US11723263B2 - Organic electroluminescent element - Google Patents

Organic electroluminescent element Download PDF

Info

Publication number
US11723263B2
US11723263B2 US16/092,856 US201716092856A US11723263B2 US 11723263 B2 US11723263 B2 US 11723263B2 US 201716092856 A US201716092856 A US 201716092856A US 11723263 B2 US11723263 B2 US 11723263B2
Authority
US
United States
Prior art keywords
ring
aryl
substituted
heteroaryl
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/092,856
Other languages
English (en)
Other versions
US20190207112A1 (en
Inventor
Takuji Hatakeyama
Akihide MIZUTANI
Toshihiro Koike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kwansei Gakuin Educational Foundation
SK Materials JNC Co Ltd
Original Assignee
Kwansei Gakuin Educational Foundation
SK Materials JNC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kwansei Gakuin Educational Foundation, SK Materials JNC Co Ltd filed Critical Kwansei Gakuin Educational Foundation
Assigned to JNC CORPORATION reassignment JNC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOIKE, TOSHIHIRO, MIZUTANI, AKIHIDE
Assigned to KWANSEI GAKUIN EDUCATIONAL FOUNDATION reassignment KWANSEI GAKUIN EDUCATIONAL FOUNDATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HATAKEYAMA, TAKUJI
Publication of US20190207112A1 publication Critical patent/US20190207112A1/en
Assigned to SK MATERIALS JNC CO., LTD. reassignment SK MATERIALS JNC CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JNC CORPORATION
Application granted granted Critical
Publication of US11723263B2 publication Critical patent/US11723263B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers

Definitions

  • the present invention relates to an organic electroluminescent element having a light emitting layer containing a polycyclic aromatic compound or a multimer thereof as a dopant material and a specific anthracene-based compound as a host material, and a display apparatus and a lighting apparatus using the same.
  • an organic electroluminescent element (hereinafter, referred to as an organic EL element) formed from an organic material has been studied actively because weight reduction or size expansion can be easily achieved.
  • active studies have been hitherto conducted on development of an organic material having luminescence characteristics for blue light which is one of the primary colors of light, or the like, and a combination of a plurality of materials having optimum luminescence characteristics, irrespective of whether the organic material is a high molecular weight compound or a low molecular weight compound.
  • An organic EL element has a structure having a pair of electrodes composed of a positive electrode and a negative electrode, and a single layer or a plurality of layers which are disposed between the pair of electrodes and contain an organic compound.
  • the layer containing an organic compound includes a light emitting layer, a charge transport/injection layer for transporting or injecting charges such as holes or electrons, and the like, and various organic materials suitable for these layers have been developed.
  • benzofluorene-based compounds and the like have been developed (WO 2004/061047 A).
  • hole transporting materials for example, triphenylamine-based compounds and the like have been developed (JP 2001-172232 A).
  • electron transport materials for example, anthracene-based compounds and the like have been developed (JP 2005-170911 A).
  • the characteristics obtainable from materials other than the NO-linked system compound are not known. Examples of such a compound are also found elsewhere (WO 2011/107186 A). For example, since a compound having a conjugated structure involving high energy of triplet exciton (T1) can emit phosphorescent light having a shorter wavelength, the compound is useful as a material for blue light emitting layer.
  • T1 triplet exciton
  • the present inventors conducted intensive studies in order to solve the problems described above. As a result, the present inventors have found a novel polycyclic aromatic compound in which a plurality of aromatic rings are linked with a boron atom and a nitrogen atom, and have succeeded in manufacturing the same. The present inventors have found that an excellent organic EL element is obtained by disposing a light emitting layer containing this polycyclic aromatic compound and a specific anthracene-based compound between a pair of electrodes to constitute an organic EL element, and have completed the present invention.
  • An organic electroluminescent element comprising a pair of electrodes composed of a positive electrode and a negative electrode and a light emitting layer disposed between the pair of electrodes, in which
  • the light emitting layer comprises at least one of a polycyclic aromatic compound represented by the following general formula (1) and a polycyclic aromatic compound multimer having a plurality of structures represented by the following general formula (1), and an anthracene-based compound represented by the following general formula (3).
  • ring A, ring B and ring C each independently represent an aryl ring or a heteroaryl ring, while at least one hydrogen atom in these rings may be substituted,
  • Y 1 represents B
  • X 1 and X 2 each independently represent N—R
  • R of the N—R is an optionally substituted aryl, an optionally substituted heteroaryl or alkyl
  • R of the N—R may be bonded to the ring A, ring B, and/or ring C with a linking group or a single bond
  • At least one hydrogen atom in a compound or a structure represented by formula (1) may be substituted by a halogen atom or a deuterium atom.
  • Ar 3 and Ar 4 each independently represent a hydrogen atom, an optionally substituted alkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted alkoxy, an optionally substituted aryloxy, an optionally substituted arylthio, a trialkylsilyl, an optionally substituted amino, a halogen atom, a hydroxy, or a cyano, provided that a naphthyl group and a naphthyl group fused with one benzene ring are excluded as Ar 3 ,
  • At least one hydrogen atom of a compound represented by formula (3) may be substituted by a deuterium atom
  • R 21 to R 28 each independently represent a hydrogen atom, an optionally substituted alkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted alkoxy, an optionally substituted aryloxy, an optionally substituted arylthio, a trialkylsilyl, an optionally substituted amino, a halogen atom, a hydroxy, or a cyano, adjacent groups among R 21 to R 28 may be bonded to each other to form a hydrocarbon ring, an aryl ring, or a heteroaryl ring, R 29 is an optionally substituted aryl or a bonding position with a compound represented by formula (3), and a group represented by formula (4) is substituted by at least one hydrogen atom in a compound represented by formula (3) at *, and is bonded thereto at any position in a structure of formula (4).
  • the ring A, ring B, and ring C each independently represent an aryl ring or a heteroaryl ring, while at least one hydrogen atom in these rings may be substituted by a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, a substituted or unsubstituted diarylamino, a substituted or unsubstituted diheteroarylamino, a substituted or unsubstituted arylheteroarylamino, a substituted or unsubstituted alkyl, a substituted or unsubstituted alkoxy, or a substituted or unsubstituted aryloxy, each of these rings has a 5-membered or 6-membered ring sharing a bond with a fused bicyclic structure at the center of the above formula constructed by Y 1 , X 1 , and X 2 ,
  • Y 1 represents B
  • X 1 and X 2 each independently represent N—R
  • R of the N—R represents an aryl which may be substituted by an alkyl, a heteroaryl which may be substituted by an alkyl or alkyl
  • R of the N—R may be bonded to the ring A, ring B, and/or ring C with —O—, —S—, —C(—R) 2 — or a single bond
  • R of the —C(—R) 2 — represents a hydrogen atom or an alkyl
  • At least one hydrogen atom in a compound or structure represented by formula (1) may be substituted by a halogen atom or a deuterium atom, and
  • the multimer in a case of a multimer, is a dimer or a trimer having two or three structures represented by formula (1).
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , and R 11 each independently represent a hydrogen atom, an aryl, a heteroaryl, a diarylamino, a diheteroarylamino, an arylheteroarylamino, an alkyl, an alkoxy, or an aryloxy, while at least one hydrogen atom in these may be substituted by an aryl, a heteroaryl, or an alkyl, adjacent groups among R 1 to R 11 may be bonded to each other to form an aryl ring or a heteroaryl ring together with ring a, ring b, or ring c, at least one hydrogen atom in the ring thus formed may be substituted by an aryl, a heteroaryl, a diarylamino, a diheteroarylamino, an arylheteroarylamino, an alkyl, an
  • Y 1 represents B
  • X 1 and X 2 each independently represent N—R
  • R of the N—R represents an aryl having 6 to 12 carbon atoms, a heteroaryl having 2 to 15 carbon atoms, or an alkyl having 1 to 6 carbon atoms
  • R of the N—R may be bonded to the ring a, ring b and/or ring c with —O—, —S—, —C(—R) 2 —, or a single bond
  • R of the —C(—R) 2 — represents an alkyl having 1 to 6 carbon atoms
  • At least one hydrogen atom in a compound represented by formula (2) may be substituted by a halogen atom or a deuterium atom.
  • Ar 3 each independently represent a hydrogen atom, an alkyl, an aryl, a heteroaryl, an alkoxy, an aryloxy, an arylthio, a trialkylsilyl, a diaryl substituted amino, a diheteroaryl substituted amino, an aryl heteroaryl substituted amino, a halogen atom, a hydroxy, or a cyano, provided that a naphthyl group and a naphthyl group fused with one benzene ring are excluded as Ar 3 and at least one hydrogen atom in Ar 3 is substituted by a group represented by any one of the above formulas (4-1) to (4-11),
  • Ar 4 each independently represent a hydrogen atom, an alkyl, an aryl, a heteroaryl, an alkoxy, an aryloxy, an arylthio, a trialkylsilyl, a diaryl substituted amino, a diheteroaryl substituted amino, an aryl heteroaryl substituted amino, a halogen atom, a hydroxy, or a cyano, and
  • At least one hydrogen atom in a compound represented by formula (3) may be substituted by a deuterium atom
  • Y represents —O—, —S— or >N—R 29
  • R 29 is an aryl or a bonding position with a compound represented by formula (3)
  • at least one hydrogen atom in groups represented by formulas (4-1) to (4-11) may be substituted by an alkyl, an aryl, a heteroaryl, an alkoxy, an aryloxy, an arylthio, a trialkylsilyl, a diaryl substituted amino, a diheteroaryl substituted amino, an aryl heteroaryl substituted amino, a halogen atom, a hydroxy, or a cyano
  • each of the groups represented by formulas (4-1) to (4-11) is substituted with at least one hydrogen atom in Ar 3 at *, and is bonded thereto at any position in structures of formulas (4-1) to (4-11).
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , and R 11 each independently represent a hydrogen atom, an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms or a diarylamino (the aryl is an aryl having 6 to 12 carbon atoms), adjacent groups among R 1 to R 11 may be bonded to each other to form an aryl having 9 to 16 carbon atoms or a heteroaryl ring having 6 to 15 carbon atoms together with the ring a, ring b, or ring c, at least one hydrogen atom in the ring thus formed may be substituted by an aryl having 6 to 10 carbon atoms,
  • Y 1 represents B
  • X 1 and X 2 each independently represent N—R, R of the N—R is an aryl having 6 to 10 carbon atoms,
  • At least one hydrogen atom in a compound represented by formula (2) may be substituted by a halogen atom or a deuterium atom,
  • Ar 3 each independently represent a hydrogen atom, an aryl, a heteroaryl, a diaryl substituted amino, a diheteroaryl substituted amino, or an aryl heteroaryl substituted amino, provided that a naphthyl group and a naphthyl group fused with one benzene ring are excluded as Ar 3 and at least one hydrogen atom in Ar 3 is substituted by a group represented by any one of the above formulas (4-1) to (4-11),
  • Ar 4 each independently represent a hydrogen atom, an alkyl, an aryl, a heteroaryl, a trialkylsilyl, a diaryl substituted amino, a diheteroaryl substituted amino, or an aryl heteroaryl substituted amino, and
  • At least one hydrogen atom in a compound represented by formula (3) may be substituted by a deuterium atom.
  • a borane derivative a pyridine derivative, a fluoranthene derivative, a BO-based derivative, an anthracene derivative, a benzofluorene derivative, a phosphine oxide derivative, a pyrimidine derivative,
  • the electron transport layer and/or electron injection layer further comprise/comprises at least one selected from the group consisting of an alkali metal, an alkaline earth metal, a rare earth metal, an oxide of an alkali metal, a halide of an alkali metal, an oxide of an alkaline earth metal, a halide of an alkaline earth metal, an oxide of a rare earth metal, a halide of a rare earth metal, an organic complex of an alkali metal, an organic complex of an alkaline earth metal, and an organic complex of a rare earth metal.
  • a display apparatus comprising the organic electroluminescent element described in any one of the above [1] to [9].
  • a lighting apparatus comprising the organic electroluminescent element described in any one of the above [1] to [9].
  • a novel polycyclic aromatic compound and an anthracene-based compound which can obtain optimum light emitting characteristics in combination with the polycyclic aromatic compound, and by manufacturing an organic EL element using a material for a light emitting layer obtained by combining these compounds, it is possible to provide an organic EL element having a low consumption power and an excellent quantum efficiency.
  • the FIGURE is a schematic cross-sectional view illustrating an organic EL element according to the present embodiment.
  • the present invention relates to an organic EL element including a pair of electrodes composed of a positive electrode and a negative electrode and a light emitting layer disposed between the pair of electrodes, in which the light emitting layer contains at least one of a polycyclic aromatic compound represented by the following general formula (1) and a polycyclic aromatic compound multimer having a plurality of structures represented by the following general formula (1), and an anthracene-based compound represented by the following general formula (3).
  • A, B, C, Y 1 , X 1 , and X 2 in formula (1) are defined in the same manner as described above, and Ar 3 , Ar 4 , Y, and R 21 to R 28 in formulas (3) and (4) are defined in the same manner as described above.
  • Each of a polycyclic aromatic compound represented by general formula (1) and a polycyclic aromatic compound multimer having a plurality of structures represented by general formula (1) basically functions as a dopant.
  • the polycyclic aromatic compound and a multimer thereof are preferably a polycyclic aromatic compound represented by the following general formula (2) or a polycyclic aromatic compound multimer having a plurality of structures represented by the following general formula (2).
  • the ring A, ring B and ring C in general formula (1) each independently represent an aryl ring or a heteroaryl ring, and at least one hydrogen atom in these rings may be substituted by a substituent.
  • This substituent is preferably a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, a substituted or unsubstituted diarylamino, a substituted or unsubstituted diheteroarylamino, a substituted or unsubstituted arylheteroarylamino (an amino group having an aryl and a heteroaryl), a substituted or unsubstituted alkyl, a substituted or unsubstituted alkoxy, or a substituted or unsubstituted aryloxy.
  • the substituents include an aryl, a heteroaryl, and an alkyl.
  • the aryl ring or heteroaryl ring preferably has a 5-membered ring or 6-membered ring sharing a bond with a fused bicyclic structure at the center of general formula (1) constituted by Y 1 , X 1 , and X 2 (hereinafter, this structure is also referred to as “structure D”).
  • fused bicyclic structure means a structure in which two saturated hydrocarbon rings that are configured to include Y 1 , X 1 and X 2 and indicated at the center of general formula (1) are fused.
  • a “6-membered ring sharing a bond with the fused bicyclic structure” means, for example, ring a (benzene ring (6-membered ring)) fused to the structure D as represented by the above general formula (2).
  • aryl ring or heteroaryl ring (which is ring A) has this 6-membered ring means that the ring A is formed only from this 6-membered ring, or the ring A is formed such that other rings are further fused to this 6-membered ring so as to include this 6-membered ring.
  • the “aryl ring or heteroaryl ring (which is ring A) having a 6-membered ring” as used herein means that the 6-membered ring that constitutes the entirety or a portion of the ring A is fused to the structure D.
  • the ring A (or ring B or ring C) in general formula (1) corresponds to ring a and its substituents R 1 to R 3 in general formula (2) (or ring b and its substituents R 4 to R 7 , or ring c and its substituents R 8 to R 11 ). That is, general formula (2) corresponds to a structure in which “rings A to C having 6-membered rings” have been selected as the rings A to C of general formula (1). For this meaning, the rings of general formula (2) are represented by small letters a to c.
  • adjacent groups among the substituents R 1 to R 11 of the ring a, ring b, and ring c may be bonded to each other to form an aryl ring or a heteroaryl ring together with the ring a, ring b, or ring c, and at least one hydrogen atom in the ring thus formed may be substituted by an aryl, a heteroaryl, a diarylamino, a diheteroarylamino, an arylheteroarylamino, an alkyl, an alkoxy or an aryloxy, while at least one hydrogen atom in these may be substituted by an aryl, a heteroaryl, or an alkyl.
  • a ring structure constituting the compound changes as represented by the following formulas (2-1) and (2-2) according to a mutual bonding form of substituents in the ring a, ring b or ring c.
  • Ring A′, ring B′ and ring C′ in each formula correspond to the ring A, ring B and ring C in general formula (1), respectively.
  • R 1 to R 11 , Y 1 , X 1 , and X 2 in formulas (2-1) and (2-2) are defined in the same manner as those in formula (2)
  • the ring A′, ring B′ and, ring C′ in the above formulas (2-1) and (2-2) each represent, to be described in connection with general formula (2), an aryl ring or a heteroaryl ring formed by bonding adjacent groups among the substituents R 1 to R 11 together with the ring a, ring b, and ring c, respectively (may also be referred to as a fused ring obtained by fusing another ring structure to the ring a, ring b, or ring c).
  • R 8 of the ring b and R 7 of the ring c, R 11 of the ring b and R 1 of the ring a, R 4 of the ring c and R 3 of the ring a, and the like do not correspond to “adjacent groups”, and these groups are not bonded to each other. That is, the term “adjacent groups” means adjacent groups on the same ring.
  • a compound represented by the above formula (2-1) or (2-2) corresponds to, for example, a compound represented by any one of formulas (1-402) to (1-409) and (1-412) to (1-419) listed as specific compounds that are described below. That is, for example, the compound represented by formula (2-1) or (2-2) is a compound having ring A′ (or ring B′ or ring C′) that is formed by fusing a benzene ring, an indole ring, a pyrrole ring, a benzofuran ring or a benzothiophene ring to a benzene ring which is ring a (or ring b or ring c), and the fused ring A′ (or fused ring B′ or fused ring C′) that has been formed is a naphthalene ring, a carbazole ring, an indole ring, a dibenzofuran ring, or a dibenzothiophene ring.
  • Y 1 in general formulas (1) and (2) represents B.
  • X 1 and X 2 in general formula (1) each independently represent N—R, while R of the N—R represents an optionally substituted aryl, or an optionally substituted heteroaryl or an alkyl, and R of the N—R may be bonded to the ring B and/or ring C with a linking group or a single bond.
  • the linking group is preferably —O—, —S— or —C(—R) 2 —.
  • R of the “—C(—R) 2 —” represents a hydrogen atom or an alkyl. This description also applies to X 1 and X 2 in general formula (2).
  • R of the N—R is bonded to the ring A, ring B and/or ring C with a linking group or a single bond” for general formula (1) corresponds to the provision that “R of the N—R is bonded to the ring a, ring b and/or ring c with —O—, —S—, —C(—R) 2 — or a single bond” for general formula (2).
  • This provision can be expressed by a compound having a ring structure represented by the following formula (2-3-1), in which X 1 or X 2 is incorporated into the fused ring B′ or C′. That is, for example, the compound is a compound having ring B′ (or ring C′) formed by fusing another ring to a benzene ring which is ring b (or ring c) in general formula (2) so as to incorporate X 1 (or X 2 ).
  • This compound corresponds to, for example, a compound represented by any one of formulas (1-451) to (1-462) or a compound represented by any one of formulas (1-1401) to (1-1460), listed as specific examples that are described below, and the fused ring B′ (or fused ring C′) that has been formed is, for example, a phenoxazine ring, a phenothiazine ring, or an acridine ring.
  • the above provision can be expressed by a compound having a ring structure in which X 1 and/or X 2 are/is incorporated into the fused ring A′, represented by the following formula (2-3-2) or (2-3-3). That is, for example, the compound is a compound having ring A′ formed by fusing another ring to a benzene ring which is ring a in general formula (2) so as to incorporate X 1 (and/or X 2 ).
  • This compound corresponds to, for example, a compound represented by any one of formulas (1-471) to (1-479) listed as specific examples that are described below, and the fused ring A′ that has been formed is, for example, a phenoxazine ring, a phenothiazine ring, or an acridine ring.
  • R 1 to R 11 , Y 1 , X 1 , and X 2 in formulas (2-3-1) to (2-3-3) are defined in the same manner as those in formula (2).
  • the “aryl ring” as the ring A, ring B or ring C of the general formula (1) is, for example, an aryl ring having 6 to 30 carbon atoms, and the aryl ring is preferably an aryl ring having 6 to 16 carbon atoms, more preferably an aryl ring having 6 to 12 carbon atoms, and particularly preferably an aryl ring having 6 to 10 carbon atoms.
  • this “aryl ring” corresponds to the “aryl ring formed by bonding adjacent groups among R 1 to R 11 together with the ring a, ring b, or ring c” defined by general formula (2).
  • Ring a (or ring b or ring c) is already constituted by a benzene ring having 6 carbon atoms, and therefore the carbon number of 9 in total of a fused ring obtained by fusing a 5-membered ring to this benzene ring becomes a lower limit of the carbon number.
  • aryl ring examples include a benzene ring which is a monocyclic system; a biphenyl ring which is a bicyclic system; a naphthalene ring which is a fused bicyclic system; a terphenyl ring (m-terphenyl, o-terphenyl, or p-terphenyl) which is a tricyclic system; an acenaphthylene ring, a fluorene ring, a phenalene ring and a phenanthrene ring which are fused tricyclic systems; a triphenylene ring, a pyrene ring and a naphthacene ring which are fused tetracyclic systems; and a perylene ring and a pentacene ring which are fused pentacyclic systems.
  • heteroaryl ring as the ring A, ring B or ring C of general formula (1) is, for example, a heteroaryl ring having 2 to 30 carbon atoms, and the heteroaryl ring is preferably a heteroaryl ring having 2 to 25 carbon atoms, more preferably a heteroaryl ring having 2 to 20 carbon atoms, still more preferably a heteroaryl ring having 2 to 15 carbon atoms, and particularly preferably a heteroaryl ring having 2 to 10 carbon atoms.
  • heteroaryl ring examples include a heterocyclic ring containing 1 to 5 heteroatoms selected from an oxygen atom, a sulfur atom, and a nitrogen atom in addition to a carbon atom as a ring-constituting atom.
  • this “heteroaryl ring” corresponds to the “heteroaryl ring formed by bonding adjacent groups among the R 1 to R 11 together with the ring a, ring b, or ring c” defined by general formula (2).
