いれば、測定試料中の被検物質と感作ラテックス粒子に担持された被検物質に特異的に結合する物質との反応により生じる感作ラテックス粒子の凝集の度合いを光学的に測定することにより、測定試料中の被検物質の量を測定することができる。上記光学的測定には、散乱光強度、透過光強度、吸光度等を検出できる光学機器、又は、これらの検出方法を複数備えた光学機器等を用いることができる。代表的には、臨床検査で広く使用されている生化学自動分析機であればいずれも使用することができる。
 上記凝集の度合いを光学的に測定する方法としては従来公知の方法が用いられ、例えば、凝集の形成を濁度の増加としてとらえる比濁法、凝集の形成を粒度分布又は平均粒子径の変化としてとらえる方法、凝集の形成による前方散乱光の変化を積分球を用いて測定し透過光強度との比を比較する積分球濁度法等が挙げられる。また、測定法としては、例えば、異なる時点で少なくとも2つの測定値を得て、これらの時点間における測定値の増加分(増加速度)に基づき凝集の程度を求める速度試験(レートアッセイ)や、ある時点(通常は反応の終点と考えられる時点)で1つの測定値を得て、この測定値に基づき凝集の程度を求める終点試験(エンドポイントアッセイ)等が挙げられる。なかでも、測定の簡便性、迅速性の点から比濁法による終点試験が好適である。本明細書において「免疫比濁」、「免疫比濁法」の語を用いる場合、上記の概念・形態のいずれも含むものとし、限定的に解釈してはならない。
[その他の実施形態]
 上述の発明を実施するための形態の欄において、試薬測定用ラテックス粒子の一態様として、重合性化合物の重合体と、屈折率1.60以上の化合物と、を少なくとも含む、ラテックス粒子を中心に説明した。しかし、本発明はこれらの態様に限定されることはなく、例えば、上述の重合体が、上述の高屈折率化合物と同様の組成である場合があり得る。具体的には、本発明には、シード膨潤法またはシード膨潤重合法において、シード粒子(重合性化合物の重合体)と、シード粒子内に包含される膨潤モノマー(屈折率1.60以上の化合物)とが、同様の組成である場合が包含される。
 以下、実施例、比較例により本発明の詳細について説明するが、本発明はこれらによって限定されるものではない。
[実施例1]
 本発明の測定試薬用ラテックス粒子について、まずは、シード粒子をソープフリー乳化重合法により作製した。反応容器にイオン交換水1200mL、モノマーとして、1-ビニルナフタレン120mL、を加え攪拌し、その後、反応容器内を窒素置換した。反応容器内の温度が70℃に達した後、3%(w/v)過硫酸カリウム水溶液13mLを滴下した。3%(w/v)過硫酸カリウム水溶液の滴下から24時間後、反応を停止し、濾過してポリ1-ビニルナフタレン系シード粒子懸濁液を得た。
 上記ソープフリー乳化重合法により得られたシード粒子を使用して、本発明の測定試薬用ラテックス粒子を、シード膨潤重合を用いて作製した。1-ビニルナフタレン8.0g、過酸化ベンゾイル0.08gを酢酸エチル10gに溶解させ、常温で6時間攪拌し、溶液を得た。
 上記シード粒子懸濁液20gに上記溶液を混合し、常温で24時間攪拌することでシード粒子に上記溶液を内包させた。その後、70℃で10時間加熱攪拌を行い、1-ビニルナフタレンの重合を行なった後、90℃で10時間加熱攪拌を行い、酢酸エチルを液中乾燥させることで、1-ビニルナフタレンの複合粒子を得た。得られたラテックス粒子は、平均粒子径が0.398μm、粒子径のCV値が5.3%であった。
 なお、ラテックス粒子の粒子径はベックマンコールター社製粒度分布測定装置「LS 13 320」を用いて測定した体積統計値の平均粒子径の値、CV値は、ラテックス粒子を常法に従ってコロジオン膜上に載せ、透過型電子顕微鏡により粒子画像を撮影し、画像上で観察された500個以上の粒子を計測する方法により求めた。
[実施例2]
 実施例1と同様にシード粒子を得た。1-ビニルナフタレン8.0g、ジビニルベンゼン1.0g、過酸化ベンゾイル0.09gを酢酸エチル10gに溶解させ、常温で6時間攪拌し、溶液とした後、上記種粒子懸濁液10gと混合し、実施例1と同様にシード膨潤重合にてラテックス粒子を得た。得られたラテックス粒子は、平均粒子径が0.411μm、粒子径のCV値が4.5%であった。
[実施例3]
 実施例1と同様にシード粒子を得た。6―ビニルジナフトチオフェン2.0g、ジビニルベンゼン3.0g、過酸化ベンゾイル0.05gを酢酸エチル10gに溶解させ、常温で6時間攪拌し、溶液とした後、上記種粒子懸濁液50gと混合し、実施例1と同様にシード膨潤重合にてラテックス粒子を得た。得られたラテックス粒子は、平均粒子径が0.420μm、粒子径のCV値が6.0%であった。
[実施例4]
