WO1983002285A1 - Bispecific antibody determinants - Google Patents
Bispecific antibody determinants Download PDFInfo
- Publication number
- WO1983002285A1 WO1983002285A1 PCT/US1982/001766 US8201766W WO8302285A1 WO 1983002285 A1 WO1983002285 A1 WO 1983002285A1 US 8201766 W US8201766 W US 8201766W WO 8302285 A1 WO8302285 A1 WO 8302285A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- determinant
- molecule
- bispecific antibody
- antigenic
- specific
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L35/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L35/04—Homopolymers or copolymers of nitriles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/46—Hybrid immunoglobulins
- C07K16/468—Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L55/00—Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
- C08L55/02—ABS [Acrylonitrile-Butadiene-Styrene] polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L65/00—Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/001—Enzyme electrodes
- C12Q1/002—Electrode membranes
- C12Q1/003—Functionalisation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/563—Immunoassay; Biospecific binding assay; Materials therefor involving antibody fragments
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S435/00—Chemistry: molecular biology and microbiology
- Y10S435/805—Test papers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S435/00—Chemistry: molecular biology and microbiology
- Y10S435/81—Packaged device or kit
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S435/00—Chemistry: molecular biology and microbiology
- Y10S435/817—Enzyme or microbe electrode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S435/00—Chemistry: molecular biology and microbiology
- Y10S435/962—Prevention or removal of interfering materials or reactants or other treatment to enhance results, e.g. determining or preventing nonspecific binding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S435/00—Chemistry: molecular biology and microbiology
- Y10S435/964—Chemistry: molecular biology and microbiology including enzyme-ligand conjugate production, e.g. reducing rate of nonproductive linkage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S435/00—Chemistry: molecular biology and microbiology
- Y10S435/966—Chemistry: molecular biology and microbiology involving an enzyme system with high turnover rate or complement magnified assay, e.g. multi-enzyme systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S435/00—Chemistry: molecular biology and microbiology
- Y10S435/969—Multiple layering of reactants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S436/00—Chemistry: analytical and immunological testing
- Y10S436/807—Apparatus included in process claim, e.g. physical support structures
- Y10S436/808—Automated or kit
Definitions
- the IgG antibodies are known to consist of two half-molecules, each consisting of a light ( ) chain and a heavy (H) chain.
- the H chains of the two halves are linked by disulfide bonds, which can be broken by selective reduction. If this step is performed for two different IgG samples, the half-molecules can be combined to form hybrid antibodies. This has been accomplished using intact rabbit globulins; Nisonoff et al. (1964) Science 134, 376-379.
- Hybrids have also been formed using the F(ab') 2 fragments of IgG antibodies, rather than intact antibodies; i.e., the F(c) portions of the molecules, which do not provide immunospecificity, are, prior to hybridization, removed by digestion with an appropriate protease such as papain.
- an appropriate protease such as papain.
- Hybrid antibodies have also been formed by fusing two cells, each capable of producing different antibodies, to make a hybrid cell capable of producing hybrid antibodies.
- a method is described in Schwaber et al. (1974) P.N.A.S. USA 71, 2203-2207, Mouse myeloma cells were fused to human lymphocytes, and the resultant fused cells produced "hybrid antibody molecules containing components of mouse im unoglobulins assembled with human heavy and light chains.” The human antibody component was not monoclonal, and was undefined.
- Schwaber et al. also describes an i__ vitro experiment in which the mouse and human antibodies were reduced strongly enough to break bonds between L and H chains, and then "allowed to recombine randomly.” in Cotton et al.
- the 2 types of purified antibodies used for this work were isolated from conventional heteroantisera. Thus, a complicated array of affinity and specificity combination must arise upon annealing these 2 populations.
- the advent of homogeneous hybridoma-derived antibodies will afford absolute control over the binding affinities of the constituent halves of a hybrid antibody, and this uniformity should greatly boost their ultimate effectiveness as delivery vehicles.
- the present invention provides a homogenous sample of identical bispecific antibody determinants, each bispecific determinant being composed of two L-H half molecules linked by disulfide bonds; each L-H half molecule being different from the other and being specific for a different antigenic determinant, and being composed of at least the F(ab') 2 portion of a monoclonal IgG antibody.
- the bispecific antibody determinants of the invention are made according to the following procedure. Using conventional methods, two different monoclonal IgG antibody samples are produced, each antibody having one of two desired specificities. If desired, each sample is then exposed to an appropriate protease such as papain to cleave off the F(c) portion of the antibody molecules to produce F(ab') 2 fragments. Each sample is then subjected to conditions sufficient to break at least some of the disulfide bonds linking the L-H half-molecules so that at least some of the antibodies are split into two half-molecules.
- protease such as papain
- the two samples are then combined under conditions which permit at least some half-molecules of each determinant to chemically combine with at least some half-molecules of the other determinant to form the bispecific antibody determinants of the invention.
- the bispecific antibody determinants molecules are then separated from the rest of the mixture. One separation method is contacting the
- OM?I IRNA ⁇ mixture with an affinity matrix containing an antigen capable of specifically binding to either of the two halves of the bispecific antibody determinant, then eluting bound matrix-bound material, and contacting that material with an affinity matrix containing an antigen capable of specifically binding the other half-molecule.
- the material bound to this second matrix has the reguired dual specificity.
- An alternative separation method can be used in a case where one of the halves of the bispecific antibody determinant has a specificity for an antigenic determinant which is a macromolecule (a molecule having a molecular weight greater than about 1000 daltons) .
- This method involves adding the macromolecular antigenic determinant to the sample containing the bispecific antibody determinant to be purified to form immune complexes which can be separated into subfractions having different molecular weights by, e.g., gel filtration or electrophoresis.
- the subfraction having a molecular weight equivalent to the molecular weight of the complex of the desired bispecific antibody determinant with the macromolecular antigen is separated from the other subfractions, and, if desired, the macromolecular antigen is then removed using conventional methods.
- Fig. 1 is a diagrammatic representation of two different antigenic determinants linked by a bispecific antibody determinant.
- Figs. 2 and 3 are diagrammatic representa ⁇ tions of electrodes employing bispecific antibody determinants.
- Fig. 4 is a diagrammatic representation of a self-assembling network employing bispecific antibody determinants.
- Fig. 5 is a diagrammatic representation of a multilamellar assembly useful for an assay method.
- the bispecific antibody determinants of the invention are useful for a wide range of applications. Referring to Fig. 1, these applications all flow from the ability of these determinants to serve as highly specific linkers through specific sites A' and B', of any two antigenic determinants A and B capable of stimulating antibody production in animals; e.g., effective proteins, polypeptides, carbohydrates, nucleic acids, or haptens, either free or immobilized on surfaces or particles.
- One application of the bispecific antibody determinants of the invention is their use as agents for bonding a desired antigenic entity to a desired surface which has a different antigenic determinant immobilized on it.
- enzymes so immobilized on particles or membranes can be used as solid-state catalysts.
- Advantages of this type of immobilization over others are that antibodies can be selected which have no adverse effect on enzyme activity, and that pure enzymes can be immobilized from impure mixtures.
- Bispecific antibody determinants can also be used as highly specific bispecific reagents for immunoassay procedures which are used, e.g., in the diagnosis of medical disorders, or as molecular probes to study the relationships between antigenic determinants in biological systems.
- An additional application of the bispecific antibody determinants is their use in electrodes.
- Currently-used enzyme electrodes frequently employ tissue slices as the enzyme source. For example, electrodes for measuring glutamine have been made using a conventional
- the present invention provides electrode apparatus for the measurement in a sample of an unknown amount of a substance which is acted on by one or more enzymes to evolve a measurable ion or compound, the ion or compound evolved being a measure of the unknown substance.
- the electrode apparatus includes means for measuring the measurable ion or compound, and, associated with that means, a membrane having associated therewith a plurality of molecules of each enzyme which acts on the substance to be measured and, bonded to the molecules of each enzyme, a plurality of identical, bispecific antibody determinants.
- Each determinant is composed of two different L-H half-molecules linked by disulfide bonds, and each half-molecule includes at least the F(ab') 2 portion of a monoclonal IgG antibody.
- One said L-H half- molecule is specific for an antigenic site on the enzyme molecule to which it is bonded and the other half-molecule is specific for an antigenic determinant on the membrane to which the bispecific antibody determinant is bonded to become immobilizably associated with the membrane.
- the electrode can be used to measure any substance which can be metabolized by an enzyme or combination of enzymes in a way which produces or consumes a measurable ion or compound such as NH 3» CO,, 0 2 , or H , provided that each enzyme can bind specifically to a site on an immobilized bispecific antibody determinant.
- the reaction can be one which requires more than one enzyme. It is required in such a case that all of the required enzymes be immobilized on bispecific antibody determinants which are immobilized in the electrode.