  • the ring a (or ring b or ring c) is already constituted by a benzene ring having 6 carbon atoms, and therefore the carbon number of 6 in total of a fused ring obtained by fusing a 5-membered ring to this benzene ring becomes a lower limit of the carbon number.
  • heteroaryl ring examples include a pyrrole ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, an imidazole ring, an oxadiazole ring, a thiadiazole ring, a triazole ring, a tetrazole ring, a pyrazole ring, a pyridine ring, a pyrimidine ring, a pyridazine ring, a pyrazine ring, a triazine ring, an indole ring, an isoindole ring, a 1H-indazole ring, a benzimidazole ring, a benzoxazole ring, a benzothiazole ring, a 1H-benzotriazole ring, a quinoline ring, an isoquinoline ring, a
  • At least one hydrogen atom in the above “aryl ring” or “heteroaryl ring” may be substituted by a substituted or unsubstituted “aryl”, a substituted or unsubstituted “heteroaryl”, a substituted or unsubstituted “diarylamino”, a substituted or unsubstituted “diheteroarylamino”, a substituted or unsubstituted “arylheteroarylamino”, a substituted or unsubstituted “alkyl”, a substituted or unsubstituted “alkoxy”, or a substituted or unsubstituted “aryloxy”, which is a primary substituent.
  • aryl of the “aryl”, “heteroaryl” and “diarylamino”, the heteroaryl of the “diheteroarylamino”, the aryl and the heteroaryl of the “arylheteroarylamino”, and the aryl of the “aryloxy” as these primary substituents include a monovalent group of the “aryl ring” or “heteroaryl ring” described above.
  • alkyl as the primary substituent may be either linear or branched, and examples thereof include a linear alkyl having 1 to 24 carbon atoms and a branched alkyl having 3 to 24 carbon atoms.
  • An alkyl having 1 to 18 carbon atoms (branched alkyl having 3 to 18 carbon atoms) is preferable, an alkyl having 1 to 12 carbon atoms (branched alkyl having 3 to 12 carbon atoms) is more preferable, an alkyl having 1 to 6 carbon atoms (branched alkyl having 3 to 6 carbon atoms) is still more preferable, and an alkyl having 1 to 4 carbon atoms (branched alkyl having 3 to 4 carbon atoms) is particularly preferable.
  • alkyl examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecyl, 1-methyldecyl,
  • alkoxy as a primary substituent may be, for example, a linear alkoxy having 1 to 24 carbon atoms or a branched alkoxy having 3 to 24 carbon atoms.
  • the alkoxy is preferably an alkoxy having 1 to 18 carbon atoms (branched alkoxy having 3 to 18 carbon atoms), more preferably an alkoxy having 1 to 12 carbon atoms (branched alkoxy having 3 to 12 carbon atoms), still more preferably an alkoxy having 1 to 6 carbon atoms (branched alkoxy having 3 to 6 carbon atoms), and particularly preferably an alkoxy having 1 to 4 carbon atoms (branched alkoxy having 3 to 4 carbon atoms).
  • alkoxy examples include a methoxy, an ethoxy, a propoxy, an isopropoxy, a butoxy, an isobutoxy, a s-butoxy, a t-butoxy, a pentyloxy, a hexyloxy, a heptyloxy, and an octyloxy.
  • this secondary substituent examples include an aryl, a heteroaryl, and an alkyl, and for the details thereof, reference can be made to the above description on the monovalent group of the “aryl ring” or “heteroaryl ring” and the “alkyl” as the primary substituent.
  • an aryl or heteroaryl as the secondary substituent an aryl or heteroaryl in which at least one hydrogen atom is substituted by an aryl such as phenyl (specific examples are described above), or an alkyl such as methyl (specific examples are described above), is also included in the aryl or heteroaryl as the secondary substituent.
  • the secondary substituent is a carbazolyl group
  • a carbazolyl group in which at least one hydrogen atom at the 9-position is substituted by an aryl such as phenyl, or an alkyl such as methyl is also included in the heteroaryl as the secondary substituent.
  • Examples of the aryl, the heteroaryl, the aryl of the diarylamino, the heteroaryl of the diheteroarylamino, the aryl and the heteroaryl of the arylheteroarylamino, or the aryl of the aryloxy for R 1 to R 11 of general formula (2) include the monovalent groups of the “aryl ring” or “heteroaryl ring” described in general formula (1).
  • the alkyl or alkoxy for R 1 to R 11 reference can be made to the description on the “alkyl” or “alkoxy” as the primary substituent in the above description of general formula (1).
  • the same also applies to the aryl, heteroaryl or alkyl as the substituents for these groups.
  • heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, alkoxy, or aryloxy in a case of forming an aryl ring or a heteroaryl ring by bonding adjacent groups among R 1 to R 11 together with the ring a, ring b or ring c, and the aryl, heteroaryl, or alkyl as a further substituent.
  • R of the N—R for X 1 and X 2 of general formula (1) represents an aryl, a heteroaryl, or an alkyl which may be substituted by the secondary substituent described above, and at least one hydrogen atom in the aryl or heteroaryl may be substituted by, for example, an alkyl.
  • this aryl, heteroaryl or alkyl include those described above. Particularly, an aryl having 6 to 10 carbon atoms (for example, a phenyl or a naphthyl), a heteroaryl having 2 to 15 carbon atoms (for example, carbazolyl), and an alkyl having 1 to 4 carbon atoms (for example, methyl or ethyl) are preferable.
  • This description also applies to X 1 and X 2 in general formula (2).
  • R of the “—C(—R) 2 —” as a linking group for general formula (1) represents a hydrogen atom or an alkyl, and examples of this alkyl include those described above. Particularly, an alkyl having 1 to 4 carbon atoms (for example, methyl or ethyl) is preferable. This description also applies to “—C(—R) 2 —” as a linking group for general formula (2).
  • the light emitting layer may contain a polycyclic aromatic compound multimer having a plurality of unit structures each represented by general formula (1), and preferably a polycyclic aromatic compound multimer having a plurality of unit structures each represented by general formula (2).
  • the multimer is preferably a dimer to a hexamer, more preferably a dimer to a trimer, and a particularly preferably a dimer.
  • the multimer may be in a form having a plurality of unit structures described above in one compound, and for example, the multimer may be in a form in which a plurality of unit structures are bonded with a linking group such as a single bond, an alkylene group having 1 to 3 carbon atoms, a phenylene group, or a naphthylene group.
  • a linking group such as a single bond, an alkylene group having 1 to 3 carbon atoms, a phenylene group, or a naphthylene group.
  • the multimer may be in a form in which a plurality of unit structures are bonded such that any ring contained in the unit structure (ring A, ring B or ring C, or ring a, ring b or ring c) is shared by the plurality of unit structures, or may be in a form in which the unit structures are bonded such that any rings contained in the unit structures (ring A, ring B or ring C, or ring a, ring b or ring c) are fused.
  • Examples of such a multimer include multimer compounds represented by the following formula (2-4), (2-4-1), (2-4-2), (2-5-1) to (2-5-4), and (2-6).
  • the following formula (2-4) represents a dimer compound
  • the formula (2-4-1) represents a dimer compound
  • the formula (2-4-2) represents a trimer compound
  • the formula (2-5-1) represents a dimer compound
  • formula (2-5-2) represents a dimer compound
  • formula (2-5-3) represents a dimer compound
  • formula (2-5-4) represents a trimer compound
  • formula (2-6) represents a dimer compound.
  • a multimer compound represented by the following formula (2-4) corresponds to, for example, a compound represented by formula (1-423) described below.
  • the multimer compound includes a plurality of unit structures each represented by general formula (2) in one compound so as to share a benzene ring as ring a.
  • a multimer compound represented by the following formula (2-4-1) corresponds to, for example, a compound represented by the following formula (1-2665).
  • the multimer compound includes two unit structures each represented by general formula (2) in one compound so as to share a benzene ring as ring a.
  • a multimer compound represented by the following formula (2-4-2) corresponds to, for example, a compound represented by the following formula (1-2666).
  • the multimer compound includes two unit structures each represented by general formula (2) in one compound so as to share a benzene ring as ring a.
  • multimer compounds represented by the following formulas (2-5-1) to (2-5-4) correspond to, for example, compounds represented by the following formulas (1-421), (1-422), (1-424), and (1-425).
  • the multimer compound includes a plurality of unit structures each represented by general formula (2) in one compound so as to share a benzene ring as ring b (or ring c).
  • a multimer compound represented by the following formula (2-6) corresponds to, for example, a compound represented by any one of the following formulas (1-431) to (1-435). That is, to be described in connection with general formula (2), for example, the multimer compound includes a plurality of unit structures each represented by general formula (2) in one compound such that a benzene ring as ring b (or ring a or ring c) of a certain unit structure and a benzene ring as ring b (or ring a or ring c) of a certain unit structure are fused.
  • R 1 to R 11 , Y 1 , X 1 , and X 2 in formulas (2-4), (2-4-1), (2-4-2), (2-5-1) to (2-5-4), and (2-6) are defined in the same manner as those in formula (2)
  • the multimer compound may be a multimer in which a multimer form represented by formula (2-4), (2-4-1) or (2-4-2) and a multimer form represented by any one of formula (2-5-1) to (2-5-4) or (2-6) are combined, may be a multimer in which a multimer form represented by any one of formula (2-5-1) to (2-5-4) and a multimer form represented by formula (2-6) are combined, or may be a multimer in which a multimer form represented by formula (2-4), (2-4-1) or (2-4-2), a multimer form represented by any one of formulas (2-5-1) to (2-5-4), and a multimer form represented by formula (2-6) are combined.
  • all or a portion of the hydrogen atoms in the chemical structures of the polycyclic aromatic compound represented by general formula (1) or (2) and a multimer thereof may be deuterium atoms.
  • all or a portion of the hydrogen atoms in the chemical structures of the polycyclic aromatic compound represented by general formula (1) or (2) and a multimer thereof may be halogen atoms.
  • the halogen is fluorine, chlorine, bromine, or iodine, preferably fluorine, chlorine, or bromine, and more preferably chlorine.
  • polycyclic aromatic compound and a multimer thereof include compounds represented by the following formulas (1-401) to (1-462), compounds represented by the following formulas (1-1401) to (1-1460), compounds represented by the following formulas (1-471) to (1-479), compounds represented by the following formulas (1-1151) to (1-1159), a compound represented by the following formula (1-2619), and compounds represented by the following formulas (1-2620) to (1-2705).
  • an increase in the T1 energy can be expected by introducing a phenyloxy group, a carbazolyl group or a diphenylamino group into the para-position with respect to Y 1 in at least one of the ring A, ring B and ring C (ring a, ring b and ring c).
  • the HOMO on the benzene rings which are the ring A, ring B and ring C is more localized to the meta-position with respect to the boron, while the LUMO is localized to the ortho-position and the para-position with respect to the boron. Therefore, particularly, an increase in the T1 energy can be expected.
  • R in the formulas represents an alkyl, and may be either linear or branched. Examples thereof include a linear alkyl having 1 to 24 carbon atoms and a branched alkyl having 3 to 24 carbon atoms.
  • An alkyl having 1 to 18 carbon atoms (branched alkyl having 3 to 18 carbon atoms) is preferable, an alkyl having 1 to 12 carbon atoms (branched alkyl having 3 to 12 carbon atoms) is more preferable, an alkyl having 1 to 6 carbon atoms (branched alkyl having 3 to 6 carbon atoms) is still more preferable, and an alkyl having 1 to 4 carbon atoms (branched alkyl having 3 to 4 carbon atoms) is particularly preferable.
  • Other examples of R include phenyl.
  • “PhO—” represents a phenyloxy group, and this phenyl may be substituted by a linear or branched alkyl.
  • the phenyl may be substituted by a linear alkyl having 1 to 24 carbon atoms or a branched alkyl having 3 to 24 carbon atoms, an alkyl having 1 to 18 carbon atoms (a branched alkyl having 3 to 18 carbon atoms), an alkyl having 1 to 12 carbon atoms (a branched alkyl having 3 to 12 carbon atoms), an alkyl having 1 to 6 carbon atoms (a branched alkyl having 3 to 6 carbon atoms), or an alkyl having 1 to 4 carbon atoms (a branched alkyl having 3 or 4 carbon atoms).
  • polycyclic aromatic compound and a multimer thereof include the above compounds in which at least one hydrogen atom in one or more aromatic rings in the compound is substituted by one or more alkyls or aryls. More preferable examples thereof include a compound substituted by 1 or 2 of alkyls each having 1 to 12 carbon atoms and aryls each having 6 to 10 carbon atoms.
  • R's in the following formulas each independently represent an alkyl having 1 to 12 carbon atoms or an aryl having 6 to 10 carbon atoms, and preferably an alkyl or phenyl having 1 to 4 carbon atoms, and n's each independently represent 0 to 2, and preferably 1.
  • polycyclic aromatic compound and a multimer thereof include a compound in which at least one hydrogen atom in one or more phenyl groups or one phenylene group in the compound is substituted by one or more alkyls each having 1 to 4 carbon atoms, and preferably one or more alkyls each having 1 to 3 carbon atoms (preferably one or more methyl groups). More preferable examples thereof include a compound in which the hydrogen atoms at the ortho-positions of one phenyl group (both of the two sites, preferably any one site) or the hydrogen atoms at the ortho-positions of one phenylene group (all of the four sites at maximum, preferably any one site) are substituted by methyl groups.
  • an intermediate is manufactured by first bonding the ring A (ring a), ring B (ring b) and ring C (ring c) with bonding groups (groups containing X 1 or X 2 ) (first reaction), and then a final product can be manufactured by bonding the ring A (ring a), ring B (ring b) and ring C (ring c) with bonding groups (groups containing Y 1 ) (second reaction).
  • first reaction a general reaction such as a Buchwald-Hartwig reaction can be utilized in a case of an amination reaction.
  • a Tandem Hetero-Friedel-Crafts reaction continuous aromatic electrophilic substitution reaction, the same hereinafter
  • the second reaction is a reaction for introducing Y 1 (boron) which bonds the ring A (ring a), ring B (ring b) and ring C (ring c).
  • a hydrogen atom between X 1 and X 2 (>N—R) is ortho-metalated with n-butyllithium, sec-butyllithium, t-butyllithium, or the like.
  • the scheme (1) or (2) mainly illustrates a method for manufacturing a polycyclic aromatic compound represented by general formula (1) or (2).
  • a multimer thereof can be manufactured using an intermediate having a plurality of ring A's (ring a's), ring B's (ring b's) and ring C's (ring c's). More specifically, the manufacturing method will be described by the following schemes (3) to (5).
  • a desired product may be obtained by increasing the amount of the reagent used therein such as butyllithium to a double amount or a triple amount.
  • R 1 to R 11 and R of N—R in structural formulas in schemes (3) to (5) are defined in the same manner as those in formula (2).
  • lithium is introduced into a desired position by ortho-metalation.
  • lithium can also be introduced into a desired position by halogen-metal exchange by introducing a bromine atom or the like to a position to which it is wished to introduce lithium, as in the following schemes (6) and (7).
  • R 1 to R 11 and R of N—R in structural formulas in schemes (6) and (7) are defined in the same manner as those in formula (1) or (2).
  • a lithium atom can be introduced to a desired position also by halogen-metal exchange by introducing a halogen atom such as a bromine atom or a chlorine atom to a position to which it is wished to introduce a lithium atom, as in the above schemes (6) and (7) (the following schemes (8), (9), and (10)).
  • a halogen atom such as a bromine atom or a chlorine atom
  • R 1 to R 11 and R of N—R in structural formulas in schemes (8) to (10) are defined in the same manner as those in formula (2).
  • a desired product can also be synthesized even in a case in which ortho-metalation cannot be achieved due to the influence of substituents, and therefore the method is useful.
  • solvent used in the above reactions include t-butylbenzene and xylene.
  • adjacent groups among the substituents R 1 to R 11 of the ring a, ring b and ring c may be bonded to each other to form an aryl ring or a heteroaryl ring together with the ring a, ring b or ring c, and at least one hydrogen atom in the ring thus formed may be substituted by an aryl or a heteroaryl. Therefore, in a polycyclic aromatic compound represented by general formula (2), a ring structure constituting the compound changes as represented by formulas (2-1) and (2-2) of the following schemes (11) and (12) according to a mutual bonding form of substituents in the ring a, ring b, and ring c.
  • Ring A′, ring B′ and ring C′ in the above formulas (2-1) and (2-2) each represent an aryl ring or a heteroaryl ring formed by bonding adjacent groups among the substituents R 1 to R 11 together with the ring a, ring b, and ring c, respectively (may also be a fused ring obtained by fusing another ring structure to the ring a, ring b, or ring c).
  • R of the N—R is bonded to the ring a, ring b, and/or ring c with —O—, —S—, —C(—R) 2 —, or a single bond” in general formulas (2)
  • R of the N—R is bonded to the ring a, ring b, and/or ring c with —O—, —S—, —C(—R) 2 —, or a single bond
  • 2-3-1 of the following scheme (13), in which X 1 or X 2 is incorporated into the fused ring B′ or fused ring C′, or a compound having a ring structure represented by formula (2-3-2) or (2-3-3), in which X 1 or X 2 is incorporated into the fused ring A′.
  • Such a compound can be synthesized by applying the synthesis methods illustrated in the schemes (1) to (10) to the intermediate represented by the following scheme (13).
  • R 1 to R 11 , Y 1 , X 1 , and X 2 in structural formulas in scheme (13) are defined in the same manner as those in formula (2).
  • examples of an ortho-metalation reagent used for the above schemes (1) to (13) include an alkyllithium such as methyllithium, n-butyllithium, sec-butyllithium, or t-butyllithium; and an organic alkali compound such as lithium diisopropylamide, lithium tetramethylpiperidide, lithium hexamethyldisilazide, or potassium hexamethyldisilazide.
  • an alkyllithium such as methyllithium, n-butyllithium, sec-butyllithium, or t-butyllithium
  • an organic alkali compound such as lithium diisopropylamide, lithium tetramethylpiperidide, lithium hexamethyldisilazide, or potassium hexamethyldisilazide.
  • examples of a metal exchanging reagent for metal-Y 1 used for the above schemes (1) to (13) include a halide of Y 1 such as trifluoride of Y 1 , trichloride of Y 1 , tribromide of Y 1 , or triiodide of Y 1 ; an aminated halide of Y 1 such as CIPN(NEt 2 ) 2 ; an alkoxylation product of Y 1 ; and an aryloxylation product of Y 1 .
  • examples of the Br ⁇ nsted base used for the above schemes (1) to (13) include N,N-diisopropylethylamine, triethylamine, 2,2,6,6-tetramethylpiperidine, 1,2,2,6,6-pentamethylpiperidine, N,N-dimethylaniline, N,N-dimethyltoluidine, 2,6-lutidine, sodium tetraphenylborate, potassium tetraphenylborate, triphenylborane, tetraphenylsilane, Ar 4 BNa, Ar 4 BK, Ar 3 B, and Ar 4 Si (Ar represents an aryl such as phenyl).
  • Examples of a Lewis acid used for the above schemes (1) to (13) include AlC 3 , AlBr 3 , AlF 3 , BF 3 ⁇ OEt 2 , BCl 3 , BBr 3 , GaCl 3 , GaBr 3 , InCl 3 , InBr 3 , In(OTf) 3 , SnCl 4 , SnBr 4 , AgOTf, ScCl 3 , Sc(OTf) 3 , ZnCl 2 , ZnBr 2 , Zn(OTf) 2 , MgCl 2 , MgBr 2 , Mg(OTf) 2 , LiOTf, NaOTf, KOTf, Me 3 SiOTf, Cu(OTf) 2 , CuCl 2 , YCl 3 , Y(OTf) 3 , TiCl 4 , TiBr 4 , ZrCl 4 , ZrBr 4 , FeCl 3 , FeBr 3 , COCl 3
  • a Br ⁇ nsted base or a Lewis acid may be used in order to accelerate the Tandem Hetero Friedel-Crafts reaction.
  • a halide of Y 1 such as trifluoride of Y 1 , trichloride of Y 1 , tribromide of Y 1 , or triiodide of Y 1
  • an acid such as hydrogen fluoride, hydrogen chloride, hydrogen bromide, or hydrogen iodide is generated along with progress of an aromatic electrophilic substitution reaction. Therefore, it is effective to use a Br ⁇ nsted base that captures an acid.
  • a polycyclic aromatic compound or a multimer thereof also includes compounds in which at least a portion of hydrogen atoms are substituted by deuterium atoms or substituted by halogen atoms such as fluorine atoms or chlorine atoms.
  • these compounds can be synthesized as described above using raw materials that are deuterated, fluorinated or chlorinated at desired sites.
  • an anthracene-based compound represented by general formula (3) functions as a host.
  • Ar 3 and Ar 4 each independently represent a hydrogen atom, an optionally substituted alkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted alkoxy, an optionally substituted aryloxy, an optionally substituted arylthio, a trialkylsilyl, an optionally substituted amino, a halogen atom, a hydroxy, or a cyano, provided that a naphthyl group and a naphthyl group fused with one benzene ring are excluded as Ar 3 .
  • At least one hydrogen atom in a chemical structure of an anthracene-based compound represented by general formula (3) is substituted with a group represented by the above formula (4).
  • At least one hydrogen atom in the compound represented by formula (3) is substituted by the group represented by formula (4) at *.
  • R 21 to R 28 each independently represent a hydrogen atom, an optionally substituted alkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted alkoxy, an optionally substituted aryloxy, an optionally substituted arylthio, a trialkylsilyl, an optionally substituted amino, a halogen atom, a hydroxy, or a cyano, adjacent groups among R 21 to R 28 may be bonded to each other to form a hydrocarbon ring, an aryl ring, or a heteroaryl ring, and R 29 is an optionally substituted aryl or a bonding position with a compound represented by formula (3).