 モノマーとしてスチレンを用いたこと以外は実施例1と同様にシード粒子を得た。9,9-ビス(4-(2-(メタ)アクリロイルオキシエトキシ)フェニル)フルオレン(大阪ガスケミカル社製 EA-0200)5.0g、過酸化ベンゾイル0.05gを酢酸エチル10gに溶解させ、常温で6時間攪拌し、溶液とした後、上記種粒子懸濁液50gと混合し、実施例1と同様にシード膨潤重合にてラテックス粒子を得た。得られたラテックス粒子は、平均粒子径が0.436μm、粒子径のCV値が6.1%であった。
[実施例5]
 実施例1と同様にシード粒子を得た。6―ビニルジナフトチオフェン9.0g、過酸化ベンゾイル0.09gを酢酸エチル10gに溶解させ、常温で6時間攪拌し、溶液とした後、上記種粒子懸濁液10gと混合し、実施例1と同様にシード膨潤重合にてラテックス粒子を得た。得られたラテックス粒子は、平均粒子径が0.463μm、粒子径のCV値が7.2%であった。
[実施例6]
 粒径調整を行った以外は、実施例2と同様にしてラテックス粒子を得た。得られたラテックス粒子は、平均粒子径が0.301μm、粒子径のCV値が3.6%であった。
[実施例7]
 粒径調整を行った以外は、実施例2と同様にしてラテックス粒子を得た。得られたラテックス粒子は、平均粒子径が0.600μm、粒子径のCV値が4.3%であった。
[比較例1]
 ソープフリー乳化重合を用いて作製した。反応容器にイオン交換水1200mL、モノマーとして、1-ビニルナフタレン120mL、を加え攪拌し、その後、反応容器内を窒素置換した。反応容器内の温度が70℃に達した後、3%(w/v)過硫酸カリウム水溶液13mLを滴下した。3%(w/v)過硫酸カリウム水溶液の滴下から24時間後、反応を停止し、濾過してポリ1-ビニルナフタレン系ラテックス粒子懸濁液を得た。得られたラテックス粒子は、平均粒子径が0.404μm、粒子径のCV値が4.9%であった。
 本比較例は特許文献3、4に記載のラテックス粒子に相当する。
[比較例2]
 モノマーとしてメチルメタクリレートを用いたこと以外は実施例1と同様に種粒子を得た。得られたラテックス粒子は、平均粒子径が0.410μm、粒子径のCV値が3.9%であった。
 本比較例は特許文献2に記載のラテックス粒子に相当する。
[評価1]測定試薬用ラテックス粒子の比重測定
 実施例1~4及び比較例1~2で得られた各測定試薬用ラテックス粒子を100℃3時間加熱乾燥した後、乳鉢で粉砕した乾燥粉体について、真比重計(島津製作所製アキュピックII1340)を用いて比重を測定し、比較評価を行った。結果を表1に示した。
[評価2]測定試薬用ラテックス粒子の吸光度測定
 実施例1~4及び比較例1~2で得られた各測定試薬用ラテックス粒子を濃度0.01重量%に調製し、分光光度計(日立製U-3900)を用いて波長580nmの吸光度を測定した。ポリスチレン粒子の波長580nmの吸光度については、一般的に下記式(2)で算出できることが判っている(特許文献1がこれに相当する)。
 式(2):吸光度=2.72×粒子径(μm)-0.22
また、高屈折率材料の1-ビニルナフタレンとスチレンの組成比が20:80の場合、下記式(1)の直線に一致することが分かっている(特許文献3、4がこれに相当する)。
 式(1):吸光度=3.28×粒子径(μm)-0.28
 本発明では高感度(高吸光度)な粒子を得ることを目的としている為、式(2)を基準として、+20%以上高い場合は○○、+20~-5%を○、-5%以下を×として評価を行った。結果を表1、表2に示した。
[評価3]測定試薬用ラテックス粒子の沈降度測定
 実施例1~4及び比較例1~2で得られた各測定試薬用ラテックス粒子を超純水(水質:非抵抗値18.2MΩ・cm、TOC値5ppb以下)に分散して得られたラテックス粒子濃度1.0重量%の分散液を、円筒状の10mlメスシリンダー(柴田科学社製、商品名「有栓メスシリンダー カスタムA共通すり合わせガラス平栓付 026580-10A」/高さ190mm、胴外径13.1mm、胴内径10.8mm、材質ガラス)に入れて室温下で10日間静置した後、上澄み液の深さ(沈降度)を測定し、比較評価を行った。
 評価(×:6以上 △:5 ○:3~4 ○○:2 ○○○:0~1)
 結果を表1、表2に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、表2より、実施例1の粒子の比重は、比較例1の粒子に対して低比重化と沈降度の改善を確認し、実用範囲の3mm以下を達成した。また、多孔中空構造の為、粒子の屈折率が下がることなく、高感度(高吸光度)を達成している。実施例2では、架橋剤の添加による低比重化の効果アップを確認した。比較例2の粒子では、低比重化と沈降度の改善は見られるものの、粒子が単孔中空構造の為、屈折率が大きく低下し、通常のスチレン粒子よりも低い感度(吸光度)しか得ることが出来ない。
 以上より、本発明の測定試薬用ラテックス粒子は、屈折率の高い材料を用いることで測定感度を高め、且つ多孔中空構造を有することにより、低比重化と、粒子の沈降を抑制することで、被検物質の濃度が希薄な測定試料を測定する場合であっても高感度な測定を可能にすることが確認された。
 