- Figs. 2 and 3 illustrate two modes of enzyme immobilization in a two-enzyme system in which the two enzymes catalyze consecutive reactions in the conversion of a substance to an ion or compound which can be measured by the appropriate ion or compound- specific membrane electrode.
- membrane 2 of electrode 4 bears, on spacer arms 3 and 5, different haptens A and 6, in the desired ratio, to which are immobilized different bispecific antibody determinants having, respectively, hapten-specific sites A* and B'.
- the second site on each bispecific antibody determinant is specific, respectively, for binding sites on enzymes C and D, which catalyze consecutive steps in the breakdown of the substance to be measured into a measurable compound or ion.
- membrane 6 of electrode 8 bears, on spacer 7, hapten A, to which is immobilized a bispecific antibody determinant having hapten A-specific site A* and a second site, B', which is specific for binding site B on one of the two enzymes necessary for the breakdown of the substances to be measured into a measurable compound or ion.
- the second bispecific antibody determinant has a site, C, specific for antigenic binding site C on the first enzyme, and a second site, D', specific for a different antigenic binding site D on the second enzyme required for the production of the measurable compound or ion.
- Fig. 4 The advantage of the arrangement shown in Fig. 4 is that it assures that the two enzymes are closely linked so that the two reactions are efficiently coupled.
- Enzyme electrodes made using bispecific antibody determinants possess several advantages over conventional enzyme electrodes.
- One advantage is their precise self-assembling property: the desired electrode assembly is generated simply by attaching the appropriate hapten or haptens to the membrane (either the electrode membrane or* a separate membrane associated with the electrode) and then immersing the hapten-derived membrane into a solution containing the appropriate bispecific antibodies and enzymes. This ease of assembly also means that the electrode can be easily recharged after deterioration has occurred through prolonged use.
- Electrodes are also a function of the specificity of the bispecific antibody determinants. Any given enzyme will possess a number of antigenic sites capable of binding to a specific site of an antibody. However, coupling at many of these sites can cause inactivation of the enzyme. In the case of bispecific monoclonal antibody determinants, this problem is avoided because the determinants are selected so that they couple with the enzyme only at a site which does not cause deactivation of the enzyme.
- assembly or recharging of the electrode can be done with impure enzyme mixtures because the unique specificity of the bispecific antibody determinants assures the selection of the proper enzymes from the impure mixture.
- the membrane containing the immobilized enzymes can be covered with a second semipermeable membrane to slow the deterioration of the electrode assembly, or the assembly can be stabilized by treatment with glutaraldehyde.
- bispecific antibody determinants are their use in the formation of self-assembling networks for use, e.g., as molecular microcircuits.
- a network is illustrated diagrammatically in Fig. 4, wherein A, B, C, D, E, and F represent antigenic determinants and A', B', C, D', E', F', represent, respectively, corresponding antibody determinants.
- A', B', C, D', E', F' represent, respectively, corresponding antibody determinants.
- a self-assembling network is a multilamellar assembly for use, e.g., in chemical assays or in the production of specific chemicals in industrial processes.
- assemblies for assays of substances in, e.g., serum employ a series of layers of enzymes trapped between membranes of low porosity.
- the sample containing the substance to be measured is placed on the outer surface of the assembly and allowed to seep down through the layers, interacting successively with the trapped enzymes until, in the bottom layer, measurable result is produced, e.g. a fluorescence or a color change; this result is a measure of the substance being measured in the sample.
- the multilamellar assembly of the invention employs bispecific antibody determinants to link two or more enzymes which can be sequentially acting, as illustrated in Fig. 4 (I-IV representing different enzymes) .
- the low-porosity membranes of current assemblies are thus in many instances unnecessary, the spatial relationships among the enzymes already being fixed by their attachment to bispecific antibody determinants.
- the use of bispecific antibody determinants to link enzymes enhances the efficiency of the reaction by reducing the diffusion time of intermediates.
- the antigenic determinants linked by the bispecific antibody determinants are, in some cases, not enzymes but other catalysts e.g., microbial cells. This will be the case in certain industrial processes, for example, in which the goal of the process is not the measurement of a compound but the production of a desired chemical via a series of chemical reactions.
- each bispecific determinant has a site specific for a unique antigenic site on the enzyme glucose oxidase, and a site specific for a unique antigenic site on the enzyme ⁇ -galactosidase.
- the first step is the preparation of monoclonal antibodies against the two enzymes glucose oxidase and ⁇ -galactosidase. This is done by first immunizing one group of BALB/C mice against each enzyme using standard immunization procedures. Following immunization, spleen cells of immunized animals are prepared and fused with a derivative of MOPC-21 myeloma cells (SP2/0-Agl4) using the procedure described in Galfre et al. (1981) Methods in Enzymology 7_3, 3-46. The hybrid cells are selected in hypoxanthine-aminopterin- thymidine medium, cloned, and screened for production of antibodies against the desired enzymes by the method described in Galfre et al.
- the clones found to produce antibodies against the desired enzyme are then screened to select a clone which produces an antibody of the IgG class which has a high affinity for the enzyme and which does not cause inactivation of the enzyme.
- the clones of interest are stored until use under liquid nitrogen.
- Antibody is prepared by propogating the cloned cells in spinner flasks in Dulbeccos's modified Eagles' medium containing 5% fetal calf serum. Alternatively, a higher antibody yield is obtained by the standard technique of growing the cells as ascitic tumors in the peritoneal cavities of pristane-primed mice.
- the desired IgG antibodies against glucose oxidase and ⁇ -galactosidase are then purified from medium or ascites fluid by affinity chromatography on protein A-Sepharose, as described in Ey et al. (1978) Immunochemistry 15 ⁇ , 429-436.
- Each of the two purified antibodies is then converted to F(ab') 2 fragments by treatment with pepsin according to the procedure of hackett et al. (1981) Immunology 4_, 207-215, as follows.
- ⁇ ⁇ URE 7 OMPI .
- IgG immunoglobulins
- 0.1 M acetate buffer, pH 4.6 are incubated with 40 yg of pepsin at 37°C. After 20 hours, the mixture is adjusted to pH 8.1 with Tris buffer, passed through a column of protein A-Sepharose, and then purified by gel iltration on Sephadex G-50.
- F(ab') 2 fragments are then combined to form bispecific determinants, as follows. First, one (either one) of the fragments is subjected to mild reduction with 10 mM mercaptoethylamine hydrochloride at 37°C for 1 hour under a nitrogen atmosphere to separate the fragment into half- molecules without breaking the bonds between H and L chains. The reducing agent is then removed by passing the mixture through a column of Dowex-50 at pH 5. The effluent is then reacted immediately with 2 mM 5,5'-dithiobis (2-nitrobenzoic acid) in 0.02 M Na phosphate, pH 8.0, and 3 mM EDTA, as described in Raso and Griffin, J. Immunol.
- the Fab'-thionitrobenzoate derivative thus formed is then purified by gel filtration on Sephadex G-100 in 0.2 M Na phosphate, pH 8.0.
- the other F(ab*) 2 fragment is likewise reduced and treated with Dowex-50, and the resulting Fab* derivative is mixed immediately with an eguimolar amount of the Fab'-thionitrobenzoate derivative and incubated for 3h at 20°C to form a mixture containing a high yield of identical bispecific antibody determinants, each determinant being made up -of two F(ab') 2 L-H half molecules linked by disulfide bonds.
- the mixture is passed through a column of Septarose 4B equilibrated with 0.1 M Tris, pH 7.5, the Septarose having covalently bonded to it ⁇ -galactosidase.
- the column is then washed with 0.1 M Tris, pH 7.5, and the anti- ⁇ -galactosidase determinants are then eluted with 0.1 M glycine, pH 2.5, and then neutralized with Tris.
- the eluate is then passed through a second column of Sepharose 4B which has glucose oxidase covalently bonded to it by CNBr activation.
- the column is washed with 0.1 M Tris, pH 7.5, and the bispecific anti-glucose oxidase, anti- ⁇ -galactosidase determinants are then eluted with 0.1 M glycine pH 2.5, and then neutralized with Tris.
- the eluate constitutes a homogenous sample of the desired identical bispecific antibody determinants.
- Example 2 Using the same procedure employed in
- Example 1 a homogeneous sample of identical bispecific antibody determinants is prepared in which one antibody site is specific for a different antigenic site on the enzyme glucose oxidase from the site for which the bispecific antibody determinant of Example 1 is specific, and in which the second antibody site is specific for an antigenic site on Type I collagen.
- Example 3 An enzyme electrode for the measurement of lactose is constructed according to the following procedure. First, a collagen membrane shaped to fit over a commercial O, electrode is prepared by electrolysis of a collagen fibril suspension using platinum electrodes, as , described in Karube et al. (1972) 47, 51-54.
- a solution is prepared of the bispecific antibody determinants from Example 2 together with a 10-fold or higher molar excess of glucose oxidase, in 0.1 M phosphate buffer, pH 7.0; the glucose oxidase need not be pure.
