WO1999033128A1 - Manganate de lithium, procede de production, et pile au lithium produite d'apres ce procede - Google Patents

Manganate de lithium, procede de production, et pile au lithium produite d'apres ce procede Download PDF

Info

Publication number
WO1999033128A1
WO1999033128A1 PCT/JP1998/005798 JP9805798W WO9933128A1 WO 1999033128 A1 WO1999033128 A1 WO 1999033128A1 JP 9805798 W JP9805798 W JP 9805798W WO 9933128 A1 WO9933128 A1 WO 9933128A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
manganese
lithium manganate
manganese oxide
compound
Prior art date
Application number
PCT/JP1998/005798
Other languages
English (en)
French (fr)
Inventor
Tokuo Suita
Hiromitsu Miyazaki
Original Assignee
Ishihara Sangyo Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha, Ltd. filed Critical Ishihara Sangyo Kaisha, Ltd.
Priority to AU16850/99A priority Critical patent/AU741721B2/en
Priority to BR9814384-0A priority patent/BR9814384A/pt
Priority to EP98961467A priority patent/EP0969537B1/en
Priority to US09/367,285 priority patent/US6334993B1/en
Priority to CA002314950A priority patent/CA2314950C/en
Priority to JP53237799A priority patent/JP3489685B2/ja
Priority to KR10-2000-7006550A priority patent/KR100506575B1/ko
Publication of WO1999033128A1 publication Critical patent/WO1999033128A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to lithium manganate, which is a compound useful as a positive electrode active material of a lithium battery, a method for producing the same, a positive electrode for a lithium battery using the same as a positive electrode active material, and a lithium battery.
  • Lithium manganate is a compound represented by formula L i x M n y 0 4 , as a representative compound, a spinel L i M n 2 0 4, L i 4/3 M n 5/3 O There is ci.
  • a method for obtaining such lithium manganate a method of firing a mixture of a manganese compound and a lithium compound at a temperature of about 800 ° C. has been used.
  • Lithium manganate obtained by the above-mentioned prior art method is obtained by calcining a mixture of a manganese compound and a lithium compound at a temperature of about 80 ° C. or outside for the purpose of adjusting the valence of manganese and reducing by-products. Therefore, sintering between particles tends to be a non-homogeneous sintered body, and the size of the particles cannot be controlled. In addition, a mixture of a manganese compound and a lithium compound has poor reactivity even when fired at a high temperature, so that it is difficult for the mixture to have a uniform composition and has many lattice defects. To avoid these problems, firing and mechanical grinding must be repeated many times.
  • a lithium secondary battery using lithium manganate obtained by the above method as a positive electrode active material has not only a low initial charge / discharge capacity but also a remarkable decrease in capacity as charging / discharging is repeated. This is because the crystals of lithium manganate collapse during charge and discharge, and are thought to be caused by the presence of lattice defects and low lithium ion conductivity.
  • the present inventors have conducted various studies to obtain lithium manganate useful as a positive electrode active material of a lithium battery.
  • lithium manganate having a cubic particle shape and having voids in the particles has a high initial charge-discharge capacity and high charge-discharge when used as a lithium secondary battery incorporating this as a positive electrode active material. It was found that the cycle characteristics were excellent due to the repetition, etc., and further studies were made to complete the present invention. That is, the present invention is a lithium manganate having a cubic particle shape and an initial discharge capacity of at least 95 mAh / g when used as a positive electrode active material of a lithium battery.
  • the present invention is a method capable of advantageously producing the lithium manganate
  • the first production method comprises the steps of reacting a manganese compound with an aluminum alloy to obtain a manganese hydroxide; Oxidizing the hydroxide in an aqueous medium or gas phase to obtain a manganese oxide; reacting the manganese oxide with a lithium compound in an aqueous medium to obtain a lithium manganate precursor; A step of heating and firing the precursor to obtain lithium manganate.
  • the second production method comprises a step of reacting a manganese compound with an alkali to obtain a manganese hydroxide, and oxidizing the hydroxide in an aqueous medium or in a gas phase to convert the manganese oxide.
  • the present invention provides a positive electrode for a lithium battery using the above-mentioned lithium manganate as a positive electrode active material, and a lithium battery using the same.
  • Figure 1 is the X-ray diffraction chart of sample a.
  • Figure 2 is the X-ray diffraction chart of Sample A.
  • Figure 3 is a scanning electron micrograph (magnification: 50,000) showing the particle structure of Sample A.
  • Figure 4 is a scanning electron micrograph (magnification: 50,000) showing the particle structure of Sample C.
  • Figure 5 is a transmission electron micrograph (magnification: 150,000 times) showing the particle structure of Sample A. You.
  • Figure 6 is an electron diffraction photograph of Sample A.
  • Figure 7 is a scanning electron micrograph (magnification: 50,000) showing the particle structure of Sample L. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention has a cubic particle shape, has voids in the particles, and has an initial discharge capacity of at least 95 mAh / g, preferably at least 10 OmAh / g when used as a positive electrode active material of a lithium battery.
  • This is lithium manganate.
  • the lithium manganate may be a single phase, or a mixture containing lithium manganate and impurities from the production process, for example, manganese oxide as long as the discharge capacity is at least 95 mAh / g. . If the discharge capacity is lower than the above range, the amount of lithium manganate required to obtain a battery having a desired capacity increases, which is not industrially preferable.
  • lithium manganate is represented by the general formula
  • L i is the x Mn y 0 4 compounds represented by, X in the formula, the value of Y is 0.3 to 1 represents the value of X / Y. 5 is preferably in the range of.
  • Preferred compositions for example, spinel L iMn 2 0 4, L i 4/3 Mn 5/3 0 4, etc.
  • the cubic particle shape refers to a cube or a rectangular parallelepiped like a dice, and also includes a shape in which some of its corners, that is, some vertices and sides are missing.
  • the shapes of the individual particles need not all be the same, and if the particles are mainly composed of cubic shapes, some irregularly shaped particles may be included.
  • the presence of voids in the particles can be confirmed by measuring the amount of voids. If the amount of voids is 0.005 milliliter / g or more, it can be recognized that the particles have voids.
  • the void volume is preferably in the range of 0.01 to 1.5 ml / g, and more preferably in the range of 0.01 to 0.7 ml / g.
  • the fact that the initial discharge capacity is at least 95 mAh / g when used as a positive electrode active material of a lithium battery can be easily confirmed by measuring under the battery form and measurement conditions described later.
  • the lithium secondary battery incorporating the lithium manganate of the present invention as the positive electrode active material has a high initial charge / discharge capacity and a high cycle characteristic. Will also be excellent.
  • the specific surface area of the lithium manganate is preferably 1 ⁇ 1 0 O m 2 / g , more preferably 1 ⁇ 3 0 m 2 / g.
  • the particle size is preferably in the range of 0.01 to 10 zm, and more preferably in the range of 0.05 to 5 m. The particle size can be measured by reading the maximum length of each particle from an electron micrograph.
  • the present invention relates to a method for producing lithium manganate.
  • the first production method comprises the following steps: 1) a step of reacting a manganese compound with an aluminum alloy to obtain a manganese hydroxide; A step of obtaining a manganese oxide by oxidation in a medium or a gaseous phase, 3 a step of reacting the manganese oxide and a lithium compound in water to obtain a lithium manganate precursor, 4 heating and firing the precursor And obtaining a lithium manganate by the method.
  • the second production method is: (1) a step of reacting a manganese compound with an alkali to obtain a manganese hydroxide; (2) obtaining a manganese oxide by oxidizing the hydroxide in an aqueous medium or gas phase. Step, 2) reacting the manganese oxide with an acid in an aqueous medium to obtain a proton-substituted manganese oxide in which a part of manganese has been replaced with a proton, and 3 converting the proton-substituted manganese oxide and a lithium compound to an aqueous system.
  • the step (2) is a step of obtaining a manganese hydroxide by reacting a manganese compound with an aluminum alloy.
  • a water-soluble manganese compound is reacted with an alcohol in an aqueous medium, or a water-insoluble manganese compound is dissolved in an acid to obtain Mn 2+ , M
  • the reaction can be carried out by reacting a manganese solution containing n 3 + and M n 4 + ions with an aqueous solution in an aqueous medium.
  • a more preferred method is to react the water-soluble manganese compound with an aqueous solution in an aqueous medium.
  • a water-soluble inorganic manganese compound such as manganese sulfate, manganese chloride and manganese nitrate, and a water-soluble organic manganese compound such as manganese acetate
  • the poorly water-soluble manganese compound, M n 0 2 and its hydrated Things, M n 2 0 3 and hydrates thereof, M N_ ⁇ , and manganese oxides such as M n 3 ⁇ 4 may be an organic manganese compound, such as Ma emissions cancer alkoxide.
  • the acid used include inorganic acids such as sulfuric acid, hydrochloric acid, and nitric acid, and organic acids such as acetic acid and formic acid.
  • alkali examples include alkali hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide; ammonia compounds such as ammonia gas and ammonia water; and alkali carbonates such as sodium carbonate, potassium carbonate, lithium carbonate, and ammonium carbonate. Force compounds can be used.
  • the reaction can be carried out in the atmosphere or in an inert gas, but it is preferable to carry out the reaction in an inert gas atmosphere in order to control the oxidation level of manganese hydroxide.
  • the reaction is preferably carried out at a temperature of 10 to 80 ° C. in order to control the particle shape.
  • the manganese hydroxide thus obtained may be filtered or washed as necessary.
  • the following step (2) is a step of oxidizing the manganese hydroxide obtained in the above step (2) in an aqueous medium or in a gas phase to obtain a manganese oxide.
  • oxidize in an aqueous medium air, oxygen, ozone, etc. are blown into an aqueous medium containing manganese hydroxide, or hydrogen peroxide, peroxodisulfate, etc. are added.
  • the peroxodisulfate for example, lithium peroxodisulfate can be used.
  • the temperature of the oxidation treatment in the aqueous medium is preferably from 10 ° C. to the boiling point, more preferably from room temperature to 90 ° C.
  • the oxidation in the gas phase can be carried out by filtering or washing the aqueous medium containing manganese hydroxide, if necessary, and then drying in air.
  • the temperature of the oxidation treatment in the gas phase is preferably from room temperature to 300 ° C., more preferably from 50 to 130 ° C.
  • the manganese hydroxide obtained in the step 1 is oxidized in an aqueous medium, or ii) first partially oxidized in an aqueous medium, and then oxidized in an aqueous medium. It is preferable to oxidize in the gas phase.
  • the degree of oxidation of the manganese hydroxide can be set as appropriate, but if the degree of oxidation is small, the manganese oxide contains divalent, trivalent, tetravalent, etc. It is considered that oxides or hydroxides are present.
  • State preferred manganese oxide in the present invention a 2 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 0 2 as a main component, ⁇ 2 + / ⁇ ⁇ 4 + molar ratio is what is in the range of 1-3.
  • Such a manganese oxide having a large specific surface area and a large amount of voids can be obtained by employing the preferable conditions for the oxidation treatment.
  • step (1) while reacting the manganese compound with the alkali, for example, adding alkali to an aqueous solution of the manganese compound, adding air, oxygen, ozone, aqueous hydrogen peroxide, peroxodisulfate, or the like. It may be oxidized.
  • Steps (2) and (3) are steps in which the manganese oxide obtained in step (2) is reacted with an acid in an aqueous medium to obtain a proton-substituted manganese oxide in which a part of manganese is replaced by protons.
  • the proton-substituted manganese oxide is preferable because of its high reactivity with the lithium compound in the step (3) for obtaining the lithium manganate precursor.
  • any inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid and hydrofluoric acid, and any water-soluble organic acid such as acetic acid and formic acid can be used.
  • Inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and hydrofluoric acid can be used. This is preferable because it can be carried out industrially advantageously.
  • the temperature for the reaction with the acid is preferably in the range of room temperature to 90 ° C, more preferably in the range of 40 to 70 ° C.
  • the manganese oxide thus obtained may be filtered, washed, or dried as necessary.
  • step (3) the manganese oxide or the proton-substituted manganese oxide obtained in step (1) or (2) is reacted with a lithium compound in an aqueous medium to obtain a lithium manganate precursor.
  • a lithium compound lithium hydroxide, lithium carbonate, and the like can be used, but lithium hydroxide is preferable because of its high reactivity.
  • the reaction proceeds by mixing the lithium compound and manganese oxide in an aqueous medium and setting the temperature to 50 ° C or higher. A more preferred temperature is 100 ° C or higher, an even more preferred temperature is in the range of 100 to 250 ° C, and a most preferred temperature is in the range of 100 to 180 ° C. .
  • the lithium compound and manganese oxide When performing the reaction at a temperature of 100 ° C or more, put the lithium compound and manganese oxide in an autoclave and add saturated water. Hydrothermal treatment is preferably performed under a vapor pressure or a pressurized condition.
  • the lithium compound and manganese oxide are mixed in an aqueous medium, and the aqueous medium is heated, dried and solidified (evaporated to dryness) while evaporating the aqueous medium at a temperature of 50 ° C or higher. Accordingly, the concentration of the lithium compound in the aqueous medium becomes higher, and the lithium compound reacts with the manganese oxide to easily form a lithium manganate precursor, which is preferable.
  • step (3) it is preferable to react while supplying the oxidizing agent batchwise or continuously, since the reactivity with the lithium compound is improved. What is a batch type?
  • the continuous method is a method in which the reaction level of a manganese oxide and a lithium compound is measured, and an oxidizing agent is continuously supplied to the reaction system so that the reaction reaches a target reaction level.
  • the continuous method is an economically preferable method for performing the reaction on an industrial scale.
  • the oxidizing agent it is preferable to react with at least one selected from the group consisting of air, oxygen, ozone, aqueous hydrogen peroxide and peroxodisulfate as an oxidizing agent, because the reactivity between the lithium compound and manganese oxide is improved.
  • the peroxodisulfate for example, potassium peroxodisulfate can be used.
  • step 3 In order to supply the oxidizing agent batchwise by performing the above step 3 by hydrothermal treatment, air, oxygen, ozone is blown into the mixture of lithium compound and manganese oxide prior to hydrothermal treatment, or Hydrogen peroxide solution and peroxodisulfate are added, and oxygen can be further supplied.
  • the temperature may be temporarily lowered during the hydrothermal treatment, and air, oxygen, or ozone may be blown into the air, or hydrogen peroxide or peroxodisulfate may be added to supply oxygen.
  • oxygen gas is The hydrothermal treatment is performed while continuously supplying with.
  • the amount of reaction between the manganese oxide and the lithium compound can be determined by taking a small amount of the reaction solution and measuring the alkali concentration of the liquid from which the solid has been separated by neutralization titration.
  • Air, oxygen, or ozone may be blown into the solution containing the lithium manganate precursor obtained in the above step 3, or hydrogen peroxide or peroxodisulfate may be added for further oxidation. Further, if necessary, it may be filtered, washed, or dried.
  • the drying temperature can be appropriately set as long as the temperature is below the temperature at which the lithium manganate precursor becomes lithium manganate, and a temperature of 50 to 200 ° C is appropriate.
  • Step (2) is a step of heating and firing the lithium manganate precursor obtained in step (3) to obtain lithium manganate.
  • the heating and firing temperature ranges from the temperature at which the precursor becomes lithium manganate to the temperature at which the specific surface area of the obtained lithium manganate becomes lm 2 / g or less. It is considered that the temperature of the heating and firing may vary depending on the composition, particle size, firing atmosphere, and the like of the precursor, but is generally in the range of 250 to 800 ° C, and is fine and has good crystallinity. In order to obtain lithium manganate, the range is preferably from 280 to 700 ° C, more preferably from 300 to 600 ° C. In order to obtain lithium manganate having a large particle diameter, the range is preferably from 65 to 80 ° C. If the heating and firing temperature is higher than the above range, the lithium in the produced lithium manganate evaporates and becomes brittle.
  • the firing atmosphere is not particularly limited as long as it is an oxygen-containing atmosphere such as in the air, and the oxygen partial pressure
  • the present invention is a positive electrode for a lithium battery using the above-mentioned lithium manganate as a positive electrode active material, and further a lithium battery using the positive electrode.
  • a lithium battery in the present invention is a primary battery using lithium metal for the negative electrode, a rechargeable secondary battery using lithium metal for the negative electrode, a carbon material, a tin compound, lithium titanate, etc. for the negative electrode.