Claims (9)

  1.  粒子径の変動係数が10%以下、平均粒子径が250~1000nmの測定試薬用ラテックス粒子であって、
     上記ラテックス粒子は、屈折率1.60以上の化合物を20重量%以上含み、
     上記ラテックス粒子を超純水に分散させて得られた固形分濃度1重量%の分散液を胴内径10.8mmの円筒状の10mlメスシリンダーに入れて10日間静置したときの上澄み液の深さが5mm以内となる、測定試薬用ラテックス粒子。
  2.  上記屈折率1.60以上の化合物が、フルオレン骨格、ジナフトチオフェン骨格、ナフタレン骨格、アントラセン骨格、フェナントレン骨格、カルバゾール骨格からなる群から選ばれる少なくとも1つの骨格を有する化合物を含む、請求項1記載の測定試薬用ラテックス粒子。
  3.  上記屈折率1.60以上の化合物が、重合性化合物である、請求項2記載の測定試薬用ラテックス粒子。
  4.  上記屈折率1.60以上の化合物が、重合性化合物の重合体である、請求項1~3のいずれか1項に記載の測定試薬用ラテックス粒子。
  5.  上記ラテックス粒子が、フェニル骨格、ナフタレン骨格、フルオレン骨格、ジナフトチオフェン骨格、アントラセン骨格、フェナントレン骨格及びカルバゾール骨格からなる群から選ばれる少なくとも1つの骨格を有する多官能重合性化合物を10重量%以上含む、請求項1~4のいずれか1項に記載の測定試薬用ラテックス粒子。
  6.  上記ラテックス粒子において、乾燥粉体の比重が1.17g/cm未満である、請求項1~5のいずれか1項に記載の測定試薬用ラテックス粒子。
  7.  上記ラテックス粒子において、吸光度が下記式(1)で示す値を、5%を越えて下回らない、請求項1から6のいずれか1項に記載の測定試薬用ラテックス粒子。
     式(1):吸光度=3.28×粒子径(μm)-0.28
  8.  請求項1から7のいずれか1項に記載の測定試験用ラテックス粒子に、被検物質と特異的に結合する物質を担持させた、感作ラテックス粒子。
  9.  請求項8に記載の感作ラテックス粒子が緩衝液中に分散している、免疫比濁法用測定試薬。
     