- the collagen membrane is immersed in this solution and incubated for 1 h at 20°C, after which time it is rinsed with buffer and then transferred to a solution containing the antibody from Example 1 together with a 10-fold or higher molar excess of ⁇ -galactosidase in 0.1 M phosphate buffer, where it is incubated at 20°C for 1 h.
- the membrane is then quickly rinsed in buffer and stabilized by immersion in 0.5% glutaraldehyde in 0.1 M phosphate buffer, pH 7.0, for 3 minutes.
- the membrane is then placed over the oxygen-permeable teflon membrane of the commerical 0 2 electrode, rendering the electrode ready for use for the measurment of lactose, in a manner analogous to the method of measuring sucrose described in Satoh et al. (1976) Biotechnol. and
- Bioengineering lf_, 269-272 A sample containing an unknown amount of lactose is contacted with the membrane, and the immobilized ⁇ -galactosidase catalyzes the breakdown of the lactose into glucose, which is then acted on by the immobilized glucose oxidase to release 0 2 , which is measured as a measure of lactose in the sample.
- molar excesses of enzyme over antibody are employed because ⁇ -galactosidase and glucose oxidase are each composed of several identical subunits. An excess of enzyme assures that, on average, only a single antigenic site on each enzyme molecule is involved in complex formation.
- Example 4 The following is a description of an example of the type of assay assembly which employs the production of a colored or fluorescent substance, which can be measured colorimetrically, reflecto etrically, or fluorometrically, as a measure of an unknown amount of a substance being assayed.
- Fig. 5 is a diagrammatic representation of a colorimetric indicator for lactose.
- Biotin- substituted regenerated cellulose membrane 10 is used as the support for the immobilized enzymes which participate in the series of reactions by which lactose in a sample generates H 2 0 2 to produce a colorimetrically measurable result, which is a measure of the amount of lactose in the sample.
- the enzymes are immobilized, as shown in
- the first determinant has one site. A*, specific for an antigenic site on the protein avidin, and the other site, B*, specific for an antigenic site on the enzyme horseradish peroxidase.
- the second determinant has a site, C, specific for a different antigenic site on horseradish peroxidase, and the second site, D', specific for an antigenic site on glucose oxidose.
- the third determinant has an antibody site E', specific for a different antigenic site on glucose oxidase, and the second site, F', specific for an antigenic site on ⁇ -galactosidase.
- Substituted cellulose membrane 10 is prepared by the cyanogen bromide procedure, e.g. Cuatrecasas et al. (1968) Proc. Nat 1 !. Acad. Sci. USA 6_1, 636-643, as follows. Regenerated cellulose membranes are suspended in 0.1 M NaHCO, at 4°C and treated with an equal volume of 2.5% CNBr solution, the pH being continuously adjusted to 11 with 2N NaOH and the temperature kept at 4°C. After 8 min, the cellulose membranes are washed with 0.1M NaHC0 3 and then with water, 50% acetone, and finally with 100% acetone.
- cyanogen bromide procedure e.g. Cuatrecasas et al. (1968) Proc. Nat 1 !. Acad. Sci. USA 6_1, 636-643, as follows. Regenerated cellulose membranes are suspended in 0.1 M NaHCO, at 4°C and treated with an equal volume of 2.5% CNBr solution, the pH being continuously adjusted to
- cellulose membranes are then incubated at 4°C for 20h in 0.2M NaHC0 3 , pH 9, containing 1 mg per ml of ⁇ -N-biotinyl-L-lysine (Bayer et al. (1974) Methods in Enzymology 34B, 265-267) , followed by extensive washing with water.
- biotin-substituted cellulose membrane is then immersed in 0.1M phosphate buffer, pH 7.0,
- the membrane is then 5 rinsed with buffer and transferred to a solution containing an approximately equivalent molar amount of the bispecific antibody determinant having sites C* and D*, and a 10-fold molar excess of glucose oxidase. After 1 hour at 20°C, the membrane is 10.
- the membrane is stabilized by immersion in 0.5% glutaraldehyde in 0.1M phosphate buffer, pH 7, for 3 min.
- the enzymes used in the above-described 0 procedure need not be pure.
- a molar excess of ⁇ -galactosidase and glucose oxidase was necessary because these enzymes are composed of several identical subunits.
- molar 5 excesses of enzymes are not necessary.
- the reaction can be allowed to proceed in a single stage.
- membrane 0 10 is immersed in or wetted with a sample containing an unknown amount of lactose in 0.1M phosphate buffer, pH 7, and 0.01% o-dianisidine.
- lactose in the sample first acts on -galactosidose to form glucose, which in turn is acted on by glucose oxidase, in the presence of oxygen, to release H 2 0 2 , which, with peroxidase, oxidizes o-dianisidine to produce a yellow dye with absorbance at 460 mm.
- Various other chromogenic or fluorogenic substances can be substituted for o-dianisidine.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Polymers & Plastics (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Food Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Cell Biology (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Steroid Compounds (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB08321513A GB2123030B (en) | 1981-12-21 | 1982-12-20 | Bispecific antibody determinants |
| AT83900528T ATE21932T1 (de) | 1981-12-21 | 1982-12-20 | Bispezifische antikoerperdeterminanten. |
| DE8383900528T DE3273080D1 (en) | 1981-12-21 | 1982-12-20 | Bispecific antibody determinants |
| JP83500601A JPS58502182A (ja) | 1981-12-21 | 1982-12-20 | 複特異性抗体決定子 |
| FI832897A FI68731C (fi) | 1981-12-21 | 1983-08-11 | Homogen komposition av identiska bispecifiska antikroppdeterminanter |
| DK3795/83A DK379583D0 (da) | 1981-12-21 | 1983-08-19 | Homogent praeparat af identiske bispecifikke antistof-determinanter, fremgangsmade til fremstilling af samme og elektrodeapparat til maling af sadanne praeparater |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US332,881811221 | 1981-12-21 | ||
| US06/332,881 US4444878A (en) | 1981-12-21 | 1981-12-21 | Bispecific antibody determinants |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1983002285A1 true WO1983002285A1 (en) | 1983-07-07 |
Family
ID=23300260
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US1982/001766 Ceased WO1983002285A1 (en) | 1981-12-21 | 1982-12-20 | Bispecific antibody determinants |
Country Status (12)
| Country | Link |
|---|---|
| US (1) | US4444878A (enExample) |
| EP (1) | EP0096076B1 (enExample) |
| JP (2) | JPS58502182A (enExample) |
| AT (1) | ATE21932T1 (enExample) |
| AU (1) | AU549195B2 (enExample) |
| CA (1) | CA1216231A (enExample) |
| DE (2) | DE3273080D1 (enExample) |
| DK (1) | DK379583D0 (enExample) |
| FI (1) | FI68731C (enExample) |
| GB (1) | GB2123030B (enExample) |
| NO (1) | NO163255C (enExample) |
| WO (1) | WO1983002285A1 (enExample) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2144147A (en) * | 1983-07-08 | 1985-02-27 | Nat Res Dev | Monoclonal antibody having only one light chain which will bind a specific antigen |