  • alkyl as the “optionally substituted alkyl” in Ar 3 and Ar 4 in the above formula (3) and R 21 to R 28 in the above formula (4) may be either linear or branched, and examples thereof include a linear alkyl having 1 to 24 carbon atoms and a branched alkyl having 3 to 24 carbon atoms.
  • An alkyl having 1 to 18 carbon atoms (branched alkyl having 3 to 18 carbon atoms) is preferable, an alkyl having 1 to 12 carbon atoms (branched alkyl having 3 to 12 carbon atoms) is more preferable, an alkyl having 1 to 6 carbon atoms (branched alkyl having 3 to 6 carbon atoms) is still more preferable, and an alkyl having 1 to 4 carbon atoms (branched alkyl having 3 to 4 carbon atoms) is particularly preferable.
  • alkyl examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecyl, 1-methyldecyl
  • Examples of the “aryl” as the “optionally substituted aryl” in Ar 3 and Ar 4 in the above formula (3) and R 21 to R 28 in the above formula (4) include an aryl having 6 to 30 carbon atoms.
  • An aryl having 6 to 16 carbon atoms is preferable, an aryl having 6 to 12 carbon atoms is more preferable, and an aryl having 6 to 10 carbon atoms is particularly preferable.
  • a naphthyl group and a naphthyl group fused with one benzene ring are excluded as Ar 3 .
  • aryl examples include phenyl which is a monocyclic system; biphenylyl which is a bicyclic system; naphthyl which is a fused bicyclic system; terphenylyl (m-terphenylyl, o-terphenylyl, or p-terphenylyl) which is a tricyclic system; acenaphthylenyl, fluorenyl, phenalenyl, and phenanthrenyl which are fused tricyclic systems; triphenylenyl, pyrenyl, and naphthacenyl which are fused tetracyclic systems; and perylenyl and pentacenyl which are fused pentacyclic systems.
  • a naphthyl group and a naphthyl group fused with one benzene ring are excluded as Ar 3 .
  • heteroaryl examples include a heteroaryl having 2 to 30 carbon atoms.
  • a heteroaryl having 2 to 25 carbon atoms is preferable, a heteroaryl having 2 to 20 carbon atoms is more preferable, a heteroaryl having 2 to 15 carbon atoms is still more preferable, and a heteroaryl having 2 to 10 carbon atoms is particularly preferable.
  • heteroaryl examples include a heterocyclic ring containing 1 to 5 heteroatoms, selected from an oxygen atom, a sulfur atom, and a nitrogen atom in addition to a carbon atom as a ring-constituting atom.
  • heteroaryl examples include a pyrrolyl, an oxazolyl, an isoxazolyl, a thiazolyl, an isothiazolyl, an imidazolyl, an oxadiazolyl, a thiadiazolyl, a triazolyl, a tetrazolyl, a pyrazolyl, a pyridyl, a pyrimidinyl, a pyridazinyl, a pyrazinyl, a triazinyl, an indolyl, an isoindolyl, a 1H-indazolyl, a benzoimidazolyl, a benzoxazolyl, a benzothiazolyl, a 1H-benzotriazolyl, a quinolyl, an isoquinolyl, a cinnolyl, a quinazolyl, a quinoxalinyl
  • alkoxy as the “optionally substituted alkoxy” in Ar 3 and Ar 4 in the above formula (3) and R 21 to R 28 in the above formula (4) include a linear alkoxy having 1 to 24 carbon atoms and a branched alkoxy having 3 to 24 carbon atoms.
  • An alkoxy having 1 to 18 carbon atoms (branched alkoxy having 3 to 18 carbon atoms) is preferable, an alkoxy having 1 to 12 carbon atoms (branched alkoxy having 3 to 12 carbon atoms) is more preferable, an alkoxy having 1 to 6 carbon atoms (branched alkoxy having 3 to 6 carbon atoms) is still more preferable, and an alkoxy having 1 to 4 carbon atoms (branched alkoxy having 3 to 4 carbon atoms) is particularly preferable.
  • alkoxy examples include a methoxy, an ethoxy, a propoxy, an isopropoxy, a butoxy, an isobutoxy, a s-butoxy, a t-butoxy, a pentyloxy, a hexyloxy, a heptyloxy, and an octyloxy.
  • Examples of the “aryloxy” as the “optionally substituted aryloxy” in Ar 3 and Ar 4 in the above formula (3) and R 21 to R 28 in the above formula (4) include a group in which a hydrogen atom of an —OH group is substituted by an aryl.
  • aryl those described as the above “aryl” in Ar 3 , Ar 4 and R 21 to R 28 can be cited.
  • Examples of the “arylthio” as the “optionally substituted arylthio” in Ar 3 and Ar 4 in the above formula (3) and R 21 to R 28 in the above formula (4) include a group in which a hydrogen atom of an —SH group is substituted by an aryl.
  • aryl those described as the above “aryl” in Ar 3 , Ar 4 and R 21 to R 28 can be cited.
  • Examples of the “trialkylsilyl” in Ar 3 and Ar 4 in the above formula (3) and R 21 to R 28 in the above formula (4) include a group in which three hydrogen atoms in a silyl group are each independently substituted by an alkyl.
  • alkyl those described as the above “alkyl” in Ar 3 , Ar 4 and R 21 to R 28 can be cited.
  • a preferable alkyl for substitution is an alkyl having 1 to 4 carbon atoms, and specific examples thereof include methyl, ethyl, propyl, i-propyl, butyl, sec-butyl, t-butyl, and cyclobutyl.
  • trialkylsilyl examples include a trimethylsilyl, a triethylsilyl, a tripropylsilyl, a tri-i-propylsilyl, a tributylsilyl, a tri sec-butylsilyl, a tri-t-butylsilyl, an ethyl dimethylsilyl, a propyldimethylsilyl, an i-propyldimethylsilyl, a butyldimethylsilyl, a sec-butyldimethylsilyl, a t-butyldimethylsilyl, a methyldiethylsilyl, a propyldiethylsilyl, an i-propyldiethylsilyl, a butyldiethylsilyl, a sec-butyl diethylsilyl, a t-butyldiethylsilyl,
  • Examples of the “substituted amino” as the “optionally substituted amino” in Ar 3 and Ar 4 in the above formula (3) and R 21 to R 28 in the above formula (4) include an amino group in which two hydrogen atoms are substituted by an aryl or a heteroaryl.
  • a group in which two hydrogen atoms are substituted by aryls is a diaryl-substituted amino
  • a group in which two hydrogen atoms are substituted by heteroaryls is a diheteroaryl-substituted amino
  • a group in which two hydrogen atom are substituted by an aryl and a heteroaryl is an arylheteroaryl-substituted amino.
  • those described as the above “aryl” and “heteroaryl” in Ar 3 , Ar 4 and R 21 to R 28 can be cited.
  • substituted amino examples include diphenylamino, dinaphthylamino, phenylnaphthylamino, dipyridylamino, phenylpyridylamino, and naphthylpyridylamino.
  • Examples of the “halogen atom” in Ar 3 and Ar 4 in the above formula (3) and R 21 to R 28 in the above formula (4) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Some of the groups described as Ar 3 , Ar 4 and R 21 to R 28 may be substituted as described above, and examples of the substituent in this case include an alkyl, an aryl, and a heteroaryl.
  • examples of the substituent in this case include an alkyl, an aryl, and a heteroaryl.
  • the alkyl, aryl, or heteroaryl those described as the above “alkyl”, “aryl” or “heteroaryl” in Ar 3 , Ar 4 and R 21 to R 28 can be cited.
  • a naphthyl group and a naphthyl group fused with one benzene ring are excluded as Ar 3 , but the naphthyl group and the naphthyl group fused with one benzene ring are not excluded as an aryl serving as a substituent of Ar 3 .
  • R 29 in “>N—R 29 ” as Y is an optionally substituted aryl.
  • aryl those described as the above “aryl” in Ar 3 , Ar 4 and R 21 to R 28 can be cited.
  • substituent those described as the substituent for Ar 3 , Ar 4 and R 21 to R 28 can be cited.
  • R 29 can be a bonding position with a compound represented by formula (3).
  • Adjacent groups among R 21 to R 28 may be bonded to each other to form a hydrocarbon ring, an aryl ring, or a heteroaryl ring.
  • Examples of a case of not forming a ring include a group represented by the following formula (4-1).
  • Examples of a case of forming a ring include groups represented by the following formulas (4-2) to (4-11).
  • At least one hydrogen atom in a group represented by any one of formulas (4-1) to (4-11) may be substituted by an alkyl, an aryl, a heteroaryl, an alkoxy, an aryloxy, an arylthio, a trialkylsilyl, a diaryl-substituted amino, a diheteroaryl-substituted amino, an arylheteroaryl-substituted amino, a halogen atom, a hydroxy, or a cyano.
  • those described as the above groups in Ar 3 , Ar 4 and R 21 to R 28 can be cited.
  • Examples of the ring formed by bonding adjacent groups to each other include a cyclohexane ring in a case of a hydrocarbon ring.
  • Examples of the aryl ring and heteroaryl ring include ring structures described in the above “aryl” and “heteroaryl” in Ar 3 , Ar 4 and R 21 to R 28 , and these rings are formed so as to be fused with one or two benzene rings in the above formula (4-1).
  • Examples of the group represented by formula (4) include a group represented by any one of the above formulas (4-1) to (4-11).
  • a group represented by any one of the above formulas (4-1) to (4-4) is preferable, a group represented by any one of the above formulas (4-1), (4-3), and (4-4) is more preferable, and a group represented by the above formula (4-1) is still more preferable.
  • the group represented by formula (4) is substituted at * in formula (4) by at least one hydrogen atom of the compound represented by formula (3) as described above.
  • the group represented by formula (4) is directly bonded to the 9-position and/or 10-position of the anthracene ring of formula (3) (corresponding to a case where the group represented by formula (4) is substituted by a hydrogen atom when Ar 3 is the hydrogen atom), or the group represented by formula (4) is bonded thereto via Ar 3 (corresponding to a case where at least one hydrogen atom in Ar 3 is substituted by a group represented by formula (4) when Ar 3 is other than a hydrogen atom).
  • a position at which at least one hydrogen atom in a compound represented by formula (3) is substituted by the group represented by formula (4) in the structure of the group represented by formula (4) may be any position in the structure formula (4).
  • bonding can be made at any one of the two benzene rings in the structure of formula (4), at any ring formed by bonding adjacent groups among R 21 to R 28 in the structure of formula (4), or at any position in R 29 in “>N—R 29 ” as Y in the structure of formula (4).
  • Examples of the group represented by formula (4) include the following groups. Y and * in the formula have the same definitions as above.
  • all or a portion of the hydrogen atoms in the chemical structure of an anthracene-based compound represented by general formula (3) may be deuterium atoms.
  • anthracene-based compound examples include compounds represented by the following formulas (3-101) to (3-127). Note that the group represented by formula (4) is omitted in these compounds. However, at least one hydrogen atom in these compounds is substituted by the group represented by formula (4).
  • anthracene-based compound examples include compounds represented by the following formulas (3-131-Y) to (3-179-Y), compounds represented by the following formulas (3-180-Y) to (3-182-Y), and a compound represented by the following formula (3-183-N).
  • Y in the formulas may be any one of —O—, —S—, and >N—R 29 (R 29 is as defined above), and R 29 is, for example, a phenyl group.
  • formula (3-131-Y) is expressed by formula (3-131-O)
  • formula (3-131-Y) is expressed by formula (3-131-S)
  • formula (3-131-Y) is expressed by formula (3-131-N)
  • the anthracene-based compound represented by formula (3) can be manufactured by using a reactive compound of anthracene substituted by Ar 3 and Ar 4 , a reactive compound having a structure represented by formula (4), and the like as starting raw materials and applying Suzuki coupling, Negishi coupling, or another well-known coupling reaction.
  • a reactive group of these reactive compounds include a halogen atom and boronic acid.
  • the synthesis method in paragraphs [0089] to [0175] of WO 2014/141725 A can be referred to.
  • FIGURE is a schematic cross-sectional view illustrating the organic EL element according to the present embodiment.
  • An organic EL element 100 illustrated in the FIGURE includes a substrate 101 , a positive electrode 102 provided on the substrate 101 , a hole injection layer 103 provided on the positive electrode 102 , a hole transport layer 104 provided on the hole injection layer 103 , a light emitting layer 105 provided on the hole transport layer 104 , an electron transport layer 106 provided on the light emitting layer 105 , an electron injection layer 107 provided on the electron transport layer 106 , and a negative electrode 108 provided on the electron injection layer 107 .
  • the organic EL element 100 may be configured, by reversing the manufacturing order, to include, for example, the substrate 101 , the negative electrode 108 provided on the substrate 101 , the electron injection layer 107 provided on the negative electrode 108 , the electron transport layer 106 provided on the electron injection layer 107 , the light emitting layer 105 provided on the electron transport layer 106 , the hole transport layer 104 provided on the light emitting layer 105 , the hole injection layer 103 provided on the hole transport layer 104 , and the positive electrode 102 provided on the hole injection layer 103 .
  • the configuration includes the positive electrode 102 , the light emitting layer 105 , and the negative electrode 108 as a minimum constituent unit, while the hole injection layer 103 , the hole transport layer 104 , the electron transport layer 106 , and the electron injection layer 107 are optionally provided.
  • Each of the above layers may be formed of a single layer or a plurality of layers.
  • a form of layers constituting the organic EL element may be, in addition to the above structure form of “substrate/positive electrode/hole injection layer/hole transport layer/light emitting layer/electron transport layer/electron injection layer/negative electrode”, a structure form of “substrate/positive electrode/hole transport layer/light emitting layer/electron transport layer/electron injection layer/negative electrode”, “substrate/positive electrode/hole injection layer/light emitting layer/electron transport layer/electron injection layer/negative electrode”, “substrate/positive electrode/hole injection layer/hole transport layer/light emitting layer/electron injection layer/negative electrode”, “substrate/positive electrode/hole injection layer/hole transport layer/light emitting layer/electron injection layer/negative electrode”, “substrate/positive electrode/hole injection layer/hole transport layer/light emitting layer/electron transport layer/negative electrode”, “substrate/positive electrode/hole injection layer/hole transport layer/light emitting layer/electron transport layer/negative electrode”,
  • the substrate 101 serves as a support of the organic EL element 100 , and usually, quartz, glass, metals, plastics, and the like are used.
  • the substrate 101 is formed into a plate shape, a film shape, or a sheet shape according to a purpose, and for example, a glass plate, a metal plate, a metal foil, a plastic film, and a plastic sheet are used.
  • a glass plate and a plate made of a transparent synthetic resin such as polyester, polymethacrylate, polycarbonate, or polysulfone are preferable.
  • soda lime glass, alkali-free glass, and the like are used for a glass substrate.
  • the thickness is only required to be a thickness sufficient for maintaining mechanical strength.
  • the thickness is only required to be 0.2 mm or more, for example.
  • the upper limit value of the thickness is, for example, 2 mm or less, and preferably 1 mm or less.
  • glass having fewer ions eluted from the glass is desirable, and therefore alkali-free glass is preferable.
  • soda lime glass which has been subjected to barrier coating with SiO 2 or the like is also commercially available, and therefore this soda lime glass can be used.
  • the substrate 101 may be provided with a gas barrier film such as a dense silicon oxide film on at least one surface in order to increase a gas barrier property. Particularly in a case of using a plate, a film, or a sheet made of a synthetic resin having a low gas barrier property as the substrate 101 , a gas barrier film is preferably provided.
  • the positive electrode 102 plays a role of injecting a hole into the light emitting layer 105 .
  • a hole is injected into the light emitting layer 105 through these layers.
  • Examples of a material to form the positive electrode 102 include an inorganic compound and an organic compound.
  • Examples of the inorganic compound include a metal (aluminum, gold, silver, nickel, palladium, chromium, and the like), a metal oxide (indium oxide, tin oxide, indium-tin oxide (ITO), indium-zinc oxide (IZO), and the like), a metal halide (copper iodide and the like), copper sulfide, carbon black, ITO glass, and Nesa glass.
  • Examples of the organic compound include an electrically conductive polymer such as polythiophene such as poly(3-methylthiophene), polypyrrole, or polyaniline. In addition to these compounds, a material can be appropriately selected for use from materials used as a positive electrode of an organic EL element.
  • a resistance of a transparent electrode is not limited as long as a sufficient current can be supplied to light emission of a luminescent element.
  • low resistance is desirable from a viewpoint of consumption power of the luminescent element.
  • an ITO substrate having a resistance of 300 ⁇ / ⁇ or less functions as an element electrode.
  • a substrate having a resistance of about 10 ⁇ / ⁇ can be also supplied at present, and therefore it is particularly desirable to use a low resistance product having a resistance of, for example, 100 to 5 ⁇ / ⁇ , preferably 50 to 5 ⁇ / ⁇ .
  • the thickness of an ITO can be arbitrarily selected according to a resistance value, but an ITO having a thickness of 50 to 300 nm is often used.
  • the hole injection layer 103 plays a role of efficiently injecting a hole that migrates from the positive electrode 102 into the light emitting layer 105 or the hole transport layer 104 .
  • the hole transport layer 104 plays a role of efficiently transporting a hole injected from the positive electrode 102 or a hole injected from the positive electrode 102 through the hole injection layer 103 to the light emitting layer 105 .
  • the hole injection layer 103 and the hole transport layer 104 are each formed by laminating and mixing one or more kinds of hole injection/transport materials, or by a mixture of hole injection/transport materials and a polymer binder. Furthermore, a layer may be formed by adding an inorganic salt such as iron(III) chloride to the hole injection/transport materials.
  • a hole injecting/transporting substance needs to efficiently inject/transport a hole from a positive electrode between electrodes to which an electric field is applied, and preferably has high hole injection efficiency and transports an injected hole efficiently.
  • any compound can be selected for use among compounds that have been conventionally used as charge transporting materials for holes, p-type semiconductors, and known compounds used in a hole injection layer and a hole transport layer of an organic EL element.
  • heterocyclic compound including a carbazole derivative (N-phenylcarbazole, polyvinylcarbazole, and the like), a biscarbazole derivative such as bis(N-arylcarbazole) or bis(N-alkylcarbazole), a triarylamine derivative (a polymer having an aromatic tertiary amino in a main chain or a side chain, 1,1-bis(4-di-p-tolylaminophenyl)cyclohexane, N,N′-diphenyl-N,N′-di(3-methylphenyl)-4,4′-diaminobiphenyl, N,N′-diphenyl-N,N′-dinaphthyl-4,4′-diaminobiphenyl, N,N′-diphenyl-N,N′-di(3-methylphenyl)-4,4′-diphenyl-1,1′-diamine, N,N,N′-dip
  • a polycarbonate, a styrene derivative, a polyvinylcarbazole, a polysilane, and the like having the above monomers in side chains are preferable.
  • a compound can form a thin film needed for manufacturing a luminescent element, can inject a hole from a positive electrode, and can transport a hole.
  • an organic semiconductor matrix substance is formed of a compound having a good electron-donating property, or a compound having a good electron-accepting property.
  • a strong electron acceptor such as tetracyanoquinonedimethane (TCNQ) or 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinonedimethane (F4TCNQ) is known (see, for example, “M. Pfeiffer, A. Beyer, T. Fritz, K. Leo, Appl. Phys. Lett., 73(22), 3202-3204 (1998)” and “J.
  • the light emitting layer 105 emits light by recombining a hole injected from the positive electrode 102 and an electron injected from the negative electrode 108 between electrodes to which an electric field is applied.
  • a material to form the light emitting layer 105 is only required to be a compound which is excited by recombination between a hole and an electron and emits light (luminescent compound), and is preferably a compound which can form a stable thin film shape, and exhibits strong light emission (fluorescence) efficiency in a solid state.
  • a material for a light emitting layer at least one of a polycyclic aromatic compound represented by the above general formula (1) and a polycyclic aromatic compound multimer having a plurality of structures represented by the above general formula (1) as a dopant material, and an anthracene-based compound represented by the above general formula (3) as a host material can be used.
  • the light emitting layer may be formed of a single layer or a plurality of layers, and each layer is formed of a material for a light emitting layer (a host material and a dopant material).
  • a host material and a dopant material may be formed of a single kind, or a combination of a plurality of kinds.
  • the dopant material may be included in the host material wholly or partially.
  • doping can be performed by a co-deposition method with a host material, or alternatively, a dopant material may be mixed in advance with a host material, and then vapor deposition may be carried out simultaneously.
  • the amount of use of the host material depends on the kind of the host material, and may be determined according to a characteristic of the host material.
  • the reference of the amount of use of the host material is preferably from 50 to 99.999% by weight, more preferably from 80 to 99.95% by weight, and still more preferably from 90 to 99.9% by weight with respect to the total amount of a material for a light emitting layer.
  • the amount of use of the dopant material depends on the kind of the dopant material, and may be determined according to a characteristic of the dopant material.
  • the reference of the amount of use of the dopant is preferably from 0.001 to 50% by weight, more preferably from 0.05 to 20% by weight, and still more preferably from 0.1 to 10% by weight with respect to the total amount of a material for a light emitting layer.
  • the amount of use within the above range is preferable, for example, from a viewpoint of being able to prevent a concentration quenching phenomenon.