PCT/JP2018/020076 2017-05-24 2018-05-24 測定試薬用ラテックス粒子、感作ラテックス粒子及び免疫比濁法用測定試薬 WO2018216784A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18805331.8A EP3633374A4 (en) 2017-05-24 2018-05-24 LATEX PARTICLES FOR MEASURING REAGENTS, SENSITIZED LATEX PARTICLES AND MEASURING REAGENTS FOR TURBIMETRIC IMMUNOASSAY
JP2019520316A JP7161213B2 (ja) 2017-05-24 2018-05-24 測定試薬用ラテックス粒子、感作ラテックス粒子及び免疫比濁法用測定試薬
US16/616,371 US11867694B2 (en) 2017-05-24 2018-05-24 Latex particles for measurement reagents, sensitized latex particles, and measurement reagent for turbidimetric immunoassay
CN201880032945.8A CN110637232B (zh) 2017-05-24 2018-05-24 测定试剂用胶乳粒子、致敏胶乳粒子及免疫比浊法用测定试剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017103093 2017-05-24
JP2017-103093 2017-05-24

Publications (1)

Publication Number Publication Date
WO2018216784A1 true WO2018216784A1 (ja) 2018-11-29

Family

ID=64396575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020076 WO2018216784A1 (ja) 2017-05-24 2018-05-24 測定試薬用ラテックス粒子、感作ラテックス粒子及び免疫比濁法用測定試薬

Country Status (5)

Country Link
US (1) US11867694B2 (ja)
EP (1) EP3633374A4 (ja)
JP (1) JP7161213B2 (ja)
CN (1) CN110637232B (ja)
WO (1) WO2018216784A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190003A1 (ja) * 2022-03-29 2023-10-05 ミナリスメディカル株式会社 シアリルルイス抗原の測定方法、測定用試薬及び測定用キット

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111912751A (zh) * 2020-07-07 2020-11-10 南京长澳医药科技有限公司 一种测定复方利多卡因乳膏粒径及其粒径分布的方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847258A (ja) * 1981-09-01 1983-03-18 イ−・アイ・デユポン・ド・ネモア−ス・アンド・コンパニ− 光散乱イムノアツセイ用粒子試薬
JPS6339909A (ja) * 1986-07-09 1988-02-20 ベ−リングヴエルケ・アクチエンゲゼルシヤフト 分散重合体およびそれらの製法
JPS63273060A (ja) * 1987-04-30 1988-11-10 Nitto Electric Ind Co Ltd 生理活性物質固定化用ラテツクス及びこのラテツクスを用いるラテツクス試薬
JPH08136547A (ja) * 1994-11-07 1996-05-31 Fujikura Kasei Co Ltd 診断試薬用ポリマーラテックスおよび診断薬
JP2001296299A (ja) 2000-04-17 2001-10-26 Jsr Corp 診断薬用粒子および免疫比濁方法
WO2003005031A1 (fr) 2001-07-02 2003-01-16 Sekisui Chemical Co., Ltd. Latex a particules supports pour reactif d'essai, et reactif d'essai
JP2008215816A (ja) 2007-02-28 2008-09-18 Jsr Corp 免疫診断用中空ポリマー粒子およびその製造方法、ならびに免疫診断用試薬
JP2012177098A (ja) * 2011-02-02 2012-09-13 Ngk Spark Plug Co Ltd インク及びデバイス
WO2012133771A1 (ja) 2011-03-31 2012-10-04 積水メディカル株式会社 測定試薬用ラテックス粒子、感作ラテックス粒子及び免疫比濁法用測定試薬
JP2012201819A (ja) * 2011-03-25 2012-10-22 Sekisui Plastics Co Ltd 負帯電性を示す架橋(メタ)アクリル酸エステル系多孔質着色樹脂粒子、その製造方法及びそのシリコーンオイル分散体
JP2013210526A (ja) * 2012-03-30 2013-10-10 Sekisui Plastics Co Ltd 電気泳動用(メタ)アクリル酸エステル系着色樹脂粒子及びその製造方法
JP2015065060A (ja) * 2013-09-25 2015-04-09 日本特殊陶業株式会社 固体微粒子分散体の製造方法、固体微粒子分散体及びデバイス