| WO1994009131A1 (en) * | 1992-10-15 | 1994-04-28 | Scotgen Limited | Recombinant specific binding protein |
| GB2286189A (en) * | 1992-10-15 | 1995-08-09 | Scotgen Ltd | Recombinant specific binding protein |
Families Citing this family (213)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4714681A (en) * | 1981-07-01 | 1987-12-22 | The Board Of Reagents, The University Of Texas System Cancer Center | Quadroma cells and trioma cells and methods for the production of same |
| JPS58122459A (ja) * | 1982-01-14 | 1983-07-21 | Yatoron:Kk | 酵素の会合を利用した測定方法 |
| US4659678A (en) * | 1982-09-29 | 1987-04-21 | Serono Diagnostics Limited | Immunoassay of antigens |
| US4816567A (en) * | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
| GB8314523D0 (en) * | 1983-05-25 | 1983-06-29 | Lowe C R | Diagnostic device |
| US4783399A (en) * | 1984-05-04 | 1988-11-08 | Scripps Clinic And Research Foundation | Diagnostic system for the detection of cytomegalovirus |
| US4818678A (en) * | 1984-05-04 | 1989-04-04 | Scripps Clinic And Research Foundation | Diagnostic system for the detection of cytomegalovirus |
| DE3430905A1 (de) * | 1984-08-22 | 1986-02-27 | Boehringer Mannheim Gmbh, 6800 Mannheim | Verfahren zur bestimmung einer immunologisch bindefaehigen substanz |
| IL78034A (en) * | 1986-03-04 | 1991-08-16 | Univ Ramot | Biosensors comprising antibodies bonded to glassy carbon electrode for immunoassays |
| JPH0721478B2 (ja) * | 1986-03-31 | 1995-03-08 | 財団法人化学及血清療法研究所 | 免疫センサ−用作用膜 |
| US5869620A (en) * | 1986-09-02 | 1999-02-09 | Enzon, Inc. | Multivalent antigen-binding proteins |
| US4946778A (en) * | 1987-09-21 | 1990-08-07 | Genex Corporation | Single polypeptide chain binding molecules |
| US5260203A (en) * | 1986-09-02 | 1993-11-09 | Enzon, Inc. | Single polypeptide chain binding molecules |
| FR2604092B1 (fr) * | 1986-09-19 | 1990-04-13 | Immunotech Sa | Immunoreactifs destines a cibler les cellules animales pour leur visualisation ou leur destruction in vivo |
| US4844893A (en) * | 1986-10-07 | 1989-07-04 | Scripps Clinic And Research Foundation | EX vivo effector cell activation for target cell killing |
| JP2682859B2 (ja) | 1987-07-27 | 1997-11-26 | コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼーション | レセプター膜 |
| US5086002A (en) * | 1987-09-07 | 1992-02-04 | Agen Biomedical, Ltd. | Erythrocyte agglutination assay |
| US6710169B2 (en) | 1987-10-02 | 2004-03-23 | Genentech, Inc. | Adheson variants |
| US5336603A (en) * | 1987-10-02 | 1994-08-09 | Genentech, Inc. | CD4 adheson variants |
| US5389523A (en) * | 1988-05-31 | 1995-02-14 | The United States Of Americas, As Represented By The Secretary Of Commerce | Liposome immunoanalysis by flow injection assay |
| US5601819A (en) * | 1988-08-11 | 1997-02-11 | The General Hospital Corporation | Bispecific antibodies for selective immune regulation and for selective immune cell binding |
| SE8804074D0 (sv) * | 1988-11-10 | 1988-11-10 | Pharmacia Ab | Sensorenhet och dess anvaendning i biosensorsystem |
| CA2006408A1 (en) * | 1988-12-27 | 1990-06-27 | Susumu Iwasa | Bispecific monoclonal antibody, its production and use |
| US5116964A (en) | 1989-02-23 | 1992-05-26 | Genentech, Inc. | Hybrid immunoglobulins |
| US6551784B2 (en) | 1989-06-07 | 2003-04-22 | Affymetrix Inc | Method of comparing nucleic acid sequences |
| US6406844B1 (en) | 1989-06-07 | 2002-06-18 | Affymetrix, Inc. | Very large scale immobilized polymer synthesis |
| US6309822B1 (en) | 1989-06-07 | 2001-10-30 | Affymetrix, Inc. | Method for comparing copy number of nucleic acid sequences |
| US5925525A (en) * | 1989-06-07 | 1999-07-20 | Affymetrix, Inc. | Method of identifying nucleotide differences |
| US5424186A (en) | 1989-06-07 | 1995-06-13 | Affymax Technologies N.V. | Very large scale immobilized polymer synthesis |
| US5143854A (en) | 1989-06-07 | 1992-09-01 | Affymax Technologies N.V. | Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof |
| US6346413B1 (en) | 1989-06-07 | 2002-02-12 | Affymetrix, Inc. | Polymer arrays |
| US5800992A (en) | 1989-06-07 | 1998-09-01 | Fodor; Stephen P.A. | Method of detecting nucleic acids |
| US6416952B1 (en) | 1989-06-07 | 2002-07-09 | Affymetrix, Inc. | Photolithographic and other means for manufacturing arrays |
| US5744101A (en) | 1989-06-07 | 1998-04-28 | Affymax Technologies N.V. | Photolabile nucleoside protecting groups |
| US6919211B1 (en) * | 1989-06-07 | 2005-07-19 | Affymetrix, Inc. | Polypeptide arrays |
| US6955915B2 (en) * | 1989-06-07 | 2005-10-18 | Affymetrix, Inc. | Apparatus comprising polymers |
| US5547839A (en) * | 1989-06-07 | 1996-08-20 | Affymax Technologies N.V. | Sequencing of surface immobilized polymers utilizing microflourescence detection |
| US5156810A (en) * | 1989-06-15 | 1992-10-20 | Biocircuits Corporation | Biosensors employing electrical, optical and mechanical signals |
| US5491097A (en) * | 1989-06-15 | 1996-02-13 | Biocircuits Corporation | Analyte detection with multilayered bioelectronic conductivity sensors |
| US5897861A (en) * | 1989-06-29 | 1999-04-27 | Medarex, Inc. | Bispecific reagents for AIDS therapy |
| US5270194A (en) * | 1989-08-31 | 1993-12-14 | Instrumentation Laboratory Spa | Stabilized glucose oxidase from Aspergillus Niger |
| US5583003A (en) * | 1989-09-25 | 1996-12-10 | Agen Limited | Agglutination assay |
| DE69026453T2 (de) * | 1989-09-27 | 1996-09-26 | Hitachi Ltd | Antirhodopsiner monoklonaler Antikörper and seine Verwendung |
| US6506558B1 (en) | 1990-03-07 | 2003-01-14 | Affymetrix Inc. | Very large scale immobilized polymer synthesis |
| EP0834576B1 (en) | 1990-12-06 | 2002-01-16 | Affymetrix, Inc. (a Delaware Corporation) | Detection of nucleic acid sequences |
| WO1992018866A1 (en) * | 1991-04-10 | 1992-10-29 | Biosite Diagnostics Incorporated | Novel conjugates and assays for simultaneous detection of multiple ligands |
| AU656181B2 (en) * | 1991-05-03 | 1995-01-27 | Pasteur Sanofi Diagnostics | Heterobifunctional antibodies possessing dual catalytic and specific antigen binding properties and methods using them |
| JP3951062B2 (ja) * | 1991-09-19 | 2007-08-01 | ジェネンテック・インコーポレーテッド | 少なくとも遊離のチオールとして存在するシステインを有する抗体フラグメントの大腸菌での発現、2官能性F(ab’)2抗体の産生のための使用 |
| US6468740B1 (en) | 1992-11-05 | 2002-10-22 | Affymetrix, Inc. | Cyclic and substituted immobilized molecular synthesis |
| US6027725A (en) | 1991-11-25 | 2000-02-22 | Enzon, Inc. | Multivalent antigen-binding proteins |
| US5635177A (en) | 1992-01-22 | 1997-06-03 | Genentech, Inc. | Protein tyrosine kinase agonist antibodies |
| US7381803B1 (en) | 1992-03-27 | 2008-06-03 | Pdl Biopharma, Inc. | Humanized antibodies against CD3 |
| US6129914A (en) * | 1992-03-27 | 2000-10-10 | Protein Design Labs, Inc. | Bispecific antibody effective to treat B-cell lymphoma and cell line |
| WO1994012520A1 (en) * | 1992-11-20 | 1994-06-09 | Enzon, Inc. | Linker for linked fusion polypeptides |
| DE69432744T2 (de) * | 1993-02-04 | 2004-03-25 | Borean Pharma A/S | Verbessertes verfahren zur rückfaltung der proteine |
| WO1995008637A1 (en) * | 1993-09-21 | 1995-03-30 | Washington State University Research Foundation | Immunoassay comprising ligand-conjugated, ion channel receptor immobilized in lipid film |
