WO2000046300A1 - Composition de résine durcissable - Google Patents

Composition de résine durcissable Download PDF

Info

Publication number
WO2000046300A1
WO2000046300A1 PCT/JP2000/000645 JP0000645W WO0046300A1 WO 2000046300 A1 WO2000046300 A1 WO 2000046300A1 JP 0000645 W JP0000645 W JP 0000645W WO 0046300 A1 WO0046300 A1 WO 0046300A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
reactive silicon
carbon atoms
polyoxyalkylene polymer
silicon group
Prior art date
Application number
PCT/JP2000/000645
Other languages
English (en)
French (fr)
Inventor
Katsuhiro Ando
Toru Inaya
Masato Kusakabe
Hiroshi Iwakiri
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to US09/889,587 priority Critical patent/US6737482B1/en
Priority to DE60024795T priority patent/DE60024795T2/de
Priority to EP00902114A priority patent/EP1167451B1/en
Priority to JP2000597366A priority patent/JP5090590B2/ja
Priority to CA002361829A priority patent/CA2361829A1/en
Publication of WO2000046300A1 publication Critical patent/WO2000046300A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to a curable resin composition that can be widely used in various fields such as adhesives and coating agents, has toughness and high adhesive strength, and has good adhesiveness to various adherends. Things. Landscape technology
  • Epoxy resins are used in a wide range of applications, such as various molding materials, adhesives, paints, plywood, and laminates.However, the cured product is brittle and has the disadvantage of low peel strength when used for adhesives. there were.
  • Japanese Patent Publication No. 7-28288 states that in such a composition, by narrowing the molecular weight distribution of the reactive silicone group-containing polyoxyalkylene polymer, handling before curing is facilitated, and It proposes to improve the tensile properties, chemical resistance and water resistance of the product.
  • An object of the present invention is to maintain the toughness and high peel strength of a blended cured product comprising a reactive silicon group-containing polyoxyalkylene polymer and an epoxy resin, and to provide a cured product having a high tensile strength.
  • An object of the present invention is to provide a composition having improved tensile strength, tensile shear adhesive strength, and adhesiveness to various adherends.
  • the present invention provides (I) a reactive silicon group-containing polyoxyalkylene polymer in which the rate of introduction of a reactive silicon group into a molecular chain terminal is 85% or more according to 1 H-NMR analysis; ) A curable resin composition containing an epoxy resin.
  • the reactive silicon group referred to in the present invention is a group capable of forming a siloxane bond by a condensation reaction between each other to form a crosslink, and is not particularly limited. And a group represented by the formula (4).
  • R 3 and R 4 are each represented by an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or (R,) 3 Si 0-
  • a triorganosiloxy group and when two or more R 3 or R 4 are present, they may be the same or different, where R and are monovalent carbon atoms having 1 to 20 carbon atoms;
  • a hydrogen group, and three R's may be the same or different, and X represents a hydroxyl group or a hydrolyzable group, and when two or more Xs are present, they are the same.
  • A represents 0, 1, 2 or 3
  • b represents 0, 1, or 2.
  • m single S i (R 3 2 — b ) (X b B) in one O— group may be different, m represents an integer of 0 to 19, provided that a + ⁇ b1 is satisfied.
  • the hydrolyzable group in X is not particularly limited, and may be a conventionally known hydrolyzable group. Specific examples include a hydrogen atom, a halogen atom, an alkoxy group, an alkoxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group, and an alkenyloxy group. Of these, methoxy, ethoxy, propoxy, An alkoxy group such as an isopropoxy group is preferred.
  • One to three hydroxyl groups or hydrolyzable groups can be bonded to one silicon atom, and (a + ⁇ b) is preferably 1 to 5.
  • two or more hydroxyl groups or hydrolyzable groups are present in the reactive silicon group, they may be the same or different.
  • the number of silicon atoms in the reactive silicon group may be one or two or more, but in the case of a reactive silicon group in which silicon atoms are connected by a siloxane bond or the like, it may be as small as about 20. Good.
  • R 3 and R 4 in the general formula (4) or (5) include, for example, alkyl groups such as methyl group and ethyl group, cycloalkyl groups such as cyclohexyl group, and aryl groups such as phenyl group. And an aralkyl group such as a benzyl group; and a triorganosiloxy group represented by (R ′) 3 SiO—, wherein R and R are a methyl group or a phenyl group.
  • R 3 , R 4 and R ′ a methyl group is particularly preferred.
  • the introduction rate of the reactive silicon group exemplified by the formula (4) or (5) into the terminal of the molecular chain is 85% or more by NMR analysis.
  • the introduction rate of reactive silicon group is 85% or more, toughness and high peel strength are maintained, and the tensile strength and tensile shear bond strength of the cured product and various adherends Adhesion can be improved.
  • the introduction ratio is less than 85%, the cured product has insufficient tensile strength and tensile shear adhesive strength and adhesiveness to various adherends, failing to achieve the effects of the present invention.
  • the reactive silicon group introduction rate is preferably 90% or more for more excellent physical properties of the cured product, and more preferably 95% or more for obtaining more excellent physical properties. More preferably, it is 98% or more.
  • the reactive silicon group-containing polyoxyalkylene polymer (I) is analyzed by 1 H-NMR analysis. Do. That is, the introduction rate of reactive silicon group is — NMR
  • the ratio can be defined as the ratio of the terminal where the reactive silicon group is introduced to the entire molecular chain terminal.
  • the number of reactive silicon groups should be at least one per molecule, but from the viewpoint of obtaining sufficient curability, an average of 1.5 to 4 is preferred.
  • the main chain structure of the polyoxyalkylene polymer of the component (I) used in the present invention may be a polymer having a repeating unit of the structure represented by 1R-1. May be a divalent organic group having 1 to 20 carbon atoms. Further, a homopolymer in which all of the repeating units are the same may be used, or a copolymer containing two or more types of repeating units may be used. In addition, the main chain may have a branched structure.
  • R examples include: one CH 2 CH 2 _, -CH (CH 3 ) CH 2 —, one CH (C 2 H 5 ) CH 2 —, -C (CH 3 ) 2 CH 2 —, — CH 2 CH 2 CH 2 CH 2 — and the like.
  • R one CH (CH 3 ) CH 2 — is particularly preferable.
  • the main chain skeleton of the polyoxyalkylene polymer as the component (I) can be obtained, for example, by subjecting a monoepoxide to ring-opening polymerization in the presence of an initiator and a catalyst.
  • the initiator include ethylene glycol, propylene glycol, butanediol, hexamethylene glycol, methallyl alcohol, bisphenol'A, hydrogenated bisphenol A, neopentyl glycol, polybutadienediol, and diethyleneglycolone.
  • the monoepoxide examples include ethylene oxide, propylene oxide, ⁇ -butylene oxide, —butylene oxide, hexene oxide, cyclohexene oxide, styrene oxide, and ⁇ -methylstyrene oxide.
  • Alkylene oxides such as oxides, methyl glycidyl ether, ethyl dalicidyl ether, isopropinoleglycidinoleate, butynoleglycidinoleate, etc.
  • the catalyst examples include alkali catalysts such as KOH and NaOH, acidic catalysts such as trifluoroborane-etherate, and complex metal cyanide complex catalysts such as aluminoporphyrin metal complex ⁇ cobalt zinc cyanide-glyme complex catalyst.
  • alkali catalysts such as KOH and NaOH
  • acidic catalysts such as trifluoroborane-etherate
  • complex metal cyanide complex catalysts such as aluminoporphyrin metal complex ⁇ cobalt zinc cyanide-glyme complex catalyst.
  • Known ones are used.
  • the main chain skeleton of the polyoxyalkylene polymer a basic compound a hydroxyl group-terminated Poriokishia alkylene polymers, for example KOH, Na OH, KOCH 3, N a O CH presence of such 3, halogenation or more bifunctional alkyl, for example CH 2 C 1 2, - can be obtained by CH 2 B r 2, etc. by chain extension and the like.
  • the method for producing the polyoxyalkylene polymer as the component (I) of the present invention is not particularly limited, and various methods can be used. In particular,
  • H 2 C C (R 1 ) -R 2 -0 ⁇ (1)
  • R 1 is a hydrocarbon group having 10 or less carbon atoms
  • R 2 is a divalent carbon atom having 1 to 20 carbon atoms which contains at least one selected from the group consisting of hydrogen, oxygen, and nitrogen.
  • a polyoxyalkylene polymer having an unsaturated group at the terminal represented by:
  • a conventionally known method may be used.
  • a hydroxyl-terminated polyoxyalkylene polymer may be used.
  • the compound having an unsaturated bond is reacted with the alkylene polymer to form an ether bond, ester bond, urethane bond, carbonate bond, etc. And the like.
  • -OM M is Na or K, etc.
  • metaloxylation of the hydroxyl group terminal of the polyoxyalkylene polymer is represented by the general formula (6)
  • H 2 C C (R 1 ) one R 2 — X (6)
  • R 1 for example, a linear alkyl group such as methyl, ethyl, propyl, butynole, pentinole, hexinole, heptyl, octyl, nonyl, decyl, branched alkyl group,
  • isopropyl, isobutyl, isopentyl, isohexylaryl group, for example, phenyl group, etc. can be shown, and it may be only one kind or a mixture of plural kinds.
  • a methyl group is particularly preferred.
  • R 2 is a divalent organic group having 1 to 20 carbon atoms, for example, one CH 2 —, one C 2 H 4 —, one C 3 H 6 —, one C 4 H 8 —, one C 5 H 10 — , - C 6 H 12 -, - C 7 H 14, _C 8 H 16 -, C 9 H 18, one C 10 H 20 -, - CH (CH 3) one one CH 2 - CH (CH 3) one , -CH 2 to CH (CH 3 ) one CH 2 —, -C 2 H 4 -CH (CH 3 ) one, one C 5 H 4 —, — CH 2 — C 6 H 4 —, — CH 2 -C Groups such as 6 H 4 —CH 2 — and one C 2 H 4 —C 6 H 4 — are exemplified.
  • One CH 2 —, one CH 2 CH 2 —, and —CH 2 CH (CH 3 ) one are preferred in terms of easy synthesis. Further, CH 2
  • H 2 C C (CH 3 ) —CH 2 —Cl
  • H 2 C C (CH 3 ) — CH 2 — Br
  • H 2 C C (CH 2 CH 3 ) —CH 2 — Cl
  • H 2 C C (CH 2 CH 3 ) -CH 2 — Br
  • H 2 C C (CH 2 CH (CH 3) 2) one CH 2 - C l
  • H 2 C C (CH 2 CH (CH 3) 2) -CH 2 - B r
  • H 2 C C (CH 3 ) —CH 2 —Cl
  • H 2 C C (CH 3 ) —CH 2 —Cl
  • the reactive silicon group-containing compound as a component has at least one silicon group bonded to the above-mentioned hydroxyl group or hydrolyzable group in the molecule, and has at least one Si—H group. Any compound may be used as long as it has a compound in the molecule.
  • a typical example is shown in, for example, general formula (3):
  • Specific examples of the compound of the general formula (3) or (8) include trichlorosilane, methyldichlorosilane, dimethylchlorosilane, phenyldichlorosilane, trimethylsiloxymethylchlorosilane, 1,1,3 Halogenated silanes such as 1,3-tetramethyl-11-bromodisiloxane; alkoxysilanes such as trimethoxysilane, triethoxysilane, methyljetoxysilane, methyldimethoxysilane, phenyldimethoxysilane, trimethylsiloxymethylmethoxysilane, trimethylsiloxydiethoxysilane Acyloxysilanes such as methyldiacetoxysilane, phenyldiacetoxysilane, triacetoxysilane, trimethylsiloxymethylacetoxysilane, and trimethylsiloxydiase small xysilane; Bis (di)
  • Ketoxime silanes alkenyloxy silanes such as methylisoprovenyloxysilane; Of these, alkoxysilanes are particularly preferred, and among the alkoxy groups, a methoxy group is particularly preferred.
  • a metal complex catalyst selected from Group VIII transition metal elements such as platinum, rhodium, cobalt, palladium and nickel is effectively used.
  • Ru C l 3, I r C l 3, F e C l 3, P d C 1 2 • 2H 2 0, compounds such as N i C 1 2 can be used, the reactivity of arsenide Doroshiriru of From the viewpoint, it is particularly preferable to be either a platinum-vinylsiloxane complex or a platinum-olefin complex.
  • the platinum-vinylsiloxane complex as used herein is a general term for compounds in which a siloxane, polysiloxane, or cyclic siloxane is coordinated with a platinum atom having a vinyl group in the molecule as a ligand.
  • Specific examples of the monomer include 1,1,3,3-tetramethyl-1,3-divinyldisiloxane, 1,3,5,7-tetravinyl-1,3,5,7-tetramethinolecyclotetra Siloxane and the like.
  • olefin ligand of the platinum-olefin complex examples include 1,5-hexadiene, 1,7-octadiene, 1,9-decadiene, 1,11-dodecadiene, and 1,5-cyclooctadiene. Is mentioned. Among the above ligands, 1,9-decadiene is particularly preferred.
  • the platinum monobutylsiloxane complex and the platinum-olefin complex are disclosed in JP-B-8-9006.
  • catalyst amount usually it is preferred to platinum catalyst 1 0 one 1 from 1 0 one 8 moles against alkenyl group 1 mol, more preferably 1 0 one 3 1 0 It can be used in the range of 16 moles. If the amount of the catalyst is small, the hydrosilylation reaction may not proceed sufficiently. In addition, if the amount of the catalyst is too large, there are problems such as an increase in cost burden due to catalyst consumption and an increase in residual catalyst in the product.
  • the hydrosilylation reaction is usually carried out at a temperature of from 10 to 150 ° C, preferably from 20 to 120 ° C, and more preferably from 40 to 100 ° C.
  • Solvents such as benzene, toluene, xylene, tetrahydrofuran, methylene chloride, pentane, hexane and heptane can be used as necessary for adjusting the viscosity of the reaction system.
  • the catalyst arsenide Doroshiriru reaction can also be used A 1 C 1 3 and T i C 1 4 like other than this.
  • sulfur compound examples include elemental sulfur, thiol, sulfide, sulfoxide, sulfone, thioketone, and the like. Sulfur is particularly preferred, but is not limited thereto.
  • a sulfur compound can be dissolved and mixed in a part of a reaction solution or a solvent in advance and then uniformly dispersed throughout.
  • the sulfur compound can be dissolved in an organic solvent such as toluene, hexane, or xylene and then added.
  • the amount of the sulfur compound to be added is, for example, 0.1 to 10 times the amount based on the number of moles of the metal catalyst, or 0.002 to 0.1 times the amount based on the number of moles of the alkenyl group, or It can be set within the range of 1 to 500 ppm based on the total weight of the reaction solution. If the amount is small, the effect of sulfur addition may not be sufficiently achieved. If the amount of the sulfur compound is too large, a problem such as a decrease in the catalytic activity or an inhibition of the reaction may occur. Therefore, it is preferable to appropriately select the addition amount.
  • the hydrosilylation reaction can be carried out without a solvent or in the presence of a solvent.
  • a solvent for the hydrosilylation reaction generally, hydrocarbons, halogenated hydrocarbons, ethers, and esters can be used, but heptane, hexane, benzene, toluene, and xylene are preferably used.
