JP2003002654A - 層状リチウムマンガン複合酸化物の製造方法およびリチウム二次電池 - Google Patents

層状リチウムマンガン複合酸化物の製造方法およびリチウム二次電池

Info

Publication number
JP2003002654A
JP2003002654A JP2001187814A JP2001187814A JP2003002654A JP 2003002654 A JP2003002654 A JP 2003002654A JP 2001187814 A JP2001187814 A JP 2001187814A JP 2001187814 A JP2001187814 A JP 2001187814A JP 2003002654 A JP2003002654 A JP 2003002654A
Authority
JP
Japan
Prior art keywords
lithium
manganese
secondary battery
raw material
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001187814A
Other languages
English (en)
Inventor
Naoaki Kumagai
直昭 熊谷
Shinichi Komaba
慎一 駒場
Shiyoutaku Ake
承澤 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2001187814A priority Critical patent/JP2003002654A/ja
Publication of JP2003002654A publication Critical patent/JP2003002654A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】 【課題】乾式高温合成法に比して工業的に有利な水熱法
を利用した製造方法であって、高結晶性で且つリチウム
二次電池の正極活物質として使用した際に優れた特性を
発揮する層状リチウムマンガン複合酸化物の製造方法を
提供する。 【解決手段】四酸化三マンガン(Mn34)を含む、M
nの価数が2.8以下のマンガン原料とLi化合物原料
とを水熱反応させる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、層状リチウムマン
ガン複合酸化物の製造方法およびリチウム二次電池関す
る。
【0002】
【従来の技術】近年、携帯用電子機器の小型化、軽量化
に伴い、その電源として、高出力、高エネルギー密度で
ある二次電池が求められている。特に、リチウム二次電
池は、上記の要件を満たすため、盛んに開発が行われて
いる。
【0003】リチウム二次電池の正極活物質としては、
LiCoO2、LiNiO2、LiMnO2、Li2Mn2
O4、LiMn24等のリチウム複合酸化物が提案さ
れ、研究が盛んに行われている。特に、リチウムとマン
ガンとを主成分とする複合酸化物は、MnがCoやNi
と比較して埋蔵量が多く安価であることから注目を集め
ている。
【0004】特に、斜方晶系、単斜晶系または六方晶系
に属し、層状構造を持つLiMnO 2は、スピネル型の
結晶構造を持つLiMn24より理論容量が大きいため
魅力的な物質であり、各種の検討が行われている。中で
も斜方晶系のLiMnO2(以下o−LiMn24と表
記することがある)は、高い可逆容量を示すことが知ら
れている。
【0005】「Anorg.Allg.Chem.,417
(1975)1」(文献1)では、炭酸マンガン(Mn
CO3)とLiOHを750℃で固相反応させることによ
り、o−LiMnO2を合成している。また、「Chem.E
xpress,7(1992)193」(文献2)では、γオ
キシ水酸化マンガン(γ−MnOOH)とLiOHの混合
物を1000℃の高温で反応させてo−LiMnO2
合成している。更に、「J.Electrochem.Soc.,1
46(1999)3217」(文献3)では、凍結乾燥
した反応前駆体物質を900℃の高温で焼成することに
より、結晶性が高くて電池セルでの充放電サイクル特性
に優れたo−LiMnO2を合成している。
【0006】しかしながら、上記の乾式高温合成法は、
高温での焼成を必要とするばかりか、焼成雰囲気が窒素
など酸素濃度のかなり低い不活性ガス雰囲気に限られて
おり、工業的な製造方法としては不利である。
【0007】上記の問題を解決するべく、最近、特開平
11−130438号公報に記載されている様に、水熱
法(高温高圧下の水中で反応を行う手法)により100
〜350℃の低温でLiMnO2を合成する報告もなさ
れている。具体的には、種々原料マンガン化合物の平均
原子価が3付近になる様に組み合わせ、密閉容器中でL
iOH水溶液と反応させる。
【0008】しかしながら、上記の方法で得られたo−