| US5877016A (en) | 1994-03-18 | 1999-03-02 | Genentech, Inc. | Human trk receptors and neurotrophic factor inhibitors |
| US6100071A (en) | 1996-05-07 | 2000-08-08 | Genentech, Inc. | Receptors as novel inhibitors of vascular endothelial growth factor activity and processes for their production |
| US6682648B1 (en) | 1997-08-12 | 2004-01-27 | University Of Southern California | Electrochemical reporter system for detecting analytical immunoassay and molecular biology procedures |
| US20020166764A1 (en) * | 1997-08-12 | 2002-11-14 | University Of Southern California | Electrochemical sensor devices and methods for fast, reliable, and sensitive detection and quantitation of analytes |
| US6551495B1 (en) * | 1997-11-21 | 2003-04-22 | Inverness Medical Switzerland Gmbh | Electrochemical assays |
| AU1539699A (en) | 1997-11-24 | 1999-06-15 | Johnson T. Wong | Methods for treatment of hiv or other infections using a t cell or viral activator and anti-retroviral combination therapy |
| US6312689B1 (en) | 1998-07-23 | 2001-11-06 | Millennium Pharmaceuticals, Inc. | Anti-CCR2 antibodies and methods of use therefor |
| US6545264B1 (en) | 1998-10-30 | 2003-04-08 | Affymetrix, Inc. | Systems and methods for high performance scanning |
| ATE405636T1 (de) * | 1999-06-16 | 2008-09-15 | Boston Biomedical Res Inst | Immunologische kontrolle des beta-amyloid gehaltes in vivo |
| AU8330401A (en) * | 2000-08-11 | 2002-02-25 | Favrille Inc | Method and composition for altering a t cell mediated pathology |
| US6911204B2 (en) | 2000-08-11 | 2005-06-28 | Favrille, Inc. | Method and composition for altering a B cell mediated pathology |
| US7332580B2 (en) * | 2002-04-05 | 2008-02-19 | The Regents Of The University Of California | Bispecific single chain Fv antibody molecules and methods of use thereof |
| US7332585B2 (en) | 2002-04-05 | 2008-02-19 | The Regents Of The California University | Bispecific single chain Fv antibody molecules and methods of use thereof |
| TWI353991B (en) | 2003-05-06 | 2011-12-11 | Syntonix Pharmaceuticals Inc | Immunoglobulin chimeric monomer-dimer hybrids |
| AU2003271174A1 (en) * | 2003-10-10 | 2005-04-27 | Chugai Seiyaku Kabushiki Kaisha | Double specific antibodies substituting for functional protein |
| WO2005035754A1 (ja) * | 2003-10-14 | 2005-04-21 | Chugai Seiyaku Kabushiki Kaisha | 機能蛋白質を代替する二重特異性抗体 |
| WO2005060368A2 (en) | 2003-12-10 | 2005-07-07 | Millennium Pharmaceuticals, Inc. | Humanized anti-ccr2 antibodies and methods of use |
| EP1697748A4 (en) * | 2003-12-22 | 2007-07-04 | Centocor Inc | METHODS FOR GENERATING MULTIMEDIA MOLECULES |
| CA2602777C (en) | 2005-03-25 | 2018-12-11 | Tolerrx, Inc. | Gitr binding molecules and uses therefor |
| CN101198698B (zh) | 2005-03-31 | 2014-03-19 | 中外制药株式会社 | 通过调节多肽缔合制备多肽的方法 |
| EP2824183B1 (en) * | 2005-04-08 | 2020-07-29 | Chugai Seiyaku Kabushiki Kaisha | Methods for producing bispecific antibodies |
| EP2364998A1 (en) | 2005-06-16 | 2011-09-14 | The Feinstein Institute for Medical Research | Antibodies against HMGB1 and fragments thereof |
| ES2547463T3 (es) * | 2005-06-17 | 2015-10-06 | Merck Sharp & Dohme Corp. | Moléculas de unión a ILT3 y usos de las mismas |
| CA2646329C (en) * | 2006-03-20 | 2018-07-03 | The Regents Of The University Of California | Engineered anti-prostate stem cell antigen (psca) antibodies for cancer targeting |
| JP5144499B2 (ja) | 2006-03-31 | 2013-02-13 | 中外製薬株式会社 | 二重特異性抗体を精製するための抗体改変方法 |
| EP3056568B1 (en) | 2006-03-31 | 2021-09-15 | Chugai Seiyaku Kabushiki Kaisha | Methods for controlling blood pharmacokinetics of antibodies |
| JP5597793B2 (ja) * | 2006-06-19 | 2014-10-01 | メルク・シャープ・アンド・ドーム・コーポレーション | Ilt3結合分子およびその使用 |
| US8580263B2 (en) * | 2006-11-21 | 2013-11-12 | The Regents Of The University Of California | Anti-EGFR family antibodies, bispecific anti-EGFR family antibodies and methods of use thereof |
| DK2175884T3 (en) * | 2007-07-12 | 2016-09-26 | Gitr Inc | Combination USING GITR BINDING MOLECULES |
| CA2698343C (en) | 2007-09-04 | 2018-06-12 | The Regents Of The University Of California | High affinity anti-prostate stem cell antigen (psca) antibodies for cancer targeting and detection |
| CN101874042B9 (zh) | 2007-09-26 | 2019-01-01 | 中外制药株式会社 | 利用cdr的氨基酸取代来改变抗体等电点的方法 |
| US8317737B2 (en) * | 2009-02-25 | 2012-11-27 | The Invention Science Fund I, Llc | Device for actively removing a target component from blood or lymph of a vertebrate subject |
| US8246565B2 (en) * | 2009-02-25 | 2012-08-21 | The Invention Science Fund I, Llc | Device for passively removing a target component from blood or lymph of a vertebrate subject |
| ES2865648T3 (es) * | 2009-06-26 | 2021-10-15 | Regeneron Pharma | Anticuerpos biespecíficos fácilmente aislados con formato de inmunoglobulina nativa |
| DK2591006T3 (da) | 2010-07-09 | 2019-07-29 | Bioverativ Therapeutics Inc | Processerbare enkeltkædede molekyler og polypeptider fremstillet ved anvendelse deraf |
| KR101962483B1 (ko) | 2010-11-17 | 2019-03-29 | 추가이 세이야쿠 가부시키가이샤 | 혈액응고 제viii 인자의 기능을 대체하는 기능을 갖는 다중특이성 항원 결합 분자 |
| WO2012069466A1 (en) | 2010-11-24 | 2012-05-31 | Novartis Ag | Multispecific molecules |
| HUE043894T2 (hu) | 2011-06-10 | 2019-09-30 | Bioverativ Therapeutics Inc | Koagulációt elõsegítõ vegyületek és alkalmazásuk módszerei |
| WO2013012733A1 (en) | 2011-07-15 | 2013-01-24 | Biogen Idec Ma Inc. | Heterodimeric fc regions, binding molecules comprising same, and methods relating thereto |
| WO2013055958A1 (en) * | 2011-10-11 | 2013-04-18 | Genentech, Inc. | Improved assembly of bispecific antibodies |
| PL2802606T3 (pl) | 2012-01-10 | 2018-09-28 | Biogen Ma Inc. | Udoskonalenie transportu cząsteczek terapeutycznych przez barierę krew-mózg |
| BR112014022692A8 (pt) | 2012-03-14 | 2021-07-20 | Regeneron Pharma | molécula de ligação de antígeno multiespecífica |
| UY35463A (es) | 2013-03-15 | 2014-10-31 | Biogen Idec Inc | Formulaciones de polipéptido fc-factor ix. |
| AU2014325063B2 (en) | 2013-09-27 | 2019-10-31 | Chugai Seiyaku Kabushiki Kaisha | Method for producing polypeptide heteromultimer |
| EP3065769A4 (en) | 2013-11-08 | 2017-05-31 | Biogen MA Inc. | Procoagulant fusion compound |
| JOP20200094A1 (ar) | 2014-01-24 | 2017-06-16 | Dana Farber Cancer Inst Inc | جزيئات جسم مضاد لـ pd-1 واستخداماتها |
| JOP20200096A1 (ar) | 2014-01-31 | 2017-06-16 | Children’S Medical Center Corp | جزيئات جسم مضاد لـ tim-3 واستخداماتها |
| CA2936962C (en) | 2014-03-14 | 2024-03-05 | Novartis Ag | Antibody molecules to lag-3 and uses thereof |
| ES2939760T3 (es) | 2014-03-15 | 2023-04-26 | Novartis Ag | Tratamiento de cáncer utilizando un receptor quimérico para antígenos |
| JP2017528433A (ja) | 2014-07-21 | 2017-09-28 | ノバルティス アーゲー | 低い免疫増強用量のmTOR阻害剤とCARの組み合わせ |
| JP7054622B2 (ja) | 2014-07-21 | 2022-04-14 | ノバルティス アーゲー | ヒト化抗bcmaキメラ抗原受容体を使用した癌の処置 |
| EP3722316A1 (en) | 2014-07-21 | 2020-10-14 | Novartis AG | Treatment of cancer using a cd33 chimeric antigen receptor |
| US11542488B2 (en) | 2014-07-21 | 2023-01-03 | Novartis Ag | Sortase synthesized chimeric antigen receptors |