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4401765A (en) * 1981-09-01 1983-08-30 E. I. Du Pont De Nemours And Company Covalently bonded high refractive index particle reagents and their use in light scattering immunoassays
US5166077A (en) 1987-04-30 1992-11-24 Nitto Denko Corporation Latex for immobilization of physiologically active substances for immuno nephelometry
EP1710278A4 (en) * 2004-01-26 2011-08-24 Jsr Corp LIQUID COMPOSITION CONTAINING HOLLOW PARTICLES, PROCESS FOR PRODUCING THE SAME, AND OPTICAL ARTICLE
JP2006266970A (ja) * 2005-03-25 2006-10-05 Jsr Corp 免疫診断薬用ポリマー粒子
US20120136078A1 (en) * 2009-04-14 2012-05-31 Brennan David J Organic polymeric particles, paper coating compositions, and methods
CN105461847A (zh) * 2014-09-30 2016-04-06 积水化成品工业株式会社 聚合物颗粒及其用途
CN105778008B (zh) * 2014-12-26 2018-08-28 积水化成品工业株式会社 聚合物粒子、聚合物粒子的制造方法及其用途
WO2018062557A1 (ja) 2016-09-30 2018-04-05 積水化学株式会社 測定試薬用ラテックス粒子、感作ラテックス粒子及び免疫比濁法用測定試薬

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847258A (ja) * 1981-09-01 1983-03-18 イ−・アイ・デユポン・ド・ネモア−ス・アンド・コンパニ− 光散乱イムノアツセイ用粒子試薬
JPS6339909A (ja) * 1986-07-09 1988-02-20 ベ−リングヴエルケ・アクチエンゲゼルシヤフト 分散重合体およびそれらの製法
JPS63273060A (ja) * 1987-04-30 1988-11-10 Nitto Electric Ind Co Ltd 生理活性物質固定化用ラテツクス及びこのラテツクスを用いるラテツクス試薬
JPH08136547A (ja) * 1994-11-07 1996-05-31 Fujikura Kasei Co Ltd 診断試薬用ポリマーラテックスおよび診断薬
JP2001296299A (ja) 2000-04-17 2001-10-26 Jsr Corp 診断薬用粒子および免疫比濁方法
WO2003005031A1 (fr) 2001-07-02 2003-01-16 Sekisui Chemical Co., Ltd. Latex a particules supports pour reactif d'essai, et reactif d'essai
JP2008215816A (ja) 2007-02-28 2008-09-18 Jsr Corp 免疫診断用中空ポリマー粒子およびその製造方法、ならびに免疫診断用試薬
JP2012177098A (ja) * 2011-02-02 2012-09-13 Ngk Spark Plug Co Ltd インク及びデバイス
JP2012201819A (ja) * 2011-03-25 2012-10-22 Sekisui Plastics Co Ltd 負帯電性を示す架橋(メタ)アクリル酸エステル系多孔質着色樹脂粒子、その製造方法及びそのシリコーンオイル分散体
WO2012133771A1 (ja) 2011-03-31 2012-10-04 積水メディカル株式会社 測定試薬用ラテックス粒子、感作ラテックス粒子及び免疫比濁法用測定試薬
JP2013210526A (ja) * 2012-03-30 2013-10-10 Sekisui Plastics Co Ltd 電気泳動用(メタ)アクリル酸エステル系着色樹脂粒子及びその製造方法
JP2015065060A (ja) * 2013-09-25 2015-04-09 日本特殊陶業株式会社 固体微粒子分散体の製造方法、固体微粒子分散体及びデバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OKITSU TOSHINAO: "Adhesion", JOURNAL OF POLYMER, vol. 40, no. 8, 1996, pages 342 - 350