  • the lithium manganate powder of the present invention may be added to a carbon-based conductive agent such as acetylene black, carbon, or graphite powder, or a polytetrafluoroethylene resin. It can be obtained by adding a binder such as polyvinylidene fluoride, kneading, and pelletizing. Further, when used for a cylindrical or rectangular battery, the lithium manganate powder of the present invention may contain other than these additives. An organic solvent such as N-methylpyrrolidone is also added to the mixture, kneaded to form a paste, applied on a metal current collector such as aluminum foil, and dried.
  • lithium ions are dissolved in a polar organic solvent that is electrochemically stable, that is, is not oxidized or reduced in a wider range than the potential range that operates as a lithium ion battery.
  • a polar organic solvent propylene carbonate, ethylene carbonate, getyl carbonate, dimethoxetane, tetrahydrofuran, acetyl lactone and the like or a mixture thereof can be used.
  • As a solute serving as a lithium ion source lithium perchlorate / lithium hexafluorophosphate, lithium tetrafluoroborate, or the like can be used.
  • Raw polypropylene film or polyethylene film will be arranged as a temporary separation.
  • Battery types include a separator between the positive and negative electrodes in the form of pellets, pressure bonding to a sealed can with a gasket made of polypropylene, injection of electrolyte, and a sealed coin-type battery, or a positive electrode material. And a negative electrode material coated on a metal current collector, wound around a separator, inserted into a battery can with a gasket, injected with an electrolyte, and sealed, and the like.
  • the performance of lithium manganate as a positive electrode material can be evaluated by constructing a lithium battery by the above-described method and charging and discharging the battery with an appropriate potential and current to measure its electric capacity. In addition, it is possible to judge whether the cycle characteristics are good or not from the change in the electric capacity due to repeated charging and discharging.
  • the temperature of the slurry containing the obtained manganese hydroxide was raised to 60 ° C, and air was blown for 1 hour to oxidize in the aqueous medium, and then switched to nitrogen gas and aged for 1 hour. Filtered and washed. The filter cake was dried at 110 C for 12 hours and subjected to gas phase oxidation to obtain manganese oxide.
  • the manganese oxide was mainly composed specific surface area, the void content is greater 2 Myuitaomikuron ⁇ Mn_ ⁇ 2.
  • the obtained manganese oxide (240 g in terms of Mn) was dispersed in water to form a slurry. To this slurry was added 0.920 liters of lithium hydroxide at a concentration of 3.206 mol / liter and pure water to make a liquid volume of 2.40 liters, and the mixture was charged into a 3 liter glass reaction vessel and heated at 80 ° C. The reaction was allowed to proceed for 3 hours while blowing air. After replenishing the amount of evaporated water, a portion was taken and the alkali concentration in the solution was measured. As a result, it was found that 18.8% by weight of the added lithium had reacted with manganese oxide.
  • This slurry was charged into an autoclave and subjected to hydrothermal treatment at a temperature of 130 ° C for 2 hours. After cooling the temperature to 80 ° C, the alkali concentration in the solution was measured in the same manner, and it was found that 57.1% by weight of the added lithium had reacted with the manganese oxide. After air was blown into the slurry for 2 hours, hydrothermal treatment was again performed at 130 ° C. for 2 hours to obtain a slurry of a lithium manganate precursor (sample a) by a batch method.
  • the alkali concentration in the solution was measured by the same method, and it was found that 74.1% by weight of the added lithium had reacted with the manganese oxide.
  • the molar ratio on L of sample a to Mn was 0.50.
  • manganese Sanli lithium precursor sample a is a mixture containing 2 ⁇ ⁇ Mn0 2 and L i 2 0 ⁇ ⁇ ⁇ Mn0 2 solid solution, and L iMn 2 0 4 and L iMn0 2 mainly Being I understood.
  • a manganese hydroxide was obtained in the same manner as in Example 1.
  • the obtained manganese oxide (240 g in terms of Mn) was dispersed in water to form a slurry. To this slurry was added 0.870 liters of lithium hydroxide at a concentration of 3.206 mol / liter and pure water to make a liquid volume of 2.40 liters. The mixture was charged into a 3 liter glass reaction vessel and heated to 80 ° C. The temperature was raised and the reaction was carried out for 3 hours while blowing air. When the amount of evaporated water was replenished and a portion was taken and the alkali concentration in the solution was measured, it was found that 16.4% by weight of the added lithium had reacted with manganese oxide.
  • This slurry was charged into an autoclave and subjected to hydrothermal treatment at a temperature of 150 ° C for 2 hours. After cooling the temperature to 80 ° C, the alkali concentration in the solution was measured by the same method, and it was found that 61.1% by weight of the added lithium reacted with manganese oxide. . Air was blown into the slurry for 2 hours, and then subjected to hydrothermal treatment again at 150 ° C. for 2 hours to obtain a slurry of a lithium manganate precursor (sample b) by a batch method.
  • lithium manganate of the present invention (sample B) was obtained.
  • a manganese hydroxide was obtained in the same manner as in Example 1.
  • the obtained manganese oxide (186.5 g in terms of 1 ⁇ 11) was dispersed in water to form a slurry.
  • a slurry To this slurry, 0.746 liters of lithium hydroxide having a concentration of 3,000 mol / liter and pure water were added, and the liquid volume was adjusted to 2.40 liters. The reaction was allowed to proceed for 3 hours while blowing air. After replenishing the amount of evaporated water, a portion was taken and the concentration of aluminum in the liquid was measured. As a result, it was found that 13.8% by weight of the added lithium had reacted with manganese oxide. .
  • This slurry was charged into a autoclave and subjected to a hydrothermal treatment at 180 ° C. for 2 hours.
  • the alkali concentration in the solution was measured in the same manner, and it was found that 55.5% by weight of the added lithium was reacting with manganese oxide.
  • the slurry was again subjected to hydrothermal treatment at 180 ° C. for 2 hours to obtain a slurry of a lithium manganate precursor (sample c) by a batch method.
  • the alkali concentration in the solution was measured in the same manner, and it was found that 79.1% by weight of the added lithium had reacted with manganese oxide.
  • the molar ratio of Li to Mn in sample c was 0.52.
  • a manganese hydroxide was obtained in the same manner as in Example 1. 'Synthesis of oxide)
  • the temperature of the slurry containing the obtained manganese hydroxide was raised to 60 ° C, and air was blown for 1 hour to oxidize in the aqueous medium, and then switched to nitrogen gas and aged for 1 hour. Filtered and washed. The filter cake was dried at 200 ° C for 12 hours and subjected to gas phase oxidation to obtain manganese oxide.
  • the manganese oxide was mainly composed specific surface area, the void content is greater 2 Myuitaomikuron ⁇ Mn_ ⁇ 2.
  • the obtained manganese oxide (186.5 g in terms of Mn) was dispersed in water to form a slurry.
  • To this slurry add 0.004 liters of lithium hydroxide and a pure water with a concentration of 3,000 mol / l and pure water to make a liquid volume of 2.40 liters, and charge the autoclave for 2 hours at 180 ° C.
  • Hydrothermal treatment was performed. After cooling the temperature to 80 ° C, a portion was sampled and the alkali concentration in the solution was measured. As a result, it was found that 31.9% by weight of the added lithium had reacted with manganese oxide. did. After air was blown into the slurry for 2 hours, hydrothermal treatment was again performed at 180 ° C for 2 hours.
  • the alkali concentration in the solution was measured in the same manner, and it was found that 56.6% by weight of the added lithium had reacted with the manganese oxide.
  • hydrothermal treatment was again performed at 180 ° C for 2 hours, and a slurry of a lithium manganate precursor (sample d) was obtained by a batch method.
  • the alkali concentration in the solution was measured in the same manner, and it was found that 75.8% by weight of the added lithium had reacted with the manganese oxide.
  • the molar ratio of Li to Mn in sample d was 0.50.
  • Manganese chloride tetrahydrate (MnC l 2 '99 wt% containing as 4H 2 0) 1 146 g was dissolved in water to 7.153 liters. This manganese chloride aqueous solution is charged into a 10-liter glass reaction vessel, and while stirring, the temperature is maintained at 15 ⁇ 5 ° C, under a nitrogen atmosphere, 6.209 mol / L sodium hydroxide 1 solution is added. 847 liters were dispersed and added over 1 hour to obtain a manganese hydroxide.
  • the temperature of the obtained slurry containing manganese hydroxide was raised to 60 ° C, and air was blown in for 7 hours to oxidize in an aqueous medium, followed by filtration, washing and repulping to obtain a manganese oxide slurry.
  • This manganese oxide was mainly composed of 2MnO • MnO 2 having a large specific surface area and a large void volume.
  • a manganese hydroxide was obtained in the same manner as in Example 1.
  • Sample h was pulverized finely using a small pulverizer, and then calcined in the air at 750 ° C. for 3 hours to obtain lithium manganate of the present invention (sample H).
  • a manganese hydroxide was obtained in the same manner as in Example 1.
  • a manganese oxidized product was obtained in the same manner as in Example 1.
  • the obtained manganese oxide (324 g in terms of Mn) was dispersed in water to form a slurry.
  • a lithium hydroxide solution having a concentration of 3.655 mol / liter and pure water to make a liquid volume of 2.40 l, which was charged into a 3 l glass reaction vessel.
  • the temperature was raised to 90 ° C while blowing at liter / minute, and the reaction was carried out for 13 hours to obtain a lithium manganate precursor (sample i).
  • a portion was taken and the alkali concentration in the solution was measured. As a result, it was found that 89.4% by weight of the added lithium had reacted with manganese oxide.
  • the molar ratio of Li to Mn in Sample i was 0.54.
  • Example 8 The obtained precursor slurry was filtered. No washing was performed. The filter cake was dried at 110 ° C, and calcined at 750 ° C in the air for 3 hours to obtain lithium manganate of the present invention (sample I).
  • Example 8
  • a manganese hydroxide was obtained in the same manner as in Example 1.
  • the temperature of the slurry containing the obtained manganese hydroxide was raised to 60 ° C.
  • the pH of this slurry was 8.3.
  • Oxygen gas was blown into the slurry at a rate of 2 liters / minute to oxidize in the liquid until the pH reached 6.
  • Bow I While adding oxygen gas continuously, adjust the pH to 9 by adding a 2 mol / liter sodium hydroxide solution, raise the temperature to 90 ° C, and ripen for 2 hours while maintaining the pH at 9. Filtered and washed.
  • the filter cake thus obtained was dispersed in pure water to obtain a slurry having a concentration of 100 g / liter in terms of Mn.
  • the pH of this slurry showed 10.7.
  • the manganese oxide was composed mainly of specific surface area, 2 ⁇ ⁇ Mn0 2 void volume is large.
  • the obtained manganese oxide (312 g in terms of Mn) was dispersed in water to form a slurry.
  • a lithium hydroxide solution at a concentration of 3.655 mol / liter and pure water to make a liquid volume of 2.40 liters, charge a 3 liter glass reactor, and add oxygen gas to the reactor.
  • the temperature was raised to 90 ° C while blowing at liter / minute, and the reaction was carried out for 6 hours to obtain a lithium manganate precursor (sample j). After replenishing the amount of evaporated water, a portion was taken and the alkali concentration in the solution was measured. As a result, it was found that 89.8% by weight of the added lithium had reacted with the manganese oxide.
  • the molar ratio of Li to Mn in sample j was 0.51.
  • Example J The obtained precursor slurry was filtered. No washing was performed. The filter cake was dried at 110 ° C, and calcined at 750 ° C for 3 hours in the atmosphere to obtain lithium manganate of the present invention (sample J).
  • the 815 g (86 wt% containing as MnS_ ⁇ 4) manganese sulfate was dissolved in water 6.179 liters. This manganese sulfate aqueous solution was charged into a 10-liter glass reaction vessel, and the temperature was increased to 60 ° C under stirring and under a nitrogen atmosphere. While maintaining the temperature at 60 ° C., 2.321 liters of sodium hydroxide having a concentration of 4 mol / liter was dispersed and added thereto over 1 hour to obtain a manganese hydroxide.
  • the pH of the slurry containing the obtained manganese hydroxide was 8.3.
  • the slurry was oxidized in liquid until the pH reached 6 while oxygen gas was blown into the slurry at 2 liters / minute, and the slurry was washed with filtered water.
  • This filter cake was dispersed in pure water to form a slurry of 100 g / liter in terms of Mn, charged into a 5-liter glass reaction vessel, and heated to 60 ° C.
  • the obtained manganese oxide (312 g in terms of Mn) was dispersed in water to form a slurry.
  • 0.841 l of a lithium hydroxide solution having a concentration of 3.655 mol / l and pure water was added to the slurry.
  • the temperature was raised to 90 ° C while blowing at a rate of 1 liter / minute, and the reaction was carried out for 1 hour. After replenishing the amount of evaporated water, a portion was taken and the alkali concentration in the solution was measured. As a result, it was found that 55.6% by weight of the added lithium had reacted with manganese oxide.
  • This slurry was charged into an autoclave and subjected to hydrothermal treatment at a temperature of 130 ° C for 3 hours. After cooling to a temperature of 90 ° C, the concentration of aluminum in the solution was measured in the same manner, and it was found that 76.9% by weight of the added lithium had reacted with the manganese oxide. did.
  • the slurry was reacted at 90 ° C. for 2 hours while blowing oxygen gas at 1 liter / minute to obtain a slurry of a lithium manganate precursor (sample k). Alkali concentration in liquid in the same way As a result, it was found that 93.7% by weight of the added lithium had reacted with the manganese oxide.
  • the molar ratio of Li to Mn in sample k was 0.51.
  • Manganese dioxide reagent were mixed (Kanto Chemical, Mn0 2 as 95 wt% content) 50 g lithium hydroxide monohydrate in L i / Mn molar ratio 0.505 to become as well a small type pulverizer After mixing and grinding, the mixture was placed in an alumina crucible and calcined in air at 750 ° C for 3 hours to obtain a comparative sample, lithium manganate (Sample L).
  • a manganese hydroxide was obtained in the same manner as in Example 1.
  • Lithium hydroxide monohydrate was mixed with the obtained manganese oxide (50 g in terms of Mn) so as to have a Li / Mn molar ratio of 0.505, and then pulverized and mixed well with a small pulverizer.
  • the physical properties of the samples A to M thus obtained were examined and are shown in Table 1.
  • the particle shape of the lithium manganate of the present invention was confirmed to be cubic by observation with an electron microscope (for example, scanning electron microscope photographs of Samples A and C are shown in FIGS. 3 and 4). Some samples contained amorphous particles, but the amount of amorphous particles was very small.
  • the sample M of the comparative example had a very high proportion of the same irregular shaped particles as the sample of the comparative example L, although the sample M partially contained a cubic shape.
  • a spot-shaped diffraction image was obtained by electron diffraction (for example, an electron diffraction photograph of Sample A is shown in Fig.
  • the specific surface area was measured by the BET method, and the void volume was measured by nitrogen adsorption. Bell Soap 28 manufactured by Bell Japan was used to measure the void volume. Table 1 shows the measurement results. From Table 1, it was found that all of Samples A to K had preferable specific surface areas, and that all had voids in the particles.
  • metallic lithium having a thickness of 0.5 mm was formed into a circular shape having a diameter of 14 mm, sandwiched between metallic nickel meshes, and pressed to obtain a negative electrode.
  • a 0.1-mm-thick lithium metal foil was wrapped around a nickel metal wire to the extent that rice grains were large, and this was used as a reference electrode.
  • a non-aqueous electrolyte a mixed solution of 1,2-dimethoxyethane and propylene carbonate (1: 1 by volume) in which lithium perchlorate was dissolved at a concentration of 1 mol / liter was used.
  • the electrodes were arranged in the order of a positive electrode, a reference electrode, and a negative electrode, and a porous polypropylene film was placed between them as a separator.
  • the charge / discharge cycle was measured at a constant current with the voltage range set from 4.3 V to 3.5 V and the charge / discharge current set at 0.26 mA (about 1 cycle / day).
  • Table 1 shows the initial discharge capacity, the discharge capacity at the 10th cycle, and the capacity retention ratio at that time.
  • the capacity is Table 1
  • the lithium manganate according to the present invention exhibited a high initial discharge capacity of at least 95 mAh / g and also had excellent cycle characteristics.
  • Lithium manganate synthesized by the conventional dry method tends to have defects in the crystal structure, which causes repeated charge and discharge to deteriorate the crystallinity and decrease the cycle capacity.
  • Lithium manganate has already been used as a positive electrode active material for lithium ion secondary batteries.
  • the diffusion coefficient of lithium ions is smaller than that of lithium cobaltate, which has a layered rock salt structure and is practically used.
  • the lithium manganate of the present invention has a cubic particle shape, has voids in the particles, and is excellent in crystallinity. In other words, conditions favorable for lithium insertion are provided, which is preferable for improving current density.
  • the lithium manganate of the present invention has a cubic particle shape and has voids in the particles, a lithium battery using this as a positive electrode material exhibits a high initial discharge capacity, It has excellent characteristics. Further, the production method of the present invention is a method capable of advantageously producing lithium manganate having the above characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