  • the gas phase of the reactor used in the hydrosilylation reaction may be composed of only an inert gas such as nitrogen or helium, or may contain oxygen or the like.
  • the reaction may be performed in the presence of an inert gas such as nitrogen or helium in the gas phase of the reactor from the viewpoint of safety in handling combustible substances.
  • the reactor gas phase is in the presence of an inert gas such as nitrogen or helium. In such cases, the reaction rate may decrease depending on the reaction system conditions for the hydrosilylation.
  • the hydrosilylation reaction by setting the oxygen concentration in the gas phase of the reactor to a value that avoids the explosive mixed composition, the hydrosilylation reaction can be promoted safely in the presence of oxygen.
  • the oxygen concentration in the reactor gas phase can be, for example, 0.510%.
  • the hydrosilylation reaction can be performed in the presence of an antioxidant.
  • the antioxidant include a phenolic antioxidant having the function of a radical chain inhibitor, for example, 2,6-di-tert-butyl p-crezo-nore, 2,6-di-tert-butyno-phenol, 2, 4-dimethynole-6-tert-p-tynolephenol, 2,2'-methylenebis (4-methynole-6-tert-butyl-phenol), 4,4'-butylidenebis (3-methyl-6-tert-butyl) Nolephenol), 4,4'-thiobis (3-methynole-6-tert-butylphenol), tetrakis ⁇ methylene-13 (3,5-di-tert-butyl-4-hydroxyphenyl) probionet) methane, 1, 1, 3-tris
  • Similar radical chain inhibitors include amine antioxidants such as phenyl-1-i-naphthylamine, ⁇ -naphthylamine, N, N'-di-sec-butynole- ⁇ -phenylenediamine, phenothiazine, N, N'-diphen Ninore-p-phenylenediamine can also be used, but is not limited thereto.
  • amine antioxidants such as phenyl-1-i-naphthylamine, ⁇ -naphthylamine, N, N'-di-sec-butynole- ⁇ -phenylenediamine, phenothiazine, N, N'-diphen Ninore-p-phenylenediamine can also be used, but is not limited thereto.
  • the polyoxyalkylene polymer used for the component (I) may be used alone or in combination of two or more.
  • the terminal of the molecular chain into which the reactive silicon group has been introduced is particularly preferably represented by the following formula. Since such a terminal does not contain an ester bond, an amide bond, or the like, the resulting cured product has excellent weather resistance and the like.
  • the molecular weight of the polyoxyalkylene polymer (I) is not particularly limited, but the number average molecular weight is preferably from 1,000 to 100,000. When the number average molecular weight is less than 1,000, the cured product of the reactive silicon group-containing polyoxyalkylene polymer becomes brittle, and when the number average molecular weight is more than 100,000, the functional group concentration becomes too low, and the curing rate decreases. However, it is not preferable because the viscosity of the polymer becomes too high and handling becomes difficult. Further, the number average molecular weight is preferably from 1,000 to 50,000 from the viewpoint of the viscosity of the obtained reactive silicon group-containing polyoxyalkylene polymer, and from 5,000 to 50,000. Is particularly preferable in terms of mechanical properties.
  • the number average molecular weight of the polyoxyalkylene polymer is directly determined by the titration analysis based on the principle of measuring the hydroxyl value of JI SK1557 and the measuring method of the iodine value of JI SK0070. It is defined as the number average molecular weight determined by measuring the group concentration and considering the structure of the polyoxyalkylene polymer.
  • a calibration curve of the molecular weight in terms of polystyrene obtained by general GPC measurement and the above-mentioned terminal group molecular weight may be prepared, and the GPC molecular weight may be converted into the terminal group molecular weight. It is possible.
  • a modified polyoxyalkylene polymer having a reactive silicon group may be used as the component (I).
  • a typical modified product is a (meth) acryl having an alkyl group having 1 to 8 carbon atoms represented by the following general formula (9) in the presence of a polyoxyalkylene polymer having a reactive silicon group.
  • Acid alkyl ester monomer and / or (meth) acrylic acid acrylic ester monomer having an alkyl group having 10 or more carbon atoms represented by the following general formula (10) and / or represented by the following general formula (11) It is obtained by polymerizing a mixture of the reactive silicone group-containing (meth) acrylic acid alkyl ester monomers.
  • a blend of a polymer of (9), (10), and (11) with a reactive silicon-containing polyoxyalkylene polymer can also be used.
  • R 5 represents a hydrogen atom or a methyl group
  • R 6 represents an alkyl group having 1 to 8 carbon atoms.
  • R 8 in said R 5 is formula 2 from 1 to 6 carbon It shows a valent alkylene group.
  • R 3 , R 4 , X, a, b, and m are the same as above. )
  • R 6 in the general formula (9) is, for example, a methyl group, an ethyl group, a propyl group, an n-butyl group, a t-butyl group, a 2-ethylhexyl group, etc. To 4, more preferably 1 to 2 alkyl groups.
  • the monomer represented by the general formula (9) may be one type or two or more types.
  • R 7 in the general formula (10) for example, lauryl group, tridecyl group, cetyl group, stearyl group, biphenyl group, etc., having 10 or more carbon atoms, usually 10 to 30, preferably 10 to 30 20 long-chain alkyl groups.
  • the monomer represented by the general formula (10) may be used alone or in combination of two or more.
  • R 8 in the general formula (11) examples include a carbon number of 1 to 6, preferably 1 to 4, such as a methylene group, an ethylene group, and a propylene group.
  • the reactive Kei containing group to join and R 8, may include, for example, trimethylamine Tokishishiriru group, Mechirujime Toki Shishiriru group, triethoxysilyl group, a methyl jet silyl group.
  • the monomer represented by the general formula (11) may be one kind, or two or more kinds.
  • a monomer other than the formulas (9), (10) and (11) may be used in combination.
  • examples of such a monomer include acrylamide such as acrylic acid and methacrylic acid; Amide groups such as methacrylamide, N-methyl acrylamide, N-methylol methacrylamide, epoxy groups such as glycidyl phthalate and glycidyl methacrylate, getylaminoethyl acrylate, getylamino
  • monomers containing an amino group such as ethyl methacrylate and aminoethyl vinyl ether, and monomers such as acrylonitrile, styrene, ⁇ -methylstyrene, alkynolebininole ether, vinylinole chloride, vinylinole acetate, vinylinole propionate, and ethylene.
  • polymerized formula (9), (10), (1 1) monomer total polymerized monomers total 50% or more, particularly 70 weight 0/0 or more It is
  • epoxy resin which is the component (II) of the present invention conventionally known epoxy resins can be widely used.
  • epoxy resins for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type Epoxy resins, epoxy resins hydrogenated with them, glycidyl ester type epoxy resins, glycidylamine type epoxy resins, alicyclic epoxy resins, novolak type epoxy resins, ⁇ urethane modified epoxy resins with epoxidized ends of urethane prepolymer, fluorine Examples include a chemically modified epoxy resin, a rubber-modified epoxy resin containing polybutadiene or NBR, and a flame-retardant epoxy resin such as glycidyl ether of tetrabromobisphenol A.
  • the amount of the component (II) to be used is preferably in the range of 0.1 to 500 parts, more preferably 10 to 200 parts, per 100 parts by weight of the polyoxyalkylene polymer of the component (I). If the amount is less than 0.1 part, sufficient tensile shear adhesive strength cannot be obtained. If the amount exceeds 500 parts, adverse effects such as a decrease in peel adhesive strength may occur, which is not preferable.
  • a functional group capable of reacting with an epoxy group is further added.
  • a compound having a reactive gay group or a compound having an epoxy group and a reactive silicon group can be added.
  • a compound having a functional group capable of reacting with an epoxy group and a reactive silicon group or a compound having an epoxy group and a reactive silicon group include, for example, ⁇ -aminopropyltrimethoxysilane, y-Aminopropylmethyldimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, ⁇ — (2-aminoethyl) aminopropylmethyldimethoxysilane, ⁇ - (2-aminoethyl) amino Amino group-containing silanes such as propyltriethoxysilane, monoureidopropyltriethoxysilane, ⁇ -] 3- (N-butylbenzylaminoethyl) -y-aminopropyltrimethoxysilane, and ⁇ -anilinopropyltrimethoxysilane ⁇ -mercaptopropyltrimethoxys
  • these silicon compounds may be used alone or in combination of two or more.
  • Such a silicon compound generally has a range of about 0.1 to 20 parts, preferably about 0.2 to 10 parts, when the total amount of the components (I) and (II) is 100 parts. It is better to be blended within the range.
  • a silanol condensation catalyst an epoxy resin curing agent, various fillers, a plasticizer, a solvent, other additives, and the like can be added as necessary.
  • silanol condensation catalyst examples include an organotin compound, an acid phosphate, a reaction product of an acid phosphate and an amine, a saturated or unsaturated polycarboxylic acid or an acid anhydride thereof, and an organic titanate compound. These catalysts may be used alone or in combination of two or more.
  • epoxy resin curing agent examples include aliphatic amines, alicyclic amines, aromatic amines, polyaminoamides, imidazoles, dicyandiamides, epoxy-modified amines, Mannich-modified amines, Michael addition-modified amines, ketimines, and acid anhydrides. , Alcohols, phenols and the like. These curing agents may be used alone or in combination of two or more.
  • filler examples include calcium carbonate, kaolin, talc, silica, titanium oxide, aluminum silicate, magnesium oxide, zinc oxide, and carbon black. These fillers may be used alone or in combination of two or more.
  • plasticizer examples include phthalic acid esters, non-aromatic dibasic acid esters, and phosphoric acid esters.
  • examples include polyesters of a basic acid and a dihydric alcohol, polypropylene glycol and derivatives thereof, and polystyrenes. These plasticizers can be used alone or as a mixture.
  • solvent examples include non-reactive solvents such as hydrocarbons, acetates, alcohols, ethers, and ketones, and are not particularly limited as long as they are such solvents.
  • Other additives include, for example, hydrogenated castor oil, organic bentonite, anti-sagging agents such as calcium stearate, coloring agents, antioxidants, ultraviolet absorbers, light stabilizers, and adhesion-imparting agents.
  • the method for producing the curable resin composition of the present invention containing the component (I) and the component (II) is not particularly limited.
  • the component (I) and the component (II) are blended, and a mixer, roll or Conventional methods such as kneading at room temperature or under heat using a kneader or the like, or dissolving and mixing the above components using a small amount of an appropriate solvent can be employed.
  • Propylene oxide was polymerized with a zinc hexocyanocowartate glyme complex catalyst using polypropylene glycol as an initiator to obtain polyoxypropylene glycol having an average molecular weight of 100,000. Subsequently, a methanol solution of NaOMe of 1.2 times equivalent to the hydroxyl group of the hydroxyl group-terminated polyether oligomer was added to distill off methanol, and then 3-methyl-1-methyl-11-propene was added. Was added to convert the terminal hydroxyl group to a methallyl group.
  • the polymerization of propylene oxide was carried out using a polypropylene glycol as an initiator with a zinc hexacyanocobaltate glyme complex catalyst to obtain polyoxypropylene dalicol having an average molecular weight of 200,000. Subsequently, a methanol solution of NaOMe of 1.2 times equivalent to the hydroxyl group of the hydroxyl group-terminated polyether oligomer was added to distill off methanol, and 3-methyl-1-methyl-1-propene was further added. The addition converted the terminal hydroxyl group to a methallyl group.
  • Propylene oxide was polymerized with a zinc hexane cyanopbaltate glyme complex catalyst using polypropylene glycol as an initiator to obtain polyoxypropylene glycol having an average molecular weight of 10,000. Subsequently, a methanol solution of 1.2 times equivalent of ⁇ aOMe with respect to the hydroxyl groups of the hydroxyl-terminated polyether oligomer was added to distill off methanol, and 3-propanol was further added with 3-propene-11-propene. The hydroxyl group was converted to an aryl group.
  • the curable resin composition is cured to a thickness of 3 mm (23 ° CX30 + 5O ° CX4B), a JISK6301 type 3 dumbbell is punched out, and a tensile test is performed at a tensile speed of 200 mm / min.
  • the modulus at 50% elongation (M50), the modulus at 100% elongation (M100), the breaking strength (TB) and the elongation at break (EB) were measured.
  • Tensile shear bond strength and peel bond strength were evaluated. Tensile shear bond strength is curable to various substrates (A1 050 P, stainless steel plate SUS304, cold rolled steel plate, PVC, acrylic, birch, Dimensions: 100 X 25 X 2 mm) The resin composition was applied at a thickness of 60 / im, and after curing (23 ° C X 3 days + 50 ° C X 4 days), a tensile test was performed at a tensile speed of 5 Omm / min.
  • Peeling strength was measured by applying a curable resin composition to JISH 4000 aluminum plate A1050P (200 x 25 x 0.1 mm) at a thickness of about 60 m or 2 mm, and after curing ( 23 ° CX 3 days + 50 ° CX4 days) and a tensile test was performed at a tensile speed of 20 Omm / min.
  • CF represents cohesive failure
  • TF represents thin layer fracture
  • AF represents interface fracture
  • MF represents material fracture.
  • CF 90 AF10, etc. it indicates that 90% of the destruction of the bonding area is cohesive fracture CF and 10% of the area is interfacial fracture AF.
  • Example 1 was the same as Example 1 except that the polymer C was used. Table 2 shows the results.
  • CF cohesive fracture
  • TF thin layer fracture
  • AF interfacial fracture
  • MF material fracture
  • the adhesive strength was measured in the same manner as in Example 1 except that a two-pack composition was prepared using the compositions shown in Table 3 (all parts are expressed in parts by weight). Table 4 shows the results.
  • Example 3 was the same as Example 3 except that Polymer B was used. Table 4 shows the results.
  • Example 3 was the same as Example 3 except that the polymer C was used. Table 4 shows the results. Table 3. Composition of two-part curable resin composition
  • CF cohesive fracture
  • TF thin layer fracture
  • AF interfacial fracture
  • MF material fracture
  • the cured product while maintaining the toughness and high peel strength of a blend of a reactive silicon group-containing polyoxyalkylene polymer and an epoxy resin, the cured product has a tensile strength, a tensile shear adhesive strength, and various other properties.
  • a curable resin composition having improved adhesiveness to an adherend can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)
  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

