US20060100469A1 - Process for converting gaseous alkanes to olefins and liquid hydrocarbons - Google Patents

Process for converting gaseous alkanes to olefins and liquid hydrocarbons Download PDF

Info

Publication number
US20060100469A1
US20060100469A1 US11/254,438 US25443805A US2006100469A1 US 20060100469 A1 US20060100469 A1 US 20060100469A1 US 25443805 A US25443805 A US 25443805A US 2006100469 A1 US2006100469 A1 US 2006100469A1
Authority
US
United States
Prior art keywords
bromine
hydrobromic acid
vapor
reactor
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/254,438
Other languages
English (en)
Inventor
John Waycuilis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marathon GTF Technology Ltd
Original Assignee
Marathon Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/826,885 external-priority patent/US7244867B2/en
Priority to US11/254,438 priority Critical patent/US20060100469A1/en
Application filed by Marathon Oil Co filed Critical Marathon Oil Co
Assigned to MARATHON OIL COMPANY reassignment MARATHON OIL COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WAYCULLIS, JOHN J
Publication of US20060100469A1 publication Critical patent/US20060100469A1/en
Priority to ZA200803330A priority patent/ZA200803330B/xx
Priority to JP2008536583A priority patent/JP5396082B2/ja
Priority to EA200801115A priority patent/EA022696B1/ru
Priority to CN2006800390646A priority patent/CN101291891B/zh
Priority to AU2006302939A priority patent/AU2006302939B2/en
Priority to AP2008004417A priority patent/AP2008004417A0/xx
Priority to NZ567480A priority patent/NZ567480A/en
Priority to UAA200806734A priority patent/UA105476C2/uk
Priority to EP06814642A priority patent/EP1945598A4/en
Priority to CA2625459A priority patent/CA2625459C/en
Priority to KR1020087009389A priority patent/KR101363300B1/ko
Priority to MYPI20081159 priority patent/MY151088A/en
Priority to BRPI0617707-7A priority patent/BRPI0617707A2/pt
Priority to PCT/US2006/035788 priority patent/WO2007046986A2/en
Priority to PE2006001251A priority patent/PE20070737A1/es
Priority to ARP060104577A priority patent/AR058123A1/es
Priority to EC2008008361A priority patent/ECSP088361A/es
Priority to EG2008040622A priority patent/EG26651A/en
Priority to TNP2008000176A priority patent/TNSN08176A1/en
Priority to US12/112,926 priority patent/US8008535B2/en
Priority to NO20082252A priority patent/NO20082252L/no
Priority to US12/123,924 priority patent/US20080275284A1/en
Priority to US12/138,877 priority patent/US7674941B2/en
Assigned to MARATHON GTF TECHNOLOGY, LTD. reassignment MARATHON GTF TECHNOLOGY, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MARATHON OIL COMPANY
Priority to US12/477,319 priority patent/US8173851B2/en
Priority to US12/957,036 priority patent/US20110071326A1/en
Priority to US13/117,785 priority patent/US8642822B2/en
Priority to US13/679,600 priority patent/US20130079564A1/en
Priority to US14/255,549 priority patent/US9206093B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/02Non-metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/09Bromine; Hydrogen bromide
    • C01B7/093Hydrogen bromide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/09Bromine; Hydrogen bromide
    • C01B7/096Bromine
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B9/00General methods of preparing halides
    • C01B9/04Bromides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/26Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only halogen atoms as hetero-atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/10Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y