LiMnO2は、X線回折図を見る限り結晶性が低く、
対極Liで4.3−2.0Vの充放電サイクルで得られ
た最大容量も190mAh/gと理論容量から比べると
小さく、サイクル特性に至っては記載されていない。
【0009】
【発明が解決しようとする課題】本発明は、上記実情に
鑑みなされたものであり、その目的は、乾式高温合成法
に比して工業的に有利な水熱法を利用した製造方法であ
って、高結晶性で且つリチウム二次電池の正極活物質と
して使用した際に優れた特性を発揮する層状リチウムマ
ンガン複合酸化物の製造方法を提供することにある。
【0010】
【課題を解決するための手段】本発明者らは、鋭意研究
を重ねた結果、マンガン出発原料に四酸化三マンガン
(Mn34)の様な価数の小さい化合物を使用して水熱
法で反応させるならば、結晶性が高く、不純物が少な
く、高容量で且つ充放電サイクル特性が非常に良好なo
−LiMnO2を得ることが出来るとの知見を得た。ま
た、出発原料のMn34として、自動酸化により合成さ
れ、粒子径が非常に小さいMn34を使用することによ
り電気化学的性能の高いo−LiMnO2が得られると
の知見を得た。
【0011】本発明は、上記の知見に基づき達成された
ものであり、その第1の要旨は、四酸化三マンガン(M
34)を含む、Mnの価数が2.8以下のマンガン原
料とLi化合物原料とを水熱反応させることを特徴とす
る斜方晶の層状リチウムマンガン複合酸化物の製造方法
に存し、その第2の要旨は、少なくとも正極の活物質と
して、上記の方法で得られたリチウムマンガン複合酸化
物を使用して成ることを特徴とするリチウム二次電池に
存する。そして、本発明の好ましい態様の製造方法にお
いては、四酸化三マンガンとして水溶液中で水酸化マン
ガンを自動酸化して得られるスピネル構造の四酸化三マ
ンガンを使用する。
【0012】
【発明の実施の形態】先ず、本発明に係る層状リチウム
マンガン複合酸化物の製造方法について説明する。
【0013】本発明で使用されるマンガン原料は、四酸
化三マンガン(Mn34)を含む、Mnの価数(平均原
子価)が2.8以下のマンガン化合物である。Mnの価
数が2.8を超えるマンガン原料を使用した場合は、結
晶性が高く、不純物相の少ない高純度のo−LiMnO
2を得るのが困難である。なお、マンガン原料の価数の
下限は、通常2.5、好ましくは2.6である。
【0014】マンガン原料中の四酸化三マンガンの割合
は、好ましくは80重量%以上であり、更に好ましくは
実質的に100重量%(四酸化三マンガン単独)であ
る。四酸化三マンガンと共に含有されていてもよいマン
ガン化合物としては、一酸化マンガン(MnO)、二酸
化マンガン(MnO2)、三二酸化マンガン(Mn
23)等が挙げられる。特に、水溶液中で水酸化マンガ
ン(Mn(OH)2)を自動酸化して得られるスピネル
構造の四酸化三マンガンが好適に使用される。
【0015】上記の自動酸化は、空気を使用した簡便な
穏やかな酸化反応を指し、例えば「J.Am.Chem.So
c.,64(1942)1866」(文献4)に従い次
の様に行うことが出来る。すなわち、Mn2+イオンを含
む水溶液に水酸化アルカリ(KOHなど)を加えて水酸
化マンガンMn(OH)2を沈殿させた後,空気(又は酸
素が含まれる気体)を水溶液中に吹き込むことにより、
水酸化マンガンから四酸化三マンガンを合成する。この
方法は、常圧で水溶液中100℃以下の低温で行える特
徴がある。
【0016】上記の自動酸化で得られた四酸化三マンガ
ンは、粒子径が非常に小さくて反応性が非常に高く、L
iOHとの反応により、他のマンガン原料を使用した場
合に比し、より高い結晶性のリチウムマンガン複合酸化
物になる。
【0017】本発明で使用されるLi化合物原料として
は、水酸化リチウム、酸化リチウム、金属リチウム等が
挙げられる。特に水酸化リチウム等の水溶性のリチウム
化合物が好ましい。
【0018】水熱合成は、通常、反応原料と水を密閉耐
圧容器中に仕込んで反応させることで行われる。温度
は、通常100℃から臨界温度374℃までの範囲とさ
れる。従って、水熱合成は、乾式法よりも大幅に低い温
度でも行えるのが特徴である。反応時間は、温度にもよ
るが、通常数時間から数日である。
【0019】具体的には出発原料の四酸化三マンガンを
リチウム源のLiOH水溶液中で反応させることで目的
のリチウムマンガン複合酸化物LiMnO2が得られ
る。通常LiOHは目的のLi/Mn原子比=1に対し
て大過剰に仕込む。通常、Li/Mn原子は1.01〜
200の範囲である。反応後は、イオン交換水などで洗
浄し、乾燥を行い、目的のo−LiMnO2を得ること
が出来る。
【0020】上記の水熱合成で得られるo−LiMnO
2は結晶性が高い方が好ましい。本発明で得られるo−
LiMnO2の特徴はこの結晶性が高く、充放電サイク
ル特性が良いことが判った。具体的には、CuKα線X
線回折において(011)ピークの半価幅が2θで0.