  • Examples of a host material that can be used in combination with an anthracene-based compound represented by the above general formula (3) include a fused ring derivative of another anthracene, pyrene, or the like conventionally known as a luminous body, a bisstyryl derivative such as a bisstyrylanthracene derivative or a distyrylbenzene derivative, a tetraphenylbutadiene derivative, a cyclopentadiene derivative, a fluorene derivative, and a benzofluorene derivative.
  • a fused ring derivative of another anthracene, pyrene, or the like conventionally known as a luminous body a bisstyryl derivative such as a bisstyrylanthracene derivative or a distyrylbenzene derivative, a tetraphenylbutadiene derivative, a cyclopentadiene derivative, a fluorene derivative, and a benzofluoren
  • the electron injection layer 107 plays a role of efficiently injecting an electron migrating from the negative electrode 108 into the light emitting layer 105 or the electron transport layer 106 .
  • the electron transport layer 106 plays a role of efficiently transporting an electron injected from the negative electrode 108 , or an electron injected from the negative electrode 108 through the electron injection layer 107 to the light emitting layer 105 .
  • the electron transport layer 106 and the electron injection layer 107 are each formed by laminating and mixing one or more kinds of electron transport/injection materials, or by a mixture of an electron transport/injection material and a polymeric binder.
  • An electron injection/transport layer is a layer that manages injection of an electron from a negative electrode and transport of an electron, and is preferably a layer that has high electron injection efficiency and can efficiently transport an injected electron.
  • the electron injection/transport layer may also include a function of a layer that can efficiently prevent migration of a hole.
  • a material (electron transport material) for forming the electron transport layer 106 or the electron injection layer 107 can be arbitrarily selected for use from compounds conventionally used as electron transfer compounds in a photoconductive material, and known compounds that are used in an electron injection layer and an electron transport layer of an organic EL element.
  • a material used in an electron transport layer or an electron injection layer preferably includes at least one selected from a compound formed of an aromatic ring or a heteroaromatic ring including one or more kinds of atoms selected from carbon, hydrogen, oxygen, sulfur, silicon, and phosphorus atoms, a pyrrole derivative and a fused ring derivative thereof, and a metal complex having an electron-accepting nitrogen atom.
  • the material include a fused ring-based aromatic ring derivative of naphthalene, anthracene, or the like, a styryl-based aromatic ring derivative represented by 4,4′-bis(diphenylethenyl)biphenyl, a perinone derivative, a coumarin derivative, a naphthalimide derivative, a quinone derivative such as anthraquinone or diphenoquinone, a phosphorus oxide derivative, a carbazole derivative, and an indole derivative.
  • a fused ring-based aromatic ring derivative of naphthalene, anthracene, or the like a styryl-based aromatic ring derivative represented by 4,4′-bis(diphenylethenyl)biphenyl, a perinone derivative, a coumarin derivative, a naphthalimide derivative, a quinone derivative such as anthraquinone or diphenoquinone, a
  • the metal complex having an electron-accepting nitrogen atom examples include a hydroxyazole complex such as a hydroxyphenyloxazole complex, an azomethine complex, a tropolone metal complex, a flavonol metal complex, and a benzoquinoline metal complex. These materials are used singly, but may also be used in a mixture with other materials.
  • electron transfer compounds include a pyridine derivative, a naphthalene derivative, an anthracene derivative, a phenanthroline derivative, a perinone derivative, a coumarin derivative, a naphthalimide derivative, an anthraquinone derivative, a diphenoquinone derivative, a diphenylquinone derivative, a perylene derivative, an oxadiazole derivative (1,3-bis[(4-t-butylphenyl)-1,3,4-oxadiazolyl]phenylene and the like), a thiophene derivative, a triazole derivative (N-naphthyl-2,5-diphenyl-1,3,4-triazole and the like), a thiadiazole derivative, a metal complex of an oxine derivative, a quinolinol-based metal complex, a quinoxaline derivative, a polymer of a quinoxaline derivative, a benzazo
  • a metal complex having an electron-accepting nitrogen atom can also be used, and examples thereof include a quinolinol-based metal complex, a hydroxyazole complex such as a hydroxyphenyloxazole complex, an azomethine complex, a tropolone-metal complex, a flavonol-metal complex, and a benzoquinoline-metal complex.
  • a borane derivative, a pyridine derivative, a fluoranthene derivative, a BO-based derivative, an anthracene derivative, a benzofluorene derivative, a phosphine oxide derivative, a pyrimidine derivative, a carbazole derivative, a triazine derivative, a benzimidazole derivative, a phenanthroline derivative, a quinolinol-based metal complex are preferable.
  • the borane derivative is, for example, a compound represented by the following general formula (ETM-1), and specifically disclosed in JP 2007-27587 A.
  • R 11 and R 12 each independently represent at least one of a hydrogen atom, an alkyl, an optionally substituted aryl, a substituted silyl, an optionally substituted nitrogen-containing heterocyclic ring, and a cyano
  • R 13 to R 16 each independently represent an optionally substituted alkyl or an optionally substituted aryl
  • X represents an optionally substituted arylene
  • Y represents an optionally substituted aryl having 16 or fewer carbon atoms
  • a substituted boryl or an optionally substituted carbazolyl
  • n's each independently represent an integer of 0 to 3.
  • Examples of a substituent in a case of being “optionally substituted” or “substituted” include an aryl, a heteroaryl, and an alkyl.
  • ETM-1 a compound represented by the following general formula (ETM-1-1) and a compound represented by the following general formula (ETM-1-2) are preferable.
  • R 11 and R 12 each independently represent at least one of a hydrogen atom, an alkyl, an optionally substituted aryl, a substituted silyl, an optionally substituted nitrogen-containing heterocyclic ring, and a cyano
  • R 13 to R 16 each independently represent an optionally substituted alkyl or an optionally substituted aryl
  • R 21 and R 22 each independently represent at least one of a hydrogen atom, an alkyl, an optionally substituted aryl, a substituted silyl, an optionally substituted nitrogen-containing heterocyclic ring, and a cyano
  • X 1 represents an optionally substituted arylene having 20 or fewer carbon atoms
  • n's each independently represent an integer of 0 to 3
  • m's each independently represent an integer of 0 to 4. Examples of a substituent in a case of being “optionally substituted” or “substituted” include an aryl, a heteroaryl, and an alkyl.
  • R 11 and R 12 each independently represent at least one of a hydrogen atom, an alkyl, an optionally substituted aryl, a substituted silyl, an optionally substituted nitrogen-containing heterocyclic ring, and a cyano
  • R 13 to R 16 each independently represent an optionally substituted alkyl or an optionally substituted aryl
  • X 1 represents an optionally substituted arylene having 20 or fewer carbon atoms
  • n's each independently represent an integer of 0 to 3. Examples of a substituent in a case of being “optionally substituted” or “substituted” include an aryl, a heteroaryl, and an alkyl.
  • X 1 include divalent groups represented by the following formulas (X-1) to (X-9).
  • R a 's each independently represent an alkyl group or an optionally substituted phenyl group.
  • This borane derivative can be manufactured using known raw materials and known synthesis methods.
  • a pyridine derivative is, for example, a compound represented by the following formula (ETM-2), and preferably a compound represented by formula (ETM-2-1) or (ETM-2-2).
  • represents an n-valent aryl ring (preferably, an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring, or triphenylene ring), and n represents an integer of 1 to 4.
  • R 11 to R 18 each independently represent a hydrogen atom, an alkyl (preferably, an alkyl having 1 to 24 carbon atoms), a cycloalkyl (preferably, a cycloalkyl having 3 to 12 carbon atoms), or an aryl (preferably, an aryl having 6 to 30 carbon atoms).
  • R 11 and R 12 each independently represent a hydrogen atom, an alkyl (preferably, an alkyl having 1 to 24 carbon atoms), a cycloalkyl (preferably, a cycloalkyl having 3 to 12 carbon atoms), or an aryl (preferably, an aryl having 6 to 30 carbon atoms), and R 11 and R 12 may be bonded to each other to form a ring.
  • the “pyridine-based substituent” is any one of the following formulas (Py-1) to (Py-15), and the pyridine-based substituents may be each independently substituted by an alkyl having 1 to 4 carbon atoms.
  • the pyridine-based substituent may be bonded to ⁇ , an anthracene ring, or a fluorene ring in each formula via a phenylene group or a naphthylene group.
  • the pyridine-based substituent is any one of the above-formulas (Py-1) to (Py-15). However, among these formulas, the pyridine-based substituent is preferably any one of the following formulas (Py-21) to (Py-44).
  • At least one hydrogen atom in each pyridine derivative may be substituted by a deuterium atom.
  • One of the two “pyridine-based substituents” in the above formulas (ETM-2-1) and (ETM-2-2) may be substituted by an aryl.
  • the “alkyl” in R 11 to R 18 may be either linear or branched, and examples thereof include a linear alkyl having 1 to 24 carbon atoms and a branched alkyl having 3 to 24 carbon atoms.
  • a preferable “alkyl” is an alkyl having 1 to 18 carbon atoms (branched alkyl having 3 to 18 carbon atoms).
  • a more preferable “alkyl” is an alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons).
  • a still more preferable “alkyl” is an alkyl having 1 to 6 carbon atoms (branched alkyl having 3 to 6 carbon atoms).
  • a particularly preferable “alkyl” is an alkyl having 1 to 4 carbon atoms (branched alkyl having 3 to 4 carbon atoms).
  • alkyl examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecyl, 1-methyldecyl
  • alkyl having 1 to 4 carbon atoms by which the pyridine-based substituent is substituted the above description of the alkyl can be cited.
  • Examples of the “cycloalkyl” in R 11 to R 18 include a cycloalkyl having 3 to 12 carbon atoms.
  • a preferable “cycloalkyl” is a cycloalkyl having 3 to 10 carbons.
  • a more preferable “cycloalkyl” is a cycloalkyl having 3 to 8 carbon atoms.
  • a still more preferable “cycloalkyl” is a cycloalkyl having 3 to 6 carbon atoms.
  • cycloalkyl examples include a cyclopropyl, a cyclobutyl, a cyclopentyl, a cyclohexyl, a methylcyclopentyl, a cycloheptyl, a methylcyclohexyl, a cyclooctyl, and a dimethylcyclohexyl.
  • a preferable aryl is an aryl having 6 to 30 carbon atoms
  • a more preferable aryl is an aryl having 6 to 18 carbon atoms
  • a still more preferable aryl is an aryl having 6 to 14 carbon atoms
  • a particularly preferable aryl is an aryl having 6 to 12 carbon atoms.
  • aryl having 6 to 30 carbon atoms include phenyl which is a monocyclic aryl; (1-,2-)naphthyl which is a fused bicyclic aryl; acenaphthylene-(1-,3-,4-,5-)yl, a fluorene-(1-,2-,3-,4-,9-)yl, phenalene-(1-, 2-)yl, and (1-,2-,3-,4-,9-)phenanthryl which are fused tricyclic aryls; triphenylene-(1-, 2-)yl, pyrene-(1-,2-, 4-)yl, and naphthacene-(1-, 2-, 5-)yl which are fused tetracyclic aryls; and perylene-(1-,2-,3-)yl and pentacene-(1-, 2-, 5-, 6-)yl which are fused
  • aryl having 6 to 30 carbon atoms include a phenyl, a naphthyl, a phenanthryl, a chrysenyl, and a triphenylenyl. More preferable examples thereof include a phenyl, a 1-naphthyl, a 2-naphthyl, and a phenanthryl. Particularly preferable examples thereof include a phenyl, a 1-naphthyl, and a 2-naphthyl.
  • R 11 and R 12 in the above formula (ETM-2-2) may be bonded to each other to form a ring.
  • cyclobutane, cyclopentane, cyclopentene, cyclopentadiene, cyclohexane, fluorene, indene, or the like may be spiro-bonded to a 5-membered ring of a fluorene skeleton.
  • this pyridine derivative include the followings.
  • This pyridine derivative can be manufactured using known raw materials and known synthesis methods.
  • the fluoranthene derivative is, for example, a compound represented by the following general formula (ETM-3), and specifically disclosed in WO 2010/134352 A.
  • X 12 to X 21 each represent a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl, a linear, branched or cyclic alkoxy, a substituted or unsubstituted aryl, or a substituted or unsubstituted heteroaryl.
  • a substituent in a case of being substituted include an aryl, a heteroaryl, and an alkyl.
  • this fluoranthene derivative include the followings.
  • the BO-based derivative is, for example, a polycyclic aromatic compound represented by the following formula (ETM-4) or a polycyclic aromatic compound multimer having a plurality of structures represented by the following formula (ETM-4).
  • R 1 to R 11 each independently represent a hydrogen atom, an aryl, a heteroaryl, a diarylamino, a diheteroarylamino, an arylheteroarylamino, an alkyl, an alkoxy, or an aryloxy, while at least one hydrogen atom in these may be substituted by an aryl, a heteroaryl, or an alkyl.
  • Adjacent groups among R 1 to R 11 may be bonded to each other to form an aryl ring or a heteroaryl ring together with the ring a, ring b, or ring c, and at least one hydrogen atom in the ring thus formed may be substituted by an aryl, a heteroaryl, a diarylamino, a diheteroarylamino, an arylheteroarylamino, an alkyl, an alkoxy, or an aryloxy, while at least one hydrogen atom in these may be substituted by an aryl, a heteroaryl, or an alkyl.
  • At least one hydrogen atom in a compound or structure represented by formula (ETM-4) may be substituted by a halogen atom or a deuterium atom.
  • This BO-based derivative can be manufactured using known raw materials and known synthesis methods.
  • One of the anthracene derivatives is, for example, a compound represented by the following formula (ETM-5-1).
  • Ar's each independently represent a divalent benzene or naphthalene
  • R 1 to R 4 each independently represent a hydrogen atom, an alkyl having 1 to 6 carbon atoms, a cycloalkyl having 3 to 6 carbon atoms, or an aryl having 6 to 20 carbon atoms.
  • Ar's can be each independently selected from a divalent benzene and naphthalene appropriately. Two Ar's may be different from or the same as each other, but are preferably the same from a viewpoint of easiness of synthesis of an anthracene derivative.
  • Ar is bonded to pyridine to form “a moiety formed of Ar and pyridine”. For example, this moiety is bonded to anthracene as a group represented by any one of the following formulas (Py-1) to (Py-12).
  • a group represented by any one of the above formulas (Py-1) to (Py-9) is preferable, and a group represented by any one of the above formulas (Py-1) to (Py-6) is more preferable.
  • Two “moieties formed of Ar and pyridine” bonded to anthracene may have the same structure as or different structures from each other, but preferably have the same structure from a viewpoint of easiness of synthesis of an anthracene derivative.
  • two “moieties formed of Ar and pyridine” preferably have the same structure or different structures from a viewpoint of element characteristics.
  • the alkyl having 1 to 6 carbon atoms in R 1 to R 4 may be either linear or branched. That is, the alkyl having 1 to 6 carbon atoms is a linear alkyl having 1 to 6 carbon atoms or a branched alkyl having 3 to 6 carbon atoms. More preferably, the alkyl having 1 to 6 carbon atoms is an alkyl having 1 to 4 carbon atoms (branched alkyl having 3 to 4 carbon atoms).
  • Specific examples thereof include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, and 2-ethylbutyl.
  • Methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, and t-butyl are preferable.
  • Methyl, ethyl, and a t-butyl are more preferable.
  • cycloalkyl having 3 to 6 carbon atoms in R 1 to R 4 include a cyclopropyl, a cyclobutyl, a cyclopentyl, a cyclohexyl, a methylcyclopentyl, a cycloheptyl, a methylcyclohexyl, a cyclooctyl, and a dimethylcyclohexyl.
  • aryl having 6 to 20 carbon atoms in R 1 to R 4 an aryl having 6 to 16 carbon atoms is preferable, an aryl having 6 to 12 carbon atoms is more preferable, and an aryl having 6 to 10 carbon atoms is particularly preferable.
  • aryl having 6 to 20 carbon atoms include phenyl, (o-, m-, p-) tolyl, (2,3-, 2,4-, 2,5-, 2,6-, 3,4-, 3,5-) xylyl, mesityl (2,4,6-trimethylphenyl), and (o-, m-, p-)cumenyl which are monocyclic aryls; (2-, 3-, 4-)biphenylyl which is a bicyclic aryl; (1-, 2-)naphthyl which is a fused bicyclic aryl; terphenylyl (m-terphenyl-2′-yl, m-terphenyl-4′-yl, m-terphenyl-5′-yl, o-terphenyl-3′-yl, o-terphenyl-4′-yl, p-terphenyl-2′-yl, m-terphenyl-2-yl,
  • the “aryl having 6 to 20 carbon atoms” is preferably a phenyl, a biphenylyl, a terphenylyl, or a naphthyl, more preferably a phenyl, a biphenylyl, a 1-naphthyl, a 2-naphthyl, or an m-terphenyl-5′-yl, still more preferably a phenyl, a biphenylyl, a 1-naphthyl, or a 2-naphthyl, and most preferably a phenyl.
  • One of the anthracene derivatives is, for example, a compound represented by the following formula (ETM-5-2).
  • Ar 1 's each independently represent a single bond, a divalent benzene, naphthalene, anthracene, fluorene, or phenalene.
  • Ar 2 's each independently represent an aryl having 6 to 20 carbon atoms.
  • the same description as the “aryl having 6 to 20 carbon atoms” in the above formula (ETM-5-1) can be cited.
  • An aryl having 6 to 16 carbon atoms is preferable, an aryl having 6 to 12 carbon atoms is more preferable, and an aryl having 6 to 10 carbon atoms is particularly preferable.
  • a phenyl a biphenylyl, a naphthyl, a terphenylyl, an anthracenyl, an acenaphthylenyl, a fluorenyl, a phenalenyl, a phenanthryl, a triphenylenyl, a pyrenyl, a tetracenyl, and a perylenyl.
  • R 1 to R 4 each independently represent a hydrogen atom, an alkyl having 1 to 6 carbon atoms, a cycloalkyl having 3 to 6 carbon atoms, or an aryl having 6 to 20 carbon atoms.
  • ETM-5-1 The same description as in the above formula (ETM-5-1) can be cited.
  • anthracene derivatives can be manufactured using known raw materials and known synthesis methods.
  • the benzofluorene derivative is, for example, a compound represented by the following formula (ETM-6).
  • Ar 1 's each independently represent an aryl having 6 to 20 carbon atoms.
  • the same description as the “aryl having 6 to 20 carbon atoms” in the above formula (ETM-5-1) can be cited.
  • An aryl having 6 to 16 carbon atoms is preferable, an aryl having 6 to 12 carbon atoms is more preferable, and an aryl having 6 to 10 carbon atoms is particularly preferable.
  • a phenyl a biphenylyl, a naphthyl, a terphenylyl, an anthracenyl, an acenaphthylenyl, a fluorenyl, a phenalenyl, a phenanthryl, a triphenylenyl, a pyrenyl, a tetracenyl, and a perylenyl.
  • Ar 2 's each independently represent a hydrogen atom, an alkyl (preferably, an alkyl having 1 to 24 carbon atoms), a cycloalkyl (preferably, a cycloalkyl having 3 to 12 carbon atoms), or an aryl (preferably, an aryl having 6 to 30 carbon atoms), and two Ar 2 's may be bonded to each other to form a ring.
  • the “alkyl” in Ar 2 may be either linear or branched, and examples thereof include a linear alkyl having 1 to 24 carbon atoms and a branched alkyl having 3 to 24 carbon atoms.
  • a preferable “alkyl” is an alkyl having 1 to 18 carbon atoms (branched alkyl having 3 to 18 carbon atoms).
  • a more preferable “alkyl” is an alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons).
  • a still more preferable “alkyl” is an alkyl having 1 to 6 carbon atoms (branched alkyl having 3 to 6 carbon atoms).
  • alkyl is an alkyl having 1 to 4 carbon atoms (branched alkyl having 3 to 4 carbon atoms).
  • specific examples of the “alkyl” include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, and 1-methylhexyl.
  • Examples of the “cycloalkyl” in Ar 2 include a cycloalkyl having 3 to 12 carbon atoms.
  • a preferable “cycloalkyl” is a cycloalkyl having 3 to 10 carbons.
  • a more preferable “cycloalkyl” is a cycloalkyl having 3 to 8 carbon atoms.
  • a still more preferable “cycloalkyl” is a cycloalkyl having 3 to 6 carbon atoms.
  • cycloalkyl examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl, and dimethylcyclohexyl.
  • a preferable aryl is an aryl having 6 to 30 carbon atoms
  • a more preferable aryl is an aryl having 6 to 18 carbon atoms
  • a still more preferable aryl is an aryl having 6 to 14 carbon atoms
  • a particularly preferable aryl is an aryl having 6 to 12 carbon atoms.
  • aryl having 6 to 30 carbon atoms include phenyl, naphthyl, acenaphthylenyl, fluorenyl, phenalenyl, phenanthryl, triphenylenyl, pyrenyl, naphthacenyl, perylenyl, and pentacenyl.
  • Two Ar 2 's may be bonded to each other to form a ring.
  • cyclobutane, cyclopentane, cyclopentene, cyclopentadiene, cyclohexane, fluorene, indene, or the like may be spiro-bonded to a 5-membered ring of a fluorene skeleton.
  • This benzofluorene derivative can be manufactured using known raw materials and known synthesis methods.
  • the phosphine oxide derivative is, for example, a compound represented by the following formula (ETM-7-1) Details are also described in WO 2013/079217 A.
  • R 5 represents a substituted or unsubstituted alkyl having 1 to 20 carbon atoms, an aryl having 6 to 20 carbon atoms, or a heteroaryl having 5 to 20 carbon atoms
  • R 6 represents CN, a substituted or unsubstituted alkyl having 1 to 20 carbons, a heteroalkyl having 1 to 20 carbons, an aryl having 6 to 20 carbons, a heteroaryl having 5 to 20 carbons, an alkoxy having 1 to 20 carbons, or an aryloxy having 6 to 20 carbon atoms
  • R 7 and R 8 each independently represent a substituted or unsubstituted aryl having 6 to 20 carbon atoms or a heteroaryl having 5 to 20 carbon atoms
  • R 9 represents an oxygen atom or a sulfur atom
  • j 0 or 1
  • k 0 or 1
  • r represents an integer of 0 to 4
  • q represents an integer of 1 to 3.
  • Examples of a substituent in a case of being substituted include an aryl, a heteroaryl, and an alkyl.
  • the phosphine oxide derivative may be, for example, a compound represented by the following formula (ETM-7-2).
  • R 1 to R 3 may be the same as or different from each other and are selected from a hydrogen atom, an alkyl group, a cycloalkyl group, an aralkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, an aryl thioether group, an aryl group, a heterocyclic group, a halogen atom, a cyano group, an aldehyde group, a carbonyl group, a carboxyl group, an amino group, a nitro group, a silyl group, and a fused ring formed with an adjacent substituent.