明 細 書
硬化性樹脂組成物 技術分野
本発明は、 接着剤、 コーティング剤等の種々の分野において広く使用すること ができる、 強靭でかつ高い接着強度を有する他、 種々の被着体への接着性が良好 な硬化性樹脂組成物に関するものである。 景技術
エポキシ樹脂は、 各種成形材料、 接着剤、 塗料、 合板、 積層板等の幅広い用途 に使用されているが、 硬化物が脆い為に接着剤等に使用した場合、 剥離強度が小 さいという欠点があった。
これに対し、 このようなエポキシ樹脂に、 常温硬化後ゴム状弾性体となる反応 性ケィ素基含有ポリオキシアルキレン重合体をプレンドしてなる組成物の使用に より、 硬化物の脆さおよび剥離接着強度が向上することが提案されている (例え ば、 特開昭 6 1— 2 6 8 7 2 0号) 。
しかしながらこのような組成物は、 硬化物の引張り強度や引張り剪断接着強さ がェポキシ樹脂単独硬化物に比べ劣ることから、 高い強度が必要な用途にはこれ まで用いることができなかった。
また、 特公平 7— 2 8 2 8号には、 このような組成物において反応性ケィ素基 含有ポリォキシアルキレン重合体の分子量分布を狭くすることにより、 硬化前の 取り扱いを容易にし、 硬化物の引張り特性、 耐薬品性及び耐水性を向上させるこ とを提案している。
いずれにおいても、 反応性ケィ素基含有ポリォキシアルキレン重合体のケィ素 基導入率と、 接着強度や接着性との関係については言及されていない。 発明の要約
本発明の目的は、 反応性ケィ素基含有ポリオキシアルキレン重合体とエポキシ 榭脂からなるブレンド硬化物の強靭性、 高剥離強度を維持し、 かつ、 硬化物の引 張り強度や引張り剪断接着強さ、 及び、 種々の被着体への接着性が向上した組成 物を提供することである。
すなわち本発明は、 ( I ) 分子鎖末端への反応性ケィ素基の導入率が1 H— N MR分析により 85%以上である反応性ケィ素基含有ポリオキシアルキレン重合 体、 及び、 ( I I) エポキシ樹脂を含有する硬化性樹脂組成物である。 発明の詳細な開示
本発明の目的は、 反応性ケィ素基含有ポリォキシアルキレン重合体とエポキシ 樹脂を含有する硬化性樹脂組成物において、 前者の分子鎖末端への反応性ケィ素 基の導入率を1 H— NMR分析により 8 5%以上とす ことにより達成される。 本発明でいう反応性ケィ素基とは、 相互間の縮合反応によりシロキサン結合を 形成して架橋し得る基であり、 特に限定されるものではないが、 代表的なものを 示すと、 例えば一般式 (4) で表わされる基が挙げられる。
― (S i (R3 2b) (Xb) O) mS i (R4 3-a) Xa (4)
(式中 R 3および R4はいずれも炭素数 1から 20のアルキル基、 炭素数 6から 20のァリール基、 炭素数 7から 20のァラルキル基または (R, ) 3 S i 0- で示されるトリオルガノシロキシ基を示し、 R3または R4が二個以上存在する とき、 それらは同一であってもよく、 異なっていてもよい。 ここで R, は炭素数 1から 20の一価の炭化水素基であり、 3個の R' は同一であってもよく、 異な つていてもよい。 Xは水酸基または加水分解性基を示し、 Xが二個以上存在する 時、 それらは同一であってもよく、 異なっていてもよい。 aは 0、 1、 2または 3を、 bは 0、 1、 または 2をそれぞれ示す。 また m個の一S i (R3 2b) ( Xb) 一 O—基における bは異なっていてもよい。 mは 0から 1 9の整数を示す。 但し、 a +∑b 1を満足するものとする。 )
上記 Xのうちの加水分解性基は特に限定されず、 従来公知の加水分解性基であ れば良い。 具体的には例えば水素原子、 ハロゲン原子、 アルコキシ基、 ァシルォ キシ基、 ケトキシメート基、 アミノ基、 アミ ド基、 酸アミ ド基、 アミノォキシ基、 メルカプト基、 アルケニルォキシ基等が挙げられる。 これらの内では、 加水分解 性が穏やかで取扱やすいという点で、 メ トキシ基、 エトキシ基、 プロポキシ基、 ィソプロポキシ基等のアルコキシ基が好ましい。
この水酸基や加水分解性基は 1個のケィ素原子に 1〜 3個結合することができ、 (a +∑ b) は 1から 5であるのが好ましい。 水酸基や加水分解性基が反応性ケ ィ素基中に 2個以上存在する場合には、 それらは同一であっても良く、 異なって いてもよレヽ。
反応性ケィ素基中のケィ素原子の数は 1個でもよく 2個以上でもよいが、 シロ キサン結合等によりケィ素原子の連結された反応性ケィ素基の場合には 20個程 度でもよい。
なお、 下記一般式 (5) で表される反応性ケィ素基が入手が容易であるため好 ましい。 - — S i (R4 3 _ a ) Xa (5)
(式中 R4、 X、 aは前記と同じ。 )
また上記一般式 (4) または (5) における R3、 および R 4の具体例として は、 例えばメチル基、 ェチル基等のアルキル基、 シクロへキシル基等のシクロア ルキル基、 フエニル基等のァリール基、 ベンジル基等のァラルキル基、 R, がメ チル基やフエニル基等である (R' ) 3 S i O—で示されるトリオルガノシロキ シ基などが挙げられる。 R3、 R4, R' としてはメチル基が特に好ましい。
ポリオキシアルキレン重合体 (I) においては、 (4) 或いは (5) 式で例示 される反応性ケィ素基の分子鎖末端への導入率が、 — NMR分析により 8 5 %以上である。 反応性ケィ素基の導入率が 85%以上であることにより、 強靭性、 高剥離強度を維持するとともに、 硬化物の引張り強度や引張り剪断接着強さ、 お よび、 種々の被着体への接着性を向上させることができる。 上記導入率が 85% 未満では、 硬化物の引張り強度や引張り剪断接着強さ、 および、 種々の被着体へ の接着性が充分でなく、 本発明の効果を達成できない。 反応性ケィ素基導入率は、 硬化物のより優れた物性発現のために 90%以上が好ましく、 更に優れた物性を 得るには 95%以上がより好ましい。 更に好ましくは 98%以上である。
このような反応性ケィ素基の導入率を測定するには種々の方法が考えられるが、 本発明においては、 反応性ケィ素基含有ポリオキシアルキレン重合体 ( I ) の1 H— NMR分析により行う。 すなわち反応性ケィ素基の導入率は、 — NMR により反応性ケィ素基の導入された末端と導入されていない末端の積分値を比較 することで、 全分子鎖末端に対する反応性ケィ素基の導入された末端の割合とし て定義できる。
反応性ケィ素基の数は、 1分子当り 1個以上あれば良いが、 充分な硬化性を得 るという点では平均 1. 5〜 4個が好ましレ、。
本発明に使用される ( I ) 成分のポリオキシアルキレン重合体の主鎖構造とし ては、 一R—〇一で示される構造を繰り返し単位とする重合体であればよく、 こ のとき、 Rは炭素数 1から 20の 2価の有機基であればよい。 また、 繰り返し単 位の全てが同一である単独重合体であっても良く、 2つ以上の種類の繰り返し単 位を含む共重合体であっても良い。 さらに、 主鎖中に分岐構造を有していても良 レ、。
Rの具体例としては、 一 CH2CH2_、 -CH (CH3) CH2—、 一 CH ( C2H5) CH2—、 -C (CH3) 2CH2—、 — CH2CH2CH2CH2—等が挙 げられる。 Rとしては特に一 CH (CH3) CH2—が好ましい。
( I ) 成分のポリオキシアルキレン重合体の主鎖骨格は、 例えば開始剤と触媒 の存在下、 モノエポキシドを開環重合することによって得ることができる。
開始剤の具体例としては、 エチレングリコール、 プロピレングリコール、 ブタ ンジオール、 へキサメチレングリコール、 メタリルアルコール、 ビスフエノール' A、 水素化ビスフエノール A、 ネオペンチルグリコール、 ポリブタジエンジォー ノレ、 ジエチレングリ コーノレ、 ト リエチレングリ コーノレ、 ポリエチレングリ コーノレ、 ポリプロピレングリコール、 ポリプロピレントリオール、 ポリプロピレンテトラ ォーノレ、 ジプロピレングリコー^"、 グリセリン、 トリメチ口一ノレメタン、 トリメ チロールプロパン、 ペンタエリスリ トール等の 2価アルコールや多価アルコール、 水酸基を有する各種のオリゴマー等が挙げられる。
モノエポキシドの具体例としては、 エチレンオキサイ ド、 プロピレンォキサイ ド、 α—ブチレンオキサイ ド、 —ブチレンオキサイ ド、 へキセンオキサイ ド、 シクロへキセンオキサイ ド、 スチレンオキサイ ド、 α—メチルスチレンォキシド 等のアルキレンオキサイ ド類や、 メチルグリシジルエーテル、 ェチルダリシジル エーテノレ、 イソプロピノレグリシジノレエーテノレ、 ブチノレグリシジノレエーテノレ等のァ ルキルグリシジルェ一テル類、 ァリルダリシジルェ一テル類、 ァリ一ルグリシジ ルェ一テル類等が挙げられる。
触媒としては KOH、 N a OH等のアルカリ触媒、 トリフルォロボラン一エー テラート等の酸性触媒、 アルミノポルフィ リン金属錯体ゃシアン化コバルト亜鉛 —グライム錯体触媒等の複合金属シアン化物錯体触媒等の既に公知のものが用い られる。 特に副反応が少ない複合金属シアン化物錯体触媒の使用が好ましいがそ れ以外のものであってもよい。
この他、 ポリオキシアルキレン重合体の主鎖骨格は、 水酸基末端ポリオキシァ ルキレン重合体を塩基性化合物、 例えば KOH、 Na OH、 KOCH3、 N a O CH3等の存在下、 2官能以上のハロゲン化アルキル、 例えば CH2C 1 2、- CH 2B r 2等による鎖延長等によっても得ることができる。
本発明の ( I ) 成分であるポリオキシアルキレン重合体の製造法としては、 特 に限定されず、 種々の方法を用いることができる。 特に、
(a) 1分子中に一般式 (1) :
H2C = C (R1) -R2-0~ (1)
または一般式 (2) :
HC (R1) =CH— R2— O— (2)
(式中 R1は炭素数 1 0以下の炭化水素基、 R2は水素、 酸素、 及び窒素からな る群より選択される 1種以上を構成原子として含有する炭素数 1から 20の 2価 の有機基) で示される不飽和基を末端に有するポリオキシアルキレン重合体と、
(b) —般式 (3) :
H- (S i (R3 2b) (Xb) O) mS i (R4 3_a) Xa (3)
(式中 R3, R4, X, a, b, mは前記と同じ。 ) で示される反応性ケィ素基 含有化合物とを、 (c) V I I I族遷移金属触媒の存在下で反応させる方法が、 分子鎖末端に 85%以上の反応性ケィ素基を導入できるという点で好ましい。