70゜以下である。なお、半価幅の下限は、小さくする
ことの困難性を考慮し、通常2θで0.15゜である。
また、得られるo−LiMnO2は微細粒子であり、そ
の粒子径は通常1ミクロン以下である。
【0021】次に、本発明のリチウム二次電池について
説明する。リチウム二次電池は、リチウムイオンの吸蔵
放出可能な正極および負極と、主としてリチウム塩と非
水系溶媒から成る非水系電解液によって構成される。具
体的には、正極と負極は、非水電解液を含浸させたセパ
レータを介して対向して電池容器内に収容されており、
正極は正極集電体を介して正極用リード線に接続されて
おり、また、負極は負極集電体を介して負極用リード線
に接続され、電池内部で生じた化学エネルギーは、上記
の各リード線から電気エネルギーとして外部へ取り出さ
れる様に構成されている。
【0022】本発明のリチウム二次電池の基本的構成
は、上記の公知のリチウム二次電池と同じである。そし
て、本発明のリチウム二次電池の特徴は、少なくとも正
極の活物質として、前記方法で得られたリチウムマンガ
ン複合酸化物(以下、本発明の活物質という)を使用し
て成る点にある。
【0023】本発明において、正極は、本発明の活物
質、結着剤、導電剤、充填剤などを混練して電極用塗料
を調製し、これをアルミニウム板や銅板の様な集電体上
に塗布した後に乾燥して得られる。
【0024】上記の結着剤としては、例えば、ポリフッ
化ビニル、ポリフッ化ビニリデン、ポリテトラフルオロ
エチレン等のフッ素系樹脂が挙げられる。活物質100
重量部に対する結着剤の配合量は、通常0.1〜30重
量部とされる。上記の導電剤としては、例えば、アセチ
レンブラック、カーボンブラック、黒鉛などの炭素粉末
などが挙げられ、上記の充填剤としては、各種の無機お
よび有機の球状、板状、棒状、繊維状などのフィラー等
が挙げられる。導電剤および充填剤は任意の成分であ
る。また、電極用塗料の調製に使用する溶剤の好適な一
例はN−メチルピロリドンである。
【0025】本発明において、負極は、正極の場合と同
様に、負極活物質、結着剤、導電剤、充填剤などを混練
して電極用塗料を調製し、これをアルミニウム板や銅板
の様な集電体上に塗布した後に乾燥して得られる。しか
しながら、負極はリチウム箔などの金属自体で構成する
ことも出来る。
【0026】上記の負極活物質としては、リチウムを吸
蔵して放出し得る物質(活物質)を含むものであれば特
に制限されないが、中でも炭素質物を含有するものが好
ましい。斯かる炭素質物の具体例としては、例えば、様
々な熱分解条件での有機物の熱分解物、人造黒鉛、天然
黒鉛などが挙げられる。好適には、種々の原料から得た
易黒鉛性ピッチの高温熱処理によって製造された人造黒
鉛、黒鉛化メソフェーズ小球体、黒鉛化メソフェーズピ
ッチ系炭素繊維などの他の人造黒鉛、精製天然黒鉛、こ
れらの黒鉛にピッチを含む種々の表面処理を施した材料
が使用される。結着剤、導電剤、充填剤、電極用塗料の
調製に使用する溶剤などは、正極の形成に使用したのと
同様の物質が使用される。
【0027】上記の非水系電解液の調製に使用される非
水系溶媒としては、炭酸エステル、エーテル及びラクト
ンからなる群から選ばれる少なくとも1種の非水系溶媒
が好適に使用される。炭酸エステルとしては、プロピレ
ンカーボネート(PC)、エチレンカーボネート(E
C)等の環状炭酸エステル、ジメチルカーボネート(D
MC)、ジエチルカーボネート(DEC)、エチルメチ
ルカーボネート(EMC)等の鎖状炭酸エステルが挙げ
られる。エーテルとしては、ジメトキシエタン(DM
E)、ジエトキシエタン(DEE)等が挙げられ、ラク
トンとしては、γ−ブチロラクトン等が挙げられる。こ
れらの溶媒は、単独使用の他、併用することも出来る。
この場合、炭酸エステルを含有するのが好ましい。特に
好ましいのは高誘電率溶媒であるPC、EC等の環状炭
酸エステルと、低粘度溶媒であるDMC、DEC、EM
C等の鎖状炭酸エステルを組み合わせた溶媒である。
【0028】上記の非水系溶媒に含有されるリチウム塩
としては、LiClO4、LiAsF6、LiPF6、L
iBF4、LiB(C654、LiCl、LiBr、L
iCH3SO3、LiCF3SO3、LiN(SO2CF3
2、LiN(SO2252、LiC(SO2CF33
LiN(SO3CF32等のリチウム塩が挙げられる。
上記の中ではLiBF4とLiPF6が好ましい。また、