| ES2781175T3 (es) | 2014-07-31 | 2020-08-31 | Novartis Ag | Subconjunto optimizado de células T que contienen un receptor de antígeno quimérico |
| US10851149B2 (en) | 2014-08-14 | 2020-12-01 | The Trustees Of The University Of Pennsylvania | Treatment of cancer using GFR α-4 chimeric antigen receptor |
| ES2791248T3 (es) | 2014-08-19 | 2020-11-03 | Novartis Ag | Receptor antigénico quimérico (CAR) anti-CD123 para su uso en el tratamiento del cáncer |
| US10577417B2 (en) | 2014-09-17 | 2020-03-03 | Novartis Ag | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
| TWI701435B (zh) | 2014-09-26 | 2020-08-11 | 日商中外製藥股份有限公司 | 測定fviii的反應性之方法 |
| MA40764A (fr) | 2014-09-26 | 2017-08-01 | Chugai Pharmaceutical Co Ltd | Agent thérapeutique induisant une cytotoxicité |
| TWI700300B (zh) | 2014-09-26 | 2020-08-01 | 日商中外製藥股份有限公司 | 中和具有第viii凝血因子(fviii)機能替代活性的物質之抗體 |
| CA2964367C (en) | 2014-10-14 | 2024-01-30 | Novartis Ag | Antibody molecules to pd-l1 and uses thereof |
| US20180334490A1 (en) | 2014-12-03 | 2018-11-22 | Qilong H. Wu | Methods for b cell preconditioning in car therapy |
| WO2016159213A1 (ja) | 2015-04-01 | 2016-10-06 | 中外製薬株式会社 | ポリペプチド異種多量体の製造方法 |
| JP6961490B2 (ja) | 2015-04-08 | 2021-11-05 | ノバルティス アーゲー | Cd20療法、cd22療法、およびcd19キメラ抗原受容体(car)発現細胞との併用療法 |
| US12128069B2 (en) | 2015-04-23 | 2024-10-29 | The Trustees Of The University Of Pennsylvania | Treatment of cancer using chimeric antigen receptor and protein kinase a blocker |
| CN107849131A (zh) | 2015-07-06 | 2018-03-27 | 瑞泽恩制药公司 | 多特异性抗原结合分子及其用途 |
| WO2017019896A1 (en) | 2015-07-29 | 2017-02-02 | Novartis Ag | Combination therapies comprising antibody molecules to pd-1 |
| DK3317301T3 (da) | 2015-07-29 | 2021-06-28 | Immutep Sas | Kombinationsterapier omfattende antistofmolekyler mod lag-3 |
| US20180207273A1 (en) | 2015-07-29 | 2018-07-26 | Novartis Ag | Combination therapies comprising antibody molecules to tim-3 |
| WO2017106656A1 (en) | 2015-12-17 | 2017-06-22 | Novartis Ag | Antibody molecules to pd-1 and uses thereof |
| KR20180094977A (ko) | 2015-12-17 | 2018-08-24 | 노파르티스 아게 | c-Met 억제제와 PD-1에 대한 항체 분자의 조합물 및 그의 용도 |
| EP3393504B1 (en) | 2015-12-22 | 2025-09-24 | Novartis AG | Mesothelin chimeric antigen receptor (car) and antibody against pd-l1 inhibitor for combined use in anticancer therapy |
| WO2017110980A1 (ja) | 2015-12-25 | 2017-06-29 | 中外製薬株式会社 | 増強された活性を有する抗体及びその改変方法 |
| BR112018009312A8 (pt) | 2015-12-28 | 2019-02-26 | Chugai Pharmaceutical Co Ltd | método para promover eficiência de purificação de polipeptídeo contendo região de fc |
| US20210198368A1 (en) | 2016-01-21 | 2021-07-01 | Novartis Ag | Multispecific molecules targeting cll-1 |
| WO2017149515A1 (en) | 2016-03-04 | 2017-09-08 | Novartis Ag | Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore |
| EP3432924A1 (en) | 2016-03-23 | 2019-01-30 | Novartis AG | Cell secreted minibodies and uses thereof |
| EP3443096B1 (en) | 2016-04-15 | 2023-03-01 | Novartis AG | Compositions and methods for selective expression of chimeric antigen receptors |
| SG11201807765PA (en) | 2016-04-28 | 2018-10-30 | Chugai Pharmaceutical Co Ltd | Antibody-containing preparation |
| EP3448891A1 (en) | 2016-04-28 | 2019-03-06 | Regeneron Pharmaceuticals, Inc. | Methods of making multispecific antigen-binding molecules |
| US20210177896A1 (en) | 2016-06-02 | 2021-06-17 | Novartis Ag | Therapeutic regimens for chimeric antigen receptor (car)- expressing cells |
| CN110461315B (zh) | 2016-07-15 | 2025-05-02 | 诺华股份有限公司 | 使用与激酶抑制剂组合的嵌合抗原受体治疗和预防细胞因子释放综合征 |
| IL316970A (en) | 2016-07-28 | 2025-01-01 | Novartis Ag | Combination therapies of chimeric antigen receptors and PD-1 inhibitors |
| KR20190036551A (ko) | 2016-08-01 | 2019-04-04 | 노파르티스 아게 | Pro-m2 대식세포 분자의 억제제를 병용하는, 키메라 항원 수용체를 이용한 암의 치료 |
| EP3509637B1 (en) | 2016-09-06 | 2024-11-27 | Chugai Seiyaku Kabushiki Kaisha | Methods of using a bispecific antibody that recognizes coagulation factor ix and/or activated coagulation factor ix and coagulation factor x and/or activated coagulation factor x |
| WO2018067992A1 (en) | 2016-10-07 | 2018-04-12 | Novartis Ag | Chimeric antigen receptors for the treatment of cancer |
| US11535662B2 (en) | 2017-01-26 | 2022-12-27 | Novartis Ag | CD28 compositions and methods for chimeric antigen receptor therapy |
| EP3589647A1 (en) | 2017-02-28 | 2020-01-08 | Novartis AG | Shp inhibitor compositions and uses for chimeric antigen receptor therapy |
| JP7116736B2 (ja) | 2017-03-02 | 2022-08-10 | ノバルティス アーゲー | 操作されたヘテロ二量体タンパク質 |
| US20200055948A1 (en) | 2017-04-28 | 2020-02-20 | Novartis Ag | Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor |
| EP3615068A1 (en) | 2017-04-28 | 2020-03-04 | Novartis AG | Bcma-targeting agent, and combination therapy with a gamma secretase inhibitor |
| EP3635009A1 (en) | 2017-06-07 | 2020-04-15 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for internalizing enzymes |
| MY204117A (en) | 2017-06-22 | 2024-08-08 | Novartis Ag | Antibody molecules to cd73 and uses thereof |
| MX2019015738A (es) | 2017-06-27 | 2020-02-20 | Novartis Ag | Regimen de dosificacion para anticuerpos anti-tim-3 y usos de los mismos. |
| SG11201913137VA (en) | 2017-07-11 | 2020-01-30 | Compass Therapeutics Llc | Agonist antibodies that bind human cd137 and uses thereof |
| AU2018302283B2 (en) | 2017-07-20 | 2025-07-10 | Novartis Ag | Dosage regimens of anti-LAG-3 antibodies and uses thereof |
| CA3071236A1 (en) | 2017-09-29 | 2019-04-04 | Chugai Seiyaku Kabushiki Kaisha | Multispecific antigen-binding molecule having blood coagulation factor viii (fviii) cofactor function-substituting activity, and pharmaceutical formulation containing said molecule as active ingredient |
| WO2019089753A2 (en) | 2017-10-31 | 2019-05-09 | Compass Therapeutics Llc | Cd137 antibodies and pd-1 antagonists and uses thereof |
| CR20240273A (es) | 2017-11-01 | 2024-08-27 | Chugai Pharmaceutical Co Ltd | Variantes e isoformas de anticuerpos con actividad biológica reducida (divisional 2020-229) |
| CA3081602A1 (en) | 2017-11-16 | 2019-05-23 | Novartis Ag | Combination therapies |
| EP3713961A2 (en) | 2017-11-20 | 2020-09-30 | Compass Therapeutics LLC | Cd137 antibodies and tumor antigen-targeting antibodies and uses thereof |
| WO2019139987A1 (en) | 2018-01-09 | 2019-07-18 | Elstar Therapeutics, Inc. | Calreticulin binding constructs and engineered t cells for the treatment of diseases |
| EP3746116A1 (en) | 2018-01-31 | 2020-12-09 | Novartis AG | Combination therapy using a chimeric antigen receptor |
| IL322464A (en) | 2018-02-07 | 2025-09-01 | Regeneron Pharma | Methods and compositions for administering therapeutic protein |
| US12152073B2 (en) | 2018-03-14 | 2024-11-26 | Marengo Therapeutics, Inc. | Multifunctional molecules that bind to calreticulin and uses thereof |
| US20210147547A1 (en) | 2018-04-13 | 2021-05-20 | Novartis Ag | Dosage Regimens For Anti-Pd-L1 Antibodies And Uses Thereof |
| WO2019210153A1 (en) | 2018-04-27 | 2019-10-31 | Novartis Ag | Car t cell therapies with enhanced efficacy |
| MX2020011487A (es) | 2018-04-30 | 2020-12-07 | Regeneron Pharma | Anticuerpos y moleculas biespecificas de union al antigeno que se unen a her2 y/o aplp2, conjugados y usos de estos. |