  • Ar 1 's may be the same as or different from each other, and represents an arylene group or a heteroarylene group.
  • Ar 2 's may be the same as or different from each other, and represents an aryl group or a heteroaryl group. However, at least one of Ar 1 and Ar 2 has a substituent or forms a fused ring with an adjacent substituent.
  • n represents an integer of 0 to 3. When n is 0, no unsaturated structure portion is present. When n is 3, R 1 is not present.
  • the alkyl group represents a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, a propyl group, or a butyl group.
  • This saturated aliphatic hydrocarbon group may be unsubstituted or substituted.
  • the substituent in a case of being substituted is not particularly limited, and examples thereof include an alkyl group, an aryl group, and a heterocyclic group, and this point is also common to the following description.
  • the number of carbon atoms in the alkyl group is not particularly limited, but is usually in a range of 1 to 20 from a viewpoint of availability and cost.
  • the cycloalkyl group represents a saturated alicyclic hydrocarbon group such as a cyclopropyl, a cyclohexyl, a norbornyl, or an adamantyl. This saturated alicyclic hydrocarbon group may be unsubstituted or substituted.
  • the carbon number of the alkyl group moiety is not particularly limited, but is usually in a range of 3 to 20.
  • the aralkyl group represents an aromatic hydrocarbon group via an aliphatic hydrocarbon, such as a benzyl group or a phenylethyl group. Both the aliphatic hydrocarbon and the aromatic hydrocarbon may be unsubstituted or substituted.
  • the carbon number of the aliphatic moiety is not particularly limited, but is usually in a range of 1 to 20.
  • the alkenyl group represents an unsaturated aliphatic hydrocarbon group containing a double bond, such as a vinyl group, an allyl group, or a butadienyl group. This unsaturated aliphatic hydrocarbon group may be unsubstituted or substituted.
  • the carbon number of the alkenyl group is not particularly limited, but is usually in a range of 2 to 20.
  • the cycloalkenyl group represents an unsaturated alicyclic hydrocarbon group containing a double bond, such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexene group. This unsaturated alicyclic hydrocarbon group may be unsubstituted or substituted.
  • the alkynyl group represents an unsaturated aliphatic hydrocarbon group containing a triple bond, such as an acetylenyl group. This unsaturated aliphatic hydrocarbon group may be unsubstituted or substituted.
  • the carbon number of the alkynyl group is not particularly limited, but is usually in a range of 2 to 20.
  • the alkoxy group represents an aliphatic hydrocarbon group via an ether bond, such as a methoxy group.
  • the aliphatic hydrocarbon group may be unsubstituted or substituted.
  • the carbon number of the alkoxy group is not particularly limited, but is usually in a range of 1 to 20.
  • the alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted by a sulfur atom.
  • the aryl ether group represents an aromatic hydrocarbon group via an ether bond, such as a phenoxy group.
  • the aromatic hydrocarbon group may be unsubstituted or substituted.
  • the carbon number of the aryl ether group is not particularly limited, but is usually in a range of 6 to 40.
  • the aryl thioether group is a group in which an oxygen atom of an ether bond of an aryl ether group is substituted by a sulfur atom.
  • the aryl group represents an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a terphenyl group, or a pyrenyl group.
  • the aryl group may be unsubstituted or substituted.
  • the carbon number of the aryl group is not particularly limited, but is usually in a range of 6 to 40.
  • the heterocyclic group represents a cyclic structural group having an atom other than a carbon atom, such as a furanyl group, a thiophenyl group, an oxazolyl group, a pyridyl group, a quinolinyl group, or a carbazolyl group.
  • This cyclic structural group may be unsubstituted or substituted.
  • the carbon number of the heterocyclic group is not particularly limited, but is usually in a range of 2 to 30.
  • Halogen refers to fluorine, chlorine, bromine, and iodine.
  • the aldehyde group, the carbonyl group, and the amino group can include those substituted by an aliphatic hydrocarbon, an alicyclic hydrocarbon, an aromatic hydrocarbon, a heterocyclic ring, or the like.
  • the aliphatic hydrocarbon, the alicyclic hydrocarbon, the aromatic hydrocarbon, and the heterocyclic ring may be unsubstituted or substituted.
  • the silyl group represents, for example, a silicon compound group such as a trimethylsilyl group. This silicon compound group may be unsubstituted or substituted.
  • the number of carbon atoms of the silyl group is not particularly limited, but is usually in a range of 3 to 20. The number of silicon atoms is usually 1 to 6.
  • the fused ring formed with an adjacent substituent is, for example, a conjugated or unconjugated fused ring formed between Ar 1 and R 2 , Ar 1 and R 3 , Ar 2 and R 2 , Ar 2 and R 3 , R 2 and R 3 , or Ar 1 and Ar 2 .
  • n 1, two R 1 's may form a conjugated or nonconjugated fused ring.
  • These fused rings may contain a nitrogen atom, an oxygen atom, or a sulfur atom in the ring structure, or may be fused with another ring.
  • this phosphine oxide derivative include the followings.
  • This phosphine oxide derivative can be manufactured using known raw materials and known synthesis methods.
  • the pyrimidine derivative is, for example, a compound represented by the following formula (ETM-8), and preferably a compound represented by the following formula (ETM-8-1). Details are also described in WO 2011/021689 A.
  • Ar's each independently represent an optionally substituted aryl or an optionally substituted heteroaryl.
  • n represents an integer of 1 to 4, preferably an integer of 1 to 3, and more preferably 2 or 3.
  • aryl as the “optionally substituted aryl” include an aryl having 6 to 30 carbon atoms. An aryl having 6 to 24 carbon atoms is preferable, an aryl having 6 to 20 carbon atoms is more preferable, and an aryl having 6 to 12 carbon atoms is still more preferable.
  • aryl examples include phenyl which is a monocyclic aryl; (2-, 3-, 4-)biphenylyl which is a bicyclic aryl; (1-, 2-)naphthyl which is a fused bicyclic aryl; terphenylyl (m-terphenyl-2′-yl, m-terphenyl-4′-yl, m-terphenyl-5′-yl, o-terphenyl-3′-yl, o-terphenyl-4′-yl, p-terphenyl-2′-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl-2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, o-terphen
  • heteroaryl examples include a heteroaryl having 2 to 30 carbon atoms.
  • a heteroaryl having 2 to 25 carbon atoms is preferable, a heteroaryl having 2 to 20 carbon atoms is more preferable, a heteroaryl having 2 to 15 carbon atoms is still more preferable, and a heteroaryl having 2 to 10 carbon atoms is particularly preferable.
  • examples of the “heteroaryl” include a heterocyclic ring containing 1 to 5 heteroatoms selected from an oxygen atom, a sulfur atom, and a nitrogen atom in addition to a carbon atom as a ring-constituting atom.
  • heteroaryl examples include furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, furazanyl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, benzofuranyl, isobenzofuranyl, benzo[b]thienyl, indolyl, isoindolyl, 1H-indazolyl, benzoimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, cinnolyl, quinazolyl, quinoxalinyl, phthalazinyl, nap
  • the above aryl and heteroaryl may be substituted, and may be each substituted by, for example, the above aryl or heteroaryl.
  • this pyrimidine derivative include the followings.
  • This pyrimidine derivative can be manufactured using known raw materials and known synthesis methods.
  • the carbazole derivative is, for example, a compound represented by the following formula (ETM-9), or a multimer obtained by bonding a plurality of the compounds with a single bond or the like. Details are described in US 2014/0197386 A.
  • Ar's each independently represent an optionally substituted aryl or an optionally substituted heteroaryl.
  • n independently represents an integer of 0 to 4, preferably an integer of 0 to 3, and more preferably 0 or 1.
  • aryl as the “optionally substituted aryl” include an aryl having 6 to 30 carbon atoms. An aryl having 6 to 24 carbon atoms is preferable, an aryl having 6 to 20 carbon atoms is more preferable, and an aryl having 6 to 12 carbon atoms is still more preferable.
  • aryl examples include phenyl which is a monocyclic aryl; (2-, 3-, 4-)biphenylyl which is a bicyclic aryl; (1-, 2-)naphthyl which is a fused bicyclic aryl; terphenylyl (m-terphenyl-2′-yl, m-terphenyl-4′-yl, m-terphenyl-5′-yl, o-terphenyl-3′-yl, o-terphenyl-4′-yl, p-terphenyl-2′-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl-2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, o-terphen
  • heteroaryl examples include a heteroaryl having 2 to 30 carbon atoms.
  • a heteroaryl having 2 to 25 carbon atoms is preferable, a heteroaryl having 2 to 20 carbon atoms is more preferable, a heteroaryl having 2 to 15 carbon atoms is still more preferable, and a heteroaryl having 2 to 10 carbon atoms is particularly preferable.
  • examples of the “heteroaryl” include a heterocyclic ring containing 1 to 5 heteroatoms selected from an oxygen atom, a sulfur atom, and a nitrogen atom in addition to a carbon atom as a ring-constituting atom.
  • heteroaryl examples include furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, furazanyl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, benzofuranyl, isobenzofuranyl, benzo[b]thienyl, indolyl, isoindolyl, 1H-indazolyl, benzoimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, cinnolyl, quinazolyl, quinoxalinyl, phthalazinyl, nap
  • the above aryl and heteroaryl may be substituted, and may be each substituted by, for example, the above aryl or heteroaryl.
  • the carbazole derivative may be a multimer obtained by bonding a plurality of compounds represented by the above formula (ETM-9) with a single bond or the like.
  • the compounds may be bonded with an aryl ring (preferably, a polyvalent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring) in addition to a single bond.
  • This carbazole derivative can be manufactured using known raw materials and known synthesis methods.
  • the triazine derivative is, for example, a compound represented by the following formula (ETM-10), and preferably a compound represented by the following formula (ETM-10-1). Details are described in US 2011/0156013 A.
  • Ar's each independently represent an optionally substituted aryl or an optionally substituted heteroaryl.
  • n represents an integer of 1 to 3, preferably 2 or 3.
  • aryl as the “optionally substituted aryl” include an aryl having 6 to 30 carbon atoms. An aryl having 6 to 24 carbon atoms is preferable, an aryl having 6 to 20 carbon atoms is more preferable, and an aryl having 6 to 12 carbon atoms is still more preferable.
  • aryl examples include phenyl which is a monocyclic aryl; (2-, 3-, 4-)biphenylyl which is a bicyclic aryl; (1-, 2-)naphthyl which is a fused bicyclic aryl; terphenylyl (m-terphenyl-2′-yl, m-terphenyl-4′-yl, m-terphenyl-5′-yl, o-terphenyl-3′-yl, o-terphenyl-4′-yl, p-terphenyl-2′-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl-2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, o-terphen
  • heteroaryl examples include a heteroaryl having 2 to 30 carbon atoms.
  • a heteroaryl having 2 to 25 carbon atoms is preferable, a heteroaryl having 2 to 20 carbon atoms is more preferable, a heteroaryl having 2 to 15 carbon atoms is still more preferable, and a heteroaryl having 2 to 10 carbon atoms is particularly preferable.
  • examples of the “heteroaryl” include a heterocyclic ring containing 1 to 5 heteroatoms selected from an oxygen atom, a sulfur atom, and a nitrogen atom in addition to a carbon atom as a ring-constituting atom.
  • heteroaryl examples include furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, furazanyl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, benzofuranyl, isobenzofuranyl, benzo[b]thienyl, indolyl, isoindolyl, 1H-indazolyl, benzoimidazolyl, benzoxazolyl, benzothiazolyl, LH-benzotriazolyl, quinolyl, isoquinolyl, cinnolyl, quinazolyl, quinoxalinyl, phthalazinyl, nap
  • the above aryl and heteroaryl may be substituted, and may be each substituted by, for example, the above aryl or heteroaryl.
  • This triazine derivative can be manufactured using known raw materials and known synthesis methods.
  • the benzimidazole derivative is, for example, a compound represented by the following formula (ETM-11). ⁇ -(Benzimidazole-based substituent) n (ETM-11)
  • represents an n-valent aryl ring (preferably, an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring, or triphenylene ring), and n represents an integer of 1 to 4.
  • a “benzimidazole-based substituent” is a substituent in which the pyridyl group in the “pyridine-based substituent” in the formulas (ETM-2), (ETM-2-1), and (ETM-2-2) is substituted by a benzimidazole group, and at least one hydrogen atom in the benzimidazole derivative may be substituted by a deuterium atom.
  • R 11 in the above benzimidazole represents a hydrogen atom, an alkyl having 1 to 24 carbon atoms, a cycloalkyl having 3 to 12 carbon atoms, or an aryl having 6 to 30 carbon atoms.
  • the description of R 11 in the above formulas (ETM-2-1), and (ETM-2-2) can be cited.
  • is preferably an anthracene ring or a fluorene ring.
  • the structure of the above formula (ETM-2-1) or (ETM-2-2) can be cited.
  • R 1 to R 18 in each formula those described in the above formula (ETM-2-1) or (ETM-2-2) can be cited.
  • a form in which two pyridine-based substituents are bonded has been described.
  • at least one of R 11 to R 18 in the above formula (ETM-2-1) may be substituted by a benzimidazole-based substituent and the “pyridine-based substituent” may be substituted by any one of R 11 to R 18 .
  • this benzimidazole derivative include 1-phenyl-2-(4-(10-phenylanthracen-9-yl)phenyl)-1H-benzo[d]imidazole, 2-(4-(10-(naphthalen-2-yl)anthracen-9-yl)phenyl)-1-phenyl-1H-benzo[d]imidazole, 2-(3-(10-(naphthalen-2-yl)anthracen-9-yl)phenyl)-1-phenyl-1H-benzo[d]imidazole, 5-(10-(naphthlen-2-yl)anthracen-9-yl)-1,2-diphenyl-1H-benzo[d]imidazole, 1-(4-(10-(naphthalen-2-yl)anthracen-9-yl)phenyl)-2-phenyl-1H-benzo[d]imidazole, 2-(4-(9,10-di(na)-
  • This benzimidazole derivative can be manufactured using known raw materials and known synthesis methods.
  • the phenanthroline derivative is, for example, a compound represented by the following formula (ETM-12) or (ETM-12-1). Details are described in WO 2006/021982 A.
  • represents an n-valent aryl ring (preferably, an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring, or triphenylene ring), and n represents an integer of 1 to 4.
  • R 11 to R 18 each independently represent a hydrogen atom, an alkyl (preferably, an alkyl having 1 to 24 carbon atoms), a cycloalkyl (preferably, a cycloalkyl having 3 to 12 carbon atoms), or an aryl (preferably, an aryl having 6 to 30 carbon atoms).
  • any one of R 11 to R 18 is bonded to cp which is an aryl ring.
  • At least one hydrogen atom in each phenanthroline derivative may be substituted by a deuterium atom.
  • R 11 to R 18 in the above formula (ETM-2) examples of R 11 to R 18 in the above formula (ETM-2) can be cited.
  • examples of the p include those having the following structural formulas. Note that R's in the following structural formulas each independently represent a hydrogen atom, methyl, ethyl, isopropyl, cyclohexyl, phenyl, 1-naphthyl, 2-naphthyl, biphenylyl, or terphenylyl.
  • this phenanthroline derivative examples include 4,7-diphenyl-1,10-phenanthroline, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 9,10-di(1,10-phenanthrolin-2-yl)anthracene, 2,6-di(1,10-phenanthrolin-5-yl)pyridine, 1,3,5-tri(1,10-phenanthrolin-5-yl)benzene, 9,9′-difluoro-bi(1,10-phenanthrolin-5-yl), bathocuproine, and 1,3-bis(2-phenyl-1,10-phenanthrolin-9-yl)benzene.
  • This phenanthroline derivative can be manufactured using known raw materials and known synthesis methods.
  • the quinolinol-based metal complex is, for example, a compound represented by the following general formula (ETM-13).
  • R 1 to R 6 each independently represent a hydrogen atom, a fluorine atom, an alkyl, an aralkyl, an alkenyl, a cyano, an alkoxy, or an aryl
  • M represents Li, Al, Ga, Be, or Zn
  • n represents an integer of 1 to 3.
  • quinolinol-based metal complex examples include 8-quinolinol lithium, tris(8-quinolinolato) aluminum, tris(4-methyl-8-quinolinolato) aluminum, tris(5-methyl-8-quinolinolato) aluminum, tris(3,4-dimethyl-8-quinolinolato) aluminum, tris(4,5-dimethyl-8-quinolinolato) aluminum, tris(4,6-dimethyl-8-quinolinolato) aluminum, bis(2-methyl-8-quinolinolato) (phenolato) aluminum, bis(2-methyl-8-quinolinolato) (2-methylphenolato) aluminum, bis(2-methyl-8-quinolinolato) (3-methylphenolato) aluminum, bis(2-methyl-8-quinolinolato) (4-methylphenolato) aluminum, bis(2-methyl-8-quinolinolato) (2-phenylphenolato) aluminum, bis(2-methyl-8-quinolinolato) (3-
  • This quinolinol-based metal complex can be manufactured using known raw materials and known synthesis methods.
  • the thiazole derivative is, for example, a compound represented by the following formula (ETM-14-1). ⁇ -(Thiazole-based substituent) n (ETM-14-1)
  • the benzothiazole derivative is, for example, a compound represented by the following formula (ETM-14-2). ⁇ -(Benzothiazole-based substituent) n (ETM-14-2)
  • ⁇ in each formula represents an n-valent aryl ring (preferably, an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring, or triphenylene ring), and n represents an integer of 1 to 4.
  • a “thiazole-based substituent” or a “benzothiazole-based substituent” is a substituent in which the pyridyl group in the “pyridine-based substituent” in the formulas (ETM-2), (ETM-2-1), and (ETM-2-2) is substituted by a thiazole group or a benzothiazole group, and at least one hydrogen atom in the thiazole derivative and the benzothiazole derivative may be substituted by a deuterium atom.
  • c is preferably an anthracene ring or a fluorene ring.
  • the structure of the above formula (ETM-2-1) or (ETM-2-2) can be cited.
  • R 11 to R 18 in each formula those described in the above formula (ETM-2-1) or (ETM-2-2) can be cited.
  • ETM-2-1) or (ETM-2-2) a form in which two pyridine-based substituents are bonded has been described.
  • R 11 to R 18 in the above formula (ETM-2-1) may be substituted by a thiazole-based substituent (or benzothiazole-based substituent) and the “pyridine-based substituent” may be substituted by any one of R 11 to R 18 .
  • thiazole derivatives or benzothiazole derivatives can be manufactured using known raw materials and known synthesis methods.
  • An electron transport layer or an electron injection layer may further contain a substance that can reduce a material to form an electron transport layer or an electron injection layer.
  • a substance that can reduce a material to form an electron transport layer or an electron injection layer various substances are used as long as having reducibility to a certain extent.
  • the reducing substance include an alkali metal such as Na (work function 2.36 eV), K (work function 2.28 eV), Rb (work function 2.16 eV), or Cs (work function 1.95 eV), and an alkaline earth metal such as Ca (work function 2.9 eV), Sr (work function 2.0 to 2.5 eV), or Ba (work function 2.52 eV).
  • an alkali metal such as K, Rb, or Cs is a more preferable reducing substance, Rb or Cs is a still more preferable reducing substance, and Cs is the most preferable reducing substance.
  • alkali metals have particularly high reducing ability, and can enhance emission luminance of an organic EL element or can lengthen a lifetime thereof by adding the alkali metals in a relatively small amount to a material to form an electron transport layer or an electron injection layer.
  • a combination of two or more kinds of these alkali metals is also preferable, and particularly, a combination including Cs, for example, a combination of Cs with Na, a combination of Cs with K, a combination of Cs with Rb, or a combination of Cs with Na and K, is preferable.
  • Cs By inclusion of Cs, reducing ability can be efficiently exhibited, and emission luminance of an organic EL element is enhanced or a lifetime thereof is lengthened by adding Cs to a material to form an electron transport layer or an electron injection layer.
  • the negative electrode 108 plays a role of injecting an electron to the light emitting layer 105 through the electron injection layer 107 and the electron transport layer 106 .
  • a material to form the negative electrode 108 is not particularly limited as long as being a substance capable of efficiently injecting an electron to an organic layer.
  • a material similar to the materials to form the positive electrode 102 can be used.
  • a metal such as tin, indium, calcium, aluminum, silver, copper, nickel, chromium, gold, platinum, iron, zinc, lithium, sodium, potassium, cesium, or magnesium, and alloys thereof (a magnesium-silver alloy, a magnesium-indium alloy, an aluminum-lithium alloy such as lithium fluoride/aluminum, and the like) are preferable.
  • lithium, sodium, potassium, cesium, calcium, magnesium, or an alloy containing these low work function-metals is effective.
  • a method for using an electrode having high stability obtained by doping an organic layer with a trace amount of lithium, cesium, or magnesium is known.
  • Other examples of a dopant that can be used include an inorganic salt such as lithium fluoride, cesium fluoride, lithium oxide, or cesium oxide.
  • the dopant is not limited thereto.
  • a metal such as platinum, gold, silver, copper, iron, tin, aluminum, or indium, an alloy using these metals, an inorganic substance such as silica, titania, or silicon nitride, polyvinyl alcohol, vinyl chloride, a hydrocarbon-based polymer compound, or the like may be laminated as a preferable example.
  • an inorganic substance such as silica, titania, or silicon nitride, polyvinyl alcohol, vinyl chloride, a hydrocarbon-based polymer compound, or the like may be laminated as a preferable example.
  • the materials used in the above-described hole injection layer, hole transport layer, light emitting layer, electron transport layer, and electron injection layer can form each layer by being used singly.