明 細 書 マンガン酸リチゥム及びその製造方法ならびにそれを用いてなるリチウム電池 技術分野
本発明は、 リチウム電池の正極活物質などとして有用な化合物であるマンガン 酸リチウム、 及びその製造方法、 ならびにそれを正極活物質として用いてなるリ チウム電池用正極、 リチウム電池に関する。
背景技術
マンガン酸リチウムは一般式 L i xM n y 04で表される化合物であり、 代表的 化合物としては、 スピネル型の L i M n 2 04、 L i 4/3M n 5 /3 O ciどがある。 このようなマンガン酸リチウムを得る方法として、 マンガン化合物とリチウム化 合物との混合物を 8 0 0 °C程度の温度で焼成する方法が用いられている。
発明の開示
前記の従来技術の方法で得られるマンガン酸リチウムは、 マンガンの価数の調 整や副生成物の低減を目的に、 マンガン化合物とリチウム化合物との混合物を 8 0 o °c内外の温度で焼成しているため、 粒子間の焼結が不均質に起こった焼結体 になりやすく、 粒子の大きさが制御できないという問題がある。 またマンガン化 合物とリチウム化合物との混合物は、 高温で焼成を行っても反応性が悪いため、 均質な組成となり難く、 格子欠陥の多い物になる。 これらの問題点を少しでも回 避するためには、 焼成や機械的な粉砕を何度も繰り返さなければならない。 また、 前記方法により得られるマンガン酸リチウムを正極活物質として用いた リチウム二次電池は、 初期の充放電容量が低いのみならず、 充放電を繰り返すに 従って顕著な容量低下も認められる。 これは充放電時にマンガン酸リチウムの結 晶が崩壊するためで、 格子欠陥の存在やリチウムイオン伝導度の低いことが原因 と考えられている。
上記の問題を解決するため、 多孔性の二酸化マンガンに酢酸リチウムや硝酸リ チウムまたは水酸化リチウム等を含浸させ、 均質な組成の物を低温で合成する方 法 (例えば電気化学、 6 3, 9 4 1 ( 1 9 9 5 ) ) も提示されているが十分では ない。
本発明者らはリチウム電池の正極活物質として有用なマンガン酸リチウムを得 るべく、 種々の検討をした。 その結果キュービックな粒子形状を有し、 粒子内に 空隙を有するマンガン酸リチウムは、 これを正極活物質として組み込んだリチウ ムニ次電池としたとき、 初期の充放電容量が高く、 且つ、 充放電を繰り返すこと によるサイクル特性にも優れたものであることなどを見出し、 その後更に検討し て本発明を完成した。 すなわち、 本発明は、 キュービックな粒子形状を有し、 リ チウム電池の正極活物質として用いたときの初期放電容量が少なくとも 9 5 mA h/ gであることを特徴とするマンガン酸リチウムである。 また、 本発明は 上記マンガン酸リチウムを有利に製造することのできる方法であって、 第 1の製 造方法は、 マンガン化合物とアル力リとを反応させてマンガンの水酸化物を得る 工程、 該水酸化物を水系媒液中もしくは気相中で酸化させてマンガン酸化物を得 る工程、 該マンガン酸化物とリチウム化合物を水系媒液中で反応させてマンガン 酸リチウム前駆体を得る工程、 該前駆体を加熱焼成してマンガン酸リチウムを得 る工程を含むことを特徴とする。 また、 第 2の製造方法はマンガン化合物とアル 力リとを反応させてマンガンの水酸化物を得る工程、 該水酸化物を水系媒液中、 もしくは気相中で酸化させてマンガン酸化物を得る工程、 該マンガン酸化物を水 系媒液中で酸と反応させてマンガンの一部をプロトンで置換したプロトン置換マ ンガン酸化物を得る工程、 該プロトン置換マンガン酸化物とリチウム化合物を水 系媒液中で反応させてマンガン酸リチウム前駆体を得る工程、 該前駆体を加熱焼 成してマンガン酸リチウムを得る工程を含むことを特徴とする。 更に本発明は、 上記マンガン酸リチウムを正極活物質として用いてなるリチウム電池用正極及び それを用いたリチウム電池である。
図面の簡単な説明
図 1は試料 aの X線回折チャートである。
図 2は試料 Aの X線回折チャートである。
図 3は試料 Aの粒子構造を示す走査型電子顕微鏡写真 (倍率 5万倍) である。 図 4は試料 Cの粒子構造を示す走査型電子顕微鏡写真 (倍率 5万倍) である。 図 5は試料 Aの粒子構造を示す透過型電子顕微鏡写真 (倍率 1 5 0万倍) であ る。
図 6は試料 Aの電子線回折写真である。
図 7は試料 Lの粒子構造を示す走査型電子顕微鏡写真 (倍率 5万倍) である。 発明を実施するための最良の形態
本発明は、 キュービックな粒子形状を有し、 粒子内に空隙を有し、 リチウム電 池の正極活性物質として用いたときの初期放電容量が少なくとも 95mAh/g、 好ましくは少なくとも 10 OmAh/gであることを特徴とするマンガン酸リチ ゥムである。 マンガン酸リチウムは単一相であっても、 また、 上記放電容量が少 なくとも 95mAh/gであれば、 マンガン酸リチウムと製造工程からの不純物、 たとえばマンガン酸化物を含む混合物であってもよい。 放電容量が上記範囲より 低いと、 所望の容量の電池を得るために必要なマンガン酸リチウムの量が増加す るため工業的に好ましくない。 本発明においてマンガン酸リチウムとは一般式
L ixMny04で表される化合物であり、 前記一般式中の X、 Yの値は X/Yの 値で表して 0. 3〜1. 5の範囲が好ましい。 好ましい組成物としては、 例えば、 スピネル型の L iMn204、 L i4/3Mn5/304、 層状岩塩型の L iMn〇2な どが挙げられる。
キュービックな粒子形状とは、 サイコロの様な立方体状もしくは直方体状をい い、 それらの角、 即ち頂点や辺が一部欠けた形状も含まれる。 なお、 個々の粒子 の形状がすべて同一である必要はなく、 また、 キュービックな形状の粒子を主体 とするものであれば一部不定形状の粒子が含まれていても良い。
また粒子内に空隙を有することは、 空隙量を測定することで確認することがで き、 空隙量が 0. 005ミリリツトル/ g以上であれば、 粒子内に空隙を有する と認めることができる。 空隙量は 0. 0 1〜 1. 5ミリリットル/ gの範囲が好 ましく、 より好ましくは 0. 01〜0. 7ミリリットル/ gの範囲である。
また、 リチウム電池の正極活物質として用いたときの初期放電容量が少なくと も 95mAh/gであることは、 後述する電池形態、 及び測定条件で測定するこ とにより容易に確認することができる。
上記構成とすることにより、 本発明のマンガン酸リチウムを正極活物質として 組み込んだリチウム二次電池は、 初期の充放電容量が高く、 且つ、 サイクル特性 にも優れたものとなる。
更に、 マンガン酸リチウムの比表面積は好ましくは 1〜 1 0 O m2 / g、 より 好ましくは 1〜3 0 m2/ gである。 この範囲にすると、 リチウムのインサーシ ヨン反応にとって好ましいため、 リチウム電池正極に用いた場合、 充放電時に結 晶の崩壊が起こらず、 電池特性に優れたものになる。 また、 その粒子径は 0 . 0 1〜1 0 zmが好ましい範囲であり、 より好ましくは 0 . 0 5 ~ 5〃mの範囲で ある。 粒子径は、 電子顕微鏡写真より個々の粒子の最大長さの部分を読みとるこ とにより計測できる。
次に本発明はマンガン酸リチウムの製造方法であって、 第 1の製造方法は、 ① マンガン化合物とアル力リとを反応させてマンガンの水酸化物を得る工程、 ②該 水酸化物を水系媒液中もしくは気相中で酸化させてマンガン酸化物を得る工程、 ③該マンガン酸化物とリチウム化合物を水中で反応させてマンガン酸リチウム前 駆体を得る工程、 ④該前駆体を加熱焼成してマンガン酸リチウムを得る工程を含 むことを特徴とする。 更に第 2の製造方法は、 ①マンガン化合物とアルカリとを 反応させてマンガンの水酸化物を得る工程、 ②該水酸化物を水系媒液中もしくは 気相中で酸化させてマンガン酸化物を得る工程、 ②' 該マンガン酸化物を水系媒 液中で酸と反応させてマンガンの一部をプロトンで置換したプロトン置換マンガ ン酸化物を得る工程、 ③該プロトン置換マンガン酸化物とリチウム化合物を水系 媒液中で反応させてマンガン酸リチウム前駆体を得る工程、 ④該前駆体を加熱焼 成してマンガン酸リチウムを得る工程を含むことを特徴とする。
まず前記①の工程は、 マンガン化合物とアル力リとを反応させてマンガンの水 酸化物を得る工程である。 マンガン化合物とアルカリとを反応させるには、 水溶 性マンガン化合物を水系媒液中でアル力リと反応させたり、 難水溶性マンガン化 合物を酸に溶解させて得られる M n 2 +、 M n 3 +、 M n 4 +イオンを含むマンガン 溶液を水系媒液中でアル力リと反応させたりして行うことができる。 前記の水溶 性マンガン化合物を水系媒液中でアル力リと反応させる方法がより好ましい。 水 溶性マンガン化合物としては硫酸マンガン、 塩化マンガン、 硝酸マンガンなどの 水溶性無機マンガン化合物や、 酢酸マンガンなどの水溶性有機マンガン化合物を 用いることができる。 難水溶性マンガン化合物としては、 M n 0 2及びその水和 物、 M n 2 0 3及びその水和物、 M n〇、 M n 34などのマンガン酸化物や、 マ ンガンアルコキシドなどの有機マンガン化合物を用いることができる。 また、 用 いる酸としては硫酸、 塩酸、 硝酸などの無機酸、 酢酸、 蟻酸などの有機酸が挙げ られる。 更に、 アルカリとしては水酸ィ匕ナトリウム、 水酸化カリウム、 水酸化リ チウムなどの水酸化アルカリ、 アンモニアガス、 アンモニア水などのアンモニア 化合物、 炭酸ナトリウム、 炭酸カリウム、 炭酸リチウム、 炭酸アンモニゥムなど の炭酸アル力リ化合物を用いることができる。 反応雰囲気は大気中でも不活性ガ ス中でも行うことができるが、 マンガン水酸化物の酸化レベルを制御するために、 不活性ガス雰囲気中で行う方が好ましい。 反応温度は粒子形状を制御するために 1 0〜8 0 °Cで行うのが好ましい。
このようにして得られたマンガンの水酸化物は、 必要に応じて、 ろ過したり、 洗浄したりしても良い。
次の②の工程は、 前記①の工程で得られたマンガンの水酸化物を水系媒液中も しくは気相中で酸化させてマンガン酸化物を得る工程である。 水系媒液中で酸化 させるには、 マンガンの水酸化物を含む水系媒液中に空気、 酸素、 オゾンなどを 吹き込んだり、 過酸化水素水、 ペルォキソ二硫酸塩などを添加することにより行 うことができる。 ペルォキソ二硫酸塩としては、 例えばペルォキソ二硫酸力リウ ムなどを用いることができる。 この水系媒液中での酸化処理の温度は、 好ましく は 1 0 °C〜沸点、 より好ましくは室温〜 9 0 Cである。 また、 気相中で酸化させ るには、 マンガンの水酸化物を含む水系媒液を必要に応じてろ過したり洗浄した りした後、 空気中で乾燥することにより行うことができる。 気相中での酸化処理 の温度は室温〜 3 0 0 °Cが好ましく、 5 0〜 1 3 0 °Cがより好ましい。 本発明に おいては、 ①の工程で得られたマンガンの水酸化物を、 i ) 水系媒液中で酸化す るか、 または ii ) まず、 水系媒液中で部分的に酸化し、 その後気相中で酸化する ことが好ましい。 マンガンの水酸化物の酸化の程度は適宜設定することができる が、 酸化度が小さい場合は、 マンガン酸化物中には、 2価、 3価、 4価などのマ ンガンの酸化物、 水和酸化物又は水酸化物などが存在すると考えられる。 本発明 において好ましいマンガン酸化物の状態は、 2 Μ η Ο · Μ η 0 2を主成分とし、 Μη 2 +/Μ η 4 +のモル比が 1〜3の範囲に有るものである。 更に好ましくは、 マンガン酸化物の比表面積が 1 0〜4 O m 2 / g、 空隙量が 0 . 0 8 ~ 0 . 3ミ リリットル/ g、 粒子径が 0 . 0 8〜0 . 1 5〃m程度のものであり、 比表面積、 空隙量が大きいため、 次の③の工程でリチウム化合物と反応しやすい。 このよう な比表面積、 空隙量が大きいマンガン酸化物は、 前記の好ましい酸化処理の条件 を採用することにより得ることができる。 なお、 前記①の工程において、 マンガ ン化合物とアルカリとを反応させながら、 例えば、 マンガン化合物の水溶液にァ ルカリを添加しながら、 空気、 酸素、 オゾン、 過酸化水素水、 ペルォキソ二硫酸 塩などで酸化しても良い。