| EP3793591A1 (en) | 2018-05-17 | 2021-03-24 | Regeneron Pharmaceuticals, Inc. | Anti-cd63 antibodies, conjugates, and uses thereof |
| JP2021525243A (ja) | 2018-05-21 | 2021-09-24 | コンパス セラピューティクス リミテッド ライアビリティ カンパニー | Nk細胞による標的細胞の殺傷を増進するための組成物および方法 |
| WO2019226658A1 (en) | 2018-05-21 | 2019-11-28 | Compass Therapeutics Llc | Multispecific antigen-binding compositions and methods of use |
| US20210213063A1 (en) | 2018-05-25 | 2021-07-15 | Novartis Ag | Combination therapy with chimeric antigen receptor (car) therapies |
| US20210214459A1 (en) | 2018-05-31 | 2021-07-15 | Novartis Ag | Antibody molecules to cd73 and uses thereof |
| TWI890660B (zh) | 2018-06-13 | 2025-07-21 | 瑞士商諾華公司 | Bcma 嵌合抗原受體及其用途 |
| MX2020013798A (es) | 2018-06-19 | 2021-08-11 | Atarga Llc | Moléculas de anticuerpo de componente de complemento 5 y sus usos. |
| CN112955465A (zh) | 2018-07-03 | 2021-06-11 | 马伦戈治疗公司 | 抗tcr抗体分子及其用途 |
| AR116109A1 (es) | 2018-07-10 | 2021-03-31 | Novartis Ag | Derivados de 3-(5-amino-1-oxoisoindolin-2-il)piperidina-2,6-diona y usos de los mismos |
| WO2020021465A1 (en) | 2018-07-25 | 2020-01-30 | Advanced Accelerator Applications (Italy) S.R.L. | Method of treatment of neuroendocrine tumors |
| CN119735694A (zh) | 2018-11-13 | 2025-04-01 | 指南针制药有限责任公司 | 对抗检查点分子的多特异性结合构建体及其用途 |
| KR20210106437A (ko) | 2018-12-20 | 2021-08-30 | 노파르티스 아게 | 3-(1-옥소이소인돌린-2-일)피페리딘-2,6-디온 유도체를 포함하는 투약 요법 및 약학적 조합물 |
| JP2022514280A (ja) | 2018-12-20 | 2022-02-10 | ノバルティス アーゲー | Mdm2阻害剤のための延長低用量レジメン |
| US10871640B2 (en) | 2019-02-15 | 2020-12-22 | Perkinelmer Cellular Technologies Germany Gmbh | Methods and systems for automated imaging of three-dimensional objects |
| AU2020222345B2 (en) | 2019-02-15 | 2022-11-17 | Novartis Ag | 3-(1-oxo-5-(piperidin-4-yl)isoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| US12479817B2 (en) | 2019-02-15 | 2025-11-25 | Novartis Ag | Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| CN119661722A (zh) | 2019-02-21 | 2025-03-21 | 马伦戈治疗公司 | 结合t细胞相关癌细胞的多功能分子及其用途 |
| CN119039441A (zh) | 2019-02-21 | 2024-11-29 | 马伦戈治疗公司 | 与nkp30结合的抗体分子及其用途 |
| US20220088075A1 (en) | 2019-02-22 | 2022-03-24 | The Trustees Of The University Of Pennsylvania | Combination therapies of egfrviii chimeric antigen receptors and pd-1 inhibitors |
| JP2022527790A (ja) | 2019-03-29 | 2022-06-06 | アターガ,エルエルシー | 抗fgf23抗体分子 |
| KR20220103947A (ko) | 2019-10-21 | 2022-07-25 | 노파르티스 아게 | 베네토클락스 및 tim-3 억제제를 사용한 조합 요법 |
| CN114786680A (zh) | 2019-10-21 | 2022-07-22 | 诺华股份有限公司 | Tim-3抑制剂及其用途 |
| AR120566A1 (es) | 2019-11-26 | 2022-02-23 | Novartis Ag | Receptores de antígeno quiméricos y sus usos |
| JP2023506958A (ja) | 2019-12-20 | 2023-02-20 | ノバルティス アーゲー | 骨髄線維症および骨髄異形成症候群を処置するための、デシタビンまたは抗pd-1抗体スパルタリズマブを伴うかまたは伴わない抗tim-3抗体mbg453および抗tgf-ベータ抗体nis793の組合せ |
| GB2609554B (en) | 2020-01-03 | 2025-08-20 | Marengo Therapeutics Inc | Anti-TCR antibody molecules and uses thereof |
| CN115298322A (zh) | 2020-01-17 | 2022-11-04 | 贝克顿迪金森公司 | 用于单细胞分泌组学的方法和组合物 |
| IL293752A (en) | 2020-01-17 | 2022-08-01 | Novartis Ag | Combination comprising a tim-3 inhibitor and a hypomethylating agent for use in treating myelodysplastic syndrome or chronic myelomonocytic leukemia |
| KR20220147109A (ko) | 2020-02-27 | 2022-11-02 | 노파르티스 아게 | 키메라 항원 수용체 발현 세포의 제조 방법 |
| IL297200A (en) | 2020-04-15 | 2022-12-01 | Voyager Therapeutics Inc | tau binding compounds |
| WO2021260528A1 (en) | 2020-06-23 | 2021-12-30 | Novartis Ag | Dosing regimen comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives |
| CR20230009A (es) | 2020-07-16 | 2023-01-25 | Novartis Ag | Anticuerpos anti-betacelulina, fragmentos de los mismos, y moléculas de unión multiespecíficas |
| WO2022026592A2 (en) | 2020-07-28 | 2022-02-03 | Celltas Bio, Inc. | Antibody molecules to coronavirus and uses thereof |
| WO2022029573A1 (en) | 2020-08-03 | 2022-02-10 | Novartis Ag | Heteroaryl substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| EP4204020A1 (en) | 2020-08-31 | 2023-07-05 | Advanced Accelerator Applications International S.A. | Method of treating psma-expressing cancers |
| WO2022043557A1 (en) | 2020-08-31 | 2022-03-03 | Advanced Accelerator Applications International Sa | Method of treating psma-expressing cancers |
| EP4240765A2 (en) | 2020-11-06 | 2023-09-13 | Novartis AG | Antibody fc variants |
| IL302700A (en) | 2020-11-13 | 2023-07-01 | Novartis Ag | Combination therapies with chimeric antigen receptor (car)-expressing cells |
| US20240141060A1 (en) | 2021-01-29 | 2024-05-02 | Novartis Ag | Dosage regimes for anti-cd73 and anti-entpd2 antibodies and uses thereof |
| TW202304979A (zh) | 2021-04-07 | 2023-02-01 | 瑞士商諾華公司 | 抗TGFβ抗體及其他治療劑用於治療增殖性疾病之用途 |
| AR125874A1 (es) | 2021-05-18 | 2023-08-23 | Novartis Ag | Terapias de combinación |
| WO2023044483A2 (en) | 2021-09-20 | 2023-03-23 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of her2 positive cancer |
| US20250034559A1 (en) | 2021-11-17 | 2025-01-30 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of tau-related disorders |
| US20230383010A1 (en) | 2022-02-07 | 2023-11-30 | Visterra, Inc. | Anti-idiotype antibody molecules and uses thereof |
| IL316174A (en) | 2022-04-26 | 2024-12-01 | Novartis Ag | Multiple specific antibodies targeting IL-13 and IL-18 |
| US20250295809A1 (en) | 2022-05-13 | 2025-09-25 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of her2 positive cancer |
| JP2025528068A (ja) | 2022-08-03 | 2025-08-26 | ボイジャー セラピューティクス インコーポレイテッド | 血液脳関門を通過させるための組成物及び方法 |
| CN120019071A (zh) | 2022-09-15 | 2025-05-16 | 沃雅戈治疗公司 | Tau结合化合物 |
| WO2024168061A2 (en) | 2023-02-07 | 2024-08-15 | Ayan Therapeutics Inc. | Antibody molecules binding to sars-cov-2 |
| WO2025122634A1 (en) | 2023-12-05 | 2025-06-12 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of tau-related disorders |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS50155678A (enExample) * | 1974-06-03 | 1975-12-16 | ||
| US4193982A (en) * | 1975-12-05 | 1980-03-18 | Etablissement Declare D'utilite Publique Dit: Institut Pasteur | Process for coupling biological substances by covalent bonds |
| US4208479A (en) * | 1977-07-14 | 1980-06-17 | Syva Company | Label modified immunoassays |
| US4278761A (en) * | 1979-12-26 | 1981-07-14 | President And Fellows Of Harvard College | Enzyme assay and kit therefor |
| US4298685A (en) * | 1978-05-04 | 1981-11-03 | Burroughs Wellcome Co. | Diagnostic reagent |
| US4376110A (en) * | 1980-08-04 | 1983-03-08 | Hybritech, Incorporated | Immunometric assays using monoclonal antibodies |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5344622A (en) * | 1976-09-30 | 1978-04-21 | Mochida Pharm Co Ltd | Immunologically measuring method |
| JPS5921500B2 (ja) * | 1978-01-28 | 1984-05-21 | 東洋紡績株式会社 | 酸素電極用酵素膜 |
| US4235869A (en) * | 1978-05-16 | 1980-11-25 | Syva Company | Assay employing a labeled Fab-fragment ligand complex |
| FR2437213A1 (fr) * | 1978-09-28 | 1980-04-25 | Cm Ind | Produits cytotoxiques formes par liaison covalente de la chaine a de la ricine avec un anticorps et leur procede de preparation |
| US4223005A (en) * | 1979-02-15 | 1980-09-16 | University Of Illinois Foundation | Antibody coated bacteria |