Definitions

  • the present invention relates to a process for converting lower molecular weight, gaseous alkanes to olefins that are useful as monomers and intermediaries in the production of chemicals, such as lubricant and fuel additives, and higher molecular weight hydrocarbons, and more particularly, to a process wherein a gas containing lower molecular weight alkanes is reacted with a dry bromine vapor to form alkyl bromides and hydrobromic acid which in turn are reacted over a crystalline alumino-silicate catalyst to form olefins and higher molecular weight hydrocarbons.
  • Natural gas which is primarily composed of methane and other light alkanes has been discovered in large quantities throughout the world. Many of the locales in which natural gas has been discovered are far from populated regions which have significant gas pipeline infrastructure or market demand for natural gas. Due to the low density of natural gas, transportation thereof in gaseous form by pipeline or as compressed gas in vessels is expensive. Accordingly, practical and economic limits exist to the distance over which natural gas may be transported in gaseous form exist. Cryogenic liquefaction of natural gas (LNG) is often used to more economically transport natural gas over large distances. However, this LNG process is expensive and there are limited regasification facilities in only a few countries that are equipped to import LNG.
  • LNG ryogenic liquefaction of natural gas
  • Methanol is made commercially via conversion of methane to synthesis gas (CO and H 2 ) at high temperatures (approximately 1000° C.) followed by synthesis at high pressures (approximately 100 atmospheres).
  • synthesis gas CO and H 2
  • SMR steam-methane reforming
  • POX partial oxidation
  • ATR autothermal reforming
  • GHR gas-heated reforming
  • SMR and GHR operate at high pressures and temperatures, generally in excess of 600° C., and require expensive furnaces or reactors containing special heat and corrosion-resistant alloy tubes filled with expensive reforming catalyst.
  • POX and ATR processes operate at high pressures and even higher temperatures, generally in excess of 1000° C.
  • complex and costly refractory-lined reactors and high-pressure waste-heat boilers to quench & cool the synthesis gas effluent are required.
  • significant capital cost and large amounts of power are required for compression of oxygen or air to these high-pressure processes.
  • synthesis gas technology is expensive, resulting in a high cost methanol product which limits higher-value uses thereof, such as for chemical feedstocks and solvents.
  • production of synthesis gas is thermodynamically and chemically inefficient, producing large excesses of waste heat and unwanted carbon dioxide, which tends to lower the conversion efficiency of the overall process.
  • Fischer-Tropsch Gas-to-Liquids (GTL) technology can also be used to convert synthesis gas to heavier liquid hydrocarbons, however investment cost for this process is even higher. In each case, the production of synthesis gas represents a large fraction of the capital costs for these methane conversion processes.
  • halogenation of methane using chlorine as the preferred halogen results in poor selectivity to the monomethyl halide (CH 3 Cl), resulting in unwanted by-products such as CH 2 Cl 2 and CHCl 3 which are difficult to convert or require severe limitation of conversion per pass and hence very high recycle rates.
  • substituted alkanes in particular methanol
  • olefins and gasoline boiling-range hydrocarbons over various forms of crystalline alumino-silicates also known as zeolites.
  • MEG Methanol to Gasoline
  • ZSM-5 shape selective zeolite catalyst
  • Coal or methane gas can thus be converted to methanol using conventional technology and subsequently converted to gasoline.
  • the MTG process is not considered economically viable.
  • one characterization of the present invention is a process is provided for converting gaseous alkanes to to olefins and liquid hydrocarbons.
  • a gaseous feed having lower molecular weight alkanes is reacted with bromine vapor to form alkyl bromides and hydrobromic acid.
  • the alkyl bromides and hydrobromic acid are then reacted in the presence of a synthetic crystalline alumino-silicate catalyst and at a temperature sufficient to form olefins and hydrobromic acid vapor.
  • a process for converting gaseous lower molecular weight alkanes to olefins which comprises reacting a gaseous feed containing lower molecular weight alkanes with bromine vapor to form alkyl bromides and hydrobromic acid.
  • the alkyl bromides and hydrobromic acid are then reacted in the presence of a synthetic crystalline alumino-silicate catalyst to form olefins and hydrobromic acid.
  • the process also includes converting the hydrobromic acid to bromine.
  • a process for converting gaseous alkanes to olefins.
  • a gaseous feed having lower molecular weight alkanes is reacted with bromine vapor to form alkyl bromides and hydrobromic acid.
  • the alkyl bromides are reacted with hydrobromic acid in the presence of a synthetic crystalline alumino-silicate catalyst and at a temperature sufficient to form olefins and hydrobromic acid vapor.
  • Hydrobromic acid vapor is removed from the olefins by reacting the hydrobromic acid vapor with a metal oxide to form a metal bromide and steam.
  • FIG. 1 is a simplified block flow diagram of the process of the present invention
  • FIG. 2 is a schematic view of one embodiment of the process of the present invention.
  • FIG. 3 is a schematic view of another embodiment of process of the present invention.
  • FIG. 4A is schematic view of another embodiment of the process of the present invention.
  • FIG. 4B is a schematic view of the embodiment of the process of the present invention illustrated in FIG. 4A depicting an alternative processing scheme which may be employed when oxygen is used in lieu of air in the oxidation stage;
  • FIG. 5A is a schematic view of the embodiment of the process of the present invention illustrated in FIG. 4A with the flow through the metal oxide beds being reversed;
  • FIG. 5B is a schematic view of the embodiment of the process of the present invention illustrated in FIG. 5A depicting an alternative processing scheme which may be employed when oxygen is used in lieu of air in the oxidation stage;
  • FIG. 6A is a schematic view of another embodiment of the process of the present invention.
  • FIG. 6B is a schematic view of the embodiment of the process of the present invention illustrated in FIG. 6A depicting an alternative processing scheme which may be employed when oxygen is used in lieu of air in the oxidation stage;
  • FIG. 7 is a schematic view of another embodiment of the process of the present invention.
  • FIG. 8 is a schematic view of the embodiment of the process of the present invention illustrated in FIG. 7 with the flow through the metal oxide beds being reversed;
  • FIG. 9 is a schematic view of another embodiment of the process of the present invention.
  • the term “lower molecular weight alkanes” refers to methane, ethane, propane, butane, pentane or mixtures thereof.
  • alkyl bromides refers to mono, di, and tri brominated alkanes.
  • the feed gas in lines 11 and 111 in the embodiments of the process of the present invention as illustrated in FIGS. 2 and 3 , respectively is preferably natural gas which may be treated to remove sulfur compounds and carbon dioxide. In any event, it is important to note that small amounts of carbon dioxide, e.g. less than about 2 mol %, can be tolerated in the feed gas to the process of the present invention.
  • FIG. 1 A block flow diagram generally depicting the process of the present invention is illustrated in FIG. 1 , while specific embodiments of the process of the present invention are illustrated in FIGS. 2 and 3 .
  • a gas stream containing lower molecular weight alkanes comprised of a mixture of a feed gas plus a recycled gas stream at a pressure in the range of about 1 bar to about 30 bar, is transported or conveyed via line, pipe or conduit 62 , mixed with dry bromine liquid transported via line 25 and pump 24 , and passed to heat exchanger 26 wherein the liquid bromine is vaporized.
  • the mixture of lower molecular weight alkanes and dry bromine vapor is fed to reactor 30 .
  • the molar ratio of lower molecular weight alkanes to dry bromine vapor in the mixture introduced into reactor 30 is in excess of 2.5:1.
  • Reactor 30 has an inlet pre-heater zone 28 which heats the mixture to a reaction initiation temperature in the range of about 250° C. to about 400° C.
  • first reactor 30 the lower molecular weight alkanes are reacted exothermically with dry bromine vapor at a relatively low temperature in the range of about 250° C. to about 600° C., and at a pressure in the range of about 1 bar to about 30 bar to produce gaseous alkyl bromides and hydrobromic acid vapors.
  • the upper limit of the operating temperature range is greater than the upper limit of the reaction initiation temperature range to which the feed mixture is heated due to the exothermic nature of the bromination reaction.
  • methane the formation of methyl bromide occurs in accordance with the following general reaction: CH 4 (g)+Br 2 (g) ⁇ CH 3 Br (g)+HBr (g)
  • This reaction occurs with a significantly high degree of selectivity to methyl bromide.
  • a methane to bromine ratio of about 4.5:1 increases the selectivity to the mono-halogenated methyl bromide.
  • Small amounts of dibromomethane and tribromomethane are also formed in the bromination reaction.
  • Higher alkanes, such as ethane, propane and butane, are also readily brominated resulting in mono and multiple brominated species such as ethyl bromides, propyl bromides and butyl bromides.
  • first reactor 30 If an alkane to bromine ratio of significantly less than about 2.5 to 1 is utilized, a lower selectivity to methyl bromide occurs and significant formation of undesirable carbon soot is observed. Further, the dry bromine vapor that is feed into first reactor 30 is substantially water-free. Applicant has discovered that elimination of substantially all water vapor from the bromination step in first reactor 30 substantially eliminates the formation of unwanted carbon dioxide thereby increasing the selectivity of alkane bromination to alkyl bromides and eliminating the large amount of waste heat generated in the formation of carbon dioxide from alkanes.
  • the effluent that contains alkyl bromides and hydrobromic acid is withdrawn from the first reactor via line 31 and is partially cooled to a temperature in the range of about 150° C. to about 450° C. in heat exchanger 32 before flowing to a second reactor 34 .
  • the alkyl bromides are reacted exothermically at a temperature range of from about 250° C. to about 500° C., and a pressure in the range of about 1 to 20 bar, over a fixed bed 33 of crystalline alumino-silicate catalyst, preferably a zeolite catalyst, and most preferably an X type or Y type zeolite catalyst.
  • a preferred zeolite is 10 X or Y type zeolite, although other zeolites with differing pore sizes and acidities, which are synthesized by varying the alumina-to-silica ratio may be used in the process of the present invention as will be evident to a skilled artisan.
  • the zeolite catalyst is preferably used in a protonic form, a sodium form or a mixed protonic/sodium form, the zeolite may also be modified by ion exchange with other alkali metal cations, such as Li, K or Cs, with alkali-earth metal cations, such as Mg, Ca, Sr or Ba, or with transition metal cations, such as Ni, Mn, V, W, or to the hydrogen form.
  • the temperature at which the second reactor 34 is operated is an important parameter in determining the selectivity of the reaction to olefins and various higher molecular weight hydrocarbons. It is preferred to operated second reactor 34 at a temperature within the range of about 250° to 500° C. Temperatures above about 450° C. in the second reactor result in increased yields of light hydrocarbons, such as undesirable methane and also deposition of coke, whereas lower temperatures increase yields of ethylene, propylene, butylene and heavier molecular weight hydrocarbon products. Also it is noted that methyl bromide appears to be more reactive over a lower temperature range relative to methyl chloride or other substituted methyl compounds such as methanol.
  • the catalyst may be periodically regenerated in situ, by isolating reactor 34 from the normal process flow, purging with an inert gas via line 70 at a pressure in a range from about 1 to about 5 bar at an elevated temperature in the range of about 400° C. to about 650° C. to remove unreacted material adsorbed on the catalyst insofar as is practical, and then subsequently oxidizing the deposited carbon to CO 2 by addition of air or inert gas-diluted oxygen to reactor 34 via line 70 at a pressure in the range of about 1 bar to about 5 bar at an elevated temperature in the range of about 400° C. to about 650° C. Carbon dioxide and residual air or inert gas is vented from reactor 34 via line 75 during the regeneration period.
  • the effluent which comprises olefins, the higher molecular weight hydrocarbons and hydrobromic acid is withdrawn from the second reactor 34 via line 35 and is cooled to a temperature in the range of 0° C. to about 100° C. in exchanger 36 and combined with vapor effluent in line 12 from hydrocarbon stripper 47 , which contains feed gas and residual hydrocarbons stripped-out by contact with the feed gas in hydrocarbon stripper 47 .
  • the combined vapor mixture is passed to a scrubber 38 and contacted with a concentrated aqueous partially-oxidized metal bromide salt solution containing metal hydroxide and/or metal oxide and/or metal oxy-bromide species, which is transported to scrubber 38 via line 41 .
  • the preferred metal of the bromide salt is Fe(III), Cu(II) or Zn(II), or mixtures thereof, as these are less expensive and readily oxidize at lower temperatures in the range of about 120° C. to about 180° C., allowing the use of glass-lined or fluorpolymer-lined equipment; although Co(II), Ni(II), Mn(II), V(II), Cr(II) or other transition-metals which form oxidizable bromide salts may be used in the process of the present invention.
  • alkaline-earth metals which also form oxidizable bromide salts such as Ca (II) or Mg(II) may be used.
  • Any liquid hydrocarbons condensed in scrubber 38 may be skimmed and withdrawn in line 37 and added to liquid hydrocarbons exiting the product recovery unit 52 in line 54 .
  • Hydrobromic acid is dissolved in the aqueous solution and neutralized by the metal hydroxide and/or metal oxide and/or metal oxy-bromide species to yield metal bromide salt in solution and water which is removed from the scrubber 38 via line 44 .
  • the residual vapor phase containing olefins and the higher molecular weight hydrocarbons that is removed as effluent from the scrubber 38 is forwarded via line 39 to dehydrator 50 to remove substantially all water via line 53 from the vapor stream. The water is then removed from the dehydrator 50 via line 53 .
  • the dried vapor stream containing olefins and the higher molecular weight hydrocarbons is further passed via line 51 to product recovery unit 52 to recover olefins and the C 5 + gasoline-range hydrocarbon fraction as a liquid product in line 54 .
  • any conventional method of dehydration and liquids recovery such as solid-bed dessicant adsorption followed by refrigerated condensation, cryogenic expansion, or circulating absorption oil or other solvent, as used to process natural gas or refinery gas streams, and to recover olefinic hydrocarbons, as will be evident to a skilled artisan, may be employed in the process of the present invention.
  • the residual vapor effluent from product recovery unit 52 is then split into a purge stream 57 which may be utilized as fuel for the process and a recycled residual vapor which is compressed via compressor 58 .
  • the recycled residual vapor discharged from compressor 58 is split into two fractions.
  • a first fraction that is equal to at least 2.5 times the feed gas molar volume is transported via line 62 and is combined with dry liquid bromine conveyed by pump 24 , heated in exchanger 26 to vaporize the bromine and fed into first reactor 30 .
  • the second fraction is drawn off of line 62 via line 63 and is regulated by control valve 60 , at a rate sufficient to dilute the alkyl bromide concentration to reactor 34 and absorb the heat of reaction such that reactor 34 is maintained at the selected operating temperature, preferably in the range of about 300° C. to about 450° C. in order to maximize conversion versus selectivity and to minimize the rate of catalyst deactivation due to the deposition of carbon.
  • the dilution provided by the recycled vapor effluent permits selectivity of bromination in the first reactor 30 to be controlled in addition to moderating the temperature in second reactor 34 .
  • Water containing metal bromide salt in solution which is removed from scrubber 38 via line 44 is passed to hydrocarbon stripper 47 wherein residual dissolved hydrocarbons are stripped from the aqueous phase by contact with incoming feed gas transported via line 11 .
  • the stripped aqueous solution is transported from hydrocarbon stripper 47 via line 65 and is cooled to a temperature in the range of about 0° C. to about 70° C. in heat exchanger 46 and then passed to absorber 48 in which residual bromine is recovered from vent stream in line 67 .
  • the aqueous solution effluent from scrubber 48 is transported via line 49 to a heat exchanger 40 to be preheated to a temperature in the range of about 100° C. to about 600° C., and most preferably in the range of about 120° C.
  • Oxygen or air is delivered via line 10 by blower or compressor 13 at a pressure in the range of about ambient to about 5 bar to bromine stripper 14 to strip residual bromine from water which is removed from stripper 14 in line 64 and is combined with water stream 53 from dehydrator 50 to form water effluent stream in line 56 which is removed from the process.
  • the oxygen or air leaving bromine stripper 14 is fed via line 15 to reactor 16 which operates at a pressure in the range of about ambient to about 5 bar and at a temperature in the range of about 100° C. to about 600° C., but most preferably in the range of about 120° C. to about 180° C.
  • the preferred metal of the bromide salt is Fe(III), Cu(II), or Zn(II), or mixtures thereof, as these are less expensive and readily oxidize at lower temperatures in the range of about 120° C. to about 180° C., allowing the use of glass-lined or fluorpolymer-lined equipment.
  • alkaline-earth metals which also form oxidizable bromide salts such as Ca (II) or Mg(II) could be used.
  • Hydrobromic acid reacts with the metal hydroxide and/or metal oxide and/or metal oxy-bromide species so formed to once again yield the metal bromide salt and water.
  • Heat exchanger 18 in reactor 16 supplies heat to vaporize water and bromine.
  • the overall reactions result in the net oxidation of hydrobromic acid produced in first reactor 30 and second reactor 34 to elemental bromine and steam in the liquid phase catalyzed by the metal bromide/metal oxide or metal hydroxide operating in a catalytic cycle.
  • three-phase separator 22 since liquid water has a limited solubility for bromine, on the order of about 3% by weight, any additional bromine which is condensed forms a separate, denser liquid bromine phase.
  • the liquid bromine phase however, has a notably lower solubility for water, on the order of less than 0.1%.
  • a substantially dry bromine vapor can be easily obtained by condensing liquid bromine and water, decanting water by simple physical separation and subsequently re-vaporizing liquid bromine.
  • Liquid bromine is pumped in line 25 from three-phase separator 22 via pump 24 to a pressure sufficient to mix with vapor stream 62 .
  • bromine is recovered and recycled within the process.
  • the residual oxygen or nitrogen and any residual bromine vapor which is not condensed exits three-phase separator 22 and is passed via line 23 to bromine scrubber 48 , wherein residual bromine is recovered by solution into and by reaction with reduced metal bromides in the aqueous metal bromide solution stream 65 .
  • Water is removed from separator 22 via line 27 and introduced into stripper 14 .
  • a gas stream containing lower molecular weight alkanes comprised of mixture of a feed gas plus a recycled gas stream at a pressure in the range of about 1 bar to about 30 bar, is transported or conveyed via line, pipe or conduit 162 , mixed with dry bromine liquid transported via pump 124 and passed to heat exchanger 126 wherein the liquid bromine is vaporized.
  • the mixture of lower molecular weight alkanes and dry bromine vapor is fed to reactor 130 .
  • the molar ratio of lower molecular weight alkanes to dry bromine vapor in the mixture introduced into reactor 130 is in excess of 2.5:1
  • Reactor 130 has an inlet pre-heater zone 128 which heats the mixture to a reaction initiation temperature in the range of about 250° C. to about 400° C.
  • the lower molecular weight alkanes are reacted exothermically with dry bromine vapor at a relatively low temperature in the range of about 250° C. to about 600° C., and at a pressure in the range of about 1 bar to about 30 bar to produce gaseous alkyl bromides and hydrobromic acid vapors.
  • the upper limit of the operating temperature range is greater than the upper limit of the reaction initiation temperature range to which the feed mixture is heated due to the exothermic nature of the bromination reaction.
  • methane the formation of methyl bromide occurs in accordance with the following general reaction: CH 4 (g)+Br 2 (g) ⁇ CH 3 Br (g)+HBr (g)
  • This reaction occurs with a significantly high degree of selectivity to methyl bromide.
  • a high selectivity to the mono-halogenated methyl bromide occurs.
  • Small amounts of dibromomethane and tribromomethane are also formed in the bromination reaction.
  • alkanes such as ethane, propane and butane
  • ethane propane and butane
  • mono and multiple brominated species such as ethyl bromides, propyl bromides and butyl bromides. If an alkane to bromine ratio of significantly less than 2.5 to 1 is utilized, substantially lower selectivity to methyl bromide substantially occurs and significant formation of undesirable carbon soot is observed. Further, the dry bromine vapor that is feed into first reactor 130 is substantially water-free.
  • the effluent that contains alkyl bromides and hydrobromic acid is withdrawn from the first reactor 130 via line 131 and is partially cooled to a temperature in the range of about 150° C. to 450° C. in heat exchanger 132 before flowing to a second reactor 134 .
  • the alkyl bromides are reacted exothermically at a temperature range of from about 250° C. to about 500° C., and a pressure in the range of about 1 bar to 30 bar, over a fixed bed of crystalline alumino-silicate catalyst, preferably a zeolite catalyst, and most preferably an X type or Y type zeolite catalyst.
  • a preferred zeolite is 10 X or Y type zeolite, although other zeolites with differing pore sizes and acidities, which are synthesized by varying the alumina-to-silica ratio may be used in the process of the present invention as will be evident to a skilled artisan.
  • the zeolite catalyst is preferably used in a protonic form, a sodium form or a mixed protonic/sodium form, such as Li, K or Cs, with alkali-earth metal cations, such as Mg, Ca, Sr or Ba, or with transition metal cations, such as Ni, Mn, V, W, or to the hydrogen form. These various alternative cations have an effect of shifting reaction selectivity.
  • zeolite catalysts having varying pore sizes and acidities, which are synthesized by varying the alumina-to-silica ratio may be used in the second reactor 134 as will be evident to a skilled artisan.
  • the alkyl bromides are reacted to produce a mixture of olefins and higher molecular weight hydrocarbons and additional hydrobromic acid vapor.
  • the temperature at which the second reactor 134 is operated is an important parameter in determining the selectivity of the reaction to olefins and various higher molecular weight liquid hydrocarbons. It is preferred to operate second reactor 134 at a temperature within the range of about 250° C. to 500° C. , but more preferably within the range of about 300° C. to 450° C. Temperatures above about 450° C. in the second reactor result in increased yields of light hydrocarbons, such as undesirable methane and carbonaceous coke, whereas lower temperatures increase yields of olefins such as ethylene, propylene and butylene and heavier molecular weight hydrocarbon products.
  • the catalyst may be periodically regenerated in situ, by isolating reactor 134 from the normal process flow, purging with an inert gas via line 170 at a pressure in the range of about 1 bar to about 5 bar and an elevated temperature in the range of 400° C. to 650° C. to remove unreacted material adsorbed on the catalyst insofar as is practical, and then subsequently oxidizing the deposited carbon to CO 2 by addition of air or inert gas-diluted oxygen via line 170 to reactor 134 at a pressure in the range of about 1 bar to about 5 bar and an elevated temperature in the range of 400° C. to 650° C. Carbon dioxide and residual air or inert gas are vented from reactor 134 via line 175 during the regeneration period.
  • the effluent which comprises olefins, the higher molecular weight hydrocarbons and hydrobromic acid is withdrawn from the second reactor 134 via line 135 , cooled to a temperature in the range of about 0° C. to about 100° C. in exchanger 136 , and combined with vapor effluent in line 112 from hydrocarbon stripper 147 .
  • the mixture is then passed to a scrubber 138 and contacted with a stripped, recirculated water that is transported to scrubber 138 in line 164 by any suitable means, such as pump 143 , and is cooled to a temperature in the range of about 0° C. to about 50° C. in heat exchanger 155 .
  • Any liquid hydrocarbon product condensed in scrubber 138 may be skimmed and withdrawn as stream 137 and added to liquid hydrocarbon product 154 .
  • Hydrobromic acid is dissolved in scrubber 138 in the aqueous solution which is removed from the scrubber 138 via line 144 , and passed to hydrocarbon stripper 147 wherein residual hydrocarbons dissolved in the aqueous solution are stripped-out by contact with feed gas 111 .
  • the stripped aqueous phase effluent from hydrocarbon stripper 147 is cooled to a temperature in the range of about 0° C. to about 50° C. in heat exchanger 146 and then passed via line 165 to absorber 148 in which residual bromine is recovered from vent stream 167 .
  • the residual vapor phase containing olefins and the higher molecular weight hydrocarbon is removed as effluent from the scrubber 138 and forwarded to dehydrator 150 to remove substantially all water from the gas stream.
  • the water is then removed from the dehydrator 150 via line 153 .
  • the dried gas stream containing olefins and the higher molecular weight hydrocarbons is further passed via line 151 to product recovery unit 152 to recover olefins and the C 5 + gasoline range hydrocarbon fraction as a liquid product in line 154 .
  • any conventional method of dehydration and liquids recovery such as solid-bed dessicant adsorption followed by, for example, refrigerated condensation, cryogenic expansion, or circulating absorption oil, or other solvents as used to process natural gas or refinery gas streams and recover olefinic hydrocarbons, as known to a skilled artisan, may be employed in the implementation of this invention.
  • the residual vapor effluent from product recovery unit 152 is then split into a purge stream 157 that may be utilized as fuel for the process and a recycled residual vapor which is compressed via compressor 158 .
  • the recycled residual vapor discharged from compressor 158 is split into two fractions.
  • a first fraction that is equal to at least 2.5 times the feed gas volume is transported via line 162 , combined with the liquid bromine conveyed in line 125 and passed to heat exchanger 126 wherein the liquid bromine is vaporized and fed into first reactor 130 .
  • the second fraction which is drawn off line 162 via line 163 and is regulated by control valve 160 , at a rate sufficient to dilute the alkyl bromide concentration to reactor 134 and absorb the heat of reaction such that reactor 134 is maintained at the selected operating temperature, preferably in the range of about 300° C. to about 450° C. in order to maximize conversion vs. selectivity and to minimize the rate of catalyst deactivation due to the deposition of carbon.
  • the dilution provided by the recycled vapor effluent permits selectivity of bromination in the first reactor 130 to be controlled in addition to moderating the temperature in second reactor 134 .
  • Oxygen, oxygen enriched air or air 110 is delivered via blower or compressor 113 at a pressure in the range of about ambient to about 5 bar to bromine stripper 114 to strip residual bromine from water which leaves stripper 114 via line 164 and is divided into two portions.
  • the first portion of the stripped water is recycled via line 164 , cooled in heat exchanger 155 to a temperature in the range of about 20° C. to about 50° C., and maintained at a pressure sufficient to enter scrubber 138 by any suitable means, such as pump 143 .
  • the portion of water that is recycled is selected such that the hydrobromic acid solution effluent removed from scrubber 138 via line 144 has a concentration in the range from about 10% to about 50% by weight hydrobromic acid, but more preferably in the range of about 30% to about 48% by weight to minimize the amount of water which must be vaporized in exchanger 141 and preheater 119 and to minimize the vapor pressure of HBr over the resulting acid.
  • a second portion of water from stripper 114 is removed from line 164 and the process via line 156 .
  • the dissolved hydrobromic acid that is contained in the aqueous solution effluent from scrubber 148 is transported via line 149 and is combined with the oxygen, oxygen enriched air or air leaving bromine stripper 114 in line 115 .
  • the combined aqueous solution effluent and oxygen, oxygen enriched air or air is passed to a first side of heat exchanger 141 and through preheater 119 wherein the mixture is preheated to a temperature in the range of about 100° C. to about 600° C. and most preferably in the range of about 120° C. to about 180° C. and passed to third reactor 117 that contains a metal bromide salt or metal oxide.
  • the preferred metal of the bromide salt or metal oxide is Fe(III), Cu(II) or Zn(II) although Co(II), Ni(II), Mn(II), V(II), Cr(II) or other transition-metals which form oxidizable bromide salts can be used.
  • alkaline-earth metals which also form oxidizable bromide salts, such as Ca (II) or Mg(II) could be used.
  • the metal bromide salt in the oxidation reactor 117 can be utilized as a concentrated aqueous solution or preferably, the concentrated aqueous salt solution may be imbibed into a porous, high surface area, acid resistant inert support such as a silica gel.
  • the oxide form of the metal in a range of 10 to 20% by weight is deposited on an inert support such as alumina with a specific surface area in the range of 50 to 200 m2/g.
  • the oxidation reactor 117 operates at a pressure in the range of about ambient to about 5 bar and at a temperature in the range of about 100° C. to 600° C., but most preferably in the range of about 120° C. to 180° C.; therein, the metal bromide is oxidized by oxygen, yielding elemental bromine and metal hydroxide, metal oxide or metal oxy-bromide species or, metal oxides in the case of the supported metal bromide salt or metal oxide operated at higher temperatures and lower pressures at which water may primarily exist as a vapor.
  • the hydrobromic acid reacts with the metal hydroxide, metal oxy-bromide or metal oxide species and is neutralized, restoring the metal bromide salt and yielding water.
  • the overall reaction results in the net oxidation of hydrobromic acid produced in first reactor 130 and second reactor 134 to elemental bromine and steam, catalyzed by the metal bromide/metal hydroxide or metal oxide operating in a catalytic cycle.
  • the elemental bromine and water and any residual oxygen or nitrogen (if air or oxygen enriched air is utilized as the oxidant) leaving as vapor from the outlet of third reactor 117 are cooled in the second side of exchanger 141 and condenser 120 to a temperature in the range of about 0° C. to about 70° C. wherein the bromine and water are condensed and passed to three-phase separator 122 .
  • three-phase separator 122 since liquid water has a limited solubility for bromine, on the order of about 3% by weight, any additional bromine which is condensed forms a separate, denser liquid bromine phase.
  • the liquid bromine phase however, has a notably lower solubility for water, on the order of less than 0.1%.
  • a substantially dry bromine vapor can be easily obtained by condensing liquid bromine and water, decanting water by simple physical separation and subsequently re-vaporizing liquid bromine. It is important to operate at conditions that result in the near complete reaction of HBr so as to avoid significant residual HBr in the condensed liquid bromine and water, as HBr increases the miscibility of bromine in the aqueous phase, and at sufficiently high concentrations, results in a single ternary liquid phase.
  • Liquid bromine is pumped from three-phase separator 122 via pump 124 to a pressure sufficient to mix with vapor stream 162 .
  • the residual air, oxygen enriched air or oxygen and any bromine vapor which is not condensed exits three-phase separator 122 and is passed via line 123 to bromine scrubber 148 , wherein residual bromine is recovered by dissolution into hydrobromic acid solution stream conveyed to scrubber 148 via line 165 .
  • Water is removed from the three-phase separator 122 via line 129 and passed to stripper 114 .
  • the metal bromide/metal hydroxide, metal oxy-bromide or metal oxide operates in a catalytic cycle allowing bromine to be easily recycled within the process.
  • the metal bromide is readily oxidized by oxygen, oxygen enriched air or air either in the aqueous phase or the vapor phase at temperatures in the range of about 100° C. to about 600° C. and most preferably in the range of about 120° C. to about 180° C. to yield elemental bromine vapor and metal hydroxide, metal oxy-bromide or metal oxide. Operation at temperatures below about 180° C. is advantageous, thereby allowing the use of low-cost corrosion-resistant fluoropolymer-lined equipment. Hydrobromic acid is neutralized by reaction with the metal hydroxide or metal oxide yielding steam and the metal bromide.
  • the elemental bromine vapor and steam are condensed and easily separated in the liquid phase by simple physical separation, yielding substantially dry bromine.
  • the absence of significant water allows selective bromination of alkanes, without production of CO 2 and the subsequent efficient and selective reactions of alkyl bromides to primarily C 2 to C 4 olefins and heavier products, the C 5 + fraction of which contains substantial branched alkanes and substituted aromatics.
  • Byproduct hydrobromic acid vapor from the bromination reaction and subsequent reaction in reactor 134 are readily dissolved into an aqueous phase and neutralized by the metal hydroxide or metal oxide species resulting from oxidation of the metal bromide.
  • the alkyl bromination and alkyl bromide conversion stages are operated in a substantially similar manner to those corresponding stages described with respect to FIGS. 2 and 3 above. More particularly, a gas stream containing lower molecular weight alkanes, comprised of mixture of a feed gas and a recycled gas stream at a pressure in the range of about 1 bar to about 30 bar, is transported or conveyed via line, pipe or conduits 262 and 211 , respectively, and mixed with dry bromine liquid in line 225 . The resultant mixture is transported via pump 224 and passed to heat exchanger 226 wherein the liquid bromine is vaporized.
  • the mixture of lower molecular weight alkanes and dry bromine vapor is fed to reactor 230 .
  • the molar ratio of lower molecular weight alkanes to dry bromine vapor in the mixture introduced into reactor 230 is in excess of 2.5:1.
  • Reactor 230 has an inlet pre-heater zone 228 which heats the mixture to a reaction initiation temperature in the range of 250° C. to 400° C.
  • the lower molecular weight alkanes are reacted exothermically with dry bromine vapor at a relatively low temperature in the range of about 250° C.
  • methyl bromide occurs in accordance with the following general reaction: CH 4 (g)+Br 2 (g) ⁇ CH 3 Br (g)+HBr (g) This reaction occurs with a significantly high degree of selectivity to methyl bromide.
  • the dry bromine vapor that is feed into first reactor 230 is substantially water-free. Applicant has discovered that elimination of substantially all water vapor from the bromination step in first reactor 230 substantially eliminates the formation of unwanted carbon dioxide thereby increasing the selectivity of alkane bromination to alkyl bromides and eliminating the large amount of waste heat generated in the formation of carbon dioxide from alkanes.
  • the effluent that contains alkyl bromides and hydrobromic acid is withdrawn from the first reactor 230 via line 231 and is partially cooled to a temperature in the range of about 150° C. to 450° C. in heat exchanger 232 before flowing to a second reactor 234 .
  • the alkyl bromides are reacted exothermically at a temperature range of from about 250° C. to about 500° C., and a pressure in the range of about 1 bar to 30 bar, over a fixed bed of crystalline alumino-silicate catalyst, preferably a zeolite catalyst, and most preferably, an X type or Y type zeolite catalyst.
  • a preferred zeolite is 10 X or Y type zeolite, although other zeolites with differing pore sizes and acidities, which are synthesized by varying the alumina-to-silica ratio may be used in the process of the present invention as will be evident to a skilled artisan.
  • the zeolite catalyst is preferably used in a protonic form, a sodium form or a mixed protonic/sodium form, the zeolite may also be modified by ion exchange with other alkali metal cations, such as Li, K or Cs, with alkali-earth metal cations, such as Mg, Ca, Sr or Ba, with transition metal cations, such as Ni, Mn, V, W, or to the hydrogen form.
  • the temperature at which the second reactor 234 is operated is an important parameter in determining the selectivity of the reaction to olefins and various higher molecular weight liquid hydrocarbons. It is preferred to operate second reactor 234 at a temperature within the range of about 250° C. to about 500° C., but more preferably within the range of about 300° C. to about 450° C. Temperatures above about 450° C. in the second reactor result in increased yields of light hydrocarbons, such as undesirable methane and carbonaceous coke, whereas lower temperatures increase yields of olefins and heavier molecular weight hydrocarbon products.
  • the catalyst may be periodically regenerated in situ, by isolating reactor 234 from the normal process flow, purging with an inert gas via line 270 at a pressure in the range of about 1 bar to about 5 bar and an elevated temperature in the range of about 400° C. to about 650° C. to remove unreacted material adsorbed on the catalyst insofar as is practical, and then subsequently oxidizing the deposited carbon to CO 2 by addition of air or inert gas-diluted oxygen via line 270 to reactor 234 at a pressure in the range of about 1 bar to about 5 bar and an elevated temperature in the range of about 400° C. to about 650° C. Carbon dioxide and residual air or inert gas are vented from reactor 234 via line 275 during the regeneration period.
  • the effluent which comprises olefins, the higher molecular weight hydrocarbons and hydrobromic acid is withdrawn from the second reactor 234 via line 235 and cooled to a temperature in the range of about 100° C. to about 600° C. in exchanger 236 .
  • the cooled effluent is transported via lines 235 and 241 with valve 238 in the opened position and valves 239 and 243 in the closed position and introduced into a vessel or reactor 240 containing a bed 298 of a solid phase metal oxide.
  • the metal of the metal oxide is selected form magnesium (Mg), calcium (Ca), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Sn), or tin (Sn).
  • the metal is selected for the impact of its physical and thermodynamic properties relative to the desired temperature of operation, and also for potential environmental and health impacts and cost.
  • magnesium, copper and iron are employed as the metal, with magnesium being the most preferred.
  • These metals have the property of not only forming oxides but bromide salts as well, with the reactions being reversible in a temperature range of less than about 500° C.
  • the solid metal oxide is preferably immobilized on a suitable attrition-resistant support, for example a synthetic amorphous silica, such as Davicat Grade 57, manufactured by Davison Catalysts of Columbia, Md. Or more preferably, an alumina support with a specific surface area of about 50 to 200 m2/g.
  • a suitable attrition-resistant support for example a synthetic amorphous silica, such as Davicat Grade 57, manufactured by Davison Catalysts of Columbia, Md.
  • an alumina support with a specific surface area of about 50 to 200 m2/g.
  • hydrobromic acid is reacted with the metal oxide at temperatures below about 600° C. and preferably between about 100° C. to about 500° C.
  • the dried gas stream containing olefins and the higher molecular weight hydrocarbons is further passed via line 251 to product recovery unit 252 to recover olefins and the C 5 + fraction as a liquid product in line 254 .
  • product recovery unit 252 Any conventional method of dehydration and liquids recovery such as solid-bed dessicant adsorption followed by, for example, refrigerated condensation, cryogenic expansion, or circulating absorption oil or other solvent, as used to process natural gas or refinery gas streams and recover olefinic hydrocarbons, as known to a skilled artisan, may be employed in the implementation of this invention.
  • the residual vapor effluent from product recovery unit 252 is then split into a purge stream 257 that may be utilized as fuel for the process and a recycled residual vapor which is compressed via compressor 258 .
  • the recycled residual vapor discharged from compressor 258 is split into two fractions. A first fraction that is equal to at least 1.5 times the feed gas volume is transported via line 262 , combined with the liquid bromine and feed gas conveyed in line 225 and passed to heat exchanger 226 wherein the liquid bromine is vaporized and fed into first reactor 230 in a manner as described above.
  • the dilution provided by the recycled vapor effluent permits selectivity of bromination in the first reactor 230 to be controlled in addition to moderating the temperature in second reactor 234 .
  • Oxygen, oxygen enriched air or air 210 is delivered via blower or compressor 213 at a pressure in the range of about ambient to about 10 bar to bromine via line 214 , line 215 and valve 249 through heat exchanger 215 , wherein oxygen, oxygen enriched air or air is preheated to a temperature in the range of about 100° C. to about 500° C. to a second vessel or reactor 246 containing a bed 299 of a solid phase metal bromide.
  • Oxygen reacts with the metal bromide in accordance with the following general reaction wherein M represents the metal: MBr 2 +1/2O 2 ⁇ MO+Br 2 In this manner, a dry, substantially HBr free bromine vapor is produced thereby eliminating the need for subsequent separation of water or hydrobromic acid from the liquid bromine.
  • Reactor 246 is operated below 600° C., and more preferably between about 300° C. to about 500° C.
  • the resultant bromine vapor is transported from reactor 246 via line 247 , valve 248 and line 242 to heat exchanger or condenser 221 where the bromine is condensed into a liquid.
  • the liquid bromine is transported via line 242 to separator 222 wherein liquid bromine is removed via line 225 and transported via line 225 to heat exchanger 226 and first reactor 230 by any suitable means, such as by pump 224 .
  • the residual air or unreacted oxygen is transported from separator 222 via line 227 to a bromine scrubbing unit 223 , such as venturi scrubbing system containing a suitable solvent, or suitable solid adsorbant medium, as selected by a skilled artisan, wherein the remaining bromine is captured.
  • the captured bromine is desorbed from the scrubbing solvent or adsorbant by heating or other suitable means and the thus recovered bromine transported via line 212 to line 225 .
  • the scrubbed air or oxygen is vented via line 229 . In this manner, nitrogen and any other substantially non-reactive components are removed from the system of the present invention and thereby not permitted to enter the hydrocarbon-containing portion of the process; also loss of bromine to the surrounding environment is avoided.
  • Reactors 240 and 246 may be operated in a cyclic fashion. As illustrated in FIG. 4A , valves 238 and 219 are operated in the open mode to permit hydrobromic acid to be removed from the effluent that is withdrawn from the second reactor 234 , while valves 248 and 249 are operated in the open mode to permit air, oxygen enriched air or oxygen to flow through reactor 246 to oxidize the solid metal bromide contained therein. Once significant conversion of the metal oxide and metal bromide in reactors 240 and 246 , respectively, has occurred, these valves are closed. At this point, bed 299 in reactor 246 is a bed of substantially solid metal bromide, while bed 298 in reactor 240 is substantially solid metal oxide. As illustrated in FIG.
  • valves 245 and 243 are then opened to permit oxygen, oxygen enriched air or air to flow through reactor 240 to oxidize the solid metal bromide contained therein, while valves 239 and 217 are opened to permit effluent which comprises olefins, the higher molecular weight hydrocarbons and hydrobromic acid that is withdrawn from the second reactor 234 to be introduced into reactor 246 .
  • the reactors are operated in this manner until significant conversion of the metal oxide and metal bromide in reactors 246 and 240 , respectively, has occurred and then the reactors are cycled back to the flow schematic illustrated in FIG. 4A by opening and closing valves as previously discussed.
  • FIGS. 4A and 5A When oxygen is utilized as the oxidizing gas transported in via line 210 to the reactor being used to oxidize the solid metal bromide contained therein, the embodiment of the process of the present invention illustrated in FIGS. 4A and 5A can be modified such that the bromine vapor produced from either reactor 246 ( FIG. 4B ) or 240 ( FIG. 5B ) is transported via lines 242 and 225 directly to first reactor 230 . Since oxygen is reactive and will not build up in the system, the need to condense the bromine vapor to a liquid to remove unreactive components, such as nitrogen, is obviated. Compressor 213 is not illustrated in FIGS. 4B and 5B as substantially all commercial sources of oxygen, such as a commercial air separator unit, will provide oxygen to line 210 at the required pressure. If not, a compressor 213 could be utilized to achieve such pressure as will be evident to a skilled artisan.
  • the beds of solid metal oxide particles and solid metal bromide particles contained in reactors 240 and 246 , respectively, are fluidized and are connected in the manner described below to provide for continuous operation of the beds without the need to provide for equipment, such as valves, to change flow direction to and from each reactor.
  • the effluent which comprises olefins, the higher molecular weight hydrocarbons and hydrobromic acid is withdrawn from the second reactor 234 via line 235 , cooled to a temperature in the range of about 100° C. to about 500° C. in exchanger 236 , and introduced into the bottom of reactor 240 which contains a bed 298 of solid metal oxide particles.
  • oxygen, oxygen enriched air or air 210 is delivered via blower or compressor 213 at a pressure in the range of about ambient to about 10 bar, transported via line 214 through heat exchanger 215 , wherein the oxygen, oxygen enriched air or air is preheated to a temperature in the range of about 100° C. to about 500° C. and introduced into second vessel or reactor 246 below bed 299 of a solid phase metal bromide.
  • Oxygen reacts with the metal bromide in the manner described above with respect to FIG. 4A to produce a dry, substantially HBr free bromine vapor.
  • the flow of this introduced gas induces the particles in bed 299 to flow upwardly within reactor 246 as oxygen is reacted with the metal bromide.
  • reactors 240 and 246 can be operated continuously without changing the parameters of operation.
  • oxygen is utilized as the oxidizing gas and is transported in via line 210 to reactor 246 .
  • the embodiment of the process of the present invention illustrated in FIG. 6A is modified such that the bromine vapor produced from reactor 246 is transported via lines 242 and 225 directly to first reactor 230 . Since oxygen is reactive and will not build up in the system, the need to condense the bromine vapor to a liquid to remove unreactive components, such as nitrogen, is obviated.
  • Compressor 213 is not illustrated in FIG. 6B as substantially all commercial sources of oxygen, such as a commercial air separator unit, will provide oxygen to line 210 at the required pressure. If not, a compressor 213 could be utilized to achieve such pressure as will be evident to a skilled artisan.
  • the alkyl bromination and alkyl bromide conversion stages are operated in a substantially similar manner to those corresponding stages described in detail with respect to FIG. 4A except as discussed below.
  • Residual air or oxygen and bromine vapor emanating from reactor 246 is transported via line 247 , valve 248 and line 242 and valve 300 to heat exchanger or condenser 221 wherein the bromine-containing gas is cooled to a temperature in the range of about 30° C. to about 300° C.
  • the bromine-containing vapor is then transported via line 242 to vessel or reactor 320 containing a bed 322 of a solid phase metal bromide in a reduced valence state.
  • the metal of the metal bromide in a reduced valence state is selected from copper (Cu), iron (Fe), or molybdenum (Mo).
  • the metal is selected for the impact of its physical and thermodynamic properties relative to the desired temperature of operation, and also for potential environmental and health impacts and cost.
  • copper or iron are employed as the metal, with copper being the most preferred.
  • the solid metal bromide is preferably immobilized on a suitable attrition-resistant support, for example a synthetic amorphous silica, such as Davicat Grade 57, manufactured by Davison Catalysts of Columbia, Md.
  • the metal is deposited in oxide form in a range of about 10 to 20 wt % on an alumina support with a specific surface area in the range of about 50 to 200 m2/g
  • bromine vapor is reacted with the solid phase metal bromide, preferably retained on a suitable attrition-resistant support at temperatures below about 300° C. and preferably between about 30° C. to about 200° C. in accordance with the following general formula wherein M 2 represents the metal: 2M 2 Br n +Br 2 ⁇ 2M 2 Br n+1
  • bromine is stored as a second metal bromide, i.e. 2M 2 Br n+1 , in reactor 320 while the resultant vapor containing residual air or oxygen is vented from reactor 320 via line 324 , valve 326 and line 318 .
  • the gas stream containing lower molecular weight alkanes comprised of mixture of a feed gas (line 211 ) and a recycled gas stream, is transported or conveyed via line 262 , heat exchanger 352 , wherein the gas stream is preheated to a temperature in the range of about 150° C. to about 600° C., valve 304 and line 302 to a second vessel or reactor 310 containing a bed 312 of a solid phase metal bromide in an oxidized valence state.
  • the metal of the metal bromide in an oxidized valence state is selected from copper (Cu), iron (Fe), or molybdenum (Mo).
  • the metal is selected for the impact of its physical and thermodynamic properties relative to the desired temperature of operation, and also for potential environmental and health impacts and cost.
  • copper or iron are employed as the metal, with copper being the most preferred.
  • the solid metal bromide in an oxidized state is preferably immobilized on a suitable attrition-resistant support, for example a synthetic amorphous silica such as Davicat Grade 57, manufactured by Davison Catalysts of Columbia, Md. More preferably the metal is deposited in an oxide state in a range of 10 to 20 wt % supported on an alumina support with a specific surface area of about 50 to 200 m2/g.
  • the temperature of the gas stream is from about 150° C.
  • the temperature of the gas stream thermally decomposes the solid phase metal bromide in an oxidized valence state to yield elemental bromine vapor and a solid metal bromide in a reduced state in accordance with the following general formula wherein M 2 represents the metal: 2M 2 Br n+1 ⁇ 2M 2 Br n +Br 2
  • M 2 represents the metal: 2M 2 Br n+1 ⁇ 2M 2 Br n +Br 2
  • the resultant bromine vapor is transported with the gas stream containing lower molecular weight alkanes via lines 314 , 315 , valve 317 , line 330 , heat exchanger 226 prior to being introduced into alkyl bromination reactor 230 .
  • Reactors 310 and 320 may be operated in a cyclic fashion. As illustrated in FIG. 7 , valve 304 is operated in the open mode to permit the gas stream containing lower molecular weight alkanes to be transported to the second reactor 310 , while valve 317 is operated in the open mode to permit this gas stream with bromine vapor that is generated in reactor 310 to be transported to alkyl bromination reactor 230 . Likewise, valve 306 is operated in the open mode to permit bromine vapor from reactor 246 to be transported to reactor 320 , while valve 326 is operated in the open mode to permit residual air or oxygen to be vented from reactor 320 .
  • valves 304 , 317 , 306 and 326 are closed, and then valves 308 and 332 are opened to permit the gas stream containing lower molecular weight alkanes to be transported or conveyed via lines 262 , heat exchanger 352 , wherein gas stream is heated to a range of about 150° C. to about 600° C., valve 308 and line, 309 to reactor 320 to thermally decompose the solid phase metal bromide in an oxidized valence state to yield elemental bromine vapor and a solid metal bromide in a reduced state.
  • Valve 332 is also opened to permit the resultant bromine vapor to be transported with the gas stream containing lower molecular weight alkanes via lines 324 and 330 and heat exchanger 226 prior to being introduced into alkyl bromination reactor 230 .
  • valve 300 is-opened to permit bromine vapor emanating from reactor 246 to be transported via line 242 through exchanger 221 into reactor 310 wherein the solid phase metal bromide in a reduced valence state reacts with bromine to effectively store bromine as a metal bromide.
  • valve 316 is opened to permit the resulting gas, which is substantially devoid of bromine to be vented via lines 314 and 318 .
  • the reactors are operated in this manner until significant conversion of the beds of reduced metal bromide and oxidized metal bromide in reactors 310 and 320 , respectively, to the corresponding oxidized and reduced states has occurred and then the reactors are cycled back to the flow schematic illustrated in FIG. 7 by opening and closing valves as previously discussed.
  • the beds 312 and 322 contained in reactors 310 and 320 are fluidized and are connected in the manner described below to provide for continuous operation of the beds without the need to provide for equipment, such as valves, to change flow direction to and from each reactor.
  • the bromine-containing gas withdrawn from the reactor 246 via line 242 is cooled to a temperature in the range of about 30° C. to about 300° C. in exchangers 370 and 372 , and introduced into the bottom of reactor 320 which contains a moving solid bed 322 in a fluidized state.
  • this introduced fluid induces the particles in bed 322 to flow upwardly within reactor 320 as the bromine vapor is reacted with the reduced metal bromide entering the bottom of bed 322 in the manner as described above with respect to FIG. 7 .
  • the particles which contain substantially oxidized metal bromide on the attrition-resistant support due to the substantially complete reaction of the reduced metal bromide with bromine vapor in reactor 320 are withdrawn via a weir, cyclone or other conventional means of solid/gas separation, flow by gravity down line 359 and are introduced at or near the bottom of the bed 312 in reactor 310 .
  • a weir, cyclone or other conventional means of solid/gas separation flow by gravity down line 359 and are introduced at or near the bottom of the bed 312 in reactor 310 .
  • the gas stream containing lower molecular weight alkanes comprised of mixture of a feed gas (line 211 ) and a recycled gas stream, is transported or conveyed via line 262 and heat exchanger 352 wherein the gas stream is heated to a range of about 150° C. to about 600° C. and introduced into reactor 310 .
  • the heated gas stream thermally decomposes the solid phase metal bromide in an oxidized valence state present entering at or near the bottom of bed 312 to yield elemental bromine vapor and a solid metal bromide in a reduced state.
  • the flow of this introduced gas induces the particles in bed 312 to flow upwardly within reactor 310 as the oxidized metal bromide is thermally decomposed.
  • reactors 310 and 320 can be operated continuously with changing the parameters of operation.
  • the process of the present invention is less expensive than conventional process since it operates at low pressures in the range of about 1 bar to about 30 bar and at relatively low temperatures in the range of about 20° C. to about 600° C. for the gas phase, and preferably about 20° C. to about 180° C. for the liquid phase.
  • These operating conditions permit the use of less expensive equipment of relatively simple design that are constructed from readily available metal alloys or glass-lined equipment for the gas phase and polymer-lined or glass-lined vessels, piping and pumps for the liquid phase.
  • the process of the present invention is also more efficient because less energy is required for operation and the production of excessive carbon dioxide as an unwanted byproduct is minimized.
  • the process is capable of directly producing a mixed hydrocarbon product containing various molecular-weight components in the liquefied petroleum gas (LPG), olefin and motor gasoline fuels range that have substantial aromatic content thereby significantly increasing the octane value of the gasoline-range fuel components.
  • LPG liquefied petroleum gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
US11/254,438 2004-04-16 2005-10-19 Process for converting gaseous alkanes to olefins and liquid hydrocarbons Abandoned US20060100469A1 (en)