②, の工程は、 ②の工程で得られたマンガン酸化物を水系媒液中で酸と反応さ せてマンガンの一部をプロトンで置換したプロトン置換マンガン酸化物を得るェ 程であって、 このようにプロトン置換されたマンガン酸化物は、 マンガン酸リチ ゥム前駆体を得る③の工程におけるリチウム化合物との反応性が高いため好まし いものである。
用いる酸としては塩酸、 硫酸、 硝酸、 フッ酸等の無機酸、 酢酸、 蟻酸等の水溶 性有機酸であれば何れでも用いることができるが、 塩酸、 硫酸、 硝酸、 フッ酸等 の無機酸は、 工業的有利に実施できるので好ましいものである。 酸と反応させる 際の温度は室温〜 9 0 °Cの範囲が好ましく、 より好ましくは 4 0〜7 0 °Cの範囲 である。
このようにして得られたマンガン酸化物は必要に応じて、 ろ過したり、 洗浄し たり、 あるいは乾燥しても良い。
③の工程は、 前記②の工程、 若しくは②, の工程で得られたマンガン酸化物ま たはプロトン置換マンガン酸化物とリチウム化合物とを水系媒液中で反応させて マンガン酸リチゥム前駆体を得る工程である。 前記のリチウム化合物としては水 酸化リチウム、 炭酸リチウムなどを用いることができるが、 反応性が良いことか ら水酸化リチウムが好ましい。 このリチウム化合物とマンガン酸化物を水系媒液 中で混合し、 温度を 5 0 °C以上にすることで反応が進む。 より好ましい温度は 1 0 0 °C以上であり、 更に好ましい温度は 1 0 0〜2 5 0 °Cの範囲であり、 最も好 ましい温度は 1 0 0〜 1 8 0 °Cの範囲である。 1 0 0 °C以上の温度で反応を行う 場合には、 リチウム化合物とマンガン酸化物とをオートクレーブに入れ、 飽和水 蒸気圧下または加圧下で水熱処理することが好ましい。 また、 リチウム化合物と マンガン酸化物を水系媒液中で混合し、 5 0 °C以上の温度で水系媒液を蒸発させ ながら加熱し乾燥、 固化させる (蒸発乾固) と、 水系媒液が蒸発するに従いリチ ゥム化合物の水系媒液中の濃度が高くなり、 リチウム化合物とマンガン酸化物が 反応してマンガン酸リチウム前駆体が生成し易くなるので好ましい。 上記③のェ 程で得られるマンガン酸リチゥム前駆体は、 反応条件によりその組成は変化する が、 2 Μ η Ο · M n 02と L i 20 · Μ η Ο · M n 02の固溶体、 L i M n 2 04及 び L i M n 02などを主として含有する混合物となっていると考えられる。 この ことは X線回折により確認することができる。
前記③の工程を行うに際し、 酸化剤を回分式もしくは連続式に供給しながら反 応させるとリチウム化合物との反応性が良くなるので好ましい。 回分式とは、
1 ) 一定量の酸化剤を反応系に供給し、 次いで 2 ) 供給した酸化剤が消費される まで供給を中断して反応を行い、 更に 3 ) マンガン化合物とリチウム化合物の反 応量を測定する、 という 1 ) 〜3 ) の操作を繰り返して、 反応が目的のレベルま で達するまで行う方式である。 回分式は、 マンガン酸化物とリチウム化合物の反 応量を正確に制御する上で好ましい方式である。 また、 連続式とは、 マンガン酸 化物とリチウム化合物の反応レベルを測定しながら、 反応系に酸化剤を連続的に 供給して目的の反応レベルまで反応させる方式である。 連続式は工業的規模で反 応を行う上で経済的に好ましい方式である。 更に、 酸化剤として空気、 酸素、 ォ ゾン、 過酸化水素水及びペルォキソ二硫酸塩から選ばれる少なくとも一種を用い て反応させるとリチゥム化合物とマンガン酸化物との反応性が良くなるので好ま しい。 ベルォキソ二硫酸塩としては、 例えばペルォキソ二硫酸カリウムなどを用 いることができる。
前記③の工程を水熱処理により行い、 酸化剤を回分式で供給するには、 水熱処 理を行うのに先だってリチウム化合物とマンガン酸化物との混合物に空気、 酸素、 オゾンを吹き込んだり、 または過酸化水素水、 ペルォキソ二硫酸塩を添加し、 さ らに酸素を供給して行うことができる。 また水熱処理の途中で一旦温度を下げ、 空気、 酸素、 オゾンを吹き込んだり、 または過酸化水素水、 ペルォキソ二硫酸塩 を添加して、 さらに酸素を供給してもよい。 また連続式では、 酸素ガスを加圧下 で連続的に供給しながら水熱処理を行う。 マンガン酸化物とリチウム化合物との 反応量は、 反応液を少量分取し、 固形物を分離した液のアルカリ濃度を中和滴定 で測定することにより求めることができる。
前記③の工程で得られたマンガン酸リチゥム前駆体を含む溶液に空気、 酸素、 オゾンを吹き込んだり、 過酸化水素水、 ペルォキソ二硫酸塩を添加したりして更 に酸化しても良い。 更に、 必要に応じてろ過し、 洗浄したり、 乾燥しても良い。 乾燥の温度はマンガン酸リチゥム前駆体がマンガン酸リチウムとなる温度以下で あれば適宜設定でき、 5 0〜2 0 0 °Cの温度が適当である。
更に④の工程は、 前記③の工程で得られたマンガン酸リチウム前駆体を加熱焼 成して、 マンガン酸リチウムを得る工程である。 加熱焼成の温度は、 前駆体から マンガン酸リチウムとなる温度以上から、 得られるマンガン酸リチウムの比表面 積が l m 2/ g以下になる温度までである。 この加熱焼成の温度は、 前駆体の組 成、 粒度及び焼成雰囲気などにより異なる場合があると考えられるが、 おおむね 2 5 0 - 8 4 0 °Cの範囲であり、 微細でしかも結晶性のよいマンガン酸リチウム を得る上では、 2 8 0〜7 0 0 °Cの範囲が好ましく、 3 0 0〜6 0 0 °Cの範囲が より好ましい。 また、 粒径の大きいマンガン酸リチウムを得る上では 6 5 0〜8 0 o °cの範囲が好ましい。 加熱焼成の温度が上記範囲より高いと生成したマンガ ン酸リチウム中のリチウムが蒸発しゃすくなる。 焼成雰囲気は大気中など酸素含 有雰囲気であれば特に制限はなく、 酸素分圧は適宜設定できる。
次に本発明は、 前記のマンガン酸リチウムを正極活物質として用いたリチウム 電池用正極であり、 更にはその正極を用いてなるリチウム電池である。 なお本発 明でいうリチウム電池とは、 負極にリチウム金属を用いた一次電池、 及び負極に リチウム金属を用いた充放電可能な二次電池、 負極に炭素材料、 スズ化合物、 チ タン酸リチウム等を用いた充放電可能なリチウムイオン二次電池のことをいう。 リチウム電池用正極は、 コイン型電池用とする場合には、 本発明のマンガン酸 リチウム粉体に、 アセチレンブラックやカーボン、 グラフアイ ト粉末等の炭素系 導電剤や、 ポリ四フッ化工チレン樹脂やポリビニリデンフルオラィ ド等の結着剤 を添加、 混練し、 ペレット成型して得ることができる。 更に円筒型或いは角形電 池用とする場合には、 本発明のマンガン酸リチウム粉体に、 これらの添加物以外 に N—メチルピロリ ドン等の有機溶剤も添加し、 混練してペースト状とし、 アル ミ箔のような金属集電体上に塗布し、 乾燥して得ることができる。
リチウム電池の電解液には、 電気化学的に安定な、 即ちリチウムイオン電池と して作動する電位範囲より広い範囲で、 酸化 ·還元されることのない極性有機溶 媒に、 リチウムイオンを溶解させたものを使用することができる。 極性有機溶媒 としては、 プロピレンカーボネートやエチレンカーボネート、 ジェチルカーボネ ート、 ジメ トキシェタン、 テトラヒドロフラン、 ァ一プチルラクトン等やそれら の混合液を用いることができる。 リチウムイオン源となる溶質には、 過塩素酸リ チウムゃ六フッ化リン酸リチウム、 四フッ化ホウ素酸リチウム等を用いることが できる。 また電極間には多? 生のポリプロピレンフィルムやポリエチレンフィル ムが、 セパレ一夕として配置される。
電池の種類としては、 ペレット状の正極と負極の間にセパレー夕を置き、 ポリ プロピレン製のガスケットのついた封口缶に圧着し、 電解液を注入し、 密閉した コイン型のものや、 正極材料や負極材料を金属集電体上に塗布し、 セパレー夕を はさんで巻き取り、 ガスケットのついた電池缶に挿入し、 電解液を注入し、 封入 した円筒型のもの等が挙げられる。 また特に電気化学特性を測定することを目的 とした三極式の電池もある。 この電池は正極と負極以外に参照極も配置し、 参照 極に対して他の電極の電位をコントロールすることにより、 各電極の電気化学的 な特性を評価するものである。
マンガン酸リチウムの正極材料としての性能については、 上記の方法でリチウ ム電池を構成し、 適当な電位及び電流で充放電することにより、 その電気容量を 測定して評価することができる。 また充放電を繰り返すことによる電気容量の変 化から、 そのサイクル特性の良否を判断することができる。
実施例
以下に本発明の実施例を示すが、 本発明はこれらの実施例に限定されるもので はない。
実施例 1
(マンガンの水酸化物の合成)
硫酸マンガン (M n S O として 8 6重量%含有) 8 1 5 gを水に溶解して 6 . 179リツトルにした。 この硫酸マンガン水溶液を 10リツトルのガラス製反応 容器に仕込み、 撹拌下、 窒素雰囲気下で温度を 15±5°Cに保持しながら、 こ の中に 4モル/リットルの濃度の水酸化ナトリウム 2. 321リットルを 1時間 かけて分散添加し、 マンガンの水酸化物を得た。
(マンガン酸化物の合成)
得られたマンガンの水酸化物を含むスラリーの温度を 60°Cに昇温して、 空気 を 1時間吹込んで水系媒液中で酸化させ、 次いで、 窒素ガスに切り換えて 1時間 熟成した後、 ろ過水洗した。 ろ過ケーキを 110 Cで 12時間乾燥して気相酸化 し、 マンガン酸化物を得た。 このマンガン酸化物は比表面積、 空隙量が大きい 2 ΜηΟ · Mn〇2 を主成分とするものであった。
(マンガン酸リチウム前駆体の合成)