(a) 成分である末端に (1) または (2) で示される不飽和基を有するポリ ォキシアルキレン重合体の製造法としては、 従来公知の方法を用いればよく、 例 えば水酸基末端ポリオキシアルキレン重合体に不飽和結合を有する化合物を反応 させて、 エーテル結合、 エステル結合、 ウレタン結合、 カーボネート結合などに より結合させる方法等が挙げられる。 例えばエーテル結合により不飽和基を導入 する場合は、 ポリオキシアルキレン重合体の水酸基末端のメタルォキシ化により -OM (Mは N aまたは K等) を生成した後、 一般式 (6) :
H2C = C (R1) 一 R2— X (6)
または一般式 (7) :
HC (R1) =CH-R2-X (7)
(式中 R1, R2は前記と同じ。 ) で示される不飽和基含有化合物を反応させる 方法が挙げられる。
更に (6) 、 (7) を詳細 説明すると、 R1としては例えば直鎖アルキル基、 例えばメチル、 ェチル、 プロピル、 ブチノレ、 ペンチノレ、 へキシノレ、 ヘプチル、 ォ クチル、 ノニル、 デシル、 分岐アルキル基、 例えばイソプロピル、 イソブチル、 イソペンチル、 イソへキシルゃァリール基、 例えばフエ二ル基等を示すことがで き、 1種類のみであっても、 複数の種類の混合物であっても良い。 さらに反応性 の点からは、 メチル基が特に好ましい。 R 2は炭素数 1から 20の 2価の有機基 で、 例えば、 一 CH2—、 一C2H4—、 一 C3H6—、 一 C4H8—、 一 C5H10—、 — C6H12 -、 — C7H14、 _C8H16—、 C9H18、 一 C10H20—、 — CH ( CH3) 一、 一 CH2 - CH (CH3) 一、 -CH2~CH (CH3) 一 CH2—、 -C2H4-CH (CH3) 一、 一 C5H4—、 — CH2— C6H4—、 — CH2 - C6 H4— CH2—、 一 C2H4— C6H4—等の基が例示される。 合成が容易である点 で一 CH2—、 一CH2CH2—、 -CH2CH (CH3) 一が好ましい。 更に、 原 料入手の容易さから、 一 CH2—が特に好ましい。
一般式 (6) または (7) で示される不飽和基含有化合物の具体例としては、 例えば、 H2C = C (CH3) —CH2— C l、 H2 C = C (CH3) — CH2— B r、 H2C = C (CH2 CH3) —CH2— C l、 H2 C = C (CH2 CH3) -C H2— B r、 H2 C = C (CH2 CH (CH3) 2) 一 CH2— C l、 H2 C = C ( CH2CH (CH3) 2) —CH2— B r、 HC (CH3) =CH— CH2— C し HC (CH3) =CH— CH2— B r等が挙げられ、 特に、 反応性の点から、 H2 C = C (CH3) 一 CH2— C l、 HC (CH3) = C H— C H 2— C 1が好まし い。 更に、 原料入手、 および合成の容易さから、 H2C = C (CH3) — CH2— C 1が特に好ましい。
不飽和基の導入方法としては、 これ以外に H2C C (CH3) — CH2—基や HC (CH3) =CH— CH2—基等を有するイソシァネート化合物、 カルボン 酸、 エポキシ化合物を用いることもできる。
(b) 成分である反応性ケィ素基含有化合物としては、 上記水酸基や加水分解 性基と結合したケィ素基を分子内に 1個以上有し、 かつ 1個以上の S i— H基を 分子内に有している化合物であればよい。 代表的なものを示すと、 例えば一般式 (3) :
H— (S i (R3 2b) (Xb) O) mS i (R4 3_ a ) Xa (3)
で表わされる化合物が挙げられるが、 特に一般式 (8) :
H-S i (R4 3 _ a ) Xa (8)
で表わされる化合物が入手性の点から好ましい。
(式中 R3, R4, X, a, b, mは前記と同じ。 ;)
—般式 (3) または (8) の化合物を具体的に例示するならば、 トリクロルシ ラン、 メチルジクロルシラン、 ジメチルクロルシラン、 フエニルジクロルシラン、 トリメチルシロキシメチルクロルシラン、 1, 1, 3, 3—テトラメチルー 1一 ブロモジシロキサンの如きハロゲン化シラン類; トリメ トキシシラン、 トリエト キシシラン、 メチルジェトキシシラン、 メチルジメ トキシシラン、 フエ二ルジメ トキシシラン、 トリメチルシロキシメチルメ トキシシラン、 トリメチルシロキシ ジエトキシシランの如きアルコキシシラン類; メチルジァセトキシシラン、 フエ ニルジァセ トキシシラン、 トリァセ トキシシラン、 トリメチルシロキシメチルァ セトキシシラン、 トリメチルシロキシジァセ小キシシランの如きァシロキシシラ ン類; ビス (ジメチルケトキシメート) メチルシラン、 ビス (シクロへキシルケ トキシメート) メチルシラン、 ビス (ジェチルケトキシメート) トリメチルシロ キシシラン、 ビス (メチルェチルケトキシメート) メチルシラン、 トリス (ァセ トキシメート) シランの如きケトキシメートシラン類; メチルイソプロべニルォ キシシランの如きアルケニルォキシシラン類などが挙げられる。 これらの内、 特 にアルコキシシラン類が好ましく、 アルコキシ基の中でもメ トキシ基が特に好ま しい。 (c) 成分である V I I I族遷移金属触媒としては、 白金、 ロジウム、 コバル ト、 パラジウム及びニッケル等の V I I I族遷移金属元素から選ばれた金属錯体 触媒等が有効に使用される。 例えば、 H2P t C 1 6 · 6H20、 白金一ビニルシ ロキサン錯体、 白金ーォレフイン錯体、 P tメタル、 Rh C l (P P h 3) R h C 1 3、 R h/A 1 203、 Ru C l 3、 I r C l 3、 F e C l 3、 P d C 1 2 • 2H20、 N i C 1 2等のような化合物が使用できるが、 ヒ ドロシリル化の反 応性の点から、 白金一ビニルシロキサン錯体、 白金ーォレフイン錯体のいずれか であることが特に好ましい。 ここでいう白金一ビニルシロキサン錯体とは、 白金 原子に対し、 配位子として分子内にビニル基を有する、 シロキサン、 ポリシロキ サン、 環状シロキサンが配位している化合物の総称であり、 上記配位子の具体例 としては、 1, 1, 3, 3—テトラメチル一 1, 3—ジビニルジシロキサン、 1, 3, 5, 7—テトラビ二ルー 1, 3, 5, 7—テトラメチノレシクロテトラシロキ サン等が挙げられる。 白金ーォレフイン錯体のォレフイン配位子の具体例は 1, 5—へキサジェン、 1, 7—ォクタジ土ン、 1, 9—デカジエン、 1, 1 1—ド デカジエン、 1, 5—シクロォクタジェン等が挙げられる。 上記配位子の中でも 1, 9ーデカジエンが特に好ましい。
なお、 白金一ビュルシロキサン錯体、 白金ーォレフイン錯体については特公平 8— 9006号に開示されている。
触媒使用量としては特に制限は無いが、 通常、 アルケニル基 1モルに対して白 金触媒を 1 0一1から 1 0一8モル使用することが好ましく、 更に好ましくは 1 0一 3から 1 0一6モルの範囲で使用することができる。 触媒の量が少ない場合はヒ ド ロシリル化反応が十分に進行しない可能性がある。 また、 触媒量が多すぎると触 媒消費によるコストの負担が増えたり、 製品への残留触媒が増えるなどの問題が ある。
ヒ ドロシリル化反応は、 通常 1 0〜 1 50 °C、 好ましくは 20〜: 1 20 °C、 さ らに好ましくは 40〜1 00°Cの範囲とするのが好適であり、 反応温度の調節、 反応系の粘度の調整などの必要に応じて、 ベンゼン、 トルエン、 キシレン、 テト ラヒ ドロフラン、 塩化メチレン、 ペンタン、 へキサン、 ヘプタンなどの溶剤を用 いることができる。 ヒ ドロシリル化反応の触媒としては、 これ以外にも A 1 C 1 3や T i C 1 4等 も使用することができる。
ヒ ドロシリル化反応の反応促進という点では、 酸素の使用による触媒の再活性 ィ匕 (特開平 8— 2 8 3 3 3 9 ) や硫黄添加を行うのが好ましい。 硫黄の添加は高 価な白金触媒の増量などに伴うコストアップや残留触媒の除去などの問題を起こ さず製造時間の短縮を可能とし製造コスト削減、 さらには生産性のアップに寄与 する。
硫黄化合物としては硫黄単体、 チオール、 スルフイ ド、 スルホキシド、 スルホ ン、 チオケトン等が挙げられ、 特に硫黄が好ましいがこれに限定されるものでは ない。 液相反応系に硫黄化合物を添加するには、 例えば反応液や溶媒の一部にあ らかじめ硫黄化合物を溶解混合.してから全体に一様に分散することができる。 例 えばトルエン、 へキサン、 キシレンなどの有機溶媒に硫黄化合物を溶解してから 添加することができる。
硫黄化合物の添加量については、 例えばその量が金属触媒モル数を基準として 0 , 1 〜 1 0倍量、 もしくはアルケニル基のモル数を基準として 0 . 0 0 2〜 0 . 1倍量、 あるいは反応液全体重量を基準として 1 〜 5 0 0 p p mであるような範 囲で設定することができる。 添加量が少ないと硫黄添加の効果が十分に達成され ない場合がある。 硫黄化合物の量が多すぎる場合には触媒活性を低下させたり、 反応を阻害するような問題が起こる場合も有り、 添加量を適切に選定することが 好ましい。
ヒ ドロシリル化反応は無溶媒系でも、 溶媒存在下でも行うことができる。 ヒ ド ロシリル化反応の溶媒としては、 通常、 炭化水素、 ハロゲン化炭化水素、 エーテ ル類、 エステル類を用いることができるが、 ヘプタン、 へキサン、 ベンゼン、 ト ルェン、 キシレンを用いることが好ましい。
ヒ ドロシリル化反応において、 ヒ ドロシリル化反応を行う際の反応器気相部は、 窒素やヘリゥムなどの不活性ガスのみからなってもよいし、 酸素等が存在しても よい。 ヒ ドロシリル化反応を行う際には、 可燃性物質取扱いの安全性の観点から '反応器気相部は窒素やへリウムなどの不活性ガスの存在下で実施することがある。 しかしながら、 反応器気相部が窒素やヘリゥムなどの不活性ガスの存在下である 場合には、 ヒ ドロシリル化の反応系条件によっては反応速度が低下する場合もあ る。
ヒ ドロシリル化反応では、 反応器気相部の酸素濃度を爆発性混合組成を回避す る値に設定することにより、 酸素存在下で安全にヒ ドロシリル化反応を促進する ことができる。 反応器気相部の酸素濃度は、 例えば 0. 5 1 0%とすることが できる。