これらのリチウム塩は、単独使用の他、併用することも
出来る。リチウム塩の濃度は、電解液全体に対し、通常
0.5〜1.5M、好ましくは0.75〜1.25Mで
ある。リチウム塩濃度が高すぎても低すぎても電導度の
低下が起き、電池特性に悪影響がある。
【0029】
【実施例】以下、本発明を実施例を挙げて説明するが、
本発明は、その要旨を超えない限り、以下の実施例によ
り何ら限定されるものではない。
【0030】実施例1 <四酸化三マンガンの合成>酢酸マンガン4水和物Mn
(CH3COOH)2・4H2O(関東化学社製)を蒸留水に溶
かし、KOH水溶液と混合し、80℃で酸素ガスを吹き
込みながら攪拌して濃い茶色のMn34の沈殿を得た。
次いで、得られた沈殿を濾過し、pHが中性を示すまで
脱塩水で洗浄した後、空気中80℃で乾燥し、四酸化三
マンガン(Mn34)の粉末を得た。得られた四酸化三
マンガンのX線回折測定を行った。測定はCuKα線、
40kV,20 mAの出力で行った。図1(a)にX
線回折図を示す。
【0031】<リチウムマンガン複合酸化物の合成>上
記の四酸化三マンガンを40mlの種々の濃度のLiOH
・H2O水溶液(和光純薬)とオートクレーブ中170℃
4日間水熱反応させた。この際、容器には副反応を防ぐ
ため、テフロン(登録商標)製のものを使った。この水
熱反応の後の沈殿を脱塩水で洗浄した後、水分を取り除
くため120℃の空気中で乾燥し、斜方晶系のo−Li
MnO2粉末を得た。得られたo−LiMnO2のX線回
折測定を行った。測定はCuKα線、40kV,20
mAの出力で行った。図1(b)にX線回折図を示す。
【0032】上記の図1(a)および図1(b)から、
スピネル構造のMn34が水熱反応でLiOHと十分反
応し、ほぼ単相のo−LiMnO2に変化していること
が判る。o−LiMnO2の回折図1(b)は、前記の
文献3の様に、フリーズドライで作成した前駆体を高温
900℃で焼成した、高結晶性でサイクル特性の良いo
−LiMnO2のそれと非常によく似ている。また、図
1(b)の(122)と(131)のダブレットから、
それほど明確ではないが、結晶子が非常に小さく、(0
11)ピークの半価幅が2θで0.18゜と狭く、高配
向性の斜方晶の結晶性を有していることが判る。また、
文献3で見られる2θ=18゜付近の不純物相のピーク
は見られなくなり、より高純度であることが判る。
【0033】<電気化学試験>上記のo−LiMnO2
粉末、黒鉛、アセチレンブラック(AB)、ポリビニリ
デンフロライド(PVdF)をそれぞれ80:5:1
0:5の重量比率で、N−メチルピロリドン(NMP)
を溶媒として混合しスラリー状にした。このスラリーを
1cm2のニッケルエキスパンドメタル上に塗布した後、
80℃で1日乾燥し、更に120℃で4日間真空乾燥
し、正極を得た。
【0034】上記の電極を作用極に使用し、金属Li箔
を負極に使用した電気化学セルをアルゴンドライボック
ス中で作成し、30℃、対極Li/Li+ で2.0〜
4.3Vの間で0.05mA/cm2の電流密度で充放電サ
イクル試験を行った。
【0035】図2に初期充放電曲線図を示す。210m
Ah/gという非常に高い容量が得られ、不可逆容量も
小さいことが判る。「J.Electrochem.Soc.,14
5(1998)2672」(文献5)に報告されている
様に、o−LiMnO2は初期充電の途中(すなわちL
i組成で0.5抜けるあたり)からスピネル様構造に転
移していく。この試料においてもそれが観察された。
【0036】図3にサイクル特性図を示す。放電容量は
初期210mAh/gであったが充放電サイクルによっ
てスピネル相が出て来るにつれ容量が増し、一旦222
mAh/gまで増加した。30サイクル時、平均充放電
効率は非常に高く98%以上、放電容量は170mAh
/g付近までしか低下せず、非常に劣化の少ないことが
判った。
【0037】比較例1 実施例1において、リチウムマンガン複合酸化物の合成
の際、Mn34の代わりにMn23を使用した以外は、
全て実施例1と同様に行った。ただし、Mn34との比
較のため、Mn(III)の量は揃えた。すなわち、Mn3
4の方がMnOの分だけ重量過剰とし、その他の条件
は全て揃え、前記と同一条件でX線回折測定を行った。
その結果、出発物質をMn23にすると、得られるリチ
ウムマンガン複合酸化物の結晶性が低くなり、リチウム