得られたマンガン酸化物 (Mn換算で 240 g) を水に分散させスラリー化 した。 このスラリーに 3. 206モル/リットルの濃度の水酸化リチウム 0. 9 20リヅトルと純水を添加し、 液量を 2. 40リツトルとして、 3リットルのガ ラス製反応容器に仕込み、 80°Cに昇温し、 空気を吹込みながら、 3時間反応さ せた。 蒸発した水量を補充してから一部を分取して液中のアルカリ濃度を測定し たところ、 添加したリチウムの 18. 8重量%がマンガン酸化物と反応している ことが判明した。 このスラリーをオートクレープに仕込み、 130°Cの温度で 2 時間水熱処理をした。 温度を 80°Cまで冷却してから、 同様の方法で液中のアル カリ濃度を測定したところ、 添加したリチウムの 57. 1重量%がマンガン酸化 物と反応していることが判明した。 このスラリー中に空気を 2時間吹き込んでか ら、 再度 130°Cで 2時間水熱処理をして、 回分式によってマンガン酸リチウム 前駆体 (試料 a) のスラリーを得た。 温度を 80°Cまで冷却してから、 同様の方 法で液中のアルカリ濃度を測定したところ、 添加したリチウムの 74. 1重量% がマンガン酸化物と反応していることが判明した。 試料 aの Mnに対する L上の モル比は 0. 50であった。
試料 aの X線回折チャートを図 1に示した。 図 1より、 試料 aのマンガン酸リ チウム前駆体は、 2ΜηΟ · Mn02と L i 20 · ΜηΟ · Mn02の固溶体、 L iMn204及び L iMn02などを主として含有する混合物となっていること がわかった。
(マンガン酸リチウムの合成)
得られた前駆体スラリーに、 2時間空気を吹き込んでからろ過した。 洗浄はし なかった。 ろ過ケーキを 1 10°Cで乾燥してから、 大気中 500°Cで 3時間焼成 して本発明のマンガン酸リチウム (試料 A) を得た。
実施例 2
(マンガンの水酸化物の合成)
実施例 1と同様の方法でマンガンの水酸化物を得た。
(マンガン酸化物の合成)
実施例 1と同様の方法でマンガン酸化物を得た。
(マンガン酸リチウム前駆体の合成)
得られたマンガン酸化物 (Mn換算 240 g) を水に分散させスラリー化した。 このスラリーに、 3. 206モル/リットルの濃度の水酸化リチウム 0. 870 リットルと純水を添加し、 液量を 2. 40リットルとして、 3リットルのガラス 製反応容器に仕込み、 80°Cに昇温し、 空気を吹込みながら、 3時間反応させた。 蒸発した水量を補充してから一部を分取して液中のアルカリ濃度を測定したとこ ろ、 添加したリチウムの 16. 4重量%がマンガン酸化物と反応していることが 判明した。 このスラリーをオートクレープに仕込み、 150°Cの温度で 2時間水 熱処理をした。 温度を 80°Cまで冷却してから、 同様の方法で液中のアルカリ濃 度を測定したところ、 添加したリチウムの 6 1. 1重量%がマンガン酸化物と反 応していることが判明した。 このスラリー中に空気を 2時間吹き込んでから、 再 度 150°Cで 2時間水熱処理をして、 回分式によってマンガン酸リチウム前駆体 (試料 b) のスラリーを得た。 温度を 80°Cまで冷却してから、 同様の方法で液 中のアルカリ濃度を測定したところ、 添加したリチウムの 78. 3重量%がマン ガン酸化物と反応していることが判明した。 試料 bの Mnに対する L iのモル比 は 0. 50であった。
(マンガン酸リチウムの合成)
得られた前駆体スラリーに、 2時間空気を吹き込んでからろ過した。 洗浄はし なかった。 ろ過ケーキを 1 10°Cで乾燥した後、 大気中 500°Cで 3時間焼成し て本発明のマンガン酸リチウム (試料 B) を得た。
実施例 3
(マンガンの水酸化物の合成)
実施例 1と同様の方法でマンガンの水酸化物を得た。
(マンガン酸化物の合成)
実施例 1と同様の方法でマンガン酸化物を得た。
(マンガン酸リチゥム前駆体の合成)
得られたマンガン酸化物 (1^11換算186. 5 g) を水に分散させスラリー化 した。 このスラリーに 3. 000モル/リットルの濃度の水酸化リチウム 0. 7 46リヅトルと純水を添加し、 液量を 2. 40リツトルとして、 3リットルのガ ラス製反応容器に仕込み、 80°Cに昇温し、 空気を吹込みながら、 3時間反応さ せた。 蒸発した水量を補充してから一部を分取して液中のアル力リ濃度を測定し たところ、 添加したリチウムの 13. 8重量%がマンガン酸化物と反応している ことが判明した。 このスラリーをォ一トクレーブに仕込み、 180°Cで 2時間水 熱処理をした。 温度を 80°Cまで冷却してから、 同様の方法で液中のアルカリ濃 度を測定したところ、 添加したリチウムの 55. 5重量%がマンガン酸化物と反 応していることが判明した。 このスラリー中に空気を 2時間吹き込んでから、 再 度 180°Cで 2時間水熱処理をして、 回分式によってマンガン酸リチウム前駆体 (試料 c) のスラリーを得た。 温度を 80°Cまで冷却してから、 同様の方法で液 中のアルカリ濃度を測定したところ、 添加したリチウムの 79. 1重量%がマン ガン酸化物と反応していることが判明した。 試料 cの Mnに対する L iのモル比 は 0. 52であった。
(マンガン酸リチウムの合成)
得られた前駆体スラリーに、 2時間空気を吹き込んでからろ過した。 洗浄はし なかった。 ろ過ケーキを 1 10°Cで乾燥してから、 大気中 500°Cで 3時間焼成 して本発明のマンガン酸リチウム (試料 C) を得た。
実施例 4
(マンガンの水酸化物の合成)
実施例 1と同様の方法でマンガンの水酸化物を得た。 '酸化物の合成)
得られたマンガンの水酸化物を含むスラリーの温度を 60°Cに昇温して、 空気 を 1時間吹込んで水系媒液中で酸化させ、 次いで、 窒素ガスに切り換えて 1時間 熟成した後、 ろ過水洗した。 ろ過ケーキを 200°Cで 12時間乾燥して気相酸化 し、 マンガン酸化物を得た。 このマンガン酸化物は比表面積、 空隙量が大きい 2 ΜηΟ · Mn〇2を主成分とするものであった。
(マンガン酸リチウム前駆体の合成)
得られたマンガン酸化物 (Mn換算186. 5 g) を水に分散させスラリー化 した。 このスラリーに 3. 000モル/リットルの濃度の水酸ィ匕リチウム 0. Ί 46リットルと純水を添加し、 液量を 2. 40リットルとして、 ォ一トクレーブ に仕込み、 180°Cで 2時間水熱処理をした。 温度を 80°Cまで冷却してから、 一部を分取して液中のアルカリ濃度を測定したところ、 添加したリチウムの 3 1. 9重量%がマンガン酸化物と反応していることが判明した。 このスラリー中に空 気を 2時間吹き込んでから、 再度 180°Cで 2時間水熱処理をした。 温度を 80 °Cまで冷却してから、 同様の方法で液中のアルカリ濃度を測定したところ、 添加 したリチウムの 56. 6重量%がマンガン酸化物と反応していることが判明した。 このスラリー中に空気を 2時間吹き込んでから、 再度 180°Cで 2時間水熱処理 をして、 回分式によってマンガン酸リチウム前駆体 (試料 d) のスラリーを得た。 温度を 80°Cまで冷却してから、 同様の方法で液中のアルカリ濃度を測定したと ころ、 添加したリチウムの 75. 8重量%がマンガン酸化物と反応していること が判明した。 試料 dの Mnに対する L iのモル比は 0. 50であった。
(マンガン酸リチウムの合成)
得られた前駆体スラリーに 2時間空気を吹き込んでからろ過した。 洗浄はしな かった。 ろ過ケーキを 50°Cで乾燥してから、 一部を大気中 500°C、 700°C 及び 800°Cの温度で各々 3時間焼成して本発明のマンガン酸リチウム (試料 D、 E及び F) を得た。
実施例 5
(マンガンの水酸化物の合成)
塩化マンガン 4水塩 (MnC l2 ' 4H20として 99重量%含有) 1 146 gを水に溶解して 7. 1 53リツトルにした。 この塩化マンガン水溶液を 10リ ットルのガラス製反応容器に仕込み、 撹拌下、 温度を 1 5 ± 5°Cに保持しなが ら、 窒素雰囲気下 6. 209モル/リットルの濃度の水酸化ナトリウム 1. 84 7リットルを 1時間かけて分散添加してマンガンの水酸化物を得た。
(マンガン酸化物の合成)
得られたマンガンの水酸化物を含むスラリーの温度を 60°Cに昇温し、 空気を 7時間吹込んで水系媒液中で酸化した後、 ろ過水洗、 リパルプしてマンガン酸化 物のスラリーを得た。 このマンガン酸化物は比表面積、 空隙量が大きい 2MnO • Mn02を主成分とするものであった。
(マンガン酸リチウム前駆体の合成)
得られたマンガン酸化物スラリー (Mn換算 1 86. 5 g) に 3. 000モ ル /リットルの濃度の水酸化リチウム 0. 746リツトルと純水を添加し、 液量 を 2. 40リツトルとして、 3リヅトルのガラス製反応容器に仕込み、 80°Cに 昇温し、 空気を吹込みながら、 3時間反応させた。 蒸発した水量を補充してから 一部を分取して液中のアルカリ濃度を測定したところ、 添加したリチウムの 9. 58重量%がマンガン酸化物と反応していることが判明した。 このスラリーをォ —トクレーブに仕込み、 180°Cで 2時間水熱処理をした。 温度を 80°Cまで冷 却してから、 一部を分取して液中のアルカリ濃度を測定したところ、 添加したリ チウムの 64. 6重量%がマンガン酸化物と反応していることが判明した。 この スラリー中に空気を 2時間吹き込んでから、 再度 180°Cで 2時間水熱処理をし て、 回分式によってマンガン酸リチウム前駆体 (試料 g) のスラリーを得た。 温 度を 80 °Cまで冷却してから、 同様の方法で液中のアルカリ濃度を測定したとこ ろ、 添加したリチウムの 75. 8重量%がマンガン酸ィ匕物と反応していることが 判明した。 試料 gの Mnに対する L iのモル比は 0. 50であった。
(マンガン酸リチウムの合成)
得られた前駆体スラリーに 2時間空気を吹き込んでからろ過した。 洗浄はしな かった。 ろ過ケーキを 50°Cで乾燥してから、 大気中 500°Cで 3時間焼成して 本発明のマンガン酸リチウム (試料 G) を得た。
実施例 6 (マンガンの水酸化物の合成)
実施例 1と同様の方法でマンガンの水酸化物を得た。
(マンガン酸化物の合成)
実施例 1と同様の方法でマンガン酸化物を得た。
(マンガン酸リチウム前駆体の合成)
得られたマンガン酸化物 (Mn換算 100 g) に 3. 000モル/リットルの 水酸化リチウム 0. 304リットルを加え、 良く撹拌混合してから、 1 10°Cで 蒸発乾固してマンガン酸リチウム前駆体 (試料 h) を得た。
(マンガン酸リチウムの合成)
試料 hを小型の粉砕機を用いて細かく粉砕してから、 大気中 750°Cで 3時間 焼成して、 本発明のマンガン酸リチウム (試料 H) を得た。
実施例 7
(マンガンの水酸化物の合成)
実施例 1と同様の方法でマンガンの水酸化物を得た。
(マンガン酸化物の合成)
実施例 1と同様の方法でマンガン酸ィ匕物を得た。
(マンガン酸リチゥム前駆体の合成)