さらにヒ ドロシリル化反応においてポリオキシアルキレン重合体、 反応溶媒が 酸素により酸化されることを抑制するために、 酸化防止剤の存在下でヒ ドロシリ ル化反応を行うことができる。 酸化防止剤としては、 ラジカル連鎖禁止剤の機能 を有するフエノール系酸化防止剤、 例えば 2, 6—ジ一 t e r t—ブチル p— クレゾ一ノレ、 2, 6—ジ一 t e r t—ブチノレフエノーノレ、 2, 4一ジメチノレ一 6 — t e r t—プチノレフエノーノレ、 2, 2 '―メチレンビス (4ーメチノレ一 6— t e r t _ブチルフエノール) 、 4, 4'—ブチリデンビス (3—メチル一6— t e r t—プチノレフエノール) 、 4, 4 '—チォビス ( 3—メチノレ一 6 - t e r t —プチルフエノール) 、 テトラキス {メチレン一 3 (3, 5—ジ一 t e r t—ブ チルー 4ーヒ ドロキシフエニル) プロビオネ一ト} メタン、 1, 1, 3— トリス (2—メチノレー 4—ヒ ドロキシー 5 - t e r t—プチノレフエ二ノレ) ブタンなどを 用いる とができる。 同様のラジカル連鎖禁止剤としてアミン系酸化防止剤、 例 えばフエニル一 i3—ナフチルァミン、 α—ナフチルァミン、 N, N'—ジ一 s e c—ブチノレ一 ρ—フエ二レンジァミン、 フエノチアジン、 N, N'—ジフエ二ノレ - p—フエ二レンジァミンなどを用いることもできるがこれらに限定されるもの ではない。
上記 ( I ) 成分に用いるポリオキシアルキレン重合体は単独で使用してもよい し、 2種以上併用してもよい。
また、 反応性ケィ素基含有ポリオキシアルキレン重合体 ( I ) において反応性 ケィ素基が導入された分子鎖末端は、 次式で表されることが特に好ましい。 この ような末端は、 エステル結合やアミ ド結合などを含んでいないため、 得られる硬 化物が耐候性などに優れたものとなる。
(CHaO) 2 S i (CH3) — CH2— CH (CH3) — CH2— O— ポリオキシアルキレン重合体 ( I ) の分子量には特に制限はないが、 数平均分 子量が 1 , 000から 1 00, 000であることが好ましい。 数平均分子量が 1, 000以下では得られる反応性ケィ素基含有ポリオキシアルキレン重合体の硬化 物が脆くなり、 1 00, 000以上では官能基濃度が低くなりすぎ、 硬化速度が 低下する、 また、 ポリマーの粘度が高くなりすぎ、 取扱いが困難となるため好ま しくない。 さらに、 数平均分子量が 1 , 000から 50, 000であることが、 得られる反応性ケィ素基含有ポリオキシアルキレン重合体の粘度の点から好まし く、 5, 000〜 50, 000であることが機械物性発現上特に好ましい。
ここでのポリオキシアルキレン重合体の数平均分子量とは、 J I SK1 55 7 の水酸基価の測定方法と、 J I SK0070のよう素価の測定方法の原理に基づ いた滴定分析により、 直接的に末端基濃度を測定し、 ポリオキシアルキレン重合 体の構造を考慮して求めた数平均分子量と定義している。 また、 数平均分子量の 相対測定法として一般的な G PC測定により求めたポリスチレン換算分子量と上 記末端基分子量の検量線を作成し、 G PC分子量を末端基分子量に換算して求め ることも可能である。
更に ( I ) 成分として反応性ケィ素基を有するポリオキシアルキレン重合体の 変性体を用いることもできる。 代表的な変性体としては、 反応性ケィ素基を有す るポリオキシアルキレン重合体存在下に、 下記一般式 (9) で表される炭素数 1 〜 8のアルキル基を有する (メタ) アクリル酸アルキルエステルモノマーおよび (又は) 下記一般式 (1 0) で表される炭素数 1 0以上のアルキル基を有する ( メタ) アクリル酸アクリルエステルモノマーおよび (又は) 下記一般式 (1 1) で表される反応性ケィ素基含有 (メタ) アクリル酸アルキルエステルモノマーの 混合物を重合して得られるものである。 この他 (9) 、 (1 0) 、 (1 1) の重 合物を反応性ケィ素基含有ポリォキシアルキレン重合体とブレンドしたものも使 用することができる。
CH2 = C (R5) COOR6 (9)
(式中 R 5は水素原子またはメチル基、 R6は炭素数 1から 8のアルキル基を示 す)
CH2 = C (R5) COOR7 (1 0) (式中 R5は前記に同じ。 R7は炭素数 1 0以上のアルキル基を示す) CH2 = C (R5) COOR8
(S i (R3 2_b) (Xb) O) mS i (R4 3a) Xa (I D (式中 R 5は前記に同じ。 R 8は炭素数 1〜 6の 2価のアルキレン基を示す。
R3, R4, X, a, b, mは前記と同じ。 )
前記一般式 (9) の R6としては、 例えばメチル基、 ェチル基、 プロピル基、 n—ブチル基、 t一ブチル基、 2—ェチルへキシル基などの炭素数 1〜 8、 好ま しくは 1〜4、 さらに好ましくは 1〜2のアルキル基を挙げることができる。 な お一般式 (9) で表されるモノマ一は 1種類でもよく、 2種以上用いてもよい。 前記一般式 (10) の R 7としては、 たとえばラウリル基、 トリデシル基、 セ チル基、 ステアリル基、 ビフエ二ル基などの炭素数 1 0以上、 通常は 1 0〜30、 好ましくは 1 0〜20の長鎖アルキル基が挙げられる。 なお一般式 (1 0) で示 されるモノマーは 1種類でもよく、 2種以上用いてもよい。
前記一般式 (1 1) の R8としては、 例えばメチレン基、 エチレン基、 プロピ レン基などの炭素数 1〜6、 好ましくは 1〜4を挙げることができる。 R8と結 合する反応性ケィ素基としては、 例えばトリメ トキシシリル基、 メチルジメ トキ シシリル基、 トリエトキシシリル基、 メチルジェトキシシリル基等を挙げること ができる。 なお一般式 (1 1) で表されるモノマーは 1種類でもよく、 2種以上 用いてもよい。
この重合には式 (9) 、 (10) 、 (1 1) 以外のモノマ一を併用してもよく、 そのようなモノマーとしては、 たとえばアクリル酸、 メタクリル酸などのァクリ ル酸ゃァクリルァミ ド、 メタクリルァミ ド、 N—メチ口ールァクリルァミ ド、 N 一メチロールメタクリルアミ ドなどのァミ ド基、 グリシジルァタリレート、 グリ シジルメタクリレ一トなどのエポキシ基、 ジェチルァミノェチルァクリレート、 ジェチルアミノエチルメタクリレート、 アミノエチルビ二ルエーテルなどのアミ ノ基を含むモノマーやアクリロニトリル、 スチレン、 α—メチルスチレン、 アル キノレビ二ノレエーテル、 塩化ビニノレ、 酢酸ビニノレ、 プロピオン酸ビ二ノレ、 エチレン などのモノマ一が挙げられる。 この場合、 重合した式 (9) 、 (10) 、 (1 1 ) のモノマーの合計が重合したモノマー全体の 50%以上、 特に 70重量0 /0以上 であることが好ましい。
本発明の ( I I ) 成分であるエポキシ樹脂としては、 従来公知のものを広く使 用でき、 例えばビスフエノール A型エポキシ樹脂、 ビスフエノール F型エポキシ 樹脂、 ビスフエノール A D型エポキシ樹脂、 ビスフエノール S型エポキシ樹脂や これらを水添したエポキシ樹脂、 グリシジルエステル型エポキシ樹脂、 グリシジ ルァミン型エポキシ樹脂、 脂環式エポキシ樹脂、 ノボラック型エポキシ樹脂、 ゥ レタンプレポリマーの末端をエポキシ化したウレタン変性エポキシ樹脂、 フッ素 化工ポキシ樹脂、 ポリブタジエンあるいは N B Rを含有するゴム変性ェポキシ樹 脂、 テトラブロモビスフエノール Aのグリシジルエーテル等の難燃型エポキシ樹 脂等が挙げられる。
( I I ) 成分の使用量は (I ) 成分のポリオキシアルキレン重合体 1 ◦ 0重量 部に対して 0 . 1〜5 0 0部、 さらには 1 0〜2 0 0部の範囲が好ましい。 0 . 1部未満では引張り剪断接着強さが十分得られず、 5 0 0部を超えると剥離接着 強さの低下等の悪影響が出る場合があり好ましくない。
本発明では、 ポリオキシアルキレン重合体 (I ) とエポキシ樹脂 (I I ) との 相溶性の向上や、 配合物の接着性を向上させる等の目的で、 更に、 エポキシ基と 反応し得る官能基及び反応性ゲイ素基を有する化合物、 又は、 エポキシ基と反応 性ケィ素基とを有する化合物を添加することができる。
このようなエポキシ基と反応し得る官能基及び反応性ケィ素基を有する化合物、 又は、 エポキシ基と反応性ケィ素基とを有する化合物の具体例としては、 例えば γ—ァミノプロピルトリメ トキシシラン、 y—ァミノプロピルメチルジメ トキシ シラン、 γ— ( 2—アミノエチル) ァミノプロビルトリメ トキシシラン、 Ί— ( 2—アミノエチル) ァミノプロピルメチルジメ トキシシラン、 γ— ( 2—ァミノ ェチル) ァミノプロピルトリエトキシシラン、 一ウレイ ドプロピルトリエトキ シシラン、 Ν— ]3— ( N—ビュルべンジルアミノエチル) 一 y—ァミノプロピル トリメ トキシシラン、 γ—ァニリノプロビルトリメ トキシシラン等のアミノ基含 有シラン類; γ—メルカプトプロピルトリメ トキシシラン、 "V—メルカプトプロ ピルトリエトキシシラン、 γ—メルカプトプロピルメチルジメ トキシシラン、 y —メルカプトプロピルメチルジェトキシシラン等のメルカプト基含有シラン類; γ—グリシドキシプロビルトリメ トキシシラン、 γ—グリシドキシプロピルメチ ルジメ トキシシラン、 γ—グリシドキシプロピルトリエトキシシラン、 β— ( 3, 4一エポキシシクロへキシル) ェチルトリメ トキシシラン等のエポキシ基含有シ ラン類; J3—カルボキシルェチルフエニルビス (2—メ トキシエ トキシ) シラン、 N— β— ( Ν—カルボキシルメチルアミノエチル) 一 γ—ァミノプロビルトリメ トキシシラン等のカルボキシシラン類; ァミノ基含有シラン類と各種ケトンとの 脱水縮合により得られるケチミン化シラン類等が挙げられる。 本発明では、 これ らシリコン化合物を単独で使用しても良いし、 2種以上併用しても良い。 斯かる シリ コン化合物は、 ( I ) 成分と ( I I ) 成分の合計量を 1 0 0部とした場合、 通常 0 . 1〜2 0部程度の範囲、 好ましくは 0 . 2〜 1 0部程度の範囲で配合さ れるのが良い。
本発明の硬化性樹脂組成物には、 必要に応じてシラノール縮合触媒、 エポキシ 樹脂硬化剤、 種々の充填剤、 可塑剤、 溶剤やその他の添加剤等を添加することが できる。