マンガン複合酸化物中の不純物相のピークもより強くな
ったことが確認された。図4にX線回折図を示す。
【0038】
【発明の効果】以上説明した本発明によれば、乾式高温
合成法に比して工業的に有利な水熱法を利用した製造方
法であって、高結晶性で且つリチウム二次電池の正極活
物質として使用した際に優れた特性を発揮する層状リチ
ウムマンガン複合酸化物の製造方法が提供され、本発明
の工業的価値は顕著である。
【図面の簡単な説明】
【図1】図1(a)は実施例1で合成した四酸化三マン
ガンのにX線回折図であり、図1(b)は実施例1で得
たリチウムマンガン複合酸化物のX線回折図である。
【図2】図2は実施例1で行った電気化学試験で得られ
た初期充放電曲線図である。
【図3】図2は実施例1で行った電気化学試験で得られ
たサイクル特性図である。
【図4】図3は比較例1で得たリチウムマンガン複合酸
化物のX線回折図である。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 熊谷 直昭 岩手県盛岡市八幡町13−43 (72)発明者 駒場 慎一 岩手県盛岡市月が丘2−8−12−206 (72)発明者 明 承澤 岩手県盛岡市高松2−16−1−201 Fターム(参考) 4G048 AA04 AB02 AB05 AC06 AD06 AE05 5H029 AJ05 AK03 AL06 AL07 AM03 AM04 AM05 AM07 CJ02 CJ03 CJ08 CJ11 DJ16 DJ17 HJ00 HJ01 HJ02 HJ13 HJ14 5H050 AA07 BA15 CA09 CB07 CB08 FA17 FA19 GA02 GA03 GA10 GA11 GA27 HA00 HA01 HA02 HA14

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 四酸化三マンガン(Mn34)を含む、
    Mnの価数が2.8以下のマンガン原料とLi化合物原
    料とを水熱反応させることを特徴とする斜方晶の層状リ
    チウムマンガン複合酸化物の製造方法。
  2. 【請求項2】 マンガン原料中の四酸化三マンガンの割
    合が80重量%以上である請求項1に記載の製造方法。
  3. 【請求項3】 四酸化三マンガンが水溶液中で水酸化マ
    ンガンを自動酸化して得られるスピネル構造の四酸化三
    マンガンである請求項1又は2記載の製造方法。
  4. 【請求項4】 水熱反応温度が100〜374℃の範囲
    である請求項1〜3の何れかに記載の製造方法。
  5. 【請求項5】 層状リチウムマンガン複合酸化物のCu
    Kα線X線回折における(011)ピークの半価幅が2
    θで0.70゜以下である請求項1〜4の何れかに記載
    の製造方法。
  6. 【請求項6】 少なくとも正極の活物質として、請求項
    1〜5の何れかに記載された方法で得られたリチウムマ
    ンガン複合酸化物を使用して成ることを特徴とするリチ
    ウム二次電池。
JP2001187814A 2001-06-21 2001-06-21 層状リチウムマンガン複合酸化物の製造方法およびリチウム二次電池 Pending JP2003002654A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001187814A JP2003002654A (ja) 2001-06-21 2001-06-21 層状リチウムマンガン複合酸化物の製造方法およびリチウム二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001187814A JP2003002654A (ja) 2001-06-21 2001-06-21 層状リチウムマンガン複合酸化物の製造方法およびリチウム二次電池

Publications (1)

Publication Number Publication Date
JP2003002654A true JP2003002654A (ja) 2003-01-08

Family

ID=19027054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001187814A Pending JP2003002654A (ja) 2001-06-21 2001-06-21 層状リチウムマンガン複合酸化物の製造方法およびリチウム二次電池