Priority Applications (29)

Application Number Priority Date Filing Date Title
US11/254,438 US20060100469A1 (en) 2004-04-16 2005-10-19 Process for converting gaseous alkanes to olefins and liquid hydrocarbons
PCT/US2006/035788 WO2007046986A2 (en) 2005-10-19 2006-09-13 Process for converting gaseous alkanes to olefins and liquid hydrocarbons
BRPI0617707-7A BRPI0617707A2 (pt) 2005-10-19 2006-09-13 processo para a conversão de alcanos gasosos em olefinas e hidrocarbonetos lìquidos
MYPI20081159 MY151088A (en) 2005-10-19 2006-09-13 Process for converting gaseous alkanes to olefins and liquid hydrocarbons
CN2006800390646A CN101291891B (zh) 2005-10-19 2006-09-13 将气态烷烃转化为烯烃和液态烃的方法
UAA200806734A UA105476C2 (uk) 2005-10-19 2006-09-13 Спосіб перетворення газоподібних алканів в олефіни і рідкі вуглеводні
EA200801115A EA022696B1 (ru) 2005-10-19 2006-09-13 Способ превращения газообразных алканов в олефины и жидкие углеводороды
ZA200803330A ZA200803330B (en) 2005-10-19 2006-09-13 Process for converting gaseous alkanes to olefins and liquid hydrocarbons
AU2006302939A AU2006302939B2 (en) 2005-10-19 2006-09-13 Process for converting gaseous alkanes to olefins and liquid hydrocarbons
AP2008004417A AP2008004417A0 (en) 2005-10-19 2006-09-13 Process for converting gaseous alkanes to olefins and liquid hydrocarbons
NZ567480A NZ567480A (en) 2005-10-19 2006-09-13 Process for converting gaseous alkanes to olefins and liquid hydrocarbons
JP2008536583A JP5396082B2 (ja) 2005-10-19 2006-09-13 ガス状アルカンをプロセスオレフィン及び液体炭化水素に転換するプロセス
EP06814642A EP1945598A4 (en) 2005-10-19 2006-09-13 PROCESS FOR CONVERTING GASEOUS ALKANES TO OLEFINS AND LIQUID HYDROCARBONS
CA2625459A CA2625459C (en) 2005-10-19 2006-09-13 Process for converting gaseous alkanes to olefins and liquid hydrocarbons
KR1020087009389A KR101363300B1 (ko) 2005-10-19 2006-09-13 가스상 알칸의 올레핀 및 액상 탄화수소로의 전환방법
PE2006001251A PE20070737A1 (es) 2005-10-19 2006-10-16 Procedimiento para convertir alcanos gaseosos a olefinas e hidrocarburos liquidos
ARP060104577A AR058123A1 (es) 2005-10-19 2006-10-19 Proceso para convertir alcanos gaseosos a olefinas e hidrocarburos liquidos
EC2008008361A ECSP088361A (es) 2005-10-19 2008-04-10 Proceso para convertir alcanos gaseosos a olefinas e hidrocarburos liquidos
EG2008040622A EG26651A (en) 2005-10-19 2008-04-16 Process to convert gaseous alkanes into olefins and liquid hydrocarbons
TNP2008000176A TNSN08176A1 (en) 2005-10-19 2008-04-18 Process for converting gaseous alkanes to olefins and liquid hydrocarbons
US12/112,926 US8008535B2 (en) 2004-04-16 2008-04-30 Process for converting gaseous alkanes to olefins and liquid hydrocarbons
NO20082252A NO20082252L (no) 2005-10-19 2008-05-16 Fremgangsmate for overforing av gassformige alkaner til olefiner og flytende hydrokarboner
US12/123,924 US20080275284A1 (en) 2004-04-16 2008-05-20 Process for converting gaseous alkanes to liquid hydrocarbons
US12/138,877 US7674941B2 (en) 2004-04-16 2008-06-13 Processes for converting gaseous alkanes to liquid hydrocarbons
US12/477,319 US8173851B2 (en) 2004-04-16 2009-06-03 Processes for converting gaseous alkanes to liquid hydrocarbons
US12/957,036 US20110071326A1 (en) 2004-04-16 2010-11-30 Process for converting gaseous alkanes to liquid hydrocarbons
US13/117,785 US8642822B2 (en) 2004-04-16 2011-05-27 Processes for converting gaseous alkanes to liquid hydrocarbons using microchannel reactor
US13/679,600 US20130079564A1 (en) 2004-04-16 2012-11-16 Process for converting gaseous alkanes to liquid hydrocarbons
US14/255,549 US9206093B2 (en) 2004-04-16 2014-04-17 Process for converting gaseous alkanes to liquid hydrocarbons

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/826,885 US7244867B2 (en) 2004-04-16 2004-04-16 Process for converting gaseous alkanes to liquid hydrocarbons
US11/101,886 US7348464B2 (en) 2004-04-16 2005-04-08 Process for converting gaseous alkanes to liquid hydrocarbons
US11/254,438 US20060100469A1 (en) 2004-04-16 2005-10-19 Process for converting gaseous alkanes to olefins and liquid hydrocarbons

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/101,886 Continuation-In-Part US7348464B2 (en) 2004-04-16 2005-04-08 Process for converting gaseous alkanes to liquid hydrocarbons

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/112,926 Continuation US8008535B2 (en) 2004-04-16 2008-04-30 Process for converting gaseous alkanes to olefins and liquid hydrocarbons

Publications (1)

Publication Number Publication Date
US20060100469A1 true US20060100469A1 (en) 2006-05-11

Family

ID=37962979

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/254,438 Abandoned US20060100469A1 (en) 2004-04-16 2005-10-19 Process for converting gaseous alkanes to olefins and liquid hydrocarbons
US12/112,926 Expired - Lifetime US8008535B2 (en) 2004-04-16 2008-04-30 Process for converting gaseous alkanes to olefins and liquid hydrocarbons

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/112,926 Expired - Lifetime US8008535B2 (en) 2004-04-16 2008-04-30 Process for converting gaseous alkanes to olefins and liquid hydrocarbons

Country Status (21)

Country Link
US (2) US20060100469A1 (zh)
EP (1) EP1945598A4 (zh)
JP (1) JP5396082B2 (zh)
KR (1) KR101363300B1 (zh)
CN (1) CN101291891B (zh)
AP (1) AP2008004417A0 (zh)
AR (1) AR058123A1 (zh)
AU (1) AU2006302939B2 (zh)
BR (1) BRPI0617707A2 (zh)
CA (1) CA2625459C (zh)
EA (1) EA022696B1 (zh)
EC (1) ECSP088361A (zh)
EG (1) EG26651A (zh)
MY (1) MY151088A (zh)
NO (1) NO20082252L (zh)
NZ (1) NZ567480A (zh)
PE (1) PE20070737A1 (zh)
TN (1) TNSN08176A1 (zh)
UA (1) UA105476C2 (zh)
WO (1) WO2007046986A2 (zh)
ZA (1) ZA200803330B (zh)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009152408A1 (en) * 2008-06-13 2009-12-17 Marathon Gtf Technology, Ltd. Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery
WO2009152403A1 (en) * 2008-06-13 2009-12-17 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
WO2009152405A1 (en) * 2008-06-13 2009-12-17 Marathon Gtf Technology, Ltd. Hydrogenation of multi-brominated alkanes
US7674941B2 (en) 2004-04-16 2010-03-09 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
US20100087688A1 (en) * 2008-10-01 2010-04-08 Jorge Miller Process and catalyst for converting alkanes
US20100135895A1 (en) * 2007-04-13 2010-06-03 Xiaoping Zhou Process for Purifying HBr in Hydrocarbons
US7838708B2 (en) 2001-06-20 2010-11-23 Grt, Inc. Hydrocarbon conversion process improvements
US7847139B2 (en) 2003-07-15 2010-12-07 Grt, Inc. Hydrocarbon synthesis
US7880041B2 (en) 2004-04-16 2011-02-01 Marathon Gtf Technology, Ltd. Process for converting gaseous alkanes to liquid hydrocarbons
US7883568B2 (en) * 2006-02-03 2011-02-08 Grt, Inc. Separation of light gases from halogens
US7964764B2 (en) 2003-07-15 2011-06-21 Grt, Inc. Hydrocarbon synthesis
US7998438B2 (en) 2007-05-24 2011-08-16 Grt, Inc. Zone reactor incorporating reversible hydrogen halide capture and release
US8008535B2 (en) 2004-04-16 2011-08-30 Marathon Gtf Technology, Ltd. Process for converting gaseous alkanes to olefins and liquid hydrocarbons
US8053616B2 (en) 2006-02-03 2011-11-08 Grt, Inc. Continuous process for converting natural gas to liquid hydrocarbons
US8198495B2 (en) 2010-03-02 2012-06-12 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides
US8273929B2 (en) 2008-07-18 2012-09-25 Grt, Inc. Continuous process for converting natural gas to liquid hydrocarbons
US8367884B2 (en) 2010-03-02 2013-02-05 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides
US8436220B2 (en) 2011-06-10 2013-05-07 Marathon Gtf Technology, Ltd. Processes and systems for demethanization of brominated hydrocarbons
US8642822B2 (en) 2004-04-16 2014-02-04 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons using microchannel reactor
US8802908B2 (en) 2011-10-21 2014-08-12 Marathon Gtf Technology, Ltd. Processes and systems for separate, parallel methane and higher alkanes' bromination
US8815050B2 (en) 2011-03-22 2014-08-26 Marathon Gtf Technology, Ltd. Processes and systems for drying liquid bromine
US8829256B2 (en) 2011-06-30 2014-09-09 Gtc Technology Us, Llc Processes and systems for fractionation of brominated hydrocarbons in the conversion of natural gas to liquid hydrocarbons
US9193641B2 (en) 2011-12-16 2015-11-24 Gtc Technology Us, Llc Processes and systems for conversion of alkyl bromides to higher molecular weight hydrocarbons in circulating catalyst reactor-regenerator systems
US9206093B2 (en) 2004-04-16 2015-12-08 Gtc Technology Us, Llc Process for converting gaseous alkanes to liquid hydrocarbons
WO2016061584A1 (en) * 2014-10-17 2016-04-21 Solutions Labs, Inc. Production of clean hydrocarbon and nitrogen-based fuel
WO2021198166A1 (en) 2020-03-30 2021-10-07 Total Se Gas to olefins process with coproduction of hydrogen together with heat integration process
WO2021198172A1 (en) 2020-03-30 2021-10-07 Total Se Gas to olefins processes with coproduction of hydrogen
WO2021198175A1 (en) 2020-03-30 2021-10-07 Total Se Gas to olefins process with coproduction of hydrogen together with electrified reactional section

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AP2009005040A0 (en) * 2007-05-14 2009-12-31 Grt Inc Process for converting hydrocarbon feedstocks withelectrolytic recovery of halogen
MY161668A (en) * 2008-09-17 2017-05-15 Asahi Kasei Chemicals Corp Process for production of olefin, and production apparatus for same
TW201341609A (zh) * 2011-12-12 2013-10-16 Exxonmobil Upstream Res Co 用於形成碳奈米管之方法及系統
US20160347681A1 (en) * 2015-05-27 2016-12-01 Sabic Global Technologies B.V. Ion-exchanged zsm-5 zeolite catalyst for conversion of alkyl halide to olefins
DE102016116265A1 (de) * 2016-08-31 2018-03-01 Faurecia Emissions Control Technologies, Germany Gmbh Lotwerkstoff auf Kupferbasis und Verwendung des Lotwerkstoffs
KR102365335B1 (ko) * 2019-12-12 2022-02-18 한국화학연구원 합성가스로부터 가솔린 범위의 액상 탄화수소 혼합물을 제조하는 방법

Citations (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2168260A (en) * 1934-11-11 1939-08-01 Ig Farbenindustrie Ag Process of preparing monohalogenation products
US2246082A (en) * 1939-08-22 1941-06-17 Shell Dev Preparation of alkyl halides
US2488083A (en) * 1946-06-18 1949-11-15 Socony Vacuum Oil Co Inc Manufacture of liquid hydrocarbons
US2677598A (en) * 1953-01-19 1954-05-04 Dow Chemical Co Oxidation of ferrous halides to form ferric halides
US2941014A (en) * 1954-08-06 1960-06-14 Hoechst Ag Manufacture of alkyl chlorination products
US3172915A (en) * 1965-03-09 Preparation of oxygenated methane derivatives
US3246043A (en) * 1962-12-12 1966-04-12 Universal Oil Prod Co Preparation of olefinic hydrocarbons
US3273964A (en) * 1963-02-28 1966-09-20 Universal Oil Prod Co Process for producing bromine from a mixture of hydrogen bromide and olefinic hydrocarbon
US3310380A (en) * 1964-02-13 1967-03-21 Universal Oil Prod Co Bromine recovery
US3353916A (en) * 1966-04-25 1967-11-21 Universal Oil Prod Co Quantitative recovery of bromine by two stage catalytic oxidation of hydrogen bromide
US3562321A (en) * 1961-10-10 1971-02-09 Sun Oil Co Preparation of oxygenated hydrocarbons
US3598876A (en) * 1967-11-13 1971-08-10 Universal Oil Prod Co Selective halogenation of hydrocarbons
US3702886A (en) * 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
US3876715A (en) * 1972-12-01 1975-04-08 Gulf Research Development Co Process for preparing 2,3-dibromo-2-alkylalkanes
US3894107A (en) * 1973-08-09 1975-07-08 Mobil Oil Corp Conversion of alcohols, mercaptans, sulfides, halides and/or amines
US3894105A (en) * 1973-08-09 1975-07-08 Mobil Oil Corp Production of durene
US4006169A (en) * 1976-02-26 1977-02-01 Smithkline Corporation Epoxidation of α,β-ethylenic ketones
US4197420A (en) * 1977-07-18 1980-04-08 Sebastiano Cesca Method for producing oligomers from straight-chain alpha olefins, subsequently hydrogenating such oligomers and saturated products so obtained
US4301253A (en) * 1980-09-25 1981-11-17 Union Carbide Corporation Process for the selective production of ethanol and methanol directly from synthesis gas
US4333852A (en) * 1980-09-25 1982-06-08 Union Carbide Corporation Catalyst for the selective production of ethanol and methanol directly from synthesis gas
US4347391A (en) * 1973-06-11 1982-08-31 Stauffer Chemical Company Process for preparing ethylene dichloride
US4373109A (en) * 1981-08-05 1983-02-08 Olah George A Bifunctional acid-base catalyzed conversion of hetero-substituted methanes into olefins
US4440871A (en) * 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
US4465893A (en) * 1982-08-25 1984-08-14 Olah George A Oxidative condensation of natural gas or methane into gasoline range hydrocarbons
US4467130A (en) * 1981-09-01 1984-08-21 Olah George A Condensation of natural gas or methane into gasoline-range hydrocarbons
US4489210A (en) * 1981-08-19 1984-12-18 Bayer Aktiengesellschaft Process for the halogenation of organic compounds
US4496752A (en) * 1979-05-03 1985-01-29 The Lummus Company Production of epoxy compounds from olefinic compounds
US4513092A (en) * 1984-01-04 1985-04-23 Mobil Oil Corporation Composite catalyst for halogenation and condensation of alkanes
US4523040A (en) * 1981-09-01 1985-06-11 Olah George A Methyl halides and methyl alcohol from methane
US4652688A (en) * 1984-04-24 1987-03-24 The British Petroleum Company, P.L.C. Process for the production of hydrocarbons from hetero-substituted methanes
US4654449A (en) * 1982-12-09 1987-03-31 Mobil Oil Corporation Formation of halogenated hydrocarbons from hydrocarbons
US4655893A (en) * 1983-02-07 1987-04-07 Battelle Development Corporation Cubic boron nitride preparation utilizing a boron and nitrogen bearing gas
US4665270A (en) * 1983-12-16 1987-05-12 The British Petroleum Company, P.L.C. Process for the production of hydrocarbons from hetero-substituted alkanes
US4748013A (en) * 1985-04-17 1988-05-31 Toyo Soda Manufacturing Co., Ltd. Adsorbent for recovery of bromine and bromine-recovering process using same
US4769504A (en) * 1987-03-04 1988-09-06 The United States Of America As Represented By The United States Department Of Energy Process for converting light alkanes to higher hydrocarbons
US4795843A (en) * 1985-08-26 1989-01-03 Uop Inc. Conversion of methane into larger organic hydrocarbons
US4804797A (en) * 1987-08-24 1989-02-14 Gas Research Institute Production of commodity chemicals from natural gas by methane chlorination
US4973786A (en) * 1987-10-19 1990-11-27 Karra Sankaram B Process for the pyrolytic oxidation of methane to higher molecular weight hydrocarbons and synthesis gas
US4982024A (en) * 1989-12-26 1991-01-01 Ethyl Corporation Process for the selective dehydrohalogenation of an admixture of alkylhalides
US5001293A (en) * 1990-04-25 1991-03-19 Amoco Corporation Halocarbon conversion
US5087786A (en) * 1990-04-25 1992-02-11 Amoco Corporation Halogen-assisted conversion of lower alkanes
US5157189A (en) * 1987-10-19 1992-10-20 Karra Sankaram B Conversion of light hydrocarbons to higher hydrocarbons
US5243098A (en) * 1992-11-04 1993-09-07 Energia Andina Ltd. Conversion of methane to methanol
US5276240A (en) * 1991-10-18 1994-01-04 Board Of Regents, The University Of Texas System Catalytic hydrodehalogenation of polyhalogenated hydrocarbons
US5486627A (en) * 1994-12-02 1996-01-23 The Dow Chemical Company Method for producing epoxides
US5705728A (en) * 1990-12-06 1998-01-06 Occidental Chemical Corporation Process for the production of ethylene and mixture containing ethylene
US5969195A (en) * 1997-05-21 1999-10-19 Basf Aktiengesellschaft Hydrolysis of alkyl monohalides
US5998679A (en) * 1998-05-20 1999-12-07 Jlm Technology, Ltd. Methods for converting lower alkanes and alkanes to alcohols and diols
US6403840B1 (en) * 2001-06-20 2002-06-11 Grt, Inc. Process for synthesizing olefin oxides
US6452058B1 (en) * 2001-05-21 2002-09-17 Dow Global Technologies Inc. Oxidative halogenation of C1 hydrocarbons to halogenated C1 hydrocarbons and integrated processes related thereto
US6465699B1 (en) * 2001-06-20 2002-10-15 Gri, Inc. Integrated process for synthesizing alcohols, ethers, and olefins from alkanes
US6486368B1 (en) * 2001-06-20 2002-11-26 Grt, Inc. Integrated process for synthesizing alcohols, ethers, and olefins from alkanes
US6525230B2 (en) * 2001-04-18 2003-02-25 Grt, Inc. Zone reactor
US20030069452A1 (en) * 2001-06-20 2003-04-10 Sherman Jeffrey H. Method and apparatus for synthesizing from alcohols and ethers from alkanes, alkenes, and aromatics
US20030078456A1 (en) * 2001-06-20 2003-04-24 Aysen Yilmaz Integrated process for synthesizing alcohols, ethers, aldehydes, and olefins from alkanes
US20040006246A1 (en) * 2001-06-20 2004-01-08 Sherman Jeffrey H. Method and apparatus for synthesizing olefins, alcohols, ethers, and aldehydes
US6713087B2 (en) * 1999-05-28 2004-03-30 Alkermes Controlled Therapeutics, Inc. Method of producing submicron particles of a labile agent and use thereof
US20050038310A1 (en) * 2003-07-15 2005-02-17 Lorkovic Ivan M. Hydrocarbon synthesis
US20050171393A1 (en) * 2003-07-15 2005-08-04 Lorkovic Ivan M. Hydrocarbon synthesis
US20050192468A1 (en) * 2001-06-20 2005-09-01 Sherman Jeffrey H. Hydrocarbon conversion process improvements
US7019182B2 (en) * 2001-04-18 2006-03-28 Grt, Inc. Method of hydrocarbon preservation and environmental protection
US20060229475A1 (en) * 2005-04-11 2006-10-12 Weiss Michael J Synthesis of hydroxylated hydrocarbons
US20060229228A1 (en) * 2005-04-11 2006-10-12 Zachary John Anthony Komon Method of making alkoxylates
US7230150B2 (en) * 2001-04-18 2007-06-12 Grt, Inc. Zone reactor

Family Cites Families (691)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB156122A (en) 1919-12-08 1922-03-30 Otto Traun S Forschungslaborat Process for the manufacture of diolefines and derivatives thereof
GB294100A (en) 1927-07-16 1929-06-27 Curt Epner Improvements in and relating to the production of liquid polymerisation products from gases containing hydrocarbons
GB363009A (en) 1930-09-19 1931-12-17 John Philip Baxter Production of acetylene and vinyl chloride from ethylene dichloride
FR745544A (zh) 1931-11-11 1933-05-12
GB474922A (en) 1936-05-14 1937-11-15 Ig Farbenindustrie Ag Process for chlorinating and brominating hydrocarbons
GB536491A (en) 1939-09-28 1941-05-16 Bataafsche Petroleum A process for the production of aromatic hydrocarbons from unsaturated hydrocarbons
GB553950A (en) 1941-09-09 1943-06-11 Du Pont Improvements in or relating to the manufacture of halogenated hydrocarbons
GB586483A (en) 1944-07-05 1947-03-20 Standard Oil Dev Co Process for the conversion of normally gaseous olefins to liquid hydrocarbons
GB775590A (en) 1953-11-27 1957-05-29 Standard Oil Co Improvements in or relating to production of ethyl toluenes
GB793214A (en) 1955-02-18 1958-04-09 Bataafsche Petroleum Process for the conversion of hydrocarbons containing acyclic carbon atoms
GB796085A (en) 1955-12-22 1958-06-04 Bataafsche Petroleum Hydrocarbon conversion process
GB796048A (en) 1956-02-06 1958-06-04 Bataafsche Petroleum Conversion of hydrocarbons
DE1037137B (de) 1957-01-25 1958-08-21 Bayer Ag Verfahren zur Herstellung halogenhaltiger, aromatisch-aliphatischer Polyaether
GB883256A (en) 1958-05-02 1961-11-29 Columbia Southern Chem Corp Halogenation process
BE623466A (zh) 1961-10-13
GB950976A (en) 1961-10-13 1964-03-04 British Hydrocarbon Chem Ltd Improvements in and relating to the production of olefines
GB991303A (en) 1962-07-26 1965-05-05 British Hydrocarbon Chem Ltd The production of olefines by the dehydrochlorination of alkyl chlorides
US3294846A (en) 1962-10-10 1966-12-27 Dow Chemical Co Process for preparing metaaryloxy phenols
GB1015033A (en) 1963-01-31 1965-12-31 Shell Int Research Preparation of olefin oxides
NL125428C (zh) 1963-02-27
US4011278A (en) 1963-02-27 1977-03-08 Mobil Oil Corporation Conversion of polar compounds using a zsm-5 zeolite catalyst
GB1104294A (en) 1963-12-10 1968-02-21 Ralph William King Production of lower alkanols and lower alkyl bromides
US3923913A (en) 1964-05-12 1975-12-02 Pechiney Saint Gobain Process for obtaining chlorinated derivatives of ethylene
US3254023A (en) * 1964-06-08 1966-05-31 Socony Mobil Oil Co Inc Method of heat balancing in organic catalytic reactions
US3353919A (en) 1964-07-23 1967-11-21 Air Preheater Apparatus for the elimination of odors from noxious gases
BE672377A (zh) 1964-11-24 1966-05-16
DE1618686B1 (de) 1966-04-28 1971-08-26 Marathon Oil Co Tieftemperatur-Verfahren für die Chlorierung oder Bromierung von Kohlenwasserstoffen
US3346340A (en) 1966-08-11 1967-10-10 Universal Oil Prod Co Production of bromine by oxidation of hydrogen bromide
DE1807780B2 (de) 1968-11-08 1976-11-04 Henkel & Cie GmbH, 4000 Düsseldorf Verfahren zur herstellung von aether- und polyaetheralkoholen
DE1618254B1 (de) 1967-06-29 1971-07-08 Kalk Chemische Fabrik Gmbh Verfahren zur Herstellung von Bromverbindungen aus Alkoholen aus Brom
US3496242A (en) 1967-08-30 1970-02-17 Fmc Corp Oxychlorination of mixed hydrocarbons
US3879480A (en) 1967-12-07 1975-04-22 Lummus Co Vinyl chloride process
US3679758A (en) 1968-02-05 1972-07-25 Sun Oil Co Dihalogenation of branched alkanes
GB1253618A (en) 1968-03-28 1971-11-17 Perstorp Ab Process for the production of dry semi-formals
CA920775A (en) 1968-05-13 1973-02-13 Vadekar Mohan Oxidation of hydrogen chloride using molecular sieve catalysts
US3673264A (en) 1968-05-21 1972-06-27 Dow Chemical Co Method of preparing optically active propylene chlorohydrins and propylene oxides
US3920764A (en) 1968-10-23 1975-11-18 Lummus Co Dehydrogenation process
US3657367A (en) 1968-10-31 1972-04-18 Stauffer Chemical Co Oxychlorination of saturated and unsaturated hydrocarbons in the presence of a fluidized catalyst containing lanthanum and didymium
US3670037A (en) 1969-02-19 1972-06-13 Exxon Research Engineering Co Catalyst system
US3883651A (en) 1969-08-08 1975-05-13 Boehringer Sohn Ingelheim Pharmaceutical compositions containing a 2-(aminoalkylamino)-4-amino-thieno{8 3,2-d{9 pyrimidine and method of use
US3705196A (en) 1969-10-31 1972-12-05 Sun Oil Co Synthesis of aliphatic and alicyclic ethers
US3799997A (en) 1971-11-08 1974-03-26 Universal Oil Prod Co Preparation of alkenynes
US3968200A (en) 1972-03-27 1976-07-06 The Lummus Company Reactor effluent quench system
US4172099A (en) 1972-05-30 1979-10-23 Stauffer Chemical Company Process for chlorination of ethylene
GB1395926A (en) 1972-07-27 1975-05-29 Bp Chem Int Ltd Process for the production of isoprene by the chlorination/ dehydrochlorination of 2-methylbutene-2
JPS5231022B2 (zh) 1972-10-06 1977-08-12
IT982662B (it) 1973-03-30 1974-10-21 Montedison Spa Procedimento di bromofluorurazio ne del metano
US3865886A (en) 1973-06-20 1975-02-11 Lummus Co Production of allyl chloride
US3894104A (en) 1973-08-09 1975-07-08 Mobil Oil Corp Aromatization of hetero-atom substituted hydrocarbons
US3894103A (en) 1973-08-09 1975-07-08 Mobil Oil Corp Aromatization reactions
US3879473A (en) 1973-08-14 1975-04-22 Phillips Petroleum Co Preparation of ethers from alcohols and olefins catalyzed by iodine
US3987119A (en) 1973-10-23 1976-10-19 Allied Chemical Corporation Production of vinyl chloride from ethane
US3919336A (en) 1973-10-23 1975-11-11 Allied Chem Method of preparing vinyl chloride from liquid ethylene dichloride
US4092368A (en) 1974-03-13 1978-05-30 General Electric Company Vapor phase transesterification
US4046825A (en) 1974-05-15 1977-09-06 Mobil Oil Corporation Conversion of oxygenated compounds to gasoline
US4117251A (en) 1974-05-15 1978-09-26 Chemische Werke Huls Ag Method for preparing straight chain primary alcohols from 1-bromoalkanes
US4035285A (en) 1974-05-28 1977-07-12 Mobil Oil Corporation Hydrocarbon conversion process
US3965205A (en) 1974-06-10 1976-06-22 Mobil Oil Corporation Conversion of low octane hydrocarbons to high octane gasoline
US4169862A (en) 1974-07-22 1979-10-02 The B. F. Goodrich Company Low temperature catalytic combustion of chlorohydrocarbons
US4058576A (en) 1974-08-09 1977-11-15 Mobil Oil Corporation Conversion of methanol to gasoline components
US4138440A (en) 1974-08-14 1979-02-06 Mobil Oil Corporation Conversion of liquid alcohols and ethers with a fluid mass of ZSM-5 type catalyst
US3928483A (en) 1974-09-23 1975-12-23 Mobil Oil Corp Production of gasoline hydrocarbons
US4044061A (en) 1974-09-23 1977-08-23 Mobil Oil Corporation Preheating methanol effects steady state operation of conversion to gasoline
US3974062A (en) 1974-10-17 1976-08-10 Mobil Oil Corporation Conversion of full range crude oils with low molecular weight carbon-hydrogen fragment contributors over zeolite catalysts
US4071753A (en) 1975-03-31 1978-01-31 Gte Laboratories Incorporated Transducer for converting acoustic energy directly into optical energy
US4049734A (en) 1975-04-08 1977-09-20 Mobil Oil Corporation Conversion of coal to high octane gasoline
US4025576A (en) 1975-04-08 1977-05-24 Mobil Oil Corporation Process for manufacturing olefins
US4025575A (en) 1975-04-08 1977-05-24 Mobil Oil Corporation Process for manufacturing olefins
US4133838A (en) 1975-05-15 1979-01-09 Pearson Research Corp. Process for preparing hydrocarbons from methanol and phosphorus pentoxide
ZA763551B (en) 1975-07-02 1978-01-25 Mobil Oil Corp Manufacture of gasoline
US4039600A (en) 1975-07-02 1977-08-02 Mobil Oil Corporation Conversion of synthesis gas to aromatic hydrocarbons
US4087475A (en) 1975-07-03 1978-05-02 Robert Kenneth Jordan Carbonyl fluorination process
US4052471A (en) 1975-08-06 1977-10-04 Pearsall Chemical Corporation Process for chlorinating C8 to C30 linear hydrocarbons
US3992466A (en) 1975-08-13 1976-11-16 Mobil Oil Corporation Hydrocarbon conversion
US4052472A (en) 1976-01-16 1977-10-04 Mobil Oil Corporation Mordenite conversion of alkanols to penta- and hexamethyl benzenes
US4049573A (en) 1976-02-05 1977-09-20 Mobil Oil Corporation Zeolite catalyst containing oxide of boron or magnesium
US4060568A (en) 1976-03-31 1977-11-29 Mobil Oil Corporation Silica-modified zeolite catalyst and conversion therewith
US4072733A (en) 1976-04-02 1978-02-07 Ethyl Corporation Conversion of methanol and dimethyl ether
US4110180A (en) 1976-04-28 1978-08-29 Diamond Shamrock Technologies S.A. Process for electrolysis of bromide containing electrolytes
IT1075503B (it) 1976-05-08 1985-04-22 Basf Ag Processo per la preparazione di glicolesteri
US4025571A (en) 1976-05-12 1977-05-24 Mobil Oil Corporation Manufacture of hydrocarbons
US4025572A (en) 1976-05-12 1977-05-24 Mobil Oil Corporation Manufacture of hydrocarbons
GB1542112A (en) 1976-06-11 1979-03-14 Shell Int Research Process for the preparation of 2-phenylethanol or derivatives thereof
US4143084A (en) 1976-07-19 1979-03-06 Mobil Oil Corporation Di-alkylbenzene isomer mixtures
US4035430A (en) 1976-07-26 1977-07-12 Mobil Oil Corporation Conversion of methanol to gasoline product
CA1089632A (en) 1976-08-20 1980-11-18 Alfred J. Darnell Hydrogen production
US4194990A (en) 1977-02-11 1980-03-25 Allied Chemical Corporation Catalyst and process for the production of chlorofluorinated hydrocarbons
US4380682A (en) 1977-03-30 1983-04-19 Diamond Shamrock Corporation Balanced chlorination process
US4156698A (en) 1977-05-05 1979-05-29 Mobil Oil Corporation Conversion of alcohols or ethers using rare earth crystalline aluminosilicate in an alumina matrix
NL7710901A (nl) 1977-10-05 1979-04-09 Esmil B V Stationsstraat 48 Werkwijze voor het gelijktijdig verwerken van gebruikt metaal en/of metaalafval van gehaloge- neerde koolwaterstoffen.
US4300005A (en) 1977-12-02 1981-11-10 Monsanto Co. Preparation of vinyl chloride
US4191618A (en) 1977-12-23 1980-03-04 General Electric Company Production of halogens in an electrolysis cell with catalytic electrodes bonded to an ion transporting membrane and an oxygen depolarized cathode
US4133966A (en) 1977-12-23 1979-01-09 Gulf Research & Development Company Selective formation of ethanol from methanol, hydrogen and carbon monoxide
GB1604081A (en) * 1978-01-20 1981-12-02 Gallaher Ltd Production of catalysts from activated supports
SU694483A1 (ru) 1978-05-22 1979-10-30 Уфимский Нефтяной Институт Способ переработки побочных галоидуглеводородов производства хлористого аллила и металлилхлорида
US4282159A (en) 1978-06-19 1981-08-04 Wisconsin Alumni Research Foundation Preparation of alkylene oxides
DE2832532A1 (de) 1978-07-25 1980-02-07 Hoechst Ag Verfahren zur gewinnung von reinen 2-(perfluoralkyl)-aethanolen aus ihren gemischen mit 2-(perfluoralkyl)-aethylenen und gegebenenfalls 2-(perfluoralkyl)- aethylestern
US4187255A (en) 1978-08-21 1980-02-05 Conoco, Inc. Process for methylating naphthalene
FR2434861A1 (fr) 1978-08-31 1980-03-28 Inst Francais Du Petrole Procede de production d'essence a haut indice d'octane et en particulier d'essence utilisable sans plomb
US4849573A (en) 1978-09-05 1989-07-18 Mobil Oil Corporation Process for manufacturing light olefins
US4300009A (en) 1978-12-28 1981-11-10 Mobil Oil Corporation Conversion of biological material to liquid fuels
JPS55130923A (en) * 1979-03-30 1980-10-11 Mitsubishi Heavy Ind Ltd Condensation of methyl chloride through dehydrochlorination
US4311865A (en) 1979-04-04 1982-01-19 Mobil Oil Corporation Manufacture of hydrocarbons from oxygenates
NL7902886A (nl) 1979-04-12 1980-10-14 Shell Int Research Werkwijze voor de bereiding van een koolwaterstof- mengsel.
US4410714A (en) 1979-05-03 1983-10-18 The Lummus Company Production of epoxy compounds from olefinic compounds
US4443620A (en) 1979-05-03 1984-04-17 The Lummus Company Production of epoxy compounds from olefinic compounds
US4272338A (en) 1979-06-06 1981-06-09 Olin Corporation Process for the treatment of anolyte brine
US4371716A (en) 1979-09-04 1983-02-01 Shell Oil Company β-(Sec-alkoxy) ethanol process
US4462814A (en) 1979-11-14 1984-07-31 Koch Process Systems, Inc. Distillative separations of gas mixtures containing methane, carbon dioxide and other components
EP0031200B1 (en) 1979-12-13 1984-08-29 Imperial Chemical Industries Plc Method of recovering bromine from methyl bromide
US4307261A (en) 1980-02-19 1981-12-22 Vulcan Materials Company Process for separating ferric iron from chlorinated hydrocarbons
US4412086A (en) 1980-02-19 1983-10-25 Vulcan Materials Company Process for separating ferric iron from chlorinated hydrocarbons
US4350511A (en) 1980-03-18 1982-09-21 Koch Process Systems, Inc. Distillative separation of carbon dioxide from light hydrocarbons
DE3164837D1 (en) 1980-05-01 1984-08-23 Ici Plc Halogenation process using a halide carrier and process for regeneration of the halide carrier
US4302619A (en) 1980-06-04 1981-11-24 Mobil Oil Corporation Control of CO emissions in a process for producing gasoline from methanol
US4317934A (en) 1980-08-15 1982-03-02 Ethyl Corporation Preparation of carbonyl compounds
US4320241A (en) 1980-08-28 1982-03-16 Occidental Research Corporation Process for converting oxygenated hydrocarbons into hydrocarbons
US4308403A (en) 1980-09-12 1981-12-29 Texaco Inc. Process for preparing glycol ethers
US4317943A (en) 1980-09-12 1982-03-02 Texaco Inc. Process for preparing glycol ethers
US4431856A (en) 1980-09-29 1984-02-14 Mobil Oil Corporation Fluid zeolite catalyst conversion of alcohols and oxygenated derivatives to hydrocarbons
DE3037093C1 (de) 1980-10-01 1981-11-12 Chemische Werke Hüls AG, 4370 Marl Verfahren zur Herstellung von Cycloocten-4-ol-1 aus Cyclooctadien-1,5
US4543434A (en) 1981-01-28 1985-09-24 Mobil Oil Corporation Process for producing liquid hydrocarbon fuels
US4690903A (en) 1981-02-02 1987-09-01 Mobil Oil Corporation Process for preparing organic fuels and chemicals from biomass
GB2095245A (en) 1981-03-19 1982-09-29 Ici Plc Chlorination of alkanes
GB2095243A (en) 1981-03-19 1982-09-29 Ici Plc Production of methylene chloride
IN157669B (zh) 1981-03-23 1986-05-17 Pfizer
DE3117135A1 (de) 1981-04-30 1982-11-18 Bayer Ag, 5090 Leverkusen Kristallines alumosilicat, verfahren zu dessen herstellung sowie dessen verwendung zur katalytischen umwandlung von methanol und/oder dimethylether in kohlenwasserstoffe
US4389391A (en) 1981-06-28 1983-06-21 Dunn Jr Wendell E Process for beneficiating titaniferous ores
US4433192A (en) 1981-09-01 1984-02-21 Olah George A Condensation of natural gas or methane into gasoline range hydrocarbons
US4513164A (en) 1981-09-01 1985-04-23 Olah George A Condensation of natural gas or methane into gasoline range hydrocarbons
AU563307B2 (en) 1981-09-01 1987-07-02 G.A. Olah Methyl halides and methyl alcohol from methane
DE3137751A1 (de) 1981-09-23 1983-03-31 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zum erzeugen von benzinkohlenwasserstoffen aus methanol
US4605803A (en) 1981-11-21 1986-08-12 Mobil Oil Corporation Acid-catalyzed organic compound conversion
CA1186345A (en) 1981-12-14 1985-04-30 Martin M.Y. Chang Hydrocarbon production
US4568660A (en) 1982-01-25 1986-02-04 Hercules Incorporated Cycloolefin polymerization catalyst composition
US4489211A (en) 1982-02-04 1984-12-18 Onoda Cement Co., Ltd. Process for producing 2,2,2-trifluoroethanol
US4538015A (en) 1982-03-08 1985-08-27 Mobil Oil Corporation Catalysis over activated zeolites
US4538014A (en) 1982-03-08 1985-08-27 Mobil Oil Corporation Catalysis over activated zeolites
IT1150678B (it) 1982-03-12 1986-12-17 Anic Spa Procedimento per la produzione di eteri alchil terbutilici in presenza di butadiene
US4384159A (en) 1982-03-12 1983-05-17 The Dow Chemical Company Catalytic dehydrohalogenation process
US4433189A (en) 1982-03-18 1984-02-21 Mobil Oil Corporation Catalytic conversion of methanol to light olefins
US4588835A (en) 1982-03-29 1986-05-13 Otsuka Kagaku Yakuhin Kabushiki Kaisha Process for preparing alkoxyphenols
US4499314A (en) 1982-03-31 1985-02-12 Imperial Chemical Industries Plc Methanol conversion to hydrocarbons with zeolites and cocatalysts
DE3216722A1 (de) 1982-05-05 1983-11-10 Hoechst Ag, 6230 Frankfurt 4-halomethylbenzoesaeure-alkylester-imine und verfahren zu deren herstellung
GB2120249B (en) 1982-05-15 1985-11-27 British Petroleum Co Plc Process for the production of methyl or ethyl mono-halide
US4467133A (en) 1982-06-21 1984-08-21 Mobil Oil Corporation Conversion of alcohols and ethers to distillate range hydrocarbons
FR2529883A1 (fr) 1982-07-06 1984-01-13 Ugine Kuhlmann Procede de fabrication de chlorure de vinyle
US4509955A (en) 1982-08-09 1985-04-09 The Lubrizol Corporation Combinations of carboxylic acylating agents substituted with olefin polymers of high and low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4465884A (en) 1982-08-17 1984-08-14 Mobil Oil Corporation Olefin processing
US4814527A (en) 1982-10-18 1989-03-21 The Dow Chemical Company Catalytic process for ethylene dichloride
US4788377A (en) 1983-04-22 1988-11-29 Mobil Oil Corporation Process for manufacturing olefins
US4547612A (en) 1984-09-25 1985-10-15 Mobil Oil Corporation Production of lubricant and/or heavy distillate range hydrocarbons by light olefin upgrading
US4720600A (en) 1983-06-29 1988-01-19 Mobil Oil Corporation Production of middle distillate range hydrocarbons by light olefin upgrading
US4675410A (en) 1983-07-11 1987-06-23 Nepera Inc. Process for the production of pyridine or alkyl substituted pyridines
US4540826A (en) 1983-08-12 1985-09-10 Phillips Petroleum Company Process for preparing olefinic aldehydes
CA1202610A (en) 1983-08-15 1986-04-01 Ralph M. Dessau Activity enhancement of high silica zeolites
EP0134464B1 (de) 1983-08-25 1988-04-20 Hüls Aktiengesellschaft Verfahren zur Herstellung von 3,3- bzw. 2,3-Dimethylbuten und 2,3-Dimethylbutadien bzw. zur gleichzeitigen Herstellung dieser Olefine und Glykol- bzw. Polyglykol-n-alkyl-3,3- bzw. -2,3-dimethylbutylether aus Mono- und Dichlor-dimethylbutan
US5175382A (en) 1983-09-22 1992-12-29 Werner Hebgen Preparation of 1,2-Dichloroethane
US4524228A (en) 1983-09-29 1985-06-18 Mobil Oil Corporation Production of durene and gasoline from synthesis gas
US4524227A (en) 1983-09-29 1985-06-18 Mobil Oil Corporation Coproduction of durene and gasoline from synthesis gas and alcohols and separation of durene-gasoline mixtures
US4524231A (en) 1983-09-29 1985-06-18 Mobil Oil Corporation Production of durene from alcohols and ethers
US4704493A (en) 1983-10-31 1987-11-03 Chevron Corporation Conversions of low molecular weight hydrocarbons to higher molecular weight hydrocarbons using a metal compound-containing catalyst (II-A)
US4599474A (en) 1983-10-31 1986-07-08 Chevron Research Company Conversions of low molecular weight hydrocarbons to higher molecular weight hydrocarbons using a metal-containing catalyst
US4704488A (en) 1983-10-31 1987-11-03 Chevron Research Company Conversions of low molecular weight hydrocarbons to higher molecular weight hydrocarbons using a metal compound-containing catalyst (111-A)
US4709108A (en) 1983-10-31 1987-11-24 Chevron Research Company Conversions of low molecular weight hydrocarbons to higher molecular weight hydrocarbons using a metal compound-containing catalyst
GB8331982D0 (en) 1983-11-30 1984-01-04 British Petroleum Co Plc Hydrocarbons from c1 to c4 alkyl monohalides
GB8333613D0 (en) * 1983-12-16 1984-01-25 British Petroleum Co Plc Production of hydrocarbons from c1 to c4 alkyl monohalides
JPS60136525A (ja) 1983-12-26 1985-07-20 Agency Of Ind Science & Technol エタノ−ルの製造法
US4621161A (en) 1984-01-23 1986-11-04 Mobil Oil Corporation Oxygenate conversion over activated zeolite catalyst
US4642404A (en) 1984-01-23 1987-02-10 Mobil Oil Corporation Conversion of olefins and paraffins to higher hydrocarbons
US4550218A (en) 1984-03-05 1985-10-29 Mobil Oil Corporation Hydrocarbon synthesis with zeolite catalyst of improved hydrothermal stability
LU85285A1 (fr) 1984-04-03 1985-11-27 Labofina Sa Procede d'isomerisation d'olefines
US4634800A (en) 1984-04-16 1987-01-06 Atlantic Richfield Company Methane conversion process
US4497967A (en) 1984-06-15 1985-02-05 The Halcon Sd Group, Inc. Process for the preparation of ethanol from methanol, carbon monoxide _and hydrogen
US4590310A (en) 1984-08-02 1986-05-20 The Boc Group, Inc. Process for the preparation of 2,2,2-trifluoroethanol
US4550217A (en) 1984-08-29 1985-10-29 Mobil Oil Corporation Conversion of methanol to olefins using large size catalyst particles
US4696985A (en) 1984-11-16 1987-09-29 Hercules Incorporated Catalyst composition for polymerization of cycloolefins
GB8429007D0 (en) 1984-11-16 1984-12-27 British Petroleum Co Plc Aromatics from ethane/ethylene
US4579977A (en) 1984-12-20 1986-04-01 Phillips Petroleum Company Process for the oxidation of organic halides to organic aldehydes
US4764356A (en) 1984-12-21 1988-08-16 Exxon Research & Engineering Co. Process for synthesizing a zeolite catalyst on a pH controlled basis to improve catalyst life
US4544781A (en) 1985-01-09 1985-10-01 Mobil Oil Corporation Control of temperature exotherms in the conversion of methanol to gasoline hydrocarbons
DE194931T1 (de) 1985-03-14 1987-02-26 Societe Nationale Elf Aquitaine (Production), Courbevoie, Fr Verfahren und vorrichtung zur photochemischen sulfochlorinierung von gasfoermigen alkanen.
US4658077A (en) 1985-06-07 1987-04-14 Phillips Petroleum Company Composition of matter and method of oxidative conversion of organic compounds therewith
US5210357A (en) 1985-06-07 1993-05-11 Phillips Petroleum Company Composition of matter and method of oxidative conversion of organic compounds therewith
US5093542A (en) 1985-05-24 1992-03-03 Atlantic Richfield Company Methane conversion process
US5146027A (en) 1985-05-24 1992-09-08 Atlantic Richfield Co. Methane conversion process
US5959170A (en) 1985-05-24 1999-09-28 Atlantic Richfield Company Methane conversion process
US4774216A (en) 1985-06-07 1988-09-27 Phillips Petroleum Company Composition of matter for oxidative conversion of organic compounds
US5105045A (en) 1985-06-07 1992-04-14 Phillips Petroleum Company Method of oxidative conversion
US4724275A (en) 1985-07-01 1988-02-09 National Distillers And Chemical Corporation Crystalline aluminosilicates and their use in the conversion of methanol to low molecular weight hydrocarbons
GB8518820D0 (en) 1985-07-25 1985-08-29 British Petroleum Co Plc Chemical process
GB8520977D0 (en) 1985-08-21 1985-09-25 British Petroleum Co Plc Production of aromatics
US4665259A (en) 1985-08-28 1987-05-12 The Standard Oil Company Methane conversion process using phosphate-containing catalysts
US4658073A (en) 1985-09-23 1987-04-14 Mobil Oil Corporation Control system for multistage chemical upgrading
US4633027A (en) 1985-09-23 1986-12-30 Mobil Oil Corporation Process for converting olefins to gasoline, distillate and alkylate liquid hydrocarbons
CA1322768C (en) 1988-12-29 1993-10-05 John E. Stauffer Process for the chlorination of ethane
US4788369A (en) 1985-12-31 1988-11-29 Mobil Oil Corporation Conversion of methanol to gasoline
LU86280A1 (fr) 1986-01-29 1987-09-03 Labofina Sa Procede de production d'essence
GB8613673D0 (en) 1986-06-05 1986-07-09 Bp Benzin Und Petroleum Ag Chemical process
ZA874948B (en) 1986-07-07 1989-02-22 Mobil Oil Corp Aromatisation of aliphatics over gallium-containing zeolites
US4781733A (en) 1986-07-23 1988-11-01 Bend Research, Inc. Semipermeable thin-film membranes comprising siloxane, alkoxysilyl and aryloxysilyl oligomers and copolymers
US4814532A (en) 1986-08-04 1989-03-21 Chemical Company, Ltd. Asahi Process for producing alkylcyclopentadiene derivatives
US4795848A (en) 1986-08-28 1989-01-03 The Standard Oil Company Method for upgrading a low molecular weight alkane with a lead-zirconate catalyst
US5082816A (en) 1986-08-28 1992-01-21 The Standard Oil Company Lead-zirconate catalysts
US4720602A (en) 1986-09-08 1988-01-19 Mobil Oil Corporation Process for converting C2 to C12 aliphatics to aromatics over a zinc-activated zeolite
US5120332A (en) 1986-11-06 1992-06-09 The Haser Company Limited Gas resonance device
US5118899A (en) 1986-12-22 1992-06-02 Phillips Petroleum Company Composition of matter and method of oxidative conversion of organic compounds therewith
US5160502A (en) 1986-12-22 1992-11-03 Phillips Petroleum Company Composition of matter and method of oxidative conversion of organic compounds therewith
US5087787A (en) 1986-12-29 1992-02-11 Phillips Petroleum Company Method of oxidative conversion
DE3700132A1 (de) 1987-01-03 1988-07-14 Dow Chemical Gmbh Verfahren zum herstellen von ethylendichlorid
US4792642A (en) 1987-03-25 1988-12-20 Eastman Kodak Company Process for preparing iodinated aromatic compounds
US4795737A (en) 1987-03-25 1989-01-03 Eastman Kodak Company Process for the iodination of aromatic compounds over solid catalysts
US4886932A (en) 1987-03-30 1989-12-12 Atlantic Richfield Company Thin bed cofeed reaction system for methane conversion
CA1322769C (en) 1988-12-30 1993-10-05 John E. Stauffer Process for the chlorination of ethane
US4777321A (en) 1987-04-29 1988-10-11 Mobil Oil Corporation Feedstock preparation and conversion of oxygenates to olefins
US4775462A (en) 1987-06-22 1988-10-04 Uop Inc. Non-oxidative method of sweetening a sour hydrocarbon fraction
US4808763A (en) 1987-08-05 1989-02-28 Amoco Corporation Process for upgrading light paraffins
US4783566A (en) 1987-08-28 1988-11-08 Uop Inc. Hydrocarbon conversion process
GB8724373D0 (en) 1987-10-17 1987-11-18 British Petroleum Co Plc Chemical process
US4814535A (en) 1987-12-15 1989-03-21 Mobil Oil Corporation Conversion of oxygenates to gasoline at variable inlet temperature
US4814536A (en) 1987-12-15 1989-03-21 Mobil Oil Corporation Conversion of oxygenates to gasoline at variable space velocity
GB8802731D0 (en) 1988-02-06 1988-03-09 British Petroleum Co Plc Chemical process
US5059744A (en) 1988-03-03 1991-10-22 Mobil Oil Corporation Reactor and recovery system for upgrading lower olefins
GB8806675D0 (en) 1988-03-21 1988-04-20 Shell Int Research Process for preparing liquid hydrocarbons
US4851602A (en) 1988-04-11 1989-07-25 Mobil Oil Corporation Alkanes and alkenes conversion to high octane gasoline
US4851606A (en) 1988-04-25 1989-07-25 Mobil Oil Corporation Control of waste water chemical oxygen demand in an oxygenate to hydrocarbon conversion process
US4886925A (en) 1988-05-02 1989-12-12 Mobil Oil Corp Olefins interconversion and etherification process
JPH07106998B2 (ja) 1988-05-17 1995-11-15 ダイキン工業株式会社 1,1,1−トリフルオロ−2,2−ジクロロエタンの製造方法
US5013793A (en) 1990-07-26 1991-05-07 Exxon Chemical Patents Inc. Dynamically cured thermoplastic olefin polymers and process for producing the same
US4990711A (en) 1988-06-23 1991-02-05 Mobil Oil Corporation Synthetic polyolefin lubricant blends having high viscosity indices
US4950822A (en) 1988-06-27 1990-08-21 Ethyl Corporation Olefin oligomer synlube process
US4899002A (en) 1988-07-25 1990-02-06 Mobil Oil Corp. Integrated staged conversion of methanol to gasoline and distillate
FR2635101B1 (fr) 1988-08-05 1990-09-28 Rhone Poulenc Chimie Procede de preparation du trifluoroethanol par hydrolyse, en phase gazeuse, du chlorotrifluoroethane
US4939311A (en) 1988-08-17 1990-07-03 Amoco Corporation Catalysts for the oxidative conversion of methane to higher hydrocarbons
US5055633A (en) 1988-10-06 1991-10-08 Uop Adsorption and isomerization of normal and mono-methyl paraffins
US4956521A (en) 1988-10-06 1990-09-11 Uop Adsorption and isomerization of normal and mono-methyl paraffins
US5055634A (en) 1988-10-06 1991-10-08 Uop Adsorption and isomerization of normal and mono-methyl paraffins
US5215648A (en) 1988-10-20 1993-06-01 Chevron Research And Technology Company Hydrocarbon conversion processes using SSZ-31
US4899001A (en) 1988-11-21 1990-02-06 Uop Process for the simultaneous hydroconversion of a first feedstock comprising unsaturated, halogenated organic compounds and a second feedstock comprising saturated, halogenated organic compounds
US5194244A (en) 1988-11-23 1993-03-16 Shell Oil Company Basic alkali metal-zeolite compositions
US4929781A (en) 1988-11-30 1990-05-29 Uop Process for the simultaneous hydroconversion of a first feedstock comprising unsaturated, halogenated organic compounds and a second feedstock comprising saturated, halogenated organic compounds
US4895995A (en) 1988-12-02 1990-01-23 Uop Process for the simultaneous hydroconversion of a first feedstock comprising unsaturated, halogenated organic compounds and a second feedstock comprising saturated, halogenated organic compounds
EP0372183B1 (en) 1988-12-07 1997-01-22 Sumitomo Chemical Company, Limited Process for the production of 2,3-dimethylbutenes
US4939314A (en) 1988-12-19 1990-07-03 Mobil Oil Corporation Method for on-stream low-pressure regeneration of an oligomerization catalyst from a fluid-bed reactor operating at high pressure with hydrocarbons in a non-liquid phase
CA1304419C (en) 1988-12-22 1992-06-30 Raj N. Pandey Conversion of methane to gasoline-range hydrocarbons via isobutene
GB8829923D0 (en) 1988-12-22 1989-02-15 Ici Plc Zeolites
US5178748A (en) 1988-12-22 1993-01-12 Imperial Chemical Industries Catalytic reactions using zeolites
US4990696A (en) 1988-12-29 1991-02-05 Stauffer John E Methyl alcohol process
US4899000A (en) 1989-01-27 1990-02-06 Stauffer John E Production of allyl chloride
US5436378A (en) 1989-02-16 1995-07-25 Atochem Drying of hydrocarbon/hydrochloric acid/water admixtures
US5107051A (en) 1989-03-14 1992-04-21 Exxon Chemical Patents Inc. Halogen resistant hydrotreating process and catalyst
US4945175A (en) 1989-05-26 1990-07-31 Uop Dehydrocyclodimerization process start-up procedure
US5202511A (en) 1989-08-16 1993-04-13 The Dow Chemical Company Catalyst diluent for oxychlorination process
US5071815A (en) 1989-09-01 1991-12-10 British Columbia Research Corporation Method for producing catalysts
US5073657A (en) 1989-09-19 1991-12-17 Union Carbide Chemicals And Plastics Company Inc. Vapor phase modifiers for oxidative coupling
ZA907446B (en) 1989-09-19 1991-07-31 Union Carbide Chem Plastic Silver-containing catalysts for oxidative coupling
US5073656A (en) 1989-09-19 1991-12-17 Union Carbide Chemicals And Plastics Company, Inc. High ethylene to ethane processes for oxidative coupling
AU6259890A (en) 1989-09-19 1991-03-28 Union Carbide Chemicals And Plastics Company Inc. Low temperature catalysts for oxidative coupling processes
DE3933656A1 (de) 1989-10-09 1991-04-11 Basf Ag Verdunstungsarme polyesterharze
US5093533A (en) 1989-12-08 1992-03-03 Interstate Chemical, Inc. Blended gasolines and process for making same
US5208402A (en) 1989-12-08 1993-05-04 Interstate Chemical, Inc. Liquid fuels for internal combustion engines and process and apparatus for making same
US5026944A (en) 1989-12-20 1991-06-25 Energy Mines And Resources Canada Synthesis of isobutene from methane and acetylene
US5004847A (en) 1989-12-27 1991-04-02 Ethyl Corporation Recovery of hexabromocyclododecane particles
US5026937A (en) 1989-12-29 1991-06-25 Uop Aromatization of methane using zeolite incorporated in a phosphorus-containing alumina
US4982041A (en) 1990-01-10 1991-01-01 Union Carbide Chemicals And Plastics Company Inc. Double perovskite catalysts for oxidative coupling
US5055625A (en) 1990-02-06 1991-10-08 Fred Neidiffer Gasoline additive composition and method for using same
US5026934A (en) 1990-02-12 1991-06-25 Lyondell Petrochemical Company Method for converting light hydrocarbons to olefins, gasoline and methanol
US5043502A (en) 1990-03-16 1991-08-27 Uop Production of xylenes from light aliphatic hydrocarbons via dehydrocyclodimerization and methylation
US5228888A (en) 1990-03-23 1993-07-20 The Boc Group, Inc. Economical air separator
US5107061A (en) 1990-04-06 1992-04-21 Exxon Chemical Patents Inc. Removal of organochlorides from hydrocarbon feed streams
US5087779A (en) 1990-04-25 1992-02-11 Amoco Corporation Hydrocarbon halogenation
US5019652A (en) 1990-04-30 1991-05-28 The United States As Represented By The United States Department Of Energy Catalysts and method
US5139991A (en) 1990-04-30 1992-08-18 The United States Of American As Represented By The United States Department Of Energy Oxyhydrochlorination catalyst
US5068478A (en) 1990-05-25 1991-11-26 Energia Andina, Ltd. Producing alkenes and alkynes from alkanes and alkenes
GB9013859D0 (en) 1990-06-21 1990-08-15 Ici Plc Zeolites
GB9013916D0 (en) 1990-06-22 1990-08-15 Ici Plc Zeolites
US4988660A (en) 1990-06-25 1991-01-29 Union Carbide Chemicals And Plastics Company Inc. Double perovskite catalysts for oxidative coupling
US5096469A (en) 1990-07-23 1992-03-17 Keefer Bowie Adsorptive gas separator with inertial energy exchange
US5082473A (en) 1990-07-23 1992-01-21 Keefer Bowie Extraction and concentration of a gas component
US5013424A (en) 1990-07-30 1991-05-07 Uop Process for the simultaneous hydrogenation of a first feedstock comprising hydrocarbonaceous compounds and having a non-distillable component and a second feedstock comprising halogenated organic compounds
US5401890A (en) 1990-07-30 1995-03-28 Albemarle Corporation Process and apparatus for heat treating halogenated compounds
US5138112A (en) 1990-08-31 1992-08-11 Uop Process for converting a C2 -C6 aliphatic hydrocarbon to high octane transportable fuel
DE4029875A1 (de) 1990-09-21 1992-03-26 Hoechst Ag Verfahren zur inhibierung und zerstoerung von peroxiden in dialkylethern
JP2970683B2 (ja) 1990-10-12 1999-11-02 日石三菱株式会社 水素化脱アルキル触媒を用いた水素化脱アルキル法
US5085674A (en) 1990-10-25 1992-02-04 Union Carbide Industrial Gases Technology Corporation Duplex adsorption process
US5071449A (en) 1990-11-19 1991-12-10 Air Products And Chemicals, Inc. Gas separation by rapid pressure swing adsorption
US5107032A (en) 1990-11-20 1992-04-21 Noramco, Inc. Process for the preparation of o-phthalaldehydes
US5105046A (en) 1990-12-12 1992-04-14 Amoco Corporation Oxidative conversion of lower alkanes to higher hydrocarbons via fluorine-containing materials
US5055235A (en) 1990-12-12 1991-10-08 Ethyl Corporation Bromination process
US5223471A (en) 1990-12-12 1993-06-29 Amoco Corporation Fluorine-containing materials
US5306855A (en) 1991-02-15 1994-04-26 Catalytica, Inc. Catalytic process for converting lower alkanes to esters, alcohols, and to hydrocarbons
US5233113A (en) 1991-02-15 1993-08-03 Catalytica, Inc. Process for converting lower alkanes to esters
GB9105167D0 (en) 1991-03-12 1991-04-24 Ici Plc Chemical process
US5188725A (en) 1991-03-15 1993-02-23 Mobil Oil Corporation Fluidized catalyst process for production and etherification of olefins
US5237115A (en) 1991-03-15 1993-08-17 Phillips Petroleum Company Integrated olefin processing
FR2674769B1 (fr) 1991-04-04 1994-04-29 Inst Francais Du Petrole Catalyseur du type galloaluminosilicate contenant du gallium, un metal noble de la famille du platine et au moins un metal additionnel, et son utilisation en aromatisation des hydrocarbures.
EP0510238A1 (en) 1991-04-26 1992-10-28 NOVAMONT S.p.A. Process for producing lower poliols and mixtures thereof
US5288677A (en) 1991-06-28 1994-02-22 Exxon Chemical Patents Inc. Immobilized Lewis acid catalysts
GB9116172D0 (en) 1991-07-26 1991-09-11 Thames Water Utilities A method of and apparatus for treating a fluid
US5399258A (en) 1991-08-15 1995-03-21 Mobil Oil Corporation Hydrocarbon upgrading process
MY108348A (en) 1991-08-16 1996-09-30 Exxon Chemical Patents Inc Ester free ethers.
US5264635A (en) 1991-10-03 1993-11-23 Mobil Oil Corporation Selective cracking and etherification of olefins
US5245109A (en) 1991-10-11 1993-09-14 Amoco Corporation Hydrocarbon conversion
JP3120292B2 (ja) 1991-10-18 2000-12-25 イハラケミカル工業株式会社 脂肪族カルボン酸ハロメチルエステル類の製造法
US5385650A (en) 1991-11-12 1995-01-31 Great Lakes Chemical Corporation Recovery of bromine and preparation of hypobromous acid from bromide solution
US5268518A (en) 1991-11-15 1993-12-07 The Dow Chemical Company Reactor feed pipe design
US5191142A (en) 1991-12-23 1993-03-02 Amoco Corporation Process for converting methanol to olefins or gasoline
JPH07503404A (ja) 1992-02-04 1995-04-13 カタリティカ,インコーポレイテッド CeBr↓3触媒,および臭素生成のプロセス
US6169218B1 (en) 1992-02-10 2001-01-02 Catalytic Distillation Technologies Selective hydrogenation of highly unsaturated compounds in hydrocarbon streams
US5354916A (en) 1992-03-10 1994-10-11 Exxon Research And Engineering Company Low temperature conversion of alkanes
CA2088939A1 (en) 1992-03-10 1993-09-11 Istvan T. Horvath Low temperature conversion of alkanes
US5202506A (en) 1992-04-02 1993-04-13 E. I. Du Pont De Nemours And Company Oxidative drown process for 2-perfluoroalkylethyl alcohols
US5185479A (en) 1992-04-21 1993-02-09 Stauffer John E Process for methyl alcohol
CA2097090A1 (en) 1992-06-02 1993-12-03 Quang N. Le Process for the production of tertiary alkyl ether rich fcc gasoline
US5395981A (en) 1992-06-22 1995-03-07 Uop Hydrocarbon conversion by catalytic distillation
US5254790A (en) 1992-07-01 1993-10-19 Phillips Petroleum Company Integrated process for producing motor fuels
US5284990A (en) 1992-07-16 1994-02-08 Stratco, Inc. Method for converting a hydrogen fluoride alkylation unit to a sulfuric acid alkylation unit
US5276242A (en) 1992-08-26 1994-01-04 Phillips Petroleum Company Alkylation process
US5243114A (en) 1992-09-08 1993-09-07 Mobil Oil Corporation Oligomerization of alpha-olefins over layered silicate compositions containing pillars of silica and group VIB metal oxide
US5430214A (en) 1992-10-01 1995-07-04 The Dow Chemical Company Hydrodehalogenation process and catalyst for use therein
IT1255710B (it) 1992-10-01 1995-11-10 Snam Progetti Procedimento integrato per produrre olefine da miscele gassose contenenti metano
US5453557A (en) 1992-10-01 1995-09-26 The Dow Chemical Company Processes for converting chlorinated byproducts and waste products to useful materials
US5276226A (en) 1992-10-05 1994-01-04 Exxon Research & Engineering Company Low temperature halogenation of alkanes
US5300126A (en) 1992-10-19 1994-04-05 Mobil Oil Corporation Process for improving olefin etherification catalyst life
US5744669A (en) 1992-11-25 1998-04-28 Uop Process for the conversion of a halogenated organic stream containing trace quantities of organic nitrates
US5817904A (en) 1992-12-11 1998-10-06 Repsol Petroleo S.A. Method for the conversion of methane into longer chain hydrocarbons
TW291486B (zh) 1992-12-17 1996-11-21 Exxon Chemical Patents Inc
US5470377A (en) 1993-03-08 1995-11-28 Whitlock; David R. Separation of solutes in gaseous solvents
US5354931A (en) 1993-03-10 1994-10-11 Uop Process for hydrotreating an organic feedstock containing oxygen compounds and a halogen component
US5994604A (en) 1993-03-17 1999-11-30 Lockheed Martin Idaho Technologies Company Method and apparatus for low temperature destruction of halogenated hydrocarbons
GB9407257D0 (en) 1993-04-22 1994-06-08 Ici Plc Vaporisation of liquids
US5382743A (en) 1993-04-26 1995-01-17 Mobil Oil Corporation Skeletal isomerization of n-pentenes using ZSM-35 in the presence of hydrogen
US5465699A (en) 1993-06-01 1995-11-14 Volkswagen Ag Intake pipe arrangement for an internal combustion engine having individual arc-shaped cylinder intake pipes
US5382704A (en) 1993-06-30 1995-01-17 E. I. Du Pont De Nemours And Company Fluorinated methyl ethers
US5382744A (en) 1993-07-12 1995-01-17 Phillips Petroleum Company Control of synthetic isopentane production during alkylation of amylenes
US5510525A (en) 1993-07-22 1996-04-23 Gas Research Institute Direct catalytic oxidative carbonylation of lower alkanes to acids
IT1265051B1 (it) 1993-08-06 1996-10-28 Eniricerche Spa Processo per l'alchilazione di idrocarburi alifatici con olefine
US5500297A (en) 1993-08-09 1996-03-19 The Trustees Of Princeton University Electron acceptor compositions technical field
US5695890A (en) 1993-08-09 1997-12-09 The Trustees Of Princeton University Heterolamellar photoelectrochemical films and devices
US5906892A (en) 1993-08-09 1999-05-25 The Trustees Of Princeton University Electron acceptor compositions on polymer templates
US5430210A (en) 1993-08-27 1995-07-04 Mobil Oil Corporation Selective hydrogen combustion processes
GB9318505D0 (en) 1993-09-07 1993-10-20 Evc Tech Ag By-product recycling in oxychlorination process
GB9318507D0 (en) 1993-09-07 1993-10-20 Evc Tech Ag Vinyl chloride production process
US5371313A (en) 1993-11-24 1994-12-06 Polysar Rubber Corporation Purification of hydrocarbon streams
US5600045A (en) 1993-12-02 1997-02-04 The Dow Chemical Company Process for conversion of crude hydrocarbon mixtures
US5414173A (en) 1993-12-22 1995-05-09 The Dow Chemical Company Process of preparing cyclopentadiene and substituted derivatives thereof
GB9400569D0 (en) 1994-01-13 1994-03-09 Rhone Poulenc Chemicals Process for the production of substituted aromatic hydrocarbons from corresponding anilines by dediazoniation
EP0746529B1 (en) 1994-02-18 2000-01-05 Chevron Chemical Company LLC Zeolite ssz-42
US5565092A (en) 1994-03-16 1996-10-15 Exxon Chemical Patents Inc. Halogen resistant hydrogenation process and catalyst
US5780703A (en) 1994-05-02 1998-07-14 Mobil Oil Corporation Process for producing low aromatic diesel fuel with high cetane index
US5565616A (en) 1994-05-09 1996-10-15 Board Of Regents, The University Of Texas System Controlled hydrothermal processing
US5444168A (en) 1994-05-16 1995-08-22 Mobil Oil Corporation Process for the production of symmetrical ethers from secondary alcohols
US5401894A (en) 1994-06-07 1995-03-28 Uop Process for the treatment of halogenated organic feedstocks
US5591421A (en) 1994-07-11 1997-01-07 Chevron U.S.A. Inc. Zeolite SSZ-41
US5523503A (en) 1994-07-13 1996-06-04 Uop Cocurrent simulated moving bed hydrocarbon alkylation process
GB9414972D0 (en) 1994-07-26 1994-09-14 Bnfl Fluorchem Ltd Halogenation reactions
US5661097A (en) 1994-08-12 1997-08-26 The Dow Chemical Company Supported olefin polymerization catalyst
US6015867A (en) 1994-09-28 2000-01-18 Showa Denko K.K. 3-alkoxypropionic ester derivative, olefin polymerization catalyst, and process for preparation of polyolefin
WO1996011227A1 (en) 1994-10-05 1996-04-18 Great Lakes Chemical Corporation Continuous bromination process and products thereof
US6117371A (en) 1994-10-05 2000-09-12 Great Lakes Chemical Corporation Continuous bromination process and products thereof
CA2203115C (en) 1994-10-20 2006-09-19 Pierluigi Fatutto Single stage fixed bed oxychlorination of ethylene
GB2294262B (en) 1994-10-20 1998-07-08 Evc Tech Ag Single stage fixed bed oxychlorination of ethylene
US5489727A (en) 1994-10-28 1996-02-06 Phillips Petroleum Company Isopentane disproportionation
US5693191A (en) 1994-11-23 1997-12-02 The Dow Chemical Company Process for recovery of anhydrous hydrogen chloride from mixtures with non-condensable gases
RU2141937C1 (ru) 1994-11-24 1999-11-27 Солвей (Сосьете Аноним) Способ превращения хлорированного алкана в менее хлорированный алкен
US5639930A (en) 1995-01-04 1997-06-17 Penick; Joe E. Process of producing alkylates
DK171707B1 (da) 1995-02-03 1997-04-01 Topsoe Haldor As Fremgangsmåde til fremstilling af dimetylæter i brændstofkvalitet
US5905169A (en) 1995-03-20 1999-05-18 E. I. Du Pont De Nemours And Company Process for producing polyfluoroacyl compositions
US5600043A (en) 1995-03-27 1997-02-04 The Geon Company Oxychlorination process
DE69614844T2 (de) 1995-04-21 2002-04-11 Procter & Gamble Shampoos mit konditionierungsmittel aus unlöslichen silikon, und kationischem polymer
FR2734172B1 (fr) 1995-05-19 1997-06-20 Air Liquide Dispositif et procede de separation de gaz par adsorption
DE19520612A1 (de) 1995-06-06 1996-12-12 Bayer Ag Verfahren zur Herstellung von Benzylalkohol
US5847224A (en) 1995-06-23 1998-12-08 Global Octanes Corporation Method for improving the color of MTBE, ETBE and TAME
FR2736911A1 (fr) 1995-07-20 1997-01-24 Inst Francais Du Petrole Catalyseur liquide d'alkylation aliphatique
US5977402A (en) 1995-07-20 1999-11-02 Sumitomo Chemical Company, Limited Processes for preparing 4-tert.-butylcyclohexanol and 4-tert.-butylcyclohexyl acetate
US5675052A (en) 1995-09-15 1997-10-07 The Boc Group, Inc. Hydrocarbon alkylation process
US5705712A (en) 1995-10-05 1998-01-06 Uop Integrated process for producing diisopropyl ether, an isopropyl tertiary alkyl ether and isopropyl alcohol
US5705729A (en) 1995-11-22 1998-01-06 Mobil Oil Corporation Isoparaffin-olefin alkylation process
FR2743079B1 (fr) 1995-12-27 1998-02-06 Inst Francais Du Petrole Procede et dispositif d'hydrogenation selective par distillation catalytique comportant une zone reactionnelle a co-courant ascendant liquide-gaz
DE19548876A1 (de) 1995-12-27 1997-07-03 Bayer Ag Verfahren zur kontinuierlichen Herstellung von Benzylalkohol
FR2743510B1 (fr) 1996-01-11 1998-04-03 Total Raffinage Distribution Nouveau catalyseur d'alkylation, son procede de preparation et son utilisation dans des procedes d'alkylation
US6090312A (en) 1996-01-31 2000-07-18 Ziaka; Zoe D. Reactor-membrane permeator process for hydrocarbon reforming and water gas-shift reactions
AU692723B2 (en) 1996-02-01 1998-06-11 Phillips Petroleum Company Catalyst composition and process for selecting hydrogenation of diolefins
US6096933A (en) 1996-02-01 2000-08-01 Phillips Petroleum Company Hydrocarbon hydrogenation and catalyst therefor
DE19603901A1 (de) 1996-02-03 1997-08-07 Krupp Uhde Gmbh Verfahren zur Gewinnung von Reinaromaten aus Reformatbenzin und Vorrichtung zur Durchführung des Verfahrens
SE517561C2 (sv) 1996-03-04 2002-06-18 Aga Ab Förfarande och anordning för framställning av en gas genom separation från en gasblandning
US5663474A (en) 1996-03-07 1997-09-02 Alliedsignal Inc. Alkylation process using hydrogen fluoride-containing alkylation catalysts
US5684213A (en) 1996-03-25 1997-11-04 Chemical Research & Licensing Company Method for the preparation of dialkyl ethers
US5675046A (en) 1996-04-10 1997-10-07 Showa Denko K.K. Process for producing perfluorocarbon
US5898086A (en) 1996-04-19 1999-04-27 Henkel Corporation Process for making alkyl ether glycerols
USRE38493E1 (en) 1996-04-24 2004-04-13 Questair Technologies Inc. Flow regulated pressure swing adsorption system
US6191324B1 (en) 1996-04-24 2001-02-20 Union Carbide Chemicals & Plastics Technology Corporation Processes for producing unsaturated alcohols
US5998686A (en) 1996-05-29 1999-12-07 Exxon Chemical Patents Inc. Process for producing aromatic compounds from aliphatic hydrocarbons
AU3232997A (en) 1996-06-07 1998-01-05 Chevron U.S.A. Inc. Zeolite me-utd-1
US5720858A (en) 1996-07-17 1998-02-24 The United States Of America As Represented By The United States Department Of Energy Method for the photocatalytic conversion of methane
US5708246A (en) 1996-08-28 1998-01-13 Battelle Memorial Institute Method of photocatalytic conversion of C-H organics
AU4910697A (en) * 1996-10-17 1998-05-11 Exxon Chemical Patents Inc. Hydrocarbon conversion using large crystal zeolite catalyst
HU220573B1 (hu) 1996-11-18 2002-03-28 AGRO-CHEMIE Növényvédőszer Gyártó, Értékesítő és Forgalmazó Kft. Eljárás benzil-éterek előállítására
CN1088449C (zh) 1996-11-27 2002-07-31 阿克佐诺贝尔公司 烃烷基化方法
US5895831A (en) 1996-12-04 1999-04-20 Uop Llc Solid catalyst alkylation process
US6669846B2 (en) 1996-12-17 2003-12-30 Global Biosciences, Inc. Wastewater treatment with alkanes
US7182871B2 (en) 1996-12-17 2007-02-27 Global Biosciences, Inc. Wastewater treatment with alkanes
US5952538A (en) 1996-12-31 1999-09-14 Exxon Chemical Patents Inc. Use of short contact time in oxygenate conversion
JP2001514636A (ja) 1997-03-07 2001-09-11 ビーエーエスエフ アクチェンゲゼルシャフト シクロプロピルアセチレンを製造するための改善法
US6093306A (en) 1997-04-07 2000-07-25 Solar Reactor Technologies Inc. Comprehensive system for utility load leveling, hydrogen production, stack gas cleanup, greenhouse gas abatement, and methanol synthesis
US5782936A (en) 1997-04-23 1998-07-21 Suburban Propane, L.P. Additive compositions for LPG fuel
SG74047A1 (en) 1997-04-30 2000-07-18 Mitsubishi Chem Corp Process for producing alkylene glycol
US6018088A (en) 1997-05-07 2000-01-25 Olah; George A. Superacid catalyzed formylation-rearrangement of saturated hydrocarbons
US6056804A (en) 1997-06-30 2000-05-02 Questor Industries Inc. High frequency rotary pressure swing adsorption apparatus
EP1004143B1 (en) 1997-07-11 2012-09-05 University of Southern California Charge generators in heterolamellar multilayer thin films
US6465969B1 (en) 1997-08-04 2002-10-15 Lumimove, Inc. Electroluminescent display intelligent controller
US5856584A (en) 1997-08-06 1999-01-05 The Nutrasweet Company Preparation of 3,3-dimethylbutyraldehyde by oxidation of 3, 3-dimethylbutanol
US5928488A (en) 1997-08-26 1999-07-27 David S. Newman Electrolytic sodium sulfate salt splitter comprising a polymeric ion conductor
DK128697A (da) 1997-11-12 1999-05-13 Niels J Bjerrum Katalyseproces
DE19755636A1 (de) 1997-12-15 1999-06-17 Bayer Ag Verfahren zur elektrochemischen Aufarbeitung von HCl-Gas zu hochreinem Chlor
FR2773496B1 (fr) 1998-01-14 2000-03-03 Inst Francais Du Petrole Procede de separation par decantation dans plusieurs zones distinctes
US5882614A (en) * 1998-01-23 1999-03-16 Exxon Research And Engineering Company Very low sulfur gas feeds for sulfur sensitive syngas and hydrocarbon synthesis processes
US5968236A (en) 1998-02-20 1999-10-19 Bassine; Stuart Valve free oxygen concentrator
US6187983B1 (en) 1998-04-29 2001-02-13 Exxon Chemical Patents Inc Converting oxygenates to olefins in the presence of electromagnetic energy
US5983476A (en) 1998-06-09 1999-11-16 Uop Llc Conversion of an HF alkylation unit
US6096932A (en) 1999-07-27 2000-08-01 E. I. Du Pont De Nemours And Company Fluorocarbon manufacturing process
EP0976705A1 (en) 1998-07-30 2000-02-02 Ube Industries, Ltd. Method of producing a phenolalkylether compound
IT1302003B1 (it) 1998-08-05 2000-07-20 Enitecnologie Spa Procedimento per la trasformazione selettiva di idrocarburi.
US6087294A (en) 1998-08-12 2000-07-11 Kansas State University Research Foundation Dispersion and stabilization of reactive atoms on the surface of metal oxides
FR2782280B1 (fr) 1998-08-12 2000-09-22 Inst Francais Du Petrole Catalyseurs supportes utilisables dans des reactions de transformation de composes organiques
US6921597B2 (en) 1998-09-14 2005-07-26 Questair Technologies Inc. Electrical current generation system
AU6291999A (en) 1998-10-05 2000-04-26 B.F. Goodrich Company, The Catalyst and methods for polymerizing cycloolefins
US6903171B2 (en) 1998-10-05 2005-06-07 Promerus, Llc Polymerized cycloolefins using transition metal catalyst and end products thereof
WO2000021912A1 (en) 1998-10-12 2000-04-20 Great Lakes (Uk) Limited Preparation of cyclopropylethyne and intermediates for preparation of cyclopropylethyne
US6127588A (en) 1998-10-21 2000-10-03 Phillips Petroleum Company Hydrocarbon hydrogenation catalyst and process
US6002059A (en) 1998-10-28 1999-12-14 Mobil Oil Corporation Process for upgrading natural gas
DK0999182T3 (da) 1998-11-02 2003-07-14 Inst Francais Du Petrole Fremgangsmåde til fremstilling af en zeolit af strukturtypen EUO ved hjælp af kim af zeolitiske materialer og anvendelse heraf som katalysator til isomerisering af aromatiske forbindelser med otte carbonatomer
EP0999183B1 (fr) 1998-11-02 2003-06-18 Institut Francais Du Petrole Procédé de préparation d'une zéolithe de type structural EUO a l'aide de precurseurs du structurant et son utilisation comme catalyseur d'isomerisation des AC8
US6130260A (en) 1998-11-25 2000-10-10 The Texas A&M University Systems Method for converting natural gas to liquid hydrocarbons
US6936565B2 (en) 1999-01-12 2005-08-30 Hyperion Catalysis International, Inc. Modified carbide and oxycarbide containing catalysts and methods of making and using thereof
US6239057B1 (en) 1999-01-15 2001-05-29 Uop Llc Catalyst for the conversion of low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons, process for preparing the catalyst and process using the catalyst
US6114593A (en) 1999-01-27 2000-09-05 Phillips Petroleum Company Method for reducing organic fluoride levels in hydrocarbons
US6417422B1 (en) 1999-02-22 2002-07-09 Symyx Technologies, Inc. Ni catalysts and methods for alkane dehydrogenation
US6143939A (en) 1999-02-26 2000-11-07 The United States Of America As Represented By The United States Department Of Energy Method of dehalogenation using diamonds
DE60024605T2 (de) 1999-03-23 2006-08-24 Carnegie Mellon University Katalytische prozesse für die kontrollierte polymerisation von freiradikalischen, copolymerisierbaren monomeren und funktionellpolymersysteme hergestellt davon
US6248218B1 (en) 1999-03-25 2001-06-19 Clovis A. Linkous Closed cycle photocatalytic process for decomposition of hydrogen sulfide to its constituent elements
US7220391B1 (en) 1999-03-25 2007-05-22 University Of Central Florida Research Foundation, Inc. UV photochemical option for closed cycle decomposition of hydrogen sulfide
US7273957B2 (en) 1999-05-04 2007-09-25 Catalytic Distillation Technologies Process for the production of gasoline stocks
US6545192B2 (en) 1999-05-11 2003-04-08 Shell Oil Company Process for separating olefins from saturated hydrocarbons
FR2793706B1 (fr) 1999-05-18 2001-08-03 Total Raffinage Distribution Support catalytique a base d'oxyde d'un metal du groupe ivb de la classification periodique des elements, sa preparation et ses utilisations
US6727400B2 (en) 1999-06-08 2004-04-27 Triosyn Holdings, Inc. Deactivation of toxic chemical agents
US6406523B1 (en) 1999-06-09 2002-06-18 Questair Technologies, Inc. Rotary pressure swing adsorption apparatus
US6248931B1 (en) 1999-06-30 2001-06-19 Uop Llc Membrane process for the recovery of halides from hydrocarbon-containing streams
SE520971C2 (sv) 1999-08-20 2003-09-16 Perstorp Ab Förfarande för tillverkning av en eteralkohol
US6309453B1 (en) 1999-09-20 2001-10-30 Xerox Corporation Colorless compounds, solid inks, and printing methods
FR2798922B1 (fr) 1999-09-29 2001-12-14 Inst Francais Du Petrole Procede de preparation d'une zeolithe de type structural mtt utilisant des germes de materiaux zeolithiques
FR2798923B1 (fr) 1999-09-29 2001-12-14 Inst Francais Du Petrole Procede de preparation d'une zeolithe de type structural mtt utilisant des precurseurs specifiques du structurant
US20020102672A1 (en) 1999-10-04 2002-08-01 Joseph Mizrahi Process for producing a purified lactic acid solution
DE19949211A1 (de) 1999-10-13 2001-05-31 Veba Oel Ag Verfahren zur Herstellung von n-Alkanen aus Mineralölfraktionen und Katalysator zur Durchführung des Verfahrens
US6372949B1 (en) 1999-10-15 2002-04-16 Mobil Oil Corporation Single stage process for converting oxygenates to gasoline and distillate in the presence of undimensional ten member ring zeolite
US6265505B1 (en) 1999-11-18 2001-07-24 Univation Technologies, Llc Catalyst system and its use in a polymerization process
US6380328B1 (en) 1999-12-10 2002-04-30 Univation Technologies, Llc Catalyst systems and their use in a polymerization process
US6518474B1 (en) 1999-10-29 2003-02-11 Huntsman International Llc Process for producing isobutylene from tertiary butyl alcohol
MXPA02005142A (es) 1999-11-22 2002-11-07 Dow Chemical Co Un proceso para la conversion de etileno en cloruro de vinilo, y composiciones catalizadoras novedosas utiles para este proceso.
US6797845B1 (en) 1999-11-22 2004-09-28 Dow Global Technologies Inc. Process for vinyl chloride manufacture from ethane and ethylene with immediate HCl recovery from reactor effluent
US6909024B1 (en) 1999-11-22 2005-06-21 The Dow Chemical Company Process for the conversion of ethylene to vinyl chloride and novel catalyst compositions useful for such process
US6933417B1 (en) 1999-11-22 2005-08-23 Dow Global Technologies Inc. Process for vinyl chloride manufacture from ethane and ethylene with partial CHl recovery from reactor effluent
US6680415B1 (en) 1999-11-22 2004-01-20 Dow Global Technologies Inc. Oxyhalogenation process using catalyst having porous rare earth halide support
US6514319B2 (en) 1999-12-09 2003-02-04 Questair Technologies Inc. Life support oxygen concentrator
US6956140B2 (en) 1999-12-14 2005-10-18 Halocarbon Products Corporation Hydrothermal hydrolysis of halogenated compounds
EP1108701B1 (en) 1999-12-14 2003-04-23 Sumitomo Chemical Company Limited Process for preparing ketone, alcohol and hydroperoxide
US6376731B1 (en) 2000-01-14 2002-04-23 Arco Chemical Technology, L.P. Selective olefin oligomerization
WO2001056961A1 (fr) 2000-02-02 2001-08-09 Daikin Industries, Ltd. Procede de production d'hydrofluorocarbones
IT1317757B1 (it) 2000-02-03 2003-07-15 Enitecnologie Spa Metodo per la preparazione di idrocarburi idrogenati.
FR2805255B1 (fr) 2000-02-21 2002-04-12 Inst Francais Du Petrole Zeolithe mtt comprenant des cristaux et des agregats de cristaux de granulometries specifiques et son utilisation comme catalyseur d'isomerisation des paraffines lineaires
US6566572B2 (en) 2000-03-06 2003-05-20 Wako Pure Chemical Industries, Ltd. Process for producing 9,10-diphenylanthracene
US6475463B1 (en) 2000-03-07 2002-11-05 Chevron U.S.A. Inc. Zeolite SSZ-55
US6395945B1 (en) 2000-03-31 2002-05-28 Phillips Petroleum Company Integrated hydroisomerization alkylation process
US6710213B2 (en) 2000-03-31 2004-03-23 Showa Denko K.K. Production process and use for propargyl alcohol and its intermediate
CA2306311C (en) 2000-04-20 2007-04-10 Quest Air Gases Inc. Absorbent laminate structures
FR2808533B1 (fr) 2000-05-02 2002-08-16 Inst Francais Du Petrole Huile synthetique a haut indice de viscosite et faible point d'ecoulement
EP1151980A1 (en) 2000-05-03 2001-11-07 Solvias AG Catalytic halogenation of activated methylene and methine compound
CN100491253C (zh) 2000-05-31 2009-05-27 切夫里昂美国公司 Ssz-53沸石
WO2002002490A2 (en) 2000-06-30 2002-01-10 Chevron U.S.A. Inc. Synthesis of high quality normal alpha olefins
FR2812301B1 (fr) 2000-07-26 2003-04-04 Inst Francais Du Petrole Procede flexible de production de bases huiles et de distillats moyens a partir de charge contenant des heteroatomes
IT1318682B1 (it) 2000-08-11 2003-08-27 Enichem Spa Procedimento integrato per la preparazione di ossidi olefinici.
IT1318680B1 (it) 2000-08-11 2003-08-27 Enichem Spa Processo per la produzione in continuo di ossidi olefinici.
US6495484B1 (en) 2000-08-28 2002-12-17 Univation Technologies, Llc Catalyst system and its use in a polymerization process
US6585953B2 (en) 2000-09-07 2003-07-01 Wisconsin Alumni Research Foundation Synthesis of 17F labeled fluoroalkanes
FR2813809B1 (fr) 2000-09-11 2003-07-25 Air Liquide Colonne a garnissage d'echange de chaleur et/ou de matiere
US6518476B1 (en) 2000-09-18 2003-02-11 Union Carbide Chemicals & Plastics Technology Corporation Methods for manufacturing olefins from lower alkans by oxidative dehydrogenation
ZA200108461B (en) 2000-10-27 2002-06-06 Celanese Chem Europe Gmbh Process of telomerizing conjugated dienes.
US6552241B1 (en) 2000-10-31 2003-04-22 Conocophillips Company Alkylation process
TR200401073T4 (tr) 2000-11-29 2004-08-23 Vinnolit Gmbh & Co. Kg 1,2-dikloretan'ın hazırlanmasına ilişkin yöntem.
CA2430271A1 (en) 2000-12-08 2002-06-13 Questair Technologies Inc. Methods and apparatuses for gas separation by pressure swing adsorption with partial gas product feed to fuel cell power source
CA2329475A1 (en) 2000-12-11 2002-06-11 Andrea Gibbs Fast cycle psa with adsorbents sensitive to atmospheric humidity
FR2818284B1 (fr) 2000-12-15 2006-08-04 Inst Francais Du Petrole Procede flexible ameliore de production de bases huiles et distillats moyens avec une conversion-hydroisomerisation suivie d'un deparaffinage catalytique
US6511526B2 (en) 2001-01-12 2003-01-28 Vbox, Incorporated Pressure swing adsorption gas separation method and apparatus
US6538162B2 (en) 2001-01-30 2003-03-25 Exxonmobil Chemical Patents Inc. Method for converting alkanes to oxygenates
US6509485B2 (en) 2001-02-22 2003-01-21 Sri International Preparation of epoxides from alkanes using lanthanide-promoted silver catalysts
KR100519140B1 (ko) 2001-02-23 2005-10-04 쇼와 덴코 가부시키가이샤 퍼플루오로탄소의 제조방법 및 그 용도
US20030196680A1 (en) 2002-04-19 2003-10-23 Dielectric Systems, Inc Process modules for transport polymerization of low epsilon thin films
WO2002094749A1 (en) 2001-05-23 2002-11-28 Dow Global Technologies Inc. Production of vinyl halide from single carbon feedstocks
US6984763B2 (en) 2001-05-23 2006-01-10 Dow Global Technologies Inc. Oxidative halogenation and optional dehydrogenation of c3+hydrocarbons
WO2002094752A1 (en) 2001-05-23 2002-11-28 Dow Global Technologies Inc. Process for vinyl chloride manufacture from ethane and ethylene with air feed and alternative hcl processing methods
EP1527035B1 (en) 2001-06-08 2015-03-04 Albemarle Netherlands B.V. Continuous process for the alkylation of hydrocarbons
US7001872B2 (en) 2001-06-11 2006-02-21 Halliburton Energy Services, Inc. Subterranean formation treating fluid and methods of fracturing subterranean formations
US6440894B1 (en) 2001-06-25 2002-08-27 Exxonmobil Chemical Patents, Inc. Methods of removing halogen from non-zeolitic molecular sieve catalysts
US6518471B1 (en) 2001-06-25 2003-02-11 Exxonmobil Chemical Patents Inc. Selective production of meta-diisopropylbenzene
DE02744727T1 (de) 2001-06-28 2005-02-10 Honeywell International Inc. Verfahren zur herstellung eines fluorierungskatalysators
US20030065239A1 (en) 2001-06-29 2003-04-03 Peter Zhu Non-hazardous basic neutralization of aldehydes
US6646102B2 (en) 2001-07-05 2003-11-11 Dow Global Technologies Inc. Process for manufacturing an alpha-dihydroxy derivative and epoxy resins prepared therefrom
US6616830B2 (en) 2001-07-13 2003-09-09 Chevron U.S.A. Inc. Hydrocarbon conversion using zeolite SSZ-57
US6547958B1 (en) 2001-07-13 2003-04-15 Chevron U.S.A. Inc. Hydrocarbon conversion using zeolite SSZ-59
US6540905B1 (en) 2001-07-13 2003-04-01 Chevron U.S.A. Inc. Hydrocarbon conversion using zeolite SSZ-58
US6867302B2 (en) 2001-07-13 2005-03-15 Board Of Trustees Of Michigan State University Process for the catalytic synthesis of biaryls and polymers from aryl compounds
US7094936B1 (en) 2001-07-20 2006-08-22 Great Lakes Chemical Corporation Process for preparing halogenated alkanes
FR2828193B1 (fr) 2001-08-03 2004-04-02 Atofina Nouveau procede de preparation du 1,1,1,-trifluoro-2,2-dichloroethane
WO2003018524A1 (en) 2001-08-03 2003-03-06 Eastman Chemical Company Vapor phase carbonylation process using iridium-gold co-catalysts
US6858770B2 (en) 2001-08-21 2005-02-22 Catalytic Distillation Technologies Paraffin alkylation
US6797851B2 (en) 2001-08-30 2004-09-28 Exxonmobil Chemical Patents Inc. Two catalyst process for making olefin
US6632971B2 (en) 2001-08-30 2003-10-14 Exxonmobil Chemical Patents Inc. Process for converting natural gas to higher value products using a methanol refinery remote from the natural gas source
US6552238B1 (en) 2001-08-31 2003-04-22 Vulcan Chemicals Separation of heavy ends from streams of halogenated alkanes
WO2003022827A1 (en) 2001-09-11 2003-03-20 Grt, Inc. Process for synthesizing olefin oxides
CN1286788C (zh) 2001-09-14 2006-11-29 东曹氟技术株式会社 2,2,2-三氟乙醇的制造方法
JP4014856B2 (ja) 2001-11-14 2007-11-28 株式会社トクヤマ ジハロゲン化アダマンタンの製造方法
AU2002365968A1 (en) 2001-11-19 2003-06-10 Merck And Co., Inc. Process for the synthesis of (r)-1-(3,5-bis(trifluoromethyl)-phenyl)ethan-1-ol and esters thereof by dynamic kinetic resolution
ZA200209011B (en) 2001-11-20 2003-05-26 Rohm & Haas Electroactive catalysis.
DE10159615A1 (de) 2001-12-05 2003-06-12 Basf Ag Verfahren zur Herstellung von 1,2-Dichlorethan
US7199255B2 (en) 2001-12-18 2007-04-03 Univation Technologies, Llc Imino-amide catalysts for olefin polymerization
US6844447B2 (en) 2001-12-18 2005-01-18 Metabolix Inc. Methods of making intermediates from polyhydroxyalkanoates
CA2471295C (en) 2002-01-24 2010-08-10 Grt, Inc. Integrated process for synthesizing alcohols, ethers, and olefins from alkanes
WO2003062143A1 (en) 2002-01-25 2003-07-31 Council Of Scientific And Industrial Research Preparation of non-hazardous brominating reagents
US7091270B2 (en) 2002-01-31 2006-08-15 Bromine Compounds Ltd. Pentabromobenzyl alkyl ethers and their use as fire retardants
WO2003078366A1 (en) 2002-03-13 2003-09-25 University Of Florida Process for trifluoromethylation of sulfates
AU2003209894A1 (en) 2002-03-14 2003-09-22 Questair Technologies Inc. Gas separation by combined pressure swing and displacement purge
US20040152929A1 (en) 2002-05-08 2004-08-05 Clarke William D Process for vinyl chloride manufacture from ethane and ethylene with air feed and alternative hcl processing methods
WO2004039918A2 (en) 2002-05-10 2004-05-13 Wisconsin Alumni Research Foundation Low-temperature hydrocarbon production from oxygenated hydrocarbons
US6545191B1 (en) 2002-06-13 2003-04-08 John E. Stauffer Process for preparing ethanol
EP1386664B1 (en) 2002-07-31 2016-05-11 Ineos Technologies (Vinyls) Limited A hollow parallelepiped pellet suitable as carrier of catalysts for selective exothermic reactions
KR100986958B1 (ko) 2002-07-31 2010-10-11 다이소 가부시키가이샤 광학활성 할로게노히드록시프로필 화합물 및 글리시딜화합물의 제조법
US7238846B2 (en) 2002-08-14 2007-07-03 Exxonmobil Chemical Patents Inc. Conversion process
US6831032B2 (en) 2002-08-19 2004-12-14 Novolen Technology Holdings C.V. Ziegler-Natta catalyst and methods of making and using same
AU2003265591A1 (en) 2002-08-22 2004-03-11 E.I. Du Pont De Nemours And Company Cobalt-substituted chromium oxide compositions, their preparation, and their use as catalysts and catalyst precursors
US6953870B2 (en) 2002-08-26 2005-10-11 Tsoung Y Yan Self-propelled liquid fuel
US6753390B2 (en) 2002-09-04 2004-06-22 Univation Technologies, Llc Gas phase polymerization process
DE10242223A1 (de) 2002-09-12 2004-03-25 Clariant Gmbh Verfahren zur Hydrodechlorierung von kernchlorierten ortho-Xylolen
US6740146B2 (en) 2002-09-12 2004-05-25 Edward L. Simonds Oxygen concentrator
KR100531128B1 (ko) 2002-09-26 2005-11-28 한국화학연구원 분리막 반응기를 이용한 디메틸에테르의 제조방법
FR2845077A1 (fr) 2002-09-26 2004-04-02 Atofina Procede d'abaissement de la teneur en matieres organiques et produits azotes contenus dans des effluents bromures
US6852896B2 (en) 2002-10-11 2005-02-08 John E. Stauffer Concerted process for the production of an alkenyl substituted aromatic compound
US6869903B2 (en) 2002-11-07 2005-03-22 Univation Technologies, Llc Synthesis of polymerization catalyst components
US7060865B2 (en) 2002-11-12 2006-06-13 Exxonmobil Chemical Patents Inc. Recovery of C4 olefins from a product stream comprising C4 olefins, dimethyl ether and C5+ hydrocarbons
CN1203032C (zh) 2002-11-12 2005-05-25 石油大学(北京) 以复合离子液体为催化剂制备烷基化油剂的方法
US7199083B2 (en) 2002-12-06 2007-04-03 Self Generating Foam Incoporated Self-generating foamed drilling fluids
DE10257499A1 (de) 2002-12-10 2004-07-01 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von 1-Olefinen durch katalytische Spaltung von 1-Alkoxyalkanen
US7232872B2 (en) 2002-12-20 2007-06-19 Exxonmobil Chemical Patents Inc. Polymerization processes
CA2510864C (en) 2002-12-20 2013-01-22 Exxonmobil Chemical Patents Inc. Polymers substantially free of long chain branching
EP1440939A1 (en) 2003-01-07 2004-07-28 Humboldt-Universität zu Berlin Method for the preparation of amorphous metal fluorides
DE10303304A1 (de) 2003-01-28 2004-07-29 Ruhrgas Ag Verfahren zum Herstellen nichtaromatischer Kohlenwassersstoffe
US7265193B2 (en) 2003-01-31 2007-09-04 Exxonmobil Chemical Patents Inc. Polymerization process
US20040158108A1 (en) 2003-02-06 2004-08-12 Snoble Karel A.J. Purification of alcohol
KR100501922B1 (ko) 2003-02-19 2005-07-18 에스케이 주식회사 메탄올로부터 디메틸에테르의 제조방법
US6875339B2 (en) 2003-03-07 2005-04-05 Conocophillips Company Octane improvement of a hydrocarbon stream
US7091391B2 (en) 2003-03-19 2006-08-15 Stauffer John E Methane to olefins
FR2852866B1 (fr) 2003-03-25 2006-07-14 Bp Lavera Snc Compose metallique fixe sur un support, procede de preparation et utilisation du compose dans des reactions de metathese d'hydrocarbure
US7083714B2 (en) 2003-03-26 2006-08-01 Chevron U.S.A. Inc. Hydrocarbon conversion using molecular sieve SSZ-65
US7011811B2 (en) 2003-03-26 2006-03-14 Chevron U.S.A. Inc. Molecular sieve SSZ-65 composition of matter and synthesis thereof
US20040188324A1 (en) 2003-03-26 2004-09-30 Saleh Elomari Hydrocarbon conversion using molecular sieve SSZ-65
US20040187684A1 (en) 2003-03-26 2004-09-30 Saleh Elomari Using molecular sieve SSZ-65 for reduction of oxides of nitrogen in a gas stream
US7301060B2 (en) 2003-03-28 2007-11-27 Ab-Cwt, Llc Process for conversion of organic, waste, or low-value materials into useful products
US20040220433A1 (en) 2003-03-28 2004-11-04 Evert Van Der Heide Process for the preparation of propylene glycol
JP4111035B2 (ja) 2003-03-31 2008-07-02 日本ゼオン株式会社 重合トナーの製造方法
US6822123B2 (en) 2003-04-02 2004-11-23 John E. Stauffer Formaldehyde process
EP1622857B1 (en) 2003-04-09 2011-10-05 Shell Internationale Research Maatschappij B.V. Process for the preparation of alkanediol
US7057081B2 (en) 2003-05-09 2006-06-06 Conocophillips Company Method for treating alkanes
US6953868B2 (en) 2003-06-05 2005-10-11 Dow Global Technologies Inc. Oxyfunctionalization of polyolefins
WO2005069751A2 (en) 2003-06-21 2005-08-04 Richards Alan K Anhydrous processing of methane into methane-sulfonic acid, methanol, and other compounds
US7193093B2 (en) 2003-06-30 2007-03-20 Shell Oil Company Process for producing alkylene oxide
UA84436C2 (ru) 2003-08-08 2008-10-27 Солвей (Сосьетэ Аноним) Способ регенерации катализатора гидрирования и способ получения мономера винилхлорида
DE10338581A1 (de) 2003-08-22 2005-03-17 Oxeno Olefinchemie Gmbh Verfahren zur Erzeugung von tert.-Butanol
US6958306B2 (en) 2003-08-28 2005-10-25 Univation Technologies, Llc Activated catalyst systems from substituted dialuminoxane complexes
GB0320684D0 (en) 2003-09-03 2003-10-01 Bp Chem Int Ltd Process
US7045670B2 (en) 2003-09-03 2006-05-16 Synfuels International, Inc. Process for liquid phase hydrogenation
US6825383B1 (en) 2003-09-22 2004-11-30 Council Of Scientific And Industrial Research Catalytic process for regiospecific chlorination of alkanes, alkenes and arenes
US7105710B2 (en) 2003-09-26 2006-09-12 Shell Oil Company Process of preparing an alkylene glycol
US7479575B2 (en) 2003-10-13 2009-01-20 Laboratoires Serono Sa Method for preparing para-phenyl alkynyl benzaldehydes
US7335802B2 (en) 2003-10-15 2008-02-26 Shell Oil Company Methods of preparing branched aliphatic alcohols
WO2005035121A2 (en) 2003-10-16 2005-04-21 Universiteit Gent Schiff base metal complexes for use as catalysts in organic synthesis
US6838576B1 (en) 2003-10-23 2005-01-04 3M Innovative Properties Company Process for preparing functional group-containing olefinic compounds
US7196239B2 (en) 2003-11-19 2007-03-27 Exxonmobil Chemical Patents Inc. Methanol and ethanol production for an oxygenate to olefin reaction system
EP1689728B1 (en) 2003-11-28 2007-04-11 Firmenich Sa Musk odorant compounds
WO2005054120A2 (en) 2003-12-05 2005-06-16 Idaho Research Foundation, Inc. Polymer-supported metal nanoparticles and method for their manufacture and use
US7244795B2 (en) 2003-12-08 2007-07-17 Univation Technologies, Llc Polymerization process using metallocene catalyst systems
WO2005056525A2 (en) 2003-12-09 2005-06-23 Bio-Technical Resources Deacetylation of n-acetylglucosamine
CN1894183B (zh) 2003-12-18 2010-09-08 埃克森美孚化学专利公司 氢化或相关方面的改进
US7064238B2 (en) 2004-01-02 2006-06-20 Marathon Oil Company Conversion of alkanes to oxygenates
FR2865731B1 (fr) 2004-01-30 2007-09-07 Solvay Procede de fabrication d'un hydrofluoroalcane
FR2866023B1 (fr) 2004-02-05 2007-10-12 Rhodia Chimie Sa Procede de preparation d'un compose fluoaromatique a partir d'un compose aminoaromatique
EP1723093A4 (en) 2004-03-12 2008-03-12 Univ Utah CYCLONE REACTOR AND ASSOCIATED PROCEDURES
WO2005095310A2 (en) 2004-03-23 2005-10-13 Shell Internationale Research Maatschappij B.V. The utilization of zirconium and zirconium based alloys for the containment of halogen containing environments used in the production of olefins, alcohols, ethers, ethoxylates glycols, and olefin oxides from alkanes
JP4452130B2 (ja) 2004-04-05 2010-04-21 東洋エンジニアリング株式会社 液化天然ガスからの炭化水素分離方法および分離装置
US20080275284A1 (en) 2004-04-16 2008-11-06 Marathon Oil Company Process for converting gaseous alkanes to liquid hydrocarbons
US20060100469A1 (en) 2004-04-16 2006-05-11 Waycuilis John J Process for converting gaseous alkanes to olefins and liquid hydrocarbons
US8173851B2 (en) 2004-04-16 2012-05-08 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
US7674941B2 (en) 2004-04-16 2010-03-09 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
KR101170773B1 (ko) 2004-04-16 2012-08-03 마라톤 지티에프 테크놀로지 엘티디. 기체상 알칸을 액상 탄화수소로 전환시키는 방법
US7244867B2 (en) 2004-04-16 2007-07-17 Marathon Oil Company Process for converting gaseous alkanes to liquid hydrocarbons
EP1742875A1 (en) 2004-04-20 2007-01-17 Uop Llc Crystalline aluminosilicate zeolitic composition: uzm-15
US7462752B2 (en) 2004-04-21 2008-12-09 Shell Oil Company Process to convert linear alkanes into alpha olefins
US7091387B2 (en) 2004-04-21 2006-08-15 Shell Oil Company Process to convert alkanes into primary alcohols
DE602004028766D1 (de) 2004-04-23 2010-09-30 Uop Llc Siliciumreiche zeolithe uzm-5hs
WO2005110953A1 (en) 2004-04-30 2005-11-24 Shell Internationale Research Maatschappij B.V. Derivatives of alcohols and olefins
US7435760B2 (en) 2004-05-14 2008-10-14 Battelle Memorial Institute Method of generating hydrocarbon reagents from diesel, natural gas and other logistical fuels
EP1765489B1 (en) 2004-06-16 2009-11-11 Dow Global Technologies Inc. Apparatus and method for ziegler-natta research
KR100888124B1 (ko) 2004-06-23 2009-03-11 가부시끼가이샤 도꾸야마 폴리할로겐화 디아만탄류 및 그의 유도체의 제조 방법
DE102004030943B4 (de) 2004-06-26 2013-10-02 Evonik Oxeno Gmbh Verfahren zur Herstellung von tert.-Butanol aus Isobuten-haltigen Kohlenwasserstoffgemischen
KR101226291B1 (ko) 2004-07-21 2013-01-25 다우 글로벌 테크놀로지스 엘엘씨 다중히드록시화-지방족 탄화수소 또는 그의 에스테르의 클로로히드린으로의 전환
US7429683B2 (en) 2004-07-27 2008-09-30 Eastman Kodak Company Process of maing naphthacene from propargyl alcohol
US7671248B2 (en) 2004-08-13 2010-03-02 Exxonmobil Chemical Patents Inc. Process for producing sec-butyl benzene
US7371916B1 (en) 2004-09-16 2008-05-13 Uop Llc Conversion of an alcoholic oxygenate to propylene using moving bed technology and an etherification step
US7271303B1 (en) 2004-09-22 2007-09-18 Uop Llc Multi-zone process for the production of diesel and aromatic compounds
JP2008514540A (ja) 2004-09-30 2008-05-08 シェブロン ユー.エス.エー. インコーポレイテッド モレキュラーシーブssz−65
DE602005019081D1 (de) 2004-10-15 2010-03-11 Toagosei Co Ltd Verfahren zur herstellung eines metalloxidkatalysators
GB0423586D0 (en) 2004-10-22 2004-11-24 United States Borax Inc Selective oxidation of organic compounds
CA2586971C (en) 2004-11-12 2013-07-23 Velocys Inc. Process using microchannel technology for conducting alkylation or acylation reaction
TWI332418B (en) 2004-11-18 2010-11-01 Rohm & Haas Hybrid catalyst systems and hybrid process for converting alkanes to alkenes and to their corresponding oxygenated products
EP1824599B1 (en) 2004-12-21 2020-06-17 Albemarle Netherlands B.V. Attrition-resistant catalyst, a process for its preparation and its use
EP3456409B1 (en) 2004-12-22 2020-05-13 Chemtor, Lp Use of fiber film reactors to produce biodiesel
EP1843839A2 (en) 2004-12-22 2007-10-17 E.I. Dupont De Nemours And Company Copolymers of perfluoro (alkyl venyl ether) for photochemical reactor, process for increasing fluorine content and production of olefinic compound by photochlorination
AU2005318152B2 (en) 2004-12-23 2011-10-13 Solvay (Societe Anonyme) Process for the manufacture of 1,2-dichloroethane
BRPI0518650A2 (pt) 2004-12-23 2008-12-02 Solvay processos para a manufatura de 1, 2-dicloro-etano partindo de uma fonte de hidrocarbonetos, para a manufatura de cloreto de vinila, e de poli(cloreto de vinila)
JP2008525377A (ja) 2004-12-23 2008-07-17 ソルヴェイ(ソシエテ アノニム) 1,2−ジクロロエタンの製造方法
CN103396287B (zh) 2004-12-23 2015-10-07 索维公司 制造1,2-二氯乙烷的方法
US7537685B2 (en) 2004-12-23 2009-05-26 Chevron U.S.A. Inc. Hydrocarbon conversion using molecular sieve SSZ-71
WO2006071354A1 (en) 2004-12-23 2006-07-06 Chevron U.S.A. Inc. Molecular sieve ssz-70 composition of matter and synthesis thereof
ZA200705543B (en) 2004-12-23 2009-01-28 Chevron Usa Inc Molecular sieve SSZ-70 composition of matter and synthesis thereof
DE102005003109B4 (de) 2005-01-22 2015-02-12 Air Liquide Global E&C Solutions Germany Gmbh Verfahren zur Herstellung von synthetischen Kraftstoffen aus Oxigenaten
US7253328B2 (en) 2005-01-24 2007-08-07 John Stauffer Method for producing vinyl chloride monomer
WO2006104909A2 (en) 2005-03-28 2006-10-05 Shell Internationale Research Maatschappij B.V. Catalytic distillation process for primary haloalkanes
JP5155852B2 (ja) 2005-04-15 2013-03-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー アリール−エチレン置換芳香族化合物および有機半導体としてのその使用
ITMI20050723A1 (it) 2005-04-21 2006-10-22 Consiglio Nazionale Ricerche Metodo di produzione del biodiesel
KR20080009707A (ko) 2005-05-04 2008-01-29 다우 글로벌 테크놀로지스 인크. C1 탄화수소를 할로겐화 c1 탄화수소로 산화성할로겐화시키는 방법
US20080194850A1 (en) 2005-05-20 2008-08-14 Solvay (Societe Anonyme) Method for Making an Epoxide Starting with a Polyhydroxylated Aliphatic Hydrocarbon and a Chlorinating Agent
WO2007017900A2 (en) 2005-05-26 2007-02-15 Sisir Kumar Mandal Preparation of para dichlorobenzene from benzene or mono chlorobenzene
US20060270863A1 (en) 2005-05-27 2006-11-30 Amyris Biotechnologies Conversion of amorpha-4,11-diene to artemisinin and artemisinin precursors
CA2510093C (en) 2005-06-16 2009-09-29 Apotex Pharmachem Inc. Novel process for the preparation of.alpha.-chlorovinyl, .alpha.,.alpha.-dichloro, and acetylenes from ketones
US7390395B2 (en) 2005-06-23 2008-06-24 Saleh Elomari Hydrocarbon conversion using molecular sieve SSZ-56
US7226576B2 (en) 2005-06-23 2007-06-05 Chevron U.S.A. Inc. Molecular sieve SSZ-56 composition of matter and synthesis thereof
US7442354B2 (en) 2005-06-23 2008-10-28 Chevron U.S.A. Inc. Treatment of engine exhaust using molecular sieve SSZ-56
US7226569B2 (en) 2005-06-23 2007-06-05 Chevron U.S.A. Inc. Reduction of oxides of nitrogen in a gas stream using molecular sieve SSZ-56
WO2007001934A2 (en) 2005-06-23 2007-01-04 Chevron U.S.A. Inc. Molecular sieve ssz-56 composition of matter and synthesis thereof
US7084308B1 (en) 2005-07-29 2006-08-01 Stauffer John E Manufacture of formaldehyde from methyl bromide
US8957259B2 (en) 2005-09-30 2015-02-17 Battelle Memorial Institute Dimethyl ether production from methanol and/or syngas
WO2007044139A1 (en) 2005-10-07 2007-04-19 Badger Licensing Llc Bisphenol-a plant yield enhancement
US7683230B2 (en) 2005-10-27 2010-03-23 Stauffer John E Methyl bromide to olefins
US20070118007A1 (en) 2005-10-28 2007-05-24 Fong Howard L Internal olefins process
WO2007071046A1 (en) 2005-12-21 2007-06-28 University Of Saskatchewan Process for the preparation of biodiesel
US20070213545A1 (en) 2005-12-22 2007-09-13 Bolk Jeroen W Method Of Installing An Epoxidation Catalyst In A Reactor, A Method Of Preparing An Epoxidation Catalyst, An Epoxidation Catalyst, A Process For The Preparation Of An Olefin Oxide Or A Chemical Derivable From An Olefin Oxide, And A Reactor Suitable For Such A Process
US20070197801A1 (en) 2005-12-22 2007-08-23 Bolk Jeroen W Method of installing an epoxidation catalyst in a reactor, a method of preparing an epoxidation catalyst, an epoxidation catalyst, a process for the preparation of an olefin oxide or a chemical derivable from an olefin oxide, and a reactor suitables for such a process
WO2007079038A2 (en) 2005-12-28 2007-07-12 Chevron U.S.A Inc. Molecular sieve ssz-74 composition of matter and synthesis thereof
US7473807B2 (en) 2005-12-28 2009-01-06 Chevron Usa, Inc. Acylation using molecular sieve SSZ-74
US7432402B2 (en) 2005-12-28 2008-10-07 Chevron U.S.A. Partial oxidation using molecular sieve SSZ-74
US7762059B2 (en) 2005-12-28 2010-07-27 Chevron U.S.A. Inc. Treatment of engine exhaust using molecular sieve SSZ-74
US7422732B2 (en) 2005-12-28 2008-09-09 Chevron U.S.A. Inc Synthesis of amines using molecular sieve SSZ-74
US7357904B2 (en) 2005-12-28 2008-04-15 Chevron Corporation Reduction of oxides of nitrogen in a gas stream using molecular sieve SSZ-74
US7510697B2 (en) 2005-12-28 2009-03-31 Chevron U.S.A. Inc. Molecular sieve SSZ-74 composition of matter and synthesis thereof
US20080115666A1 (en) 2005-12-28 2008-05-22 Chevron U.S.A. Inc. Gas separation using molecular sieve ssz-74
US20070149778A1 (en) 2005-12-28 2007-06-28 Chevron U.S.A. Inc. Beckmann rearrangement using molecular sieve ssz-74
EA020442B1 (ru) 2006-02-03 2014-11-28 ДжиАрТи, ИНК. Способ превращения углеводородного сырья (варианты) и система для его осуществления
GB0602424D0 (en) 2006-02-07 2006-03-22 Sinclair Pharmaceuticals Ltd Compounds
CA2645218C (en) 2006-03-23 2014-10-07 Anna Lee Tonkovich Process for making styrene using microchannel process technology
EP1837320A1 (en) 2006-03-23 2007-09-26 ETH Zürich Production of saturated C2 to C5 hydrocarbons
JP2007269708A (ja) 2006-03-31 2007-10-18 Sumitomo Chemical Co Ltd 第3級オレフィンおよび脂肪族アルコールの製造方法
US20070238905A1 (en) 2006-04-05 2007-10-11 Victor Manuel Arredondo Processes for converting glycerol to glycerol ethers
BRPI0601460B1 (pt) 2006-04-26 2015-11-10 Petroleo Brasileiro Sa processo para hidroconversão de mistura de óleos orgânicos de diferentes origens
JP5322307B2 (ja) 2006-05-08 2013-10-23 エクソンモービル・ケミカル・パテンツ・インク 改善された触媒組成物
EP2029511A1 (en) 2006-05-08 2009-03-04 ExxonMobil Chemical Patents Inc. Organic compound conversion process
US7268263B1 (en) 2006-05-18 2007-09-11 Uop Llc Integrated process for aromatics production
US7304193B1 (en) 2006-05-18 2007-12-04 Uop Llc Integrated process for aromatics production
WO2007141295A1 (en) 2006-06-08 2007-12-13 High Point Pharmaceuticals, Llc Process for preparing phenoxy acetic acid derivatives
WO2007146622A2 (en) 2006-06-08 2007-12-21 Chevron U.S.A. Inc. Molecular sieve ssz-75 composition of matter and synthesis thereof
US7906099B2 (en) 2006-06-09 2011-03-15 Exxonmobil Chemical Patents Inc. Intergrown molecular sieve, its synthesis and its use in the conversion of oxygenates to olefins
RU2009114847A (ru) 2006-09-21 2010-10-27 Альбермарл Корпорейшн (Us) Способы превращения метана в пригодные углеводороды, катализаторы для применения в таких способах и регенерация катализаторов
US20090247804A1 (en) 2006-09-21 2009-10-01 Albemarle Corporation Methods for conversion of methane to useful hydrocarbons and catalysts for use therein
BRPI0810060A2 (pt) 2007-02-28 2014-10-21 Albemarle Corp Processos para produizir hidrocarbonetos mais altos de metano e bromo
WO2008157045A1 (en) 2007-06-14 2008-12-24 Albemarle Corporation Processes for producing higher hydrocarbons from hydrocarbon feed sources
WO2008157044A1 (en) 2007-06-14 2008-12-24 Albemarle Corporation Processes for producing higher hydrocarbons from methane
WO2008157047A1 (en) 2007-06-14 2008-12-24 Albemarle Corporation Processes for producing hydrogen from hydrocarbon feed sources
WO2008157046A1 (en) 2007-06-14 2008-12-24 Albemarle Corporation Processes for producing higher hydrocarbons from methane
WO2008157043A1 (en) 2007-06-14 2008-12-24 Albemarle Corporation Processes for producing higher hydrocarbons from methane
US8282810B2 (en) 2008-06-13 2012-10-09 Marathon Gtf Technology, Ltd. Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery
US20090312586A1 (en) 2008-06-13 2009-12-17 Marathon Gtf Technology, Ltd. Hydrogenation of multi-brominated alkanes
AU2009302627A1 (en) 2008-10-07 2010-04-15 Shell Internationale Research Maatschappij B.V. An integrated process to coproduce aromatic hydrocarbons and ethylene and propylene
BRPI1008335A2 (pt) * 2009-02-10 2016-02-23 Ind Origami Inc folha de material com estruturas de controle de curvatura e método
US20110015458A1 (en) 2009-07-15 2011-01-20 Marathon Gtf Technology, Ltd. Conversion of hydrogen bromide to elemental bromine

Patent Citations (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3172915A (en) * 1965-03-09 Preparation of oxygenated methane derivatives
US2168260A (en) * 1934-11-11 1939-08-01 Ig Farbenindustrie Ag Process of preparing monohalogenation products
US2246082A (en) * 1939-08-22 1941-06-17 Shell Dev Preparation of alkyl halides
US2488083A (en) * 1946-06-18 1949-11-15 Socony Vacuum Oil Co Inc Manufacture of liquid hydrocarbons
US2677598A (en) * 1953-01-19 1954-05-04 Dow Chemical Co Oxidation of ferrous halides to form ferric halides
US2941014A (en) * 1954-08-06 1960-06-14 Hoechst Ag Manufacture of alkyl chlorination products
US3562321A (en) * 1961-10-10 1971-02-09 Sun Oil Co Preparation of oxygenated hydrocarbons
US3246043A (en) * 1962-12-12 1966-04-12 Universal Oil Prod Co Preparation of olefinic hydrocarbons
US3273964A (en) * 1963-02-28 1966-09-20 Universal Oil Prod Co Process for producing bromine from a mixture of hydrogen bromide and olefinic hydrocarbon
US3310380A (en) * 1964-02-13 1967-03-21 Universal Oil Prod Co Bromine recovery
US3353916A (en) * 1966-04-25 1967-11-21 Universal Oil Prod Co Quantitative recovery of bromine by two stage catalytic oxidation of hydrogen bromide
US3598876A (en) * 1967-11-13 1971-08-10 Universal Oil Prod Co Selective halogenation of hydrocarbons
US3702886A (en) * 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
US3876715A (en) * 1972-12-01 1975-04-08 Gulf Research Development Co Process for preparing 2,3-dibromo-2-alkylalkanes
US4347391A (en) * 1973-06-11 1982-08-31 Stauffer Chemical Company Process for preparing ethylene dichloride
US3894107A (en) * 1973-08-09 1975-07-08 Mobil Oil Corp Conversion of alcohols, mercaptans, sulfides, halides and/or amines
US3894105A (en) * 1973-08-09 1975-07-08 Mobil Oil Corp Production of durene
US4006169A (en) * 1976-02-26 1977-02-01 Smithkline Corporation Epoxidation of α,β-ethylenic ketones
US4197420A (en) * 1977-07-18 1980-04-08 Sebastiano Cesca Method for producing oligomers from straight-chain alpha olefins, subsequently hydrogenating such oligomers and saturated products so obtained
US4496752A (en) * 1979-05-03 1985-01-29 The Lummus Company Production of epoxy compounds from olefinic compounds
US4333852A (en) * 1980-09-25 1982-06-08 Union Carbide Corporation Catalyst for the selective production of ethanol and methanol directly from synthesis gas
US4301253A (en) * 1980-09-25 1981-11-17 Union Carbide Corporation Process for the selective production of ethanol and methanol directly from synthesis gas
US4373109A (en) * 1981-08-05 1983-02-08 Olah George A Bifunctional acid-base catalyzed conversion of hetero-substituted methanes into olefins
US4489210A (en) * 1981-08-19 1984-12-18 Bayer Aktiengesellschaft Process for the halogenation of organic compounds
US4467130A (en) * 1981-09-01 1984-08-21 Olah George A Condensation of natural gas or methane into gasoline-range hydrocarbons
US4523040A (en) * 1981-09-01 1985-06-11 Olah George A Methyl halides and methyl alcohol from methane
US4440871A (en) * 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
US4465893A (en) * 1982-08-25 1984-08-14 Olah George A Oxidative condensation of natural gas or methane into gasoline range hydrocarbons
US4654449A (en) * 1982-12-09 1987-03-31 Mobil Oil Corporation Formation of halogenated hydrocarbons from hydrocarbons
US4655893A (en) * 1983-02-07 1987-04-07 Battelle Development Corporation Cubic boron nitride preparation utilizing a boron and nitrogen bearing gas
US4665270A (en) * 1983-12-16 1987-05-12 The British Petroleum Company, P.L.C. Process for the production of hydrocarbons from hetero-substituted alkanes
US4513092A (en) * 1984-01-04 1985-04-23 Mobil Oil Corporation Composite catalyst for halogenation and condensation of alkanes
US4652688A (en) * 1984-04-24 1987-03-24 The British Petroleum Company, P.L.C. Process for the production of hydrocarbons from hetero-substituted methanes
US4748013A (en) * 1985-04-17 1988-05-31 Toyo Soda Manufacturing Co., Ltd. Adsorbent for recovery of bromine and bromine-recovering process using same
US4795843A (en) * 1985-08-26 1989-01-03 Uop Inc. Conversion of methane into larger organic hydrocarbons
US4769504A (en) * 1987-03-04 1988-09-06 The United States Of America As Represented By The United States Department Of Energy Process for converting light alkanes to higher hydrocarbons
US4804797A (en) * 1987-08-24 1989-02-14 Gas Research Institute Production of commodity chemicals from natural gas by methane chlorination
US5157189A (en) * 1987-10-19 1992-10-20 Karra Sankaram B Conversion of light hydrocarbons to higher hydrocarbons
US4973786A (en) * 1987-10-19 1990-11-27 Karra Sankaram B Process for the pyrolytic oxidation of methane to higher molecular weight hydrocarbons and synthesis gas
US4982024A (en) * 1989-12-26 1991-01-01 Ethyl Corporation Process for the selective dehydrohalogenation of an admixture of alkylhalides
US5001293A (en) * 1990-04-25 1991-03-19 Amoco Corporation Halocarbon conversion
US5087786A (en) * 1990-04-25 1992-02-11 Amoco Corporation Halogen-assisted conversion of lower alkanes
US5705728A (en) * 1990-12-06 1998-01-06 Occidental Chemical Corporation Process for the production of ethylene and mixture containing ethylene
US5276240A (en) * 1991-10-18 1994-01-04 Board Of Regents, The University Of Texas System Catalytic hydrodehalogenation of polyhalogenated hydrocarbons
US5243098A (en) * 1992-11-04 1993-09-07 Energia Andina Ltd. Conversion of methane to methanol
US5334777A (en) * 1992-11-04 1994-08-02 Energia Andina Ltd. Conversion of alkanes to alkanols and glycols
US5486627A (en) * 1994-12-02 1996-01-23 The Dow Chemical Company Method for producing epoxides
US5969195A (en) * 1997-05-21 1999-10-19 Basf Aktiengesellschaft Hydrolysis of alkyl monohalides
US5998679A (en) * 1998-05-20 1999-12-07 Jlm Technology, Ltd. Methods for converting lower alkanes and alkanes to alcohols and diols
US6713087B2 (en) * 1999-05-28 2004-03-30 Alkermes Controlled Therapeutics, Inc. Method of producing submicron particles of a labile agent and use thereof
US7230150B2 (en) * 2001-04-18 2007-06-12 Grt, Inc. Zone reactor
US7019182B2 (en) * 2001-04-18 2006-03-28 Grt, Inc. Method of hydrocarbon preservation and environmental protection
US20030125589A1 (en) * 2001-04-18 2003-07-03 Grt, Inc. Zone reactor
US6525230B2 (en) * 2001-04-18 2003-02-25 Grt, Inc. Zone reactor
US6452058B1 (en) * 2001-05-21 2002-09-17 Dow Global Technologies Inc. Oxidative halogenation of C1 hydrocarbons to halogenated C1 hydrocarbons and integrated processes related thereto
US6486368B1 (en) * 2001-06-20 2002-11-26 Grt, Inc. Integrated process for synthesizing alcohols, ethers, and olefins from alkanes
US6713655B2 (en) * 2001-06-20 2004-03-30 Grt Inc Integrated process for synthesizing alcohols, ethers, aldehydes, and olefins from alkanes
US6472572B1 (en) * 2001-06-20 2002-10-29 Grt, Inc. Integrated process for synthesizing alcohols and ethers from alkanes
US20030069452A1 (en) * 2001-06-20 2003-04-10 Sherman Jeffrey H. Method and apparatus for synthesizing from alcohols and ethers from alkanes, alkenes, and aromatics
US20030078456A1 (en) * 2001-06-20 2003-04-24 Aysen Yilmaz Integrated process for synthesizing alcohols, ethers, aldehydes, and olefins from alkanes
US20030120121A1 (en) * 2001-06-20 2003-06-26 Grt, Inc. Method and apparatus for synthesizing from alcohols and ethers from alkanes, alkenes, and aromatics
US6465699B1 (en) * 2001-06-20 2002-10-15 Gri, Inc. Integrated process for synthesizing alcohols, ethers, and olefins from alkanes
US20030166973A1 (en) * 2001-06-20 2003-09-04 Grt, Inc. Integrated process for synthesizing alcohols, ethers, aldehydes, and olefins from alkanes
US20040006246A1 (en) * 2001-06-20 2004-01-08 Sherman Jeffrey H. Method and apparatus for synthesizing olefins, alcohols, ethers, and aldehydes
US20020198416A1 (en) * 2001-06-20 2002-12-26 Zhou Xiao Ping Integrated process for synthesizing alcohols, ethers, and olefins from alkanes
US6465696B1 (en) * 2001-06-20 2002-10-15 Grt, Inc. Integrated process for synthesizing alcohols, ethers, and olefins from alkanes
US6403840B1 (en) * 2001-06-20 2002-06-11 Grt, Inc. Process for synthesizing olefin oxides
US7161050B2 (en) * 2001-06-20 2007-01-09 Grt, Inc. Method and apparatus for synthesizing olefins, alcohols, ethers, and aldehydes
US20050192468A1 (en) * 2001-06-20 2005-09-01 Sherman Jeffrey H. Hydrocarbon conversion process improvements
US6462243B1 (en) * 2001-06-20 2002-10-08 Grt, Inc. Integrated process for synthesizing alcohols and ethers from alkanes
US20050171393A1 (en) * 2003-07-15 2005-08-04 Lorkovic Ivan M. Hydrocarbon synthesis
US20050038310A1 (en) * 2003-07-15 2005-02-17 Lorkovic Ivan M. Hydrocarbon synthesis
US20060229475A1 (en) * 2005-04-11 2006-10-12 Weiss Michael J Synthesis of hydroxylated hydrocarbons
US20060229228A1 (en) * 2005-04-11 2006-10-12 Zachary John Anthony Komon Method of making alkoxylates

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8415512B2 (en) 2001-06-20 2013-04-09 Grt, Inc. Hydrocarbon conversion process improvements
US7838708B2 (en) 2001-06-20 2010-11-23 Grt, Inc. Hydrocarbon conversion process improvements
US20110218375A1 (en) * 2003-07-15 2011-09-08 Lorkovic Ivan M Hydrocarbon synthesis
US7964764B2 (en) 2003-07-15 2011-06-21 Grt, Inc. Hydrocarbon synthesis
US8278493B2 (en) * 2003-07-15 2012-10-02 Grt, Inc. Hydrocarbon synthesis
US7847139B2 (en) 2003-07-15 2010-12-07 Grt, Inc. Hydrocarbon synthesis
US8642822B2 (en) 2004-04-16 2014-02-04 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons using microchannel reactor
US8173851B2 (en) 2004-04-16 2012-05-08 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
US7880041B2 (en) 2004-04-16 2011-02-01 Marathon Gtf Technology, Ltd. Process for converting gaseous alkanes to liquid hydrocarbons
US7674941B2 (en) 2004-04-16 2010-03-09 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
US8232441B2 (en) 2004-04-16 2012-07-31 Marathon Gtf Technology, Ltd. Process for converting gaseous alkanes to liquid hydrocarbons
US8008535B2 (en) 2004-04-16 2011-08-30 Marathon Gtf Technology, Ltd. Process for converting gaseous alkanes to olefins and liquid hydrocarbons
US9206093B2 (en) 2004-04-16 2015-12-08 Gtc Technology Us, Llc Process for converting gaseous alkanes to liquid hydrocarbons
US7883568B2 (en) * 2006-02-03 2011-02-08 Grt, Inc. Separation of light gases from halogens
EP2457887A1 (en) 2006-02-03 2012-05-30 GRT, Inc. Continuous process for converting natural gas to liquid hydrocarbons
US8053616B2 (en) 2006-02-03 2011-11-08 Grt, Inc. Continuous process for converting natural gas to liquid hydrocarbons
US8921625B2 (en) 2007-02-05 2014-12-30 Reaction35, LLC Continuous process for converting natural gas to liquid hydrocarbons
US20100135895A1 (en) * 2007-04-13 2010-06-03 Xiaoping Zhou Process for Purifying HBr in Hydrocarbons
US7998438B2 (en) 2007-05-24 2011-08-16 Grt, Inc. Zone reactor incorporating reversible hydrogen halide capture and release
CN102066294A (zh) * 2008-06-13 2011-05-18 马拉索恩科技有限责任公司 采用用于溴回收的电解来将气态烷烃转化为液态烃的基于溴的方法及系统
WO2009152403A1 (en) * 2008-06-13 2009-12-17 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
CN102089264A (zh) * 2008-06-13 2011-06-08 马拉索恩科技有限责任公司 多溴代烷烃的氢化
WO2009152408A1 (en) * 2008-06-13 2009-12-17 Marathon Gtf Technology, Ltd. Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery
US8282810B2 (en) 2008-06-13 2012-10-09 Marathon Gtf Technology, Ltd. Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery
WO2009152405A1 (en) * 2008-06-13 2009-12-17 Marathon Gtf Technology, Ltd. Hydrogenation of multi-brominated alkanes
AU2009257331B2 (en) * 2008-06-13 2014-06-26 Gtc Technology Us, Llc Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery
US9017624B2 (en) * 2008-07-18 2015-04-28 Reaction 35, Llc Continuous process for converting natural gas to liquid hydrocarbons
US8273929B2 (en) 2008-07-18 2012-09-25 Grt, Inc. Continuous process for converting natural gas to liquid hydrocarbons
US20130078157A1 (en) * 2008-07-18 2013-03-28 Peter Stoimenov Continuous process for converting natural gas to liquid hydrocarbons
US8415517B2 (en) 2008-07-18 2013-04-09 Grt, Inc. Continuous process for converting natural gas to liquid hydrocarbons
US7968755B2 (en) 2008-10-01 2011-06-28 Sajet Development Llc Process and catalyst for converting alkanes
US20100087688A1 (en) * 2008-10-01 2010-04-08 Jorge Miller Process and catalyst for converting alkanes
US7812201B2 (en) 2008-10-01 2010-10-12 Targa Resources, Inc. Process and catalyst for converting alkanes
US8367884B2 (en) 2010-03-02 2013-02-05 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides
US9133078B2 (en) 2010-03-02 2015-09-15 Gtc Technology Us, Llc Processes and systems for the staged synthesis of alkyl bromides
US8198495B2 (en) 2010-03-02 2012-06-12 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides
US8815050B2 (en) 2011-03-22 2014-08-26 Marathon Gtf Technology, Ltd. Processes and systems for drying liquid bromine
US8436220B2 (en) 2011-06-10 2013-05-07 Marathon Gtf Technology, Ltd. Processes and systems for demethanization of brominated hydrocarbons
US8829256B2 (en) 2011-06-30 2014-09-09 Gtc Technology Us, Llc Processes and systems for fractionation of brominated hydrocarbons in the conversion of natural gas to liquid hydrocarbons
US8802908B2 (en) 2011-10-21 2014-08-12 Marathon Gtf Technology, Ltd. Processes and systems for separate, parallel methane and higher alkanes' bromination
US9193641B2 (en) 2011-12-16 2015-11-24 Gtc Technology Us, Llc Processes and systems for conversion of alkyl bromides to higher molecular weight hydrocarbons in circulating catalyst reactor-regenerator systems
WO2016061584A1 (en) * 2014-10-17 2016-04-21 Solutions Labs, Inc. Production of clean hydrocarbon and nitrogen-based fuel
WO2021198166A1 (en) 2020-03-30 2021-10-07 Total Se Gas to olefins process with coproduction of hydrogen together with heat integration process
WO2021198172A1 (en) 2020-03-30 2021-10-07 Total Se Gas to olefins processes with coproduction of hydrogen
WO2021198175A1 (en) 2020-03-30 2021-10-07 Total Se Gas to olefins process with coproduction of hydrogen together with electrified reactional section

Also Published As

Publication number Publication date
UA105476C2 (uk) 2014-05-26
CA2625459C (en) 2014-11-04
AU2006302939B2 (en) 2013-03-14
AR058123A1 (es) 2008-01-23
MY151088A (en) 2014-04-15
US20080200740A1 (en) 2008-08-21
EA200801115A1 (ru) 2008-10-30
AU2006302939A1 (en) 2007-04-26
ECSP088361A (es) 2008-05-30
KR101363300B1 (ko) 2014-02-18
US8008535B2 (en) 2011-08-30
EP1945598A2 (en) 2008-07-23
JP5396082B2 (ja) 2014-01-22
CN101291891B (zh) 2013-03-27
JP2009512754A (ja) 2009-03-26
EG26651A (en) 2014-05-04
CN101291891A (zh) 2008-10-22
EA022696B1 (ru) 2016-02-29
EP1945598A4 (en) 2011-07-06
NO20082252L (no) 2008-05-16
ZA200803330B (en) 2009-11-25
CA2625459A1 (en) 2007-04-26
WO2007046986A3 (en) 2007-06-07
TNSN08176A1 (en) 2009-10-30
WO2007046986A2 (en) 2007-04-26
BRPI0617707A2 (pt) 2011-08-02
KR20080063329A (ko) 2008-07-03
AP2008004417A0 (en) 2008-04-30
NZ567480A (en) 2011-08-26
PE20070737A1 (es) 2007-08-02

Similar Documents

Publication Publication Date Title
US8008535B2 (en) Process for converting gaseous alkanes to olefins and liquid hydrocarbons
US8232441B2 (en) Process for converting gaseous alkanes to liquid hydrocarbons
US9206093B2 (en) Process for converting gaseous alkanes to liquid hydrocarbons
CA2561133C (en) Process for converting gaseous alkanes to liquid hydrocarbons
US7674941B2 (en) Processes for converting gaseous alkanes to liquid hydrocarbons
JP2007532760A5 (zh)

Legal Events

Date Code Title Description
AS Assignment

Owner name: MARATHON OIL COMPANY, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WAYCULLIS, JOHN J;REEL/FRAME:017200/0321

Effective date: 20060105

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: MARATHON GTF TECHNOLOGY, LTD., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MARATHON OIL COMPANY;REEL/FRAME:021148/0159

Effective date: 20080416