| JPS5616418A (en) * | 1979-07-20 | 1981-02-17 | Teijin Ltd | Antitumor protein complex and its preparation |
| US4331647A (en) * | 1980-03-03 | 1982-05-25 | Goldenberg Milton David | Tumor localization and therapy with labeled antibody fragments specific to tumor-associated markers |
| US4474893A (en) * | 1981-07-01 | 1984-10-02 | The University of Texas System Cancer Center | Recombinant monoclonal antibodies |
-
1981
- 1981-12-21 US US06/332,881 patent/US4444878A/en not_active Expired - Lifetime
-
1982
- 1982-12-20 GB GB08321513A patent/GB2123030B/en not_active Expired
- 1982-12-20 DE DE8383900528T patent/DE3273080D1/de not_active Expired
- 1982-12-20 EP EP83900528A patent/EP0096076B1/en not_active Expired
- 1982-12-20 WO PCT/US1982/001766 patent/WO1983002285A1/en not_active Ceased
- 1982-12-20 AU AU11571/83A patent/AU549195B2/en not_active Expired
- 1982-12-20 DE DE19823249285 patent/DE3249285T1/de not_active Ceased
- 1982-12-20 AT AT83900528T patent/ATE21932T1/de not_active IP Right Cessation
- 1982-12-20 JP JP83500601A patent/JPS58502182A/ja active Granted
- 1982-12-20 CA CA000418116A patent/CA1216231A/en not_active Expired
-
1983
- 1983-08-11 FI FI832897A patent/FI68731C/fi not_active IP Right Cessation
- 1983-08-19 NO NO83832989A patent/NO163255C/no unknown
- 1983-08-19 DK DK3795/83A patent/DK379583D0/da not_active Application Discontinuation
-
1993
- 1993-03-26 JP JP5090568A patent/JPH07108919B2/ja not_active Expired - Lifetime
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS50155678A (enExample) * | 1974-06-03 | 1975-12-16 | ||
| US4193982A (en) * | 1975-12-05 | 1980-03-18 | Etablissement Declare D'utilite Publique Dit: Institut Pasteur | Process for coupling biological substances by covalent bonds |
| US4208479A (en) * | 1977-07-14 | 1980-06-17 | Syva Company | Label modified immunoassays |
| US4298685A (en) * | 1978-05-04 | 1981-11-03 | Burroughs Wellcome Co. | Diagnostic reagent |
| US4278761A (en) * | 1979-12-26 | 1981-07-14 | President And Fellows Of Harvard College | Enzyme assay and kit therefor |
| US4376110A (en) * | 1980-08-04 | 1983-03-08 | Hybritech, Incorporated | Immunometric assays using monoclonal antibodies |
Non-Patent Citations (5)
| Title |
|---|
| Biotechnology and Bioengineering, XVIII (2), issued Februari 1976, IKUO SATOH etal, Enzyme Electrode for Sucrose, 269-272. * |
| Cancer Research, 41, issued June 1981, VIC RASO et al, Hybrid Antibodies with Dual Specificity for the Delivery of Ricin to Immunoglobulin-Bearing Target Cells,2073-2078. * |
| Immunology, 42(2), issued Februari 1981, C.J. HACKETT et al, H-2 Expression by Lymphoid Celss of Different Mouse Strains: Quantitative Interaction of H-2 with Monoclonal Antibodies and Their Fab Fragments. * |
| Journal of Experimental Medicine, 128, issued 1968, ULRICH HAMMERLING et al, useof Hybrid Antibody with Anti- gamma G and Anti-Ferritin Specificities in Locating Cell Surface Antigens by Electron Microscopy, 1461-1469. * |
| Methods of Enzymatic Analysis, Volume 3, issued 1974, HANS BERGMEYER, Academic Press, Inc., New York, 1180-1184. * |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2144147A (en) * | 1983-07-08 | 1985-02-27 | Nat Res Dev | Monoclonal antibody having only one light chain which will bind a specific antigen |
| EP0131424A3 (en) * | 1983-07-08 | 1986-05-14 | National Research Development Corporation | Improvements in or relating to antibody preparations |
| WO1994009131A1 (en) * | 1992-10-15 | 1994-04-28 | Scotgen Limited | Recombinant specific binding protein |
| GB2286189A (en) * | 1992-10-15 | 1995-08-09 | Scotgen Ltd | Recombinant specific binding protein |
Also Published As
| Publication number | Publication date |
|---|---|
| JPS58502182A (ja) | 1983-12-22 |
| GB2123030A (en) | 1984-01-25 |
| NO163255C (no) | 1990-04-25 |
| JPH0554066B2 (enExample) | 1993-08-11 |
| GB2123030B (en) | 1985-03-13 |
| EP0096076A1 (en) | 1983-12-21 |
| DE3273080D1 (en) | 1986-10-09 |
| GB8321513D0 (en) | 1983-09-14 |
| DE3249285T1 (de) | 1984-10-04 |
| JPH07108919B2 (ja) | 1995-11-22 |
| US4444878A (en) | 1984-04-24 |
| CA1216231A (en) | 1987-01-06 |
| NO832989L (no) | 1983-08-19 |
| FI832897L (fi) | 1983-08-11 |
| FI68731C (fi) | 1985-10-10 |
| FI832897A0 (fi) | 1983-08-11 |
| AU549195B2 (en) | 1986-01-16 |
| DK379583A (da) | 1983-08-19 |
| EP0096076B1 (en) | 1986-09-03 |
| ATE21932T1 (de) | 1986-09-15 |
| NO163255B (no) | 1990-01-15 |
| EP0096076A4 (en) | 1984-05-03 |
| JPH0690786A (ja) | 1994-04-05 |
| DK379583D0 (da) | 1983-08-19 |
| FI68731B (fi) | 1985-06-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4444878A (en) | Bispecific antibody determinants | |
| US5292668A (en) | Bispecific antibody determinants | |
| CA1160566A (en) | Immunological determination method | |
| JPS58203919A (ja) | 免疫グロブリン半分子および交雑種抗体を製造する方法 | |
| EP0179872B1 (en) | Bispecific antibody determinants | |
| US5147537A (en) | Carrier for affinity chromatography immobilized with antibodies | |
| JPH01114758A (ja) | パパインを含まない抗体フラグメント調製物の製造方法 | |
| US4876191A (en) | Immobilization of biologically active substances with carrier bond antibody | |
| EP0469060A1 (en) | SELF-ANTIBODY IMPROVING THE SPEED OF A CHEMICAL REACTION. | |
| US5602015A (en) | Autoantibodies which enhance the rate of a chemical reaction | |
| US4692509A (en) | Radioactive labeling of proteins with nucleosides or nucleotides | |
| Freeman et al. | Solid-phase assay for the detection of low-abundance enzymes, and antibodies to enzymes in immune reactions, using acid sphingomyelinase as a model | |
| Boguslaski et al. | Applications of bound biopolymers in enzymology and immunology | |
| JPH0441307B2 (enExample) | ||
| JPS63117253A (ja) | 免疫センサ− | |
| JPS59143960A (ja) | 酵素標識抗体に含まれる非特異的吸着成分の除去法 | |
| EP0228810A1 (en) | Enzyme immunoassay method for epidermal growth factor | |
| JPH04249769A (ja) | 免疫学的測定方法 | |
| JPS6363859B2 (enExample) | ||
| JPH04221762A (ja) | 免疫学的測定法 | |
| JPS63151856A (ja) | ヒトプロテインsに対するモノクローナル抗体を用いた免疫学的測定試薬及びキット | |
| JPH0246898B2 (ja) | Amiraazeoryoshitakogenketsuteikigujubutsushitsusokuteiho | |
| JPH04216467A (ja) | 免疫学的測定法 | |
| JPH0225750A (ja) | ヒトMn−スーパーオキシドジスムターゼの測定キットおよび測定法 | |
| JPH02176465A (ja) | リガンドの測定法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Designated state(s): AU DE DK FI GB JP NO |
|
| AL | Designated countries for regional patents |
Designated state(s): AT BE CH DE FR GB LU NL SE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1983900528 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 832897 Country of ref document: FI |
|
| WWP | Wipo information: published in national office |
Ref document number: 1983900528 Country of ref document: EP |
|
| RET | De translation (de og part 6b) |
Ref document number: 3249285 Country of ref document: DE Date of ref document: 19841004 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 3249285 Country of ref document: DE |
|
| WWG | Wipo information: grant in national office |
Ref document number: 832897 Country of ref document: FI |
|
| WWG | Wipo information: grant in national office |
Ref document number: 1983900528 Country of ref document: EP |