WO1998038688A1 - Nonaqueous secondary battery and method for manufacturing the same - Google Patents

Nonaqueous secondary battery and method for manufacturing the same Download PDF

Info

Publication number
WO1998038688A1
WO1998038688A1 PCT/JP1998/000839 JP9800839W WO9838688A1 WO 1998038688 A1 WO1998038688 A1 WO 1998038688A1 JP 9800839 W JP9800839 W JP 9800839W WO 9838688 A1 WO9838688 A1 WO 9838688A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
layer
positive electrode
negative electrode
insulating material
Prior art date
Application number
PCT/JP1998/000839
Other languages
English (en)
French (fr)
Inventor
Masaya Yamashita
Shunsuke Oki
Yuko Ogawa
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to DE69836820T priority Critical patent/DE69836820T2/de
Priority to CA002282385A priority patent/CA2282385C/en
Priority to JP53752298A priority patent/JP3613400B2/ja
Priority to US09/380,282 priority patent/US6387564B1/en
Priority to EP98905710A priority patent/EP1018775B1/en
Publication of WO1998038688A1 publication Critical patent/WO1998038688A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0486Frames for plates or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49112Electric battery cell making including laminating of indefinite length material

Definitions

  • the present invention relates to a novel non-aqueous secondary battery and a method for manufacturing the same.
  • lithium-ion batteries have a higher voltage, higher capacity, higher output, and lighter weight than secondary batteries such as lead-acid batteries and nickel-cadmium batteries that have been widely used.
  • Ion secondary batteries are building a big market.
  • Such an electrode plate laminate of a lithium ion secondary battery is usually produced by winding or laminating a sheet-like electrode of a predetermined shape cut out from a large sheet-like electrode together with a separator. I have.
  • the sheet electrode before cutting is formed by mixing active material particles with a binder and a solvent to form a slurry, applying the slurry to a metal foil (current collector sheet), and then evaporating the solvent to form the active material. It is made by fixing particles on a metal foil.
  • the active material particles near the end surface (cut surface) of the sheet-like electrode are chipped off when the electrode plate laminate is manufactured or stored in a battery can, and an internal short circuit occurs due to the chipped active material particles. May cause. As a result, the yield of the battery is reduced, which is a factor that increases the manufacturing cost.
  • One of the objects of the present invention is that chipping of active material particles from an end face of a sheet-like electrode is performed.
  • the purpose is to prevent dropping and prevent an internal short circuit caused by the manufacturing process.
  • the electrode plate laminate of the conventional wound battery is manufactured by spirally winding a strip-shaped positive electrode, a negative electrode, and a separator.
  • a microporous polyethylene membrane is usually used, which is produced, for example, by forming fine pores in the membrane and then stretching.
  • the width (dimension in the winding axis direction) and the length (winding length) of the separator are larger than those of the positive electrode and the negative electrode in consideration of the displacement at the time of winding. It is designed.
  • the width and length of the negative electrode are designed to be larger than those of the positive electrode in order to prevent a short circuit at the end of the electrode during charging and discharging (actually, Registered Japan No. 25 06 57 2).
  • the substantial electrode area of the electrode plate laminate is equal to the entire area of the positive electrode active material layer, but the size (the dimension in the winding axis direction) of the electrode plate laminate is a separator.
  • the width of the positive electrode is determined by the width of the anode, and the width of the positive electrode is even smaller than the width of the negative electrode, which is smaller than that of the separator.
  • An object of the present invention is to increase the battery capacity of an electrode plate laminate housed in a battery can of the same size without increasing the thickness of the active material layer.
  • sheet-type batteries called “polymer batteries”, which basically use the principle of lithium-ion secondary batteries, have been developed recently.
  • the positive and negative electrodes of this polymer battery are made of the same material as a conventional lithium ion secondary battery.
  • the active material of the two electrodes is not a separator with electrolyte permeability, but a solid polymer electrolyte that serves as the separator and electrolyte.
  • a flat electrode plate laminate is produced by integrating both electrodes and the polymer solid electrolyte, and the electrode plate laminate is placed in a flexible container, and the electrolyte is not sealed. It is produced by sealing with.
  • polymer batteries Due to such materials and manufacturing methods, it is said that polymer batteries have the advantages of relatively high degree of freedom in battery shape, reduction in thickness and weight, and improvement in safety.
  • solid electrolytes have lower ion conductivity than liquid electrolytes used in lithium ion secondary batteries, polymer batteries have better discharge characteristics at higher current densities than lithium ion secondary batteries. There's a problem.
  • a separator composed of a conventional microporous polyolefin membrane is integrated between the two electrodes to produce a plate-like electrode plate laminate, and this electrode plate laminate is placed in a flexible container. Then, when a lithium-ion secondary battery is manufactured by enclosing and sealing the electrolytic solution, this battery has higher discharge characteristics and higher current density than a conventional battery using a metal battery can as a container. Poor cycle characteristics. This is because a gap between the electrode and the electrode is likely to be formed because the pressing pressure between the electrode and the separator is weaker in a flexible container than in a metal battery can. In addition, it is difficult to integrate a separator made of a polyolefin microporous membrane into an electrode in order to prevent the formation of this gap.
  • a thin non-aqueous secondary battery (sheet-type battery) having a relatively high degree of freedom in battery shape and having a flat electrode plate laminate in a flexible container is a metal.
  • a battery having the same characteristics as a conventional lithium ion secondary battery using a battery can as a container has not yet been obtained.
  • An object of the present invention is to provide a thin nonaqueous secondary battery having a relatively high degree of freedom in battery shape, comprising a flat electrode plate laminate in a flexible container, and having a high current density.
  • An object is to provide a material having excellent discharge characteristics and cycle characteristics. Disclosure of the invention
  • the present invention relates to an electrode having at least one of a positive electrode and a negative electrode having an active material layer fixed to at least one surface of a current collector, and an electrolyte-permeable separator interposed between the active material layers of both electrodes.
  • the separator may be a collection of insulating material particles in which insulating material particles are combined with a binder.
  • a coalescence layer, which is fixed to at least one of the positive electrode and the negative electrode, and at least one end surface of the positive electrode active material layer and the negative electrode active material layer has at least a part thereof formed of the insulating material particle aggregate layer.
  • a non-aqueous secondary battery characterized by being coated with: This battery is the first battery of the present invention.
  • the coating material is an insulating material particle aggregate layer having electrolyte permeability.
  • the end surface of the active material layer is coated with an insulating material particle aggregate layer having electrolyte permeability, for example, one or more integrated layers in which both electrodes and the separator are integrated are laminated.
  • the insulating material particle aggregate layer coated on the end face enters and exits due to the expansion and contraction of the electrode active material that occurs during charging and discharging. Since it can flow through the liquid, it has better cycle characteristics than when coated with an insulator that is impermeable to the electrolyte.
  • the electrolyte when the end face of the active material layer is coated with an insulating material particle aggregate layer having electrolyte permeability, the electrolyte can be impregnated after the electrode plate laminate is manufactured, so that the electrolyte permeability is improved. This is advantageous in terms of manufacturing as compared with coating with no insulator.
  • the coating with the insulating material particle aggregate layer may be performed up to the end face of the current collector.
  • the insulating material particles constituting the insulating material particle aggregate layer may be an inorganic material as described below or an organic material.
  • Organic substances include fluororesins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyacrylonitrile, polymethyl acrylate, polyacrylate, polytetrafluoroethylene and polyvinylidene fluoride, and polyamido.
  • fluororesins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyacrylonitrile, polymethyl acrylate, polyacrylate, polytetrafluoroethylene and polyvinylidene fluoride, and polyamido.
  • Resin particles such as AS resin and ABS resin are exemplified.
  • insulating substance particles inorganic particles are preferable, and oxide particles are particularly preferable.
  • the insulating material particles and the binder are dispersed in a solvent, and this is applied to the surface on which the insulating material particle aggregate layer is to be formed, and then the solvent is evaporated. There is a way.
  • the binders that can be used include latexes (eg, styrene-butadiene copolymer latex, methyl methacrylate-butene copolymer latex, and acrylonitrile copolymer-copolymer latex), cellulose derivatives ( For example, sodium and ammonium salts of carboxymethyl cellulose, fluorine rubber (for example, a copolymer of vinylidene fluoride, hexafluoropropylene and tetrafluoroethylene), and fluorine Resins (for example, polyvinylidene fluoride, polytetrafluoroethylene) and the like.
  • fluorine-based binders such as fluorine rubber and fluororesin are preferred.
  • the amount of the binder is preferably 1/500 to 3/5 of the volume of the insulating material particles by volume ratio, more preferably 1/500 to 1/2, and still more preferably 1/500 to 1/500. Assume 5.
  • solvent examples include ethyl acetate, 2-ethoxyethanol (ethylene glycol monoethyl ether), N-methylpyrrolidone (NMP), N, N-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO). ), Tetrahydrofuran (THF), water and the like.
  • the coating of the end surface of the sheet electrode with the insulator may be performed before or after the formation of the electrode plate laminate, but after the formation of the electrode plate laminate.
  • the mechanical strength of the end face of the electrode plate laminate increases, so that it becomes easier to squeeze the upper part of the battery can after being assembled into the battery can. It is also possible to omit the installation of insulating plates above and below the battery can.
  • the thickness T of the coating 3F is equal to or more than the thickness Tk of the active material layers 1b and 2b. (Here, the thickness is the same as the entire thickness of the sheet electrodes 1 and 2.) At least the entire end face of the active material layers lb and 2b is covered. Also, do not protrude on both sides of the sheet electrodes 1 and 2 in the thickness direction.
  • the width W of the coating is not particularly limited and may be any width that substantially protects the active material layer, but when an existing battery can is used, the maximum value is set according to the size. You.
  • the width of the negative electrode is about 1 mm larger than the width of the positive electrode.
  • the coating 3E with the insulator may be performed not only on the end face but also on the upper face end of the negative electrode active material layer 2b.
  • the width H of the coating at the upper end portion is set to be equal to or less than the distance S between the coating end surface of the positive electrode sheet-like electrode 1 and the active material layer end surface of the negative electrode sheet-like electrode 2.
  • the thickness T of the coating 3E of the sheet electrode 2 of the negative electrode is set to be equal to or less than the total thickness of both the sheet electrodes 1 and 2.
  • the present invention also provides at least one of a positive electrode and a negative electrode having an active material layer fixed to at least one surface of a current collector, and an electrolyte-permeable separator interposed between the active material layers of both electrodes.
  • a non-aqueous secondary battery in which a non-aqueous electrolytic solution is sealed in a container, the at least one end face of the positive electrode active material layer and the negative electrode active material layer has at least one end face thereof. Part is coated with an insulating material particle assembly layer, The material layer is formed in a size that does not protrude from the negative electrode active material layer forming a pair as a battery layer, and the separation is an insulating material particle aggregate layer in which insulating material particles are combined with a binder.
  • a non-aqueous secondary battery is provided. This battery is referred to as a second battery of the present invention.
  • the end face of the positive electrode active material layer is coated with the insulating material particle aggregate layer.
  • the electrode plate laminated body includes an insulating material particle aggregate layer in which insulating material particles are bonded by a binder as a separator between the active materials of both electrodes. It is preferable that one or more integrated layers in which the evening and both electrodes are integrated are laminated.
  • This battery is referred to as a fourth battery of the present invention.
  • the separation is composed of an insulating material particle aggregate layer in which insulating material particles are bonded with a binder.
  • the insulating material particle aggregate layer may be a layer in which a plurality of insulating material particles are arranged in the film thickness direction, or a film provided that the insulating material particles are densely arranged in the film surface. Only one may be arranged in the thickness direction.
  • the insulating material particle aggregate layer forms voids in the gaps between the insulating material particles bound by the binder and allows ions in the electrolyte to pass therethrough. Do not short-circuit the layer and the negative electrode active material layer.
  • the gap between the insulator particles is continuous in both the film thickness direction and the film surface direction in the assembly layer, it is easy for the electrolyte to penetrate into the positive and negative electrode active material layers.
  • Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are 083
  • the insulating material particle aggregate layer formed by using an oxide or the like as the insulating material particles has a higher heat resistance than a polyolefin-based resin microporous film, and thus has a temperature of 10 ° C. Drying is possible even at the above temperature, and the above problem can be solved. This can be said to be particularly effective when a lithium-manganese composite oxide, which is said to be easily affected by water contamination, is used for the positive electrode.
  • the thickness of the separator composed of the insulating material particle aggregate layer is not particularly limited, but is preferably 1 / m to 100 m, more preferably 10 / m to 50 / m. preferable.
  • the positive electrode active material layer is formed in a size that does not protrude from the negative electrode active material layer forming a pair as the battery layer. That is, in each battery layer, the surface area of the positive electrode active material layer is equal to or smaller than the surface area of the negative electrode active material layer.
  • the separator is fixed to at least one of the positive electrode and the negative electrode, and is arranged so as not to protrude from the end face of the current collector.
  • the external dimensions of the electrode plate laminate are determined by the size of the negative electrode, not the size of the separator. Therefore, it is necessary to make the size of the positive electrode and the negative electrode larger than before, when producing electrode plate laminates of the same size. Can be.
  • the separator is disposed so as to cover at least the entire surface of the positive electrode active material layer facing the negative electrode, a short circuit between the positive electrode and the negative electrode is prevented.
  • the electrode plate laminate has an insulating layer interposed between the current collectors of both electrodes, the insulating layer is fixed to at least one of the positive and negative current collectors, and
  • the current collector is preferably disposed so as to cover the entire surface of the positive electrode current collector facing the negative electrode current collector and not to protrude from the end face of the current collector.
  • the electrode plate laminate is composed of a positive electrode and a negative electrode having an active material layer fixed to only one side of the current collector, and the positive and negative current collectors face each other without the active material layer interposed therebetween (for example, winding
  • this insulating layer may be composed of the above-mentioned insulating material particle aggregate layer.
  • the present invention also provides at least one of a positive electrode and a negative electrode having an active material layer fixed to at least one surface of a current collector, and an electrolyte-permeable separator interposed between the active material layers of both electrodes.
  • the electrode plate laminate has an insulating material particle in which insulating material particles are bonded by a binder.
  • An active material particle assembly layer is interposed between the active materials of both electrodes as a separation, and one or more integrated layers are formed by integrating the separation and the two electrodes.
  • the container is a flexible container. Provide a pond. This battery is referred to as a third battery of the present invention.
  • the electrode plate laminate is formed by an integrated layer in which the separator and the two electrodes are integrated in this manner, no shift occurs between the positive electrode, the separator, and the negative electrode when the electrode plate laminate is manufactured. Further, even if an impact or the like is given after the electrode plate laminate is inserted into the container and sealed, no displacement occurs. In addition, since there is no change in the distance between the electrodes, deterioration in characteristics at the time of charge and discharge at a high current density is unlikely to occur, and deterioration in cycle characteristics can be reduced.
  • the separation material that is, the aggregate of the insulating material particles, on the surfaces of both the positive electrode active material layer and the negative electrode active material layer.
  • a mixture of insulating material particles and a binder is dispersed in a solvent to form a slurry, which is applied to the surface of the active material layer of one electrode.
  • the other electrode is overlaid on the surface such that both electrode active material layers face each other with the above-mentioned slurry interposed therebetween.
  • the dispersion medium is evaporated by heating.
  • the slurry is applied to the surface of the active material layer of at least one electrode, and then dried to form a separation layer. Then, the other electrode is overlapped so that the active material layers of both electrodes face each other via the separation layer. After that, they are hot-pressed at a temperature at which the binder melts, and then bonded.
  • the battery container is a flexible container, and is preferably a material that is substantially impermeable to water and non-aqueous solvent vapor and that is thin and light without deteriorating battery performance.
  • metal sheets such as iron sheet, stainless steel sheet, aluminum sheet, etc., polyethylene, polypropylene, ionomer resin, copolymer of ethylene and vinyl alcohol, nylon resin, aromatic polyamide resin, aromatic polyester resin, polyethylene Resin sheets such as terephthalate resin, polyethylene naphtholate resin, polyphenylene oxide, polyoxymethylene, polycarbonate, polytetrafluoroethylene resin, polyvinylidene fluoride resin and the like.
  • a sheet obtained by laminating two or more kinds of these sheets or a sheet obtained by mixing or polymerizing two or more kinds of sheet components may be used.
  • the battery of the present invention has a feature in the structure of the electrode plate laminate as described above.
  • Other constituent materials of the battery electrophilyte solution, materials of the positive electrode and the negative electrode, etc. are the same as those of the prior art.
  • L x M' (: -y , M " y 0 2 (0 ⁇ x ⁇ 1.1, 0 ⁇ y ⁇ 1, M 1 and M 11 are, Cr, Mn, F e, of at least one element selected from Ni), L i x Mn ( 2- y, M y 0 4 (0 ⁇ x ⁇ 1. 1, 0 ⁇ y ⁇ 1, and M is at least one element selected from the group consisting of Li, A1, Cr, Fe, Co, Ni, and Ga).
  • the negative electrode active material used in lithium-ion secondary batteries can store and release lithium in an ionic state.
  • Carbonaceous materials such as carbon, metal oxides and alloys containing elements such as Si, Ge, Sn, Pb, A1, In, and Zn.
  • the electrode active material is mixed with a binder and a solvent to form a slurry, coated on a current collector and dried to form an electrode.
  • a binder for example, styrene-butadiene copolymer.
  • Coated latex methyl methyl acrylate butadiene copolymer latex, and acrylonitrile-butadiene copolymer latex
  • cellulose derivatives eg, sodium and ammonium salts of carboxymethylcellulose
  • fluorine rubber eg, fluorinated rubber
  • fluororesins for example, polyvinylidene fluoride and polytetrafluoroethylene
  • the solvent examples include ethyl acetate, 2-ethoxyethanol (ethylene glycol monoethyl ether), N-methylpyrrolidone (NMP), N, N-dimethylformamide (DMF), dimethyl sulfoxide ( DMSO), tetrahydrofuran (THF), water and the like.
  • NMP N-methylpyrrolidone
  • DMF N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • THF tetrahydrofuran
  • Organic solvents in the non-aqueous electrolyte include, for example, propylene carbonate, ethylene carbonate, a-butyrolactone, dimethyl sulfoxide, dimethyl carbonate, ethyl methyl carbonate, getyl carbonate, 1,2-dimethoxetane, 1,2-— Diethoxyxetane: tetrahydrofuran and the like, either of which is used alone or in combination of two or more (for example, a mixed solvent of a solvent having a high dielectric constant and a solvent having a low viscosity) is used.
  • the electrolyte concentration in the non-aqueous electrolyte is preferably from 0.1 to 2.5 mol / l.
  • the present invention also provides a negative electrode body formed by fixing a negative electrode active material layer on at least one surface of a sheet-shaped negative electrode current collector, and the insulating material particles are bonded to the surface of the negative electrode body with a binder. After fixing the insulating material particle aggregate layer thus formed, the negative electrode body is cut into a predetermined shape according to the type of battery to produce a negative electrode on which a separator having an electrolyte permeability is fixed.
  • a method for producing a non-aqueous secondary battery, which is characterized in that an electrode plate laminate is formed as described above, is provided. This method is used in the present invention.
  • the positive electrode active material layer is formed so as not to protrude from the negative electrode active material layer forming a pair as a battery layer, and the separator is made of an insulating material.
  • An insulating material particle aggregate layer in which particles are bonded to each other with a binder, the layer being fixed to at least one of the positive electrode and the negative electrode, and covering at least the entire surface of the positive electrode active material layer facing the negative electrode; and
  • An electrode plate laminate of a non-aqueous secondary battery that is arranged so as not to protrude from the end face of the current collector is easily and efficiently manufactured.
  • a positive electrode, a negative electrode, and a separator are cut into a strip and wound in a spiral by a winding machine, or cut in a strip and folded in a predetermined width to be parallel.
  • a ninety-nine fold type that is stacked and the simple laminated type that is cut into circular or square shapes and stacked.
  • the positive electrode is cut so that the width of the positive electrode is smaller than the width of the negative electrode, and the positive electrode active material The negative electrode active material layer that does not face the layer Wrap so that it is placed.
  • the negative electrode is cut so that the width of the positive electrode is smaller than that of the negative electrode, and the negative electrode that does not face the positive electrode active material layer is formed at the start and end of the fold Fold it so that the active material layer is arranged.
  • the positive electrode is cut so that the outer peripheral line is smaller than the negative electrode, and the electrodes are stacked with their centers aligned.