得られたマンガン酸化物 (Mn換算で 324 g) を水に分散させスラリー化 した。 このスラリーに 3. 655モル/リットルの濃度の水酸化リチウム溶液 0. 966リツトルと純水を添加し、 液量を 2. 40リツトルとして、 3リヅトルの ガラス製反応容器に仕込み、 酸素ガスを 1リットル/分で吹き込みながら 90°C に昇温して 13時間反応させ、 マンガン酸リチウム前駆体 (試料 i) を得た。 蒸 発した水量を補充してから一部を分取して液中のアルカリ濃度を測定したところ、 添加したリチウムの 89. 4重量%がマンガン酸化物と反応していることが判明 した。 試料 iの Mnに対する L iのモル比は 0. 54であった。
(マンガン酸リチウムの合成)
得られた前駆体スラリーをろ過した。 洗浄はしなかった。 ろ過ケーキを 1 10 °Cで乾燥してから、 大気中 750°Cで 3時間焼成して本発明のマンガン酸リチウ ム (試料 I) を得た。 実施例 8
(マンガンの水酸化物の合成)
実施例 1と同様の方法でマンガンの水酸化物を得た。
(マンガン酸化物の合成)
得られたマンガンの水酸化物を含むスラリーの温度を 60°Cに昇温した。 こ のスラリーの pHは 8. 3であった。 このスラリーに酸素ガスを 2リットル/分 で吹き込みながら pH 6になるまで液中酸化した。 弓 Iき続き酸素ガスを吹き込み ながら 2モル/リットルの濃度の水酸化ナトリゥム溶液を添加して pH 9に調整 した後、 90°Cに昇温し、 pHを 9に保ちながら 2時間熟成し、 ろ過水洗した。 この様にして得たろ過ケーキを純水に分散させ Mn換算で 100 g/リットルの 濃度のスラリーを得た。 このスラリーの pHは 10. 7を示した。 攪拌しながら、 室温で、 1モル/リットルの濃度の塩酸水溶液を分散添加して p Hを 6に調整し た。 pHを 6に保ちながら、 3時間反応させた後、 ろ過水洗して大気中 70 で 15時間乾燥してマンガン酸化物を得た。 このマンガン酸化物は比表面積、 空隙 量が大きい 2ΜηΟ · Mn02を主成分とするものであった。
(マンガン酸リチゥム前駆体の合成)
得られたマンガン酸化物 (Mn換算で 312 g) を水に分散させスラリー化 した。 このスラリーに 3. 655モル/リットルの濃度の水酸化リチウム溶液 0. 877リツトルと純水を添加し、 液量を 2. 40リツトルとして、 3リットルの ガラス製反応容器に仕込み、 酸素ガスを 1リットル/分で吹き込みながら 90°C に昇温して 6時間反応させ、 マンガン酸リチウム前駆体 (試料 j) を得た。 蒸発 した水量を補充してから一部を分取して液中のアルカリ濃度を測定したところ、 添加したリチウムの 89. 8重量%がマンガン酸化物と反応していることが判明 した。 試料 jの Mnに対する L iのモル比は 0. 51であった。
(マンガン酸リチウムの合成)
得られた前駆体スラリーをろ過した。 洗浄はしなかった。 ろ過ケーキを 1 10 °Cで乾燥してから、 大気中 750°Cで 3時間焼成して本発明のマンガン酸リチウ ム (試料 J) を得た。
実施例 9 (マンガンの水酸化物の合成)
硫酸マンガン (MnS〇4として 86重量%含有) 815 gを水に溶解して 6. 179リツトルにした。 この硫酸マンガン水溶液を 10リツトルのガラス製反応 容器に仕込み、 撹拌下、 窒素雰囲気下、 温度を 60°Cに昇温した。 60°Cを維持 しながら、 この中に 4モル/リットルの濃度の水酸化ナトリウム 2. 321リツ トルを 1時間かけて分散添加し、 マンガンの水酸化物を得た。
(マンガン酸化物の合成)
得られたマンガンの水酸化物を含むスラリーの pHは 8. 3であった。 この スラリーに酸素ガスを 2リツトル/分で吹き込みながら、 pHが 6になるまで液 中酸化して、 ろ過水洗した。 このろ過ケーキを純水に分散させ Mn換算 100 g /リヅトルのスラリーとし、 5リットルのガラス製反応容器に仕込んで、 60°C に昇温した。 この中に 1モル/リットルの濃度の塩酸水溶液 1. 329リットル を 1時間で分散添加した後、 3時間反応させ、 生成している 2ΜηΟ · Mn02 に含まれる Mn2 +の一部をプロトンと置換してろ過水洗した。 酸処理により、 スラリーの色調は茶色から黒褐色に変化した。 反応終了時のスラリー pHは 4. 6であった。
(マンガン酸リチゥム前駆体の合成)
得られたマンガン酸化物 (Mn換算で 3 12 g) を水に分散させスラリー化 した。 このスラリーに 3. 655モル/リットルの濃度の水酸化リチウム溶液 0. 841リツトルと純水を添加し、 液量を 2. 40リツトルとして、 3リットルの ガラス製反応容器に仕込み、 酸素ガスを 1リットル/分で吹き込みながら 90°C に昇温して 1時間反応させた。 蒸発した水量を補充してから一部を分取して液中 のアルカリ濃度を測定したところ、 添加したリチウムの 55. 6重量%がマンガ ン酸化物と反応していることが判明した。 このスラリーをオートクレープに仕込 み、 130 °Cの温度で 3時間水熱処理をした。 温度を 90 °Cまで冷却してから、 同様の方法で液中のアル力リ濃度を測定したところ、 添加したリチウムの 76. 9重量%がマンガン酸ィ匕物と反応していることが判明した。 このスラリーに酸素 ガスを 1リットル/分で吹き込みながら、 90°Cで 2時間反応させ、 マンガン酸 リチウム前駆体 (試料 k) のスラリーを得た。 同様の方法で液中のアルカリ濃度 を測定したところ、 添加したリチウムの 93. 7重量%がマンガン酸化物と反応 していることが判明した。 試料 kの Mnに対する L iのモル比は 0. 5 1であつ た。
(マンガン酸リチウムの合成)
得られた前駆体スラリーをろ過した。 洗浄はしなかった。 ろ過ケーキを 1 10 °Cで乾燥してから、 大気中 750°Cで 3時間焼成して本発明のマンガン酸リチウ ム (試料 K) を得た。
比較例 1
(マンガン酸リチウムの合成)
試薬の二酸化マンガン (関東化学製、 Mn02 として 95重量%含有) 50 g に水酸化リチウム一水塩を L i/Mnモル比で 0. 505となるよう混合し、 小 型の粉砕機でよく粉碎混合してからアルミナルツボに入れ、 大気中 750°Cで 3 時間焼成して比較試料のマンガン酸リチウム (試料 L) を得た。
比較例 2
(マンガンの水酸化物の合成)
実施例 1と同様の方法でマンガンの水酸化物を得た。
(マンガン酸化物の合成)
実施例 1と同様の方法でマンガン酸化物を得た。
(マンガン酸リチウムの合成)
得られたマンガン酸ィ匕物 (Mn換算で 50 g) に L i/Mnモル比で 0. 50 5となるよう水酸化リチウム一水塩を混合し、 小型の粉砕機でよく粉砕混合して からアルミナルツボに入れ、 大気中 750°Cで 3時間焼成して比較試料のマンガ ン酸リチウム (試料 M) を得た。
このようにして得られた試料 A〜Mの物性を調べ、 表 1に示した。 本発明のマ ンガン酸リチウムの粒子形状はキュービックであることを電子顕微鏡観察により 確認した (例として図 3及び図 4に試料 A及び試料 Cの走査型電子顕微鏡写真を 示した。 ) 。 一部、 不定形の粒子を含む試料もあったが、 不定形の粒子は微量で あった。 一方、 比較例の試料 Mは、 一部、 キュービックな形状を含むものの比較 例 Lの試料と同様の不定形の粒子の占める割合が非常に高いものであった。 また 電子線回折でスポット状の回折像が得られたこと (例として図 6に試料 Aの電子 線回折写真を示した。 ) 、 超高倍率透過型電子顕微鏡観察で単一の格子像を示し たこと (例として図 5に試料 Aの透過型電子顕微鏡写真を示した。 ) 、 また X線 回折結果から L i M n 2 04の単一組成で得られており (例として図 2に試料 A の X線回折チャートを示した。 ) 、 本発明のマンガン酸リチウムは結晶性に優れ たものであることがわかつた。
また B E T方式による比表面積の測定と窒素吸着による空隙量の測定を行つ た。 空隙量の測定には、 日本ベル社製、 ベルソープ— 2 8を用いた。 測定結果を 表 1に示す。 表 1から試料 A〜Kは、 いずれも好ましい比表面積を有し、 且つい ずれも粒子内に空隙を有することがわかった。
次に試料 A〜Mを正極活物質とした場合のリチウム二次電池の充放電特性及 びサイクル特性を評価した。 電池は三極式のセルとし、 充放電を繰り返した。 電 池の形態や測定条件について説明する。
上記各試料と、 導電剤としてのグラフアイ ト粉末、 及び結着剤としてのポリ 四フッ化工チレン樹脂を重量比で 3 : 2 : 1で混合し、 瑪瑙乳鉢で練り合わせ、 直径 1 4 mmの円形に成型してペレツト状とした。 ペレッ卜の重量は 5 O m gで あった。 これを金属チタン製のメッシュに挟み込み、 1 5 0 k g/ c m2の圧力 でプレスして正極とした。
一方、 厚み 0 . 5 mmの金属リチウムを直径 1 4 mmの円形に成型し、 金属 ニッケル製のメッシュに挟み込んで圧着し、 これを負極とした。 また厚み 0 . 1 mmの金属リチウム箔を金属ニッケルワイヤ上に、 米粒大となる程度巻き付け、 これを参照電極とした。 非水電解液として、 1モル/リットルとなる濃度で過塩 素酸リチウムを溶解した 1 , 2—ジメトキシェタンとプロピレンカーボネート混 合溶液 (体積比で 1 : 1に混合) を用いた。 なお電極は、 正極、 参照極、 負極の 順に配置し、 その間にはセパレー夕一として多孔性ポリプロピレンフィルムを置 いた。
充放電サイクルの測定は、 電圧範囲を 4 . 3 Vから 3 . 5 Vに、 充放電電流を 0 . 2 6 mA (約 1サイクル/日) に設定して、 定電流で行った。 初期放電容量 及び 1 0サイクル目の放電容量及びそのときの容量維持率を表 1に示す。 容量は、 正極活物質 1 gあたりのものである, 表 1 マンガン酸リチウムを正極活物質として用いた電池の初期放電容量、 及び サイクル特性
Figure imgf000022_0001
表 1で示すように、 本発明によるマンガン酸リチウムは、 少なくとも 9 5 mA h/ gの高い初期放電容量を示すと同時に、 そのサイクル特性にも優れたも のであることがわかった。
従来の乾式法で合成したマンガン酸リチウムは、 結晶構造に欠陥が生じやすく、 それが原因となって充放電の繰り返しにより結晶性が悪化し、 サイクル容量が低 下していく。
また、 マンガン酸リチウムは、 既にリチウムイオン二次電池の正極活物質とし て実用化されている層状岩塩構造からなるコバルト酸リチウムに比べ、 リチウム イオンの拡散係数が小さい。 しかしながら、 本発明のマンガン酸リチウムは、 以 上に示してきたように、 キュービックな粒子形状を有し、 しかも粒子内に空隙を 有しており、 結晶性に優れている。 すなわちリチウムのインサ一シヨンに有利な 条件を備えているため、 電流密度の向上を図る上で好ましいものである。
産業上の利用の可能性
本発明のマンガン酸リチウムは、 キュービックな粒子形状を有し、 粒子内に空 隙を有するものであるため、 これを正極材料として用いたリチウム電池は、 高い 初期放電容量を示すと同時に、 そのサイクル特性にも優れたものである。 また、 本発明の製造方法は、 上記特徴を有するマンガン酸リチウムを有利に製造するこ とのできる方法である。