シラノール縮合触媒としては、 例えば有機スズ化合物や酸性リン酸エステル、 酸性リン酸エステルとァミンの反応物、 飽和若しくは不飽和の多価カルボン酸又 はその酸無水物、 有機チタネート化合物等が挙げられる。 これらの触媒は、 単独 で用いてもよく、 2種以上併用してもよい。
又、 エポキシ樹脂硬化剤としては、 例えば脂肪族ァミンゃ脂環族ァミン、 芳香 族ァミン、 ポリアミノアミ ド、 イミダゾール、 ジシアンジアミ ド、 エポキシ変性 ァミン、 マンニッヒ変性ァミン、 マイケル付加変性ァミン、 ケチミン、 酸無水物、 アルコール類、 フエノール類等が挙げられる。 これらの硬化剤は、 単独で用いて もよく、 2種以上併用してもよい。
充填剤の具体例としては、 炭酸カルシウム、 カオリン、 タルク、 シリカ、 酸化 チタン、 ケィ酸アルミニウム、 酸化マグネシウム、 酸化亜鉛、 力一ボンブラック 等が挙げられる。 これらの充填剤は、 単独で用いてもよく、 2種以上併用しても よい。
可塑剤の例としては、 フタル酸エステル類や非芳香族 2塩基酸エステル類、 リ ン酸エステル等が挙げられ、 比較的高分子量タイプの可塑剤としては、 例えば 2 塩基酸と 2価アルコールとのポリエステル類、 ポリプロピレングリコールやその 誘導体、 ポリスチレン類等が挙げられる。 これら可塑剤は単独もしくは混合して 使用できる。
溶剤には、 炭化水素類、 酢酸エステル類、 アルコール類、 エーテル類、 ケトン 類のごとき非反応性のものが挙げられ、 このような溶剤であれば特に限定はない。 その他の添加剤としては、 例えば、 水添ヒマシ油、 有機ベントナイ ト、 ステア リン酸カルシウム等のタレ防止剤、 着色剤、 酸化防止剤、 紫外線吸収剤、 光安定 剤、 接着付与剤等が挙げられる。
( I ) 成分、 (I I ) 成分を含有する本発明の硬化性樹脂組成物の製造法は特 に限定されず、 例えば ( I ) 成分、 ( I I ) 成分を配合し、 ミキサー、 ロ ル又 はニーダ一等を用いて常温下又は加熱下で混練したり、 適当な溶剤を少量使用し て上記成分を溶解させ、 混合したりする等の通常の方法が採用されうる。
発明を実施するための最良の形態
本発明をより一層明らかにするために、 以下具体的な実施例を挙げて説明する 力 本発明はこれらに限定されるものではない。
(合成例 1 )
ポリプロピレングリコールを開始剤とし亜鉛へキサシァノコバルテートグライ ム錯体触媒にてプロピレンォキサイ ドの重合を行い、 平均分子量 1 0 , 0 0 0の ポリオキシプロピレングリコ一ルを得た。 続いてこの水酸基末端ポリエーテルオ リゴマーの水酸基に対して 1 . 2倍当量の N a OM eのメタノール溶液を添加し てメタノ一ルを留去し、 さらに 3—クロ口一 2—メチル一 1一プロペンを添加し て末端の水酸基をメタリル基に変換した。 次に得られたオリゴマー 5 0 0 gに対 しへキサン 1 0 gを加えて 9 0 °Cで共沸脱水を行い、 へキサンを減圧下留去した 後、 8 % 0 2 / N 2で容器内を置換した。 これに対して硫黄 ( 1重量%のトルェ ン溶液) 2 5 /Z 1、 白金ジビニルジシロキサン錯体 (1, 1, 3, 3—テトラメ チル一 1, 3—ジビニルジシロキサン : 白金換算で 3重量。 /0のキシレン溶液) 5 6 /X 1を加え、 撹拌しながら、 DM S (ジメ トキシメチルシラン) 2 4 . 2 gを ゆっく りと滴下した。 9 0 °Cで 5時間反応させた後、 未反応の DM Sを減圧下留 去し反応性ケィ素基含有ポリオキンプロピレン重合体を得た。 得られた重合体の H— N M R分析より、 末端への反応性ケィ素基導入率は 9 8 %であった。 また 得られた重合体の数平均分子量は約 1 0 , 0 0 0であった (ポリマー A) 。
(合成例 2 )
ポリプロピレングリコ一ルを開始剤とし亜鉛へキサシァノコバルテートグライ ム錯体触媒にてプロピレンオキサイ ドの重合を行い、 平均分子量 2 0, 0 0 0の ポリオキシプロピレンダリコールを得た。 続いてこの水酸基末端ポリエーテルオ リゴマーの水酸基に対して 1 . 2倍当量の N a O M eのメタノール溶液を添加し てメタノ一ノレを留去し、 さらに 3—クロ口一 2—メチルー 1一プロペンを添加し て末端の水酸基をメタリル基に変換した。 次に得られたオリゴマー 5 0 0 gに対 しへキサン丄 0 gを加えて 9 0 °Cで共沸脱水を行い、 へキサンを減圧下留去した 後、 8 <% 0 2 N 2で容器内を置換した。 これに対して硫黄 (1重量%のトルェ ン溶液) 2 4 μ 1、 白金ジビニルジシロキサン錯体 (1, 1, 3, 3—テトラメ チル一 1, 3—ジビニルジシロキサン: 白金換算で 3重量。/。のキシレン溶液) 5 4 μ 1を加え、 撹拌しながら、 DM S (ジメ トキシメチルシラン) 1 1 . 5 gを ゆつく りと滴下した。 9 0でで1 0時間反応させた後、 未反応の DM Sを減圧下 留去し反応性ケィ素基含有ポリオキシプロピレン重合体を得た。 得られた重合体 の1 H—NM R分析より、 末端への反応性ケィ素基導入率は 9 8。/。であった。 ま た得られた重合体の数平均分子量は約 2 0, 0 0 0であった (ポリマー B ) 。
(合成例 3 )
ポリプロピレングリコールを開始剤とし亜鉛へキサシァノコバルテートグライ ム錯体触媒にてプロピレンォキサイ ドの重合を行い、 平均分子量 1 0, 0 0 0の ポリオキシプロピレングリコールを得た。 続いてこの水酸基末端ポリエーテルオ リゴマーの水酸基に対して 1 . 2倍当量の ^ a OM eのメタノール溶液を添加し てメタノールを留去し、 さらに 3—クロ口一 1一プロペンを添加して末端の水酸 基をァリル基に変換した。 次に得られたオリゴマー 5 0 0 gに対しへキサン 1 0 gを加えて 9 0 °Cで共沸脱水を行い、 へキサンを減圧下留去した後、 窒素置換し た。 これに対して白金ジビュルジシロキサン錯体 (1, 1, 3, 3—テトラメチ ル一 1, 3—ジビニルジシロキサン: 白金換算で 3重量。/。のキシレン溶液) 3 0 μ 1 を加え、 撹拌しながら、 DMS (ジメ トキシメチルシラン) 9. O gをゆつ く りと滴下した。 その混合溶液を 90°Cで 2時間反応させた後、 未反応の DMS を減圧下留去し反応性ケィ素基含有ポリオキシプロピレン重合体を得た。 得られ た重合体の1 H— NMR分析より、 末端への反応性ケィ素基導入率は 82%であ つた。 また得られた重合体の数平均分子量は約 1 0, 000であった (ポリマ一 C) 。
(実施例 1 )
ポリマー Aを用い、 表 1の組成 (すべて重量部で表す。 ) で 1液形組成物を作 製し、 以下に示す測定を行った。 結果を表 2に示す。
(1) 硬化物引張り特性
硬化性樹脂組成物を厚さ 3 mmで硬化させ (23°CX 30 + 5 O°CX4 B) 、 J I S K 630 1の 3号形ダンベルを打ち抜き、 引張り速度 200 mm/m i nで引張り試験を実施し、 50%伸長時モジュラス (M50) 、 100 %伸長 時モジュラス (Ml 00) 、 破断強度 (TB) 、 破断時伸び (EB) を測定した。
(2) 接着強度
引張り剪断接着強さおよび剥離接着強さ (1 80度) を評価した。 引張り剪断接 着強さは、 種々の基材 (アルミニウム A 1 050 P, ステンレス鋼板 S US 30 4, 冷間圧延鋼板, PVC, アクリル, 樺材, 寸法: 100 X 25 X 2mm) へ、 硬化性樹脂組成物を厚さ 60 /imで塗布し、 養生後 (23°CX 3 日 + 50°CX 4 日) 、 引張り速度 5 Omm/m i nで引張り試験を実施した。 剥離接着強さは、 J I S H 4000のアルミニウム板 A 1 050 P (200 X 2 5 X 0. 1 m m) へ、 硬化性樹脂組成物を厚さ約 60 ; mまたは 2 mmで塗布し、 養生後 (2 3°CX 3日 + 50°CX4日) 、 引張り速度 20 Omm/m i nで引張り試験を実 施した。 なお、 表において、 CFは凝集破壊を、 TFは薄層破壊を、 AFは界面 破壊を、 MFは材料破壊を、 それぞれ表す。 また、 CF 90 AF 1 0などとある 場合は、 接着面積の破壊のうち 90%の面積が凝集破壊 CFであり 1 0%の面積 が界面破壊 A Fであることを表す。
(実施例 2)
ポリマー Bを用いた以外は実施例 1 と同様とした。 結果を表 2に示す。 (比較例 1 )
ポリマ一 Cを用いた以外は実施例 1 と同様とした。 結果を表 2に示す。
表 1. 1液形硬化性樹脂組成物の配合
Figure imgf000020_0001
) 油化シェルエポキシ㈱製, 2) 三共有機合成㈱製, 3) 日本ュニカー㈱製, ) 共栄社化学㈱製, 5) 白石工業㈱製.
液配合物評価結果
Figure imgf000021_0001
CF :凝集破壊, TF :薄層破壊, AF :界面破壊, MF :材料破壊
(実施例 3 )
表 3の組成 (すべて重量部で表す。 ) で 2液形組成物を作製した以外は実施例 1 と同様の方法で、 接着強度を測定とした。 結果を表 4に示す。
(実施例 4 ) .
ポリマー Bを用いた以外は実施例 3と同様とした。 結果を表 4に示す。
(比較例 2)
ポリマー Cを用いた以外は実施例 3と同様とした。 結果を表 4に示す。 表 3. 2液形硬化性樹脂組成物の配合
Figure imgf000022_0001
1) 丸尾カルシウム㈱製, 2) 化薬ァクゾ㈱製, 3) 日本ュニカー㈱製, 4) 大 内新興化学㈱製, 5) 楠本化成㈱製, 6) 油化シェルエポキシ㈱製, 7) 白石力 ルシゥム㈱製, 8) 三共有機合成㈱製. - 4. 2液配合物評価結果
Figure imgf000023_0001
C F :凝集破壊, T F :薄層破壊, AF :界面破壊, MF :材料破壊 表 2及び表 4から、 実施例の引つ張り剪断接着強さや T形剥離接着強さは比較 例を上回っており、 接着強度及び強靱性が改善されていることが分かる。 また、 引っ張り剪断試験では、 基材として金属やプラスチック、 木材を用いたが、 比較 例では一部、 界面破壊 (A F ) や薄層破壊 (T F ) が見られたのに対して、 実施 例ではほとんどが凝集破壊 (C F ) であり、 種々の被着体への接着性が向上して いることが分かる。 産業上の利用可能性
本発明により、 反応性ケィ素基含有ポリォキシアルキレン重合体とエポキシ樹 脂のブレンド硬化物の強靭性、 高剥離強度を維持したまま、 硬化物の引張り強度 や引張り剪断接着強さ、 および種々の被着体への接着性が向上した 化性榭脂組 成物を提供できる。