Country Status (1)

Country Link
JP (1) JP2003002654A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012273A (ja) * 2010-07-05 2012-01-19 Sumitomo Chemical Co Ltd アルカリ金属複合金属酸化物の原料混合物
CN107555481A (zh) * 2016-11-18 2018-01-09 虔东稀土集团股份有限公司 一种锰氧化物材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820729A (ja) * 1981-07-27 1983-02-07 Chuo Denki Kogyo Kk 酸化マンガンの製造方法
JPH111323A (ja) * 1997-04-14 1999-01-06 Sakai Chem Ind Co Ltd マンガン酸リチウム粒子状組成物及びその製造方法並びにリチウムイオン二次電池
JPH11130438A (ja) * 1997-08-18 1999-05-18 Agency Of Ind Science & Technol リチウムマンガン複合酸化物粒子状組成物の製造とそのリチウムイオン二次電池への利用
JPH11180717A (ja) * 1997-12-22 1999-07-06 Ishihara Sangyo Kaisha Ltd マンガン酸リチウム及びその製造方法ならびにそれを用いてなるリチウム電池
JPH11233112A (ja) * 1998-02-19 1999-08-27 Mitsubishi Materials Corp リチウムイオン二次電池用マンガン酸リチウム化合物の製造方法
JPH11302018A (ja) * 1998-04-24 1999-11-02 Mitsubishi Materials Corp リチウム二次電池用正極活物質およびその製造方法
JP2001023640A (ja) * 1999-07-09 2001-01-26 Seimi Chem Co Ltd リチウム二次電池
JP2001093527A (ja) * 1999-09-22 2001-04-06 Matsushita Electric Ind Co Ltd 非水電解質二次電池用正極活物質およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820729A (ja) * 1981-07-27 1983-02-07 Chuo Denki Kogyo Kk 酸化マンガンの製造方法
JPH111323A (ja) * 1997-04-14 1999-01-06 Sakai Chem Ind Co Ltd マンガン酸リチウム粒子状組成物及びその製造方法並びにリチウムイオン二次電池
JPH11130438A (ja) * 1997-08-18 1999-05-18 Agency Of Ind Science & Technol リチウムマンガン複合酸化物粒子状組成物の製造とそのリチウムイオン二次電池への利用
JPH11180717A (ja) * 1997-12-22 1999-07-06 Ishihara Sangyo Kaisha Ltd マンガン酸リチウム及びその製造方法ならびにそれを用いてなるリチウム電池
JPH11233112A (ja) * 1998-02-19 1999-08-27 Mitsubishi Materials Corp リチウムイオン二次電池用マンガン酸リチウム化合物の製造方法
JPH11302018A (ja) * 1998-04-24 1999-11-02 Mitsubishi Materials Corp リチウム二次電池用正極活物質およびその製造方法
JP2001023640A (ja) * 1999-07-09 2001-01-26 Seimi Chem Co Ltd リチウム二次電池
JP2001093527A (ja) * 1999-09-22 2001-04-06 Matsushita Electric Ind Co Ltd 非水電解質二次電池用正極活物質およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012273A (ja) * 2010-07-05 2012-01-19 Sumitomo Chemical Co Ltd アルカリ金属複合金属酸化物の原料混合物
CN107555481A (zh) * 2016-11-18 2018-01-09 虔东稀土集团股份有限公司 一种锰氧化物材料及其制备方法
CN107555481B (zh) * 2016-11-18 2024-01-09 虔东稀土集团股份有限公司 一种锰氧化物材料及其制备方法

Similar Documents

Publication Publication Date Title
JP5418664B2 (ja) 複合酸化物の製造方法、リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
KR102140969B1 (ko) 비수 전해질 이차전지용 양극 활물질, 그 제조 방법 및 그것을 이용한 비수 전해질 이차전지
JP4523807B2 (ja) リチウム二次電池用正極活物質、その製造方法及びそれを含むリチウム二次電池
KR101369658B1 (ko) 비수전해질 이차 전지용 Li-Ni 복합 산화물 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지
KR20160030878A (ko) 비수계 전해질 이차전지용 정극 활물질, 이러한 비수계 전해질 이차전지용 정극 활물질의 제조 방법 및 이러한 비수계 전해질 이차전지용 정극 활물질을 이용한 비수계 전해질 이차전지
KR101904896B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR101744091B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
JPWO2012176471A1 (ja) リチウム含有複合酸化物粉末およびその製造方法
JP5674055B2 (ja) 複合酸化物の製造方法、二次電池用正極活物質および二次電池
JP4777543B2 (ja) リチウムコバルト複合酸化物の製造方法
JP4773636B2 (ja) リチウムコバルト複合酸化物の製造方法
JP2011249293A (ja) リチウム遷移金属化合物及びその製造方法、並びにリチウムイオン電池
JP5147951B2 (ja) リチウムイオン二次電池用負極活物質およびそれを用いたリチウムイオン二次電池
JP2020087927A (ja) リチウム二次電池用正極活物質、その製造方法およびこれを含むリチウム二次電池
JP5370501B2 (ja) 複合酸化物の製造方法、リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
US20110136001A1 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the same
JP2013173632A (ja) リチウムマンガン系複合酸化物、二次電池用正極活物質および二次電池
KR20150063265A (ko) ZnO-MnO-C 복합체, 산화아연 및 산화망간을 포함하는 복합체의 제조방법 및 이를 포함하는 리튬 이차 전지용 음극 활물질
US9716273B2 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP4296342B2 (ja) リチウム二次電池用正極活物質及びその製造方法,並びにリチウム二次電池
JP5828282B2 (ja) 非水電解質二次電池用活物質の製造方法およびそれを用いた二次電池
KR101224618B1 (ko) 리튬 이차전지용 양극 활물질, 리튬 이차전지용 양극, 리튬 이차전지 및 이들의 제조방법
JP4479874B2 (ja) 非水電解質二次電池用正極活物質の製造法、並びに非水電解質二次電池
JP2003123756A (ja) リチウムイオン二次電池用正極材料及びその製造方法並びにリチウム二次電池
JP2003002654A (ja) 層状リチウムマンガン複合酸化物の製造方法およびリチウム二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111227