Claims

請求の範囲
1 . キュービックな粒子形状を有し、 粒子内に空隙を有し、 リチウム電池の正 極活物質として用いたときの初期放電容量が少なくとも 9 5 mA h/ gであるこ とを特徴とするマンガン酸リチウム。
2 . 1〜 1 0 O m2 / gの範囲の比表面積を有する請求項 1に記載のマンガン 酸リチウム。
3 . 0 . 0 1〜1 0〃mの範囲の粒子径を有する請求項 1に記載のマンガン酸 リチウム。
4 . マンガン化合物とアルカリとを反応させてマンガンの水酸化物を得る工程、 該水酸化物を水系媒液中もしくは気相中で酸化させてマンガン酸化物を得る工程、 該マンガン酸化物とリチウム化合物を水系媒液中で反応させてマンガン酸リチウ ム前駆体を得る工程、 該前駆体を加熱焼成してマンガン酸リチウムを得る工程を 含むことを特徴とするマンガン酸リチウムの製造方法。
5 . マンガン化合物とアルカリとを反応させてマンガンの水酸化物を得る工程、 該水酸化物を水系媒液中もしくは気相中で酸化させてマンガン酸化物を得る工程、 該マンガン酸化物を水系媒液中で酸と反応させてマンガンの一部をプロトンで置 換したプロトン置換マンガン酸化物を得る工程、 該プロトン置換マンガン酸化物 とリチウム化合物を水系媒液中で反応させてマンガン酸リチウム前駆体を得るェ 程、 該前駆体を加熱焼成してマンガン酸リチウムを得る工程を含むことを特徴と するマンガン酸リチウムの製造方法。
6 . 酸が塩酸、 硫酸、 硝酸、 フッ酸から選ばれる少なくとも一種である請求項 5に記載のマンガン酸リチウムの製造方法。
7 . マンガン化合物とアル力リとを水系媒液中で反応させてマンガンの水酸化 物を得る工程において、 マンガン化合物が水溶性マンガン化合物である請求項 4 または 5に記載のマンガン酸リチウムの製造方法。
8 . マンガン酸化物またはプロトン置換マンガン酸化物とリチウム化合物を水 系媒液中で反応させてマンガン酸リチウム前駆体を得る工程において、 マンガン 酸化物またはプロトン置換マンガン酸化物とリチウム化合物を水系媒液中で水熱 処理する請求項 4または 5に記載のマンガン酸リチウムの製造方法。
9 . リチウム化合物が水酸化リチウムである請求項 4または 5に記載のマンガ ン酸リチウムの製造方法。
1 0 . マンガン酸化物またはプロトン置換マンガン酸化物とリチウム化合物を 水系媒液中で反応させてマンガン酸リチウム前駆体を得る工程において、 酸化剤 を回分式または連続式に供給する請求項 4または 5に記載のマンガン酸リチウム の製造方法。
1 1 . 酸化剤が空気、 酸素、 オゾン、 過酸化水素水及びペルォキソ二硫酸塩か ら選ばれる少なくとも一種である請求項 1 0に記載のマンガン酸リチウムの製造 方法。
1 2 . 請求項 1に記載のマンガン酸リチウムを正極活物質として用いてなるこ とを特徴とするリチウム電池用正極。
1 3 . 請求項 1 2に記載の正極を用いてなることを特徴とするリチウム電池。
PCT/JP1998/005798 1997-12-22 1998-12-22 Manganate de lithium, procede de production, et pile au lithium produite d'apres ce procede WO1999033128A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU16850/99A AU741721B2 (en) 1997-12-22 1998-12-22 Lithium manganate, method of producing the same, and lithium cell produced by the method
BR9814384-0A BR9814384A (pt) 1997-12-22 1998-12-22 Manganato de lìtio, processo para a produção do mesmo, eletrodo positivo para baterias de lìtio, e, bateria de lìtio
EP98961467A EP0969537B1 (en) 1997-12-22 1998-12-22 Lithium manganate, method of producing the same, and lithium cell produced by the method
US09/367,285 US6334993B1 (en) 1997-12-22 1998-12-22 Lithium manganate, method of producing the same, and lithium cell produced by the method
CA002314950A CA2314950C (en) 1997-12-22 1998-12-22 Lithium manganate, process for producing the same, and lithium battery using the same
JP53237799A JP3489685B2 (ja) 1997-12-22 1998-12-22 マンガン酸リチウム及びその製造方法ならびにそれを用いてなるリチウム電池
KR10-2000-7006550A KR100506575B1 (ko) 1997-12-22 1998-12-22 리튬 망가네이트, 그것의 제조 방법, 및 그 방법에 의해제조된 리튬 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/365563 1997-12-22
JP9365563A JPH11180717A (ja) 1997-12-22 1997-12-22 マンガン酸リチウム及びその製造方法ならびにそれを用いてなるリチウム電池

Publications (1)

Publication Number Publication Date
WO1999033128A1 true WO1999033128A1 (fr) 1999-07-01

Family

ID=18484576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005798 WO1999033128A1 (fr) 1997-12-22 1998-12-22 Manganate de lithium, procede de production, et pile au lithium produite d'apres ce procede

Country Status (10)

Country Link
US (1) US6334993B1 (ja)
EP (1) EP0969537B1 (ja)
JP (2) JPH11180717A (ja)
KR (1) KR100506575B1 (ja)
CN (1) CN1148821C (ja)
AU (1) AU741721B2 (ja)
BR (1) BR9814384A (ja)
CA (1) CA2314950C (ja)
TW (1) TW565531B (ja)
WO (1) WO1999033128A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016071968A (ja) * 2014-09-26 2016-05-09 旭化成株式会社 リチウム含有金属酸化物
CN111333115A (zh) * 2020-03-10 2020-06-26 中国石油大学(北京) 一种二维多孔活性氧化锰及其制备方法和含有其的固化剂