Claims

請 求 の 範 囲
1. ( I ) 分子鎖末端への反応性ケィ素基の導入率が1 H— NMR分析により 8 5%以上である反応性ケィ素基含有ポリオキシアルキレン重合体、 及び、 (I I ) エポキシ樹脂を含有する硬化性樹脂組成物。
2. 反応性ケィ素基含有ポリオキシアルキレン重合体 (I ) は、
(a) 1分子中に一般式 (1) :
H2C = C (R1) 一 R2— O— (1)
(式中 R1は炭素数 1 0以下の炭化水素基、 R2は水素、 酸素、 及び窒素からな る群より選択される 1種以上を構成原子として含有する炭素数 1から 20の 2価 の有機基) または一般式 (2) :
HC (R1) =CH-R2-0- (2)
(式中 R1は炭素数 1 0以下の炭化水素基、 R2は水素、 酸素、 及び窒素からな る群より選択される 1種以上を構成原子として含有する炭素数 1から 20の 2価 の有機基) で示される不飽和基を末端に有するポリオキシアルキレン重合体と、
(b) —般式 (3) :
H— (S i (R3 2_b) (Xb) O) mS i (R4 3_a) Xa (3)
(式中 R3および R4はいずれも炭素数 1から 20のアルキル基、 炭素数 6から 20のァリール基、 炭素数 7から 20のァラルキル基または (R, ) a S i 0- で示されるトリオルガノシロキシ基を示し、 R3または R4が二個以上存在する とき、 それらは同一であってもよく、 異なっていてもよい。 ここで R, は炭素数 1から 20の一価の炭化水素基であり、 3個の R' は同一であってもよく、 異な つていてもよい。 Xは水酸基または加水分解性基を示し、 Xが二個以上存在する 時、 それらは同一であってもよく、 異なっていてもよい。 aは 0、 1、 2または 3を、 bは 0、 1、 または 2をそれぞれ示す。 また m個の一 S i (R3 2b) ( Xb) —O—基における bは異なっていてもよい。 mは 0から 1 9の整数を示す。 伹し、 a +∑b 1を満足するものとする。 ) で示される反応性ケィ素基含有化 合物とを、 (c) V I I I族遷移金属触媒の存在下で反応させることにより得ら れるものである請求項 1記載の硬化性樹脂組成物。
3. 反応性ケィ素基含有ポリオキシアルキレン重合体 ( I ) において反応性ケ ィ素基が導入された分子鎖末端が次式で表されるものである請求項 1又は 2記載 の硬化性樹脂組成物。
(CH3Q) 2 S i (CH3) -CH -CH (CH3) — CH2— O—
4. 更に、 エポキシ基と反応し得る官能基及び反応性ケィ素基を有する化合物、 又は、 エポキシ基と反応性ケィ素基とを有する化合物を配合してなる請求項 1〜 3記載の硬化性樹脂組成物。
PCT/JP2000/000645 1999-02-05 2000-02-07 Composition de résine durcissable WO2000046300A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/889,587 US6737482B1 (en) 1999-02-05 2000-02-07 Curable resin composition
DE60024795T DE60024795T2 (de) 1999-02-05 2000-02-07 Härtbare harzzusammensetzung
EP00902114A EP1167451B1 (en) 1999-02-05 2000-02-07 Curable resin composition
JP2000597366A JP5090590B2 (ja) 1999-02-05 2000-02-07 硬化性樹脂組成物
CA002361829A CA2361829A1 (en) 1999-02-05 2000-02-07 Curable resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2826099 1999-02-05
JP11/28260 1999-02-05