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190003A1 (ja) * 2022-03-29 2023-10-05 ミナリスメディカル株式会社 シアリルルイス抗原の測定方法、測定用試薬及び測定用キット

Also Published As

Publication number Publication date
CN110637232A (zh) 2019-12-31
US20200080996A1 (en) 2020-03-12
CN110637232B (zh) 2023-08-18
JP7161213B2 (ja) 2022-10-26
EP3633374A4 (en) 2021-03-10
JPWO2018216784A1 (ja) 2020-03-26
EP3633374A1 (en) 2020-04-08
US11867694B2 (en) 2024-01-09

Similar Documents

Publication Publication Date Title
US9180486B2 (en) Method for preparing a porous anti-reflection thin film composed of hollow polymeric nanoparticles
US9465033B2 (en) Latex particles for agglutination assay
WO2018216784A1 (ja) 測定試薬用ラテックス粒子、感作ラテックス粒子及び免疫比濁法用測定試薬
Guan et al. Molecularly imprinted shells from polymer and xerogel matrices on polystyrene colloidal spheres
KR20100066478A (ko) 분자 식별 재료와 그 제조 방법
JP5170806B2 (ja) 測定試薬用ラテックス粒子、感作ラテックス粒子及び免疫比濁法用測定試薬
FR2735778A1 (fr) Nouveau latex de microspheres magnetisables monodisperses calibrees, procede de preparation et utilisation dudit latex en chimie ou en biologie
Zhang et al. Exploiting wavelength orthogonality in photoinitiated RAFT dispersion polymerization and photografting for monodisperse surface-functional polymeric microspheres
JP2006266970A (ja) 免疫診断薬用ポリマー粒子
WO2018062557A1 (ja) 測定試薬用ラテックス粒子、感作ラテックス粒子及び免疫比濁法用測定試薬
JP4261403B2 (ja) 多孔質樹脂粒子の製造方法
JP2021196227A (ja) 診断薬用ラテックス粒子及びその製造方法
US9383356B2 (en) Latex particles for particle agglutination assay
KR20110059249A (ko) 광 안정성을 갖는 형광 중합체 나노입자의 제조방법
JP2021066841A (ja) 粒子およびその製造方法
KR20040016624A (ko) 단분산성 기능성 입자의 제조 방법
KR20040071431A (ko) 단분산성 다공질 입자의 제조방법
Peng et al. Different dispersion polymerization strategies influence the quality of fluorescent poly (St‐co‐GMA) microspheres
JP2022076614A (ja) 水性分散粒子の疎水性の定量化方法
JP6123466B2 (ja) コアシェル型粒子及びその製造方法
CN117451805A (zh) 一种聚偕胺肟改性氟化石墨烯修饰电极及其制备方法与应用
Tehrani Novel Aqueous Microgels and Their Applications
WO2019176521A1 (ja) 着色有機樹脂粒子及びその製造方法
JP2009029965A (ja) 単分散粒子の製造方法
Roeder et al. Piecewise fabrication of click functionalized core-shell particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805331

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019520316

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018805331

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018805331

Country of ref document: EP

Effective date: 20200102