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059830A1 (fr) * 1999-03-30 2000-10-12 Toho Titanium Co., Ltd. Procede de preparation de manganate de lithium, manganate de lithium, electrode positive pour cellule secondaire au lithium contenant le manganate de lithium comme matiere active, et cellule secondaire au lithium
US6506518B1 (en) * 1999-04-27 2003-01-14 Shin-Kobe Electric Machinery Co., Ltd. Lithium secondary battery
ATE353854T1 (de) * 1999-12-24 2007-03-15 Ishihara Sangyo Kaisha Verfahren zur herstellung von lithiummanganat
JP2001266874A (ja) * 2000-03-16 2001-09-28 Toho Titanium Co Ltd リチウムイオン二次電池
JP4678452B2 (ja) * 2000-05-15 2011-04-27 株式会社豊田中央研究所 リチウム二次電池正極活物質用リチウムマンガン複合酸化物の製造方法
JP4941692B2 (ja) * 2000-05-16 2012-05-30 株式会社豊田中央研究所 リチウム二次電池正極活物質用リチウムマンガン複合酸化物およびその製造方法
JP2003002654A (ja) * 2001-06-21 2003-01-08 Naoaki Kumagai 層状リチウムマンガン複合酸化物の製造方法およびリチウム二次電池
TWI279019B (en) * 2003-01-08 2007-04-11 Nikko Materials Co Ltd Material for lithium secondary battery positive electrode and manufacturing method thereof
CN1300868C (zh) * 2003-04-30 2007-02-14 杨永平 锂离子电池用结构稳定的尖晶石锰酸锂的制备方法
CN1324731C (zh) * 2003-07-15 2007-07-04 新乡无氧铜材总厂 一种锂离子电池用锂锰氧化物正极材料的制备工艺
JP4748706B2 (ja) * 2004-09-22 2011-08-17 学校法人神奈川大学 リチウムマンガン系複合酸化物粉末、その製造方法、リチウム二次電池用正極活物質及びリチウム二次電池
KR100639526B1 (ko) 2005-02-02 2006-10-30 한양대학교 산학협력단 탄산염 공침법을 이용한 3볼트급 스피넬 산화물, 그제조방법 및 이를 이용한 리튬이차전지
WO2006126854A1 (en) * 2005-05-27 2006-11-30 Dae-Jung Chemicals & Metals Co., Ltd. Processes of preparing manganese oxides and processes of preparing spinel type cathode active material using the same
US7400525B1 (en) * 2007-01-11 2008-07-15 International Business Machines Corporation Memory cell with independent-gate controlled access devices and memory using the cell
US7791348B2 (en) * 2007-02-27 2010-09-07 Midtronics, Inc. Battery tester with promotion feature to promote use of the battery tester by providing the user with codes having redeemable value
JP2009263176A (ja) * 2008-04-25 2009-11-12 Kanto Denka Kogyo Co Ltd マグネシウムアルミニウム複合酸化物表面被覆スピネル型マンガン酸リチウム及びその製造方法、並びにそれを使用する正極活物質及び非水電解質電池
US9065139B2 (en) 2009-02-04 2015-06-23 National Institute Of Advanced Industrial Science And Technology Fiber electrode for lithium secondary battery, fabrication method therefor, and lithium secondary battery including fiber electrode
KR101385881B1 (ko) 2009-07-14 2014-04-15 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 파이버 전극을 구비한 축전 디바이스 및 그 제조방법
EP2523239B1 (en) * 2010-01-07 2018-04-11 LG Chem, Ltd. Cathode active material containing lithium manganese oxide that exhibits excellent charge-discharge characteristics in 4v and 3v regions
US20110223477A1 (en) * 2010-03-12 2011-09-15 Nelson Jennifer A Alkaline battery including lambda-manganese dioxide and method of making thereof
US8298706B2 (en) 2010-03-12 2012-10-30 The Gillette Company Primary alkaline battery
US20110219607A1 (en) * 2010-03-12 2011-09-15 Nanjundaswamy Kirakodu S Cathode active materials and method of making thereof
US8303840B2 (en) * 2010-03-12 2012-11-06 The Gillette Company Acid-treated manganese dioxide and methods of making thereof
JP2012048959A (ja) * 2010-08-26 2012-03-08 Sanyo Electric Co Ltd 非水電解質二次電池用電極及び非水電解質二次電池
CN102432070B (zh) * 2011-09-21 2013-09-18 江西博能新材料有限公司 一种锰酸锂用前驱体及其正极材料的制备方法
US9028564B2 (en) 2012-03-21 2015-05-12 The Gillette Company Methods of making metal-doped nickel oxide active materials
US9570741B2 (en) 2012-03-21 2017-02-14 Duracell U.S. Operations, Inc. Metal-doped nickel oxide active materials
US8703336B2 (en) 2012-03-21 2014-04-22 The Gillette Company Metal-doped nickel oxide active materials
CN103035902B (zh) * 2012-12-07 2015-04-15 上海空间电源研究所 一种锂离子电池用改性氧化锰材料的制备方法
US9793542B2 (en) 2014-03-28 2017-10-17 Duracell U.S. Operations, Inc. Beta-delithiated layered nickel oxide electrochemically active cathode material and a battery including said material
JP6346825B2 (ja) * 2014-08-05 2018-06-20 日立造船株式会社 ペロブスカイト型マンガン酸化物の製造方法、および、ペロブスカイト型マンガン酸化物の膜形成方法
CN105161707A (zh) * 2015-08-05 2015-12-16 柳州豪祥特科技有限公司 一种尖晶石锰酸锂的加工工艺
US10910647B2 (en) 2017-05-09 2021-02-02 Duracell U.S. Operations, Inc. Battery including beta-delithiated layered nickel oxide electrochemically active cathode material
WO2018234929A1 (en) * 2017-06-23 2018-12-27 3M Innovative Properties Company ACOUSTICALLY ACTIVE NANOSTRUCTURED METAL OXIDES
AU2019256018B2 (en) * 2018-04-20 2024-03-14 Sumitomo Metal Mining Co., Ltd. Method for producing lithium adsorbent precursor
KR20210030610A (ko) 2019-09-10 2021-03-18 주식회사 엘지화학 리튬망간산화물계 양극 활물질의 제조방법
CN112968166A (zh) * 2021-03-22 2021-06-15 安徽博石高科新材料股份有限公司 一种锰酸锂正极材料的制备方法
CN115974161A (zh) * 2022-03-28 2023-04-18 贵州大龙汇成新材料有限公司 一种四氧化三锰预嵌锂中间体及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170353A (ja) 1988-12-22 1990-07-02 Toshiba Battery Co Ltd 非水溶媒二次電池用正極活物質の製造方法
JPH07101728A (ja) * 1993-10-01 1995-04-18 Tosoh Corp リチウムマンガン酸化物及びその製造方法並びにその用途
JPH0869790A (ja) * 1994-08-31 1996-03-12 Sony Corp 非水電解液二次電池
EP0728701A1 (en) 1995-02-23 1996-08-28 Tosoh Corporation Spinel type lithium-manganese oxide material, process for preparing the same and use thereof
JPH08277118A (ja) * 1995-03-28 1996-10-22 Merck Patent Gmbh リチウム層間化合物の製造方法
JPH0986933A (ja) * 1995-02-23 1997-03-31 Tosoh Corp スピネル型リチウムマンガン酸化物およびその製造方法並びにその用途
JPH09180723A (ja) * 1995-12-18 1997-07-11 Korea Electron Telecommun リチウム2次電池用リチウム−マンガン酸化物の製造方法
JPH103921A (ja) * 1996-06-13 1998-01-06 Japan Storage Battery Co Ltd リチウム電池用正極活物質およびその製造方法ならびに前記活物質を備えた電池
JPH10308218A (ja) * 1997-03-07 1998-11-17 Nichia Chem Ind Ltd リチウムイオン二次電池用正極活物質及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5742070A (en) * 1993-09-22 1998-04-21 Nippondenso Co., Ltd. Method for preparing an active substance of chemical cells
US5702679A (en) * 1995-10-06 1997-12-30 Kerr-Mcgee Chemical Corp. Method of preparing Li1+X- Mn2-X O4 for use as secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170353A (ja) 1988-12-22 1990-07-02 Toshiba Battery Co Ltd 非水溶媒二次電池用正極活物質の製造方法
JPH07101728A (ja) * 1993-10-01 1995-04-18 Tosoh Corp リチウムマンガン酸化物及びその製造方法並びにその用途
JPH0869790A (ja) * 1994-08-31 1996-03-12 Sony Corp 非水電解液二次電池
EP0728701A1 (en) 1995-02-23 1996-08-28 Tosoh Corporation Spinel type lithium-manganese oxide material, process for preparing the same and use thereof
JPH0986933A (ja) * 1995-02-23 1997-03-31 Tosoh Corp スピネル型リチウムマンガン酸化物およびその製造方法並びにその用途
JPH08277118A (ja) * 1995-03-28 1996-10-22 Merck Patent Gmbh リチウム層間化合物の製造方法
JPH09180723A (ja) * 1995-12-18 1997-07-11 Korea Electron Telecommun リチウム2次電池用リチウム−マンガン酸化物の製造方法
JPH103921A (ja) * 1996-06-13 1998-01-06 Japan Storage Battery Co Ltd リチウム電池用正極活物質およびその製造方法ならびに前記活物質を備えた電池
JPH10308218A (ja) * 1997-03-07 1998-11-17 Nichia Chem Ind Ltd リチウムイオン二次電池用正極活物質及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0969537A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016071968A (ja) * 2014-09-26 2016-05-09 旭化成株式会社 リチウム含有金属酸化物
CN111333115A (zh) * 2020-03-10 2020-06-26 中国石油大学(北京) 一种二维多孔活性氧化锰及其制备方法和含有其的固化剂

Also Published As

Publication number Publication date
CA2314950C (en) 2009-07-14
BR9814384A (pt) 2001-10-16
CN1283313A (zh) 2001-02-07
US6334993B1 (en) 2002-01-01
TW565531B (en) 2003-12-11
JP3489685B2 (ja) 2004-01-26
AU1685099A (en) 1999-07-12
KR100506575B1 (ko) 2005-08-08
EP0969537B1 (en) 2012-02-15
JPH11180717A (ja) 1999-07-06
EP0969537A4 (en) 2006-06-14
KR20010033168A (ko) 2001-04-25
EP0969537A1 (en) 2000-01-05
CA2314950A1 (en) 1999-07-01
AU741721B2 (en) 2001-12-06
CN1148821C (zh) 2004-05-05

Similar Documents

Publication Publication Date Title
JP3489685B2 (ja) マンガン酸リチウム及びその製造方法ならびにそれを用いてなるリチウム電池
KR101369658B1 (ko) 비수전해질 이차 전지용 Li-Ni 복합 산화물 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지
JP3221352B2 (ja) スピネル型リチウムマンガン複合酸化物の製造方法
EP1837937A1 (en) Lithium manganese-based composite oxide and method and method forpreparing the same
WO2001036334A1 (en) Lithium-manganese composite oxide, positive electrode material for lithium secondary cell, positive electrode and lithium secondary cell, and method for preparing lithium-manganese composite oxide
WO1999004442A1 (fr) Cellule auxiliaire a electrolyte non aqueux
KR20150073970A (ko) Li-Ni 복합 산화물 입자 분말 및 비수전해질 이차 전지
KR100765970B1 (ko) 공침법을 이용한 망간 복합산화물 및 그 제조방법, 이를이용한 리튬이차전지용 스피넬형 양극활물질과 그 제조방법
JPH09320588A (ja) リチウム電池用正極活物質の製造方法及びリチウム電池
US5496664A (en) Process for producing a positive electrode for lithium secondary batteries
KR100638132B1 (ko) 망간산리튬의 제조방법 및 상기 망간산리튬을 사용한 리튬전지
JP2001122628A (ja) リチウムマンガン複合酸化物粒子状組成物とその製造方法及び二次電池
JP2001114521A (ja) 四三酸化マンガンおよびその製造方法
JP2002321920A (ja) 元素置換リチウムマンガン複合酸化物粒子状組成物とその製造方法とその二次電池への利用
JP3822437B2 (ja) マンガン酸リチウムの製造方法及び該マンガン酸リチウムを用いてなるリチウム電池
JP4055269B2 (ja) マンガン酸化物及びその製造方法、並びにマンガン酸化物を用いたリチウムマンガン複合酸化物及びその製造方法
JP2002338246A (ja) リチウム・マンガン複合酸化物の製造方法及び該リチウム・マンガン複合酸化物を用いてなるリチウム電池
JP4803867B2 (ja) リチウム電池正極用マンガン酸リチウムの製造方法
JP7541152B1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2024219129A1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7192397B2 (ja) リチウム-コバルト-マンガン系複合酸化物及びこれを含むリチウム二次電池
JPH0722020A (ja) リチウムマンガン複合酸化物の製造方法及びその用途
JPH10241689A (ja) 非水系電池用電極活物質
MXPA00005916A (en) Lithium manganate, method of producing the same, and lithium cell produced by the method
HON et al. Electrochemical properties of LiMn2O4 nano-particles synthesized by citric acid gel process

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98812556.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN ID IL IN JP KR MX SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: (EXCEPT JP, US, EP (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE))

WWE Wipo information: entry into national phase

Ref document number: 09367285

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998961467

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998961467

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 16850/99

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2000/66/KOL

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2314950

Country of ref document: CA

Ref document number: 2314950

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/005916

Country of ref document: MX

Ref document number: 1020007006550

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020007006550

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 16850/99

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1020007006550

Country of ref document: KR