Publications (1)

Publication Number Publication Date
WO2000046300A1 true WO2000046300A1 (fr) 2000-08-10

Family

ID=12243611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000645 WO2000046300A1 (fr) 1999-02-05 2000-02-07 Composition de résine durcissable

Country Status (6)

Country Link
US (1) US6737482B1 (ja)
EP (1) EP1167451B1 (ja)
JP (1) JP5090590B2 (ja)
CA (1) CA2361829A1 (ja)
DE (1) DE60024795T2 (ja)
WO (1) WO2000046300A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309077A (ja) * 2001-04-16 2002-10-23 Kanegafuchi Chem Ind Co Ltd 2液型硬化性組成物
JP2003128907A (ja) * 2001-10-17 2003-05-08 Konishi Co Ltd 一液湿気硬化型可撓性樹脂組成物
US7569630B2 (en) 2006-06-14 2009-08-04 Chemtura Corporation β-Crystalline polypropylenes
JP5226314B2 (ja) * 2005-09-30 2013-07-03 株式会社カネカ 硬化性組成物
JP2023509284A (ja) * 2019-11-15 2023-03-08 ダウ グローバル テクノロジーズ エルエルシー 硬化性組成物およびその基材を接着するための方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4101632B2 (ja) 2002-11-01 2008-06-18 株式会社カネカ 硬化性組成物および復元性、クリープ性改善方法
US20060189711A1 (en) * 2005-02-23 2006-08-24 Ng Howard C Silicon-containing polytrimethylene homo- or copolyether composition
US7629396B2 (en) 2005-02-23 2009-12-08 E.I. Du Pont De Nemours And Company Silicon-containing polytrimethylene homo- for copolyether composition
US7476344B2 (en) * 2005-02-25 2009-01-13 E.I. Du Pont De Nemours Electrical apparatuses containing polytrimethylene homo- or copolyether glycol based electrical insulation fluids
JP5226315B2 (ja) * 2005-09-30 2013-07-03 株式会社カネカ 硬化性組成物
EP2909272B1 (en) * 2012-10-19 2016-11-02 Dow Global Technologies LLC Composition of silane-modified polymer, epoxy resin and cure catalyst, and polymer concrete comprising the composition
CN108367546B (zh) * 2015-12-22 2020-06-16 株式会社钟化 复合体的制造方法及复合体
BR112021017932A2 (pt) 2019-05-28 2021-12-07 Sika Tech Ag Composição de dois componentes com alto grau de resistência
JP2023509281A (ja) * 2019-11-15 2023-03-08 ダウ グローバル テクノロジーズ エルエルシー 硬化性組成物およびその基材を接着するための方法
US20220380515A1 (en) * 2019-11-15 2022-12-01 Dow Global Technologies Llc A curable composition and a method for applying the same
CN115279825A (zh) * 2019-12-19 2022-11-01 汉高股份有限及两合公司 含有反应性稀释剂的无硅酮热界面材料

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0109979A1 (en) * 1982-12-04 1984-06-13 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Room temperature curing composition
WO1991015533A1 (fr) * 1990-04-03 1991-10-17 Kanegafuchi Chemical Industry Co., Ltd. Composition de resine vulcanisable
JPH04292616A (ja) * 1991-03-20 1992-10-16 Kanegafuchi Chem Ind Co Ltd 硬化性樹脂組成物
JPH05287187A (ja) * 1992-04-08 1993-11-02 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH0762205A (ja) * 1993-08-27 1995-03-07 Asahi Glass Co Ltd 硬化性の組成物
JPH07179744A (ja) * 1993-12-22 1995-07-18 Sanyo Chem Ind Ltd 常温硬化性組成物
JPH09296046A (ja) * 1996-04-30 1997-11-18 Sanyo Chem Ind Ltd 常温硬化性組成物

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4323488A (en) * 1979-03-26 1982-04-06 Shin-Etsu Chemical Company Limited Method for the preparation of silicone-modified polyoxyalkylene polyethers and room temperature-curable compositions therewith
US4657986A (en) 1984-12-26 1987-04-14 Kanegafuchi Chemical Industry Co., Ltd. Curable resinous composition comprising epoxy resin and silicon-containing elastomeric polymer
JP2675777B2 (ja) 1986-10-13 1997-11-12 コニシ 株式会社 加硫シリコーンゴムの接着方法
JPH0778110B2 (ja) 1987-05-01 1995-08-23 横浜ゴム株式会社 一液系可撓性エポキシ樹脂組成物
JPH0721045B2 (ja) * 1987-05-25 1995-03-08 鐘淵化学工業株式会社 硬化性組成物
EP0370531B1 (en) 1988-11-25 1997-08-27 Kanegafuchi Chemical Industry Co., Ltd. Two pack type curable composition comprising epoxy resin and silicon-containing elastomeric polymer
JP2813801B2 (ja) * 1989-02-01 1998-10-22 鐘淵化学工業株式会社 接着方法
JP2964340B2 (ja) 1989-02-16 1999-10-18 鐘淵化学工業株式会社 硬化性組成物
JP3097960B2 (ja) 1989-08-22 2000-10-10 コニシ株式会社 エポキシ樹脂組成物
JP2825311B2 (ja) 1990-03-13 1998-11-18 セメダイン株式会社 一成分形室温硬化性組成物
JP3263421B2 (ja) 1992-01-24 2002-03-04 株式会社ダイフク 移動体の無接触給電設備のピックアップユニットおよびこのピックアップユニットを備えた移動体
JP3193112B2 (ja) 1992-03-25 2001-07-30 株式会社タイルメント 一液系可撓性エポキシ樹脂組成物並びにそれからなるシーリング材または接着剤
JP3002925B2 (ja) * 1992-04-08 2000-01-24 鐘淵化学工業株式会社 硬化性組成物
JPH07242737A (ja) * 1994-03-07 1995-09-19 Kanegafuchi Chem Ind Co Ltd 硬化性樹脂組成物
JPH0881564A (ja) * 1994-07-12 1996-03-26 Asahi Glass Co Ltd 加水分解性ケイ素基含有重合体の製造方法
DE69519832T2 (de) * 1994-07-18 2001-06-07 Asahi Glass Co. Ltd., Tokio/Tokyo Verfahren zur Polyetherreinigung
JP3290557B2 (ja) 1994-11-01 2002-06-10 積水化学工業株式会社 室温硬化性接着剤組成物
JP4603156B2 (ja) 1997-11-12 2010-12-22 株式会社カネカ 反応性ケイ素基含有ポリエーテルオリゴマーの製造方法
CA2293172A1 (en) * 1999-01-05 2000-07-05 Fumio Kawakubo Method of producing reactive silicon group-containing polyether oligomers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0109979A1 (en) * 1982-12-04 1984-06-13 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Room temperature curing composition
WO1991015533A1 (fr) * 1990-04-03 1991-10-17 Kanegafuchi Chemical Industry Co., Ltd. Composition de resine vulcanisable
JPH04292616A (ja) * 1991-03-20 1992-10-16 Kanegafuchi Chem Ind Co Ltd 硬化性樹脂組成物
JPH05287187A (ja) * 1992-04-08 1993-11-02 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH0762205A (ja) * 1993-08-27 1995-03-07 Asahi Glass Co Ltd 硬化性の組成物
JPH07179744A (ja) * 1993-12-22 1995-07-18 Sanyo Chem Ind Ltd 常温硬化性組成物
JPH09296046A (ja) * 1996-04-30 1997-11-18 Sanyo Chem Ind Ltd 常温硬化性組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1167451A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309077A (ja) * 2001-04-16 2002-10-23 Kanegafuchi Chem Ind Co Ltd 2液型硬化性組成物
JP2003128907A (ja) * 2001-10-17 2003-05-08 Konishi Co Ltd 一液湿気硬化型可撓性樹脂組成物
JP5226314B2 (ja) * 2005-09-30 2013-07-03 株式会社カネカ 硬化性組成物
US7569630B2 (en) 2006-06-14 2009-08-04 Chemtura Corporation β-Crystalline polypropylenes
JP2023509284A (ja) * 2019-11-15 2023-03-08 ダウ グローバル テクノロジーズ エルエルシー 硬化性組成物およびその基材を接着するための方法

Also Published As

Publication number Publication date
US6737482B1 (en) 2004-05-18
JP5090590B2 (ja) 2012-12-05
DE60024795D1 (de) 2006-01-19
CA2361829A1 (en) 2000-08-10
DE60024795T2 (de) 2006-08-17
EP1167451A4 (en) 2002-11-13
EP1167451A1 (en) 2002-01-02
EP1167451B1 (en) 2005-12-14

Similar Documents

Publication Publication Date Title
EP1057866B1 (en) Curable resin composition
JP5080419B2 (ja) 硬化性組成物
WO2000046300A1 (fr) Composition de résine durcissable
JP2001354835A (ja) 硬化性組成物
JP2001311056A (ja) 被着体の接着方法
JPS5974149A (ja) 硬化性組成物
EP3480238B1 (en) Two-pack type epoxy resin composition
US6777485B1 (en) Curable resin composition
WO2019069866A1 (ja) 硬化性組成物
JP4287071B2 (ja) 2液型硬化性組成物
JPH01275648A (ja) 硬化性組成物
JP4287162B2 (ja) 2液型硬化性組成物
JP2001323151A (ja) 硬化性組成物
WO2004092270A1 (ja) 硬化性組成物
JP7421713B2 (ja) 接着方法、及び接着剤
JP4283586B2 (ja) 硬化性組成物
CN111655796B (zh) 固化性树脂组合物
JP3934276B2 (ja) 硬化性組成物
JP2008174611A (ja) 硬化性組成物
JPH04309519A (ja) 硬化性組成物
JP4044257B2 (ja) 硬化性組成物
JP2004083805A (ja) 硬化性組成物
WO2023171425A1 (ja) ポリオキシアルキレン系重合体の混合物および硬化性組成物
JP4293495B2 (ja) 硬化性組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 597366

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref document number: 2361829

Country of ref document: CA

Ref country code: CA

Ref document number: 2361829

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000902114

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09889587

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000902114

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000902114

Country of ref document: EP