  • the present invention also provides a positive electrode active material layer such that at least one surface of the sheet-shaped positive electrode current collector has a margin around the current collector dimensions set for the electrode plate laminate.
  • a positive electrode active material layer such that at least one surface of the sheet-shaped positive electrode current collector has a margin around the current collector dimensions set for the electrode plate laminate.
  • the positive electrode and a negative electrode having a predetermined shape in which a negative electrode active material layer is fixed on at least one surface of a sheet-shaped current collector are used. Do not protrude from the negative electrode active material layer forming a pair
  • the present invention provides a method for producing a non-aqueous secondary battery, characterized in that an electrode plate laminate is formed as described above. This method is the second production method of the present invention.
  • the nonaqueous secondary battery of the present invention at least a part of the end face of the positive electrode active material layer is coated with the insulating material particle aggregate layer, and the positive electrode active material layer is The layer is formed to a size that does not protrude from the negative electrode active material layer that forms a pair, and the separator is an insulating material particle aggregate layer in which insulating material particles are bound together by a binder and fixed to the positive electrode. So as to cover at least the entire surface of the positive electrode active material layer facing the negative electrode, and 839
  • An electrode plate laminate of a non-aqueous secondary battery arranged so as not to protrude from the end face of the current collector can be easily and efficiently produced.
  • the present invention also provides a positive electrode active material layer such that at least one surface of the sheet-shaped positive electrode current collector has a margin around the current collector dimensions set for the electrode plate laminate.
  • a positive electrode active material layer such that at least one surface of the sheet-shaped positive electrode current collector has a margin around the current collector dimensions set for the electrode plate laminate.
  • the insulating material particle aggregate layer is formed as a separator having electrolyte permeability. Interposed between the active materials of both poles, this separation Forming an integrated layer which is integrated to provide a method of manufacturing a nonaqueous secondary battery, which comprises forming a which are laminated one or more layers electrode plate laminate. This method is the third production method of the present invention.
  • the nonaqueous secondary battery of the present invention at least a part of the end face of the positive electrode active material layer is coated with the insulating material particle aggregate layer, and the positive electrode active material layer serves as a battery layer. It is formed in a size that does not protrude from the negative electrode active material layer that forms a pair, and is an insulating material particle aggregate layer in which insulating material particles are bound by a binder, and is fixed to the positive electrode.
  • the electrode plate laminate is disposed so as to cover at least the entire surface of the positive electrode active material layer facing the negative electrode and not to protrude from the end face of the current collector.
  • the electrode plate laminate of the non-aqueous secondary battery in which one or more integrated layers obtained by integrating the above are laminated is easily and efficiently produced.
  • the present invention also provides a sheet-like positive electrode current collector on at least one surface of the positive electrode current collector.
  • a positive electrode body is formed by forming a positive electrode active material layer such that there is a margin around the current collector set for the electrode plate laminate, and the surface of the positive electrode active material layer is formed on the positive electrode body.
  • a negative electrode active material layer is formed on the insulating material particle aggregate layer, Thereafter, the sheet is cut perpendicularly to the sheet surface at the position of the margin, so that the insulating material particle aggregate layer is interposed between the active materials of both electrodes as a separator having electrolyte permeability.
  • a method for producing a non-aqueous secondary battery characterized in that an integrated layer is formed by integrating the electrode and both electrodes, and one or more layers are laminated to form an electrode plate laminate. This method is referred to as a fourth production method of the present invention.
  • the negative electrode active material can function as an electrode without a current collector.
  • the current collector is fixed to the dried negative electrode active material layer, for example, a lath mesh (thickness)
  • a material that can be fixed to the negative electrode active material layer by pressing or the like such as an expanded metal equivalent to a normal current collector, may be used.
  • the nonaqueous secondary battery of the present invention at least a part of the end face of the positive electrode active material layer is coated with the insulating material particle aggregate layer, and the positive electrode active material layer serves as a battery layer.
  • the separator is formed to have a size that does not protrude from the negative electrode active material layer forming a pair, and the separator is an insulating material particle aggregate layer in which the insulating material particles are bound together by a binder, and is fixed to the positive electrode.
  • the electrode plate laminate is arranged so as to cover at least the entire surface of the positive electrode active material layer facing the negative electrode and not to protrude from the end face of the current collector. An electrode plate laminate of a nonaqueous secondary battery in which one or more integrated layers are laminated is easily and efficiently produced.
  • FIG. 1 is an explanatory view showing a method for producing a wound electrode plate laminate corresponding to one embodiment of the second battery of the present invention, and shows a wide width before cutting into a strip-shaped positive electrode and a strip-shaped negative electrode. It is a top view which shows a body.
  • A is a diagram related to the positive electrode
  • (b) is a diagram related to the negative electrode.
  • FIG. 2A is a cross-sectional view taken along line AA of FIG. 1A
  • FIG. 2B is a cross-sectional view taken along line B-B of FIG. 1B.
  • FIG. 3 is a front view showing a difference in dimensions between the positive electrode and the negative electrode, and how the positive electrode and the negative electrode are overlapped during winding.
  • FIGS. 4A and 4B are cross-sectional views showing an electrode plate laminate manufactured as one embodiment of the second battery of the present invention, wherein FIG. 4A shows an inner peripheral portion thereof, and FIG. 4B shows an outer peripheral portion thereof. .
  • Figure 5 is a diagram showing the relationship between the battery can and the electrode plate laminate, and the relationship between the length of the electrode plate laminate, the width of the positive electrode, the width of the negative electrode, and the width of the separator.
  • (B) shows the electrode plate laminate of the battery of the embodiment, and (c) shows the electrode plate laminate of the conventional battery.
  • FIG. 6 shows an outer peripheral portion of an electrode plate laminate (an example in which an active material layer is fixed to only one surface of a current collector for both a positive electrode and a negative electrode) corresponding to another embodiment of the second battery of the present invention. It is sectional drawing.
  • FIG. 7 is a cross-sectional view showing an electrode plate laminate (an example in which separators are fixed on both surfaces of both the positive electrode and the negative electrode) corresponding to another embodiment of the second battery of the present invention, wherein (a) is a sectional view thereof. (B) shows the outer peripheral side portion.
  • FIG. 8 is a cross-sectional view showing an electrode plate laminate (an example in which a current collector exposed portion is provided on the outermost periphery) corresponding to another embodiment of the second battery of the present invention. (B) shows the outer peripheral portion.
  • Fig. 9 is a cross-sectional view showing an example of a method for fixing the separator to the active material layer. It is.
  • FIG. 10 is a cross-sectional view illustrating an example of a method for fixing the separation to the active material layer.
  • FIG. 11 is a cross-sectional view showing an example of a method of fixing the separator to the active material layer.
  • FIG. 12 is a cross-sectional view showing an example of a method of fixing the separator to the negative electrode active material layer.
  • FIG. 13 is a cross-sectional view showing an example of a method of fixing the separator to the negative electrode current collector.
  • FIG. 14 is a plan view showing an electrode plate laminate of a coin-shaped simple laminated battery.
  • FIG. 15 shows a stack of electrode plates of a square simple stack type battery.
  • FIG. 16 and FIG. 17 are cross-sectional views showing examples of the cross-sectional structure of the electrode plate laminate of FIG. 14 and FIG.
  • FIG. 18 and FIG. 19 are cross-sectional views showing an embodiment of the third battery of the present invention.
  • FIG. 20 is a cross-sectional view showing one embodiment of an electrode constituting the first battery of the present invention.
  • FIG. 21 is a cross-sectional view showing a manufactured positive electrode body and negative electrode body according to an embodiment of the second manufacturing method of the present invention.
  • FIGS. 22A and 22B are process diagrams showing a manufacturing procedure of the electrode plate laminate in Example 8, wherein FIG. 22A shows a manufacturing process of a wide body, and FIG. 22B shows a strip obtained by the process of FIG. (C) shows a process of forming a coating with an insulator, and (d) shows a process of manufacturing an electrode plate laminate.
  • FIG. 23 is a cross-sectional view showing an example of an electrode plate laminate of the second battery according to the embodiment of the present invention.
  • FIGS. 24A and 24B are process diagrams showing the procedure for producing the electrode plate laminate in Example 9, wherein FIG. 24A shows a process for producing a wide body, and FIG. 24B shows a band-like body obtained by the process (a).
  • (C) shows a process for producing an electrode plate laminate, and (d) shows a process for forming a coating with an insulator.
  • FIG. 25 is a cross-sectional view illustrating a unit battery layer of the electrode plate laminate manufactured in Example 9.
  • FIG. 26 is a partially enlarged view showing the vicinity of the end face of the electrode plate laminate manufactured in Example 9.
  • FIGS. 27A and 27B are process diagrams showing a manufacturing procedure for the first battery of the present invention when the electrode plate laminate is a simple laminate type, wherein FIG. 27A shows a process for producing a wide body, and FIG. b) shows a strip obtained by the step (a), (c) shows a step of forming a coating with an insulator, and (d) shows a step of manufacturing an electrode plate laminate.
  • FIGS. 28 and 29 are cross-sectional views showing an example of a positive electrode strip and a negative electrode strip of a wound electrode plate laminate according to the first battery embodiment of the present invention.
  • FIGS. 30 and 31 are cross-sectional views showing a manufactured positive electrode body and a manufactured negative electrode body according to an embodiment of the second manufacturing method of the present invention.
  • FIG. 32 is a cross-sectional view showing a manufactured integrated layer according to an embodiment of the third manufacturing method of the present invention.
  • FIGS. 33 and 34 are cross-sectional views showing an example of an electrode plate laminate according to the second battery embodiment of the present invention.
  • FIG. 35 is a cross-sectional view showing an example of an electrode plate laminate of the fourth embodiment of the present invention.
  • This embodiment corresponds to an embodiment relating to the second battery of the present invention and its manufacturing method (the first manufacturing method of the present invention).
  • 1 to 4 show a method for producing a wound electrode plate laminate.
  • Fig. 1 (a) plane view
  • Fig. 2 (a) cross-sectional view taken along the line A-A in Fig. 1 (a)
  • the positive electrode is applied to both sides of the current collector foil la.
  • the active material layer 1b is formed to produce the positive electrode wide body 10.
  • the negative electrode active is applied to both sides of the current collector foil 2a.
  • the material layer 2b is formed to produce the negative electrode wide body 20, and the insulating material particle aggregate layer 3B is formed on the entire surface of each negative electrode active material layer 2b.
  • the positive electrode wide body 10 and the negative electrode wide body 20 on which the insulating material particle aggregate layer 3B is formed are divided into a plurality of pieces in the width direction.
  • a negative electrode strip 21 having the positive electrode strip 11 and the insulating material particle aggregate layer 3B formed thereon is obtained.
  • the negative electrode strip 21 on which the positive electrode strip 11 and the insulating material particle aggregate layer 3B are formed is spirally wound with the negative electrode inside while overlapping as shown in FIG. I do. That is, only the negative electrode strip 21 is wound at the beginning (length a) of this electrode plate laminate, and thereafter, the negative electrode on which the positive electrode strip 11 and the insulating material particle aggregate layer 3B are formed is formed. Align the center of the band 21 in the width direction and wind it up.
  • FIG. 4 (a) shows the inner peripheral side portion 4a of the electrode plate laminate, and FIG. The peripheral part 4b is shown.
  • FIG. 4 (b) shows the inner peripheral side portion 4a of the electrode plate laminate, and FIG. The peripheral part 4b is shown.
  • the innermost negative electrode active material layer 2b (length c) and the outermost peripheral negative electrode active material layer 2b (length d) are
  • the battery layer is not formed, but in other portions, the positive electrode active material layer 1b and the negative electrode active material layer 2b which face each other with the insulating material particle aggregate layer 3B serving as a separator therebetween interposed therebetween.
  • the battery layer D is configured.
  • the winding start portion (length a) of the innermost battery layer Da and the winding end portion (length e) of the outermost battery layer De are composed of the negative electrode active material layer 2b and the positive electrode active material. Not opposed to layer 2b. That is, in the innermost battery layer Da and the outermost battery layer De, there is a portion (single portion) F of the negative electrode active material layer 2b which is not opposed to the positive electrode active material layer 1b.
  • the negative electrode 2 is formed larger by ⁇ w 1 and ⁇ 2, respectively.
  • the negative electrode 2 is cut larger than the positive electrode 1 in both the length direction and the width direction, and the negative electrode 2 is overlapped and wound so as not to protrude from the negative electrode 2.
  • a single portion F of the negative electrode active material layer 2b is formed at all ends of the positive and negative electrodes forming a pair as the battery layer D. Therefore, in the lithium ion secondary battery provided with the electrode plate laminate having such a configuration, the lithium ion doping amount is saturated near the end of the negative electrode due to the presence of the single portion F of the negative electrode active material layer 2b. As a result, an internal short circuit during charging and discharging is prevented.
  • the width of the separator is the same as the width of the negative electrode 2. be able to.
  • the width of the positive electrode 1, which is designed to be smaller than the negative electrode 2 for the above-described purpose can be made larger than before, so that the area of the positive electrode 1 of the electrode plate laminate housed in a battery can of the same size is reduced. Can be larger.
  • the height of the electrode plate laminate to be accommodated is determined according to the size of the battery can 5, but the electrode plate laminate 4 of this embodiment has the structure shown in FIG. As shown in b), the width M2 of the negative electrode 2 and the width S1 of the separator (insulating material particle aggregate layer) 3B can be made equal to the height of the electrode plate laminate 4.
  • the width S2 of the separator is made equal to the height of the electrode plate laminate, and the width M2 of the negative electrode 2 is reduced. Is reduced by a difference of, for example, about 2. Omm.
  • the widths PI and P2 of the positive electrode 1 are made smaller than the widths Ml and M2 of the negative electrode plate 1 in the range of 0.5 to 2.0 mm, for example, in order to prevent an internal short circuit as described above. .
  • the electrode plate laminate 4 in Fig. 5 (b) is the same as the conventional one in Fig. 5 (c).
  • the battery capacity can be made larger than the electrode plate laminate 40 of the first embodiment.
  • the thickness of the active material layer can be reduced by an increase in area without reducing the battery capacity.
  • the current density per unit area decreases due to the increase in the area, and the thin film active material layer reduces the film resistance and improves the output characteristics.
  • This slurry is coated on both sides of a 15-m-thick aluminum foil (positive electrode current collector) 1a, dried, and pressed to form a 87-m-thick positive electrode active material layer 1b on one side.
  • This slurry is applied to both sides of a 12-m-thick copper foil (negative electrode current collector) 2a, dried and pressed to form a negative electrode active material layer 2b with a thickness of 8 ljm per side.
  • a negative electrode wide body 20 having the following formula was formed.
  • Insulating material particles Toshitehi - A 1 2 0 3 powder (50% average particle diameter 0. 7 ⁇ , ⁇ ), manufactured by Porifudzu fluoride as a binder powder (PVD F) [Kureha (Ltd.) KF # 1100], N-methylpyrrolidone (NMP) was prepared as a solvent. Then, three to A l 2 0 shed in a weight ratio: PVD F 1 00: mixed in a powder form state to be 5, it pressurized Ete further mixed NMP, the solid fraction 56. 8 wt% A slurry was obtained.
  • This slurry was uniformly applied onto the positive electrode wide body positive electrode active material layer 1b and the negative electrode wide body negative electrode active material layer 2b using Daiko Yuichi, and this was dried in a drying oven at 120 ° C. After drying for 2 minutes, the separator 3 A consisting of the 12 ⁇ m thick insulating material particle aggregate layer is placed on the positive electrode active material layer 1 b, and the separator 3 B is placed on the negative electrode active material layer 2 b Fixed on top.
  • an electrolytic solution a solution prepared by dissolving LiPF 6 in a mixed solvent of ethylene carbonate (EC) and getyl carbonate (DEC) at a volume ratio of 1: 1 by 1.0 mol / 1 was used.
  • the electrode plate laminate of this embodiment produced by the above-described method was housed in a battery can and sealed, and 18650 size (diameter 18 mm, height 65 mm) and 17500 size (diameter 17 mm) were sealed.
  • mm, 5 Omm height cylindrical lithium-ion secondary battery was fabricated.
  • a conventional cylindrical lithium ion secondary battery using a microporous polyethylene membrane as a separator was also manufactured.
  • the points other than the width of the positive electrode and the negative electrode (length / thickness of the active material layer) and the width and type of the separator were the same for each size. It is.
  • the battery fabricated in this manner was subjected to one cycle of charging and discharging in a 20 ° C constant temperature bath under the following conditions.
  • Tables 1 and 2 below show the results of comparing battery discharge capacities.
  • Table 1 shows the 18650 size and Table 2 shows the 17500 size.
  • Table 1 shows the 18650 size and Table 2 shows the 17500 size. ⁇ table 1 ⁇
  • the electrode plate laminate is manufactured using both the positive and negative electrodes in which the active material layers are fixed on both surfaces of the current collector.
  • the present invention is not limited thereto.
  • those having an active material layer fixed to only one surface of a current collector may be used.
  • Figure 6 shows an example in which the active material layer is fixed on only one side of the current collector for both the positive electrode and the negative electrode, and the current collector is used one by one.
  • an insulating layer is provided between the positive and negative current collectors. Need to be formed. Therefore, in this example, the wide body from which the negative electrode 2 is cut out is formed by forming an active material layer 2b on one surface of the current collector 2a, and then forming an insulating material particle aggregate layer as a separator over the active material layer 2b. It is formed by forming 3B and also forming an insulating material particle aggregate layer 3E on the other surface of the current collector 2a. Further, as the positive electrode 1, a current collector la having an active material layer 1b fixed to one surface thereof is used.
  • the separator 3 B composed of the insulating material particle aggregate layer is disposed between the positive and negative active material layers lb and 2 b.
  • the insulating material particle aggregate layer 3E is disposed between the positive and negative current collectors la and 2a.
  • the insulating material particle aggregate layer 3E between the positive and negative current collectors 1a and 2a does not need to have a function of passing ions in the electrolytic solution, and isolates between the two current collectors. Since it is only necessary to have a function, the insulating material particle aggregate layer 3E does not need to be formed of the insulating material particle aggregate layer, and may be formed by fixing the insulating film to the current collector.
  • the insulating material particle aggregate layer 3B forming a separation is formed on the entire surface of the negative electrode active material layer 2b, and the positive electrode active material layer 1b is formed.
  • the insulating material particle aggregate layers 3A and 3B may be formed on the entire surface of the positive and negative active material layers lb and 2b, respectively, as shown in FIG. In this way, in each battery layer D, there is a separation layer composed of two insulating material particle aggregate layers 3A and 3B between the positive and negative active material layers lb and 2b.
  • the function of separation is not reduced. be able to.
  • the portions not forming the battery layer D (the length d of the outermost peripheral portion and the length c of the innermost peripheral portion of the electrode plate laminate) are previously provided with the negative electrode current collector 2a.
  • the negative electrode active material layer 2b may not be formed (the current collector exposed portion R may be formed). In this way, when producing the same electrode plate laminate for a battery can, the wound length can be increased, and the capacity can be increased accordingly.
  • a current collector exposed portion T for fixing a tab is also formed, and such a current collector exposed portion T and / or the aforementioned current collector exposed portion R are formed.
  • the insulating material particle assembly layer 3A (3B) may be formed so as to cover the end face portion M of the active material layer lb (2b).
  • the insulating material particle aggregate layer 3A (3B) was placed so as to cover the end face portion M of the active material layer lb (2b) and the entire current collector exposed portion T (R). It may be formed.
  • the insulating material particle aggregate layer 3A (3B) is formed by combining the end face portion M of the active material layer lb (2b) and a part of the current collector exposed portion T (R). It may be formed so as to cover T 1 (R 1).
  • the insulating material particle aggregate layer may be fixed to the current collector exposed portion as described above, but the insulating film should be cut and attached or sandwiched so as not to protrude from the electrode. Can prevent a short circuit. Wear.
  • the separator 3B when the separator 3B is fixed on the surface of the negative electrode active material layer 2b, it is not always necessary to fix the separator 3B on the entire surface. As shown in FIG. It may be fixed at the same or larger size.
  • the insulating material particle aggregate layer 3E when the insulating material particle aggregate layer 3E is fixed on the surface of the negative electrode current collector 2a, it is not always necessary to fix it on the entire surface, and as shown in FIG. It may be fixed to a size equal to or larger than the positive electrode current collector to be opposed.
  • the separator composed of the insulating material particle aggregate layer may be formed only on the entire surface of the positive electrode 1 and not formed on the negative electrode 2, but in consideration of chipping at the cut portion, the negative electrode It is preferable that it is formed on the surface of 2.
  • the separator 2 B composed of the insulating material particle aggregate layer is formed on both surfaces of the wide body 20 of the negative electrode, and the cut negative electrode 2 and the insulating material particle aggregate are formed.
  • a wound type battery is shown, but a similar effect can be obtained with a 99-fold type or a simple stacked type battery.
  • Fig. 14 shows the electrode plate laminate of a coin-shaped simple stacked battery
  • Fig. 15 shows the electrode plate laminate of a square simple stacked battery.
  • FIG. 16 is a cross-sectional view of these electrode plate laminates.
  • the negative electrode 2 is cut out in a circular or square shape from the positive and negative wide bodies 10 and 20 formed in the same manner as described above, and the positive electrode 1 is cut slightly smaller than the negative electrode 2.
  • the insulating material particle aggregate layer 3B fixed to the negative electrode active material layer 2b allows the separation to be the same size as the negative electrode 2, so that the positive electrode 1 is enlarged as described above. The battery capacity can be increased.
  • the single portion F of the negative electrode active material layer is provided in the portion where the battery layer D of the electrode plate laminate is formed, but the present invention is not limited to such. That is, when the internal short circuit does not cause a serious problem as described above, the area of the positive electrode active material layer forming the battery layer D of the electrode plate laminate is determined by the area of the negative electrode active material layer and the insulating material particle aggregate. By using the same layer, the battery capacity in the same battery can can be further increased.
  • the electrode plate laminate of the simple stack type battery shown in FIG. 16 has a plurality of battery layers D formed by stacking a plurality of positive electrodes and a plurality of negative electrodes having fixed separators.
  • the positive electrode 1 and the negative electrode 2 to which the separation (insulating material particle aggregate layer 3B) is fixed may be stacked one by one.
  • the electrode plate laminate 4 of the third battery of the present invention includes, for example, an electrode plate laminate 4 shown in FIG.
  • the electrode plate laminate 4 includes a positive electrode 1 in which a material containing a lithium-containing composite oxide is applied as a positive electrode active material layer 1b to one surface of a positive electrode current collector 1a made of aluminum foil, and a collector made of copper.
  • Sepa It is composed of a layer (insulating material particle aggregate layer) 3 C, and the separation 3 C is fixed on both surfaces of the positive electrode active material layer 1 b and the negative electrode active material layer 2 b. That is, the electrode plate laminate 4 has only one integrated layer in which the separator composed of the insulating material particle aggregate layer and both electrodes are integrated.
  • a 4.0 cm x 4.0 cm square electrode sheet was cut out from the wide positive electrode produced in the same manner as in Examples 1 to 6.
  • needle coke was used as the negative electrode active material
  • carboxymethyl cellulose was used as the dispersant
  • latex was used as the binder.
  • purified water Needle coke: carboxymethyl cellulose
  • Latex 100: 0.8: 2.0 in a weight ratio to form a slurry. This slurry is applied to one surface of a 18 ⁇ m thick copper foil (negative electrode current collector) 2a, dried, and pressed to produce a 124 ⁇ m thick negative electrode active material. A negative electrode wide body having the layer 2b was formed. A 4.1 cm x 4.1 cm square electrode sheet was cut out from the negative electrode wide body.
  • Al 2 O 3 50% average particle diameter 1.0 jum
  • PV DF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • This slurry was uniformly applied to the positive electrode active material layer 1 b of the positive electrode cut out above and the negative electrode active material layer 2 b of the negative electrode cut out above using a Doc Yuichi blade, and this was immediately applied to 1 b And 2b were attached so as to face each other, and dried in a drying oven at 130 ° C. for 30 minutes to produce an electrode plate laminate. At this time, the thickness of the insulating material particle assembly layer 3C was 20 ⁇ m.
  • the above electrode plate laminate was prepared by adding LiBF4 to a mixed solvent of ethylene carbonate (propylene carbonate (PC), ethylene carbonate (EC), and esterolactone (a-BL) in a volume ratio of 1: 1: 2. It was housed in an aluminum foil laminate package together with the electrolyte solution dissolved at 5 mol / l and sealed to obtain a sheet-type battery.
  • ethylene carbonate propylene carbonate (PC), ethylene carbonate (EC), and esterolactone (a-BL) in a volume ratio of 1: 1: 2. It was housed in an aluminum foil laminate package together with the electrolyte solution dissolved at 5 mol / l and sealed to obtain a sheet-type battery.
  • PC propylene carbonate
  • EC ethylene carbonate
  • a-BL esterolactone
  • the rate of change in discharge capacity is an index that indicates rapid discharge characteristics
  • the capacity retention rate is an index that indicates cycle characteristics
  • This solid electrolyte was sandwiched between the same positive electrode and negative electrode as in the example, to produce an electrode plate laminate in which both active material layers faced each other. This electrode plate laminate was sealed in the same package as in the example to form a sheet-type polymer battery, and charged and discharged under the same conditions as in the example.
  • Comparative Example 4 As another comparative example, a 25 ⁇ m-thick polyethylene microporous membrane separator used in a conventional lithium-ion secondary battery was sandwiched between the same positive electrode and negative electrode as in the example, and the two active material layers Thus, an electrode plate laminated body facing was fabricated. This electrode plate laminate was sealed in the same package as in the example to form a sheet-type battery, and charged and discharged under the same conditions as in the example. This was designated as Comparative Example 4.
  • the third battery of the present invention is superior to the polymer battery, particularly in terms of the rapid discharge characteristics.
  • both rapid discharge characteristics and cycle characteristics are improved. are better.
  • the electrode plate laminate of the above embodiment has only one integrated layer in which the positive electrode, the separator and the negative electrode are integrated, but as shown in FIG. May be laminated in two or more layers.
  • the electrode plate laminate 4 shown in FIG. 19 has a plurality of battery layers D because two or more integrated layers are laminated, and the entire edge of the portion where the battery layer D is formed.
  • the sheet-type battery provided with the electrode plate laminate 4 shown in FIG. 19 has the short-circuit prevention effect as described in the second embodiment. Is also obtained.
  • the insulating material particle aggregate layer 3D fixed to the positive and negative active material layers 2b, 1b makes the separation overnight the same size as the negative electrode 2, the positive electrode 1 is enlarged to make the battery larger. The capacity can also be increased.
  • This embodiment corresponds to an embodiment relating to the first battery of the present invention.
  • a positive electrode wide body and a negative electrode wide body were prepared, and insulating material particle aggregate layers 3A and 3B were formed on the entire surface of the wide active material layer.
  • FIG. 22 (a) shows a wide positive electrode body 10 having the insulating material particle aggregate layer 3A formed thereon and a wide negative electrode body 20 having the insulating material particle aggregate layer 3B formed therein.
  • Fig. 22 (b) by cutting in the width direction A positive electrode strip 11 with a 38.7 mm wide 62 mm long 62 cm long insulating material aggregate layer 3 A and a 40.25 mm long 59.8 cm long insulating material particle A negative electrode strip 21 on which the assembly layer 3B was formed was obtained.
  • Coatings 3F composed of an insulating material particle aggregate layer were formed on the end faces (cut surfaces) in the width direction of these strips as described below.
  • PVDF Porifudzu fluoride as a binder one
  • NMP N-methylpyrrolidone
  • the slurry was applied to the widthwise end surfaces of the positive and negative strips, and dried at 120 ° C. for 2 minutes.
  • the positive and negative strips 11 and 21 formed with the insulating material particle aggregate layers 3A and 3B protrude on both sides in the thickness direction.
  • the coating 3F consisting of the insulative material particle aggregate layer is applied to the active material layers lb, 2b and the entire end faces of the current collector sheets la, 2a to a thickness of 10 mm in the width direction of the strip. Formed.
  • the electrode plate laminate 41 was produced by winding the positive electrode side outward (FIG. 2 d)).
  • the unit battery layer D1 of the electrode plate laminate 41 includes, as shown in FIG. 25, a positive electrode 1 (a positive electrode strip 1) having a positive electrode active material layer 1b fixed to one surface of an aluminum foil 1a. 1), a negative electrode 2 (negative electrode strip 21) in which a negative electrode active material layer 2b is fixed on one surface of a copper foil 2a, and a negative electrode 2a fixed on each active material layer.
  • a positive electrode 1 a positive electrode strip 1 having a positive electrode active material layer 1b fixed to one surface of an aluminum foil 1a.
  • a negative electrode 2 negative electrode strip 21
  • a negative electrode active material layer 2b fixed on one surface of a copper foil 2a
  • a negative electrode 2a fixed on each active material layer P98 / 008 9
  • This electrode plate laminate 41 is mixed with ethylene carbonate (EC) and getyl carbonate (DEC) at a volume ratio of 1: 1 using L ⁇ ? 6 was placed in a battery can with a diameter of 17 mm and a height of 5 cm together with the electrolytic solution in which 1. Omo 1/1 was dissolved, and sealed to form a cylindrical lithium ion secondary battery.
  • EC ethylene carbonate
  • DEC getyl carbonate
  • Comparative Example 5 except that the coating 3F composed of the insulating material particle aggregate layer was not formed on the width direction end surfaces of both the positive and negative belt-like bodies 11 and 21, all were the same as in Example 8.
  • a lithium ion secondary battery was manufactured. Each of these batteries was prepared and charged / discharged in a 20 ° C constant temperature bath for one cycle under the following conditions, and the number of batteries with a short-circuit abnormality was determined.
  • Example 8 a wide positive electrode body and a wide negative electrode body were prepared. Next, a slurry composed of the insulating material particles, the binder, and the solvent was obtained in the same manner as in Example 8.
  • This slurry is applied to the positive electrode active material layer 1 of the positive electrode wide body by using Daiko overnight. b and the negative electrode active material layer 2b of the negative electrode wide body, and then dried in a drying oven at 120 ° C for 2 minutes to obtain a 12 ⁇ m thick insulating material particle aggregate. Separation layer 3A was fixed on positive electrode active material layer 1b, and separation layer 3B was fixed on negative electrode active material layer 2b.
  • a positive electrode strip 11 having a width of 38.75 mm and a length of 62 cm and a width of 40.25 mm are obtained.
  • a negative electrode strip 21 of 59.8 cm was obtained.
  • the unit battery layer D2 of the electrode plate laminate 42 includes a positive electrode 1 having a positive electrode active material layer 1b fixed to one surface of an aluminum foil 1a, and a copper foil 2a.
  • Negative electrode 2 having negative electrode active material layer 2 b fixed on one side, insulating material particle aggregate layer 3 A fixed on positive electrode active material layer 1 b, negative electrode active material layer 2 It consists of a separation layer 3B consisting of an insulating material particle aggregate layer fixed on b, and an insulating film 3G.
  • the positive electrode strip 11 includes the positive electrode 1 and a positive electrode-side separator 13A
  • the negative electrode band 21 includes the negative electrode 2 and the negative electrode-side separator 13B.
  • coatings 3F composed of an insulating material particle aggregate layer are formed as follows.
  • the same slurry as that used in the production of Separates 3A and 3B was applied to both end surfaces of the electrode plate laminate 42, and then dried at 120 ° C for 2 minutes. as shown in a number of Fei - was formed Al 2 0 3 particles each other coating co one joined by PVD F 3 F.
  • the width W at the end face of the negative electrode strip 21 is formed on all the end faces of the positive electrode strip 11, the negative electrode strip 21, and the insulating film 3 G. It is fixed to be 10 m, and is also formed on the upper surface end of the negative electrode active material layer 2b.
  • the electrode plate laminate 42 on which the coating 3F made of the insulating material particle aggregate layer was formed on both end surfaces in this manner was placed together with an electrolytic solution having the same composition as in Example 8 with a diameter of 17 mm and a height of 17 mm.
  • the battery was stored in a 5 cm long battery can and sealed to produce a lithium secondary battery.
  • Example 9 a short circuit abnormality occurred in only one of the 100 lines, whereas in Comparative Example 2, a short circuit abnormality occurred in five of the 100 lines. That is, it can be seen that the occurrence rate of short-circuit abnormality is greatly reduced by forming the coating 3F including the insulating material particle aggregate layer on both end surfaces of the electrode plate laminate 42.
  • FIG. 28 shows an example of a positive electrode strip and a negative electrode strip of a wound electrode plate laminate.
  • both the positive electrode strip 11 and the negative electrode strip 21 are formed with active material layers 1 b and 2 b at portions excluding the longitudinal ends of the current collectors 1 a and 2 a
  • the insulating material particle aggregate layers 3A and 3B are fixed on the entire surface of the both active material layers and on all end faces in the length and width directions.
  • the insulating material particle aggregate layers 3A and 3B have the same thickness at the part forming the separation and at the end face coating part. As a result, all the end faces of both active material layers are coated with the insulating material particle aggregate layer.
  • the active material layers lb and 2b are formed on the current collectors la and 2a except for the longitudinal ends, and only one surface of the active material layer is insulated.
  • the insulating material particle assembly layers 3A and 3B are formed only on one surface of the active material layer in this way, the insulating material particle assembly layers 3A and 3B are connected to the current collector la, 2a may be fixed to the entire surface of one side.
  • the battery having the wound electrode plate laminate in which the positive electrode, the negative electrode, and the separator are cut into a band and wound in a spiral by a winding machine is described.
  • the present invention is not limited to this, and the present invention relates to a ninety-nine fold type in which a positive electrode, a negative electrode, and a separator are cut in a strip shape and folded in a predetermined width and overlapped in parallel, and the positive electrode, the negative electrode, and the separator are circular or square.
  • the present invention can also be applied to a battery having an electrode plate laminate of another known structure, such as a simple laminate type, which is cut and stacked.
  • FIG. 27 shows an example of a cross-sectional view of a simple laminate type electrode plate laminate.
  • each of the positive and negative wide bodies 10 and 20 is cut into a grid to form a square electrode as shown in FIG. 27 (b). Get 12, 22.
  • a coating 3F comprising an insulating material particle aggregate layer is formed on all four end faces of these electrodes 12, 22.
  • These sheet-like electrodes 12, 22 are alternately superposed positively and negatively with a separator interposed therebetween to produce an electrode plate laminate 43 (FIG. 27 (d)).
  • This embodiment corresponds to an embodiment of the second battery of the present invention and its manufacturing method (the second manufacturing method of the present invention).
  • the L iCo0 2 as the positive electrode active material
  • scaly Grapher Acetylene black was used as the conductive filler
  • PVDF polyvinylidene fluoride
  • NMP N- methylpyrrolidone
  • This slurry is applied to one side of a 20-m-thick aluminum foil (positive electrode current collector) 1 a in the coating direction and the direction perpendicular to the coating direction, in which the coating part and the non-coating part alternately appear.
  • coating was performed so that the widths of the coated portions and the non-coated portions were the same. However, the non-coated part does not necessarily have to be in the coating direction.
  • the slurry was dried and pressed to form a wide positive electrode body 10 having a positive electrode active material layer 1 b having a thickness of 87 ⁇ m.
  • the positive electrode wide body (positive electrode body) 10 has a width smaller than the current collector width set for the electrode plate laminate, and has a predetermined gap therebetween in parallel with the positive electrode active material layers 1. b is formed.
  • This slurry is applied to one surface of a 12- ⁇ m-thick copper foil (negative electrode current collector) 2a in the same manner as in the case of the positive electrode, except that the width of application in each direction is wider than in the case of the positive electrode.
  • the slurry was dried and pressed to form a negative electrode wide body 20 having a negative electrode active material layer 2b with a thickness of 81 / m.
  • this negative electrode wide body (negative electrode body) 20 has a width smaller than the current collector width set for the electrode plate laminate, and is arranged in parallel with a predetermined gap. Layer 2b is formed.
  • a slurry containing the same insulating material particles as in the above example was applied to the entire surface of the positive electrode wide body 10 and the negative electrode wide body 20 on which the active material layer was formed, and then dried. .
  • the insulating material particle assembly layers 3A and 3B were fixed on the entire surface and the end surface of the positive and negative active material layers.
  • the thickness of the insulating material particle aggregate layer formed on the surface of the amphoteric material layer ie, the thickness of the separator fixed to each electrode) was 12 m.
  • the wide electrode body and the wide electrode body are cut perpendicularly to the sheet surface at the positions of the gaps, so that the positive electrode 1 and the negative electrode of the same dimensions to which the insulating material particle assembly layers 3A and 3B are fixed are fixed.
  • Got two The positive electrode 1 and the negative electrode 2 to which the insulating material particle assembly layers 3 A and 3 B are fixed are placed with the insulating material particle assembly layers 3 A and 3 B facing each other as shown in FIG. 33.
  • a battery electrode plate laminate 4 corresponding to the second battery of the present invention is obtained.
  • FIG. 34 is a cross-sectional view showing another electrode plate laminate of a battery corresponding to the second battery of the present invention.
  • the positive electrode wide body 10 of the electrode plate laminate 4 one formed in the same manner as in FIG. 33 is used, but as the negative electrode wide body 20, as shown in FIG.
  • the electrode b is formed on the entire surface of one side of the negative electrode current collector 2a.
  • the negative electrode 2 to which the insulating material particle assembly layer 3 B is fixed is connected to the negative electrode wide body 20 to which the insulating material particle assembly layer 3 B is fixed, and the insulating material particle assembly layer 3 A Is obtained by cutting the same size as the fixed positive electrode 1 and perpendicular to the sheet surface.
  • the positive electrode 1 and the negative electrode 2 on which the insulating material particle assembly layers 3 A and 3 B are fixed are overlapped with the insulating material particle assembly layers 3 A and 3 B facing each other.
  • the electrode plate laminate 4 is obtained.
  • the positive electrode active material layer of the electrode plate laminate 4 shown in FIGS. 33 and 34 is formed to have a size that does not protrude from the negative electrode active material layer forming a pair as a battery layer, and is composed of an insulating material particle aggregate layer.
  • the separator is disposed so as to cover at least the entire surface of the positive electrode active material layer facing the negative electrode and not to protrude from the end face of the current collector.
  • the insulating material particle aggregate layer 3A is formed only on the positive electrode side, and the end face of the positive electrode active material layer 1b is insulated. It may be coated with the non-conductive material particle aggregate layer and the non-conductive material particle aggregate layer is not formed on the negative electrode side.
  • This embodiment corresponds to an embodiment of the fourth battery of the present invention and its manufacturing method (the third manufacturing method of the present invention).
  • FIG. 35 is a cross-sectional view showing an electrode plate laminate of a battery corresponding to the fourth battery of the present invention.
  • the wide positive electrode body 10 of the electrode plate laminate 4 for example, one formed in the same manner as in FIG. 33 is used.
  • a slurry containing the same insulating material particles as in the above-described embodiment was applied to the entire surface of the positive electrode wide body 10 on which the active material layer was formed, and then dried. .
  • the insulating material particle aggregate layer 3C was fixed to the entire surface and the entire end surface of the positive electrode active material layer 1b.
  • the above-mentioned slurry for the negative electrode active material layer 2b is applied to the entire surface of the insulating material particle assembly layer 3C, and the above-mentioned negative electrode current collector 2a is stacked and dried before drying this slurry. After drying and pressing, the negative electrode current collector 2a was integrated on the negative electrode active material layer 2b.
  • the wide positive electrode body 10 and the wide negative electrode body 20 are integrated via the insulating material particle aggregate layer 3C.
  • an integrated layer in which the separator and the both poles are integrated can be obtained.
  • the electrode plate laminate 4 in FIG. 35 has only one integrated layer, and the positive electrode active material layer is formed in a size that does not protrude from the negative electrode active material layer forming a pair as a battery layer.
  • the separator composed of the insulating material particle aggregate layer is disposed so as to cover at least the entire surface of the positive electrode active material layer facing the negative electrode and not to protrude from the end face of the current collector.
  • the method for forming the integrated layer includes a wide positive electrode body 10 on which the insulating material particle aggregate layer 3A is fixed, and a wide negative electrode body 20 on which the insulating material particle aggregate layer 3B is fixed. After integrating them, there is a method of cutting. That is, as shown in FIGS. 30 and 32, first, as in the fourth embodiment, first, the positive electrode wide body 10 on which the insulating material particle assembly layer 3A is fixed, The negative electrode wide body 20 to which the material particle assembly layer 3B is fixed is formed. Next, a solvent for dissolving the binder is applied to one of the surfaces of both the insulating material particle assembly layers 3A and 3B, and then the insulating material particle assembly layers 3A and 3B are immediately connected to each other. Lay facing each other, press and dry. When the positive electrode wide body 10 and the negative electrode wide body 20 are integrated with each other and cut perpendicularly to the sheet surface at the gap, the integrated layer is formed.
  • the integrated layer is composed of a positive electrode wide body on which the insulating material particle aggregate layer 3A is fixed, and a negative electrode wide body on which the insulating material particle aggregate layer is not formed.
  • a solvent that dissolves the binder is applied to the surface of the insulating material particle aggregate layer 3 A of the positive electrode wide body, and the positive electrode wide body 10 and the negative electrode wide body 20 are integrated as described above. It can also be formed by cutting the cut in the same manner as described above.
  • the first battery of the present invention it is possible to prevent the active material particles from falling off from the end surface of the sheet-like electrode and prevent an internal short circuit from occurring in the manufacturing process. it can.
  • the second battery and the fourth battery of the present invention it is possible to prevent the active material particles from chipping off from the end face of the sheet-like electrode, and to prevent an internal short circuit due to the manufacturing process from occurring.
  • the battery capacity of the electrode plate laminate housed in a battery can of the same size can be increased without increasing the thickness of the active material layer.
  • a thin nonaqueous secondary battery having a relatively high degree of freedom in battery shape comprising a flat electrode plate laminate in a flexible container, Good discharge characteristics and cycle characteristics at current density can be obtained.
  • the non-aqueous secondary battery of the present invention can be obtained easily and efficiently.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

明 細 書 非水系二次電池およびその製造方法 技術分野
本発明は、 新規な非水系二次電池およびその製造方法に関するもので ある。 背景技術
近年より、 電子機器の小型軽量化、 多機能化、 コードレス化の要求に 伴い、 高性能電池の開発が積極的に進められている。 最近では、 従来よ り広く用いられている鉛蓄電池、 ニッケル一カドミウム電池等の二次電 池に比べて、 高電圧、 高容量、 高出力でありながら重量が軽いという理 由で、 特に、 リチウムイオン二次電池が大きな市場を築きつつある。 このようなリチウムイオン二次電池の電極板積層体は、 通常、 大きな シート状電極から切り出された所定形状のシ一ト状電極を、 セパレー夕 とともに捲回したり積層したりすることによって作製されている。 切断 前のシート状電極は、 一般に、 活物質粒子をバインダーおよび溶媒と共 に混鰊してスラリーとし、 これを金属箔 (集電体シート) 上に塗布した 後、 溶媒を蒸発させ、 活物質粒子を金属箔上に固着することによって作 製される。
したがって、 電極板積層体の作製時や電池缶への収納時等に、 シート 状電極の端面 (切断面) 近くの活物質粒子が欠け落ち、 この欠け落ちた 活物質粒子のために内部短絡を生じさせる恐れがある。 その結果、 電池 の収率が低くなり、 製造コス トを上昇させる要因となる。
本発明の目的の一つは、 シート状電極の端面からの活物質粒子の欠け 落ちを防止して、 製造工程に起因する内部短絡が発生しないようにする ことである。
また、 従来の捲回型電池の電極板積層体は、 帯状の正極、 負極、 およ びセパレ一夕を、 渦巻き状に巻き取ることにより作製されている。 ここ で、 セパレ一夕としては、 通常、 ポリエチレン微多孔膜が使用されてお り、 これは、 例えば微細な空孔を膜内に形成した後、 延伸を行うことに より製造されている。
このような捲回型電池においては、 捲回時のずれ等を考慮して、 セパ レ一夕の幅 (捲回軸方向の寸法) および長さ (捲回長さ) を正極および 負極より大きく設計している。 また、 特に、 リチウムイオン二次電池に おいては、 充放電時の電極端部での短絡を防止する目的で、 負極の幅お よび長さが正極より大きくなるように設計されている (実登録日本国 No. 2 5 0 6 5 7 2号参照) 。
したがって、 特にリチウムイオン二次電池において、 電極板積層体の 実質的な電極面積は正極活物質層の全面積に等しくなるが、 電極板積層 体の大きさ (捲回軸方向の寸法) はセパレー夕の幅によって決まり、 正 極の幅は、 セパレ一夕より小さい負極の幅よりさらに小さいため、 同じ 大きさの電極板積層体で正極活物質層の面積を大きくすることには限界 がある。 なお、 同じ大きさの電池缶で電池容量を大きくするには、 正負 極の活物質層を厚くすることが考えられるが、 活物質層が厚くなると、 膜抵抗が大きくなつて出力特性の低下につながる。
本発明の目的の一つは、 活物質層を厚くしないで、 同じ大きさの電池 缶に収納される電極板積層体の電池容量を大きくすることである。
一方、 リチウムイオン二次電池の原理を基本的に利用した "ポリマー 電池" と称されるシート型電池の開発が最近進められている。 このポリ マー電池の正極および負極は従来のリチウムイオン二次電池と同様の材 料で構成されているが、 両極の活物質間には、 電解液透過性を有するセ パレー夕ではなく、 セパレ一夕と電解質を兼ねた高分子固体電解質が介 装されている。 そして、 このポリマー電池は、 両極と高分子固体電解質 とを一体化することにより平板状の電極板積層体を作製し、 この電極板 積層体を可撓性容器中に入れ、 電解液を封入しないで密封することによ り作製される。
このような材料および製法のため、 ポリマー電池は、 電池形状の自由 度が比較的高い、 薄型化および軽量化できる、 安全性が向上する、 とい う利点があると言われている。 しかしながら、 固体電解質は、 リチウム ィオン二次電池で使用するような液状の電解質と比較してィオン伝導度 が低いため、 ポリマー電池はリチウムィオン二次電池に比べて高電流密 度での放電特性に問題がある。
また、 固体電解質の代わりに、 従来のポリオレフイン製微多孔膜から なるセパレー夕を両極間に一体化して平板状の電極板積層体を作製し、 この電極板積層体を可撓性容器中に入れて、 電解液を封入して密封する ことにより リチウムイオン二次電池を作製すると、 この電池は、 従来の 金属製電池缶を容器とした電池と比較して、 高電流密度での放電特性お よびサイクル特性に劣る。 これは、 電極とセパレー夕との間の押さえ圧 が、 可撓性容器内では金属製電池缶と比較して弱いため、 セパレ一夕と 電極の間に隙間が生じやすいことに起因する。 また、 この隙間が生じる ことを防ぐために、 ポリオレフィン製微多孔膜からなるセパレー夕を電 極に一体化することは困難である。
このように、 平板状の電極板積層体を可撓性容器内に備えている、 電 池形状の自由度が比較的高くて薄型の非水系二次電池 (シ一ト型電池) として、 金属製電池缶を容器とした従来のリチウムイオン二次電池と同 等の特性を有するものは未だに得られていない。 本発明の目的の一つは、 平板状の電極板積層体を可撓性容器内に備え ている、 電池形状の自由度が比較的高く薄型の非水系二次電池として、 高電流密度での放電特性およびサイクル特性に優れたものを提供するこ とである。 発明の開示
本発明は、 集電体の少なくとも一方の面に活物質層が固定された正極 および負極と、 両極の活物質層間に介装された電解液透過性を有するセ パレ一夕とを少なくとも有する電極板積層体を容器内に備え、 この容器 内に非水系電解液が封入された非水系二次電池において、 前記セパレー 夕は、 絶縁性物質粒子同士がバインダ一で結合された絶縁性物質粒子集 合体層であって、 正極および負極の少なくともいずれか一方に固定され ており、 正極活物質層および負極活物質層の少なくとも一方の端面は、 その少なくとも一部が、 前記絶縁性物質粒子集合体層でコーティングさ れていることを特徴とする非水系二次電池を提供する。 この電池を本発 明の第 1の電池とする。
この電池によれば、 絶縁性物質粒子集合体層でコ一ティングされてい る活物質端面からの活物質の欠け落ちが防止される。 さらに、 落下など の衝撃が加わつたとき、 電極端面の形状が変形して短絡することを防ぐ ことができる。 また、 コーティング物が電解液透過性を有する絶縁性物 質粒子集合体層であることにより、 以下のような効果が得られる。 すなわち、 電解液透過性を有する絶縁性物質粒子集合体層で活物質層 の端面がコーティングされていると、 例えば、 両極とセパレ一夕とを一 体化させた一体化層が 1層以上積層された電極板積層体を有する非水系 二次電池の場合に、 端面にコーティングされた絶縁性物質粒子集合体層 が、 充放電時に起こる電極活物質の膨張及び収縮により出入りする電解 液の通り道となることができるため、 電解液透過性のない絶縁物でコ一 ティングした時と比較してサイクル特性に優れる。
また、 活物質層の端面を電解液透過性を有する絶縁性物質粒子集合体 層でコーティングした場合には、 電極板積層体の作製後に電解液を含浸 させることができるため、 電解液透過性のない絶縁物でコーティングし た場合と比較して、 製造上有利である。
なお、 集電体の端面まで絶縁性物質粒子集合体層によるコ一ティング がなされていてもよい。
絶縁性物質粒子集合体層を構成する絶縁性物質粒子は、 以下に示すよ うな無機物であってもよいし、 有機物であってもよい。
無機物としては、 例えば、 L i 2 0、 B e〇、 B 2 03 、 Na2 0、 MgO、 A 1 03 、 S i02 、 P 2 05 、 K2 0、 CaO、 T i02 、 Cr2 03 、 Fe2 03 、 ZnO、 Zr02 、 および B a 0等の酸化物、 ゼォライ ト、 BN、 A 1 N、 S i N4 、 および B a3 N2 等の窒化物 、 炭化ケィ素 (S i C) 、 MgC03 および CaC03 等の炭酸塩、 C a S 04 および BaS04 等の硫酸塩、 磁器の一種であるジルコン (Z r 02 · S i 02 ) 、 ムライ ト ( 3 A 12 03 · 23 :ί02 ) 、 ステア 夕イ ト (MgO ' S i02 ) 、 フォルステライ ト (2MgO ' S i02 ) 、 コージエライ ト (2MgO - 2 A 12 03 · 5 S i 02 ) 等が挙げ られる。
有機物としては、 ポリエチレン、 ポリプロピレン、 ポリスチレン、 ポ リ塩化ビニル、 ポリ塩化ビニリデン、 ポリアクリロニトリル、 ポリメ夕 クリル酸メチル、 ポリアクリル酸エステル、 ポリテトラフルォロェチレ ンおよびポリフヅ化ビニリデン等のフッ素樹脂、 ポリアミ ド樹脂、 ポリ イミ ド樹脂、 ポリエステル樹脂、 ポリカーボネート樹脂、 ポリフエニレ ンォキサイ ド樹脂、 ケィ素樹脂、 フエノール樹脂、 尿素樹脂、 メラミン 樹脂、 ポリウレタン樹脂、 ポリエチレンオキサイ ドおよびポリプロピレ ンォキサイ ド等のポリエーテル樹脂、 エポキシ樹脂、 ァセ夕一ル樹脂、
AS樹脂、 AB S樹脂等の樹脂粒子が挙げられる。
これらの絶縁性物質粒子のうち、 無機物粒子が好ましく、 特に酸化物 粒子が好ましい。
絶縁性物質粒子集合体層を形成する方法としては、 絶縁性物質粒子と バインダーとを溶媒に分散し、 これを絶縁性物質粒子集合体層を形成す る面に塗布した後、 溶媒を蒸発させる方法がある。
この場合に使用可能なバインダーとしては、 ラテックス (例えば、 ス チレン一ブタジエン共重合体ラテックス、 メチルメタクリレート一ブ夕 ジェン共重合体ラテックス、 およびァクリロニトリループ夕ジェン共重 合体ラテックス) 、 セルロース誘導体 (例えば、 カルボキシメチルセル ロースのナトリウム塩およびアンモニゥム塩) 、 フヅ素ゴム (例えば、 フヅ化ビ二リデンとへキサフルォロプロピレンとテトラフルォロェチレ ンとの共重合体) 、 およびフッ素樹脂 (例えばポリフッ化ビニリデン、 ポリテトラフルォロエチレン) 等が挙げられる。 これらのうち、 フヅ素 ゴムゃフッ素樹脂等のフッ素系バインダ一が好ましい。
バインダーの量は、 体積比で絶縁性物質粒子の 1/500〜3/5と なるようにすることが好ましく、 より好ましくは 1/500〜 1/2、 さらに好ましくは 1/500〜; 1/5とする。
また、 溶媒としては、 酢酸ェチル, 2—エトキシエタノール (ェチレ ングリコールモノェチルエーテル) 、 N—メチルピロリ ドン (NMP) 、 N, N—ジメチルホルムアミ ド (DMF) 、 ジメチルスルフォキシド ( DMS 0) 、 テトラヒドロフラン (THF) 、 水等が挙げられる。
ここで、 シート状電極の端面の絶縁物によるコーティングは、 電極板 積層体の形成前後のいずれに行ってもよいが、 電極板積層体の形成後に 行うと、 電極板積層体の端面の機械的強度が増すため、 電池缶に組み込 んだ後の電池缶上部におけるしぼり加工等が行いやすくなる。 また、 電 池缶の上下に絶縁板を組み込むことを省略することができる。
端面のコ一ティングを電極板積層体の形成前に行う場合には、 例えば 図 2 0に示すように、 コーティング 3 Fの厚さ Tを活物質層 1 b, 2 b の厚さ T k以上 (ここでは、 シート状電極 1 , 2の全体厚と同じにして ある) として、 少なくとも活物質層 l b , 2 bの端面全体を覆うように する。 また、 シート状電極 1, 2の厚さ方向の両側にはみ出さないよう にする。
コーティングの幅 Wは、 特に限定されず、 実質的に活物質層の保護が なされる幅であればよいが、 既存の電池缶を使用する場合にはそのサイ ズに応じて最大値が設定される。
なお、 リチウムイオン二次電池の電極板積層体は、 負極の幅を正極の 幅より 1 mm程度大きく しているが、 その場合には、 図 2 1に示すよう に、 負極のシート状電極 2に限り、 絶縁物によるコーティング 3 Eを端 面だけでなく負極活物質層 2 bの上面端部まで行ってもよい。 ただし、 この上面端部のコ一ティングの幅 Hは、 正極のシ一ト状電極 1のコーテ ィング端面と負極のシ一ト状電極 2の活物質層端面との距離 S以下にす る。 また、 負極のシート状電極 2のコーティング 3 Eの厚さ Tは、 両シ —ト状電極 1 , 2の合計厚以下にする。
本発明は、 また、 集電体の少なくとも一方の面に活物質層が固定され た正極および負極と、 両極の活物質層間に介装された電解液透過性を有 するセパレ一夕とを少なくとも有する電極板積層体を容器内に備え、 こ の容器内に非水系電解液が封入された非水系二次電池において、 正極活 物質層および負極活物質層の少なくとも一方の端面は、 その少なくとも 一部が絶縁性物質粒子集合体層でコーティングされており、 前記正極活 物質層は、 電池層として対をなす負極活物質層からはみ出さない大きさ に形成され、 前記セパレ一夕は、 絶縁性物質粒子同士がバインダーで結 合された絶縁性物質粒子集合体層であって、 正極および負極の少なくと もいずれか一方に固定され、 少なくとも負極と対向する正極活物質層の 表面全体を覆うように、 且つ集電体の端面からはみ出さないように配置 されていることを特徴とする非水系二次電池を提供する。 この電池を本 発明の第 2の電池とする。
この電池において、 正極活物質層の端面の少なくとも一部が絶縁性物 質粒子集合体層でコーティングされていることが好ましい。
また、 この電池において、 電極板積層体は、 絶縁性物質粒子同士がバ ィンダ一で結合された絶縁性物質粒子集合体層を両極の活物質間にセパ レー夕として介在させて、 このセパレ一夕と両極とを一体化させた一体 化層が、 1層以上積層されているものであることが好ましい。 この電池 を本発明の第 4の電池と称する。
この電池では、 セパレ一夕を、 絶縁性物質粒子同士がバインダーで結 合された絶縁性物質粒子集合体層で構成する。 この絶縁性物質粒子集合 体層は、 絶縁性物質粒子が膜厚方向に複数個配置されているものであつ てもよいし、 絶縁性物質粒子が膜面内に密に配置されていれば膜厚方向 には一つのみが配置されているものであってもよい。
すなわち、 この絶縁性物質粒子集合体層は、 バインダーで結合された 絶縁性物質粒子間の隙間が空孔となって電解液中のイオンを通過させる とともに、 絶縁性物質粒子の存在によって正極活物質層と負極活物質層 とを短絡させない。 また、 絶縁体粒子間の隙間が集合体層内の膜厚方向 および膜面方向のいずれにおいても連続しているため、 電解液を正 ·負 極活物質層内へ浸透させ易い。
リチウムイオン二次電池などの非水電解液二次電池は、 水分の混入に 083
よって電池性能が低下するため、 製造工程全体を水分が混入しないよう な環境に整えるか、 電池缶へ電解液を入れる前に電極板積層体を乾燥す る必要がある。 乾燥させる場合には、 従来のポリオレフイン系樹脂製微 多孔膜は耐熱性が低いため、 電極板積層体の乾燥を例えば真空中で 8 0 °C程度の低い温度で行わないと、 膜に熱収縮が生じたり空孔が潰れたり して、 電池特性を損なうという問題点がある。 そのため、 乾燥時間が非 常に長くなるか、 乾燥程度が不十分となって電解液内に水分が混入する 恐れがあった。
しかしながら、 絶縁性物質粒子として酸化物等を使用して形成された 絶縁性物質粒子集合体層は、 ポリオレフイン系樹脂製微多孔膜と比較し て耐熱性に優れているため、 1 0 o °c以上の温度でも乾燥が可能であり 上記問題を解決できる。 これは、 特に水分の混入によって悪影響を受け やすいと言われているリチウム一マンガン複合酸化物を正極に使用した 場合に有効であるといえる。
絶縁性物質粒子集合体層からなるセパレ一夕の厚みは、 特に限定され ないが、 1 / m〜 1 0 0 mであることが好ましく、 1 0 / m〜 5 0 / mであることがより好ましい。
また、 この電池において、 正極活物質層は、 電池層として対をなす負 極活物質層からはみ出さない大きさに形成されている。 すなわち、 各電 池層において、 正極活物質層の表面の面積は、 負極活物質層の表面の面 積と同じか負極活物質層の表面の面積より小さくなつている。 そして、 セパレー夕は、 正極および負極の少なくともいずれか一方に固定され、 集電体の端面からはみ出さないように配置されている。
そのため、 電極板積層体の外形寸法は、 セパレー夕の大きさではなく 負極の大きさによって決まる。 したがって、 同じ大きさの電極板積層体 を作製した場合に、 正極および負極の大きさを従来より大きくすること ができる。
また、 セパレ一夕は、 少なくとも負極と対向する正極活物質層の表面 全体を覆うように配置されているため、 正極と負極との間の短絡は防止 される。
なお、 この電池において、 電極板積層体が両極の集電体間に介装され た絶縁層を有する場合には、 この絶縁層は、 正負の集電体の少なくとも いずれか一方に固定され、 少なくとも負極集電体と対向する正極集電体 の表面全体を覆うように、 且つ集電体の端面からはみ出さないように配 置されていることが好ましい。
すなわち、 電極板積層体が、 集電体の片面のみに活物質層が固定され た正極および負極で構成され、 正負の集電体が活物質層を介さずに対向 する場合 (例えば、 捲回型で片面活物質層の正極および負極を一枚ずつ 用いた場合) には、 正負の活物質層が固定されていない側の集電体の間 を絶縁する必要がある。 この部分はイオン透過性を必要としないので、 イオン透過性のない絶縁層が介装されていればよく、 この絶縁層が、 正 負の集電体の少なくともいずれか一方に前述の配置で固定されているこ とが好ましい。 また、 この絶縁層を前述の絶縁性物質粒子集合体層で構 成してもよい。
本発明は、 また、 集電体の少なくとも一方の面に活物質層が固定され た正極および負極と、 両極の活物質層間に介装された電解液透過性を有 するセパレ一夕とを少なくとも有する電極板積層体を容器内に備え、 こ の容器内に非水系電解液が封入された非水系二次電池において、 電極板 積層体は、 絶縁性物質粒子同士がバインダ一で結合された絶縁性物質粒 子集合体層を両極の活物質間にセパレ一夕として介在させて、 このセパ レー夕と両極とを一体化させた一体化層が、 1層以上積層されているも のであり、 前記容器は可撓性容器であることを特徴とする非水系二次電 池を提供する。 この電池を本発明の第 3の電池とする。
このようにセパレ一夕と両極とを一体化させた一体化層で電極板積層 体を構成すると、 電極板積層体の作製時に、 正極、 セパレ一夕、 負極間 にずれが生じることが無い。 また、 電極板積層体を容器に挿入して封口 した後に衝撃等を与えても、 ずれが生じることが無い。 加えて、 電極間 距離に変化が生じないことから、 高電流密度での充放電における特性劣 化が起こり難く、 サイクル性の劣化も低減できる。
セパレ一夕すなわち絶縁性物質粒子の集合体を、 正極活物質層および 負極活物質層の両方の活物質層表面に一体化する方法としては、 例えば 次の 3つの方法が挙げられる。
第 1の方法としては、 先ず、 絶縁性物質粒子とバインダーとの混合物 とを溶媒に分散してスラリー化し、 これを一方の電極の活物質層表面に 塗布する。 その後直ちに、 前記表面上に、 他方の電極を、 両電極活物質 層が上記のスラリーを介して対向するように重ね合わせる。 その後、 加 熱して分散媒を蒸発させる。
第 2の方法としては、 先ず、 少なくとも一方の電極の活物質層表面に 上記のスラリーを塗布後、 乾燥させてセパレ一夕層を形成する。 その後、 このセパレ一夕層を介して両電極の活物質層が対向するように、 他方の 電極を重ね合わせる。 その後、 バインダーが溶融する程度の温度でホッ トプレスして貼り合わせる。
第 3の方法としては、 先ず、 少なくとも一方の電極の活物質層表面に 上記の分散液を塗布した後、 乾燥させてセパレー夕層を形成する。 その 後、 セパレー夕層上にバインダーを溶解する溶媒を塗布する。 次に、 こ のセパレ一夕層を介して両極の活物質層が対向するように、 他方の電極 を重ね合わせる。 その後、 プレスおよび乾燥させることにより貼り合わ せる。 この電池の容器は可撓性容器であり、 その材料としては、 水及び非水 溶媒の蒸気が実質的に通過できない材料であって、 電池性能を劣化させ ない程度で薄くて軽いものが好ましい。 例えば、 鉄シート、 ステンレス シート, アルミニウムシート等の金属製シート、 ポリエチレン, ポリプ ロピレン, アイオノマ一樹脂, エチレンとビニルアルコールの共重合体, ナイロン樹脂, 芳香族ポリアミ ド樹脂, 芳香族ポリエステル樹脂, ポリ エチレンテレフタレ一ト樹脂, ポリエチレンナフ夕レート樹脂, ポリフ ェニレンォキシド, ポリオキシメチレン, ポリカーボネー卜, ポリテト ラフルォロエチレン樹脂, ポリフッ化ビ二リデン樹脂等の樹脂製シ一ト が挙げられ、 必要に応じてこれら 2種以上のシートを積層したもの、 あ るいは 2種以上のシート成分が混合もしくは重合されたもの等を用いて もよい。
なお、 本発明の電池は、 上述のような電極板積層体の構造に特徴を有 するものであり、 これ以外の電池の構成材料 (電解液や正極および負極 の材料等) については、 従来技術に従って構成することができる。
ここで、 非水系電解液を使用したリチウムイオン二次電池の構成材料 等について説明する。
リチウムイオン二次電池に用いられる正極活物質としては、 リチウム をイオン状態で収蔵 '放出可能な L ix M' (: -y, M"y 02 (0<x ≤ 1. 1, 0≤ y≤ 1 , M1 及び M 11は、 Cr, Mn, F e , Niから 選ばれる少なくとも一種の元素) 、 L ix Mn (2-y, My 04 ( 0 <x ≤ 1. 1, 0≤ y≤ 1 , Mは L i, A 1 , C r , Fe, Co, Ni, G aから選ばれる少なくとも一種の元素) 等のリチウム複合金属酸化物が 挙げられる。
リチウムイオン二次電池に用いられる負極活物質としては、 リチウム をイオン状態で収蔵 ·放出可能な、 コ一クス、 グラフアイ ト、 非晶質力 —ボン等の炭素質材料、 S i, Ge, S n, Pb, A 1 , In, Zn等 の元素を含む金属酸化物及び合金が挙げられる。
上記電極活物質をバインダ一および溶媒と混合してスラリー化し、 集 電体上に塗布後乾燥させて電極としているが、 そのときのバインダ一の 例としては、 ラテックス (例えば、 スチレン一ブタジエン共重合体ラテ ックス、 メチルメ夕クリレートーブタジエン共重合体ラテックス、 及び アクリロニトリル一ブタジエン共重合体ラテックス) 、 セルロース誘導 体 (例えば、 カルボキシメチルセルロースのナトリウム塩及びアンモニ ゥム塩) 、 フッ素ゴム (例えば、 フヅ化ビニリデンとへキサフルォロプ ロビレンとテトラフルォロエチレンとの共重合体) やフッ素樹脂 (例え ば、 ポリフヅ化ビニリデン及びポリテトラフルォロエチレン) が挙げら れる。 溶媒の例としては、 酢酸ェチル, 2—エトキシエタノール (ェチ レングリコールモノェチルエーテル) 、 N—メチルピロリ ドン (NMP ) 、 N, N—ジメチルホルムアミ ド (DMF) 、 ジメチルスルフォキシ ド (DMSO) 、 テトラヒドロフラン (THF) 、 水等が挙げられる。 リチウムイオン二次電池に用いられる非水系電解液としては、 例えば L i P Fe s L iBF" : L i C IO L i A s Fe CF3 S 03 L i、 (C F3 S 02 ) 2 N · L i等の電解質を、 単独でまたは 2種以 上組み合わせて有機溶媒に溶解したものを使用することができる。
非水系電解液における有機溶媒としては、 例えば、 プロピレンカーボ ネート、 エチレンカーボネート、 ァ一ブチロラクトン、 ジメチルスルホ キシド、 ジメチルカ一ボネート、 ェチルメチルカーボネート、 ジェチル カーボネート、 1, 2—ジメ トキシェタン、 1, 2—ジエトキシェタン: テトラヒドロフラン等が挙げられ、 いずれかが単独でまたは 2種以上を 混合して (例えば、 誘電率の高い溶媒と粘度の低い溶媒との混合溶媒が ) 使用される。 ここで、 非水系電解液中の電解質濃度は 0 . 1〜2 . 5 m o l / lで あることが好ましい。
本発明は、 また、 シート状の負極集電体の少なくとも一方の面に負極 活物質層を固定して負極体を形成し、 この負極体の表面に、 絶縁性物質 粒子同士がバインダ一で結合された絶縁性物質粒子集合体層を固定した 後、 この負極体を電池の種類に応じた所定形状に切断することにより、 電解液透過性を有するセパレー夕が固定された負極を作製し、 この負極 と、 シート状の集電体の少なくとも一方の面に正極活物質層が固定され た所定形状の正極とを用い、 正極活物質層が電池層として対をなす負極 活物質層からはみ出さないようにして電極板積層体を形成することを特 徴とする非水系二次電池の製造方法を提供する。 この方法を本発明の第
1の製法とする。
この方法によれば、 本発明の非水系二次電池のうち、 正極活物質層は、 電池層として対をなす負極活物質層からはみ出さない大きさに形成され、 セパレー夕は、 絶縁性物質粒子同士がバインダーで結合された絶縁性物 質粒子集合体層であって、 正極および負極の少なくともいずれか一方に 固定され、 少なくとも負極と対向する正極活物質層の表面全体を覆うよ うに、 且つ集電体の端面からはみ出さないように配置されている非水系 二次電池の電極板積層体が、 容易に且つ効率良く作製される。
ここで、 電極板積層体には、 正極、 負極、 およびセパレー夕を、 帯状 に切断して捲回機により渦巻き状に巻き取る捲回型、 帯状に切断して所 定幅で折り返しながら平行に重ねる九十九折り型、 円形や四角形に切断 して積み重ねる単純積層型等がある。
したがって、 上記方法で捲回型の電極板積層体を形成する場合には、 例えば、 正極の幅が負極の幅よりも小さくなるように切断し、 捲き始め 部分と捲き終わり部分に、 正極活物質層と対向しない負極活物質層が配 置されるように捲回する。
九十九折り型の電極板積層体を形成する場合には、 例えば、 正極の幅 が負極よりも小さくなるように切断し、 折り始め部分と折り終わり部分 に、 正極活物質層と対向しない負極活物質層が配置されるように折り重 ねる。 単純積層型の電極板積層体を形成する場合には、 例えば、 正極を 、 外周線が負極よりも小さくなるように切断して、 中心を合わせて積み 重ねる。
本発明は、 また、 シート状の正極集電体の少なくとも一方の面に、 電 極板積層体用に設定された集電体寸法内で、 周囲に余白部分が存在する ように正極活物質層を形成して正極体を形成し、 この正極体に、 絶縁性 物質粒子同士がバインダ一で結合された絶縁性物質粒子集合体層を正極 活物質層の表面と端面を覆うように形成した後、 この絶縁性物質粒子集 合体層が一体化された正極体を、 前記余白部分の位置でシート面に垂直 に切断することにより、 電解液透過性を有するセパレ一夕として絶縁性 物質粒子集合体層が固定された正極を作製し、 この正極と、 シート状の 集電体の少なくとも一方の面に負極活物質層が固定された所定形状の負 極とを用い、 正極活物質層が電池層として対をなす負極活物質層からは み出さないようにして電極板積層体を形成することを特徴とする非水系 二次電池の製造方法を提供する。 この方法を、 本発明の第 2の製法とす る。
この方法によれば、 本発明の非水系二次電池のうち、 正極活物質層の 端面の少なくとも一部が絶縁性物質粒子集合体層でコ一ティングされて おり、 正極活物質層は、 電池層として対をなす負極活物質層からはみ出 さない大きさに形成され、 セパレー夕は、 絶縁性物質粒子同士がバイン ダ一で結合された絶縁性物質粒子集合体層であって、 正極に固定され、 少なくとも負極と対向する正極活物質層の表面全体を覆うように、 且つ 839
集電体の端面からはみ出さないように配置されている非水系二次電池の 電極板積層体が、 容易に且つ効率良く作製される。
本発明は、 また、 シート状の正極集電体の少なくとも一方の面に、 電 極板積層体用に設定された集電体寸法内で、 周囲に余白部分が存在する ように正極活物質層を形成して正極体を形成し、 この正極体に、 正極活 物質層の表面と端面を覆うように絶縁性物質粒子同士がバインダ一で結 合された絶縁性物質粒子集合体層を形成した後、 この絶縁性物質粒子集 合体層の上に、 シート状の負極集電体の少なくとも一方の面に負極活物 質層を有する負極体を負極活物質層側を向けて一体化し、 その後に、 こ の正極体と負極体が一体化されたものを、 前記余白部分の位置でシート 面に垂直に切断することにより、 電解液透過性を有するセパレー夕とし て絶縁性物質粒子集合体層を両極の活物質間に介在させて、 このセパレ 一夕と両極とを一体化させた一体化層を形成し、 これを 1層以上積層し て電極板積層体を形成することを特徴とする非水系二次電池の製造方法 を提供する。 この方法を本発明の第 3の製法とする。
この方法によれば、 本発明の非水系二次電池のうち、 正極活物質層の 端面の少なくとも一部が絶縁性物質粒子集合体層でコーティングされて おり、 正極活物質層は、 電池層として対をなす負極活物質層からはみ出 さない大きさに形成され、 セパレ一夕は、 絶縁性物質粒子同士がバイン ダ一で結合された絶縁性物質粒子集合体層であって、 正極に固定され、 少なくとも負極と対向する正極活物質層の表面全体を覆うように、 且つ 集電体の端面からはみ出さないように配置され、 電極板積層体は、 両極 と両極の活物質層間のセパレー夕とを一体化させた一体化層が 1層以上 積層されているものである非水系二次電池の電極板積層体が、 容易に且 つ効率良く作製される。
本発明は、 また、 シート状の正極集電体の少なくとも一方の面に、 電 0
極板積層体用に設定された集電体寸法内で、 周囲に余白部分が存在する ように正極活物質層を形成して正極体を形成し、 この正極体に、 正極活 物質層の表面と端面を覆うように絶縁性物質粒子同士がバインダ一で結 合された絶縁性物質粒子集合体層を形成した後、 この絶縁性物質粒子集 合体層の上に負極活物質層を形成し、 その後に、 前記余白部分の位置で シート面に垂直に切断することにより、 電解液透過性を有するセパレー 夕として絶縁性物質粒子集合体層を両極の活物質間に介在させて、 この セパレ一夕と両極とを一体化させた一体化層を形成し、 これを 1層以上 積層して電極板積層体を形成することを特徴とする非水系二次電池の製 造方法を提供する。 この方法を本発明の第 4の製法とする。
ここで、 負極活物質は、 集電体なしでも電極として機能させることが 可能であるが、 乾燥後の負極活物質層に集電体等を固着させる場合には 、 例えば、 ラスメッシュ (厚さが通常の集電体と同等のエキスパンデヅ ドメタル) 等のような、 負極活物質層に対して圧着等により固定できる ものを使用してもよい。
この方法によれば、 本発明の非水系二次電池のうち、 正極活物質層の 端面の少なくとも一部が絶縁性物質粒子集合体層でコーティングされて おり、 正極活物質層は、 電池層として対をなす負極活物質層からはみ出 さない大きさに形成され、 セパレー夕は、 絶縁性物質粒子同士がバイン ダ一で結合された絶縁性物質粒子集合体層であって、 正極に固定され、 少なくとも負極と対向する正極活物質層の表面全体を覆うように、 且つ 集電体の端面からはみ出さないように配置され、 電極板積層体は、 両極 と両極の活物質層間のセパレー夕とを一体化させた一体化層が 1層以上 積層されているものである非水系二次電池の電極板積層体が、 容易に且つ 効率良く作製される。 図面の簡単な説明
図 1は、 本発明の第 2の電池の一実施形態に相当する、 捲回型の電極 板積層体を作製する方法を示す説明図であって、 帯状の正極および負極 に切断する前の広幅体を示す平面図である。 (a) は正極に関する図で あり、 (b) は負極に関する図である。
図 2 (a) は図 1 (a) の A— A線断面図であり、 図 2 (b) は図 1 (b) の B— B線断面図である。
図 3は、 正極と負極の寸法の違い、 および捲回時における正極と負極 の重ね方を示す正面図である。
図 4は、 本発明の第 2の電池の一実施形態として作製した電極板積層 体を示す断面図であり、 (a) はその内周側部分を、 (b) は外周側部 分を示す。
図 5は、 電池缶と電極板積層体の関係、 電極板積層体の長さと正極の 幅と負極の幅とセパレー夕の幅との関係を示す図であり、 (a) は電池 缶の外形を、 (b) は実施形態の電池の電極板積層体を、 (c) は従来 の電池の電極板積層体をそれぞれ示す。
図 6は、 本発明の第 2の電池の別の実施形態に相当する電極板積層体 (正極および負極とも集電体の片面のみに活物質層を固定した例) の外 周側部分を示す断面図である。
図 7は、 本発明の第 2の電池の別の実施形態に相当する電極板積層体 (正極および負極とも両面にセパレー夕を固定した例) を示す断面図で あり、 (a) はその内周側部分を、 (b) は外周側部分を示す。
図 8は、 本発明の第 2の電池の別の実施形態に相当する電極板積層体 (最外周に集電体露出部を設けた例) を示す断面図であり、 (a) はそ の内周側部分を、 (b) は外周側部分を示す。
図 9は、 活物質層に対するセパレー夕の固定方法の一例を示す断面図 である。
図 1 0は、 活物質層に対するセパレ一夕の固定方法の一例を示す断面 図である。
図 1 1は、 活物質層に対するセパレー夕の固定方法の一例を示す断面 図である。
図 1 2は、 負極活物質層に対するセパレー夕の固定方法の一例を示す 断面図である。
図 1 3は、 負極集電体に対するセパレ一夕の固定方法の一例を示す断 面図である。
図 1 4は、 コイン状の単純積層型電池の電極板積層体を示す平面図で ある。
図 1 5は、 四角形の単純積層型電池の電極板積層体を示す。
図 1 6および図 1 7は、 図 1 4および図 1 5の電極板積層体の断面構 造の例を示す断面図である。
図 1 8および図 1 9は、 本発明の第 3の電池の実施形態を示す断面図 である。
図 2 0は、 本発明の第 1の電池を構成する電極の一実施形態を示す断 面図である。
図 2 1は、 本発明の第 2の製法の実施形態に関し、 製造された正極体 および負極体を示す断面図である。
図 2 2は、 実施例 8における電極板積層体の作製手順を示す工程図で あって、 (a ) は広幅体の作製工程を示し、 (b ) は (a ) 工程により 得られた帯状体を示し、 (c ) は絶縁物によるコーティングの形成工程 を示し、 (d ) は電極板積層体の作製工程を示す。
図 2 3は、 本発明の第 2の電池の実施形態に関し、 その電極板積層体 の例を示す断面図である。 図 2 4は、 実施例 9における電極板積層体の作製手順を示す工程図で あって、 (a ) は広幅体の作製工程を示し、 (b ) は (a ) 工程により 得られた帯状体を示し、 (c ) は電極板積層体の作製工程を示し、 (d ) は絶縁物によるコーティングの形成工程を示す。
図 2 5は、 実施例 9で作製した電極板積層体の単位電池層を示す断面 図である。
図 2 6は、 実施例 9で作製した電極板積層体の端面付近を示す部分拡 大図である。
図 2 7は、 本発明の第 1の電池に関し、 その電極板積層体が単純積層 型である場合の作製手順を示す工程図であって、 (a ) は広幅体の作製 工程を示し、 (b ) は (a ) 工程により得られた帯状体を示し、 (c ) は絶縁物によるコーティングの形成工程を示し、 (d ) は電極板積層体 の作製工程を示す。
図 2 8および 2 9は、 本発明の第 1の電池の実施形態に関し、 捲回型 の電極板積層体の正極帯状体および負極帯状体の一例を示す断面図であ る。
図 3 0および 3 1は、 本発明の第 2の製法の実施形態に関し、 製造され た正極体および負極体を示す断面図である。
図 3 2は、 本発明の第 3の製法の実施形態に関し、 製造された一体化層 を示す断面図である。
図 3 3および 3 4は、 本発明の第 2の電池の実施形態に関し、 その電極 板積層体の例を示す断面図である。
図 3 5は、 本発明の第 4の電池の実施形態に関し、 その電極板積層体の 例を示す断面図である。 発明を実施するための最良の形態 JP98/00839
[第 1実施形態]
以下に、 本発明の電池の第 1実施形態について説明する。 この実施形 態は、 本発明の第 2の電池およびその製造方法 (本発明の第 1の製法) に関する実施形態に相当する。
図 1〜図 4により捲回型の電極板積層体を作製する方法を示す。
まず、 正極については、 図 1 (a) (平面図) および図 2 (a) (図 1 (a) の A— A線断面図) に示すように、 集電体箔 l aの両面全体に 正極活物質層 1 bを形成して正極広幅体 1 0を作製する。
負極については、 図 1 (b) (平面図) および図 2 (b) (図 1 (b ) の B— B線断面図) に示すように、 集電体箔 2 aの両面全体に負極活 物質層 2 bを形成して負極広幅体 20を作製し、 各負極活物質層 2 bの 表面全体に絶縁性物質粒子集合体層 3 Bを形成する。
次に、 図 1 (a) および (b) に示すように、 正極広幅体 10と、 絶 縁性物質粒子集合体層 3 Bが形成された負極広幅体 20を、 幅方向で複 数個に切断することにより、 それぞれ正極帯状体 1 1および絶縁性物質 粒子集合体層 3 Bが形成された負極帯状体 2 1を得る。 この切断は、 図 3に示すように、 長さ方向一端で a、 他端で b (a<b) 、 幅方向各端 で Aw l , Aw 2 (Aw 1 =Aw 2) だけ、 正極帯状体 1 1より負極帯 状体 2 1の方が大きな寸法になるように行う。
次に、 正極帯状体 1 1および絶縁性物質粒子集合体層 3 Bが形成され た負極帯状体 2 1を、 図 3に示すように重ねながら、 負極を内側にして 渦卷き状に捲回する。 すなわち、 この電極板積層体の捲きはじめの部分 (長さ a) は負極帯状体 2 1のみを捲き、 それ以降は正極帯状体 1 1と 絶縁性物質粒子集合体層 3 Bが形成された負極帯状体 2 1の幅方向中心 を合わせて卷き取る。
図 4 (a) にこの電極板積層体の内周側部分 4 aを、 図 4 (b) に外 周側部分 4 bを示す。 図 4 ( b ) から分かるように、 この電極板積層体 は、 最外周部に長さ dで負極 2のみが卷き取られており、 負極の長さは この最外周部長さ dが確保できるように設定する。
ここで、 長さ方向 (電極板積層体の捲回方向) において、 最内周の負 極活物質層 2 b (長さ c ) および最外周の負極活物質層 2 b (長さ d ) は、 電池層を構成していないが、 これら以外の部分では、 セパレー夕と なる絶縁性物質粒子集合体層 3 Bを挟んで対向する正極活物質層 1 bと 負極活物質層 2 bとにより、 電池層 Dが構成されている。
そして、 最内周の電池層 D aの捲き始め部分 (長さ a ) と、 最外周の 電池層 D eの捲き終わり部分 (長さ e ) は、 負極活物質層層 2 bが正極 活物質層層 2 bと相対しない。 すなわち、 最内周の電池層 D aと最外周 の電池層 D eには、 正極活物質層層 1 bと相対しない負極活物質層層 2 bの部分 (単独部分) Fが存在する。
また、 幅方向 (電極板積層体の捲回軸方向) の各端部は、 それぞれ△ w 1 , Δ ν 2だけ負極 2の方が大きく形成されているため、 ここにも負 極活物質層層 2 bの単独部分 Fが存在する。
このように、 本実施形態の電極板積層体は、 長さ方向および幅方向の いずれにおいても負極 2を正極 1より大きく切断し、 正極 1が負極 2か らはみ出さないように重ねて捲回することにより、 電池層 Dとして対を なす正負極の全端部に負極活物質層 2 bの単独部分 Fが形成されている 。 したがって、 このような構成の電極板積層体を備えたリチウムイオン 二次電池は、 負極活物質層 2 bの単独部分 Fの存在により、 負極の端部 付近でリチウムイオンのドープ量が飽和しにく くなつて、 充放電時の内 部短絡が防止される。
また、 セパレー夕である絶縁性物質粒子集合体層 3 Bが負極活物質層 2 bに固定されているため、 セパレ一夕の幅を負極 2の幅と同じにする ことができる。 これにより、 前述の目的で負極 2より小さく設計される 正極 1の幅を、 従来より大きくすることができるため、 同じ大きさの電 池缶に収納される電極板積層体の正極 1の面積を大きくすることができ る。
すなわち、 図 5 (a) に示すように、 電池缶 5の大きさに応じて収納 される電極板積層体の高さひが決まるが、 この実施形態の電極板積層体 4は、 図 5 (b) に示すように、 負極 2の幅 M2とセパレー夕 (絶縁性 物質粒子集合体層) 3Bの幅 S1 を、 電極板積層体 4の高さひと等しく することができる。 これに対して、 従来の電極板積層体 40は、 図 5 ( c) に示すように、 セパレ一夕の幅 S 2を電極板積層体の高さひと等し くし、 負極 2の幅 M 2をこれより例えば 2. Omm程度の差で小さく し てある。 なお、 いずれの場合も、 前述のような内部短絡防止の目的で、 正極 1の幅 P I, P2は、 負極板 1の幅 Ml, M2より例えば 0. 5〜 2. 0 mmの範囲で小さくする。
その結果、 同じ厚さで活物質層を形成すれば、 面積の増加分だけ活物 質層の量が増加するため、 図 5 (b) の電極板積層体 4は図 5 (c) の 従来の電極板積層体 40より、 電池容量を大きくすることができる。 ま た、 同一容積の電池缶に収納する活物質量を同じにすれば、 電池容量を 低下することなく、 面積の増加分だけ活物質層の厚さを薄くすることが できる。 また、 面積の増加によって単位面積当たりの電流密度が下がり 、 活物質層が薄くなることで膜抵抗が減少して出力特性が向上する。 ここで、 従来の代表的な電池とこの実施形態に相当する電池により、 電池容量を比較した実施例 (実施例 1〜6, 比較例 1, 2) について以 下に説明する。
まず、 電極として以下のものを用意した。
正極としては、 L i Co02 を正極活物質として、 リン片状グラファ ィ 卜およびアセチレンブラックを導電性フイラ一として、 フヅ素ゴムを バインダ一として用いた。 これらを酢酸ェチルと 2—エトキシェ夕ノー ルの混合溶媒 (体積比で、 酢酸ェチル: 2—エトキシエタノール = 1 : 3 ) 中で、 L i C o 02 : リン片状グラフアイ ト :アセチレンブラック : フッ素ゴム = 1 00 : 2. 5 : 2. 5 : 1. 98の重量比で混合して スラリーとした。
このスラリーを、 厚さ 1 5 mのアルミニウム箔 (正極集電体) 1 a 上の両面に塗布後、 乾燥させてプレスを施すことにより、 片面当たり厚 さ 8 7 mの正極活物質層 1 bを有する正極広幅体 1 0を形成した。 負極としては、 メソフェーズピッチカーボンファイバ一グラフアイ ト およびリン片状グラフアイ トを負極活物質として、 カルボキシメチルセ ルロースを分散剤として、 ラテックスをバインダーとして用いた。 これ らを精製水中で、 メソフェーズピヅチカーボンファイバ一グラフアイ ト : リン片状グラフアイ ト : カルボキシメチルセルロース : ラテックス = 9 0 : 1 0 : 1. 4 : 1. 8の重量比で混合してスラリーを得た。
このスラリーを、 厚さ 1 2〃mの銅箔 (負極集電体) 2 a上の両面に 塗布後、 乾燥させてプレスを施すことにより、 片面当たり厚さ 8 l j m の負極活物質層 2 bを有する負極広幅体 20を形成した。
次に、 絶縁性物質粒子集合体層 (セパレー夕) の形成および電極板積 層体の作製を以下のようにして行なった。
絶縁性物質粒子としてひ— A 12 03 粉体 ( 50%平均粒子径 0. 7 μ,πι) 、 バインダーとしてポリフヅ化ビニリデン (PVD F) の粉体 〔 呉羽化学工業 (株) 製 KF# 1 1 00〕 、 溶媒として N—メチルピロリ ドン (NMP) を用意した。 そして、 重量比でひ一 A l2 03 : PVD F = 1 00 : 5となるように粉体状態のまま混合し、 それに NMPを加 えてさらに混合し、 固形分率 56. 8重量%のスラリーを得た。 このスラリーを、 ダイコー夕一を用いて正極広幅体の正極活物質層 1 bおよび負極広幅体の負極活物質層 2 bの上に均一に塗布し、 これを 1 20°Cの乾燥炉中で 2分間乾燥することにより、 厚さ 12〃mの絶縁性 物質粒子集合体層からなるセパレ一夕 3 Aを正極活物質層 1 b上に、 セ パレ一夕 3 Bを負極活物質層 2 b上に固定した。
電解液として、 エチレンカーボネート (EC) とジェチルカ一ボネ一 ト (DEC) の体積比 1 : 1の混合溶媒に、 L iPF6 を 1. Omo l /1溶解させたものを用意した。 この電解液とともに、 上記方法で作製 したこの実施形態の電極板積層体を、 電池缶内に収納して封口し、 18 650サイズ (直径 18 mm, 高さ 65 mm) と 17500サイズ (直 径 17 mm, 高さ 5 Omm) の円筒型リチウムイオン二次電池を作製し た。
比較例として、 ポリエチレン製微多孔膜をセパレ一夕一として用いた 従来の円筒型リチウムイオン二次電池も作製した。
なお、 実施例と比較例の電池は、 正極, 負極の幅以外の点 (長さゃ活 物質層の厚さ等) およびセパレ一夕の幅と種類については、 各サイズ毎 にすベて同じにしてある。
このようにして作製した電池の充放電を 20 °C恒温槽中において以下 の条件で 1サイクル行なった。
充電:上限電圧 4. 2V, 電流密度 0. 5mA/cm2 で、
トータル 5時間の定電流定電圧充電
放電:電流密度 0. 5 mA/ cm2 で、
終止電圧 2. 7 Vまでの定電流放電
下記の表 1および表 2に電池放電容量を比較した結果を示す。 表 1は 18650サイズについて、 表 2は 17500サイズについて示す。 【表 1】
Figure imgf000028_0002
【表 2】 セパレ一夕幅 負纏 正欄 容量(相対値)
J:國 2 44. 0 mm 41. 5 mm 40. 0mm 100
43. 0mm 43. 0mm 41. 5 mm 103. 8 謹例 5 44. 0 mm 44. 0mm 42. 5 mm 106. 3 難例 6 43. 0mm 44. 0 mm 41. 5 mm
Figure imgf000028_0001
表 1および 2の結果から、 電池缶のサイズによって効果の大きさは異 なるが、 実施例の電池は比較例の電池に比べて、 2〜1 0 %程度の電池 容量の増加が可能になることが分かる。
なお、 前記実施形態では、 正負極とも集電体の両面に活物質層を固定 したものを使用して電極板積層体を作製しているが、 これに限定されず 、 正極または負極のいずれか、 もしくは正極および負極とも集電体の片 面のみに活物質層を固定したものを使用してもよい。
図 6は、 正極および負極とも集電体の片面のみに活物質層を固定した ものを、 1枚づっ使用した例であるが、 この場合には、 正負の集電体の 間に絶縁層を形成する必要がある。 そのため、 この例では、 負極 2を切 り出す広幅体を、 集電体 2 aの一方の面に活物質層 2 bを形成し、 その 上にセパレ一夕としての絶縁性物質粒子集合体層 3 Bを形成するととも に、 集電体 2 aの他方の面にも絶縁性物質粒子集合体層 3 Eを形成する ことで作製している。 また、 正極 1としては、 集電体 l aの一方の面に 活物質層 1 bを固定したものを使用している。
そして、 これらの正極 1および負極 2を図 4の場合と同様に捲回する ことにより、 正負の活物質層 l b, 2 bの間に絶縁性物質粒子集合体層 からなるセパレー夕 3 Bが配置されるとともに、 正負の集電体 l a, 2 aの間にも絶縁性物質粒子集合体層 3 Eが配置される。
ここで、 正負の集電体 1 a, 2 aの間の絶縁性物質粒子集合体層 3 E には、 電解液中のイオンを通過させる機能は必要なく、 両集電体間を絶 縁する機能があればよいため、 この絶縁性物質粒子集合体層 3 Eを絶縁 性物質粒子集合体層で構成する必要はなく、 絶縁膜を集電体に固定する ことにより構成してもよい。
また、 前記実施形態では、 セパレ一夕をなす絶縁性物質粒子集合体層 3 Bを負極活物質層 2 bの表面全体に形成して正極活物質層 1 bには形 成していないが、 図 7に示すように、 正負の両活物質層 lb, 2 bの表 面全体に、 それぞれ絶縁性物質粒子集合体層 3 A, 3 Bを形成してもよ い。 このようにすると、 各電池層 Dにおいて、 正負の活物質層間 l b, 2 bに 2層の絶縁性物質粒子集合体層 3A, 3Bからなるセパレー夕が 存在することになる。 このように 2層のセパレ一夕があれば、 例えば、 いずれかの絶縁性物質粒子集合体層にピンホールなどの欠陥があった場 合にも、 セパレ一夕の機能を低下させないようにすることができる。 また、 図 8に示すように、 電池層 Dを構成しない部分 (電極板積層体 の最外周部分の長さ dおよび最内周部分の長さ c) には、 予め負極集電 体 2 aに負極活物質層 2 bを形成しない (集電体露出部 Rを形成する) ようにしてもよい。 このようにすると、 同じ電池缶用の電極板積層体を 作製する場合に、 捲回長さを長くすることができるため、 その分だけ容 量を上げることができる。
また、 この図での電極板積層体には、 タブ固定用の集電体露出部 Tも 形成されており、 このような集電体露出部 Tおよび/または前述の集電 体露出部 Rがある場合には、 図 9に示すように、 絶縁性物質粒子集合体 層 3 A (3B) を、 活物質層 lb (2 b) の端面部分 Mを覆うように形 成してもよい。 また、 図 10に示すように、 絶縁性物質粒子集合体層 3 A (3B) を、 活物質層 l b (2 b) の端面部分 Mと集電体露出部 T ( R) 全体を覆うように形成してもよい。 また、 図 1 1に示すように、 絶 縁性物質粒子集合体層 3 A (3B) を、 活物質層 l b (2b) の端面部 分 Mと集電体露出部 T (R) の一部 T 1 (R 1 ) を覆うように形成して もよい。
このような集電体露出部には、 上述のように絶縁性物質粒子集合体層 を固定してもよいが、 絶縁フィルムを切断して電極からはみ出さないよ うに貼りつけたり、 挟んだりすることによつても、 短絡を防ぐことがで きる。
さらに、 負極活物質層 2 bの表面にセパレー夕 3 Bを固定する場合に は、 必ずしも当該表面全体に固定する必要はなく、 図 1 2に示すように 、 これに相対させる正極活物質層と同じかこれより外側にはみ出す大き さで固定すればよい。 同様に、 負極集電体 2 aの表面に絶縁性物質粒子 集合体層 3 Eを固定する場合には、 必ずしも当該表面全体に固定する必 要はなく、 図 1 3に示すように、 これに相対させる正極集電体と同じか これより外側にはみ出す大きさで固定すればよい。
また、 絶縁性物質粒子集合体層からなるセパレー夕は、 正極 1の表面 全体にのみ形成して負極 2には形成しないようにしてもよいが、 切断部 での欠け落ちなどを考慮すると、 負極 2の表面に形成されていた方が好 ましい。
すなわち、 前記実施形態の方法のように、 負極の広幅体 2 0の両面に 絶縁性物質粒子集合体層からなるセパレー夕 3 Bを形成し、 これを切断 した負極 2と、 絶縁性物質粒子集合体層からなるセパレー夕が形成され ていない正極 1とを用いて電極板積層体を作製することにより、 正極 1 の大きさが電池層として対をなす負極 2より小さい電極板積層体を容易 に且つ効率良く得ることができる。
なお、 前記実施形態では、 捲回型の電池について示してあるが、 九十 九折り型や単純積層型の電池でも同様の効果が得られる。 図 1 4にはコ イン状の単純積層型電池の電極板積層体を、 図 1 5には四角形の単純積 層型電池の電極板積層体を示す。 また、 図 1 6はこれらの電極板積層体 の断面図である。
この場合には、 例えば、 前記と同様にして形成した正負の広幅体 1 0 , 2 0から、 円形または四角形の形状で負極 2を切り出し、 これより一 回り小さく正極 1を切り出した後、 負極 2と正極 1を中心を合わせて交 P98 0
互に積み重ねる。 これにより、 電極板積層体 4の電池層 Dを形成してい る部分の縁部全体に、 負極活物質層の単独部分 Fが存在するため、 前述 の短絡防止効果が得られる。 また、 負極活物質層 2 bに固定された絶縁 性物質粒子集合体層 3 Bにより、 セパレ一夕が負極 2と同じ大きさにな つているため、 前記と同様に、 正極 1を大きくして電池容量を増大する ことができる。
なお、 前記実施形態では、 電極板積層体の電池層 Dを形成している部 分に負極活物質層の単独部分 Fを設けてあるが、 本発明はこのようなも のに限定されない。 すなわち、 前述のような内部短絡が大きな問題にな らない場合には、 電極板積層体の電池層 Dを形成する正極活物質層の面 積を、 負極活物質層および絶縁性物質粒子集合体層と同じにすることに より、 同じ電池缶での電池容量をより大きくすることができる。
また、 図 1 6の単純積層型電池の電極板積層体は、 正極と、 セパレ一 夕が固定された負極を複数重ねることにより、 電池層 Dが複数層形成さ れたものであるが、 図 1 7に示すように、 正極 1と、 セパレ一夕 (絶縁 性物質粒子集合体層 3 B ) が固定された負極 2を 1枚ずつ重ねたもので あってもよい。
[第 2実施形態]
以下に、 本発明の電池の第 2実施形態について説明する。 この実施形 態は、 本発明の第 3の電池に関する実施形態に相当する。
本発明の第 3の電池の電極板積層体としては、 例えば図 1 8に示す電 極板積層体 4が挙げられる。 この電極板積層体 4は、 アルミニウム箔か らなる正極集電体 1 aの片面に、 リチウム含有複合酸化物を含む材料が 正極活物質層 1 bとして塗布された正極 1と、 銅からなる集電体箔 2 a の片面に、 炭素粒子を含む材料が負極活物質層 2 bとして塗布された負 極 2と、 正極活物質層 1 bと負極活物質層 2 bとの間に介装されたセパ レー夕 (絶縁性物質粒子集合体層) 3 Cで構成されており、 セパレ一夕 3 Cは、 正極活物質層 1 bおよび負極活物質層 2 bの両方の表面に固定 されている。 すなわち、 この電極板積層体 4は、 絶縁性物質粒子集合体 層からなるセパレ一夕と両極とを一体化させた一体化層を、 1層だけ備 えている。
(実施例 7, 比較例 3〜4)
まず、 シート型電池用の電極として以下のものを用意した。
正極としては、 実施例 1〜 6と同様にして作製した正極広幅体から 4 . 0 c mx 4. 0 cmの正方形の電極シートを切り出した。
負極としては、 ニードルコ一クスを負極活物質とし、 カルボキシメチ ルセルロースを分散剤とし、 ラテックスをバインダ一として用意した。 これらを精製水中で、 ニードルコ一クス : カルボキシメチルセルロース
: ラテックス = 1 00 : 0. 8 : 2. 0の重量比で混合してスラリーと した。 このスラリ一を、 厚さ 1 8〃mの銅箔 (負極集電体) 2 a上の片 面に塗布後、 乾燥させて、 プレスを施すことにより、 厚さ 1 24〃mの 負極活物質層 2 bを有する負極広幅体を形成した。 この負極広幅体から 4. 1 c mx 4. 1 cmの正方形の電極シートを切り出した。
次に、 絶縁性物質粒子集合体層 (セパレー夕) の形成および電極板積 層体の作製を以下のようにして行なった。
絶縁性物質粒子として、 ひ— A l 2 03 ( 50 %平均粒子径 1. 0 ju m) を用意した。 また、 バインダーとしてポリフッ化ビニリデン (PV D F) の粉体 〔呉羽化学工業 (株) 製 KF# 1 1 00〕 を、 溶媒として N—メチルピロリ ドン (NMP) を用意した。 そして、 ひ一A 1203 : PVDF= 1 00 : 5 (重量比) となるように粉体状態のまま混合し 、 それに NMPを加えてさらに混合し、 固形分率 5 6. 8%のスラリー を得た。 このスラリーを、 ドク夕一ブレードを用いて、 上で切り出した正極の 正極活物質層 1 bおよび上で切り出した負極の負極活物質層 2 bの上に 均一に塗布し、 これを直ちに 1 bと 2 bが対向するように貼り合わせ、 130°Cの乾燥炉中で 30分間乾燥することにより、 電極板積層体を作 製した。 このとき、 絶縁性物質粒子集合体層 3 Cの厚みは 20〃mであ つた。
上記電極板積層体を、 エチレンカーボネート (プロピレンカーボネ一 ト (PC) , エチレンカーボネート (EC) , ァ一プチロラクトン (ァ -BL) の体積比 1 : 1 : 2の混合溶媒に L iBF4を 1. 5mo l/ 1溶解させた電解液と共に、 アルミニウム箔ラミネ一トシ一トパッケ一 ジに収納して密封し、 シート型電池とした。
このシート型電池の充放電試験を、 20°C恒温槽中において以下の条 件で行なった。
1サイクル目 :
上限電圧 4. 2V, 電流密度 1. OmA/cm2 で、 トータル 6 時間の定電流定電圧充電
2〜 100サイクル:
上限電圧 4. 2V, 電流密度 1. 5mA/cm2 で、 トータル 3 時間の定電流定電圧充電
放電:
10サイクル目以外:
電流密度 0. 6 mA/ cm2 で、 終始電圧 2. 7 Vまでの定電流
0サイクル目のみ:
電流密度 6. OmA/cm2 で、 終始電圧 2. 7 Vまでの定電流 放電
ここで、 9サイクル目と 1 0サイクル目の間の放電容量変化率、 およ び、 1サイクル目放電容量を基準とした 1 0 0サイクル目放電容量の容 量維持率に着目した。 放電容量変化率が急速放電特性、 容量維持率がサ ィクル特性を示す指標となる。
また、 固体電解質として、 フッ化ビニリデン : 6フヅ化プロピレン = 9 2 : 8 (重量比) であるコポリマーを、 実施例と同じ電解液で膨潤さ せたものを作製した。 このとき、 コポリマ一:電解液 = 1 : 1の重量比 で、 厚みは 1 0 0 z mであった。 この固体電解質を、 実施例と同じ正極 と負極の間に挟み込み、 両活物質層が対向た電極板積層体を作製した。 この電極板積層体を、 実施例と同じパッケージ内に密封してシ一ト型ポ リマ一電池とし、 実施例と同じ条件で充放電を行い、 これを比較例 3と した。
もう一つの比較例として、 実施例と同じ正極と負極の間に、 従来のリ チウムイオン二次電池で用いられている 2 5〃m厚ポリエチレン製微多 孔膜セパレー夕を挟み込み、 両活物質層が対向した電極板積層体を作製 した。 この電極板積層体を実施例と同じパッケージ内に密封してシート 型電池とし、 実施例と同じ条件で充放電を行った。 これを比較例 4とし た。
上記の結果を表 3に示す。
【表 3】
Figure imgf000036_0001
表 3から分かるように、 本発明の第 3の電池は、 ポリマー電池と比較 して、 特に急速放電特性の面でより優れている。 また、 従来のリチウム イオン二次電池で用いられている 2 5 m厚のポリェチレン製微多孔膜 セパレ一夕を用いたシ一ト型電池と比較して、 急速放電特性およびサイ クル特性の両面で優れている。
なお、 前記実施形態の電極板積層体は、 正極とセパレー夕一と負極と を一体化させた一体化層を 1層だけ有するものであるが、 図 1 9に示す ように、 前記一体化層が 2層以上積層されたものであってもよい。
図 1 9に示す電極板積層体 4は、 一体化層が 2層以上積層されている ために電池層 Dが複数個形成されているとともに、 電池層 Dを形成して いる部分の縁部全体に、 負極活物質層の単独部分 Fが存在するため、 こ の図 1 9に示す電極板積層体 4を備えたシート型電池は、 前述の第 2実 施形態で説明したような短絡防止効果も得られる。 また、 正負の活物質 層 2 b , 1 bに固定された絶縁性物質粒子集合体層 3 Dにより、 セパレ 一夕が負極 2と同じ大きさになっているため、 正極 1を大きくして電池 容量を増大することもできる。
[第 3実施形態]
以下に、 本発明の電池の第 3実施形態について説明する。 この実施形 態は、 本発明の第 1の電池に関する実施形態に相当する。
(実施例 8, 比較例 5 )
先ず、 実施例 1〜6と同様にして、 正極広幅体および負極広幅体を用 意し、 この広幅体の活物質層全面にそれぞれ絶縁性物質粒子集合体層 3 A, 3 Bを形成した。
次に、 絶縁性物質粒子集合体層 3 Aが形成された正極広幅体 1 0およ び絶縁性物質粒子集合体層 3 Bが形成された負極広幅体 2 0を図 2 2 ( a ) に示すように、 幅方向で切断することにより、 図 2 2 ( b ) に示す ような、 幅 38. 7 5 mm長さ 62 c mの絶縁性物質粒子集合体層 3 A が形成された正極帯状体 1 1および幅 40. 2 5 mm長さ 59. 8 cm の絶縁性物質粒子集合体層 3 Bが形成された負極帯状体 2 1を得た。 こ れらの帯状体の幅方向端面 (切断面) に、 以下のようにして絶縁性物質 粒子集合体層からなるコ一ティング 3 Fを形成した。
絶縁性物質粒子としてひ一 A 12 033 体 ( 50%平均粒子径0. 7 μ,πι) 、 バインダ一としてポリフヅ化ビニリデン (PVDF) の粉体 〔 呉羽化学工業 (株) 製 KF# 1 1 00〕 、 溶媒として N—メチルピロリ ドン (NMP) を用意した。 そして、 これらを、 重量比でひ一 A 120 3 : PVD F= 1 00 : 5となるように粉体状態のまま混合し、 それに NMPを加えてさらに混合し、 固形分率 5 6. 8重量%のスラリーを得 た。
上記正負の各帯状体の幅方向端面に、 このスラ リーを塗布した後、 1 20°Cで 2分間乾燥させた。 これにより、 図 22 ( c) および図 1に示 すように、 絶縁性物質粒子集合体層 3 A, 3 Bを形成した正負の帯状体 1 1, 2 1の厚さ方向の両側にはみ出さないようにして、 活物質層 l b , 2 bと集電体シート l a, 2 aの端面全体に、 絶縁性物質粒子集合体 層からなるコーティング 3 Fを帯状体幅方向に 1 0〃mの厚さで形成し た。
上記正負の帯状体と、 厚さ 1 2 /zmのポリプロピレン製の絶縁膜 3 G を用い、 正極側を外側にして捲回することにより、 電極板積層体 4 1を 作製した (図 2 2 (d) ) 。
すなわち、 この電極板積層体 4 1の単位電池層 D 1は、 図 2 5に示す ように、 アルミニウム箔 1 aの片面に正極活物質層 1 bが固定された正 極 1 (正極帯状体 1 1 ) と、 銅箔 2 aの片面に負極活物質層 2 bが固定 された負極 2 (負極帯状体 2 1) と、 それぞれの活物質層上に固定され P98/008 9
た絶縁性物質粒子集合体層 3 A, 3Bと、 正負の両集電体 l a, 2 aと の間に介装された絶縁膜 3 Gとで構成される。
この電極板積層体 41を、 エチレンカーボネート (EC) とジェチル カーボネート (DEC) の体積比 1 : 1の混合溶媒に L丄? 6を1. Omo 1/1溶解させた電解液と共に、 直径 17mm、 高さ 5 cmの電 池缶内に収納して封口し、 円筒型リチウムイオン二次電池とした。
また、 比較例 5として、 正負の両帯状体 1 1, 21の幅方向端面に絶 縁性物質粒子集合体層からなるコーティング 3 Fを形成しなかった以外 は、 全て実施例 8と同様にしてリチウムイオン二次電池を作製した。 これらの電池を各 100本用意し、 充放電を 20°C恒温槽中において 以下の条件で 1サイクル行ない、 短絡異常が発生した電池の本数を調べ た。
充電:上限電圧 4. 2 V, 電流密度 0. 5mA/cm2 で、
トータル 5時間の定電流定電圧充電
放電:電流密度 0. 5 mA/ cm2 で、 終止電圧 2. 7Vまでの定電流 その結果、 実施例 8では 100本中 1本も短絡異常が発生しなかった が、 比較例 1では 100本中 3本に短絡異常が発生した。 すなわち、 正 負の両帯状体 1 1, 21の幅方向端面に絶縁性物質粒子集合体層からな るコーティング 3 Fを形成することにより、 短絡異常の発生率が大幅に 減少することが分かる。
(実施例 9, 比較例 6)
まず、 実施例 8と同様にして、 正極広幅体および負極広幅体を用意し た。 次に、 実施例 8と同様にして絶縁性物質粒子とバインダーと溶媒と からなるスラリーを得た。
このスラリーを、 ダイコ一夕一を用いて正極広幅体の正極活物質層 1 bおよび負極広幅体の負極活物質層 2 bの上に均一に塗布し、 これを 1 20°Cの乾燥炉中で 2分間乾燥することにより、 厚さ 12〃mの絶縁性 物質粒子集合体層からなるセパレ一夕 3 Aを正極活物質層 1 b上に、 セ パレ一夕 3 Bを負極活物質層 2 b上に固定した。
さらに、 図 24 (a) に示すように、 このように作製した正極広幅体
10および負極広幅体 20を幅方向で切断することにより、 図 24 (b ) に示すような、 幅 38. 75 mm長さ 62 cmの正極帯状体 1 1およ び幅 40. 25 mm長さ 59. 8 c mの負極帯状体 21を得た。
この正負の帯状体 1 1, 21と、 厚さ 12〃mのポリプロピレン製の 絶縁膜 3 Gを用い、 正極側を外側にして捲回することにより、 円筒型の 電極板積層体 42を作製した (図 24 (c) ) 。
すなわち、 この電極板積層体 42の単位電池層 D 2は、 図 25に示す ように、 アルミニウム箔 1 aの片面に正極活物質層 1 bが固定された正 極 1と、 銅箔 2 aの片面に負極活物質層 2 bが固定された負極 2と、 正 極活物質層 1 bの上に固定された絶縁性物質粒子集合体層からなるセパ レー夕 3 Aと、 負極活物質層 2 bの上に固定された絶縁性物質粒子集合 体層からなるセパレ一夕 3 Bと、 絶縁膜 3 Gとで構成されている。 そし て、 正極帯状体 1 1は正極 1と正極側のセパレ一夕 13 Aとで構成され 、 負極帯状体 21は負極 2と負極側のセパレ一夕 13Bとで構成されて いる。
この電極板積層体 42の両端面 (円筒体の両底面) に、 以下のように して絶縁性物質粒子集合体層からなるコ一ティング 3 Fを形成する。 すなわち、 セパレ一夕 3A, 3 Bの作製の際に使用したものと同じス ラリーを、 電極板積層体 42の両端面に塗布した後、 120°Cで 2分間 乾燥させ、 図 23 (d) に示すように、 多数のひ— Al2 03 粒子同士 が PVD Fで結合されたコ一ティング 3 Fを形成した。 ここで、 このコ 一ティング 3 Fは、 例えば図 2 6に示すように、 正極帯状体 1 1、 負極 帯状体 2 1、 および絶縁膜 3 Gの全ての端面に、 負極帯状体 2 1の端面 での幅 Wが 1 0 mとなるように固定され、 負極活物質層 2 bの上面端 部にも形成されている。
このようにして両端面に絶縁性物質粒子集合体層からなるコ一ティン グ 3 Fが形成された電極板積層体 4 2を、 実施例 8と同じ組成の電解液 と共に直径 1 7 mm、 高さ 5 c mの電池缶内に収納して封口し、 リチウ ムィォン二次電池を作製した。
また、 比較例 6として、 電極板積層体 4 2の両端面に絶縁性物質粒子 集合体層からなるコーティング 3 Fを固定しなかった点以外は、 全て実 施例 9と同様にしてリチウムイオン二次電池を組み立てた。
これらの各電池を 1 0 0本用意し、 実施例 1と同じ条件で充放電を 1 回行い、 短絡異常が発生した電池の本数を調べた。
その結果、 実施例 9では 1 0 0本中 1本にだけ短絡異常が発生したが 、 比較例 2では、 1 0 0本中 5本に短絡異常が発生した。 すなわち、 電 極板積層体 4 2の両端面に、 絶縁性物質粒子集合体層からなるコーティ ング 3 Fを形成することにより、 短絡異常の発生率が大幅に減少するこ とが分かる。
図 2 8は、 捲回型の電極板積層体の正極帯状体および負極帯状体の一 例を示す。 この例では、 正極帯状体 1 1および負極帯状体 2 1ともに、 集電体 1 a , 2 aの両面の長さ方向端部を除いた部分に活物質層 1 b , 2 bが形成され、 両活物質層の表面全体と長さ方向および幅方向の全端 面に、 絶縁性物質粒子集合体層 3 A , 3 Bが固定されている。 この絶縁 性物質粒子集合体層 3 A, 3 Bは、 セパレ一夕をなす部分と端面コ一テ イング部分とが同じ厚さになっている。 これにより、 両活物質層の全端 面が絶縁性物質粒子集合体層でコ一ティングされている。 これに対して図 29は、 集電体 l a, 2 aの両面の長さ方向端部を除 いた部分に活物質層 lb, 2bが形成されていて、 活物質層の一方の面 のみに絶縁性物質粒子集合体層 3 A, 3 Bが形成されている例である。 このように活物質層の一方の面のみに絶縁性物質粒子集合体層 3 A, 3 Bが形成されている場合には、 絶縁性物質粒子集合体層 3 A, 3Bを集 電体 l a, 2 aの一方の面の全面に固定されていてもよい。
なお、 前記実施形態では、 正極, 負極, およびセパレー夕を、 帯状に 切断して捲回機により渦巻き状に卷き取る捲回型の電極板積層体を有す る電池について述べているが、 これに限定されず、 本発明は、 正極, 負 極, およびセパレ一夕を帯状に切断して所定幅で折り返しながら平行に 重ねる九十九折り型、 正極, 負極, およびセパレー夕を円形や四角形に 切断して積み重ねる単純積層型等の従来より公知である他の構造の電極 板積層体を有する電池についても適用可能である。
図 27に、 単純積層型の電極板積層体の断面図の一例を示す。
この例の作製手順は、 まず、 図 27 (a) に示すように、 正負の各広 幅体 10, 20を格子状に切断することにより、 図 27 (b) に示すよ うな、 四角形の電極 12, 22を得る。 次に、 図 27 (c) に示すよう に、 これらの電極 12, 22の 4つの端面全部に絶縁性物質粒子集合体 層からなるコーティング 3 Fを形成する。 これらのシート状電極 12, 22をセパレ一夕を介装しながら正負交互に重ね合わせることにより、 電極板積層体 43を作製する (図 27 (d) ) 。
[第 4実施形態]
この実施形態は、 本発明の第 2の電池およびその製法 (本発明の第 2 の製法) の実施形態に相当する。
まず、 電極として以下のものを用意した。
正極としては、 L iCo02 を正極活物質として、 リン片状グラファ ィ トおよびアセチレンブラヅクを導電性フイラ一として、 ポリフッ化ビ 二リデン (PVDF) をバインダーとして用いた。 これらを N—メチル ピロリ ドン (NMP) 中で、 Li Co02 : リン片状グラフアイ ト :ァ セチレンブラック :ポリフヅ化ビニリデン = 100 : 4. 0 : 2. 5 : 4. 0の重量比で混合してスラリーを得た。
このスラリーを、 厚さ 20〃mのアルミニウム箔 (正極集電体) 1 a の一方の面に、 塗布方向およびその方向に垂直な方向において塗布部と 非塗布部が交互に現れ、 且つ各方向において塗布部同士および非塗布部 同士がそれぞれ同じ幅になるように塗布した。 ただし、 非塗布部は必ず しも塗布方向にある必要はない。 このスラリーを乾燥させて、 プレスを 施すことにより、 厚さ 87〃mの正極活物質層 1 bを有する正極広幅体 10を形成した。
この正極広幅体 (正極体) 10は、 図 30に示すように、 電極板積層 体用に設定された集電体幅より狭い幅で、 且つ所定の隙間を空けて並列 に正極活物質層 1 bが形成されたものである。
負極としては、 メソフェーズピッチ力一ボンファイバ一グラフアイ ト およびリン片状グラフアイ トを負極活物質として、 カルボキシメチルセ ルロースを分散剤として、 ラテックスをバインダーとして用いた。 これ らを精製水中で、 メソフェーズビヅチカ一ボンファイバ一グラフアイ ト : リン片状グラフアイ ト : カルボキシメチルセルロース :ラテックス = 90 : 10 : 1. 4 : 1. 8の重量比で混合してスラリーを得た。
このスラリーを、 厚さ 12〃mの銅箔 (負極集電体) 2 aの一方の面 に、 前述の正極の場合と同様に、 但し、 正極の場合より各方向において 塗布幅が広くなるように塗布した。 このスラリーを乾燥させて、 プレス を施すことにより、 厚さ 81 /mの負極活物質層 2 bを有する負極広幅 体 20を形成した。 この負極広幅体 (負極体) 2 0は、 図 3 0に示すように、 電極板積層 体用に設定された集電体幅より狭い幅で、 且つ所定の隙間を空けて並列 に負極活物質層 2 bが形成されたものである。
これらの正極幅広体 1 0および負極広幅体 2 0の活物質層が形成され ている面の全面に、 前述の実施例と同様の絶縁性物質粒子を含むスラリ 一を塗布した後、 乾燥させた。 これにより、 絶縁性物質粒子集合体層 3 A , 3 Bが正負の活物質層の表面全体と端面全体に固定された。 両活物 質層の表面に形成された絶縁性物質粒子集合体層の厚さ (すなわち各電 極に固定されたセパレー夕の厚さ) は 1 2〃mであった。
この正極広幅体と負極広幅体を、 それぞれ隙間の位置でシート面に垂 直に切断することにより、 絶縁性物質粒子集合体層 3 A, 3 Bが固定さ れた同一寸法の正極 1および負極 2を得た。 これらの絶縁性物質粒子集 合体層 3 A , 3 Bが固定された正極 1および負極 2を、 図 3 3に示すよ うに、 絶縁性物質粒子集合体層 3 A , 3 B同士を対向させて重ねること により、 本発明の第 2の電池に相当する電池の電極板積層体 4が得られ る。
図 3 4は、 本発明の第 2の電池に相当する電池の別の電極板積層体を 示す断面図である。 この電極板積層体 4の正極広幅体 1 0としては、 図 3 3と同様に形成されたものを用いるが、 負極広幅体 2 0としては、 図 3 1に示すように、 負極活物質層 2 bを負極集電体 2 aの片面の全面に 形成したものを用いる。 そして、 絶縁性物質粒子集合体層 3 Bが固定さ れた負極 2は、 この絶縁性物質粒子集合体層 3 Bが固定された負極広幅 体 2 0を、 絶縁性物質粒子集合体層 3 Aが固定された正極 1と同一寸法 でシート面に垂直に切断することにより得られる。 これらの絶縁性物質 粒子集合体層 3 A, 3 Bが固定された正極 1および負極 2を絶縁性物質 粒子集合体層 3 A , 3 B同士を対向させて重ねることにより、 図 3 4の 電極板積層体 4が得られる。
なお、 図 3 3および 3 4の電極板積層体 4の正極活物質層は、 電池層 として対をなす負極活物質層からはみ出さない大きさに形成され、 絶縁 性物質粒子集合体層からなるセパレー夕は、 少なくとも負極と対向する 正極活物質層の表面全体を覆うように、 且つ集電体の端面からはみ出さ ないように配置されている。
また、 本発明の第 2の電池は、 図 2 1および 2 3に示すように、 正極 側のみに絶縁性物質粒子集合体層 3 Aが形成されて、 正極活物質層 1 b の端面が絶縁性物質粒子集合体層でコーティングされており、 負極側に は絶縁性物質粒子集合体層が形成されていないものであってもよい。
[第 5実施形態]
この実施形態は、 本発明の第 4の電池およびその製法 (本発明の第 3 の製法) の実施形態に相当する。
図 3 5は、 本発明の第 4の電池に相当する電池の電極板積層体を示す 断面図である。 この電極板積層体 4の正極幅広体 1 0としては、 例えば 図 3 3と同様に形成されたものを用いる。
図 3 2に示すように、 この正極幅広体 1 0の活物質層が形成されてい る面の全面に、 前述の実施例と同様の絶縁性物質粒子を含むスラリーを 塗布した後、 乾燥させた。 これにより、 絶縁性物質粒子集合体層 3 Cが 正極活物質層 1 bの表面全体と端面全体に固定された。 この絶縁性物質 粒子集合体層 3 Cの全面に、 前述の負極活物質層 2 b用のスラリーを塗 布し、 このスラリ一を乾燥させる前に前述の負極集電体 2 aを重ねて乾 燥させた後プレスすることにより、 負極活物質層 2 bの上に負極集電体 2 aを一体化させた。
これにより、 正極幅広体 1 0と負極広幅体 2 0が絶縁性物質粒子集合 体層 3 Cを介して一体化されるため、 この一体化されたものを正極活物 質層 1 bの隙間の位置でシート面に垂直に切断することにより、 セパレ —夕と両極とが一体化された一体化層が得られる。
図 3 5の電極板積層体 4は、 この一体化層を一層だけ有するものであ り、 その正極活物質層は、 電池層として対をなす負極活物質層からはみ 出さない大きさに形成され、 絶縁性物質粒子集合体層からなるセパレー 夕は、 少なくとも負極と対向する正極活物質層の表面全体を覆うように 、 且つ集電体の端面からはみ出さないように配置されている。
なお、 前記一体化層の形成方法としては、 絶縁性物質粒子集合体層 3 Aが固定された正極広幅体 1 0と、 絶縁性物質粒子集合体層 3 Bが固定 された負極広幅体 2 0を一体化した後、 切断する方法も上げられる。 す なわち、 図 3 0および 3 2に示すように、 先ず、 第 4実施形態と同様に して、 絶縁性物質粒子集合体層 3 Aが固定された正極広幅体 1 0と、 絶 縁性物質粒子集合体層 3 Bが固定された負極広幅体 2 0を形成する。 次 に、 両者の絶縁性物質粒子集合体層 3 A, 3 Bのいずれか一方の面に、 バインダーを溶解する溶媒を塗布した後、 直ちに絶縁性物質粒子集合体 層 3 A , 3 B同士を対向させて重ね合わせて、 プレスして乾燥させる。 このようにして正極広幅体 1 0と負極広幅体 2 0とが一体化されたもの を、 前記隙間でシート面に垂直に切断すれば、 前記一体化層が形成され る o
また、 前記一体化層は、 図 2 1に示すように、 絶縁性物質粒子集合体 層 3 Aが固定された正極広幅体と、 絶縁性物質粒子集合体層が形成され ていない負極広幅体とを用い、 正極広幅体の絶縁性物質粒子集合体層 3 Aの表面にバインダ一を溶解する溶媒を塗布して、 上述のように正極広 幅体 1 0と負極広幅体 2 0とが一体化されたものを上記と同様にして切 断することによって形成することもできる。 産業上の利用性
以上説明したように、 本発明の第 1の電池によれば、 シート状電極の 端面からの活物質粒子の欠け落ちを防止して、 製造工程に起因する内部 短絡が発生しないようにすることができる。
本発明の第 2の電池および第 4の電池によれば、 シート状電極の端面 からの活物質粒子の欠け落ちを防止して、 製造工程に起因する内部短絡 が発生しないようにすることができるとともに、 活物質層を厚くしない で、 同じ大きさの電池缶に収納される電極板積層体の電池容量を大きく することができる。
本発明の第 3の電池によれば、 平板状の電極板積層体を可撓性容器内 に備えている、 電池形状の自由度が比較的高く薄型の非水系二次電池と して、 高電流密度での放電特性およびサイクル特性に優れたものが得ら れる。
本発明の非水系二次電池の製造方法によれば、 本発明の非水系二次電 池が容易に且つ効率良く得ることができる。

Claims

請 求 の 範 囲
1 . 集電体の少なくとも一方の面に活物質層が固定された正極および負 極と、 両極の活物質層間に介装された電解液透過性を有するセパレー夕 とを少なくとも有する電極板積層体を容器内に備え、 この容器内に非水 系電解液が封入された非水系二次電池において、
前記セパレー夕は、 絶縁性物質粒子同士がバインダ一で結合された絶 縁性物質粒子集合体層であって、 正極および負極の少なくともいずれか 一方に固定されており、
正極活物質層および負極活物質層の少なくとも一方の端面は、 その少 なくとも一部が、 前記絶縁性物質粒子集合体層でコーティングされてい ることを特徴とする非水系二次電池。
2 . 集電体の少なくとも一方の面に活物質層が固定された正極および負 極と、 両極の活物質層間に介装された電解液透過性を有するセパレ一夕 とを少なくとも有する電極板積層体を容器内に備え、 この容器内に非水 系電解液が封入された非水系二次電池において、
正極活物質層および負極活物質層の少なくとも一方の端面は、 その少 なくとも一部が絶縁性物質粒子集合体層でコーティングされており、 前記正極活物質層は、 電池層として対をなす負極活物質層からはみ出 さない大きさに形成され、
前記セパレー夕は、 絶縁性物質粒子同士がバインダ一で結合された絶 縁性物質粒子集合体層であって、 正極および負極の少なくともいずれか 一方に固定され、 少なくとも負極と対向する正極活物質層の表面全体を 覆うように、 且つ集電体の端面からはみ出さないように配置されている ことを特徴とする非水系二次電池。
3 . 正極活物質層の端面の少なくとも一部が絶縁性物質粒子集合体層で コーティングされていることを特徴とする請求項 2記載の非水系二次電 池。
4 . 両極の集電体間に介装された絶縁層を有し、 この絶縁層は、 正負の 集電体の少なくともいずれか一方に固定され、 少なくとも負極集電体と 対向する正極集電体の表面全体を覆うように、 且つ集電体の端面からは み出さないように配置されていることを特徴とする請求の範囲第 2また は 3項に記載の非水系二次電池。
5 . 電極板積層体は、 両極と両極の活物質層間のセパレ一夕とを一体化 させた一体化層が 1層以上積層されているものであることを特徴とする 請求の範囲第 1〜 4項のいずれかに記載の非水系二次電池。
6 . 集電体の少なくとも一方の面に活物質層が固定された正極および負 極と、 両極の活物質層間に介装された電解液透過性を有するセパレー夕 とを少なくとも有する電極板積層体を容器内に備え、 この容器内に非水 系電解液が封入された非水系二次電池において、
電極板積層体は、 絶縁性物質粒子同士がバインダーで結合された絶縁 性物質粒子集合体層を両極の活物質間にセパレ一夕として介在させて、 このセパレー夕と両極とを一体化させた一体化層が、 1層以上積層され ているものであり、 前記容器は可撓性容器であることを特徴とする非水 系二次電池。
7 . 絶縁性物質粒子集合体層を構成する絶縁性物質粒子は無機物である ことを特徴とする請求の範囲第 1〜 6項のいずれか一つに記載の非水系 二次電池。
8 . シート状の負極集電体の少なくとも一方の面に負極活物質層を固定 して負極体を形成し、 この負極体の表面に、 絶縁性物質粒子同士がバイ ンダ一で結合された絶縁性物質粒子集合体層を固定した後、 この負極体 を電池の種類に応じた所定形状に切断することにより、 電解液透過性を 有するセパレー夕として絶縁性物質粒子集合体層が固定された負極を作 製し、 この負極と、 シート状の集電体の少なくとも一方の面に正極活物 質層が固定された所定形状の正極とを用い、 正極活物質層が電池層とし て対をなす負極活物質層からはみ出さないようにして電極板積層体を形 成することを特徴とする非水系二次電池の製造方法。
9 . シート状の正極集電体の少なくとも一方の面に、 電極板積層体用に 設定された集電体寸法内で、 周囲に余白部分が存在するように正極活物 質層を形成して正極体を形成し、 この正極体に、 絶縁性物質粒子同士が バインダーで結合された絶縁性物質粒子集合体層を正極活物質層の表面 と端面を覆うように形成した後、 この絶縁性物質粒子集合体層が一体化 された正極体を、 前記余白部分の位置でシート面に垂直に切断すること により、 電解液透過性を有するセパレ一夕として絶縁性物質粒子集合体 層が固定された正極を作製し、 この正極と、 シート状の集電体の少なく とも一方の面に負極活物質層が固定された所定形状の負極とを用い、 正 極活物質層が電池層として対をなす負極活物質層からはみ出さないよう にして電極板積層体を形成することを特徴とする非水系二次電池の製造 方法。
10. シート状の正極集電体の少なくとも一方の面に、 電極板積層体用に 設定された集電体寸法内で、 周囲に余白部分が存在するように正極活物 質層を形成して正極体を形成し、 この正極体に、 正極活物質層の表面と 端面を覆うように絶縁性物質粒子同士がバインダーで結合された絶縁性 物質粒子集合体層を形成した後、 この絶縁性物質粒子集合体層の上に、 シート状の負極集電体の少なくとも一方の面に負極活物質層を有する負 極体を負極活物質層側を向けて一体化し、 その後に、 この正極体と負極 体が一体化されたものを、 前記余白部分の位置でシート面に垂直に切断 することにより、 電解液透過性を有するセパレー夕として絶縁性物質粒 子集合体層を両極の活物質間に介在させて、 このセパレ一夕と両極とを 一体化させた一体化層を形成し、 これを 1層以上積層して電極板積層体 を形成することを特徴とする非水系二次電池の製造方法。
11. シート状の正極集電体の少なくとも一方の面に、 電極板積層体用に 設定された集電体寸法内で、 周囲に余白部分が存在するように正極活物 質層を形成して正極体を形成し、 この正極体に、 正極活物質層の表面と 端面を覆うように絶縁性物質粒子同士がパインダ一で結合された絶縁性 物質粒子集合体層を形成した後、 この絶縁性物質粒子集合体層の上に負 極活物質層を形成し、 その後に、 前記余白部分の位置でシート面に垂直 に切断することにより、 電解液透過性を有するセパレ一夕として絶縁性 物質粒子集合体層を両極の活物質間に介在させて、 このセパレー夕と両 極とを一体化させた一体化層を形成し、 これを 1層以上積層して電極板 積層体を形成することを特徴とする非水系二次電池の製造方法。
PCT/JP1998/000839 1997-02-28 1998-02-27 Nonaqueous secondary battery and method for manufacturing the same WO1998038688A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69836820T DE69836820T2 (de) 1997-02-28 1998-02-27 Nichtwässrige sekundärbatterie und verfahren zu deren herstellung
CA002282385A CA2282385C (en) 1997-02-28 1998-02-27 Non-aqueous secondary battery and method for manufacturing the same
JP53752298A JP3613400B2 (ja) 1997-02-28 1998-02-27 非水系二次電池およびその製造方法
US09/380,282 US6387564B1 (en) 1997-02-28 1998-02-27 Non-aqueous secondary battery having an aggregation layer
EP98905710A EP1018775B1 (en) 1997-02-28 1998-02-27 Nonaqueous secondary battery and method for manufacturing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP9/45937 1997-02-28
JP4650297 1997-02-28
JP4650097 1997-02-28
JP9/46500 1997-02-28
JP9/46502 1997-02-28
JP4593797 1997-02-28

Publications (1)

Publication Number Publication Date
WO1998038688A1 true WO1998038688A1 (en) 1998-09-03

Family

ID=27292446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000839 WO1998038688A1 (en) 1997-02-28 1998-02-27 Nonaqueous secondary battery and method for manufacturing the same

Country Status (8)

Country Link
US (1) US6387564B1 (ja)
EP (1) EP1018775B1 (ja)
JP (1) JP3613400B2 (ja)
KR (1) KR100344686B1 (ja)
CN (1) CN1139142C (ja)
CA (1) CA2282385C (ja)
DE (1) DE69836820T2 (ja)
WO (1) WO1998038688A1 (ja)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210304A (ja) * 2000-01-27 2001-08-03 Nec Mobile Energy Kk 密閉型電池およびその製造方法
JP2002175832A (ja) * 2000-12-06 2002-06-21 Denso Corp 巻回型電極電池およびその製造方法
JP2003086252A (ja) * 2001-09-10 2003-03-20 Ngk Insulators Ltd リチウム二次電池
JP2004253351A (ja) * 2002-12-27 2004-09-09 Matsushita Electric Ind Co Ltd 電気化学素子の製造方法
JP2004259625A (ja) * 2003-02-26 2004-09-16 Sanyo Electric Co Ltd 非水電解質二次電池、及びそれに使用する電極の製造方法
JP2005294139A (ja) * 2004-04-02 2005-10-20 Matsushita Electric Ind Co Ltd リチウムイオン二次電池及びその製造方法
JP2006019146A (ja) * 2004-07-01 2006-01-19 Tomoegawa Paper Co Ltd 電子部品用セパレータ及びその製造方法
JP2006054152A (ja) * 2004-08-16 2006-02-23 Toshiba Corp 非水電解質電池及び非水電解質電池搭載icタグ
JP2006302877A (ja) * 2005-03-23 2006-11-02 Hitachi Maxell Ltd 非水電解質電池およびその製造方法
JP2007520867A (ja) * 2004-02-07 2007-07-26 エルジー・ケム・リミテッド 有無機複合多孔性コート層付き電極及びこれを含む電気化学素子
WO2007114311A1 (ja) * 2006-03-31 2007-10-11 Toyota Jidosha Kabushiki Kaisha 積層型電池およびその製造方法
US7335448B2 (en) * 2002-05-30 2008-02-26 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
WO2008035499A1 (fr) * 2006-09-19 2008-03-27 Panasonic Corporation Procédé pour produire une électrode de pile secondaire, et pile secondaire
JP2009518808A (ja) * 2005-12-06 2009-05-07 エルジー・ケム・リミテッド 安全性が強化された電極及びこれを備えた電気化学素子
US7709141B2 (en) 2005-12-29 2010-05-04 Samsung Sdi Co., Ltd. Lithium ion secondary battery
JP2010176980A (ja) * 2009-01-28 2010-08-12 Nissan Motor Co Ltd リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
US8409746B2 (en) 2004-09-02 2013-04-02 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
JP2014059971A (ja) * 2012-09-14 2014-04-03 Toshiba Corp 電極及び電池
US8741470B2 (en) 2007-04-24 2014-06-03 Lg Chem, Ltd. Electrochemical device having different kinds of separators
WO2014157418A1 (ja) * 2013-03-26 2014-10-02 日産自動車株式会社 非水電解質二次電池
JP2014534600A (ja) * 2011-12-14 2014-12-18 エルジー・ケム・リミテッド 電気化学素子用電極及びこれを備えた電気化学素子
EP2816635A1 (en) 2013-06-19 2014-12-24 GS Yuasa International Ltd. Electric storage device and electric storage module
JP2015103394A (ja) * 2013-11-25 2015-06-04 株式会社Gsユアサ 蓄電素子
JP2015118788A (ja) * 2013-12-18 2015-06-25 トヨタ自動車株式会社 折り畳み式電池
JP2016006781A (ja) * 2004-09-02 2016-01-14 エルジー・ケム・リミテッド 有機無機複合多孔性フィルム及びこれを用いる電気化学素子
JP2016066454A (ja) * 2014-09-24 2016-04-28 株式会社Gsユアサ 蓄電素子
JP2016157576A (ja) * 2015-02-24 2016-09-01 株式会社豊田自動織機 蓄電装置
KR20170031627A (ko) 2015-09-11 2017-03-21 도요타지도샤가부시키가이샤 세퍼레이터층을 갖는 전극의 제조 방법 및 세퍼레이터층을 갖는 전극의 제조 장치
JP2017162775A (ja) * 2016-03-11 2017-09-14 セイコーインスツル株式会社 電気化学セル及び電気化学セルの製造方法
US9853274B2 (en) 2011-02-24 2017-12-26 Toyota Jidosha Kabushiki Kaisha Solid battery
WO2019156172A1 (ja) * 2018-02-08 2019-08-15 積水化学工業株式会社 リチウムイオン二次電池、リチウムイオン二次電池用負極構造体、及びリチウムイオン二次電池の製造方法
JP2019169422A (ja) * 2018-03-26 2019-10-03 トヨタ自動車株式会社 積層電極体の製造方法
US10511063B2 (en) 2016-01-19 2019-12-17 Gs Yuasa International Ltd. Negative electrode plate, energy storage device, method for manufacturing negative electrode plate, and method for manufacturing energy storage device
WO2021171736A1 (ja) * 2020-02-26 2021-09-02 Fdk株式会社 固体電池の製造方法及び固体電池

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19924137C2 (de) * 1999-05-26 2003-06-12 Fraunhofer Ges Forschung Elektrodeneinheit für wiederaufladbare elektrochemische Zellen
HUP0101103A2 (hu) * 2000-03-17 2001-11-28 Sony Corporation Eljárás és berendezés száraz tartalék akkumulátor gyártására
US7276314B2 (en) * 2000-12-22 2007-10-02 Fmc Corporation Lithium metal dispersion in secondary battery anodes
US8980477B2 (en) * 2000-12-22 2015-03-17 Fmc Corporation Lithium metal dispersion in secondary battery anodes
KR100389121B1 (ko) * 2001-04-02 2003-06-25 한국과학기술원 단이온 전도성 고분자 전해질
JP3675354B2 (ja) * 2001-05-08 2005-07-27 ソニー株式会社 固体電解質電池およびその製造方法
US20050130043A1 (en) * 2003-07-29 2005-06-16 Yuan Gao Lithium metal dispersion in electrodes
GB0318942D0 (en) * 2003-08-13 2003-09-17 Aea Technology Battery Systems Process for producing an electrode
JP3795886B2 (ja) * 2003-11-20 2006-07-12 Tdk株式会社 リチウムイオン二次電池の充電方法、充電装置および電力供給装置
EP1734600B1 (en) 2004-02-18 2008-11-26 Panasonic Corporation Secondary battery
US8231810B2 (en) 2004-04-15 2012-07-31 Fmc Corporation Composite materials of nano-dispersed silicon and tin and methods of making the same
GB0414161D0 (en) * 2004-06-24 2004-07-28 Aea Technology Battery Systems Anode for lithium ion cell
KR100601550B1 (ko) 2004-07-28 2006-07-19 삼성에스디아이 주식회사 리튬이온 이차 전지
JP4878800B2 (ja) * 2004-09-22 2012-02-15 三星エスディアイ株式会社 リチウム二次電池
KR100579376B1 (ko) * 2004-10-28 2006-05-12 삼성에스디아이 주식회사 이차 전지
US20080070107A1 (en) * 2004-12-07 2008-03-20 Shinji Kasamatsu Separator and Non-Aqueous Electrolyte Secondary Battery Using Same
JP4649993B2 (ja) * 2005-01-12 2011-03-16 パナソニック株式会社 リチウム二次電池およびその製造方法
JP2006222072A (ja) * 2005-01-14 2006-08-24 Matsushita Electric Ind Co Ltd 非水電解質二次電池
US7981548B2 (en) * 2005-01-28 2011-07-19 Nec Energy Devices, Ltd. Multilayer secondary battery and method of making same
JP4839633B2 (ja) * 2005-02-28 2011-12-21 パナソニック株式会社 非水電解質二次電池および非水電解質二次電池用正極活物質の製造方法
US20060251963A1 (en) * 2005-04-05 2006-11-09 Takuya Nakashima Non-aqueous electrolyte secondary battery
US20080012569A1 (en) * 2005-05-21 2008-01-17 Hall David R Downhole Coils
US7771874B2 (en) * 2005-06-29 2010-08-10 Fmc Corporation Lithium manganese compounds and methods of making the same
US7588623B2 (en) * 2005-07-05 2009-09-15 Fmc Corporation Lithium Division Stabilized lithium metal powder for li-ion application, composition and process
KR100670483B1 (ko) * 2005-08-25 2007-01-16 삼성에스디아이 주식회사 리튬 이차 전지
JP4991996B2 (ja) * 2005-11-14 2012-08-08 パナソニック株式会社 非水電解液二次電池
KR100749650B1 (ko) * 2005-12-29 2007-08-14 삼성에스디아이 주식회사 리튬 이차전지
KR20070087857A (ko) 2005-12-29 2007-08-29 삼성에스디아이 주식회사 리튬 이차전지
US7927746B2 (en) * 2006-01-24 2011-04-19 Dell Products L.P. Systems and methods for internal short circuit protection in battery cells
JP2007220321A (ja) * 2006-02-14 2007-08-30 Matsushita Electric Ind Co Ltd リチウム二次電池
US20070190422A1 (en) * 2006-02-15 2007-08-16 Fmc Corporation Carbon nanotube lithium metal powder battery
WO2007129839A1 (en) * 2006-05-04 2007-11-15 Lg Chem, Ltd. Lithium secondary battery and method for producing the same
US20090035663A1 (en) * 2006-10-13 2009-02-05 Fmc Corporation, Lithium Division Stabilized lithium metal powder for li-ion application, composition and process
US8021496B2 (en) * 2007-05-16 2011-09-20 Fmc Corporation Stabilized lithium metal powder for Li-ion application, composition and process
KR100876271B1 (ko) * 2007-05-29 2008-12-26 삼성에스디아이 주식회사 리튬 이차 전지
KR100859637B1 (ko) * 2007-06-01 2008-09-23 삼성에스디아이 주식회사 리튬 이차전지
US20090061321A1 (en) * 2007-08-31 2009-03-05 Fmc Corporation, Lithium Division Stabilized lithium metal powder for li-ion application, composition and process
KR101025277B1 (ko) 2007-10-30 2011-03-29 삼성에스디아이 주식회사 전극 조립체 및 이를 구비하는 이차 전지
WO2009096451A1 (ja) * 2008-01-29 2009-08-06 Hitachi Maxell, Ltd. 絶縁層形成用スラリー、電気化学素子用セパレータおよびその製造方法、並びに電気化学素子
US8628876B2 (en) 2008-06-20 2014-01-14 Samsung Sdi Co., Ltd. Electrode assembly and lithium secondary battery with same
JP4774426B2 (ja) * 2008-06-27 2011-09-14 日立ビークルエナジー株式会社 リチウム二次電池
WO2010042526A2 (en) * 2008-10-07 2010-04-15 Johnson Controls - Saft Advanced Power Solutions Llc Electrochemical cell having an electrically-insulated housing
CN201340888Y (zh) * 2009-01-08 2009-11-04 东莞新能源科技有限公司 锂离子电池
KR101641568B1 (ko) 2009-03-27 2016-07-21 시티즌 마쉬나리 가부시키가이샤 워크 공급 장치 및 이 워크 공급 장치를 갖춘 공작기계
CN101867070B (zh) * 2009-04-15 2013-08-28 比亚迪股份有限公司 一种锂离子电池及其制备方法
KR101106377B1 (ko) * 2009-07-16 2012-01-18 삼성에스디아이 주식회사 이차 전지
JP5449377B2 (ja) * 2009-09-28 2014-03-19 日立ビークルエナジー株式会社 リチウムイオン2次電池
US20110135810A1 (en) * 2009-12-03 2011-06-09 Marina Yakovleva Finely deposited lithium metal powder
KR20110064689A (ko) * 2009-12-08 2011-06-15 삼성에스디아이 주식회사 리튬 이차 전지
TWI412169B (zh) * 2010-06-18 2013-10-11 Energy Control Ltd 集合電池的安全供電裝置
JP5690920B2 (ja) * 2011-03-22 2015-03-25 日立オートモティブシステムズ株式会社 二次電池およびその製造方法
US9905838B2 (en) * 2011-08-30 2018-02-27 Gs Yuasa International Ltd. Electrode and method of manufacturing the same
CN102842736A (zh) * 2012-09-13 2012-12-26 杭州万好万家动力电池有限公司 一种高安全性锂离子二次电池
KR102195511B1 (ko) * 2012-11-07 2020-12-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 축전 장치를 위한 전극, 축전 장치, 및 축전 장치를 위한 전극의 제조 방법
KR101414092B1 (ko) * 2013-02-08 2014-07-04 주식회사 엘지화학 단차가 형성된 전극 조립체, 상기 전극 조립체를 포함하는 이차전지, 전지팩 및 디바이스, 상기 전극 조립체 제조방법
CN105103340B (zh) * 2013-03-26 2018-04-03 日产自动车株式会社 非水电解质二次电池
CN104934646A (zh) * 2014-03-21 2015-09-23 深圳市沃特玛电池有限公司 一种改善三元材料聚合物锂离子电池安全性的方法
WO2015156213A1 (ja) * 2014-04-09 2015-10-15 株式会社日立ハイテクノロジーズ リチウムイオン二次電池及びその製造方法と製造装置
KR20150137541A (ko) * 2014-05-30 2015-12-09 에스케이이노베이션 주식회사 리튬 이차전지
JP6315281B2 (ja) * 2015-02-10 2018-04-25 トヨタ自動車株式会社 非水電解質二次電池
US10756394B2 (en) 2015-03-31 2020-08-25 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolyte and nonaqueous secondary battery
US12040506B2 (en) * 2015-04-15 2024-07-16 Lg Energy Solution, Ltd. Nanoporous separators for batteries and related manufacturing methods
JP6451506B2 (ja) 2015-05-28 2019-01-16 トヨタ自動車株式会社 電極の製造方法
WO2017152836A1 (zh) 2016-03-08 2017-09-14 北京好风光储能技术有限公司 一种锂浆料电池电芯及模块
CN107681114B (zh) * 2016-08-01 2020-08-14 北京好风光储能技术有限公司 一种正极片及制备工艺、以及含有该正极片的锂浆料电池
CN108242530B (zh) * 2016-12-23 2022-02-22 北京好风光储能技术有限公司 一种锂浆料电池及其负极片
JP6376171B2 (ja) * 2016-05-25 2018-08-22 トヨタ自動車株式会社 電極体の製造方法および電池の製造方法
WO2018184566A1 (zh) 2017-04-07 2018-10-11 北京好风光储能技术有限公司 一种锂浆料电池系统
EP3680960A4 (en) * 2017-09-05 2021-05-19 Sekisui Chemical Co., Ltd. ELECTRODE AND SECONDARY LITHIUM-ION BATTERY
WO2020034035A1 (en) * 2018-08-14 2020-02-20 Salient Energy Inc. Protected zinc metal electrodes and methods for rechargeable zinc cells and batteries
WO2020189599A1 (ja) * 2019-03-15 2020-09-24 Tdk株式会社 全固体二次電池
JP7276689B2 (ja) 2019-10-02 2023-05-18 トヨタ自動車株式会社 積層電池およびその製造方法
JP7361137B2 (ja) * 2020-06-30 2023-10-13 寧徳新能源科技有限公司 隔離板、当該隔離板を含む電気化学装置及び電子装置
JP7236424B2 (ja) * 2020-12-08 2023-03-09 本田技研工業株式会社 固体電池
CN114730962A (zh) * 2021-03-30 2022-07-08 宁德新能源科技有限公司 电化学装置及用电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838323U (ja) * 1971-09-10 1973-05-11
JPH01122574A (ja) * 1987-11-06 1989-05-15 Matsushita Electric Ind Co Ltd 円筒形リチウム二次電池
JPH02306550A (ja) * 1989-04-26 1990-12-19 Devars Ms Co 高性能固体電気化学積層セル
JPH02150760U (ja) * 1989-05-25 1990-12-27
JPH05109435A (ja) * 1991-05-24 1993-04-30 Nippon Telegr & Teleph Corp <Ntt> 円筒型非水電解液二次電池
JPH06302314A (ja) * 1993-04-01 1994-10-28 Wr Grace & Co Connecticut 電池隔離板

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039093B2 (ja) 1971-09-17 1975-12-15
US4327163A (en) * 1980-11-14 1982-04-27 General Motors Corporation Half-envelope separator assemblies on individual plates
JPS6158162A (ja) * 1984-08-29 1986-03-25 Shin Kobe Electric Mach Co Ltd 密閉型電池
JP2545400B2 (ja) 1987-07-20 1996-10-16 沖電気工業株式会社 印刷装置
US5011501A (en) 1989-04-26 1991-04-30 Shackle Dale R Process for making a solid state cell
US5547780A (en) * 1993-01-18 1996-08-20 Yuasa Corporation Battery precursor and a battery
US5460904A (en) 1993-08-23 1995-10-24 Bell Communications Research, Inc. Electrolyte activatable lithium-ion rechargeable battery cell
US5360684A (en) * 1993-10-25 1994-11-01 Hydro-Quebec Electrochemical cell for polymer electrolyte-lithium batteries (ACEP)
KR960027029A (ko) * 1994-12-26 1996-07-22 윤종용 니켈-금속수소화물 축전지 및 그의 제조방법
CN1148827C (zh) * 1995-01-27 2004-05-05 旭化成株式会社 非水电解质电池
US5631102A (en) * 1996-02-12 1997-05-20 Wilson Greatbatch Ltd. Separator insert for electrochemical cells
US6013113A (en) * 1998-03-06 2000-01-11 Wilson Greatbatch Ltd. Slotted insulator for unsealed electrode edges in electrochemical cells

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838323U (ja) * 1971-09-10 1973-05-11
JPH01122574A (ja) * 1987-11-06 1989-05-15 Matsushita Electric Ind Co Ltd 円筒形リチウム二次電池
JPH02306550A (ja) * 1989-04-26 1990-12-19 Devars Ms Co 高性能固体電気化学積層セル
JPH02150760U (ja) * 1989-05-25 1990-12-27
JPH05109435A (ja) * 1991-05-24 1993-04-30 Nippon Telegr & Teleph Corp <Ntt> 円筒型非水電解液二次電池
JPH06302314A (ja) * 1993-04-01 1994-10-28 Wr Grace & Co Connecticut 電池隔離板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1018775A4 *

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210304A (ja) * 2000-01-27 2001-08-03 Nec Mobile Energy Kk 密閉型電池およびその製造方法
JP2002175832A (ja) * 2000-12-06 2002-06-21 Denso Corp 巻回型電極電池およびその製造方法
JP4590723B2 (ja) * 2000-12-06 2010-12-01 株式会社デンソー 巻回型電極電池およびその製造方法
JP2003086252A (ja) * 2001-09-10 2003-03-20 Ngk Insulators Ltd リチウム二次電池
US7335448B2 (en) * 2002-05-30 2008-02-26 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
JP2004253351A (ja) * 2002-12-27 2004-09-09 Matsushita Electric Ind Co Ltd 電気化学素子の製造方法
JP2004259625A (ja) * 2003-02-26 2004-09-16 Sanyo Electric Co Ltd 非水電解質二次電池、及びそれに使用する電極の製造方法
US7258948B2 (en) 2003-02-26 2007-08-21 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery and manufacturing methods of an electrode used therein
JP2007520867A (ja) * 2004-02-07 2007-07-26 エルジー・ケム・リミテッド 有無機複合多孔性コート層付き電極及びこれを含む電気化学素子
US7682740B2 (en) 2004-02-07 2010-03-23 Lg Chem, Ltd. Organic/inorganic composite porous layer-coated electrode and electrochemical device comprising the same
JP2005294139A (ja) * 2004-04-02 2005-10-20 Matsushita Electric Ind Co Ltd リチウムイオン二次電池及びその製造方法
JP4649862B2 (ja) * 2004-04-02 2011-03-16 パナソニック株式会社 リチウムイオン二次電池及びその製造方法
JP2006019146A (ja) * 2004-07-01 2006-01-19 Tomoegawa Paper Co Ltd 電子部品用セパレータ及びその製造方法
JP2006054152A (ja) * 2004-08-16 2006-02-23 Toshiba Corp 非水電解質電池及び非水電解質電池搭載icタグ
US9490463B2 (en) 2004-09-02 2016-11-08 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
US8409746B2 (en) 2004-09-02 2013-04-02 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
JP2016006781A (ja) * 2004-09-02 2016-01-14 エルジー・ケム・リミテッド 有機無機複合多孔性フィルム及びこれを用いる電気化学素子
JP4549992B2 (ja) * 2005-03-23 2010-09-22 日立マクセル株式会社 非水電解質電池およびその製造方法
JP2006302877A (ja) * 2005-03-23 2006-11-02 Hitachi Maxell Ltd 非水電解質電池およびその製造方法
JP2009518808A (ja) * 2005-12-06 2009-05-07 エルジー・ケム・リミテッド 安全性が強化された電極及びこれを備えた電気化学素子
US7709141B2 (en) 2005-12-29 2010-05-04 Samsung Sdi Co., Ltd. Lithium ion secondary battery
US7722983B2 (en) 2005-12-29 2010-05-25 Samsung Sdi Co., Ltd. Lithium ion secondary battery
WO2007114311A1 (ja) * 2006-03-31 2007-10-11 Toyota Jidosha Kabushiki Kaisha 積層型電池およびその製造方法
WO2008035499A1 (fr) * 2006-09-19 2008-03-27 Panasonic Corporation Procédé pour produire une électrode de pile secondaire, et pile secondaire
US8741470B2 (en) 2007-04-24 2014-06-03 Lg Chem, Ltd. Electrochemical device having different kinds of separators
JP2010176980A (ja) * 2009-01-28 2010-08-12 Nissan Motor Co Ltd リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
US9853274B2 (en) 2011-02-24 2017-12-26 Toyota Jidosha Kabushiki Kaisha Solid battery
JP2014534600A (ja) * 2011-12-14 2014-12-18 エルジー・ケム・リミテッド 電気化学素子用電極及びこれを備えた電気化学素子
US9741986B2 (en) 2011-12-14 2017-08-22 Lg Chem, Ltd. Electrode for electrochemical device and electrochemical device comprising the same
JP2016219418A (ja) * 2011-12-14 2016-12-22 エルジー・ケム・リミテッド 電気化学素子用電極及びこれを備えた電気化学素子
JP2014059971A (ja) * 2012-09-14 2014-04-03 Toshiba Corp 電極及び電池
KR20150129753A (ko) * 2013-03-26 2015-11-20 닛산 지도우샤 가부시키가이샤 비수전해질 이차 전지
JP6004088B2 (ja) * 2013-03-26 2016-10-05 日産自動車株式会社 非水電解質二次電池
WO2014157418A1 (ja) * 2013-03-26 2014-10-02 日産自動車株式会社 非水電解質二次電池
KR101634919B1 (ko) 2013-03-26 2016-06-29 닛산 지도우샤 가부시키가이샤 비수전해질 이차 전지
JP2015005374A (ja) * 2013-06-19 2015-01-08 株式会社Gsユアサ 蓄電素子
EP2816635A1 (en) 2013-06-19 2014-12-24 GS Yuasa International Ltd. Electric storage device and electric storage module
JP2015103394A (ja) * 2013-11-25 2015-06-04 株式会社Gsユアサ 蓄電素子
JP2015118788A (ja) * 2013-12-18 2015-06-25 トヨタ自動車株式会社 折り畳み式電池
JP2016066454A (ja) * 2014-09-24 2016-04-28 株式会社Gsユアサ 蓄電素子
JP2016157576A (ja) * 2015-02-24 2016-09-01 株式会社豊田自動織機 蓄電装置
KR20170031627A (ko) 2015-09-11 2017-03-21 도요타지도샤가부시키가이샤 세퍼레이터층을 갖는 전극의 제조 방법 및 세퍼레이터층을 갖는 전극의 제조 장치
US10646958B2 (en) 2015-09-11 2020-05-12 Toyota Jidosha Kabushiki Kaisha Manufacturing method for an electrode with a separator layer and manufacturing apparatus for an electrode with a separator layer
US11673209B2 (en) 2015-09-11 2023-06-13 Toyota Jidosha Kabushiki Kaisha Manufacturing method for an electrode with a separator layer and manufacturing apparatus for an electrode with a separator layer
US10511063B2 (en) 2016-01-19 2019-12-17 Gs Yuasa International Ltd. Negative electrode plate, energy storage device, method for manufacturing negative electrode plate, and method for manufacturing energy storage device
JP2017162775A (ja) * 2016-03-11 2017-09-14 セイコーインスツル株式会社 電気化学セル及び電気化学セルの製造方法
WO2019156172A1 (ja) * 2018-02-08 2019-08-15 積水化学工業株式会社 リチウムイオン二次電池、リチウムイオン二次電池用負極構造体、及びリチウムイオン二次電池の製造方法
JP2019169422A (ja) * 2018-03-26 2019-10-03 トヨタ自動車株式会社 積層電極体の製造方法
WO2021171736A1 (ja) * 2020-02-26 2021-09-02 Fdk株式会社 固体電池の製造方法及び固体電池

Also Published As

Publication number Publication date
CA2282385A1 (en) 1998-09-03
US6387564B1 (en) 2002-05-14
EP1018775A4 (en) 2004-11-24
CA2282385C (en) 2003-10-28
DE69836820D1 (de) 2007-02-15
EP1018775A1 (en) 2000-07-12
CN1251215A (zh) 2000-04-19
KR100344686B1 (ko) 2002-07-25
CN1139142C (zh) 2004-02-18
EP1018775B1 (en) 2007-01-03
JP3613400B2 (ja) 2005-01-26
KR20000075765A (ko) 2000-12-26
DE69836820T2 (de) 2007-10-11

Similar Documents

Publication Publication Date Title
WO1998038688A1 (en) Nonaqueous secondary battery and method for manufacturing the same
CN106997963B (zh) 制造袋式电池的方法
US8247100B2 (en) Electrochemical device
KR102138988B1 (ko) 나노다공성 세퍼레이터층을 이용한 리튬 배터리
JP4623039B2 (ja) 電気化学素子
JP6027136B2 (ja) 電極組立体の製造方法、及びこれを用いて製造された電極組立体
US6617074B1 (en) Lithium ion polymer secondary battery and gelatinous polymer electrolyte for sheet battery
JP4038699B2 (ja) リチウムイオン電池
JP4665930B2 (ja) アノード及びリチウムイオン二次電池
US20050244716A1 (en) Lithium-ion secondary battery and method of charging lithium-ion secondary battery
US8530110B2 (en) Lithium-ion secondary battery separator and lithium-ion secondary battery
JP5163439B2 (ja) 繊維含有高分子膜及びその製造方法、並びに、電気化学デバイス及びその製造方法
EP1128450A2 (en) Electrode connection for battery and methods of producing the same
CN101546846B (zh) 电化学装置
US20050186481A1 (en) Lithium-ion secondary battery
US6727021B1 (en) Lithium ion secondary battery
JP5804712B2 (ja) 非水電解質二次電池
US20030134202A1 (en) Lithium polymer battery
JP3457856B2 (ja) ポリマー電解質二次電池
WO2024214586A1 (ja) 二次電池
JP2006054115A (ja) 電池用電極板の製造方法、電池用電極板、及び、それを用いた二次電池。
WO2024214611A1 (ja) 二次電池
WO2024079848A1 (ja) リチウム2次電池及びその製造方法
JPH10172607A (ja) シート状リチウム二次電池
JP2001006745A (ja) 非水系二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98803577.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2282385

Country of ref document: CA

Ref document number: 2282385

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019997007837

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1998905710

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09380282

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998905710

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997007837

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997007837

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998905710

Country of ref document: EP