  • a solvent-soluble resin such as polyvinyl chloride, polycarbonate, polystyrene, poly(N-vinylcarbazole), polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, a hydrocarbon resin, a ketone resin, a phenoxy resin, polyamide, ethyl cellulose, a vinyl acetate resin, an ABS resin, or a polyurethane resin; or a curable resin such as a phenolic resin, a xylene resin, a petroleum resin, a urea resin, a melamine resin, an unsaturated polyester resin, an alkyd resin, an epoxy resin, or a silicone resin.
  • a solvent-soluble resin such as polyvinyl chloride, polycarbonate,
  • Each layer constituting an organic EL element can be formed by forming thin films of the materials to constitute each layer by methods such as a vapor deposition method, resistance heating deposition, electron beam deposition, sputtering, a molecular lamination method, a printing method, a spin coating method, a casting method, and a coating method.
  • the film thickness of each layer thus formed is not particularly limited, and can be appropriately set according to a property of a material, but is usually within a range of 2 nm to 5000 nm.
  • the film thickness can be usually measured using a crystal oscillation type film thickness analyzer or the like.
  • deposition conditions depend on the kind of a material, an intended crystal structure and association structure of the film, and the like. It is preferable to appropriately set the vapor deposition conditions generally in ranges of a boat heating temperature of +50 to +400° C., a degree of vacuum of 10 ⁇ 6 to 10 ⁇ 3 Pa, a rate of deposition of 0.01 to 50 nm/sec, a substrate temperature of ⁇ 150 to +300° C., and a film thickness of 2 nm to 5 ⁇ m.
  • a method for manufacturing an organic EL element a method for manufacturing an organic EL element formed of positive electrode/hole injection layer/hole transport layer/light emitting layer including a host material and a dopant material/electron transport layer/electron injection layer/negative electrode will be described.
  • a thin film of a positive electrode material is formed on an appropriate substrate by a vapor deposition method or the like to manufacture a positive electrode, and then thin films of a hole injection layer and a hole transport layer are formed on this positive electrode.
  • a thin film is formed thereon by co-depositing a host material and a dopant material to obtain a light emitting layer.
  • An electron transport layer and an electron injection layer are formed on this light emitting layer, and a thin film formed of a substance for a negative electrode is formed by a vapor deposition method or the like to obtain a negative electrode.
  • An intended organic EL element is thereby obtained.
  • a direct current voltage is applied to the organic EL element thus obtained, it is only required to apply the voltage by assuming a positive electrode as a positive polarity and assuming a negative electrode as a negative polarity.
  • a voltage of about 2 to 40 V By applying a voltage of about 2 to 40 V, light emission can be observed from a transparent or semitransparent electrode side (the positive electrode or the negative electrode, or both the electrodes).
  • This organic EL element also emits light even in a case where a pulse current or an alternating current is applied.
  • a waveform of an alternating current applied may be any waveform.
  • the present invention can also be applied to a display apparatus including an organic EL element, a lighting apparatus including an organic EL element, or the like.
  • the display apparatus or lighting apparatus including an organic EL element can be manufactured by a known method such as connecting the organic EL element according to the present embodiment to a known driving apparatus, and can be driven by appropriately using a known driving method such as direct driving, pulse driving, or alternating driving.
  • Examples of the display apparatus include panel displays such as color flat panel displays; and flexible displays such as flexible organic electroluminescent (EL) displays (see, for example, JP 10-335066 A, JP 2003-321546 A, JP 2004-281086 A, and the like).
  • Examples of a display method of the display include a matrix method and/or a segment method. Note that the matrix display and the segment display may co-exist in the same panel.
  • the matrix refers to a system in which pixels for display are arranged two-dimensionally as in a lattice form or a mosaic form, and characters or images are displayed by an assembly of pixels.
  • the shape or size of the pixel depends on intended use. For example, for display of images and characters of a personal computer, a monitor, or a television, square pixels each having a size of 300 ⁇ m or less on each side are usually used, and in a case of a large-sized display such as a display panel, pixels having a size in the order of millimeters on each side are used. In a case of monochromic display, it is only required to arrange pixels of the same color. However, in a case of color display, display is performed by arranging pixels of red, green and blue.
  • delta type display and stripe type display are available.
  • a line sequential driving method or an active matrix method may be employed.
  • the line sequential driving method has an advantage of having a simpler structure.
  • the active matrix method may be superior. Therefore, it is necessary to use the line sequential driving method or the active matrix method properly according to intended use.
  • a pattern is formed so as to display predetermined information, and a determined region emits light.
  • Examples of the segment method include display of time or temperature in a digital clock or a digital thermometer, display of a state of operation in an audio instrument or an electromagnetic cooker, and panel display in an automobile.
  • Examples of the lighting apparatus include a lighting apparatuses for indoor lighting or the like, and a backlight of a liquid crystal display apparatus (see, for example, JP 2003-257621 A, JP 2003-277741 A, and JP 2004-119211 A).
  • the backlight is mainly used for enhancing visibility of a display apparatus that is not self-luminous, and is used in a liquid crystal display apparatus, a timepiece, an audio apparatus, an automotive panel, a display panel, a sign, and the like.
  • a backlight using the luminescent element according to the present embodiment is characterized by its thinness and lightweightness.
  • the reaction liquid was cooled to room temperature, an aqueous solution of sodium acetate that had been cooled in an ice bath and then ethyl acetate were added thereto, and the mixture was partitioned. Subsequently, purification was performed using a silica gel short pass column (developing liquid: heated chlorobenzene). The purification product was washed with refluxed heptane and refluxed ethyl acetate, and then was reprecipitated from chlorobenzene. Thus, a compound (5.1 g) represented by formula (1-1152) was obtained.
  • the compound represented by formula (1-422) was precipitated in the purification step of Synthesis Example (2). Thereafter, the filtrate collected by suction filtration was purified by activated carbon column chromatography (developing solution: toluene). Thereafter, the eluate was concentrated, and the precipitated solid was washed with heptane to obtain a solid (0.3 g). It was confirmed by NMR analysis that the solid obtained by this operation was a compound represented by the following formula (1-2620) as a by-product in the above reaction step.
  • N 1 -(2,3-dichlorophenyl)-N 1 ,N 3 ,N 3 -triphenylbenzene-1,3-diamine (61.8 g) was obtained.
  • the reaction liquid was cooled to room temperature, an aqueous solution of sodium acetate that had been cooled in an ice bath and then ethyl acetate were added thereto, and the mixture was partitioned. Subsequently, dissolution in hot chlorobenzene was performed, and purification was performed using a silica gel short pass column (developing liquid: hot toluene). The purification product was further recrystallized from chlorobenzene, and thus a compound (3.0 g) represented by formula (1-2679) was obtained.
  • a 1.7 M tert-butyllithium pentane solution (27.6 ml) was introduced into a flask containing 2-chloro-N 1 ,N 1 ,N 3 ,N 3 -tetraphenylbenzene-1,3-diamine (20.0 g) and tert-butylbenzene (150 ml), at ⁇ 30° C. in a nitrogen atmosphere. After completion of dropwise addition, the temperature of the mixture was increased to 60° C., the mixture was stirred for 2 hours, and then components having boiling points lower than that of tert-butylbenzene were distilled off under reduced pressure.
  • the mixture was cooled to ⁇ 30° C., boron tribromide (5.1 ml) was added thereto, the temperature of the mixture was increased to room temperature, and the mixture was stirred for 0.5 hours. Thereafter, the mixture was cooled again to 0° C., N,N-diisopropylethylamine (15.6 ml) was added thereto, and the mixture was stirred at room temperature until heat generation was settled. Subsequently, the temperature of the mixture was increased to 120° C., and the mixture was heated and stirred for three hours. The reaction liquid was cooled to room temperature, an aqueous solution of sodium acetate that had been cooled in an ice bath and then heptane were added thereto, and the mixture was partitioned.
  • the reaction liquid was cooled to room temperature, and a precipitate generated by adding an aqueous solution of sodium acetate that had been cooled in an ice bath and ethyl acetate thereto was collected by suction filtration. Subsequently, dissolution in hot chlorobenzene was performed, and purification was performed using a silica gel short pass column (developing liquid: hot toluene). The purification product was washed with hot heptane, and then was reprecipitated using a chlorobenzene/ethyl acetate mixed solvent. Thus, a compound (3.0 g) represented by formula (1-2681) was obtained.
  • N 1 ([1,1′-biphenyl]-4-yl)-N 3 ,N 3 -diphenylbenzene-1,3-diamine (17.4 g) was obtained.
  • a 1.6 M t-butyllithium pentane solution (54.0 ml) was introduced into a flask containing 2-chloro-3-(10H-phenoxazin-10-yl)-N,N-diphenylaniline (20.0 g) and t-butylbenzene (150 ml) in a nitrogen atmosphere, while the flask was cooled in an ice bath. After completion of dropwise addition, the temperature was increased to 60° C., the mixture was stirred for three hours, and then components having boiling points that were lower than that of t-butylbenzene were distilled off under reduced pressure.
  • triphenylborane (0.730 g, 3.0 mmol) and boron tribromide (0.284 ml, 3.0 mmol) were added to N 1 ,N 1 ,N 3 ,N 3 ,N 5 ,N 5 -hexakis(4-methylphenyl)-1,3,5-benzenetriamine (0.322 g, 0.5 mmol) and o-dichlorobenzene (3.0 ml) at room temperature in a nitrogen atmosphere in an autoclave, and then the mixture was heated and stirred for 20 hours at 260° C.
  • the compound (3-134-O) was synthesized by a method equivalent to the method described in paragraph [0106] of WO 2014/141725 A.
  • the compound (3-180-O) was synthesized by a method equivalent to the method described in paragraph [0150] of WO 2014/141725 A.
  • the compound (3-141-O) was synthesized by a method equivalent to the method described in paragraph [0117] of WO 2014/141725 A.
  • the precipitate was purified with a silica gel short column (eluent: toluene) and then recrystallized from toluene to obtain 2-(10-phenylanthracen-9-yl) dibenzofuran (1.0 g).
  • the compound (3-183-N) was synthesized by a method equivalent to the method described in paragraph [0225] of JP 2008-081497 A.
  • Organic EL elements according to Examples 1, 2 and Comparative Example 1 were manufactured. Voltage (V), emission wavelength (nm), CIE chromaticity (x, y), and external quantum efficiency (%) thereof as characteristics at the time of emission of 1000 cd/m 2 were measured.
  • the quantum efficiency of a luminescent element includes an internal quantum efficiency and an external quantum efficiency.
  • the internal quantum efficiency indicates a ratio at which external energy injected as electrons (or holes) into a light emitting layer of a luminescent element is purely converted into photons.
  • the external quantum efficiency is a value calculated based on the amount of photons emitted to an outside of the luminescent element. A part of the photons generated in the light emitting layer is absorbed or reflected continuously inside the luminescent element, and is not emitted to the outside of the luminescent element. Therefore, the external quantum efficiency is lower than the internal quantum efficiency.
  • a method for measuring the external quantum efficiency is as follows. Using a voltage/current generator R6144 manufactured by Advantest Corporation, a voltage at which luminance of an element was 1000 cd/m 2 was applied to cause the element to emit light. Using a spectral radiance meter SR-3AR manufactured by TOPCON Co., spectral radiance in a visible light region was measured from a direction perpendicular to a light emitting surface. Assuming that the light emitting surface is a perfectly diffusing surface, a numerical value obtained by dividing a spectral radiance value of each measured wavelength component by wavelength energy and multiplying the obtained value by n is the number of photons at each wavelength.
  • the number of photons was integrated in the observed entire wavelength region, and this number was taken as the total number of photons emitted from the element.
  • a numerical value obtained by dividing an applied current value by an elementary charge is taken as the number of carriers injected into the element.
  • the external quantum efficiency is a numerical value obtained by dividing the total number of photons emitted from the element by the number of carriers injected into the element.
  • Table 1 indicates a material composition of each layer and EL characteristic data in organic EL elements manufactured according to Examples 1, 2 and Comparative Example 1.
  • HI hole injection layer material
  • HAT-CN hole injection layer material
  • HT-1 hole transport layer material
  • HT-2 hole transport layer material
  • HT-2 hole transport layer material
  • a glass substrate manufactured by Opto Science, Inc. having a size of 26 mm ⁇ 28 mm ⁇ 0.7 mm, which was obtained by forming a film of ITO having a thickness of 180 nm by sputtering, and polishing the ITO film to 150 nm, was used as a transparent supporting substrate.
  • This transparent supporting substrate was fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Choshu Industry Co., Ltd.), and a vapor deposition boat made of molybdenum and containing HI (hole injection layer material), a vapor deposition boat made of molybdenum and containing HAT-CN (hole injection layer material), a vapor deposition boat made of molybdenum and containing HT-1 (hole transport layer material), a vapor deposition boat made of molybdenum and containing HT-2 (hole transport layer material), a vapor deposition boat made of molybdenum and containing compound (3-134-O) (host material), a vapor deposition boat made of molybdenum and containing compound (1-2621) (dopant material), a vapor deposition boat made of molybdenum and containing ET (electron transport layer material), a vapor deposition boat made of molybdenum and containing Liq, a crucible made of
  • Layers as described below were formed sequentially on the ITO film of the transparent supporting substrate.
  • the pressure in a vacuum chamber was reduced to 1 ⁇ 10 ⁇ 4 Pa.
  • the vapor deposition boat containing HI was first heated, and vapor deposition was performed so as to obtain a film thickness of 40 nm to form a hole injection layer 1.
  • the vapor deposition boat containing HAT-CN was heated, and vapor deposition was performed so as to obtain a film thickness of 5 nm to form a hole injection layer 2.
  • the vapor deposition boat containing HT-1 was heated, and vapor deposition was performed so as to obtain a film thickness of 15 nm to form a hole transport layer 1.
  • the vapor deposition boat containing HT-2 was heated, and vapor deposition was performed so as to obtain a film thickness of 10 nm to form a hole transport layer 2.
  • the vapor deposition boat containing compound (3-134-O) and the vapor deposition boat containing compound (1-2621) were heated simultaneously, and vapor deposition was performed so as to obtain a film thickness of 25 nm to form a light emitting layer.
  • the rate of deposition was regulated such that a weight ratio between compound (3-134-0) and compound (1-2621) was approximately 98:2.
  • the vapor deposition boat containing compound ET and the vapor deposition boat containing Liq were heated simultaneously, and vapor deposition was performed so as to obtain a film thickness of 30 nm to form an electron transport layer.
  • the rate of deposition was regulated such that the weight ratio between ET and Liq was approximately 50:50.
  • the vapor deposition rate for each layer was 0.01 to 1 nm/sec.
  • the vapor deposition boat containing Liq was heated, and vapor deposition was performed at a rate of deposition of 0.01 to 0.1 nm/sec so as to obtain a film thickness of 1 nm.
  • the crucible containing magnesium and the crucible containing silver were heated simultaneously, and vapor deposition was performed so as to obtain a film thickness of 100 nm to form a negative electrode, thereby obtaining an organic EL element.
  • the vapor deposition rate was adjusted in a range between 0.1 nm to 10 nm/sec such that the ratio of the numbers of atoms between magnesium and silver was 10:1.
  • the driving voltage was 3.52 V, and the external quantum efficiency was 5.73%.
  • Table 2A indicates a material composition of each layer and the following Table 2B indicates EL characteristic data in organic EL elements manufactured according to Examples 3 to 27 and Comparative Example 2.
  • a glass substrate manufactured by Opto Science, Inc. having a size of 26 mm ⁇ 28 mm ⁇ 0.7 mm, which was obtained by forming a film of ITO having a thickness of 180 nm by sputtering, and polishing the ITO film to 150 nm, was used as a transparent supporting substrate.
  • This transparent supporting substrate was fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Choshu Industry Co., Ltd.), and a vapor deposition boat made of molybdenum and containing HI (hole injection layer material), a vapor deposition boat made of molybdenum and containing HAT-CN (hole injection layer material), a vapor deposition boat made of molybdenum and containing HT-1 (hole transport layer material), a vapor deposition boat made of molybdenum and containing HT-2 (hole transport layer material), a vapor deposition boat made of molybdenum and containing compound (3-134-O) (host material), a vapor deposition boat made of molybdenum and containing compound (1-2621) (dopant material), a vapor deposition boat made of molybdenum and containing ET-1 (electron transport layer material), a vapor deposition boat made of molybdenum and containing ET-2 (electron transport layer material
  • Layers as described below were formed sequentially on the ITO film of the transparent supporting substrate.
  • the pressure in a vacuum chamber was reduced to 1 ⁇ 10 ⁇ 4 Pa.
  • the vapor deposition boat containing HI was first heated, and vapor deposition was performed so as to obtain a film thickness of 40 nm to form a hole injection layer 1.
  • the vapor deposition boat containing HAT-CN was heated, and vapor deposition was performed so as to obtain a film thickness of 5 nm to form a hole injection layer 2.
  • the vapor deposition boat containing HT-1 was heated, and vapor deposition was performed so as to obtain a film thickness of 15 nm to form a hole transport layer 1.
  • the vapor deposition boat containing HT-2 was heated, and vapor deposition was performed so as to obtain a film thickness of 10 nm to form a hole transport layer 2.
  • the vapor deposition boat containing compound (3-134-O) and the vapor deposition boat containing compound (1-2621) were heated simultaneously, and vapor deposition was performed so as to obtain a film thickness of 25 nm to form a light emitting layer.
  • the rate of deposition was regulated such that a weight ratio between compound (3-134-0) and compound (1-2621) was approximately 98:2.
  • the vapor deposition boat containing ET-1 was heated, and vapor deposition was performed so as to obtain a film thickness of 5 nm to form an electron transport layer 1.
  • the vapor deposition boat containing ET-2 and the vapor deposition boat containing Liq were heated simultaneously, and vapor deposition was performed so as to obtain a film thickness of 25 nm to form an electron transport layer 2.
  • the rate of deposition was regulated such that the weight ratio between ET-2 and Liq was approximately 50:50.
  • the vapor deposition rate for each layer was 0.01 to 1 nm/sec.
  • the vapor deposition boat containing Liq was heated, and vapor deposition was performed at a rate of deposition of 0.01 to 0.1 nm/sec so as to obtain a film thickness of 1 nm.
  • the crucible containing magnesium and the crucible containing silver were heated simultaneously, and vapor deposition was performed so as to obtain a film thickness of 100 nm to form a negative electrode, thereby obtaining an organic EL element.
  • the vapor deposition rate was adjusted in a range between 0.1 nm to 10 nm/sec such that the ratio of the numbers of atoms between magnesium and silver was 10:1.
  • the driving voltage was 3.54 V, and the external quantum efficiency was 6.98%.
  • An organic EL element was manufactured with the material of each layer illustrated in Table 2A in a similar manner to Example 3, and an emission wavelength, CIE chromaticity (x, y), driving voltage, and external quantum efficiency were measured.
  • Table 2B illustrates measurement results thereof.
  • An organic EL element was manufactured with the material of each layer illustrated in Table 2A in a similar manner to Example 3, and an emission wavelength, CIE chromaticity (x, y), driving voltage, and external quantum efficiency were measured.
  • Table 2B illustrates measurement results thereof.
  • a novel polycyclic aromatic compound and an anthracene-based compound which can obtain optimum light emitting characteristics in combination with the polycyclic aromatic compound, and by manufacturing an organic EL element using a material for a light emitting layer obtained by combining these compounds, it is possible to provide an organic EL element having a low consumption power and an excellent quantum efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Furan Compounds (AREA)
  • Indole Compounds (AREA)
US16/092,856 2016-04-26 2017-04-20 Organic electroluminescent element Active 2039-03-20 US11723263B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016-087640 2016-04-26
JP2016087640 2016-04-26
PCT/JP2017/015871 WO2017188111A1 (ja) 2016-04-26 2017-04-20 有機電界発光素子

Publications (2)

Publication Number Publication Date
US20190207112A1 US20190207112A1 (en) 2019-07-04
US11723263B2 true US11723263B2 (en) 2023-08-08

Family

ID=60160359

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/092,856 Active 2039-03-20 US11723263B2 (en) 2016-04-26 2017-04-20 Organic electroluminescent element

Country Status (5)

Country Link
US (1) US11723263B2 (ko)
JP (1) JPWO2017188111A1 (ko)
KR (2) KR102409257B1 (ko)
CN (1) CN109155368B (ko)
WO (1) WO2017188111A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210403489A1 (en) * 2019-03-08 2021-12-30 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising same

Families Citing this family (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110521013A (zh) * 2017-04-03 2019-11-29 出光兴产株式会社 有机电致发光元件和电子设备
KR102544981B1 (ko) * 2017-10-16 2023-06-21 삼성디스플레이 주식회사 유기 발광 소자 및 발광 장치
JP6967433B2 (ja) * 2017-11-27 2021-11-17 エスケーマテリアルズジェイエヌシー株式会社 有機電界発光素子
KR102618236B1 (ko) * 2017-12-11 2023-12-26 가꼬우 호징 관세이 가쿠잉 중수소 치환 다환 방향족 화합물
US20210066599A1 (en) 2017-12-28 2021-03-04 Idemitsu Kosan Co.,Ltd. Novel compound and organic electroluminescence device
US20210062078A1 (en) * 2017-12-28 2021-03-04 Idemitsu Kosan Co.,Ltd. Novel compound and organic electroluminescence device
JP7340171B2 (ja) * 2018-01-24 2023-09-07 学校法人関西学院 有機電界発光素子
JP2021061262A (ja) * 2018-02-05 2021-04-15 学校法人関西学院 多環芳香族化合物の発光材料を用いた有機電界発光素子
CN111433216B (zh) * 2018-02-23 2023-07-18 株式会社Lg化学 杂环化合物和包含其的有机发光器件
KR20200139684A (ko) * 2018-04-05 2020-12-14 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 전자 기기
KR102714696B1 (ko) * 2018-04-12 2024-10-07 가꼬우 호징 관세이 가쿠잉 불소 치환 다환 방향족 화합물
KR101990818B1 (ko) * 2018-05-04 2019-06-19 머티어리얼사이언스 주식회사 유기전계발광소자
CN111656548B (zh) * 2018-05-17 2023-12-12 株式会社Lg化学 有机发光器件
JP6506456B1 (ja) 2018-05-21 2019-04-24 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
WO2019235452A1 (ja) * 2018-06-06 2019-12-12 学校法人関西学院 ターシャリーアルキル置換多環芳香族化合物
CN111684615B (zh) * 2018-06-11 2023-10-17 株式会社Lg化学 有机发光器件
KR102690280B1 (ko) * 2018-06-11 2024-07-30 가꼬우 호징 관세이 가쿠잉 다환 방향족 화합물 및 그의 다량체
WO2019240464A1 (ko) * 2018-06-11 2019-12-19 주식회사 엘지화학 유기 발광 소자
JP2020004947A (ja) * 2018-06-20 2020-01-09 学校法人関西学院 有機電界発光素子
KR102704187B1 (ko) * 2018-06-20 2024-09-10 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 함규소 화합물
CN111699177B (zh) * 2018-07-02 2024-08-20 株式会社Lg化学 杂环化合物及包含其的有机发光器件
WO2020017931A1 (ko) * 2018-07-19 2020-01-23 주식회사 엘지화학 다환 화합물 및 이를 포함하는 유기 발광 소자
US12006336B2 (en) 2018-07-24 2024-06-11 Lg Chem, Ltd. Polycyclic compound and organic light-emitting device comprising same
KR102091507B1 (ko) * 2018-07-24 2020-03-20 머티어리얼사이언스 주식회사 유기 전계 발광 소자
KR102287291B1 (ko) * 2018-08-10 2021-08-06 머티어리얼사이언스 주식회사 유기 전계 발광 소자
US20200058874A1 (en) * 2018-08-17 2020-02-20 Lg Display Co., Ltd. Organic electroluminescence device
CN112585778A (zh) 2018-08-23 2021-03-30 国立大学法人九州大学 有机发光元件、组合物及膜
WO2020054676A1 (ja) * 2018-09-10 2020-03-19 学校法人関西学院 有機電界発光素子
US10777752B2 (en) 2018-10-09 2020-09-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic apparatus provided with the same
WO2020075758A1 (ja) * 2018-10-09 2020-04-16 出光興産株式会社 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
US10763444B2 (en) 2018-10-09 2020-09-01 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic apparatus provided with the same
WO2020075757A1 (ja) * 2018-10-09 2020-04-16 出光興産株式会社 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
EP3767695B1 (en) * 2018-10-12 2022-07-06 Lg Chem, Ltd. Organic light-emitting device
EP3767694B1 (en) * 2018-10-12 2023-09-13 Lg Chem, Ltd. Organic light-emitting device
KR20200047400A (ko) * 2018-10-26 2020-05-07 롬엔드하스전자재료코리아유한회사 복수 종의 발광 재료 및 이를 포함하는 유기 전계 발광 소자
KR102640489B1 (ko) 2018-11-16 2024-02-26 에스에프씨 주식회사 신규한 보론 화합물 및 이를 포함하는 유기발광소자
JP7260642B2 (ja) * 2018-11-19 2023-04-18 エスエフシー カンパニー リミテッド 新規なホウ素化合物及びこれを含む有機発光素子
KR102640485B1 (ko) 2018-11-20 2024-02-26 에스에프씨 주식회사 신규한 보론 화합물 및 이를 포함하는 유기발광소자
CN113227105A (zh) * 2018-11-29 2021-08-06 默克专利有限公司 电子器件
CN113166637A (zh) * 2018-11-29 2021-07-23 默克专利有限公司 电子器件
US11985891B2 (en) 2018-11-30 2024-05-14 Sfc Co., Ltd. Polycyclic aromatic compounds and organic electroluminescent devices using the same
KR102094830B1 (ko) * 2018-11-30 2020-03-30 에스에프씨 주식회사 다환 방향족 유도체 화합물 및 이를 이용한 유기발광소자
KR102623053B1 (ko) * 2018-12-05 2024-01-10 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
WO2020116561A1 (ja) * 2018-12-05 2020-06-11 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
US11276836B2 (en) * 2018-12-10 2022-03-15 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
KR102316064B1 (ko) * 2018-12-26 2021-10-22 주식회사 엘지화학 화합물 및 이를 포함하는 유기발광소자
US12116379B2 (en) 2018-12-27 2024-10-15 Lg Chem, Ltd. Compound and organic light emitting diode comprising same
KR102668776B1 (ko) * 2018-12-28 2024-05-22 엘지디스플레이 주식회사 유기발광다이오드 및 유기발광장치
KR20200081983A (ko) * 2018-12-28 2020-07-08 엘지디스플레이 주식회사 유기발광다이오드 및 유기발광장치
KR20200081977A (ko) * 2018-12-28 2020-07-08 엘지디스플레이 주식회사 유기발광다이오드 및 이를 포함하는 유기발광장치
KR20200087906A (ko) 2019-01-11 2020-07-22 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
KR102405389B1 (ko) * 2019-01-18 2022-06-07 주식회사 엘지화학 유기 발광 소자
KR102541446B1 (ko) * 2019-01-22 2023-06-09 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 표시 장치
EP3686206B1 (en) * 2019-01-23 2021-10-27 Cynora Gmbh Organic molecules for optoelectronic devices
JP2020123721A (ja) * 2019-01-29 2020-08-13 学校法人関西学院 有機電界発光素子、および表示装置
KR20200094262A (ko) 2019-01-29 2020-08-07 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
JP7283688B2 (ja) 2019-02-12 2023-05-30 学校法人関西学院 有機電界発光素子
CN111560030B (zh) * 2019-02-13 2024-01-16 三星显示有限公司 用于光电器件的有机分子
KR20200107028A (ko) 2019-03-05 2020-09-16 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
CN111718364A (zh) * 2019-03-19 2020-09-29 赛诺拉有限公司 用于光电器件的有机分子
US11462692B2 (en) * 2019-03-21 2022-10-04 Samsung Display Co., Ltd. Organic electroluminescent device
KR20200120822A (ko) * 2019-04-12 2020-10-22 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
CN111943966B (zh) * 2019-05-14 2024-10-18 北京鼎材科技有限公司 化合物、热活化延迟荧光材料、有机电致发光器件及其应用
KR102666982B1 (ko) * 2019-05-20 2024-05-20 삼성디스플레이 주식회사 화합물 및 이를 포함하는 유기 발광 소자
JP7302813B2 (ja) * 2019-06-07 2023-07-04 学校法人関西学院 多環芳香族化合物
KR20220019714A (ko) * 2019-06-11 2022-02-17 가꼬우 호징 관세이 가쿠잉 다환 방향족 화합물
US20200395553A1 (en) * 2019-06-12 2020-12-17 Sfc Co., Ltd. Organic electroluminescent device
KR20200143560A (ko) 2019-06-13 2020-12-24 삼성디스플레이 주식회사 헤테로시클릭 화합물 및 이를 포함한 유기 발광 소자
CN114026147A (zh) * 2019-06-14 2022-02-08 学校法人关西学院 多环芳香族化合物
KR102344204B1 (ko) * 2019-06-19 2021-12-28 주식회사 엘지화학 유기 발광 소자
KR20200145945A (ko) 2019-06-21 2020-12-31 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 화합물
JP2021068885A (ja) * 2019-07-12 2021-04-30 学校法人関西学院 発光層形成用組成物
KR20210010389A (ko) 2019-07-17 2021-01-27 에스에프씨 주식회사 신규한 보론 화합물 및 이를 포함하는 유기발광소자
KR102657477B1 (ko) * 2019-07-18 2024-04-12 칭화 유니버시티 신규 화합물 및 이의 응용 및 상기 화합물을 이용한 유기 전계 발광 소자
CN110407858B (zh) * 2019-07-18 2020-07-14 清华大学 一种新型化合物及其应用及采用该化合物的有机电致发光器件
CN110407859B (zh) * 2019-07-18 2022-09-20 清华大学 一种发光材料及其应用以及包含其的有机电致发光器件
WO2021015417A1 (ko) * 2019-07-23 2021-01-28 에스에프씨 주식회사 유기발광 화합물 및 유기발광소자
EP3998321A4 (en) * 2019-07-24 2023-07-12 SFC Co., Ltd. ORGANIC ELECTROLUMINESCENT COMPOUND AND ORGANIC ELECTROLUMINESCENT DEVICE
WO2021013993A1 (en) * 2019-07-25 2021-01-28 Cynora Gmbh Organic molecules for optoelectronic devices
CN114269757A (zh) * 2019-07-25 2022-04-01 辛诺拉有限公司 用于光电器件的有机分子
KR102148296B1 (ko) * 2019-07-29 2020-08-26 에스에프씨주식회사 보론 화합물을 포함하는 유기발광소자
JP7267868B2 (ja) * 2019-07-30 2023-05-02 住友化学株式会社 含ホウ素縮合環化合物の製造方法
KR20210014799A (ko) 2019-07-30 2021-02-10 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
WO2021020947A1 (ko) * 2019-07-31 2021-02-04 주식회사 엘지화학 유기 발광 소자
CN113228335A (zh) * 2019-07-31 2021-08-06 株式会社Lg化学 有机发光器件
CN113228331B (zh) * 2019-07-31 2024-08-02 株式会社Lg化学 有机发光器件
KR102391296B1 (ko) * 2019-07-31 2022-04-27 주식회사 엘지화학 유기 발광 소자
KR102381641B1 (ko) * 2019-07-31 2022-04-01 주식회사 엘지화학 유기 발광 소자
CN112442053B (zh) * 2019-08-29 2022-07-12 南京高光半导体材料有限公司 一种具有良好热稳定性、高效率的蓝色荧光掺杂材料及有机电致发光器件
KR20210028313A (ko) * 2019-09-03 2021-03-12 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
KR102472168B1 (ko) * 2019-10-01 2022-11-30 삼성디스플레이 주식회사 유기 전계 발광 소자
KR102666981B1 (ko) * 2019-10-28 2024-05-20 삼성디스플레이 주식회사 화합물 및 이를 포함하는 발광 소자
CN110790782A (zh) * 2019-11-11 2020-02-14 北京大学深圳研究生院 一种深蓝色有机发光材料及其制备方法与应用
KR20210062778A (ko) 2019-11-21 2021-06-01 삼성디스플레이 주식회사 헤테로시클릭 화합물 및 이를 포함하는 유기 발광 소자
KR20210064486A (ko) 2019-11-25 2021-06-03 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 유기 금속 화합물
CN112851698A (zh) * 2019-11-28 2021-05-28 北京鼎材科技有限公司 一种含硼类化合物及采用其的有机电致发光器件
US20230084250A1 (en) * 2019-11-29 2023-03-16 Lg Chem, Ltd. Organic light emitting device
WO2021107678A1 (ko) * 2019-11-29 2021-06-03 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
WO2021107680A1 (ko) * 2019-11-29 2021-06-03 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
KR20210067845A (ko) 2019-11-29 2021-06-08 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
WO2021107681A1 (ko) * 2019-11-29 2021-06-03 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
CN112898325A (zh) * 2019-12-03 2021-06-04 北京鼎材科技有限公司 一种化合物及其应用、包含其的有机电致发光器件
US11856853B2 (en) * 2019-12-03 2023-12-26 Lg Display Co., Ltd. Organic compound, organic light emitting diode and organic light emitting device including the compound
KR20210073694A (ko) 2019-12-10 2021-06-21 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
KR20210076297A (ko) 2019-12-13 2021-06-24 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 축합 다환 화합물
KR20210078637A (ko) 2019-12-18 2021-06-29 삼성디스플레이 주식회사 헤테로고리 화합물 및 이를 포함한 유기 발광 소자
KR20210080216A (ko) * 2019-12-19 2021-06-30 가꼬우 호징 관세이 가쿠잉 유기전계 발광소자 및 안트라센 화합물
CN112341482B (zh) * 2019-12-27 2024-01-09 广东聚华印刷显示技术有限公司 有机化合物、高聚物、混合物、组合物及电子器件
KR102703930B1 (ko) 2020-01-23 2024-09-06 에스에프씨 주식회사 신규한 유기 화합물 및 이를 포함하는 유기발광소자
JP6716145B1 (ja) 2020-02-13 2020-07-01 株式会社フラスク 含ホウ素化合物および有機el素子
KR102239994B1 (ko) 2020-02-13 2021-04-14 에스에프씨주식회사 신규한 보론 화합물 및 이를 포함하는 유기발광소자
KR20210105468A (ko) 2020-02-18 2021-08-27 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
KR20210111091A (ko) * 2020-03-02 2021-09-10 에스에프씨 주식회사 다환 방향족 유도체 화합물을 이용한 유기발광소자
CN111320643A (zh) * 2020-03-04 2020-06-23 Tcl华星光电技术有限公司 一种荧光化合物及其制作方法、显示模组
KR20210117972A (ko) * 2020-03-19 2021-09-29 에스에프씨 주식회사 신규한 보론 화합물 및 이를 포함하는 유기발광소자
KR20210118293A (ko) 2020-03-19 2021-09-30 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 축합환 화합물
KR20210124572A (ko) * 2020-04-03 2021-10-15 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
EP4137497A4 (en) 2020-04-16 2024-06-19 SFC Co., Ltd. NOVEL BORON COMPOUND AND ORGANIC ELECTROLUMINESCENT ELEMENT COMPRISING SAME
CN113666951B (zh) * 2020-05-14 2022-12-20 季华实验室 一种硼氮化合物、有机电致发光组合物及包含其的有机电致发光器件
KR20210148463A (ko) 2020-05-28 2021-12-08 삼성디스플레이 주식회사 유기 전계 발광 소자 유기 전계 발광 소자용 다환 화합물
KR20210148462A (ko) 2020-05-28 2021-12-08 삼성디스플레이 주식회사 유기 전계 발광 소자 유기 전계 발광 소자용 다환 화합물
US20210384438A1 (en) * 2020-05-29 2021-12-09 Lg Display Co., Ltd. Organic light emitting device
US20210376246A1 (en) * 2020-05-29 2021-12-02 Lg Display Co., Ltd. Organic light emitting device
CN111647009B (zh) * 2020-06-02 2023-04-07 苏州久显新材料有限公司 含硼类化合物及其电子器件
KR20220013240A (ko) * 2020-07-24 2022-02-04 에스에프씨 주식회사 다환 방향족 유도체 화합물 및 이를 이용한 유기발광소자
WO2022025511A1 (ko) * 2020-07-29 2022-02-03 에스에프씨 주식회사 신규한 헤테로 고리 화합물 및 이를 포함하는 유기발광소자
CN114075116A (zh) * 2020-08-20 2022-02-22 江苏三月科技股份有限公司 一种螺芴类化合物及包含该化合物的有机电致发光器件
KR102493132B1 (ko) 2020-09-11 2023-01-31 삼성디스플레이 주식회사 발광 소자 및 이를 포함한 전자 장치
WO2022058521A1 (en) * 2020-09-18 2022-03-24 Cynora Gmbh Organic electroluminescent device
KR20220039108A (ko) * 2020-09-21 2022-03-29 삼성전자주식회사 유기 발광 소자
KR20220052384A (ko) * 2020-10-19 2022-04-28 삼성디스플레이 주식회사 발광 소자 및 이를 포함하는 장치
CN112707926B (zh) * 2020-12-29 2021-10-22 华南理工大学 一种红色电致发光化合物及其制备方法与应用
KR20220094620A (ko) * 2020-12-29 2022-07-06 엘지디스플레이 주식회사 발광 화합물 및 이를 포함하는 유기발광장치
CN116685581A (zh) * 2021-01-04 2023-09-01 浙江光昊光电科技有限公司 有机混合物及其在有机电子器件的应用
KR20220126479A (ko) * 2021-03-09 2022-09-16 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20220137392A (ko) * 2021-04-02 2022-10-12 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20220140063A (ko) 2021-04-08 2022-10-18 에스에프씨 주식회사 신규한 보론 화합물 및 이를 포함하는 유기발광소자
KR20220146211A (ko) 2021-04-23 2022-11-01 에스에프씨 주식회사 신규한 보론 화합물 및 이를 포함하는 유기발광소자
KR20240004789A (ko) * 2021-06-24 2024-01-11 광동 어글레이어 압토일렉트라닉 머티어리얼즈 컴퍼니 리미티드 B-n 축합 고리를 함유한 유기 전계 발광 재료 및 이의 응용
CN115806563A (zh) * 2021-09-13 2023-03-17 广东阿格蕾雅光电材料有限公司 一类含b-n的有机电致发光材料及其在电致发光器件中的应用
KR20230072426A (ko) 2021-11-17 2023-05-24 에스에프씨 주식회사 고효율과 장수명을 가지는 유기발광소자
WO2023090811A1 (ko) 2021-11-17 2023-05-25 에스에프씨 주식회사 고효율과 저전압 특성을 가지는 유기발광소자

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172232A (ja) 1999-12-21 2001-06-26 Univ Osaka エレクトロルミネッセンス素子
WO2004061047A2 (en) 2002-12-31 2004-07-22 Eastman Kodak Company Complex fluorene-containing compounds for use in organic light emitting devices
JP2005170911A (ja) 2003-12-15 2005-06-30 Idemitsu Kosan Co Ltd 芳香族化合物およびそれを用いた有機エレクトロルミネッセンス素子
WO2011107186A2 (de) 2010-03-02 2011-09-09 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2012118164A1 (ja) 2011-03-03 2012-09-07 国立大学法人九州大学 新規化合物、電荷輸送材料および有機デバイス
US20130119365A1 (en) * 2005-03-23 2013-05-16 Semiconductor Energy Laboratory Co., Ltd. Composite material, light emitting element and light emitting device
KR20140076170A (ko) 2012-12-12 2014-06-20 에스에프씨 주식회사 피렌계 화합물 및 이를 이용한 유기전계발광소자
WO2014141725A1 (ja) 2013-03-15 2014-09-18 出光興産株式会社 アントラセン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2015102118A1 (ja) 2014-02-18 2015-07-09 学校法人関西学院 多環芳香族化合物
US20150236274A1 (en) 2014-02-18 2015-08-20 Kwansei Gakuin Educational Foundation Polycyclic aromatic compound
WO2016042781A1 (ja) 2014-09-19 2016-03-24 出光興産株式会社 新規な化合物
WO2016143624A1 (ja) 2015-03-09 2016-09-15 学校法人関西学院 多環芳香族化合物および発光層形成用組成物
WO2016152544A1 (ja) 2015-03-24 2016-09-29 学校法人関西学院 有機電界発光素子
WO2016152418A1 (ja) 2015-03-25 2016-09-29 学校法人関西学院 多環芳香族化合物および発光層形成用組成物
US20170155050A1 (en) * 2015-11-30 2017-06-01 Samsung Display Co., Ltd Organic light-emitting device
WO2018203666A1 (ko) * 2017-05-02 2018-11-08 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
US20190115538A1 (en) * 2017-10-16 2019-04-18 Samsung Display Co., Ltd. Organic light-emitting device and flat display apparatus including the same

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172232A (ja) 1999-12-21 2001-06-26 Univ Osaka エレクトロルミネッセンス素子
WO2004061047A2 (en) 2002-12-31 2004-07-22 Eastman Kodak Company Complex fluorene-containing compounds for use in organic light emitting devices
JP2005170911A (ja) 2003-12-15 2005-06-30 Idemitsu Kosan Co Ltd 芳香族化合物およびそれを用いた有機エレクトロルミネッセンス素子
US20130119365A1 (en) * 2005-03-23 2013-05-16 Semiconductor Energy Laboratory Co., Ltd. Composite material, light emitting element and light emitting device
WO2011107186A2 (de) 2010-03-02 2011-09-09 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
US20120319052A1 (en) 2010-03-02 2012-12-20 Merck Patent Gmbh Compounds for electronic devices
WO2012118164A1 (ja) 2011-03-03 2012-09-07 国立大学法人九州大学 新規化合物、電荷輸送材料および有機デバイス
US20140058099A1 (en) 2011-03-03 2014-02-27 Kyushu University National University Corporation Novel compound, charge transport material, and organic device
KR20140076170A (ko) 2012-12-12 2014-06-20 에스에프씨 주식회사 피렌계 화합물 및 이를 이용한 유기전계발광소자
US20150325800A1 (en) 2013-03-15 2015-11-12 Idemitsu Kosan Co., Ltd. Anthracene derivative and organic electroluminescence element using same
WO2014141725A1 (ja) 2013-03-15 2014-09-18 出光興産株式会社 アントラセン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US20150236274A1 (en) 2014-02-18 2015-08-20 Kwansei Gakuin Educational Foundation Polycyclic aromatic compound
WO2015102118A1 (ja) 2014-02-18 2015-07-09 学校法人関西学院 多環芳香族化合物
US20170117469A1 (en) 2014-09-19 2017-04-27 Idemitsu Kosan Co., Ltd. Novel compound
WO2016042781A1 (ja) 2014-09-19 2016-03-24 出光興産株式会社 新規な化合物
US20180040821A1 (en) 2015-03-09 2018-02-08 Kwansei Gakuin Educational Foundation Polycyclic aromatic compound and light emitting layer-forming composition
WO2016143624A1 (ja) 2015-03-09 2016-09-15 学校法人関西学院 多環芳香族化合物および発光層形成用組成物
WO2016152544A1 (ja) 2015-03-24 2016-09-29 学校法人関西学院 有機電界発光素子
US20180301629A1 (en) * 2015-03-24 2018-10-18 Kwansei Gakuin Educational Foundation Organic electroluminescent element
WO2016152418A1 (ja) 2015-03-25 2016-09-29 学校法人関西学院 多環芳香族化合物および発光層形成用組成物
US20180094000A1 (en) 2015-03-25 2018-04-05 Kwansei Gakuin Educational Foundation Polycyclic aromatic compound and light emission layer-forming composition
US10689402B2 (en) * 2015-03-25 2020-06-23 Jnc Corporation Polycyclic aromatic compound and light emission layer-forming composition
US20170155050A1 (en) * 2015-11-30 2017-06-01 Samsung Display Co., Ltd Organic light-emitting device
WO2018203666A1 (ko) * 2017-05-02 2018-11-08 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
US20190115538A1 (en) * 2017-10-16 2019-04-18 Samsung Display Co., Ltd. Organic light-emitting device and flat display apparatus including the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Hatakeyama et al., "Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO-LUMO Separation by the Multiple Resonance Effect," Advanced Materials, 2016, 28:2777-2781.
Office Action dated Apr. 21, 2020 in Japanese patent application No. 2018-514545, with machine English translation.
Office Action dated May 7, 2020, in corresponding Chinese patent application No. 201780025438.7, with machine English translation.
SID, vol. 50, Issue 1, Jun. 2019, pp. 1924-1927. (Year: 2019). *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210403489A1 (en) * 2019-03-08 2021-12-30 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising same
US12006335B2 (en) * 2019-03-08 2024-06-11 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising same

Also Published As

Publication number Publication date
US20190207112A1 (en) 2019-07-04
CN109155368A (zh) 2019-01-04
WO2017188111A1 (ja) 2017-11-02
CN109155368B (zh) 2021-04-06
KR20220084200A (ko) 2022-06-21
JPWO2017188111A1 (ja) 2019-02-28
KR102409257B1 (ko) 2022-06-14
KR20180134850A (ko) 2018-12-19

Similar Documents

Publication Publication Date Title
US11723263B2 (en) Organic electroluminescent element
JP6919104B2 (ja) 有機電界発光素子
US11637249B2 (en) Organic electroluminescent element
KR102512378B1 (ko) 유기 전계 발광 소자
US11647666B2 (en) Organic electroluminescent element
US20190058124A1 (en) Delayed fluorescence organic electroluminescent element
US20190280209A1 (en) Organic electroluminescent element
US20190181350A1 (en) Deuterium-substituted polycyclic aromatic compound
US20190165279A1 (en) Organic electroluminescent element
US20190372023A1 (en) Organic electroluminescent element
JP7398711B2 (ja) フッ素置換多環芳香族化合物
US11342506B2 (en) Organic electroluminescent element
KR102713032B1 (ko) 다환 방향족 화합물
US20220376179A1 (en) Organic electroluminescent element
US11139438B2 (en) Organic electroluminescent element

Legal Events

Date Code Title Description
AS Assignment

Owner name: JNC CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MIZUTANI, AKIHIDE;KOIKE, TOSHIHIRO;SIGNING DATES FROM 20180822 TO 20180823;REEL/FRAME:047132/0497

Owner name: KWANSEI GAKUIN EDUCATIONAL FOUNDATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HATAKEYAMA, TAKUJI;REEL/FRAME:047132/0452

Effective date: 20180828

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: SK MATERIALS JNC CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JNC CORPORATION;REEL/FRAME:056038/0288

Effective date: 20210409

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE