TWI598369B - 烯烴聚合體 - Google Patents

烯烴聚合體 Download PDF

Info

Publication number
TWI598369B
TWI598369B TW102134481A TW102134481A TWI598369B TW I598369 B TWI598369 B TW I598369B TW 102134481 A TW102134481 A TW 102134481A TW 102134481 A TW102134481 A TW 102134481A TW I598369 B TWI598369 B TW I598369B
Authority
TW
Taiwan
Prior art keywords
butyl
methyl
zirconium dichloride
polymer
tetrahydropentene
Prior art date
Application number
TW102134481A
Other languages
English (en)
Other versions
TW201422657A (zh
Inventor
船谷宗人
佐久間篤
惠比澤郁子
木下晉介
松本華子
田中宏和
田中真哉
Original Assignee
三井化學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化學股份有限公司 filed Critical 三井化學股份有限公司
Publication of TW201422657A publication Critical patent/TW201422657A/zh
Application granted granted Critical
Publication of TWI598369B publication Critical patent/TWI598369B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/08Butenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/08Butenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F136/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F136/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/09Cyclic bridge, i.e. Cp or analog where the bridging unit linking the two Cps or analogs is part of a cyclic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/11Non-aromatic cycle-substituted bridge, i.e. Cp or analog where the bridge linking the two Cps or analogs is substituted by a non-aromatic cycle
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

烯烴聚合體
本發明關於一種使用含有特定過渡金屬化合物之烯烴聚合用觸媒的烯烴聚合體之製造方法、藉上述方法而得之烯烴聚合體,以及新穎之1-丁烯聚合體、4-甲基-1-戊烯聚合體。
[二茂金屬化合物]
近年來,作為烯烴聚合用之均勻系觸媒,已知有二茂金屬化合物。使用二茂金屬化合物聚合烯烴之方法、尤其是立體規則性地聚合α-烯烴之方法,係自W.Kaminsky等人報導了同排(isotactic)聚合(參照非專利文獻1)以來,已有多數研究。
已知於使用二茂金屬化合物之α-烯烴的聚合中,係將取代基導入至二茂金屬化合物之配位基的環戊二烯基環上,或者使2個環戊二烯基環交聯,藉此大幅改變所得之α-烯烴聚合體之立體規則性或分子量。
[交聯型二茂金屬化合物]
例如,針對於丙烯聚合用觸媒中使用具有使環戊二烯基環與茀基環交聯之配位基的二茂金屬化合物之情形,已有以下報導。
由立體規則性之觀點而言,可藉由二甲基亞甲基(環戊二烯 基)(茀基)二氯化鋯獲得間規(syndiotactic)聚丙烯(參照非專利文獻2);藉由於環戊二烯基環之3位導入了甲基之二甲基亞甲基(3-甲基環戊二烯基)(茀基)二氯化鋯獲得半同排(hemiisotactic)聚丙烯(參照專利文獻1);同樣地藉由於環戊二烯基環之3位導入了第三丁基之二甲基亞甲基(3-第三丁基-環戊二烯基)(茀基)二氯化鋯獲得同排聚丙烯(參照專利文獻2)。
又,揭示有藉由二甲基亞甲基(3-第三丁基-5-甲基環戊二烯基)(茀基)二氯化鋯,於茀環之3,6位導入了第三丁基之二甲基亞甲基(3-第三丁基-5-甲基環戊二烯基)(3,6-二-第三丁基茀基)二氯化鋯者,將得到同排立體規則性經提高的聚丙烯(參照專利文獻3)。
又,由分子量之觀點而言,已報導有:藉由二甲基亞甲基(環戊二烯基)(茀基)二氯化鋯,將環戊二烯基環與茀環之交聯部改變為二苯基亞甲基之二苯基亞甲基(環戊二烯基)(茀基)二氯化鋯者,將獲得高分子量之間規聚丙烯(參照專利文獻4);藉由二甲基亞甲基(3-(2-金剛烷基)-環戊二烯基)(茀基)二氯化鋯,亦使交聯部改變為二苯基亞甲基之二苯基亞甲基(3-(2-金剛烷基)-環戊二烯基)(茀基)二氯化鋯者,將獲得高分子量之同排-半同排聚丙烯(參照非專利文獻3);藉由二甲基亞甲基(3-第三丁基環戊二烯基)(茀基)二氯化鋯,於環戊二烯基環之5位(交聯部之α位)導入了甲基之二甲基亞甲基(3-第三丁基-5-甲基環戊二烯基)(茀基)二氯化鋯者,將獲得高分子量之同排聚丙烯(參照專利文獻5)。
進而,藉由於環戊二烯基環之相鄰2個位置導入了取代基之二甲基亞甲基(3-第三丁基-2-甲基環戊二烯基)(茀基)二氯化鋯、或二苯基亞甲基(3,4-二甲基環戊二烯基)(茀基)二氯化鋯,分別較二甲基亞甲基(3-第三丁基-5-甲基環戊二烯基)(茀基)二氯化鋯、二苯基亞甲基(3-甲基環戊二烯基)(茀基)二氯化鋯,獲得較低分子量之聚丙烯(參照專利文獻5~6)。
[5員環交聯型二茂金屬化合物]
另外,亦有使用環戊二烯基環與茀環經由5員環而交聯之二茂金屬化合物而聚合丙烯的報導。然而,所得之聚丙烯的立體規則性非常低,在上述二茂金屬化合物之工業上的有用性低(參照非專利文獻4)。
最近則報告有可製造立體規則性較高之聚丙烯的、使環戊二烯基環與茀環經由5員環而交聯的二茂金屬化合物(參照專利文獻7)。
上述二茂金屬化合物係顯示優越的聚合性能。然而,視用途仍有需要更經濟地、亦即即使在高溫之聚合條件下仍維持高觸媒活性而製造更高立體規則性或高分子量的聚合體的情形,要求進一步改良。
[具有取代茚基作為配位基的二茂金屬化合物]
另一方面,具有取代茚基作為配位基的二茂金屬化合物,亦報導有賦予較高立體規則性或分子量(參照專利文獻8~9)。然而,上述化合物係在經濟性較高之聚合條件下的性能並不充分。
再者,於漿料聚合或氣相聚合中,為二茂金屬化合物般之可溶於反應媒體之觸媒系時,一般係依將二茂金屬化合物載持於固體載體上的狀態進行聚合。然而,已知上述化合物係在載持於載體的狀態下,相較於不使用載體的情況,其立體規則性等之聚合性能顯著降低。
[具有取代薁基之二茂金屬化合物]
最近,為了解決此等問題,已報告有例如使用取代薁基作為配位基的二茂金屬化合物(參照專利文獻10)。然而,此等觸媒亦在有利經濟性之高聚合溫度或載持於固體載體上的狀態下,在立體規則性等方面難謂可獲得 充分性能。
於此種狀況下,由觸媒之聚合活性、立體規則性或分子量等之觀點而言,期待含有二茂金屬化合物之聚合用觸媒(以下亦稱為「二茂金屬觸媒」)的進一步改良。
[使用了二茂金屬觸媒之聚合例]
若著眼於使用了二茂金屬觸媒之丙烯以外的聚合例,已報導有例如將具有茚環作為配位基之二茂金屬化合物使用作為觸媒之1-丁烯的聚合例(參照專利文獻11~12)。
另外,作為將具有茀環作為配位基之二茂金屬化合物使用作為觸媒的1-丁烯的聚合例,已揭示有使用了亞異丙基(3-第三丁基-5-甲基環戊二烯基)(茀基)二氯化鋯的聚合例(參照專利文獻13)。此報告例中,相較於將具有茚環作為配位基之二茂金屬化合物使用作為觸媒的情況,其可製造來自4,1-插入之位置不規則性較低、耐熱性、機械強度優越的聚丁烯。然而,視用途有必須依更經濟之條件製造更高立體規則性或高分子量之聚合體的情況,而要求改良。
另外,已報告有使用4-甲基-1-戊烯作為主要單體的聚合例(參照專利文獻14)。專利文獻14中,相對於使用習知之齊格勒‧納他觸媒所得的聚合物,使用二茂金屬觸媒所得之聚合體係耐熱性等物性平衡優越,為工業上非常有用的技術。然而,視用途仍有需要更高融點‧立體規則性或高分子量之聚合體的情形。
一般而言,在依高溫度進行聚合時,有所得聚合體之分子量、或融點‧立體規則性降低的傾向,但另一方面則經濟性提升。因此,期待能開發出可獲得更高分子量、高融點‧高立體規則性之聚合體的新穎 的聚合方法。
[先前技術文獻] [專利文獻]
專利文獻1:日本專利特開平03-193796號公報
專利文獻2:日本專利特開平06-122718號公報
專利文獻3:國際公開第2001/027124號公報
專利文獻4:日本專利特開平02-274703號公報
專利文獻5:日本專利特表2001-526730號公報
專利文獻6:日本專利特開平10-226694號公報
專利文獻7:國際公開第2006/068308號公報
專利文獻8:日本專利特開平04-268304號公報
專利文獻9:日本專利特開平06-157661號公報
專利文獻10:日本專利特開2003-292518號公報
專利文獻11:國際公開第2004/099269號公報
專利文獻12:國際公開第2004/050724號公報
專利文獻13:日本專利特開2010-150433號公報
專利文獻14:國際公開第2005/121192號公報
[非專利文獻]
非專利文獻1:Angew. Chem. Int. Ed. Engl., 24, 507(1985)
非專利文獻2:J. Am. Chem. Soc., 110, 6255(1988)
非專利文獻3:Organometallics, 21, 934(2002)
非專利文獻4:Metalorganic Catalysts for Synthesis and Polymerization, Springer-Verlag: Berlin, 1999; p170.
本發明之課題在於提供一種可製造具有高耐熱性及高分子量之烯烴聚合體,且觸媒活性優越的烯烴聚合體之製造方法;以及藉上述方法所得之烯烴聚合體。又,本發明之課題在於提供一種具有高耐熱性及高分子量的新穎的1-丁烯聚合體,例如剛性及降伏應力之平衡優越的1-丁烯聚合體。另外,本發明之課題在於提供一種新穎之4-甲基-1-戊烯聚合體,例如剛性及靭性之平衡優越的結晶性4-甲基-1-戊烯聚合體、黏彈性特性之平衡優越的非晶性或低結晶性4-甲基-1-戊烯聚合體。
本發明者等人為了解決上述課題而潛心研究。其結果發現,藉由使用含有具以下構成之過渡金屬化合物的烯烴聚合用觸媒,或藉由具有以下構成之1-丁烯聚合體及4-甲基-1-戊烯聚合體,可解決上述課題,遂完成本發明。
亦即,本發明為一種烯烴聚合體之製造方法,該烯烴聚合體係依合計超過50莫耳%且100莫耳%以下之範圍含有來自由乙烯及碳數4~30之α-烯烴所選擇之至少1種的構成單位,並依0莫耳%以上且未滿50莫耳%之範圍含有來自丙烯的構成單位者(其中,來自乙烯及碳數4~30之α-烯烴的構成單位的含量與來自丙烯之構成單位的含量的合計設為100莫耳%);其具有:在含有由一般式[I]所示之過渡金屬化合物或其鏡像異構物所選擇之至少1種之過渡金屬化合物(A)的烯烴聚合用觸媒的存在下,將乙烯及碳數4~30之α-烯烴所選擇之至少1種烯烴、與視需要之丙烯進行聚合的步驟。
[式[I]中,R1、R3、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14、R15及R16分別獨立為氫原子、烴基、含雜原子之烴基或含矽基;R2為烴基、含雜原子之烴基或含矽基;R4為氫原子;R4除外之R1至R16的取代基中,任意2個取代基亦可彼此鍵結形成環;M為第4族過渡金屬,Q為鹵原子、烴基、陰離子配位基或可藉孤立電子對進行配位之中性配位基;j為1~4之整數;在j為2以上之整數時,Q可由相同或相異之組合所選擇。]
一般式[I]中,較佳係R1及R3為氫原子;較佳係R2為碳數1~20之烴基;更佳係R2為鍵結於環戊二烯基環之碳為3級碳的取代基;較佳係R5及R7彼此鍵結形成環;較佳係R9、R12、R13及R16為氫原子;較佳係R10、R11、R14及R15為烴基,或R10與R11彼此鍵結形成環,且R14與R15彼此鍵結形成環。
上述烯烴聚合用觸媒較佳係進一步含有:(B)由(B-1)有機金屬化合物、(B-2)有機鋁氧化合物、及(B-3)與過渡金屬化合物(A)反應而形成離子對之化合物所選擇的至少1種化合物。
上述烯烴聚合用觸媒較佳係進一步含有載體(C),過渡金屬化合物(A)較佳係依載持於載體(C)的狀態而被使用。
另外,本發明為一種由上述製造方法所得之烯烴聚合體,較 佳為1-丁烯聚合體或4-甲基-1-戊烯聚合體。
另外,本發明為一種1-丁烯聚合體,係以13C-NMR所測定之內消旋五元體分率為98.0%以上且99.8%以下。
上述1-丁烯聚合體,較佳係於以鄰二氯苯作為洗提液之交叉分級層析法(CFC)中,在將洗提開始溫度(累積洗提重量%成為0.5重量%的溫度)設為[TS]、將洗提結束溫度(累積洗提重量%成為99重量%之溫度)設為[TE]時,相對於總洗提量,於由([TS]+[TE])/2所特定之溫度[TX]下的累積洗提量為40重量%以上。
另外,本發明為一種4-甲基-1-戊烯聚合體,係滿足下述要件(a)~(c)。
(a)來自4-甲基-1-戊烯之構成單位量為100~80莫耳%,來自由碳數2~30之烯烴(4-甲基-1-戊烯除外)所選擇之至少1種的構成單位量為0~20莫耳%。
(b)以13C-NMR所測定之內消旋二元體分率(m)為98.5%以上且100%以下。
(c)由示差掃描型熱量測定(DSC)所測定之融解熱量△Hm(單位J/g)與融點Tm(單位:℃)係滿足以下關係式(1)。
關係式(1):△Hm≧0.5×Tm-76
另外,本發明為一種4-甲基-1-戊烯聚合體,係滿足下述要件(d)~(f)。
(d)來自4-甲基-1-戊烯之構成單位量為超過50莫耳%且未滿80莫耳%,來自由碳數2~30之烯烴(4-甲基-1-戊烯除外)所選擇之至少1種的構成單位量為超過20莫耳%且未滿50莫耳%。
(e)以13C-NMR所測定之內消旋二元體分率(m)為98.5%以上且100%以下。
(f)由示差掃描型熱量測定(DSC)所測定之融點Tm為未滿100℃)或實質 上不存在。
根據本發明,可提供一種可製造具有高耐熱性及高分子量之烯烴聚合體,且觸媒活性優越的烯烴聚合體之製造方法,以及由上述方法所得之烯烴聚合體。又,可提供一種具有高耐熱性及高分子量的新穎的1-丁烯聚合體,例如剛性及降伏應力之平衡優越的1-丁烯聚合體。另外,可提供一種新穎之4-甲基-1-戊烯聚合體,例如剛性及靭性之平衡優越的結晶性4-甲基-1-戊烯聚合體、黏彈性特性之平衡優越的非晶性或低結晶性4-甲基-1-戊烯聚合體。
圖1(a)為表示由實施例所得之1-丁烯聚合體之CFC洗提曲線的圖表,圖1(b)為表示由比較例所得之1-丁烯聚合體之CFC洗提曲線的圖表。
圖2為在實施例及比較例所得之結晶性4-甲基-1-戊烯聚合體中,相對於斷裂伸度標繪了楊氏率的圖表。
圖3為在實施例及比較例所得之結晶性4-甲基-1-戊烯聚合體中,相對於融點Tm標繪了融解熱量△Hm的圖表。圖表上之直線表示△Hm=0.5×Tm-76。
以下,針對本發明之製造方法中所使用之一般式[I]所示之過渡金屬化合物及其鏡像異構物、此等之製造方法、含有此等之至少1種的烯烴聚合用觸媒進行說明後,再針對使用了上述烯烴聚合用觸媒之烯烴聚合體的製造方法、烯烴聚合體、及含有上述烯烴聚合體而成的成形體,依序進行說明。
本說明書中,式(X)(X為式編號)所示之化合物亦稱為「化合物(X)」,於聚合體之說明中來自化合物A之構成單位亦稱為「化合物A單位」,其含量亦稱為「化合物A含量」。
〔過渡金屬化合物(A)〕
本發明所使用之過渡金屬化合物(A),係由一般式[I]所示之過渡金屬化合物及其鏡像異構物所選擇之至少1種。本說明書中,雖未特別提及鏡像異構物,但本發明之過渡金屬化合物(A)係在不脫離本發明要旨的範圍內,包含過渡金屬化合物[I]之所有鏡像異構物、例如一般式[I']所示之過渡金屬化合物。
式[I]中,R1、R3、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14、R15及R16分別獨立為氫原子、烴基、含雜原子之烴基或含矽基;R2為烴基、含雜原子之烴基或含矽基;R4為氫原子;R4除外之R1至R16的取代基中,任意2個取代基亦可彼此鍵結形成環。
式[I]中,M為第4族過渡金屬,Q為鹵原子、烴基、陰離子配位基或可藉孤立電子對進行配位之中性配位基;j為1~4之整數;在j為2以上之整數時,Q可由相同或相異之組合所選擇。
尚且,式[I]及式[I']的表記中,MQj部分係存在於紙面靠己側,交聯部係存在於紙面背面側。亦即,過渡金屬化合物(A)中,係於環戊二烯環之α位(以交聯部位經取代之碳原子為基準),存在朝向中心金屬側的氫原子(R4)。
過渡金屬化合物[I]係由於R2非氫原子、且R4為氫原子,故可達成習知二茂金屬化合物難以達成之、在經濟性高之聚合條件下仍可製造高立體規則性或高融點、並具有高分子量之烯烴聚合體。
關於過渡金屬化合物[I]顯示優越性能的理由,以對聚合體之分子量造成影響為例,使用以下推測之聚合反應機構進行說明。
藉聚合反應所生成之聚合物的分子量較大者,係屬於單體被插入至觸媒之中心金屬/聚合物鏈間之反應的生長反應的速度,相對於屬於聚合物鏈之生長停止之反應的鏈移動反應的速度,明顯較大者。在以二茂金屬觸媒進行之烯烴聚合反應中,作為主要之鏈移動反應,已知有氫原子移動至觸媒之中心金屬M的β-氫移動,與氫原子移動至單體之β-氫移動的2種,主要係後者之β-氫移動為支配性(參照Chem.Rev.(2000),100,1253等)。
將各別的過渡狀態的概略圖示於式(i)~(iii)。又,省略了觸媒之配位基,式(i)~(iii)中之M'係表示觸媒之活性中心金屬,P表示聚合物鏈。
朝單體之β-氫移動中之過渡狀態,係以M'為中心之6員環構造(式(ii))。單體之插入反應由於係α位之氫配位於M',故成為5員環構 造(式(i))。若因觸媒之配位基而使M'附近的空間變窄,而需要更大空間之6員環構造的過渡狀態因5員環構造之過渡狀態而不穩定化,亦即朝單體之β-氫移動的反應速度變小,相對地單體之插入反應的反應速度變大。其結果,已知生成之聚合物的分子量變大(參照Macromolecules(1996),29,2729)。
另一方面,朝中心金屬M之β-氫移動中之過渡狀態,係空間較單體插入反應之過渡狀態更小的4員環構造(式(iii))。因此,若因配位基而M'附近之空間變得過小,則朝中心金屬M之β-氫移動之反應速度相對地提高,可預期到所生成之聚合物的分子量變小。
將以上之反應機構應用至過渡金屬化合物[I]。該過渡金屬化合物[I]係於將環戊二烯環與茀環連結之交聯部分具有5員環構造。於此,相對於R2不為氫原子的骨架,若於R4導入較氫原子大、亦即氫原子以外之取代基,則中心金屬M周邊之空間變小。其結果,認為可抑制經過6員環構造之過渡狀態的朝單體的β-氫移動,但同時地使經過5員環之過渡狀態的單體之插入反應的反應速度降低。因此,促進經過4員環之過渡狀態的朝中心金屬M的β-氫移動,分子量變大不充分。
另一方面,相對於R2不為氫原子的骨架,若使R4為氫原子,則不致阻礙單體之插入反應,可僅抑制朝單體的β-氫移動,故認為可生成更高分子量的聚合物。
基於上述理由,可認為僅在將環戊二烯環與茀環連結之交聯部分具有5員環構造,R2不為氫原子、且R4為氫原子的情況,成為顯示優越性能的觸媒。
<R1至R16>
作為R1~R16(其中R4除外)中之烴基,可舉例如直鏈狀烴基、分枝狀烴 基、環狀飽和烴基、環狀不飽和烴基、將飽和烴基所具有之1個或2個以上氫原子取代為環狀不飽和烴基而成的基。烴基之碳數通常為1~20、較佳1~15、更佳1~10。
作為直鏈狀烴基,可舉例如甲基、乙基、正丙基、正丁基、正戊基、正己基、正庚基、正辛基、正壬基、正癸基等之直鏈狀烷基;烯丙基等之直鏈狀烯基。
作為分枝狀烴基,可舉例如異丙基、第三丁基、三級戊基、3-甲基戊基、1,1-二乙基丙基、1,1-二甲基丁基、1-甲基-1-丙基丁基、1,1-二丙基丁基、1,1-二甲基-2-甲基丙基、1-甲基-1-異丙基-2-甲基丙基等分枝狀烷基。
作為環狀飽和烴基,可舉例如環戊基、環己基、環庚基、環辛基、甲基環己基等之環烷基;降基、金剛烷基、甲基金剛烷基等之多環式基。
作為環狀不飽和烴基,可舉例如苯基、甲苯基、萘基、聯苯基、菲基、蒽基等之芳基;環己烯基等之環烯基;5-雙環[2.2.1]庚-2-烯基等之多環之不飽和脂環式基。
作為使飽和烴基所具有之1個或2個以上氫原子取代為環狀不飽和烴基而成的基,可舉例如苄基、異丙苯基、1,1-二苯基乙基、三苯基甲基等之將烷基所具有之1個或2個以上氫原子取代為芳基而成的基。
作為R1~R16(其中R4除外)中之含雜原子之烴基,可舉例如甲氧基、乙氧基等之烷氧基,苯氧基等之芳氧基,呋喃基等之含氧原子之烴基;N-甲基胺基、N,N-二甲基胺基、N-苯基胺基等之胺基,吡咯基(pyrryl)等之含氮原子之烴基;噻吩基等之含硫原子之烴基。含雜原子之烴基的碳數通常為1~20、較佳2~18、更佳2~15。其中,來自含雜原子之烴基係含矽 基除外。
作為R1~R16(其中R4除外)中之含矽基,可舉例如三甲基矽烷基、三乙基矽烷基、二甲基苯基矽烷基、二苯基甲基矽烷基、三苯基矽烷基等之式-SiR3(式中,複數之R係分別獨立為碳數1~15之烷基或苯基)所示的基。
R4除外之R1至R16的取代基中,相鄰之2個取代基(例如R1與R2、R2與R3、R5與R7、R6與R8、R7與R8、R9與R10、R10與R11、R11與R12、R13與R14、R14與R15、R15與R16)亦可彼此鍵結形成環,R6及R7亦可彼此鍵結形成環,R1及R8亦可彼此鍵結形成環,R3及R5亦可彼此鍵結形成環。上述環形成亦可於分子中存在2處以上。
本說明書中,作為2個取代基彼此鍵結所形成的環(加成性環),可舉例如脂環、芳香環、雜環。具體可舉例如環己烷環;苯環;氫化苯環;環戊烯環;呋喃環、噻吩環等之雜環及與其對應之氫化雜環;較佳係環己烷環;苯環及氫化苯環。又,此種環構造亦可於環上進一步具有烷基等之取代基。
R1及R3係由立體規則性的觀點而言,較佳為氫原子。
由R5、R6及R7所選擇之至少一者,較佳為烴基、含雜原子之烴基或含矽基,R5較佳為烴基,R5更佳為直鏈狀烷基、分枝狀烷基等之碳數2以上的烷基、環烷基或環烯基,R5特佳為碳數2以上之烷基。又,由合成上的觀點而言,R6及R7較佳亦為氫原子。又,更佳係R5及R7彼此鍵結形成環,特佳係該環為環己烷環等之6員環。
R8較佳為烴基,特佳為烷基。
R2係由立體規則性的觀點而言,較佳為烴基,更佳為碳數1~20之烴基,再更佳係不為芳基,特佳為直鏈狀烴基、分枝狀烴基或環狀 飽和烴基,再特佳係具有游離原子價之碳(鍵結於環戊二烯基環之碳)為3級碳的取代基。
作為R2,具體可例示甲基、乙基、異丙基、第三丁基、第三戊基、三級戊基、1-甲基環己基、1-金剛烷基,較佳為第三丁基、第三戊基、1-甲基環己基、1-金剛烷基等之具有游離原子價之碳為3級碳的取代基,特佳係第三丁基、1-金剛烷基。
於一般式[I]中,若茀環部分為由公知之茀衍生物所得的構造,則無特別限制,R9、R12、R13及R16係由立體規則性、分子量的觀點而言,較佳為氫原子。
R10、R11、R14及R15較佳為氫原子、烴基、含氧原子之烴基或含氮原子之烴基,更佳為烴基,再更佳為碳數1~20之烴基。
R10與R11亦可彼此鍵結形成環,且R14與R15亦可彼此鍵結形成環。作為此種取代茀基,例如苯并茀基、二苯基茀基、八氫二苯并茀基、1,1,4,4,7,7,10,10-八甲基-2,3,4,7,8,9,10,12-八氫-1H-二苯并[b,h]茀基、1,1,3,3,6,6,8,8-八甲基-2,3,6,7,8,10-六氫-1H-二環戊[b,h]茀基、1',1',3',6',8',8'-六甲基-1'H,8'H-二環戊[b,h]茀基,特佳為1,1,4,4,7,7,10,10-八甲基-2,3,4,7,8,9,10,12-八氫-1H-二苯并[b,h]茀基。
<M、Q、j>
M為第4族過渡金屬,較佳係Ti、Zr或Hf,更佳係Zr或Hf,特佳為Zr。
作為Q中之鹵原子,可舉例如氟、氯、溴、碘。
作為Q中之烴基,可舉例如與R1~R16(其中R4除外)中之烴基相同的基,較佳為直鏈狀烷基、分枝狀烷基等之烷基。
作為Q中之陰離子配位基,可舉例如甲氧基、第三丁氧基等之烷氧基;苯氧基等之芳氧基;乙酸酯、苯甲酸酯等之羧酸酯基;甲磺酸酯、苯磺酸酯等之磺酸酯基;二甲基醯胺、二異丙基醯胺、甲基苯胺、二苯基醯胺等之醯胺基。
作為Q中之可藉孤立電子對進行配位之中性配位基,可舉例如三甲基膦、三乙基膦、三苯基膦、二苯基甲基膦等之有機磷化合物;四氫呋喃、二乙基醚、二烷、1,2-二甲氧基乙烷等之醚。
Q較佳係至少1個為鹵原子或烷基。
j較佳為2。
以上針對過渡金屬化合物[I]的構成、亦即R1~R16、M、Q及j,說明了較佳態樣。本發明中,各個較佳態樣之任意組合亦為較佳態樣。
<較佳過渡金屬化合物的例示>
以下例示中,將1,1,4,4,7,7,10,10-八甲基-2,3,4,7,8,9,10,12-八氫-1H-二苯并[b,h]茀基記載為八甲基茀,將1',1',3',6',8',8'-六甲基-1'H,8'H-二環戊[b,h]茀基記載為六甲基二環戊茀。
作為本發明較佳之過渡金屬化合物,可舉例如:[1-(茀-9'-基)(1,2,3,4-四氫戊搭烯(pentalene))]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-第三丁基-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁 基茀-9'-基)(5-第三丁基-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-第三丁基-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二(1-金剛烷基)-茀-9'-基)(5-第三丁基-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-第三丁基-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-第三丁基-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(5-第三丁基-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-第三丁基-1-苯基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(5-第三丁基-1-苯基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-第三丁基-1-苯基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二(1-金剛烷基)-茀-9'-基)(5-第三丁基-1-苯基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-第三丁基-1-苯基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-第三丁基-1-苯基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(5-第三丁基-1-苯基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-金剛烷-1-基-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(5-金剛烷-1-基-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-金剛烷-1-基-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二(1-金剛烷基)-茀-9'-基)(5-金剛烷-1-基-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-金剛烷-1-基-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-金剛烷-1-基-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(5-金剛烷-1-基-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-(1-甲基-環己基)-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(5-(1-甲基-環己基)-1-甲基-1,2,3,4-四氫戊 搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-(1-甲基-環己基)-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(5-(1-甲基-環己基)-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-(1-甲基-環己基)-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-(1-甲基-環己基)-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(5-(1-甲基-環己基)-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-第三丁基-1-乙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(5-第三丁基-1-乙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-第三丁基-1-乙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二(1-金剛烷基)-茀-9'-基)(5-第三丁基-1-乙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-第三丁基-1-乙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-第三丁基-1-乙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(5-第三丁基-1-乙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-第三丁基-1-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(5-第三丁基-1-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-第三丁基-1-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(5-第三丁基-1-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)5-第三丁基-1-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-第三丁基-1-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(5-第三丁基-1-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-金剛烷-1-基-1-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(5-金剛烷-1-基-1-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-金剛烷-1-基-1-異丙基-1,2,3,4- 四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(5-金剛烷-1-基-1-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-金剛烷-1-基-1-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-金剛烷-1-基-1-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(5-金剛烷-1-基-1-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(1,5-二第三丁基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(1,5-二第三丁基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(1,5-二第三丁基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(1,5-二第三丁基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(1,5-二第三丁基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(1,5-二第三丁基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(1,5-二第三丁基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-第三丁基-1-第三丁基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(5-第三丁基-1-第三丁基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-第三丁基-1-第三丁基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(5-第三丁基-1-第三丁基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-第三丁基-1-第三丁基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-第三丁基-1-第三丁基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(5-第三丁基-1-第三丁基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-第三丁基-1,3-二甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(5-第三丁基-1,3-二甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-第三丁基-1,3-二甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(5-第三丁基-1,3- 二甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-第三丁基-1,3-二甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-第三丁基-1,3-二甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(5-第三丁基-1,3-二甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-第三丁基-1-異丙基-3-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(5-第三丁基-1-異丙基-3-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-第三丁基-1-異丙基-3-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(5-第三丁基-1-異丙基-3-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-第三丁基-1-異丙基-3-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-第三丁基-1-異丙基-3-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(5-第三丁基-1-異丙基-3-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(1,5-二第三丁基-3-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(1,5-二第三丁基-3-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(1,5-二第三丁基-3-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(1,5-二第三丁基-3-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(1,5-二第三丁基-3-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(1,5-二第三丁基-3-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(1,5-二第三丁基-3-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-第三丁基-1-甲基-3-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(5-第三丁基-1-甲基-3-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-第三丁基-1-甲基-3-異丙基-1,2,3,4-四氫戊搭烯)]二氯化 鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(5-第三丁基-1-甲基-3-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-第三丁基-1-甲基-3-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-第三丁基-1-甲基-3-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(5-第三丁基-1-甲基-3-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-金剛烷基-1-基-1,3-二異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(5-金剛烷基-1-基-1,3-二異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-金剛烷基-1-基-1,3-二異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(5-金剛烷基-1-基-1,3-二異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-金剛烷基-1-基-1,3-二異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-金剛烷基-1-基-1,3-二異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(5-金剛烷基-1-基-1,3-二異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-第三丁基-1-乙基-3-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(5-第三丁基-1-乙基-3-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-第三丁基-1-乙基-3-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(5-第三丁基-1-乙基-3-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-第三丁基-1-乙基-3-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-第三丁基-1-乙基-3-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(5-第三丁基-1-乙基-3-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-第三丁基-1,3-二異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(5-第三丁基-1,3-二異丙基 -1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-第三丁基-1,3-二異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(5-第三丁基-1,3-二異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-第三丁基-1,3-二異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-第三丁基-1,3-二異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(5-第三丁基-1,3-二異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(1,5-二第三丁基-3-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(1,5-二第三丁基-3-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(1,5-二第三丁基-3-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(1,5-二第三丁基-3-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(1,5-二第三丁基-3-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(1,5-二第三丁基-3-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(1,5-二第三丁基-3-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(3,5-第三丁基-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(3,5-第三丁基-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(3,5-第三丁基-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(3,5-第三丁基-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(3,5-第三丁基-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(3,5-第三丁基-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(3,5-第三丁基-1-甲基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-金剛烷-1-基-1-異丙基-3-第三丁基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(5-金剛烷-1-基-1-異丙基-3-第 三丁基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-金剛烷-1-基-1-異丙基-3-第三丁基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(5-金剛烷-1-基-1-異丙基-3-第三丁基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-金剛烷-1-基-1-異丙基-3-第三丁基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-金剛烷-1-基-1-異丙基-3-第三丁基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(5-金剛烷-1-基-1-異丙基-3-第三丁基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(3,5-第三丁基-1-乙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(3,5-第三丁基-1-乙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(3,5-第三丁基-1-乙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(3,5-第三丁基-1-乙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(3,5-第三丁基-1-乙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)3,5-第三丁基-1-乙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(3,5-第三丁基-1-乙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(3,5-第三丁基-1-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(3,5-第三丁基-1-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(3,5-第三丁基-1-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(3,5-第三丁基-1-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(3,5-第三丁基-1-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(3,5-第三丁基-1-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(3,5-第三丁基-1-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-第三丁基-1-甲基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁 基茀-9'-基)(5-第三丁基-1-甲基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-第三丁基-1-甲基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(5-第三丁基-1-甲基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-第三丁基-1-甲基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-第三丁基-1-甲基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(5-第三丁基-1-甲基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-金剛烷-1-基-1-異丙基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(5-金剛烷-1-基-1-異丙基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-金剛烷-1-基-1-異丙基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(5-金剛烷-1-基-1-異丙基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-金剛烷-1-基-1-異丙基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-金剛烷-1-基-1-異丙基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(5-金剛烷-1-基-1-異丙基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-第三丁基-1-乙基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(5-第三丁基-1-乙基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-第三丁基-1-乙基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(5-第三丁基-1-乙基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-第三丁基-1-乙基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-第三丁基-1-乙基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'- 基)(5-第三丁基-1-乙基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-第三丁基-1-異丙基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(5-第三丁基-1-異丙基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-第三丁基-1-異丙基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(5-第三丁基-1-異丙基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-第三丁基-1-異丙基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-第三丁基-1-異丙基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(5-第三丁基-1-異丙基-3-環己基-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-第三丁基-1-甲基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(5-第三丁基-1-甲基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-第三丁基-1-甲基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(5-第三丁基-1-甲基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-第三丁基-1-甲基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-第三丁基-1-甲基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(5-第三丁基-1-甲基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-金剛烷-1-基-1-異丙基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(5-金剛烷-1-基-1-異丙基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-金剛烷-1-基-1-異丙基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(5-金剛烷-1-基-1-異丙基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二 第三丁基-2',7'-二甲基茀-9'-基)(5-金剛烷-1-基-1-異丙基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-金剛烷-1-基-1-異丙基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(5-金剛烷-1-基-1-異丙基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-第三丁基-1-乙基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(5-第三丁基-1-乙基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-第三丁基-1-乙基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(5-第三丁基-1-乙基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-第三丁基-1-乙基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-第三丁基-1-乙基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(5-第三丁基-1-乙基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-第三丁基-1-異丙基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(5-第三丁基-1-異丙基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-第三丁基-1-異丙基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(5-第三丁基-1-異丙基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-第三丁基-1-異丙基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-第三丁基-1-異丙基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(5-第三丁基-1-異丙基-3-(3-環己烯基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-第三丁基-1-甲基-3-(雙環[2.2.1]庚-5-烯-2-基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、 [1-(2',7'-二第三丁基茀-9'-基)(5-第三丁基-1-甲基-3-(雙環[2.2.1]庚-5-烯-2-基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-第三丁基-1-甲基-3-(雙環[2.2.1]庚-5-烯-2-基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(5-第三丁基-1-甲基-3-(雙環[2.2.1]庚-5-烯-2-基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-第三丁基-1-甲基-3-(雙環[2.2.1]庚-5-烯-2-基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-第三丁基-1-甲基-3-(雙環[2.2.1]庚-5-烯-2-基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(5-第三丁基-1-甲基-3-(雙環[2.2.1]庚-5-烯-2-基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-金剛烷-1-基-1-異丙基-3-(雙環[2.2.1]庚-5-烯-2-基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(5-金剛烷-1-基-1-異丙基-3-(雙環[2.2.1]庚-5-烯-2-基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-金剛烷-1-基-1-異丙基-3-(雙環[2.2.1]庚-5-烯-2-基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(5-金剛烷-1-基-1-異丙基-3-(雙環[2.2.1]庚-5-烯-2-基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-金剛烷-1-基-1-異丙基-3-(雙環[2.2.1]庚-5-烯-2-基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-金剛烷-1-基-1-異丙基-3-(雙環[2.2.1]庚-5-烯-2-基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(5-金剛烷-1-基-1-異丙基-3-(雙環[2.2.1]庚-5-烯-2-基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(茀-9'-基)(5-第三丁基-1-異丙基-3-(雙環[2.2.1]庚-5-烯-2-基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(2',7'-二第三丁基茀-9'-基)(5-第三丁基-1-異丙基-3-(雙環[2.2.1]庚-5-烯-2-基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基茀-9'-基)(5-第三丁基-1-異丙基-3-(雙環[2.2.1]庚-5-烯-2-基)-1,2,3,4-四氫 戊搭烯)]二氯化鋯、[1-(3',6'-二-(1-金剛烷基)-茀-9'-基)(5-第三丁基-1-異丙基-3-(雙環[2.2.1]庚-5-烯-2-基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-第三丁基-1-異丙基-3-(雙環[2.2.1]庚-5-烯-2-基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(八甲基茀-12'-基)(5-第三丁基-1-異丙基-3-(雙環[2.2.1]庚-5-烯-2-基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[1-(六甲基二環戊茀-10'-基)(5-第三丁基-1-異丙基-3-(雙環[2.2.1]庚-5-烯-2-基)-1,2,3,4-四氫戊搭烯)]二氯化鋯、[8-(茀-9'-基)(3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(2',7'-二第三丁基茀-9'-基)(3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(3',6'-二第三丁基茀-9'-基)(3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(3',6'-二(1-金剛烷基)-茀-9'-基)(3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(八甲基茀-12'-基)(3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(六甲基二環戊茀-10'-基)(3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(茀-9'-基)(2-第三丁基-8-甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(2',7'-二第三丁基茀-9'-基)(2-第三丁基-8-甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(3',6'-二第三丁基茀-9'-基)(2-第三丁基-8-甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(3',6'-二(1-金剛烷基)-茀-9'-基)(2-第三丁基-8-甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(2-第三丁基-8-甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(八甲基茀-12'-基)(2-第三丁基-8-甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(六甲基二環戊茀-10'-基)(2-第三丁基-8-甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(茀-9'-基)(2-第三丁基-8-異丙基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(2',7'-二第三丁基茀-9'-基)(2-第三丁基-8-異丙基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯 化鋯、[8-(3',6'-二第三丁基茀-9'-基)(2-第三丁基-8-異丙基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(3',6'-二(1-金剛烷基)-茀-9'-基)(2-第三丁基-8-異丙基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(2-第三丁基-8-異丙基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(八甲基茀-12'-基)(2-第三丁基-8-異丙基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(六甲基二環戊茀-10'-基)(2-第三丁基-8-異丙基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(茀-9'-基)(2-第三丁基-8-苯基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(2',7'-二第三丁基茀-9'-基)(2-第三丁基-8-苯基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(3',6'-二第三丁基茀-9'-基)(2-第三丁基-8-苯基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(3',6'-二(1-金剛烷基)-茀-9'-基)(2-第三丁基-8-苯基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(2-第三丁基-8-苯基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(八甲基茀-12'-基)(2-第三丁基-8-苯基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(六甲基二環戊茀-10'-基)(2-第三丁基-8-苯基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(茀-9'-基)(2-第三丁基-5,8-二甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(2',7'-二第三丁基茀-9'-基)(2-第三丁基-5,8-二甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(3',6'-二第三丁基茀-9'-基)(2-第三丁基-5,8-二甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(3',6'-二(1-金剛烷基)-茀-9'-基)(2-第三丁基-5,8-二甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(2-第三丁基-5,8-二甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(八甲基茀-12'-基)(2-第三丁基-5,8-二甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(六甲基二 環戊茀-10'-基)(2-第三丁基-5,8-二甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(茀-9'-基)(2-第三丁基-8-(3-環己烯基)-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(2',7'-二第三丁基茀-9'-基)(2-第三丁基-8-(3-環己烯基)-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(3',6'-二第三丁基茀-9'-基)(2-第三丁基-8-(3-環己烯基)-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(3',6'-二(1-金剛烷基)-茀-9'-基)(2-第三丁基-8-(3-環己烯基)-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(2-第三丁基-8-(3-環己烯基)-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(八甲基茀-12'-基)(2-第三丁基-8-(3-環己烯基)-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(六甲基二環戊茀-10'-基)(2-第三丁基-8-(3-環己烯基)-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(茀-9'-基)(2-(1-金剛烷基)-8-甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(2',7'-二第三丁基茀-9'-基)(2-(1-金剛烷基)-8-甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(3',6'-二第三丁基茀-9'-基)(2-(1-金剛烷基)-8-甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(3',6'-二(1-金剛烷基)-茀-9'-基)(2-(1-金剛烷基)-8-甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(2-(1-金剛烷基)-8-甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(八甲基茀-12'-基)(2-(1-金剛烷基)-8-甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(六甲基二環戊茀-10'-基)(2-(1-金剛烷基)-8-甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(茀-9'-基)(2-(1-金剛烷基)-8-異丙基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(2',7'-二第三丁基茀-9'-基)(2-(1-金剛烷基)-8-異丙基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(3',6'-二第三丁基茀-9'-基)(2-(1-金剛烷基)-8-異丙基-3,3b,4,5,6,7,7a,8- 八氫環戊[a]茚)]二氯化鋯、[8-(3',6'-二(1-金剛烷基)-茀-9'-基)(2-(1-金剛烷基)-8-異丙基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(2-(1-金剛烷基)-8-異丙基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(八甲基茀-12'-基)(2-(1-金剛烷基)-8-異丙基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[8-(六甲基二環戊茀-10'-基)(2-(1-金剛烷基)-8-異丙基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯、[7-(茀-9'-基)(2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(2',7'-二第三丁基茀-9'-基)(2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(3',6'-二第三丁基茀-9'-基)(2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(3',6'-二(1-金剛烷基)-茀-9'-基)(2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(八甲基茀-12'-基)(2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(六甲基二環戊茀-10'-基)(2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(茀-9'-基)(5-第三丁基-7-甲基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(2',7'-二第三丁基茀-9'-基)(5-第三丁基-7-甲基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(3',6'-二第三丁基茀-9'-基)(5-第三丁基-7-甲基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(3',6'-二(1-金剛烷基)-茀-9'-基)(5-第三丁基-7-甲基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-第三丁基-7-甲基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(八甲基茀-12'-基)(5-第三丁基-7-甲基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(六甲基二環戊茀-10'-基)(5-第三丁基-7-甲基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(茀-9'-基)(5-第三丁基-7-異丙基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(2',7'-二第三丁基茀-9'-基)(5-第三丁 基-7-異丙基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(3',6'-二第三丁基茀-9'-基)(5-第三丁基-7-異丙基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(3',6'-二(1-金剛烷基)-茀-9'-基)(5-第三丁基-7-異丙基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-第三丁基-7-異丙基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(八甲基茀-12'-基)(5-第三丁基-7-異丙基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(六甲基二環戊茀-10'-基)(5-第三丁基-7-異丙基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(茀-9'-基)(2-第三丁基-8-苯基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(2',7'-二第三丁基茀-9'-基)(2-第三丁基-8-苯基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(3',6'-二第三丁基茀-9'-基)(2-第三丁基-8-苯基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(3',6'-二(1-金剛烷基)-茀-9'-基)(2-第三丁基-8-苯基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(2-第三丁基-8-苯基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(八甲基茀-12'-基)(2-第三丁基-8-苯基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(六甲基二環戊茀-10'-基)(2-第三丁基-8-苯基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(茀-9'-基)(5-第三丁基-7-環己基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(2',7'-二第三丁基茀-9'-基)(5-第三丁基-7-環己基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(3',6'-二第三丁基茀-9'-基)(5-第三丁基-7-環己基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(3',6'-二(1-金剛烷基)-茀-9'-基)(5-第三丁基-7-環己基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-第三丁基-7-環己基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(八 甲基茀-12'-基)(5-第三丁基-7-環己基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(六甲基二環戊茀-10'-基)(5-第三丁基-7-環己基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(茀-9'-基)(5-金剛烷-1-基-7-甲基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(2',7'-二第三丁基茀-9'-基)(5-金剛烷-1-基-7-甲基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(3',6'-二第三丁基茀-9'-基)(5-金剛烷-1-基-7-甲基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(3',6'-二(1-金剛烷基)-茀-9'-基)(5-金剛烷-1-基-7-甲基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-金剛烷-1-基-7-甲基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(八甲基茀-12'-基)(5-金剛烷-1-基-7-甲基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(六甲基二環戊茀-10'-基)(5-金剛烷-1-基-7-甲基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(茀-9'-基)(5-金剛烷-1-基-7-異丙基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(2',7'-二第三丁基茀-9'-基)(5-金剛烷-1-基-7-異丙基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(3',6'-二第三丁基茀-9'-基)(5-金剛烷-1-基-7-異丙基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(3',6'-二(1-金剛烷基)-茀-9'-基)(5-金剛烷-1-基-7-異丙基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(3',6'-二第三丁基-2',7'-二甲基茀-9'-基)(5-金剛烷-1-基-7-異丙基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(八甲基茀-12'-基)(5-金剛烷-1-基-7-異丙基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯、[7-(六甲基二環戊茀-10'-基)(5-金剛烷-1-基-7-異丙基-2,3,3a,4,7,7a-六氫-1H-環戊[a]戊搭烯)]二氯化鋯。
作為過渡金屬化合物[I],亦可為上述例示之化合物的鈦衍生物、鉿衍生物。然而,過渡金屬化合物[I]並不限定於上述例示之化合物。
將用於上述化合物之命名的位置編號,以[1-(1',1',4',4',7',7',10',10'-八甲基八氫二苯并[b,h]茀-12'-基)(5-第三丁基-1-甲基-3-異丙基-1,2,3,4-四氫戊搭烯)]二氯化鋯、及[8-(1',1',4',4',7',7',10',10'-八甲基八氫二苯并[b,h]茀-12'-基)(2-第三丁基-8-甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)]二氯化鋯為例,針對鏡像異構物之一種分別示於式[I-1]、式[I-2]。
[過渡金屬化合物之製造方法]
本發明所使用之過渡金屬化合物可藉公知方法進行製造,製造方法並無特別限定。以下,說明本發明所使用之過渡金屬化合物[I]之製造方法的一例,關於其鏡像異構物之製造方法亦相同。
過渡金屬化合物[I]的製造方法,係具有例如調製一般式(1a)所示之戊搭烯化合物的步驟(1)。於戊搭烯化合物(1a)中,可使用配合了目標之過渡金屬化合物[I]之立體配置的異構物。
式(1a)中,R1、R3、R5、R6、R7及R8分別獨立為氫原子、 烴基、含雜原子之烴基或含矽基;R2為烴基、含雜原子之烴基或含矽基;R4為氫原子;R4除外之R1至R8的取代基中,任意2個取代基亦可彼此鍵結形成環。此等之較佳態樣係與一般式[I]中所說明者相同。
一實施態樣,係接著步驟(1),具有:使戊搭烯化合物(1a)與茀衍生物(2a)反應,得到過渡金屬化合物[I]之前驅物化合物(3a)的步驟(2);及由前驅物化合物(3a)得到過渡金屬化合物[I]的步驟(3)。
<步驟(1)>
戊搭烯化合物(1a)可藉由例如下述方法而合成:如反應[A]所示般,使環戊二烯衍生物(1a-1)與α,β-不飽和羰基化合物(1a-2)反應的方法;如反應[B]所示般,使環戊二烯衍生物(1a-1)與羰基化合物(1a-3)與醛化合物(1a-4)反應的方法。
反應[A]中,R1~R6、R8分別與一般式[I]中之同一記號同義, R7為氫原子。反應[B]中,R1~R8分別與一般式[I]中之同一記號同義,此等之較佳態樣,係與一般式[I]中所說明者相同。上述原料化合物中,可使用配合了目標之戊搭烯化合物(1a)之立體配置的異構物。
另外,環戊二烯衍生物(1a-1)及後述之茀衍生物(2a)、前驅物化合物(3a),可認為存在有環戊二烯基環中之僅雙鍵位置相異的異構物,各反應中僅例示其等中之1種。環戊二烯衍生物(1a-1)及茀衍生物(2a)、前驅物化合物(3a),可為環戊二烯基環中之僅雙鍵位置相異的其他異構物,亦可為其等的混合物。
<反應[A]>
根據反應[A]之戊搭烯化合物(1a),可由環戊二烯衍生物(1a-1)與α,β-不飽和羰基化合物(1a-2)藉公知條件進行製造(參照例如J.Org.Chem.1989,54,4981-4982)。
另外,作為沿反應[A]製造戊搭烯化合物(1a)的方法,亦有在對環戊二烯衍生物(1a-1)藉鹼進行處理後,對α,β-不飽和羰基化合物(1a-2)使1,4-加成而合成酮或醛,其後使其脫水縮合而製造的方法(方法A')。
方法A'中可使用之鹼可使用公知物,可舉例如鈉、鉀、鋰等之鹼金屬;氫氧化鉀、氫氧化鈉、碳酸鉀、碳酸氫鈉、氫氧化鋇、烷氧化鈉、烷氧化鉀、氫氧化鎂、烷氧化鎂、氫化鉀、氫化鈉等之鹼金屬或鹼土族金屬鹽;二乙基胺、氨、吡咯啶、哌啶、苯胺、甲基苯胺、三乙基胺、二異丙基醯胺鋰、醯胺鈉等之含氮鹼;丁基鋰、甲基鋰、苯基鋰等之有機鹼金屬化合物;甲基氯化鎂、甲基溴化鎂、苯基氯化鎂等之格任亞(Grignard)試劑。
於方法A'中,為了更有效率地進行反應,亦可添加觸媒。 觸媒可使用公知觸媒,可舉例如18-冠-6-醚、15-冠-5-醚等之冠醚類;穴狀配位基類;四丁基氟化銨、甲基三辛基氯化銨、三癸醯基甲基氯化銨等之四級銨鹽;甲基三苯基溴化鏻、四丁基溴化鏻等之鏻鹽;以鏈狀聚醚為代表之相間移動觸媒。又,亦可使用鎂、鈣、鋰、鋅、鋁、鈦、鐵、鋯、鉿、硼、錫、稀土族之鹵化物,或三氟甲磺酸酯等之路易斯酸、醋酸、三氟酢酸、三氟甲磺酸、對甲苯磺酸等之酸類。作為方法A'中之1,4-加成反應的觸媒,亦可使用氯化銅、碘化銅等之鹵化銅。
<反應[B]>
反應[B]之反應中,可藉由加入鹼或觸媒而更有效率地進行反應。反應[B]中可使用之鹼或觸媒,可舉例如反應[A]中之上述者。
反應[B]中,可對環戊二烯衍生物(1a-1),使羰基化合物(1a-3)或醛化合物(1a-4)同時反應,或使羰基化合物(1a-3)或醛化合物(1a-4)之一者反應,其後再使另一者反應。此時,亦可對羰基化合物(1a-3)或醛化合物(1a-4),使用丙基醯胺鋰等作成烯醇鹽型後再進行反應,進而亦可將對應至羰基化合物(1a-3)或醛化合物(1a-4)之烯醇鹽依公知方法進行合成而使其反應。又,羰基化合物(1a-3)及醛化合物(1a-4)亦可依個別的條件進行反應。
其他作為合成戊搭烯化合物(1a)的方法,亦有例如Angew.Chem.internal.Edit.1970,9,892-893、J.Am.Chem.SOC.1985,107,5308-5309、J.Org.Chem.1990,55,4504-4506等所示方法。
作為反應[A]及[B]中可使用的溶媒,可舉例如戊烷、己烷、庚烷、環己烷、十氫萘等之脂肪族烴;苯、甲苯、二甲苯等之芳香族烴;四氫呋喃、二乙基醚、二烷、1,2-二甲氧基乙烷、第三丁基甲基醚、環戊基甲基醚等之醚;二氯甲烷、氯仿等之鹵化烴;甲酸、乙酸、三氟乙酸等 之羧酸;醋酸乙酯、醋酸甲酯等之酯;三乙基胺、吡咯啶、哌啶、苯胺、吡啶、乙腈等之胺、腈或含氮化合物;甲醇、乙醇、正丙醇、異丙醇、正丁醇、乙二醇、甲氧基乙醇等之醇;N,N-二甲基甲醯胺、N,N-二甲基乙醯胺、N,N-二甲基咪唑啶酮、N-甲基吡咯啶酮等之醯胺;二甲基亞碸;二硫化碳等之含硫化合物;丙酮或甲基乙基酮等之酮,尤其是使用作為基質的醛、酮本身;等之有機溶媒;水、離子性液體等之非有機溶媒;或此等中之2種以上混合而得的溶媒。又,反應[A]及[B]之反應溫度較佳為-100~150℃、更佳-40~120℃。
<步驟(2)>
一實施態樣,係接著步驟(1),具有使戊搭烯化合物(1a)與茀衍生物(2a)反應,得到過渡金屬化合物[I]之前驅物化合物(3a)的步驟(2)。
上述反應中,R1~R16分別與一般式[I]中之同一記號同義,L為鹼金屬或鹼土族金屬。作為鹼金屬,可舉例如鋰、鈉或鉀,作為鹼土族金屬,可舉例如鎂、鈣。
例如,藉由R4(氫原子)及R5之尺寸的差異等,可得到於環戊二烯環之α位上,在形成了錯合物時具有朝向中心金屬側之氫原子(R4)的前驅物化合物(3a)。
茀衍生物(2a)可藉習知方法獲得。
作為上述反應中可使用的有機溶媒,可舉例如戊烷、己烷、庚烷、環己烷、十氫萘等之脂肪族烴;苯、甲苯、二甲苯等之芳香族烴;四氫呋喃、二乙基醚、二烷、1,2-二甲氧基乙烷、第三丁基甲基醚、環戊基甲基醚等之醚;二氯甲烷、氯仿等之鹵化烴;或此等中之2種以上混合而得的溶媒。
戊搭烯化合物(1a)與茀衍生物(2a)的反應,較佳係依莫耳量比10:1~1:10、更佳2:1~1:2、特佳1.2:1~1:1.2進行。反應溫度較佳為-100~150℃、更佳-40~120℃。
<步驟(3)>
以下表示由前驅物化合物(3a)製造過渡金屬化合物[I]的例示。此並不限制本發明範圍,過渡金屬化合物[I]可依公知之任意方法所製造。
<二鹼金屬鹽之合成>
藉由使前驅物化合物(3a),與選自鹼金屬、氫化鹼金屬、烷氧化鹼金屬、有機鹼金屬及有機鹼土族金屬之至少1種金屬成分,於有機溶媒中接觸,得到二鹼金屬鹽。
作為上述反應中可使用之鹼金屬,可舉例如鋰、鈉、鉀等;作為氫化鹼金屬,可舉例如氫化鈉、氫化鉀等;作為烷氧化鹼金屬,可舉例如甲氧化鈉、乙氧化鉀、乙氧化鈉、第三丁氧化鉀等;作為有機鹼金屬,可舉例如甲基鋰、丁基鋰、苯基鋰等;作為有機鹼土族金屬,可舉例如甲基鹵化鎂、丁基鹵化鎂、苯基鹵化鎂等;亦可併用此等中之2種以上。
作為上述反應所使用之有機溶媒,可舉例如戊烷、己烷、庚烷、環己烷、十氫萘等之脂肪族烴;苯、甲苯、二甲苯等之芳香族烴;四氫呋喃、二乙基醚、二烷、1,2-二甲氧基乙烷、第三丁基甲基醚、環戊基甲基醚等之醚;二氯甲烷、氯仿等之鹵化烴;或此等中之2種以上混合而得的溶媒。
前驅物化合物(3a)與上述金屬成分的反應,較佳係依莫耳量比(前驅物化合物(3a):上述金屬成分)=1:1~1:20、更佳1:1.5~1:4、特佳1:1.8~1:2.5進行。反應溫度較佳為-100~200℃、更佳-80~120℃。
為了促進上述反應,亦可使用以四甲基乙二胺等為代表的路易斯鹼,或如國際公開第2009/072505號公報記載般使用α-甲基苯乙烯等。
<過渡金屬化合物之合成>
藉由使上述反應所得之二鹼金屬鹽、與一般式(4a)所示之化合物,於有機溶媒中進行反應,藉此合成過渡金屬化合物[I]。
MZk...(4a)
式(4a)中,M為第4族過渡金屬,複數之Z分別獨立為鹵原子、烴基、陰離子配位基或可藉孤立電子對進行配位之中性配位基;k為3~6之整數。作為M及Z所列舉之原子或基等,係與一般式[I]欄中所說明之M及Q分別相同。
作為化合物(4a),可舉例如三價或四價之鈦氟化物、氯化物、溴化物及碘化物;四價之鋯氟化物、氯化物、溴化物及碘化物;四價之鉿氟化物、氯化物、溴化物及碘化物;或此等與四氫呋喃、二乙基醚、二烷或1,2-二甲氧基乙烷等之醚類的錯合物。
作為上述反應所使用之有機溶媒,可舉例如<二鹼金屬鹽之合成>欄所記載的有機溶媒。二鹼金屬鹽與化合物(4a)間之反應,較佳係依莫耳量比10:1~1:10、更佳2:1~1:2、特佳1.2:1~1:1.2進行。反應溫度較佳為-80~200℃、更佳-75~120℃。
<其他方法>
作為其他方法,亦可使前驅物化合物(3a),與有機金屬試劑、例如四苄基鈦、四苄基鋯、四苄基鉿、肆(三甲基矽烷基亞甲基)鈦、肆(三甲基矽烷基亞甲基)鋯、肆(三甲基矽烷基亞甲基)鉿、二苄基二氯化鈦、二苄基二氯化鋯、二苄基二氯化鉿、或鈦、鋯、鉿之醯胺鹽直接反應。
對於上述反應所得之過渡金屬化合物[I],可藉萃取、再結晶、昇華等方法,進行單離‧精製。藉此種方法所得之本發明之過渡金屬化合物[I],係使用質子核磁共振光譜、13C-核磁共振光譜、質量分析、及元素分析等之分析手法所鑑定。
〔烯烴聚合用觸媒〕
本發明所使用之烯烴聚合用觸媒,係含有由一般式[I]所示之過渡金屬化合物及其鏡像異構物所選擇之至少1種過渡金屬化合物(A)。
本發明之烯烴聚合用觸媒,較佳係進一步含有(B)由(B-1)有機金屬化合物、(B-2)有機鋁氧化合物、及(B-3)與過渡金屬 化合物(A)反應而形成離子對之化合物所選擇的至少1種化合物(以下亦稱為「化合物(B)」。)
本發明之烯烴聚合用觸媒,更佳係視需要進一步含有(C)載體。
本發明之烯烴聚合用觸媒,亦可視需要進一步含有(D)有機化合物成分。
以下具體說明過渡金屬化合物(A)以外之各成分。
<化合物(B)> 《有機金屬化合物(B-1)》
作為有機金屬化合物(B-1),可舉例如一般式(B-1a)所示之有機鋁化合物、一般式(B-1b)所示之第1族金屬與鋁的錯合烷基化物、一般式(B-1c)所示之第2族或第12族金屬之二烷基化合物等的、第1、2族及第12、13族的有機金屬化合物。
(B-1a):RamAl(ORb)nHpXq
式(B-1a)中,Ra及Rb分別獨立為碳數1~15、較佳1~4之烴基,X為鹵原子,m為滿足0<m≦3、n為滿足0≦n<3、p為滿足0≦p<3、q為滿足0≦q<3之數,且m+n+p+q=3。作為有機鋁化合物(B-1a),可舉例如三甲基鋁、三乙基鋁、三異丁基鋁等之三烷基鋁,二異丁基氫化鋁等之二烷基氫化鋁、三環烷基鋁。
(B-1b):M2AlRa4
式(B-1b)中,M2為Li、Na或K,Ra為碳數1~15、較佳1~4之烴基。作為錯合烷基化物(B-1b),可舉例如LiAl(C2H5)4、LiAl(C7H15)4
(B-1c):RaRbM3
式(B-1c)中,Ra及Rb分別獨立為碳數1~15、較佳1~4之烴基,M3為Mg、Zn或Cd。作為化合物(B-1c),可舉例如二甲基鎂、二乙基鎂、二正丁基鎂、乙基正丁基鎂、二苯基鎂、二甲基鋅、二乙基鋅、二正丁基鋅、二苯基鋅。
有機金屬化合物(B-1)中,較佳為有機鋁化合物(B-1a)。
有機金屬化合物(B-1)可單獨使用1種,亦可併用2種以上。
《有機鋁氧化合物(B-2)》
作為有機鋁氧化合物(B-2),例如可為習知之鋁氧烷、日本專利特開平2-78687號公報所例示之對苯呈不溶性或難溶性的有機鋁氧化合物。習知之鋁氧烷可例如藉下述(1)~(4)之方法所製造,通常係作為烴溶媒之溶液而獲得。
(1)於含有吸附水之化合物或含有結晶水之鹽類,例如氯化鎂水合物、硫酸銅水合物、硫酸鋁水合物、硫酸鎳水合物、氯化鈰水合物等之烴媒體懸濁液,添加三烷基鋁等之有機鋁化合物,使吸附水或結晶水與有機鋁化合物反應的方法。
(2)於苯、甲苯、二乙基醚、四氫呋喃等之媒體中,對三烷基鋁等之有機鋁化合物使水、冰或水蒸氣直接作用的方法。
(3)於癸烷、苯、甲苯等之媒體中,對三烷基鋁等之有機鋁化合物,使二甲基氧化錫、二丁基氧化錫等之有機錫氧化物進行反應的方法。
(4)將使三烷基鋁等之有機鋁,與3級醇、酮、及羧酸等之具有碳-氧鍵結之有機化合物進行反應而生成的化合物,進行熱分解反應等之非水解性轉化的方法。
尚且,上述鋁氧烷亦可含有少量之有機金屬成分。又,亦可由所回收之上述鋁氧烷的溶液將溶媒或未反應有機鋁化合物蒸餾去除後,再溶解於溶媒中或懸濁於鋁氧烷之貧溶媒。
作為調製鋁氧烷時所使用的有機鋁化合物,具體可舉例如與作為有機鋁化合物(B-1a)所例示者相同的有機鋁化合物。此等之中,較佳為三烷基鋁、三環烷基鋁,特佳為三甲基鋁。
其他,作為有機鋁氧化合物(B-2),可舉例如修飾甲基鋁氧烷。所謂修飾甲基鋁氧烷,可使用三甲基鋁與三甲基鋁以外之烷基鋁而調製的鋁氧烷。此種修飾甲基鋁氧烷化合物一般稱為MMAO。MMAO可藉由美國專利US4960878號公報以及US5041584號公報所列舉之方法而調製。又,Tosoh Finechem公司等亦使用三甲基鋁與三異丁基鋁而調製R為異丁基的鋁氧烷,並以MMAO或TMAO之名稱進行商業生產。
此種MMAO係改良了對各種溶媒之溶解性及保存穩定性的鋁氧烷,具體而言,係與上述般之對苯呈不溶性或難溶性者不同,其具有溶解於脂肪族烴或脂環族烴的特徵。
再者,作為有機鋁氧化合物(B-2),可舉例如含有硼原子之有機鋁氧化合物,或國際公開第2005/066191號公報、國際公開第2007/131010號公報所例示之含鹵素之鋁氧烷,國際公開第2003/082879號公報所例示之離子性鋁氧烷。
化合物(B-2)可單獨使用1種,亦可併用2種以上。
《與過渡金屬化合物(A)反應而形成離子對之化合物(B-3)》
作為與過渡金屬化合物(A)反應而形成離子對之化合物(B-3)(以下亦稱為「離子性化合物(B-3)」),可舉例如日本專利特表平1-501950號公報、日 本專利特表平1-502036號公報、日本專利特開平3-179005號公報、日本專利特開平3-179006號公報、日本專利特開平3-207703號公報、日本專利特開平3-207704號公報、US5321106號公報等記載之路易斯酸、離子性化合物、硼烷化合物及碳硼烷化合物。進而,亦可列舉雜聚物以及異聚物。
離子性化合物(B-3)係以下述一般式(B-3a)所示之化合物。
式(B-3a)中,作為Re+、可舉例如H+、三價碳(Carbenium)陽離子、正氧陽離子、銨陽離子、鏻陽離子、環庚三烯基陽離子、具有過渡金屬之二茂鐵(ferrocenium)陽離子等。Rf~Ri係分別獨立為有機基、較佳為芳基。
作為三價碳陽離子,可舉例如三苯基三價碳陽離子、參(甲基苯基)三價碳陽離子、參(二甲基苯基)三價碳陽離子等之三取代三價碳陽離子等。
作為銨陽離子,可舉例如三甲基銨陽離子、三乙基銨陽離子、三(正丙基)銨陽離子、三異丙基銨陽離子、三(正丁基)銨陽離子、三異丁基銨陽離子等之三烷基銨陽離子;N,N-二甲基苯銨陽離子、N,N-二乙基苯銨陽離子、N,N-2,4,6-五甲基苯銨陽離子等之N,N-二烷基苯銨陽離子;二異丙基銨陽離子、二環己基銨陽離子等之二烷基銨陽離子等。
作為上述鏻陽離子,可舉例如三苯基鏻陽離子、參(甲基苯基)鏻陽離子、參(二甲基苯基)鏻陽離子等之三芳基鏻陽離子等。
作為Re+,例如較佳為三價碳陽離子、銨陽離子等,特佳為 三苯基三價碳陽離子、N,N-二甲基苯銨陽離子、N,N-二乙基苯銨陽離子。
作為三價碳鹽,可舉例如三苯基三價碳四苯基硼酸鹽、硼酸三苯基三價碳肆(五氟苯基)鹽、三苯基三價碳肆(3,5-二-三氟甲基苯基)硼酸鹽、參(4-甲基苯基)三價碳肆(五氟苯基)硼酸鹽、參(3,5-二甲基苯基)三價碳肆(五氟苯基)硼酸鹽等。
作為銨鹽,可舉例如三烷基取代銨鹽、N,N-二烷基苯銨鹽、二烷基銨鹽等。
作為三烷基取代銨鹽,可舉例如三乙基銨四苯基硼酸鹽、三丙基銨四苯基硼酸鹽、三(正丁基)銨四苯基硼酸鹽、三甲基銨肆(對甲苯基)硼酸鹽、三甲基銨肆(鄰甲苯基)硼酸鹽、三(正丁基)銨肆(五氟苯基)硼酸鹽、三乙基銨肆(五氟苯基)硼酸鹽、三丙基銨肆(五氟苯基)硼酸鹽、三丙基銨肆(2,4-二甲基苯基)硼酸鹽、三(正丁基)銨肆(3,5-二甲基苯基)硼酸鹽、三(正丁基)銨肆(4-三氟甲基苯基)硼酸鹽、三(正丁基)銨肆(3,5-二-三氟甲基苯基)硼酸鹽、三(正丁基)銨肆(鄰甲苯基)硼酸鹽、二-十八烷基甲基銨四苯基硼酸鹽、二-十八烷基甲基銨肆(對甲苯基)硼酸鹽、二-十八烷基甲基銨肆(鄰甲苯基)硼酸鹽、二-十八烷基甲基銨肆(五氟苯基)硼酸鹽、二-十八烷基甲基銨肆(2,4-二甲基苯基)硼酸鹽、二-十八烷基甲基銨肆(3,5-二甲基苯基)硼酸鹽、二-十八烷基甲基銨肆(4-三氟甲基苯基)硼酸鹽、二-十八烷基甲基銨肆(3,5-二-三氟甲基苯基)硼酸鹽等。
作為N,N-二烷基苯銨鹽,可舉例如N,N-二甲基苯銨四苯基硼酸鹽、N,N-二甲基苯銨肆(五氟苯基)硼酸鹽、N,N-二甲基苯銨肆(3,5-二-三氟甲基苯基)硼酸鹽、N,N-二乙基苯銨肆苯基硼酸鹽、N,N-二乙基苯銨肆(五氟苯基)硼酸鹽、N,N-二乙基苯銨肆(3,5-二-三氟甲基苯基)硼酸鹽、N,N-2,4,6-五甲基苯銨肆苯基硼酸鹽、N,N-2,4,6-五甲基苯銨肆(五氟苯基)硼 酸鹽等。
作為二烷基銨鹽,可舉例如:二(1-丙基)銨肆(五氟苯基)硼酸鹽、二環己基銨肆苯基硼酸鹽等。
作為離子性化合物(B-3),亦可無限制地使用本申請人所揭示(例如日本專利特開2004-51676號公報)之離子性化合物。
離子性化合物(B-3)可單獨使用1種,亦可併用2種以上。
《載體(C)》
作為載體(C),可為無機或有機之化合物,可舉例如顆粒狀或微粒子狀之固體。過渡金屬化合物(A)較佳係依載持於載體(C)的形態使用。
《無機化合物》
作為載體(C)中之無機化合物,較佳為多孔質氧化物、無機氯化物、黏土、黏土礦物或離子交換性層狀化合物。
作為多孔質氧化物,例如可使用SiO2、Al2O3、MgO、ZrO2、TiO2、B2O3、CaO、ZnO、BaO、ThO2等之氧化物,或包含該等之複合物或混合物。例如可使用天然或合成沸石、SiO2-MgO、SiO2-Al2O3、SiO2-TiO2、SiO2-V2O5、SiO2-Cr2O3、SiO2-TiO2-MgO。該等之中,較佳為以SiO2及/或Al2O3作為主成分的多孔質氧化物。
多孔質氧化物係根據種類及製法,其性狀有所不同。本發明適合使用之載體之粒徑,較佳為1~300μm、更佳為3~100μm;比表面積較佳為50~1300m2/g、更佳為200~1200m2/g;細孔體積較佳為0.3~3.0cm3/g、更佳0.5~2.0cm3/g。此種載體可視需要於100~1000℃、較佳150~700℃下進行乾燥及/或煅燒而使用。粒子形狀並無特別限制,特佳為球狀。
作為無機氯化物,可使用例如MgCl2、MgBr2、MnCl2、MnBr2等。可直接使用,亦可藉由球磨機、振磨機進行粉碎後使用。又,亦可使用於使無機氯化物溶解於醇等溶媒後,藉由析出劑而以微粒狀析出者。
黏土通常係以黏土礦物為主成分而構成。離子交換性層狀化合物係具有藉由離子鍵等而構成之面彼此以較弱之結合力平行積疊的結晶構造之化合物,其所含有之離子可進行交換。大部分黏土礦物係離子交換性層狀化合物。又,作為該等黏土、黏土礦物、離子交換性層狀化合物,並不限於天然產物,亦可使用人工合成物。又,作為黏土、黏土礦物或離子交換性層狀化合物,可例示黏土、黏土礦物或具有六方緻密堆積型、銻型、CdCl2型、CdI2型等之層狀結晶構造的離子結晶性化合物。
作為黏土、黏土礦物,可舉例如高嶺土、膨潤土、木節黏土、蛙目黏土、水鋁英石、矽鐵石、葉臘石(pyrophyylite)、雲母族、蒙脫石族、蛭石、綠泥石族、山軟木石、高嶺石、輝橄無球隕石(nakhlite)、狄克石、多水高嶺土、針鈉鈣石、鋰鎂雲母。
作為離子交換性層狀化合物,可舉例如α-Zr(HAsO4)2‧H2O、α-Zr(HPO4)2、α-Zr(KPO4)2‧3H2O、α-Ti(HPO4)2、α-Ti(HAsO4)2‧H2O、α-Sn(HPO4)2‧H2O、γ-Zr(HPO4)2、γ-Ti(HPO4)2、γ-Ti(NH4PO4)2‧H2O等之多價金屬之結晶性酸性鹽等。
較佳為對黏土、黏土礦物實施化學處理。作為化學處理,可任意使用除去附著於表面之雜質之表面處理、影響黏土之結晶構造之處理等。作為化學處理,具體可舉例如酸處理、鹼處理、鹽類處理、有機物處理等。
離子交換性層狀化合物亦可為利用離子交換性而使層間之交換性離子與其他大體積之離子進行交換,藉此使層間擴大之狀態之層狀 化合物。此種大體積之離子係擔任支撐層狀結構之重要作用,通常稱為支柱。又,如此於層狀化合物之層間導入其他物質者稱為插層(intercalation)。
作為插層之客體(guest)化合物,可舉例如TiCl4、ZrCl4等陽離子性無機化合物;Ti(OR)4、Zr(OR)4、PO(OR)3、B(OR)3等金屬烷氧化物(R係烴基等);[Al13O4(OH)24]7+、[Zr4(OH)14]2+、[Fe3O(OCOCH3)6]+等金屬氫氧化物離子等。該等化合物可單獨使用1種或併用兩種以上。又,於插層該等化合物時,亦可使將Si(OR)4、Al(OR)3、Ge(OR)4等金屬烷氧化物(R係烴基等)等水解而獲得之聚合物、或SiO2等膠體狀無機化合物等共存。
作為支柱,可舉例如於將上述金屬氫氧化物離子插層於層間後藉由加熱脫水而生成之氧化物。
載體(C)之中,較佳為含有SiO2及/或Al2O3為主成分的多孔質氧化物。又,黏土或黏土礦物亦較佳,特佳為蒙脫石、蛭石、針鈉鈣石、鋰鎂雲母及合成雲母。
《有機化合物》
作為載體(C)中之有機化合物,可舉例如粒徑為5~300μm範圍內之顆粒狀或微粒子狀固體。具體可例示以乙烯、丙烯、1-丁烯、4-甲基-1-戊烯等之碳數2~14之α-烯烴為主成分而生成之(共)聚合體,或以乙烯基環己烷、苯乙烯為主成分而生成之(共)聚合體或,及此等之改質體。
<有機化合物成分(D)>
本發明中,有機化合物成分(D)可根據需要,以提高聚合性能以及生成聚合物之物性為目的而使用。作為有機化合物成分(D),可舉例如醇類、苯酚性化合物、羧酸、磷化合物、醯胺、聚醚及磺酸鹽等。
<各成分之使用法及添加順序>
烯烴聚合時,可任意選擇各成分之使用法、添加順序,可例示如下之方法。以下將過渡金屬化合物(A)、化合物(B)、載體(C)及有機化合物成分(D)分別稱為「成分(A)~(D)」。
(1)將成分(A)單獨添加至聚合器之方法。
(2)將成分(A)及成分(B)以任意順序添加至聚合器之方法。
(3)將於成分(C)上載持有成分(A)之觸媒成分、與成分(B)以任意順序添加至聚合器之方法。
(4)將於成分(C)上載持有成分(B)之觸媒成分、與成分(A)以任意順序添加至聚合器之方法。
(5)將於成分(C)上載持有成分(A)與成分(B)之觸媒成分添加至聚合器之方法。
上述(2)~(5)之各方法中,亦可使各觸媒成分中至少2種預先接觸。載持有成分(B)之上述(4)、(5)之各方法中,可視需要以任意順序添加未載持之成分(B)。此時,成分(B)可為相同或相異。又,於成分(C)上載持有成分(A)之固體觸媒成分、於成分(C)上載持有成分(A)及成分(B)之固體觸媒成分,係可預先聚合烯烴,亦可於經預備聚合之固體觸媒成分上,進一步載持觸媒成分。
〔烯烴系聚合體之製造方法〕
本發明之烯烴聚合體之製造方法,係具有於上述烯烴聚合用觸媒的存在下,使由乙烯及碳數4~30之α-烯烴所選擇之至少1種之烯烴A、與視需要之丙烯進行聚合的步驟。於此,所謂「聚合」係依均聚及共聚之總稱的意 義而使用。又,所謂「於烯烴聚合用觸媒的存在下使烯烴進行聚合」,係包括如上述(1)~(5)之各方法般,依任意方法將烯烴聚合用觸媒之各成分添加至聚合器中而使烯烴進行聚合的態樣。
本發明中,聚合可藉溶液聚合、懸濁聚合等之液相聚合法或氣相聚合法之任一種所實施。作為液相聚合法中使用之惰性烴化合物媒體,具體可舉例如丙烷、丁烷、戊烷、己烷、庚烷、辛烷、癸烷、十二烷、燈油等之脂肪族烴;環戊烷、環己烷、甲基環戊烷等之脂環族烴;苯、甲苯、二甲苯等之芳香族烴;氯化乙烯、氯苯、二氯甲烷等之鹵化烴。惰性烴可單獨使用1種,亦可混合2種以上使用。又,亦可使用將可供給於聚合之液化烯烴本身用於作為溶媒,即所謂的塊狀聚合法。
在使用烯烴聚合用觸媒進行烯烴之聚合時,可構成烯烴聚合用觸媒之各成分的使用量係如以下。又,烯烴聚合用觸媒中,可如以下般設定各成分的含量。
成分(A)通常以每1公升反應容積,使用成為10-10~10-2莫耳、較佳10-8~10-3莫耳之量。成分(B-1)通常以成分(B-1)與成分(A)中之總過渡金屬原子(M)之莫耳比[(B-1)/M]為1~50,000、較佳10~20,000、特佳50~10,000之量使用。成分(B-2)通常以成分(B-2)中之鋁原子與成分(A)中之總過渡金屬(M)之莫耳比[Al/M]為10~5,000、較佳20~2,000之量使用。成分(B-3)通常以成分(B-3)與成分(A)中之總過渡金屬原子(M)之莫耳比[(B-3)/M]為1~1000、較佳1~200之量使用。
於使用成分(C)時,可以成分(A)與成分(C)之重量比[(A)/(C)]較佳為0.0001~1、更佳0.0005~0.5、再更佳0.001~0.1的量使用。
於使用成分(D)時,成分(D)係於成分(B)為成分(B-1)之情形時,通常以莫耳比[(D)/(B-1)]為0.01~10、較佳0.1~5之量使用;於成分(B) 為成分(B-2)之情形時,通常以莫耳比[(D)/(B-2)]為0.005~2、較佳0.01~1之量使用;於成分(B)為成分(B-3)之情形時,通常以莫耳比[(D)/(B-3)]為0.01~10、較佳0.1~5之量使用。
本發明之製造方法中,烯烴之聚合溫度通常為-50~+200℃,較佳0~180℃之範圍;聚合壓力通常為常壓~10MPa錶壓,較佳為常壓~5MPa錶壓。聚合反應可以分批式、半連續式、連續式之任一之方法進行。進而亦可分為反應條件不同之二階段以上而進行聚合。所得之烯烴系聚合體之分子量,可藉由使氫存在於聚合系中,或使聚合溫度變化、或成分(B)之使用量而進行調節。
本發明之製造方法,係即使在有利於工業性製法之高溫條件下,仍可維持高觸媒活性,製造具有高立體規則性‧高融點及高分子量的烯烴聚合體。於此種高溫條件下,聚合溫度通常為40℃以上、較佳40~200℃、更佳45~150℃、特佳50~150℃(換言之,特佳係可工業化的溫度)。
尤其是氫,可得到提升觸媒之聚合活性的效果、或使聚合體之分子量增加或降低的效果,而可謂為較佳添加物。在對系內添加氫的情況,其量較適當為烯烴每1莫耳為0.00001~100NL左右。系內之氫濃度係除了調整氫之供給量以外,亦可藉由下述方法調整:於系內進行生成或消耗氫之反應的方法;利用膜分離氫之方法;將含氫之一部分氣體放出至系外。
對於本發明之製造方法所得之烯烴聚合體,在依上述方法合成後,視需要可進行公知之觸媒失活處理步驟、觸媒殘渣去除步驟、乾燥步驟等之後處理步驟。
<烯烴>
本發明之製造方法中,供給於聚合反應中之烯烴,係由乙烯及碳數4~30之α-烯烴所選擇之至少1種之烯烴A,視需要可併用丙烯。
作為α-烯烴,係碳數4~30之α-烯烴,較佳係碳數4~20之α-烯烴,特佳係碳數4~10之α-烯烴。
作為α-烯烴,可舉例如直鏈狀或分枝狀之α-烯烴。作為直鏈狀或分枝狀之α-烯烴,可舉例如1-丁烯、2-丁烯、1-戊烯、3-甲基-1-丁烯、1-己烯、4-甲基-1-戊烯、3-甲基-1-戊烯、1-辛烯、1-癸烯、1-十二烯、1-十四烯、1-十六烯、1-十七烯、1-十八烯、1-二十烯等。
又,亦可使選自環狀烯烴、具有極性基之烯烴、末端羥基化乙烯基化合物、及芳香族乙烯基化合物之至少1種共存於反應系中而進行聚合。又,亦可併用多烯。另外,在不脫離本發明旨趣的範圍內,亦可使乙烯基環己烷等之其他成分進行共聚合。
作為環狀烯烴,可舉例如環戊烯、環庚烯、降烯、5-甲基-2-降烯、四環十二烯、2-甲基-1,4,5,8-二甲橋-1,2,3,4,4a,5,8,8a-八氫化萘。
作為具有極性基之烯烴,可舉例如丙烯酸、甲基丙烯酸、反丁烯二酸、順丁烯二酸酐、伊康酸、伊康酸酐、雙環(2,2,1)-5-庚烯-2,3-二羧酸酐等之α,β-不飽和羧酸,以及該等之鈉鹽、鉀鹽、鋰鹽、鋅鹽、鎂鹽、鈣鹽、鋁鹽等之金屬鹽;丙烯酸甲酯、丙烯酸乙酯、丙烯酸正丙酯、丙烯酸異丙酯、丙烯酸正丁酯、丙烯酸異丁酯、丙烯酸第三丁酯、丙烯酸2-乙基己酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸正丙酯、甲基丙烯酸異丙酯、甲基丙烯酸正丁酯、甲基丙烯酸異丁酯等之α,β-不飽和羧酸酯;乙酸乙烯酯、丙酸乙烯酯、己酸乙烯酯、癸酸乙烯酯、十二烷酸乙烯酯、硬脂酸乙烯酯、三氟乙酸乙烯酯等之乙烯酯類;丙烯酸環氧丙酯、甲 基丙烯酸環氧丙酯、伊康酸單環氧丙酯等之不飽和環氧丙酯。
作為末端羥基化乙烯基化合物,可舉例如氫氧化-1-丁烯、氫氧化-1-戊烯、氫氧化-1-己烯、氫氧化-1-辛烯、氫氧化-1-癸烯、氫氧化-1-十一烯、氫氧化-1-十二烯、氫氧化-1-十四烯、氫氧化-1-十六烯、氫氧化-1-十八烯、氫氧化-1-二十烯等之直鏈狀之末端羥基乙烯基化合物;氫氧化-3-甲基-1-丁烯、氫氧化-3-甲基-1-戊烯、氫氧化-4-甲基-1-戊烯、氫氧化-3-乙基-1-戊烯、氫氧化-4,4-二甲基-1-戊烯、氫氧化-4-甲基-1-己烯、氫氧化-4,4-二甲基-1-己烯、氫氧化-4-乙基-1-己烯、氫氧化-3-乙基-1-己烯等之分枝狀之末端羥基化乙烯基化合物。
作為芳香族乙烯基化合物,可舉例如苯乙烯;鄰甲基苯乙烯、間甲基苯乙烯、對甲基苯乙烯、鄰,對-二甲基苯乙烯、鄰乙基苯乙烯、間乙基苯乙烯、對乙基苯乙烯等之單或多烷基苯乙烯;甲氧基苯乙烯、乙氧基苯乙烯、乙烯基苯甲酸、乙烯基苯甲酸甲酯、乙烯基苄基乙酸酯、羥基苯乙烯、鄰氯苯乙烯、對氯苯乙烯、二乙烯苯等之含有官能基之苯乙烯衍生物;3-苯基丙烯、4-苯基丙烯、α-甲基苯乙烯。
作為多烯,較佳係選自二烯及三烯。相對於供給至聚合反應之總烯烴,依0.0001~1莫耳%之範圍內使用多烯亦為較佳態樣。
作為二烯,可舉例如1,4-戊二烯、1,5-己二烯、1,4-己二烯、1,4-辛二烯、1,5-辛二烯、1,6-辛二烯、1,7-辛二烯、1,9-癸二烯等之α,ω-非共軛二烯;亞乙基降烯、乙烯基降烯、二環戊二烯、7-甲基-1,6-辛二烯、4-亞乙基-8-甲基-1,7-壬二烯等之非共軛二烯;丁二烯、異戊二烯等之共軛二烯。此等之中,較佳係α,ω-非共軛二烯、或具有降烯骨架的二烯。
作為三烯,可舉例如6,10-二甲基-1,5,9-十一碳三烯、4,8-二甲基-1,4,8-癸三烯、5,9-二甲基-1,4,8-癸三烯、6,9-二甲基-1,5,8-癸三烯、6,8,9- 三甲基-1,5,8-癸三烯、6-乙基-10-甲基-1,5,9-十一碳三烯、4-亞乙基-1,6-辛二烯、7-甲基-4-亞乙基-1,6-辛二烯、4-亞乙基-8-甲基-1,7-壬二烯(EMND)、7-甲基-4-亞乙基-1,6-壬二烯、7-乙基-4-亞乙基-1,6-壬二烯、6,7-二甲基-4-亞乙基-1,6-辛二烯、6,7-二甲基-4-亞乙基-1,6-壬二烯、4-亞乙基-1,6-癸二烯、7-甲基-4-亞乙基-1,6-癸二烯、7-甲基-6-丙基-4-亞乙基-1,6-辛二烯、4-亞乙基-1,7-壬二烯、8-甲基-4-亞乙基-1,7-壬二烯、4-亞乙基-1,7-十一碳二烯等之非共軛三烯;1,3,5-己三烯等之共軛三烯。此等之中,較佳係於末端具有雙鍵的非共軛三烯、4,8-二甲基-1,4,8-癸三烯、4-亞乙基-8-甲基-1,7-壬二烯(EMND)。
二烯或三烯可分別單獨使用1種,亦可併用2種以上。又,亦可將二烯與三烯組合使用。多烯之中,特佳為α,ω-非共軛二烯、或具有降烯骨架之多烯。
本發明之烯烴聚合體之製造方法中,所供給之烯烴A之至少1種,更佳為乙烯、1-丁烯、4-甲基-1-戊烯、1-己烯、1-辛烯、1-癸烯;特佳為乙烯均聚合、乙烯/丙烯共聚合、乙烯/1-丁烯共聚合、1-丁烯均聚合、1-丁烯/乙烯共聚合、1-丁烯/丙烯共聚合、1-丁烯/1-己烯共聚合、1-丁烯/1-辛烯共聚合、乙烯/1-丁烯/丙烯共聚合、乙烯/1-丁烯/1-辛烯共聚合、4-甲基-1-戊烯均聚合、4-甲基-1-戊烯/丙烯共聚合、4-甲基-1-戊烯/1-己烯共聚合、4-甲基-1-戊烯/1-辛烯共聚合、4-甲基-1-戊烯/1-癸烯共聚合、4-甲基-1-戊烯/1-十六烯共聚合、4-甲基-1-戊烯/1-十七烯共聚合、4-甲基-1-戊烯/1-十八烯共聚合、4-甲基-1-戊烯/1-十六烯/1-十八烯共聚合、1-癸烯均聚合、1-癸烯/1-辛烯共聚合、1-癸烯/1-十二烯共聚合、1-癸烯/1-辛烯/1-十二烯共聚合。
由乙烯及碳數4~30之α-烯烴所選擇之至少1種之烯烴A、與視需要所使用之丙烯的使用量比,係在使用丙烯的情況下,烯烴A:丙 烯(莫耳比)計,通常為1:100~5000:1、較佳1:50~1000:1。
〔烯烴聚合體〕
本發明之烯烴聚合體,可於上述烯烴聚合用觸媒的存在下,將由乙烯及碳數4~30之α-烯烴所選擇之至少1種之烯烴A、與視需要之丙烯進行聚合而獲得。
本發明之烯烴聚合體,係依合計超過50莫耳%且100莫耳%以下、較佳55~100莫耳%、更佳70~100莫耳%之範圍含有來自由乙烯及碳數4~30之α-烯烴所選擇之至少1種的構成單位,;並依0莫耳%以上且未滿50莫耳%、較佳0~45莫耳%、更佳0~30莫耳%之範圍含有來自丙烯的構成單位。其中,將來自由乙烯及碳數4~30之α-烯烴所選擇之至少1種的構成單位的含量與來自丙烯的構成單位的含量的合計設為100莫耳%。
此等含量可藉由核磁共振分光法、或在具有成為基準之物質的情況下藉由紅外光譜法進行測定。於後述新穎之1-丁烯聚合體及4-甲基-1-戊烯聚合體中,亦可依相同方法測定含量。
本發明之烯烴聚合體,較佳係含有合計超過50莫耳%之來自由乙烯、1-丁烯、4-甲基-1-戊烯、1-己烯、1-辛烯及1-癸烯所選擇之至少1種的構成單位。更具體可舉例如乙烯均聚物、乙烯/丙烯共聚物、乙烯/1-丁烯共聚物、1-丁烯均聚物、1-丁烯/乙烯共聚物、1-丁烯/丙烯共聚物、1-丁烯/1-己烯共聚物、1-丁烯/1-辛烯共聚物、乙烯/1-丁烯/丙烯共聚物、乙烯/1-丁烯/1-辛烯共聚物、4-甲基-1-戊烯均聚物、4-甲基-1-戊烯/丙烯共聚物、4-甲基-1-戊烯/1-己烯共聚物、4-甲基-1-戊烯/1-辛烯共聚物、4-甲基-1-戊烯/1-癸烯共聚物、4-甲基-1-戊烯/1-十六烯共聚合、4-甲基-1-戊烯/1-十七烯共聚物、4-甲基-1-戊烯/1-十八烯共聚物、4-甲基-1-戊烯/1-十六烯/1-十八烯共 聚物、1-癸烯均聚物、1-癸烯/1-辛烯共聚物、1-癸烯/1-十二烯共聚物、1-癸烯/1-辛烯/1-十二烯共聚物。
此等聚合體中,特佳係含有超過50莫耳%之來自1-丁烯的構成單位的1-丁烯聚合體、含有超過50莫耳%之來自4-甲基-1-戊烯的構成單位的4-甲基-1-戊烯聚合體。
本發明之烯烴聚合體中,藉凝膠滲透層析法(GPC)法所測定之重量平均分子量,較佳為1萬~500萬、更佳5萬~300萬、特佳10萬~250萬。重量平均分子量(Mw)與數量平均分子量(Mn)之比的分子量分佈(Mw/Mn),較佳為1,0~8.0、更佳1.5~5.0、特佳1.8~3.5。
本發明之烯烴聚合體中,極限黏度[η]較佳為0.1~20dl/g、更佳0.3~10dl/g、再更佳0.5~8dl/g。
本發明之烯烴聚合體中,由來自α-烯烴之構成單位所造成的立體規則性,較佳為同排構造或半同排構造,更佳係以13C-NMR所測定之內消旋二元體分率為70%以上、更佳80%以上、再更佳90%以上、特佳95%以上。
以上物性之測定方法的細節係如實施例所記載。
本發明之烯烴聚合體由於具有以上構成及物性(尤其是高立體規則性),故為具有高融點、高耐熱性、高剛性及高強度等之高機械物性的結晶性烯烴聚合體,或合併具有黏性特性與彈性特性的非晶性或低結晶性烯烴聚合體。
本發明之烯烴聚合體,亦可藉由極性單體而使其一部分接枝改質。作為此種極性單體,可舉例如:含羥基之乙烯性不飽和化合物、含胺基之乙烯性不飽和化合物、含環氧基之乙烯性不飽和化合物、芳香族乙烯基化合物、不飽和羧酸或其衍生物、乙烯酯化合物、氯乙烯、含乙烯基 之有機矽化合物、碳二亞胺(carbodiimide)化合物等。
作為極性單體,特佳為不飽和羧酸或其衍生物、及含乙烯基之有機矽化合物。
作為不飽和羧酸或其衍生物,可舉例如:含有1個以上羧酸基之不飽和化合物、含有羧酸基之化合物與烷基醇之酯、含有1個以上羧酸酐基之不飽和化合物等;作為不飽和基,可舉例如:乙烯基、伸乙烯基、不飽和環狀烴基等。此等化合物可使用習知物而無特別限定。作為具體例,可舉例如:(甲基)丙烯酸、順丁烯二酸、反丁烯二酸、四氫酞酸、伊康酸、檸康酸、丁烯酸、異丁烯酸、耐地酸(nadic acid)[商標](內順-雙環[2.2.1]庚-5-烯-2,3-二羧酸)等不飽和羧酸;或屬於其衍生物的鹵化酸、醯胺、醯亞胺、酸酐、酯等。作為相關衍生物之具體例,可舉例如:丙烯酸甲酯、甲基丙烯酸甲酯、順丁烯二酸二甲酯、順丁烯二酸單甲酯、反丁烯二酸二甲酯、伊康酸二甲酯、檸康酸二乙酯、四氫酞酸二甲酯、耐地酸二甲酯(內順-雙環[2.2.1]庚-5-烯-2,3-二羧酸二甲酯)、氯化順丁烯二酸、順丁烯二醯亞胺、順丁烯二酸酐、檸康酸酐、順丁烯二酸環氧丙基酯等。此等不飽和羧酸或其衍生物可單獨使用一種亦可組合使用兩種以上。該等之中,適合使用不飽和二羧酸或其酸酐,特佳為順丁烯二酸、耐地酸[商標]或此等之酸酐。
作為含乙烯基之有機矽化合物,可使用習知公知物,並無特別限定。具體而言可使用乙烯基三乙氧基矽烷、乙烯基三甲氧基矽烷、乙烯基參(β-甲氧基-乙氧基矽烷)、γ-環氧丙氧基丙基三甲氧基矽烷、γ-胺基丙基三乙氧基矽烷、γ-甲基丙烯醯氧基丙基三甲氧基矽烷、2-(3,4-環氧基環己基)乙基三甲氧基矽烷、3-環氧丙氧基丙基三甲氧基矽烷、3-環氧丙氧基丙基甲基乙氧基矽烷、對苯乙烯基三甲氧基矽烷、3-甲基丙烯醯氧基丙基甲基 二甲氧基矽烷、3-甲基丙烯醯氧基丙基甲基二乙氧基矽烷、3-甲基丙烯醯氧基丙基三乙氧基矽烷、3-丙烯醯氧基丙基三甲氧基矽烷、N-2-(胺基乙基)-3-胺基丙基甲基二甲氧基矽烷、N-2-(胺基乙基)-3-胺基丙基三甲氧基矽烷、N-2-(胺基乙基)-3-胺基丙基三乙氧基矽烷、3-胺基丙基三甲氧基矽烷、3-三乙氧基矽烷基-N-(1,3-二甲基-亞丁基)丙基胺、N-苯基-3-胺基丙基三甲氧基矽烷、3-脲丙基三乙氧基矽烷、3-異氰酸酯丙基三乙氧基矽烷等。較佳為γ-環氧丙氧基丙基三甲氧基矽烷、γ-胺基丙基三乙氧基矽烷、γ-甲基丙烯醯氧基丙基三甲氧基矽烷、乙烯基三乙氧基矽烷、乙烯基三甲氧基矽烷、3-丙烯醯氧基丙基三甲氧基矽烷;特佳為立體障礙小之接枝改質效率高的乙烯基三乙氧基矽烷、乙烯基三甲氧基矽烷、3-丙烯醯氧基丙基三甲氧基矽烷。
極性單體係相對於本發明之烯烴聚合體100重量份,通常依1~100重量份、較佳為5~80重量份的量使用。
極性單體可單獨使用1種,亦可組合2種以上使用。
該接枝聚合通常於自由基起始劑之存在下進行。
作為自由基起始劑,可使用有機過氧化物或偶氮化合物等。具體而言,可使用習知物,例如二異丙苯基過氧化物、二第三丁基過氧化物、二-第三丁基過氧化-3,3,5-三甲基環己烷、第三丁基異丙苯基過氧化物、二-三級戊基過氧化物、第三丁基過氧化氫、2,5-二甲基-2,5-二-(過氧化第三丁基)己炔-3,2,5-二甲基-2,5-二(過氧化苯甲醯基)己烷、2,5-二甲基-2,5-二(過氧化第三丁基)己烷、α,α'-雙(過氧化第三丁基-間異丙基)苯等之二烷基過氧化物類;第三丁基過氧化乙酸酯、第三丁基過氧化異丁酸酯、第三丁基過氧化戊酸酯、第三丁基過氧化順丁烯二酸酯、第三丁基過氧化新癸酸酯、第三丁基過氧化苯甲酸酯、二第三丁基過氧化酞酸酯等之過氧化酯類;過氧化二環己酮等之過氧化酮類;及此等之混合物等。
自由基起始劑可直接將聚合體及極性單體混合後使用,亦可溶解於少量之有機溶劑後使用。作為該有機溶劑,若為可溶解自由基起始劑之有機溶劑,則可無特別限定地使用。
又,使極性單體接枝聚合時,亦可使用還原性物質。若使用還原性物質,則可提高極性單體之接枝量。
接枝改質可依習知之方法進行,例如將聚合體溶解於有機溶劑,接著將極性單體及自由基起始劑等加入溶液中,於60~260℃、較佳為80~200℃之溫度,反應0.5~15小時、較佳為1~10小時。
又,亦可使用擠出機等,於無溶媒下使聚合體與極性單體反應而製造。該反應通常於聚合體之融點以上、具體而言為120~300℃之溫度,通常進行0.5~10分鐘。
藉上述方法所得之聚合體的改質量(極性單體之接枝量),係相對於接枝改質後之聚合體100重量%,通常為0.1~50重量%,較佳為0.2~30重量%,更佳為0.2~10重量%。
本發明中,若於聚合體中包含經接枝改質之聚合體,則與其他樹脂間之接黏性、相溶性優越、且可改良成形體表面之濕潤性。又,經接枝改質之聚合體,藉由進行交聯,亦可適合利用於交聯電線、交聯管。
另外,藉由以將本發明之烯烴聚合體進行鹵化而得之鹵素改質烯烴聚合體作為巨分子起始劑,對自由基聚合性單體進行原子移動自由基聚合,則亦可得到使聚烯烴鏈段與極性聚合物鏈段經化學鍵結的嵌段‧接枝共聚合體。又,所謂巨分子起始劑,係指具有原子移動自由基聚合之起始能力的聚合體,表示於分子鏈中具有可成為原子移動自由基聚合之起始點的部位的聚合體。
鹵素改質烯烴聚合體係藉由使本發明之烯烴聚合體與鹵化 劑反應而製造。作為鹵化劑,若為可將本發明之烯烴聚合體予以鹵化而製造鹵素烯烴聚合體者,則無特別限制,具體可舉例如:氯、溴、碘、三氯化磷、三溴化磷、三碘化磷、五氯化磷、五溴化磷、五碘化磷、亞硫醯氯、亞磺醯氯、亞硫醯溴、N-氯基琥珀醯亞胺、N-溴基琥珀醯亞胺、N-溴基己內醯胺、N-溴基酞醯亞胺、1,3-二溴-5,5-二甲基乙內醯脲、N-氯基戊二醯亞胺、N-溴基戊二醯亞胺、N,N’-二溴基異三聚氰酸、N-溴基乙醯胺、N-溴基胺甲酸酯、二溴化二烷、三溴化苯基三甲基銨、溴化氫過溴化吡啶鎓、三溴化氫吡咯啶酮、次氯酸第三丁酯、次溴酸第三丁酯、氯化銅(II)、溴化銅(II)、氯化鐵(III)、草醯氯、IBr等。此等之中,較佳為氯、溴、N-氯基琥珀醯亞胺、N-溴基琥珀醯亞胺、N-溴基己內醯胺、N-溴基酞醯亞胺、1,3-二溴基-5,5-二甲基乙內醯胺、N-氯基戊二醯亞胺、N-溴基戊二醯亞胺、N,N’-二溴基異三聚氰酸,更佳為溴及N-溴基琥珀醯亞胺、N-溴基己內醯胺、N-溴基酞醯亞胺、1,3-二溴基-5,5-二甲基乙內醯胺、N-溴基戊二醯亞胺、N,N’-二溴基異三聚氰酸等之具有N-Br鍵的化合物。
本發明之烯烴聚合體與鹵化劑的反應較佳係於惰性氣體環境下進行。作為惰性氣體,可舉例如氮、氬、氦等之惰性氣體。又,於上述反應中,視需要可使用溶媒。溶媒若為不阻礙反應者則均可使用,具體可舉例如:苯、甲苯及二甲苯等之芳香族烴系溶媒,戊烷、己烷、庚烷、辛烷、壬烷及癸烷等之脂肪族烴系溶媒,環己烷、甲基環己烷及十氫化萘般之脂環族烴系溶媒,氯苯、二氯苯、三氯苯、二氯甲烷、氯仿、四氯化碳及四氯乙烯、四氯乙烷等之氯化烴系溶媒,甲醇、乙醇、正丙醇、異丙醇、正丁醇、第二丁醇及第三丁醇等之醇系溶媒,丙酮、甲基乙基酮及甲基異丁基酮等之酮系溶媒;醋酸乙酯及酞酸二甲酯等之酯系溶媒;二甲醚、二乙醚、二正戊醚、四氫呋喃及二氧基苯甲醚般之醚系溶媒等。
於與鹵化劑的反應中,為了促進反應視需要亦可添加自由基起始劑。作為自由基起始劑可舉例如上述之自由基起始劑。
關於使本發明之烯烴聚合體與鹵化劑進行反應的方法,可採用習知的各種方法。可舉例如:使烯烴聚合體懸浮、或溶解於溶媒中,通常以-80℃~250℃之溫度、較佳為室溫以上且溶劑沸點以下之溫度,使鹵化劑與視需要之自由基起始劑等添加混合並進行反應的方法;或使烯烴聚合體於其融點以上、例如180~300℃之溫度下,在熔融混練下使鹵化劑與視需要之自由基起始劑接觸的方法等。
所謂極性聚合物鏈段,係指由自由基聚合性單體所選擇之1種以上之單體的均聚合體或共聚合體。作為自由基聚合性單體,具體可舉例如:(甲基)丙烯酸、(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丙酯、(甲基)丙烯酸異丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸異丁酯、(甲基)丙烯酸第三丁酯、(甲基)丙烯酸正戊酯、(甲基)丙烯酸正己酯、(甲基)丙烯酸環己酯、(甲基)丙烯酸正庚酯、(甲基)丙烯酸正辛酯、(甲基)丙烯酸-2-乙基己酯、(甲基)丙烯酸壬酯、(甲基)丙烯酸癸酯、(甲基)丙烯酸十二酯、(甲基)丙烯酸苯酯、(甲基)丙烯酸甲苯酯、(甲基)丙烯酸苄酯、(甲基)丙烯酸-2-甲氧基乙酯、(甲基)丙烯酸-3-甲氧基丁酯、(甲基)丙烯酸-2-羥乙酯、(甲基)丙烯酸-2-羥丙酯、(甲基)丙烯酸硬脂酯、(甲基)丙烯酸環氧丙酯、(甲基)丙烯酸2-胺基乙酯、(甲基)丙烯酸2-(二甲基胺基)乙酯、γ-(甲基丙烯醯氧基丙基)三甲氧基矽烷、(甲基)丙烯酸之環氧乙烷加成物、(甲基)丙烯酸三氟甲基甲酯、(甲基)丙烯酸2-三氟甲基甲酯、(甲基)丙烯酸2-全氟乙基乙酯、(甲基)丙烯酸2-全氟乙基-2-全氟丁基乙酯、(甲基)丙烯酸2-全氟乙酯、(甲基)丙烯酸全氟甲酯、(甲基)丙烯酸二全氟甲基甲酯、(甲基)丙烯酸2-全氟甲基-2-全氟乙基甲酯、(甲基)丙烯酸2-全氟己基乙酯、(甲基)丙烯酸2-全氟癸基乙 酯、(甲基)丙烯酸2-全氟十六基乙酯等之(甲基)丙烯酸系單體;苯乙烯、乙烯基甲苯、α-甲基苯乙烯、氯苯乙烯、苯乙烯磺酸及其之鹽等之苯乙烯系單體;全氟乙烯、全氟丙烯、偏二氟乙烯等之含氟乙烯基單體;乙烯基三甲氧基矽烷、乙烯基三乙氧基矽烷等之含矽乙烯基系單體;順丁烯二酸酐、順丁烯二酸、順丁烯二酸之單烷基酯及二烷基酯、反丁烯二酸、反丁烯二酸之單烷基酯及二烷基酯、順丁烯二醯亞胺、甲基順丁烯二醯亞胺、乙基順丁烯二醯亞胺、丙基順丁烯二醯亞胺、丁基順丁烯二醯亞胺、己基順丁烯二醯亞胺、辛基順丁烯二醯亞胺、十二基順丁烯二醯亞胺、硬脂基順丁烯二醯亞胺、苯基順丁烯二醯亞胺、環己基順丁烯二醯亞胺等之順丁烯二醯亞胺系單體;丙烯腈、甲基丙烯腈等之含腈基乙烯基系單體;(甲基)丙烯酸醯胺、N-甲基(甲基)丙烯酸醯胺、N-乙基(甲基)丙烯酸醯胺、N-丙基(甲基)丙烯酸醯胺、N-異丙基(甲基)丙烯酸醯胺、N-丁基(甲基)丙烯酸醯胺、N,N-二甲基(甲基)丙烯酸醯胺等之含醯胺基乙烯基系單體;醋酸乙烯酯、丙酸乙烯酯、戊酸乙烯酯、苯甲酸乙烯酯、桂皮酸乙烯酯等之乙烯酯系單體;氯化乙烯基、氯化亞乙烯基、氯化烯丙基、烯丙基醇等。此等化合物可單獨、或組合2種以上而使用。
原子移動自由基聚合可依習知方法進行,聚合方法並無特別限定,可應用塊狀聚合、溶液聚合、懸濁聚合、乳化聚合、塊狀‧懸濁聚合等。反應溫度若為進行自由基聚合反應的溫度則為任意,雖視所需之聚合體的聚合度、所使用之自由基起始劑及溶媒的種類或量而相異,但通常為-100℃~250℃。
本發明之烯烴聚合體中,在不損及發明目的之範圍內,進而視需要,亦可調配耐候穩定劑、耐熱穩定劑、抗靜電劑、助滑劑、抗黏連劑、發泡劑、結晶化助劑、防霧劑、(透明)核劑、滑劑、顏料、染料、可塑 劑、抗老化劑、鹽酸吸收劑、抗氧化劑、脫模劑、衝擊改良劑、抗UV劑(紫外線吸收劑)、填充劑、交聯劑、共交聯劑、交聯助劑、黏著劑、軟化劑、難燃劑、加工助劑等之添加劑。添加劑之調配量並無特別限制,相對於上述烯烴聚合體100重量份,通常為0~50重量份、較佳0~30重量份、更佳0~10重量份、特佳0~1重量份。
作為抗氧化劑,可使用公知之抗氧化劑。具體而言,可使用受阻酚化合物、硫系抗氧化劑、內酯系抗氧化劑、有機亞磷酸鹽化合物、有機膦酸鹽化合物、或將此等組合數種者。
作為核劑,為進一步改善烯烴聚合體之成形性,亦即提高結晶化溫度並加快結晶化速度,可使用公知核劑。具體可舉例如二亞苄基山梨糖醇系核劑、磷酸酯鹽系核劑、松香系核劑、苯甲酸金屬鹽系核劑、氟化聚乙烯、2,2-亞甲基雙(4,6-二第三丁基苯基)磷酸鈉、庚二酸或其鹽、2,6-萘酸二羧酸二環己基醯胺等。核劑之調配量並無特別限制,相對於上述烯烴聚合體100重量份,較佳為0.1~1重量份。核劑可於聚合中、聚合後或成形加工時等予以適當添加。
作為滑劑,可使用公知滑材。具體可舉例如月桂酸、軟脂酸、油酸、硬脂酸等之飽和或不飽和脂肪酸的鈉、鈣、鎂鹽等,此等可單獨或混合2種以上而使用。滑劑之調配量並無特別限定,係相對於該聚合體組成物100重量份,通常為0.1~3重量份、較佳0.1~2重量份左右。
作為助滑劑,可使用公知助滑劑。具體而言,較佳係使用月桂酸、軟脂酸、油酸、硬脂酸、芥子酸、二十二酸等之飽和或不飽和脂肪酸的醯胺,或此等飽和或不飽和脂肪酸之雙醯胺。此等之中,特佳為芥子酸醯胺及乙烯雙硬脂醯胺。此等脂肪酸醯胺係相對於該聚合體組成物100重量份,通常較佳係調配0.01~5重量份範圍。
作為抗黏連劑,可使用公知之抗黏連劑。具體可舉例如微粉末二氧化矽、微粉末氧化鋁、微粉末黏土、粉末狀或液狀之矽樹脂、四氟乙烯樹脂、微粉末交聯樹脂、例如經交聯之丙烯酸、甲基丙烯酸樹脂粉末等。此等之中,較佳為微粉末二氧化矽及經交聯之丙烯酸、甲基丙烯酸樹脂粉末。
作為軟化劑之例子,可使用習知之軟化劑。具體可舉例如:加工處理油、潤滑油、石蠟類、流動石蠟、聚乙烯蠟、聚丙烯蠟、石油瀝青及凡士林等石油系物質;煤焦油及煤焦油瀝青等煤焦油類;蓖麻籽油、亞麻籽油、菜籽油、大豆油及椰子油等脂肪油;妥爾油、蜜蠟、巴西棕櫚蠟及羊毛酯等蠟類;蓖麻酸、棕櫚酸、硬脂酸、12-氫氧化硬脂酸、二十八酸、油酸及芥子酸等之脂肪酸或其金屬鹽;石油樹脂、薰草哢茚樹脂及雜排聚丙烯等合成高分子;酞酸二辛酯、己二酸二辛酯及癸二酸二辛酯等酯系可塑劑;其他微晶蠟、液狀聚丁二烯或其改質物或氫化物;液狀多硫橡膠(thiokol)等。
作為交聯劑,可使用習知之交聯劑。具體可舉例如過氧化二異丙苯基、2,5-二甲基-2,5-過氧化第三丁基己快等之有機過氧化物,硫、二硫化鉬等;此等亦可與交聯助劑、例如硬脂酸、氧化鋅等併用。在使用硫的情況,較佳係相對於上述烯烴聚合體100重量份,為0.1~10重量份。在有機過氧化物的情況,較佳係相對於上述烯烴聚合體100重量份,為0.05~15重量份。在含SiH基化合物的情況,較佳係相對於上述烯烴聚合體100重量份,通常為0.2~20重量份、較佳0.5~10重量份、最佳0.5~5重量份。又,在使用含SiH基化合物時,亦可添加觸媒、以及作為任意成分之矽烷偶合劑及/或反應抑制劑。
〔1-丁烯聚合體〕
本發明之新穎的1-丁烯聚合體,以13C-NMR所測定之內消旋五元體分率(mmmm)較佳為98.0%以上且99.8%以下、更佳係98.5%以上且99.5%以下、特佳係99.0%以上且99.4%以下。
另外,本發明之新穎的1-丁烯聚合體中,實質上不具有來自位置不規則性的構造。所謂「實質上」,係指以13C-NMR光譜所求得之總1-丁烯構成單位中之1-丁烯單體之、根據2,1-插入的位置不規則性單位的比例(以下亦稱為「2,1-鍵結量」)與根據1,4-插入的位置不規則性單位的比例(以下亦稱為「1,4-鍵結量」)的合計比例,為0.1莫耳%以下、較佳0.06莫耳%以下、特佳為檢測極限以下。
在mmmm小於上述下限值、或1-丁烯聚合體具有位置不規則性時,則有耐熱性或剛性變得不足的情形;在mmmm大於上述上限值時,則有成形性惡化的情形。
本發明之新穎的1-丁烯聚合體中,藉由示差掃描熱量測定(DSC)(昇溫速度:10℃/min)所測定之融點Tm,較佳為90~150℃、更佳100~140℃、再更佳120~140℃。融點為上述範圍的1-丁烯聚合體,係耐熱性與成形性的平衡優越。
本發明之新穎的1-丁烯聚合體中,較佳係具有〔烯烴聚合體〕欄所記載之範圍的重量平均分子量(Mw)及分子量分佈(Mw/Mn)。極限黏度[η]較佳為0.1~10dl/g、更佳0.3~5dl/g、再更佳0.5~4dl/g。
本發明之新穎的烯烴聚合體,較佳係於以鄰二氯苯作為洗提液之交叉分級層析法(CFC)中,在將洗提開始溫度(累積洗提重量%成為0.5重量%的溫度)設為[TS]、將洗提結束溫度(累積洗提重量%成為99重量%之溫度)設為[TE]時,相對於總洗提量,於由([TS]+[TE])/2所特定之溫度[TX]下 的累積洗提量為40重量%以上。又,溫度[TX]下之累積洗提量較佳為80重量%以下、更佳70重量%以下。
該指標(溫度[TX]下之累積洗提量),係表示即使在本發明之1-丁烯聚合體之CFC測定中的洗提區域中,於低溫側之洗提比例較習知之1-丁烯聚合體相對較多。
一般高立體規則性之1-丁烯聚合體係結晶相變較厚,相較於低立體規則性之1-丁烯聚合體,於CFC測定中有高溫側之洗提成分增加的傾向。然而,本發明之1-丁烯聚合體係表現出相反之傾向,亦即,本發明之1-丁烯聚合體,係即使相較於習知之1-丁烯聚合體而具有高立體規則性,但於CFC測定中在低溫側的洗提比例相對較多(參照圖1)。
一般,高立體規則性之聚合體係因結晶相之厚化而降伏應力變高,成為使成形性或延伸性惡化的要因。然而,在CFC測定中顯示具特徵性之行為的本發明的1-丁烯聚合體,即使具有來自高立體規則性之高拉張彈性係數,其降伏應力仍與習知之1-丁烯聚合體為同等。因此,本發明之1-丁烯聚合體可謂為具有優越之剛性/降伏應力之平衡的材料。
以上物性之測定方法的細節係如實施例所記載。
本發明之新穎的1-丁烯聚合體,係實質上僅由來自1-丁烯之構成單位所構成的1-丁烯聚合體,但在不脫離本發明旨趣的範圍內,亦可含有來自共單體的構成單位。所謂「實質上」係指來自1-丁烯之構成單位的比例為95重量%以上。作為共單體,可舉例如〔烯烴聚合體之製造方法〕欄中所記載的烯烴。
具有以上構成及物性的1-丁烯聚合體,可例如於上述本發明之烯烴聚合用觸媒的存在下,使1-丁烯、與視需要之共聚物(例如選自乙烯、丙烯及碳數5~30之α-烯烴的至少1種的烯烴)進行聚合而獲得。聚合 條件之細節係如〔烯烴聚合體之製造方法〕欄所記載般。
具有上述構成及特徵的本發明的1-丁烯聚合體,例如可依上述方法進行合成,推測其具有許多均一且較薄之片層構造。上述之片層構造可認為係於1-丁烯聚合體中顯示具特徵性之CFC測定結果的原因。
對於本發明之1-丁烯聚合體,係在依上述方法進行合成後,視需要可進行公知之觸媒失活處理步驟、觸媒殘渣去除步驟、乾燥步驟等之後處理步驟。
本發明之1-丁烯聚合體係藉由將其一次構造控制為如上述般之特定範圍,則具有高耐熱性、高剛性及高強度等之機械特性。例如,本發明之烯烴聚合體係具有較習知烯烴聚合體更高之融點及高立體規則性。又,本發明之1-丁烯聚合體由於較佳係由CFC測定所得之於溫度[TX]下之累積洗提量為特定範圍內,故具有優越之剛性/降伏應力的平衡。
本發明之1-丁烯聚合體由於具有以上特性(高耐熱性、剛性/降伏應力之平衡),故可適合使用作為管、薄膜、片材等之材料。尤其在使用作為管時,其耐熱潛變特性優越。
〔第1之4-甲基-1-戊烯聚合體〕
本發明之第1之4-甲基-1-戊烯聚合體,係滿足以下要件(a)(關於構成單位)、要件(b)(關於立體規則性)、要件(c)(關於融解熱量△Hm與融點Tm之關係)。
<要件(a)>
本發明之第1之4-甲基-1-戊烯聚合體中,來自4-甲基-1-戊烯的構成單位量為100~80莫耳%,較佳100~90莫耳%;來自由碳數2~30之烯烴(4-甲 基-1-丁烯除外)所選擇之至少1種的構成單位量為0~20莫耳%、較佳0~10莫耳%。以下,4-甲基-1-戊烯亦記載為「4MP1」,4-甲基-1-戊烯聚合體亦記載為「4MP1聚合體」。
於此,來自4MP1的構成單位量、與來自由碳數2~30之烯烴(4MP1單體除外)所選擇之至少1種的構成單位量的合計,較佳為100莫耳%。
上述烯烴較佳為α-烯烴。作為此等烯烴,可舉例如〔烯烴聚合體之製造方法〕欄所記載之烯烴。較佳可舉例如碳數2~20之α-烯烴(4MP1單體除外);由共聚合性的觀點而言,更佳為乙烯、丙烯、1-丁烯、1-己烯、3-甲基-1-丁烯、3-甲基-1-戊烯、1-辛烯、1-癸烯、1-十六烯、1-十七烯、1-十八烯等之α-烯烴;特佳可舉例如丙烯、1-己烯、1-辛烯、1-癸烯、1-十六烯、1-十八烯。
<要件(b)>
本發明之第1之4-甲基-1-戊烯聚合體中,以13C-NMR所測定之內消旋二元體分率(m)為98.5%以上且100%以下。「m」較佳為99%以上且100%以下。若「m」小於上述下限值,則耐熱性或剛性變得不足。
<要件(c)>
本發明之第1之4-甲基-1-戊烯聚合體中,由示差掃描型熱量測定(DSC)所測定之融解熱量△Hm(單位J/g)與融點Tm(單位:℃)係滿足以下關係式(1)。
關係式(1):△Hm≧0.5×Tm-76
關於式(1)中,△Hm及Tm之較佳範圍係如以下。
本發明之第1之4-甲基-1-戊烯聚合體中,由示差掃描型熱量測定(DSC)(昇溫速度:10℃/min)所測定之融點Tm,較佳為100~260℃、更佳110~250℃、再更佳150~250℃、又更佳152~250℃、特佳175~250℃、最佳190~250℃。
本發明之第1之4-甲基-1-戊烯聚合體中,由示差掃描型熱量測定(DSC)(昇溫速度:10℃/min)所測定之融解熱量△Hm,較佳為5~80J/g、更佳10~60J/g。
關係式(1)係表示本發明之第1之4MP1聚合體具有較習知4MP1聚合體更高之融解熱量(參照圖3)。更詳言之,本發明之第1之4MP1聚合體,係相較於習知之4MP1聚合體,於同程度之融點(Tm)下的融解熱量(△Hm)較大、亦即具有結晶化度較高的特徵。習知之4MP1聚合體雖然融點高,但通常融解熱量小,故可謂本發明之第1之4MP1聚合體顯示優越特性。
本發明之第1之4MP1聚合體,係具有以下所述之優越特性。於通常之結晶性聚合物中,在結晶化度變高時雖拉張彈性係數等之剛性上昇,但一般其斷裂伸度等之靭性降低。然而,滿足上述要件(a)~(c)、尤其是關係式(1)之本發明之第1之4MP1聚合體中,具有即使拉張彈性係數變高,斷裂伸度仍不降低的特徵(參照圖2)。此係於結晶性聚合物中極具特徵性的行為。
關於關係式(1)之設定的細節,係如實施例所記載般。
本發明之第1之4MP1聚合體,較佳係具有〔烯烴聚合體〕欄所記載之範圍的重量平均分子量(Mw)及分子量分佈(Mw/Mn)。極限黏度[η]較佳為0.1~20dl/g、更佳0.2~10dl/g、再更佳0.5~8dl/g。
以上物性之測定方法的細節係如實施例所記載。
具有以上構成及物性的第1之4MP1聚合體,可例如於上述本發明之烯烴聚合用觸媒的存在下,使4MP1、與視需要之共單體(例如選自碳數2~30之α-烯烴(4MP1除外)的至少1種的烯烴)進行聚合而獲得。聚合條件之細節係如〔烯烴聚合體之製造方法〕欄所記載般。
具有上述構成及特徵之本發明之第1之4MP1聚合體,可例如依上述方法進行合成。本發明之第1之4MP1聚合體的上述特徵,可推測除了依上述方法所得之4MP1聚合體之立體規則性較高以外,聚合體中之4MP1之平均鏈長較通常之4MP1聚合體短係要因之一。其結果,可認為本發明之第1之4MP1聚合體中所形成之結晶片層的厚度或球晶尺寸,較通常之4MP1聚合體小。另一方面,本發明之第1之4MP1聚合體由於立體規則性較高,故結晶化度變高。
從而,本發明之第1之4MP1聚合體中,相較於通常之4MP1聚合體,可認為(1)多數形成結晶構造之長周期較短、更小之球晶;(2)所形成之結晶片層之厚度或球晶尺寸變得極均勻。
本發明之第1之4MP1聚合體由於被認為具有以上結晶構造上之特徵,故可推測如下。於通常之4MP1聚合體中,即使結晶化度變高並高剛性化,由於結晶構造尺寸不均勻,故混合存在有對拉張變形之抵抗較強的部分與較弱的部分,尤其以對拉張變形之抵抗較弱之部分為起點而容易發生斷裂。相對於此,本發明之第1之4MP1聚合體中,由於結晶構造上之不均勻少,故對拉張變形之抵抗係於空間內呈均勻,並無成為斷裂起點之部分,可認為斷裂伸度不降低。
本發明之第1之4MP1聚合體,由於具有以上特性(剛性/靭性之平衡),故適合使用作為薄膜、片材、管、射出成形體、中空成形體、纖維等之材料。例如包裝用薄膜、脫模薄膜、通氣性薄膜、反射薄膜、合 成皮用脫模紙、醫療用管、產業用管、食品容器、耐熱容器、醫療用容器、獸籠、理化學實驗器具、橡膠軟管製造用心軸、不織布之材料;另外可適合於塗敷材、透明化改質材、熱可塑性樹脂改質劑、聚烯烴、彈性體、橡膠改質材等之脫模性‧阻氣性等之樹脂物性改質材、成形改質材、相容化劑(接枝改質)等。
另外,上述第1之4MP1聚合體,亦可藉粉碎處理加工為微粉末。所得之微粉末可使用作為例如油墨組成物或塗料組成物之添加劑、治金用粉末組成物之添加劑、陶瓷煅燒用粉末組成物之添加劑、黏著劑之添加劑、橡膠之添加劑、碳粉之脫模劑、金屬模具脫模劑等。再者,所得之微粉末亦可使用作為對軸上、齒輪、凸輪、電氣零件、相機零件、汽車零件、用於家庭用品之零件的樹脂添加劑,或作為蠟、潤滑脂、機油、精密陶瓷、鍍覆等之樹脂添加劑。
〔第2之4-甲基-1-戊烯聚合體〕
本發明之第2之4-甲基-1-戊烯聚合體,係滿足以下要件(d)(關於構成單位)、要件(e)(關於立體規則性)、要件(f)(關於融點Tm)。
<要件(d)>
本發明之第2之4-甲基-1-戊烯聚合體中,來自4-甲基-1-丁烯之構成單位量為超過50莫耳%且未滿80莫耳%,來自由碳數2~30之烯烴(4-甲基-1-丁烯除外)所選擇之至少1種的構成單位量為超過20莫耳%且未滿50莫耳%。來自4MP1的構成單位量較佳為超過50莫耳%且未滿78莫耳%;來自上述烯烴的構成單位量較佳為超過22莫耳%且未滿50莫耳%。
於此,來自4MP1的構成單位量、與來自由碳數2~30之烯 烴(4MP1單體除外)所選擇之至少1種的構成單位量的合計,較佳為100莫耳%。
上述烯烴較佳為α-烯烴。作為此等烯烴,可舉例如〔烯烴聚合體之製造方法〕欄所記載之烯烴。較佳可舉例如碳數2~20之α-烯烴(4MP1單體除外);由共聚合性的觀點而言,更佳為乙烯、丙烯、1-丁烯、1-己烯、3-甲基-1-丁烯、3-甲基-1-戊烯、1-辛烯、1-癸烯、1-十六烯、1-十七烯、1-十八烯等之α-烯烴;特佳可舉例如乙烯、丙烯、1-丁烯。
<要件(e)>
本發明之第2之4-甲基-1-戊烯聚合體中,以13C-NMR所測定之內消旋二元體分率(m)為98.5%以上且100%以下。「m」較佳為99%以上且100%以下。若「m」小於上述下限值,則壓縮永久應變等之機械物性變得不足。
<要件(f)>
本發明之第2之4-甲基-1-戊烯聚合體中,由示差掃描型熱量測定(DSC)(昇溫速度:10℃/min)所測定之融點Tm為未滿100℃或實質上不存在。於此,所謂實質上不存在融點,係指由示差掃描型熱量測定(DSC)(昇溫速度:10℃/min)所測定之融解熱量△Hm(單位:J/g)係實質上未觀測到。所謂融解熱量△Hm實質上未觀測定,係指△Hm為未滿5J/g、較佳為1J/g以下、更佳為檢測極限(=0.1J/g左右)以下。如此,本發明之第2之4-甲基-1-戊烯聚合體為非晶性或低結晶性之聚合體。
本發明之第2之4MP1聚合體,較佳係具有〔烯烴聚合體〕欄所記載之範圍的重量平均分子量(Mw)及分子量分佈(Mw/Mn)。極限黏度[η]較佳為0.1~20dl/g、更佳0.2~10dl/g、再更佳0.5~8dl/g。
(凝膠分率)本發明之第2之4MP1聚合體中,沸騰對二甲苯(溶媒)萃取所得之凝膠分率較佳為0~10重量%、更佳0~5重量%、特佳0~0.5重量%的範圍。上述聚合體雖然凝膠分率低,但顯示優越的彈性性質。
以上物性之測定方法的細節係如實施例所記載。
滿足上述要件(d)~(f)之本發明之第2之4MP1聚合體,係相較於習知之非晶性及低結晶性之4MP1聚合體,具有於相同程度之4MP1含量下,由動態黏彈性所測定之損耗正切(tanδ)較高,且屬於彈性性質指標之壓縮永久應變不降低的特徵。
一般而言,已知損耗正切(tanδ=G"/G')較高時,黏性性質(G")較彈性性質(G')強,壓縮永久應變般之彈性性質惡化。然而,本發明之第2之4MP1聚合體,即使損耗正切較高,仍不見壓縮永久應變的惡化。
具有以上構成及物性的第2之4MP1聚合體,可例如於上述本發明之烯烴聚合用觸媒的存在下,使4MP1、與視需要之共單體(例如選自碳數2~30之α-烯烴(4MP1除外)的至少1種的烯烴)進行聚合而獲得。聚合條件之細節係如〔烯烴聚合體之製造方法〕欄所記載般。
具有上述構成及特徵之本發明之第2之4MP1聚合體,可例如依上述方法進行合成。本發明之第2之4MP1聚合體的上述特徵,本發明者等人推測係基於以上理由而表現。
上述黏性性質(G")之支配因子為分子鏈間之摩擦力的大小,此係由一次構造(單體)所決定。因此,4MP1聚合體係僅由共聚合組成所決定,可認為若為同程度之4MP1含量,則本發明之第2之4MP1聚合體與通常之4MP1聚合體間並不產生太大差異。
另一方面,壓縮永久應變係本發明之第2之4MP1聚合體較 小,應變回復性優越。其理由可推測如下。於4MP1聚合體中,已知未結晶化之非晶區域中亦存在具有有數百nm左右之大小之空間秩序性的凝集構造。出現此種凝集構造的理由,認為係由4MP1聚合體鏈之剛直性(來自側鏈之大體積)所起因的分子運動性較低。
然而,通常之4MP1聚合體中,可認為於此種非晶區域所存在的凝集構造的尺寸不均勻,或其存在比例亦較低。另一方面,本發明之第2之4MP1聚合體中,可認為存在於非晶區域之凝集構造的尺寸均勻且其存在比例亦較多。其理由在於,本發明之第2之4MP1聚合體係在非結晶性的情況下,仍然具有立體規則性高、彼此容易凝集的構造。
此非晶區域之凝集構造,認為係對壓縮或拉張等由外部所賦予之變形具有「模擬性交聯點」之作用。因此,可認為此種模擬性交聯點之比例越多,在壓縮等之變形經放開時之變形回復大變越多。推測此即在本發明之第2之4MP1聚合體中,即使tanδ較高,壓縮永久應變仍不降低的原因。
本發明之第2之4MP1聚合體,由於具有上述之黏彈性特性,故適合使用作為薄膜、片材、射出成形體之制震材、防震材、防音材、衝擊吸收材、遮音材等之材料。例如適合用於音響機器、OA機器、產業機械、汽車、鐵路、橋樑、船舶等之防震墊、防震減震器、內裝材;空調或洗衣機等之家電製品等之制震材、防震材、防音材或遮音材;口罩‧運動用護具‧看護用護具‧墊‧鞋之內墊等之衝擊吸收材;黏著薄膜、保護膜黏著層等之黏著材;半導體用工程保護膜;運動用品‧文具‧健康用品等之握柄材;聚丙烯、聚4-甲基-1-戊烯、聚丁烯、聚乙烯等之聚烯烴改質材、彈性體改質材、橡膠改質材、丙烯酸系黏著材用改質材、熱融黏著劑改質材、流痕改質材、熔接改質材、表面改質材等之成形改質材、阻氣改質材、 脫模性改質材等之樹脂改質材、相容化劑(接枝改質)等。
另外,上述第2之4MP1聚合體,亦可藉粉碎處理加工為微粉末。所得之微粉末可使用作為例如制震塗料等之油墨組成物或塗料組成物之添加劑、治金用粉末組成物之添加劑、陶瓷煅燒用粉末組成物之添加劑、黏著劑之添加劑。
〔成形體〕
本發明之成形體係含有上述烯烴聚合體、或1-丁烯聚合體、或4-甲基-1-戊烯聚合體而成。此等烯烴聚合體係藉由射出成形法、擠出成形法、射出延伸吹塑成形法、吹塑成形法、流延成形法、砑光成形法、壓製成形、壓印成形、充氣成形、輥成形等之各種成形法,加工為目標之成形體,例如薄膜、片材、中空成形體、射出成形體、纖維等。
本發明之成形體的用途例可列舉如以下,但並不限定於此等。
作為容器,可舉例如食器、調味料容器、殺菌容器、冷凍保存容器、殺菌袋、微波爐耐熱容器、冷凍食品容器、冰品杯、杯、哺乳瓶、飲料瓶等之食品容器、殺菌容器、瓶容器等,或輸血組合、醫療用瓶、醫療用容器、醫療用中空瓶、醫療用袋、輸液袋、血液保存袋、輸液瓶藥品容器、洗劑容器、柔軟劑用容器、漂白劑用容器、洗髮精用容器、潤絲精用容器、化妝品容器、香水容器、碳粉容器、粉末容器、接黏劑用容器、汽油槽用容器、燈油用容器等。
作為包材,可舉例如食品包材、食用肉包材、加工魚包材、蔬菜包材、水果包材、醱酵食品包材、點心包裝材、氧吸收劑包材、殺菌食品用包材、保鮮膜、醫藥包材、細胞培養袋、細胞檢查薄膜、球根包材、 種子包材、蔬菜‧菇栽培用薄膜、耐熱真空成形容器、熟食容器、熟食用蓋材、業務用包膜、家庭用包膜、烘焙紙盒等。
作為薄膜、片材、帶,可舉例如:可撓印刷基板用脫模薄膜、ACM基板用脫模薄膜、硬性基板用脫模薄膜、硬式可撓印刷基板用脫模薄膜、前端複合材料用脫模薄膜、碳纖維複合材硬化用脫模薄膜、玻璃纖維複合材硬化用脫模薄膜、芳醯胺纖維複合材硬化用脫模薄膜、奈米複合材硬化用脫模薄膜、填充材硬化用脫模薄膜、半導體密封用脫模薄膜、偏光板用脫模薄膜、擴散片用脫模薄膜、稜鏡片用脫模薄膜、反射片用脫模薄膜、脫模薄膜用緩衝薄膜、燃料電池用脫模薄膜、各種橡膠片用脫模薄膜、胺基甲酸酯硬化用脫模薄膜、環氧基硬化用脫模薄膜等之脫模薄膜;太陽能電池單元密封片、太陽能電池單元背板、太陽能電池用塑膠薄膜、電池隔離材、鋰離子電池用隔離材、燃料電池用電解質膜、黏著‧接黏材隔離材、導光板、光碟;切割帶‧研磨帶‧黏晶帶薄膜、二層FCCL、薄膜電容器用薄膜等之半導體用工程薄膜的基材‧黏著材‧隔離材、黏著薄膜、應力緩和薄膜、表層用薄膜、偏光板用薄膜、偏光板用保護薄膜、液晶面板用保護薄膜、光學零件用保護薄膜、透鏡用保護薄膜、電氣零件‧電化製品用保護薄膜、行動電話用保護薄膜、電腦用保護薄膜、觸控面板用保護薄膜、窗玻璃保護薄膜、燒附塗裝用薄膜、遮罩薄膜、電容器用薄膜、電容器薄膜、燃料電池用電容器薄膜、反射薄膜、擴散薄膜、積層體(含玻璃)、耐放射線薄膜、耐γ射線薄膜、多孔薄膜等之保護薄膜;放熱薄膜‧片材、電子零件密封體製造用框、LED模、高頻電路用積層板、高頻纜線用被覆材、光導波路基板、玻璃纖維複合體、碳纖維複合 體;玻璃中間膜、組合玻璃用薄膜、建材用窗薄膜、防彈材、防彈玻璃用薄膜、遮熱片、遮熱薄膜;合成皮用脫膜紙、前端複合材料用脫膜紙、碳纖維複合材硬化用脫膜紙、玻璃纖維複合材硬化用脫膜紙、芳醯胺纖維複合材硬化用脫膜紙、奈米複合材硬化用脫膜紙、填充材硬化用脫膜紙等之脫膜紙、耐熱耐水印畫紙等。
作為其他用途,可舉例如:橡膠軟管製造用心軸、護皮、橡膠軟管製造用護皮、軟管材、管、冷卻水配管、溫水配管、電線被覆材、微波信號纜線被覆材、高頻信號纜線被覆材、環保電線被覆材、車輛用纜線材被覆材、信號纜線被覆材、高壓電線用礙子、配線導管、化妝品‧香水噴霧用管、醫療用管、輸液管、管、線束;汽車‧機車‧鐵路車輛‧航空機‧船舶等之內外裝材、耐磨耗汽車內外裝材、儀表板表皮、門飾板表皮、後車廂飾板表皮、頂板表皮、後柱表皮、椅背飾皮、手枕箱、肘靠、氣囊箱蓋、換擋握柄、車內把手、側踏墊、折疊式護套、行李艙內片材、安全帶插扣、內‧外裝飾件、保險桿裝飾件、側裝飾件、車頂裝飾件、帶裝飾件等之裝飾件材、導流板、車門密封條、車身密封條等之汽車用密封材、窗玻璃導槽、擋泥板、踢板、踏墊、車牌框、汽車用軟管構件、氣導管軟管、氣導管保護套、進氣管、擾流板、正時帶保護密封材、機罩緩衝材、車門緩衝材、杯架、手制動器握柄、換擋握柄保護材、座椅調整把手、線束環、懸架護罩、玻璃導槽、內腰線密封材、天窗導槽、行李艙蓋密封材、模製後側窗襯墊、角落嵌條、玻璃封裝、箱蓋密封材、窗玻璃導槽、副密封、保險桿零件、車體面板、側護板、車 門表皮、車身密封材、軟管、轉向盤、線束護具、座椅調整器護具等之汽車內外裝材,制震輪胎、制動輪胎、賽車輪胎、遙控車輪胎等之特殊輪胎,密封墊、汽車防塵罩、車燈密封材、汽車用罩材、齒輪齒條罩、正時帶、線束、護具、車徽、氣體過濾器密封墊、汽車用連接器、點火線圈、開關、車燈反射鏡、繼電器、電氣控制單元箱、感應器機殼、電磁閥、線圈密封零件;家具‧鞋物‧衣料‧袋物‧建材等之表皮材、建築用密封材、防水密封材、建材密封材、建材墊片、建材用窗薄膜、鐵芯保護構件、地基改良用片材、止水材、泥作材、墊片、門、門框、窗框、冠飾、護壁板、開口框等,地板材、天花板材、壁紙;健康用品(例如止滑墊‧片、防跌倒薄膜‧墊‧片)、健康器具構件、衝擊吸收墊、護具‧保護具(例如頭罩、防護罩)、運動用品(例如運動用握柄、護具)、運動用防具、球拍、護口罩、球、高爾夫球、搬運用具(例如搬運用衝擊吸收握柄、衝擊吸收片)、制震托板、衝擊吸收制震器、絕緣子、鞋物用衝擊吸收材、衝擊吸收發泡體、衝擊吸收薄膜‧片等之衝擊吸收材;握柄材(筆記用具、工具、運動用具、交通工具之握把、日用品、電氣具、家具等)、雜貨、玩具、鞋底、鞋底墊、鞋之中墊‧內墊、鞋墊、托鞋、椅子表皮、皮包、書包、外套‧大衣等衣物、帶、、緞帶、筆記本護套、書套、鑰匙圈、筆袋、錢包、名片夾、車票夾、吸盤、牙刷、地板材、體操用墊、電動工具構件、農機具構件、放熱材、透明基板、防音材、緩衝材、電線纜線材、形狀記憶材料、連接器、開關、插頭、家電零件(馬達零件、機殼等);醫療用墊片、醫療用蓋、藥栓、墊片、將嬰兒食品‧酪農製品‧醫藥品‧滅菌水等填充於瓶後進行煮沸處理、高壓蒸氣滅菌處理等高溫處理的 用途的包裝材、工業用密封材、工業用裁縫台、牌照殼、保特瓶蓋內墊等之蓋內墊;保護膜黏著層、熱融黏著材等之黏著材;文具、辦公用品、OA影印機腳、FAX腳、裁縫機腳、馬達支撐墊、音響防震材等之精密機器‧OA機器支撐構件、OA用耐熱包材、獸籠、燒杯、量筒等之理化學實驗機器、醫療用膜‧片、細胞培養用薄膜‧片、注射筒、光學測定用槽、衣物箱、透明箱、文件夾、透明片、桌墊;作為纖維之用途,可舉例如單絲、多絲、短纖、中空絲、不織布、伸縮性不織布、纖維、防水布、通氣性之織物或布、紙尿片、生理用品、衛生用品、過濾器、濾蟲器、集塵用過濾器、空氣清淨機、中空絲過濾器、淨水過濾器、濾布、濾紙、氣體分離膜等。
另外,亦適合使用於塗敷材、由塗敷材所獲得之薄膜、片材、脫模材、撥水材、絕緣膜、接黏材、黏著材、塗敷紙、透明密封膠、密封膠、熱融型黏接著劑、溶劑型黏接著劑、薄膜狀黏接著劑、布膠帶、補強膠帶、彈性接黏劑等。
[實施例]
以下,根據實施例更具體說明本發明,但本發明並不限定於實施例。
[各種物性之測定法] 極限黏度([η])
使用離合公司製之自動動黏度測定裝置VMR-053PC以及改良烏氏型毛細管黏度計,求得十氫萘、135℃下之比黏度ηsp,並以下式算出極限黏度([η])。
[η]=ηsp/{C(1+K.ηsp)}(C:溶液濃度[g/dl],K:常數)
重量平均分子量(Mw),數量平均分子量(Mn)
使用Waters公司製之Alliance GPC2000,以流量1.0ml/分鐘移動500μl之濃度0.15(w/v)%之試料溶液,進行重量平均分子量(Mw)及數量平均分子量(Mn)的測定。標準聚苯乙烯係使用Tosoh公司製,依聚苯乙烯換算而算出分子量。
‧分離管柱:TSKgel GMH6-HT以及TSKgel GMH6-HTL(各內徑7.5mm,長度300mm各2根)
‧管柱溫度:140℃
‧移動相:鄰二氯苯(含有0.025wt%二丁基羥基甲苯)
‧檢測器:示差折射器
融點(Tm)、結晶化溫度(Tc)、融解熱量(△Hm)、CFC分析
<藉常壓聚合所得之丁烯均聚物的融點、結晶化溫度>
使用Seiko Instruments公司製RDC220,於氮環境下(50mL/min),將約5mg之試料由30℃升溫至200℃。依200℃保持5分鐘後,依10℃/min冷卻至-50℃。依-50℃保持5分鐘後,依10℃/min升溫至200℃。將於冷卻時所觀測到之結晶化波峰之頂點作為結晶化溫度(Tc),將第2次升溫時所觀測到之結晶熔融波峰的頂點作為融點(TmII)。
將如上述般經測定之試料依23℃靜置10日以上後,由室溫30℃依10℃/min升溫至200℃。將升溫時所觀測到之結晶熔融波峰的頂點作為融點(Tm)。
<藉加壓聚合所得之丁烯均聚物的融點、結晶化溫度>
使用SII Technology公司製EXSTAR DSC6220,於氮環境下 (30mL/min),將約4mg之試料由30℃升溫至200℃。依200℃保持5分鐘後,以20℃/min冷卻至-50℃。於-50℃保持5分鐘後,以10℃/min升溫至200℃。
再將試料於室溫(20~25℃)靜置10日以上後,依10℃/min由30℃升溫至200℃。以200℃保持5分鐘後,以20℃/min冷卻至30℃。將冷卻時所觀測到之結晶化波峰的頂點作為結晶化溫度(Tc),將升溫至所觀測到之結晶熔融波峰的頂點作為融點(Tm)。
<交叉分級層析法(CFC)>
使用下述裝置進行測定。
裝置:交叉分級層析儀CFC2(Polymer Char公司製)
檢測器:帶通濾波器型紅外檢測器IR4(Polymer Char公司製)
檢測波長範圍:約3000~2800cm-1
TREF管柱:不銹鋼管柱(外徑3/8吋×長15cm,裝置內藏)
GPC管柱:Shodex HT-806M×3根(昭和電工公司製)
分子量換算:由單分散聚苯乙烯(Tosho公司製)所進行的聚苯乙烯換算
洗提液:鄰二氯苯(特級等級,和光純藥公司製)
流速:1.0mL/min
試料注入量:0.5mL
GPC管柱溫度:140℃
將依下述條件所調製之樣本注入至CFC裝置,於TREF管柱中依145℃保持10分鐘、接著依140℃保持20分鐘。其後,依1℃/min冷卻至-20℃並靜置60分鐘。其後,依下述洗提區分將TREF管柱進行升溫,將每次升溫操作所洗提出之成分送液至GPC管柱決定分子量分佈與洗提量。以洗 提開始溫度(累積洗提重量%成為0.5重量%之溫度)作為[TS],以洗提結束溫度(累積洗提重量%成為99重量%之溫度)作為[TE],求得以([TS]+[TE])/2所特定之溫度[TX]下之、相對於總洗提量的累積洗提量。在[TX]與洗提區分之溫度不一致時,係由中夾了[TX]之[TX]最近2點之洗提區分之溫度下各別的累積洗提量,將相對於該2點間之溫度區域中之溫度的累積洗提量假設為具有線性,求得[TX]下之累積洗提量。
<試料調製條件>
試料調製濃度:120mg/30mL
試料調製溶媒:鄰二氯苯(特級等級,和光純藥公司製)
試料調製溫度:145℃
洗提區分:-20、0、2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58、60、62、64、66、68、70、140℃(共計38分餾)
<4-甲基-1-戊烯均聚物之融點、結晶化溫度、融解熱量>
使用SII Technology公司製EXSTAR DSC7020,於氮環境下(30mL/min),將約5mg之試料由30℃升溫至300℃。依300℃保持5分鐘後,以10℃/min冷卻至0℃。於0℃保持5分鐘後,以10℃/min升溫至300℃。將於冷卻時所觀測到之結晶化波峰之頂點作為結晶化溫度(Tc),將第2次升溫時所觀測到之結晶熔融波峰的頂點作為融點(Tm)。並由此結晶熔融波峰之累積值算出融解熱量△Hm。
<4-甲基-1-戊烯/丙烯共聚合體之融點、結晶化溫度、融解熱量>
使用SII Technology公司製EXSTAR DSC7020,於氮環境下 (30mL/min),將約5mg之試料由30℃升溫至250℃。依250℃保持5分鐘後,以10℃/min冷卻至0℃。於0℃保持5分鐘後,以10℃/min升溫至250℃。將於冷卻時所觀測到之結晶化波峰之頂點作為結晶化溫度(Tc),將第2次升溫時所觀測到之結晶熔融波峰的頂點作為融點(Tm)。並由此結晶熔融波峰之累積值算出融解熱量△Hm。
<4-甲基-1-戊烯/1-辛烯共聚合體、4-甲基-1-戊烯/1-癸烯共聚合體、4-甲基-1-戊烯/1-十六烯/1-十八烯共聚合體之融點、結晶化溫度、融解熱量>
使用SII Technology公司製EXSTAR DSC6220,於氮環境下(30mL/min),將約4mg之試料由30℃升溫至280℃。依280℃保持5分鐘後,以10℃/min冷卻至-50℃。於-50℃保持5分鐘後,以10℃/min升溫至280℃。將於冷卻時所觀測到之結晶化波峰之頂點作為結晶化溫度(Tc),將第2次升溫時所觀測到之結晶熔融波峰的頂點作為融點(Tm)。並由此結晶熔融波峰之累積值算出融解熱量△Hm。
聚丁烯之立體規則性(mmmm與位置不規則性)
藉由13C-NMR光譜算出內消旋五元體分率(mmmm)與由2,1-插入、1,4-插入起因的位置不規則性。13C-NMR光譜係於鄰二氯苯與氚化苯的4/1混合溶媒(鄰二氯苯/氚化苯;體積比)0.6ml中,溶解樣本50mg,使用Bruker BioSpin製AVANCE IIIcryo-500型核磁共振裝置,依120℃、使用45°脈衝,依重複時間5.5秒、累積次數256次進行測定。化學位移之基準值係設為來自側鏈亞甲基之mmmm的信號27.50ppm。波峰之歸屬係參考K.Matsuzaki,T.Uryu,T.Asakura,NMR SPECTROSCOPY AND STEREOREGULARITY OF POLYMERS,JAPAN SCIENTIFIC SOCIETIES PRESS所進行。
本測定法中,由於來自mmmm與mmmr、及rmmr與mmrr的波峰的分離不足,故設為I(mmmr)=I(mmrr)+I(mrrm)、I(rmmr)=0,依下式算出內消旋五元體分率(mmmm):F(mmmm)×100(%)。
F(mmmm)=[I(mmmm+mmmr)-I(rmmr+mmrr)-I(mrrm)]/I(CH2)
I(X)表示歸屬於X之26.2~28.5ppm之來自亞甲基的波峰積。I(CH2)表示26.2~28.5ppm之來自亞甲基的總波峰面積。又,以未滿0.01%作為檢測極限以下。
4-甲基-1-戊烯/丙烯共聚合體中之丙烯含量 4-甲基-1-戊烯/α-烯烴共聚合體中之α-烯烴含量
4-甲基-1-戊烯/丙烯共聚合體中之丙烯含量及4-甲基-1-戊烯/α-烯烴共聚合體中之α-烯烴含量,係藉以下裝置及條件,由13C-NMR光譜所算出。
使用Bruker BioSpin製AVANCE IIIcryo-500型核磁共振裝置,溶媒為鄰二氯苯/苯-d6(4/1 v/v)混合溶媒,試料濃度為55mg/0.6mL,測定溫度為120℃,觀測核為13C(125MHz),序列為單脈衝質子寬頻帶去耦合,脈衝寬為5.0μ秒(45°脈衝),重複時間為5.5秒,累積次數64次,以苯-d6之128ppm作為化學位移之基準值而測定。使用主鏈次甲基信號之積分值,依下式算出丙烯含量。
丙烯含量(%)=[P/(P+M)]×100
於此,P表示丙烯主鏈次甲基信號的總波峰面積,M表示4-甲基-1-戊烯主鏈次甲基信號的總波峰面積。
針對4-甲基-1-戊烯/α-烯烴共聚合體,同樣地使用來自α-烯 烴(4MP1除外)之信號的積分值,算出α-烯烴的含量。
4-甲基-1-戊烯聚合體之異二元體立體規則性
4-甲基-1-戊烯聚合體異二元體立體規則性(內消旋二元體分率),係定義為在以平面曲折構造表現聚合物鏈中之任意2個之頭尾鍵結的4-甲基-1-戊烯單位連鎖時,其異丁基分枝之方向為相同的比例,由13C-NMR光譜依下式所求得。
異二元體立體規則性(%)=[m/(m+r)]×100
[式中,m、r表示由下式
所示之頭-尾鍵結之4-甲基-1-戊烯單位之來自主鏈亞甲基的吸收強度。]
13C-NMR光譜係使用Bruker BioSpin製AVANCE IIIcryo-500型核磁共振裝置,溶媒為鄰二氯苯/苯-d6(4/1 v/v)混合溶媒,試料濃度為60mg/0.6mL,測定溫度為120℃,觀測核為13C(125MHz),序列為單脈衝質子寬頻帶去耦合,脈衝寬為5.0μ秒(45°脈衝),重複時間為5.5秒,以苯-d6之128ppm作為化學位移之基準值而測定。
波峰區域係將41.5~43.3ppm之區域以波峰輪廓之極小點所區隔,將高磁場側分類為第1區域,將低磁場側分類為第2區域。
第1區域中,由(m)所示之4-甲基-1-戊烯單位2連鎖中之主 鏈亞甲基進行共振,將視為4-甲基-1-戊烯均聚合體之累積值設為「m」。第2區域中,由(r)所示之4-甲基-1-戊烯單位2連鎖中之主鏈亞甲基進行共振,將其累積值設為「r」。又,以未滿0.01%作為檢測極限以下。
4-甲基-1-戊烯均聚合體之溶媒可溶份量(SP)
藉由過濾聚合體漿料,分離為固體狀聚合體(白色固體)與濾液。接著,由濾液藉蒸發法去除溶媒,得到溶解於濾液中之聚合體。接著根據以下式,算出濾液中之聚合體量。
濾液中之聚合體量(重量%)=W2/(W1+W2)×100
W1:所濾別之固體狀聚合體(白色固體)之質量(g)
W2:溶解於漿料之濾液中的聚合體之質量(g)
4-甲基-1-戊烯聚合體之凝膠分率
凝膠分率係於索氏萃取機#325網目的金屬網中裝入試料約5g,以沸騰對二甲苯迴流進行萃取3小時,由殘存於金屬網內之物的重量,依下式所算出。
凝膠分率(%)=(殘存物量[g]/填裝量[g])×100
化合物及觸媒之構造‧純度的鑑定
由實施例所得之化合物及觸媒的構造‧純度,係使用核磁共振(NMR,日本電子公司製GSH-270)、電離脫離質量分析(FD-MS,日本電子公司製SX-102A)、氣相層析質量分析(GC-MS,Hewlett Packard公司製HP6890/HP5973或島津製作所公司製GC-17A/GCMS-QP5050A)等所決定。二茂金屬化合物之立體構造係藉由比較由1H-NMR測定所得之光譜、與由理論性計算所得之各種立體異構物之光譜而決定。
在未特別限定之下,所有實施例係於乾燥氮環境下,使用乾 燥溶媒而進行。
1,1,4,4,7,7,10,10-八甲基-2,3,4,7,8,9,10,12-八氫-1H-二苯并[b,h]茀係依國際公開第2001/27124號公報之實施例所合成。以下將1,1,4,4,7,7,10,10-八甲基-2,3,4,7,8,9,10,12-八氫-1H-二苯并[b,h]茀記載為「八甲基茀」。
〔過渡金屬化合物之合成〕 [合成例1](1-八甲基茀-12'-基-5-第三丁基-3-異丙基-1-甲基-1,2,3,4-四氫戊搭烯)二氯化鋯(觸媒A)之合成
(1)5-第三丁基-1-異丙基-3-甲基-1,2-二氫戊搭烯:於氮環境下,在100ml三口燒瓶中於冰水浴下裝入甲醇50ml、第三丁基環戊二烯2.54g、吡咯啶5.2ml、異丁基醛2.1ml。回復至室溫攪拌4小時,再以40℃攪拌1.5小時。追加異丁基醛2.1ml,於室溫攪拌18小時,再以70℃攪拌7小時。裝入丙酮7.0ml,以70℃反應17小時。再裝入丙酮10ml,以70℃攪拌6小時。將反應溶液注入至0.5M鹽酸150ml中。分離有機層,以己烷150ml萃取水層,合併先前之有機層,以飽和碳酸氫鈉水溶液、水、飽和氯化鈉水溶液洗淨。以硫酸鎂乾燥後,餾除溶媒。以管柱層析法精製,藉此得到標題化合物。產量0.96g,產率21%。
(2)1-八甲基茀-12'-基-5-第三丁基-3-異丙基-1-甲基-1,2,3,4-四氫戊搭烯:於氮環境下,在100ml三口燒瓶中裝入八甲基茀1.54g、第三丁基甲基醚30ml。於冰水浴下,歷時12分鐘滴下1.59M之正丁基鋰己烷溶液2.60ml。回復至室溫攪拌2小時,再以40℃攪拌2小時。歷時30分鐘於-12℃下加入5-第三丁基-1-異丙基-3-甲基-1,2-二氫戊搭烯0.96g之第三丁基甲基醚溶液15ml。於室溫攪拌21小時後,將反應溶液加入至0.1N鹽酸 100ml中。分離有機層,以己烷80ml萃取水層,合併先前之有機層,以飽和碳酸氫鈉水溶液洗淨1次、水洗淨2次、飽和食鹽水洗淨1次。以硫酸鎂乾燥後,餾除溶媒。將所得固體以甲醇洗淨,藉此得到標題化合物。產量1.48g,產率62%。
根據FD-MS之測定結果,鑑定目標物。FD-MS:m/Z=602.5(M+).
根據1H-NMR,為複數之異構物的混合物。
(3)觸媒A:於氮環境下,在30ml舒倫克管中裝入1-(八甲基茀-12'-基)-5-第三丁基-3-異丙基-1-甲基-1,2,3,4-四氫戊搭烯0.699g、α-甲基苯乙烯0.140g、己烷10g、環戊基甲基醚1.15ml。於26℃油浴下,歷時15分鐘滴下1.65M之正丁基鋰己烷溶液1.45ml,以70℃攪拌4小時後,以冰/丙酮浴冷卻。將系統內減壓5分鐘以脫氣,以氮回復為常壓。加入四氯化鋯0.293g後,一邊慢慢回復至室溫、一邊反應17.5小時。餾除溶媒後,以己烷萃取可溶份。藉過濾去除不溶份,以己烷洗淨不溶份。濃縮所得之溶液藉己烷進行再結晶。濾取固體後,減壓乾燥,藉此得到目標物。產量0.189g,產率21.4%。
根據1H-NMR與FD-MS之測定結果,鑑定目標物。
1H-NMR(270MHz,CDCl3,TMS基準):δ 7.98(s,1H),7.90(s,1H),7.66(s,1H),7.42(s,1H),6.22(d,1H),5.26(d,1H),3.74-3.67(m,1H),3.00-2.91(m,1H),2.62-2.54(m,1H),2.31(s,3H),1.80-1.68(m,9H),1.55(s,3H),1.42(s,3H),1.40(s,3H),1.39(s,3H),1.28(s,3H),1.27(s,3H),1.25(s,3H),1.09(s,9H),1.04(d,3H),1.01(d,3H).
FD-MS:m/Z=762.3(M+)
[合成例2](1-八甲基茀-12'-基-3,5-二第三丁基-1-甲基-1,2,3,4-四氫戊搭烯)二 氯化鋯(觸媒B)之合成
(1)1,5-二第三丁基-3-甲基-1,2-二氫戊搭烯:於氮環境下,在100ml三口燒瓶中裝入環戊基甲基醚50ml、第三丁基環戊二烯2.5g。於冰水浴下,於此溶液中歷時40分鐘滴下1.57M之正丁基鋰己烷溶液13.2ml。回復至室溫攪拌2小時。於冰水浴下,歷時3分鐘滴下新戊醛2.02g,回復至室溫攪拌3小時。裝入吡咯啶8.3ml與丙酮6.0ml,以80℃攪拌16小時。將1.1N鹽酸100ml注入至反應溶液中。分離有機層,以己烷100ml萃取水層,合併先前之有機層,以飽和碳酸氫鈉水溶液、水、飽和氯化鈉水溶液洗淨。以硫酸鎂乾燥後,餾除溶媒。將所得固體加入至乙醇與甲醇之混合溶媒中,攪拌。過濾析出之固體,減壓乾燥,藉此得到標題化合物。產量2.09g,產率44%。
根據1H-NMR之測定結果,鑑定目標物。
1H-NMR(270MHz,CDCl3,TMS基準):δ 5.99(s,1H),5.85(s,1H),2.95-2.66(m,3H),2.13(s,3H),1.22(s,9H),0.91(s,9H).
(2)1-八甲基茀-12'-基-3,5-二第三丁基-1-甲基-1,2,3,4-四氫戊搭烯:於氮環境下,在100ml三口燒瓶中裝入八甲基茀2.27g、環己烷50ml、環戊基甲基醚1.4ml。於冰水浴下,歷時10分鐘滴下1.57M之正丁基鋰己烷溶液3.90ml。以50℃攪拌2小時。加入1,5-二第三丁基-3-甲基-1,2-二氫戊搭烯1.50g。以80℃攪拌17小時後,於反應溶液中加入0.2N鹽酸50ml。分離有機層,以己烷200ml萃取水層,合併先前之有機層,以飽和碳酸氫鈉水溶液洗淨1次、水洗淨2次、飽和食鹽水洗淨1次。以硫酸鎂乾燥後,餾除溶媒。將所得固體以管柱層析法精製後,以己烷洗淨,藉此得到淡黃色粉末之標題化合物。產量1.91g,產率53%。
根據FD-MS之測定結果,鑑定目標物。FD-MS: m/Z=616.5(M+).
根據1H-NMR,為複數之異構物的混合物。
(3)觸媒(B):於氮環境下,在30ml舒倫克管中裝入1-八甲基茀-12'-基-3,5-二第三丁基-1-甲基-1,2,3,4-四氫戊搭烯1.00g、α-甲基苯乙烯0.386g、環己烷16g、環戊基甲基醚1.90ml。於26℃油浴下,歷時10分鐘滴下1.57M之正丁基鋰己烷溶液2.10ml,以70℃攪拌5小時後,以冰/丙酮浴冷卻。將系統內減壓5分鐘以脫氣,以氮回復為常壓。加入四氯化鋯0.3978g後,去除丙酮浴,於室溫反應16小時。餾除溶媒後,以己烷萃取可溶份。藉過濾去除不溶份,以己烷洗淨不溶份。濃縮所得之溶液藉己烷進行再結晶。濾取固體後,減壓乾燥,藉此得到目標物。產量0.423g,產率34%。
根據1H-NMR與FD-MS之測定結果,鑑定目標物。
1H-NMR(270MHz,CDCl3,TMS基準):δ 7.97(1H,s),7.90(1H,s),7.67(1H,s),7.43(1H,s),6.22(1H,d),5.27(1H,d),3.58(1H,dd),3.08(1H,dd),2.63(1H,dd),2.31(3H,s),1.784-1.661(11H,m),1.552(3H,s),1.445-1.352(3H,m),1.30-1.28(12H,m),1.24(3H,s),1.09(9H,s),0.98(9H,s).
FD-MS:m/Z=776.3(M+).
[合成例3](8-八甲基茀-12'-基-(2-第三丁基-8-甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚))二氯化鋯(觸媒C)之合成
(1)2-第三丁基-8-甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚:於氮環境下,在100ml三口燒瓶中裝入THF50ml、第三丁基環戊二烯2.5g。於冰/丙酮浴下,於此溶液中歷時40分鐘滴下1.65M之正丁基鋰己烷溶液13.0ml。回復至室溫攪拌17小時。於冰水浴下,加入氯化鎂2.19g,回復至室溫攪拌6.5小時。加入碘化銅0.432g,於冰/丙酮浴下,歷時10分鐘滴下1-乙醯基環己烯之己 烷溶液7.08g(38.3wt%),回復至室溫攪拌19小時。裝入醋酸1.3ml、吡咯啶5.2ml,以室溫攪拌17小時。將反應溶液注入至0.5N鹽酸120ml中。分離有機層,以己烷200ml萃取水層,合併先前之有機層,以水、飽和碳酸氫鈉水溶液、飽和氯化鈉水溶液洗淨。以硫酸鎂乾燥後,餾除溶媒。由甲醇進行再結晶,藉此得到標題化合物。產量0.445g,產率9.5%。
根據1H-NMR與GC-MS之測定結果,鑑定目標物。
1H-NMR(Toluene-d8):δ 6.01(1H,s),5.98(1H,s),2.88-2.73(2H,m),1.84(3H,s),1.80-1.03(17H,m).
GC-MS:m/Z=228(M+).
(2)8-八甲基茀-12'-基-(2-第三丁基-8-甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚):於氮環境下,在30ml舒倫克管中裝入八甲基茀0.655g、第三丁基甲基醚20ml。於冰水浴下,歷時15分鐘滴下1.65M之正丁基鋰己烷溶液1.10ml。一邊慢慢回復至室溫、一邊攪拌22小時。加入2-第三丁基-8-甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚0.453g。於室溫攪拌19小時,再以50℃攪拌6.5小時後,於0.1N鹽酸100ml中加入反應溶液。分離有機層,以己烷100ml萃取水層,合併先前之有機層,以飽和碳酸氫鈉水溶液洗淨1次、水洗淨2次、飽和食鹽水洗淨1次。以硫酸鎂乾燥後,餾除溶媒。將所得固體以管柱層析法精製後,以丙酮洗淨,藉此得到標題化合物。產量0.50g,產率48%。
根據FD-MS之測定結果,鑑定目標物。FD-MS:m/Z=614.5(M+).
根據1H-NMR,為複數之異構物的混合物。
(3)觸媒(C):於氮環境下,在30ml舒倫克管中裝入8-八甲基茀-12'-基-(2-第三丁基-8-甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)0.503g、α- 甲基苯乙烯0.193g、己烷13.6g、環戊基甲基醚0.95ml。於25℃油浴下,歷時10分鐘滴下1.65M之正丁基鋰己烷溶液1.00ml,以70℃攪拌4小時後,以冰/丙酮浴冷卻。將系統內減壓5分鐘以脫氣,以氮回復為常壓。加入四氯化鋯0.193g後,去除丙酮浴,於室溫反應17小時。餾除溶媒後,以己烷萃取可溶份。藉過濾去除不溶份,以己烷洗淨不溶份。濃縮所得之溶液。藉傾析去除上清液,以己烷洗淨固體,減壓乾燥,藉此得到目標物。產量0.057g,產率9.0%。
根據1H-NMR與FD-MS之測定結果,鑑定目標物。
1H-NMR(270MHz,CDCl3,TMS基準):δ 7.99(1H,s),7.86(1H,s),7.61(1H,s),7.32(1H,s),6.16(1H,s),5.33(1H,s),3.58-3.49(2H,m),2.34-2.29(1H,m),2.20(3H,s),1.93-1.19(39H,m),1.10(9H,s).
FD-MS:m/Z=774.3(M+).
[合成例4](8-八甲基茀-12'-基-(2-(金剛烷-1-基)-8-甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)二氯化鋯(觸媒D)之合成
(1)1-金剛基環戊二烯基鋰:於氮環境下,於200ml三口燒瓶中裝入乙基溴化鎂之第三丁基甲基醚溶液(1.0M、40ml)。將此溶液以冰浴冷卻之下,歷時20分鐘滴下環戊二烯2.64g,回復至室溫攪拌17小時,調製溶液A。
於氮環境下,於500ml三口燒瓶中裝入二異丙基醚200ml、三氟甲磺酸銅(II)0.36g。水浴下,於此溶液中歷時20分鐘滴下先前調製之溶液A。使1-溴化金剛烷4.30g溶解於二異丙基醚40ml中並滴下,以70℃攪拌10小時。將反應液冷卻至室溫後,於水浴下,加入飽和氯化鈉水溶液200ml。分離有機層,以己烷200ml萃取水層,合併先前之有機層,以水洗淨,以硫酸鎂乾燥後,餾除溶媒。使用矽膠管柱層析進行精製,得到4.2g之粗製生成物。
於氮環境下,於100ml舒倫克燒瓶中裝入所得之粗製生成物4.2g、己烷20mL。於冰浴下,於此溶液中歷時20分鐘滴下1.6M之正丁基鋰己烷溶液13.8mL,回復至室溫攪拌17小時。由此反應液濾取析出物,以己烷洗淨,藉此得到標題化合物。產量2.70g、產率66%。
根據1H-NMR之測定結果,鑑定目標物。
1H-NMR(THF-d8):δ 5.57-5.55(2H,m),5.52-5.50(2H,m),1.96(3H,s),1.87(6H,s),1.74(6H,s).
(2)2-(金剛烷-1-基)-8-甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚:於氮環境下,於100ml三口燒瓶中裝入THF40ml、氯化鎂1.57g。使1-金剛烷基環戊二烯基鋰3.09g溶解於THF10ml中並歷時5分鐘滴下至此溶液中,於室溫下攪拌2小時,再於50℃攪拌3小時。於冰/丙酮浴下,使1-乙醯基環己烯1.96g(15.75mmol)溶解於THF10ml並歷時10分鐘滴下,於室溫攪拌19小時。於冰/丙酮浴下,裝入醋酸1.0ml、吡咯啶3.1ml,於室溫攪拌17小時。於冰/丙酮浴下,加入飽和氯化鈉水溶液30ml。加入己烷100ml後,分離有機層,以己烷200ml萃取水層,與先前之有機層合併,以水洗淨2次。以硫酸鎂乾燥後,餾除溶媒。由甲醇進行再結晶,藉此得到標題化合物。產量2.134g、產率47%。
根據1H-NMR與GC-MS之測定結果,鑑定目標物。
1H-NMR(Toluene-d8):δ 6.06(1H,s),5.98(1H,s),2.88-2.78(2H,m),1.98-1.13(26H,m).
GC-MS:m/Z=306(M+).
(3)8-八甲基茀-12'-基-(2-(金剛烷-1-基)-8-甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚):於氮環境下,於30ml舒倫克管裝入八甲基茀1.546g、第三丁基甲基醚40ml。於冰/丙酮浴下,歷時15分鐘滴下1.6M之正丁基鋰己烷溶液 2.62ml。慢慢回復至室溫並攪拌22小時。加入2-(金剛烷-1-基)-8-甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚1.349g。於室溫下攪拌19小時,再於50℃下攪拌8小時後,將反應溶液加入至飽和氯化銨水溶液100ml中。分離有機層,以己烷100ml萃取水層,合併先前之有機層,以水洗淨2次,以硫酸鎂乾燥後,餾除溶媒。將所得固體以丙酮洗淨,藉此得到標題化合物。產量1.51g、產率54%。
根據FD-MS之測定結果,鑑定目標物。FD-MS:m/Z=693(M+).
根據1H-NMR,為複數之異構物的混合物。
(4)觸媒(D):於氮環境下,在100ml舒倫克管中裝入8-八甲基茀-12'-基-(2-(金剛烷-1-基)-8-甲基-3,3b,4,5,6,7,7a,8-八氫環戊[a]茚)1.039g、α-甲基苯乙烯0.47ml、己烷30ml、環戊基甲基醚2.62ml。於25℃之油浴下,將1.6M之正丁基鋰己烷溶液2.18ml歷時10分鐘滴下。以50℃攪拌4小時後,過濾析出物,以己烷洗淨,藉此得到桃色粉末。於100ml舒倫克管中,將此桃色粉末、二乙基醚30ml裝入並以乾冰/丙酮浴予以冷卻後,一邊使四氯化鋯0.385g(1.65mmol)懸浮於二乙基醚30ml、一邊加入。其後慢慢升溫至室溫並攪拌16小時。
將溶媒減壓餾除後,使用二氯甲烷約70ml由殘留物萃取可溶份。濃縮所得溶液後,加入己烷50ml,藉過濾去除不溶物。將此溶液濃縮至約10ml後,於-30℃靜置一晚。藉過濾濾取析出之粉末,以己烷洗淨,得到0.384g橙色粉。於此橙色粉加入二乙基醚5ml使其溶解,於-30℃靜置一晚。藉過濾濾取析出之粉末,以己烷洗淨,得到目標物。產量0.220g、產率17%。
根據1H-NMR之測定結果,鑑定目標物。
1H-NMR(270MHz,CDCl3,TMS基準):δ 7.98(1H,s),7.86(1H, s),7.60(1H,s),7.37(1H,s),6.19(1H,J=1.6Hz,d),5.33(1H,J=1.6Hz,d),3.58-3.44(2H,m),2.35-2.28(1H,m),2.18(3H,s),1.94-1.18(54H,m).
[合成例5](1-八甲基茀-12'-基-5-金剛烷基-3-異丙基-1-甲基-1,2,3,4-四氫戊搭烯)二氯化鋯(觸媒E)之合成
(1)5-金剛烷基-1-異丙基-3-甲基-1,2-二氫戊搭烯:於氮環境下,在100ml三口燒瓶中裝入合成例4之金剛烷基環戊二烯基鋰2.5g、環戊基甲基醚60ml,施加冰水浴。於其中裝入異丁基醛1.33ml,回復至室溫攪拌17小時。加入異丁基醛0.66ml,於室溫下攪拌7小時。再加入異丁基醛0.66ml並於50℃攪拌17小時。冷卻至室溫,加入吡咯啶5.2ml、丙酮4.0ml,以70℃反應18小時。加入飽和氯化銨水溶液,分離有機層,以二乙基醚萃取水層。合併先前之有機層,以飽和碳酸氫鈉水溶液、水、飽和氯化鈉水溶液洗淨。以硫酸鎂乾燥後,餾除溶媒。以管柱層析法精製後,以乙醇洗淨而得到標題化合物。產量706mg,產率20%。
根據1H-NMR(CDCl3)、FD-MS之測定結果,鑑定目標物。
1H-NMR(270MHz,CDCl3):δ 6.03(s,1H),5.83(s,1H),3.07-2.97(m,1H),2.78-2.73(m,1H),2.66-2.60(m,1H),2.14-1.74(m,19H),0.961(s,3H),0.936(s,3H).
FD-MS:m/Z=294.3(M+).
(2)1-八甲基茀-12'-基-5-金剛烷基-3-異丙基-1-甲基-1,2,3,4-四氫戊搭烯:於氮環境下,在100ml三口燒瓶中裝入八甲基茀893mg、第三丁基甲基醚20ml。歷時5分鐘滴下1.63M之正丁基鋰己烷溶液1.5ml。於室溫攪拌2小時,再以40℃攪拌2小時。回復至室溫後,於冰浴下,加入使5-金剛烷基-1-異丙基-3-甲基-1,2-二氫戊搭烯748mg溶解於第三丁基甲基醚30ml之溶液。於室溫攪拌24小時後,加入飽和氯化銨水溶液,分離有機層, 以飽和碳酸氫鈉水溶液、水、飽和氯化鈉水溶液洗淨。以硫酸鎂乾燥後,餾除溶媒。將所得固體以甲醇洗淨,藉此得到標題化合物。產量1.027g,產率64%。
根據FD-MS之測定結果,鑑定目標物。
根據1H-NMR,為複數之異構物的混合物。
FD-MS:m/Z=680.6(M+).
(3)觸媒(E):於氮環境下,在100ml舒倫克燒瓶中裝入1-八甲基茀-12'-基-5-金剛烷基-3-異丙基-1-甲基-1,2,3,4-四氫戊搭烯1000mg、己烷30ml、環戊基甲基醚2.57ml、α-甲基苯乙烯0.46ml。歷時10分鐘滴下1.63M之正丁基鋰己烷溶液2.16ml,以70℃攪拌4小時後。餾除溶媒,於所得固體中加入己烷20ml。藉過濾回收固體,於減壓下乾燥。將所得固體708mg裝入至100ml舒倫克燒瓶中,接著裝入二乙基醚40ml。於乾冰-甲醇浴下,裝入四氯化鋯255mg,攪拌30分鐘。去除乾冰-甲醇浴,回復至室溫並攪拌18小時。餾除溶媒,以二氯甲烷、己烷萃取可溶份。濃縮所得之溶液,使其溶解於己烷2ml,於-20℃進行再結晶。藉過濾回收析出之紅色固體,以己烷洗淨後,於減壓下乾燥,藉此得到標題化合物。產量207.6mg,產率17%。
根據1H-NMR(CDCl3)與FD-MS之測定結果,鑑定目標物。
1H-NMR(270MHz,CDCl3):δ 7.97(s,1H),7.89(s,1H),7.65(s,1H),7.42(s,1H),6.24(d,1H),5.25(d,1H),3.74-3.67(m,1H),3.00-2.91(m,1H),2.62-2.53(m,1H),2.30(s,3H),1.88-1.24(m,48H),1.04(d,3H),1.01(d,3H).
FD-MS:m/Z=840.3(M+).
[比較合成例1][3-(八甲基茀-12'-基)(1,1,3-三甲基-5-第三丁基-1,2,3,3a-四氫戊搭烯)]二氯化鋯(觸媒a)之合成
(1)5-第三丁基-1,1,3-三甲基-1,2-二氫戊搭烯:於氮環境下,在200ml三 口燒瓶中裝入第三丁基環戊二烯4.83g、4-甲基戊-3-烯-2-酮9.0ml、甲醇40ml、吡咯啶16.5ml。迴流下攪拌43小時。將反應溶液注入至1N鹽酸250ml中。分離有機層,以己烷200ml萃取水層,合併先前之有機層,以水、飽和氯化鈉水溶液洗淨。以硫酸鎂乾燥後,餾除溶媒。以管柱層析法精製,藉此得到標題化合物。以氣相層析法分析之結果,純度為86.8%。產量5.46g,產率59.4%。
1H-NMR(270MHz,CDCl3,TMS基準):δ 5.87(s,1H),5.79(s,1H),2.94(d,1H),2.10(t,3H),1.27(s,1H),1.21(s,9H).
GC-MS:m/Z=202(M+).
(2)3-(八甲基茀-12'-基)(1,1,3-三甲基-5-第三丁基-1,2,3,3a-四氫戊搭烯):於氮環境下,在100ml三口燒瓶中裝入八甲基茀1.58g、二乙基醚30ml。於冰/丙酮浴下,歷時15分鐘滴下1.56M之正丁基鋰己烷溶液2.7ml。一邊慢慢回復至室溫、一邊攪拌25小時。歷時5分鐘加入5-第三丁基-1,1,3-三甲基-1,2-二氫戊搭烯0.95g之二乙基醚溶液10ml。於迴流下攪拌56小時後,於1N鹽酸100ml中注入反應溶液。分離有機層,以己烷75ml萃取水層2次,合併先前之有機層,以飽和碳酸氫鈉水溶液洗淨1次、水洗淨2次、飽和食鹽水洗淨1次。以硫酸鎂乾燥後,餾除溶媒。將所得固體以管柱層析法精製後,以戊烷及乙醇洗淨,藉此得到標題化合物。產量2.02g,產率84%。
根據1H-NMR與FD-MS之測定結果,鑑定目標物。
1H-NMR(270MHz,CDCl3,TMS基準):δ 7.58(s,1H),7.55+7.54(s,1H),7.50+7.49(s,1H),6.89+6.46(s,1H),6.32+5.93(s,1H),3.87+3.83(s,1H),3.11(q,1H),2.68(d,1H),1.71(s,3H),1.67-1.61(m,8H),1.38-1.28(m,27H),1.18-0.95(m,11H),0.27+0.21(s,3H).
FD-MS:m/Z=589(M+).
(3)觸媒(a):於氮環境下,在30ml舒倫克管中裝入3-(八甲基茀-12'-基)(1,1,3-三甲基-5-第三丁基-1,2,3,3a-四氫戊搭烯)0.884g、己烷20ml。於冰/丙酮浴下,加入1.56M之正丁基鋰己烷溶液2.05ml,攪拌15分鐘。加入第三丁氧化鉀0.351g(3.12mmol)。一邊慢慢回復至室溫、一邊攪拌5小時後,藉過濾得到紅紫色粉末。將所得之紅紫色粉末使用己烷約10ml洗淨。於30ml舒倫克管中插入紅紫色粉末、二乙基醚30ml。以冰/丙酮浴冷卻後,加入四氯化鋯0.452g(1.94mmol)。一邊慢慢回復至室溫、一邊攪拌39小時。餾除溶媒後,以二氯甲烷萃取可溶份。餾除溶媒。於所得固體中加入己烷,萃取可溶份。濃縮己烷溶液,藉傾析取出析出固體,減壓乾燥,藉此得到目標物。產量0.248g,產率22.2%。
根據1H-NMR與FD-MS之測定結果,鑑定目標物。
1H-NMR(270MHz,CDCl3,TMS基準):δ 7.99(s,1H),7.98(s,1H),7.78(s,1H),7.54(s,1H),6.01(d,1H),5.25(d,1H),3.94(d,1H),2.62(d,1H),2.31(s,3H),1.79-1.61(m,8H),1.57(s,3H),1.43(s,3H),1.41(s,3H),1.39(s,9H),1.35(s,3H),1.32(s,3H),1.28(s,3H),1.24(s,3H),1.09(s,9H).
FD-MS:m/Z=748(M+).
[比較合成例2]依照國際公開第2006/025540號說明書之合成例1所合成的二茂金屬化合物(二苯基亞甲基(3-第三丁基-5-乙基環戊二烯基)(2,7-二第三丁基茀基)二氯化鋯;觸媒b) [比較合成例3]依照國際公開第2001/027124號說明書之實施例1所合成的二茂金屬化合物(二甲基亞甲基(3-第三丁基-5-甲基環戊二烯基)茀基二氯化鋯;觸媒c) [比較合成例4]依照國際公開第2004/087775號說明書之實施例3c所合成的 二茂金屬化合物(二苯基亞甲基(3-第三丁基-5-甲基環戊二烯基)(2,7-二第三丁基茀基)二氯化鋯;觸媒d)
[實施例1A]
於經充分氮置換之內容積500ml之氣體流通式玻璃製聚合器中,裝填己烷250ml,於25℃,依90公升/小時流通1-丁烯,使系統充分飽和。接著,加入三異丁基鋁0.25mmol。於此加入事先混合之含有過渡金屬化合物(觸媒B)10μmol與Tosho FineChem公司製甲基鋁氧烷(MMAO-3A)5.0mmol(Al原子換算)的己烷溶液,將系統保持於25℃進行聚合45分鐘。聚合之停止係藉由加入少量之異丁基醇而進行。將聚合懸濁液加入至添加了少量鹽酸的甲醇與丙酮的混合溶媒(體積比1:1)1L中並充分攪拌,過濾。以大量甲醇洗淨聚合物,以80℃乾燥10小時。結果整合示於表1。
[實施例2A~4A、比較例1A~2A]
於實施例1A中,除了將己烷溶液中之過渡金屬化合物之種類及量、甲 基鋁氧烷之量、及聚合條件如表1記載般變更以外,其餘與實施例1A同樣的方法進行。結果整合示於表1及表2。
[實施例5A]
於經充分氮置換之30mL具枝管之燒瓶中放入攪拌子,於其中加入過渡金屬化合物(觸媒D)3.9mg、庚烷5mL、Tosho FineChem公司製甲基鋁氧烷(TMAO-341)0.35mL(Al/Zr=310,莫耳比),攪拌30分鐘以上,得到觸媒溶液。
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入庚烷500mL、0.5M之三異丁基鋁庚烷溶液1.5mL後,裝入1-丁烯100g。將高壓釜加熱至70℃,依高壓釜內之壓力成為0.50MPaG之方式裝入氮。
將上述觸媒溶液全量入導入至高壓釜中,以70℃進行聚合20分鐘,於高壓釜中裝入甲醇使聚合停止。將所得聚合物溶液加入至甲醇與丙酮的混合溶液(體積比1:1)2L中,使聚合物析出。聚合物係以80℃減壓乾燥10小時。結果整合示於表3-1。
[實施例6A]
於實施例5A中,除了將聚合溫度設為40℃以外,其餘依與實施例5A相同之方法進行。結果整合示於表3-1。
[實施例7A]
於實施例5A中,除了將1-丁烯裝入量設為180g、聚合溫度設為50℃以外,其餘依與實施例5A相同之方法進行。結果整合示於表3-1及表3-2。將所得聚合體設為X1。
[實施例8A]
於實施例7A中,除了將聚合溫度設為60℃以外,其餘依與實施例7A相同之方法進行。結果整合示於表3-1。
[實施例9A]
於實施例7A中,除了將過渡金屬化合物、甲基鋁氧烷之裝入量、聚合溫度如表3-1般變更,並於1-丁烯裝入後,接著裝入氫0.06NL,其他再將聚合溫度設為60℃以外,其餘依與實施例7A相同之方法進行。結果整合示於表3-1。
[實施例10A]
於實施例7A中,除了將過渡金屬化合物、甲基鋁氧烷之裝入量、聚合溫度如表3-1般變更,並於1-丁烯裝入後,接著裝入氫0.13NL,其他再將聚合溫度設為60℃以外,其餘依與實施例7A相同之方法進行。結果整合示於表3-1及表3-2。將所得聚合體設為X2。又,聚合體X2之交叉分級層析(CFC)所得的測定結果記載於表3-3。
[比較例3A]
於實施例7A中,除了將過渡金屬化合物之種類表3-1般變更,並於1-丁烯裝入後,接著裝入氫0.012NL,其他再將聚合溫度設為40℃以外,其餘依與實施例7A相同之方法進行。結果整合示於表3-1及表3-2。將所得聚合體設為X3。
[比較例4A]
於實施例7A中,除了將過渡金屬化合物之種類、過渡金屬化合物、甲基鋁氧烷之裝入量如表3-1般變更,並將聚合溫度設為60℃以外,其餘依與實施例7A相同之方法進行。結果整合示於表3-1。將所得聚合體設為X4。又,聚合體X4之交叉分級層析(CFC)所得的測定結果記載於表3-3。
於表3-2中,物性評價係如以下般進行。
<丁烯均聚物之拉張降伏應力、拉張破壞應力、拉張彈性係數>
根據JIS K 7113,將由以下方法所得之2mm厚壓製片材所衝穿之JIS K 7113的2號型試驗片1/2作為評價用試料,於23℃之環境下依拉張速度30mm/min實施測定(測定機:INTESCO股份有限公司製,型號:202X-5)。
<壓製成形條件>
將依以下條件所作成之壓製片材於室溫保管10日,而使用於試驗。
壓製機:關西ROLL股份有限公司製(型號:PEWE-70/50 35)
加熱時間:5min
加熱溫度:190℃
加熱時壓力:10MPa
冷卻速度:40℃/min以上(藉設定為20℃之其他的壓製機,依10MPa加壓4分鐘,冷卻至室溫)
將1-丁烯聚合體X2之CFC洗提曲線示於圖1(a),將1-丁烯聚合體X4之CFC洗提曲線示於圖1(b)。
<評價>
聚合體X2,係mmmm為98.0%以上,且在由([TS]+[TE])/2所特定之溫度[TX]下的累積洗提量為40重量%以上。此聚合體X2係如表3-2所示,拉張降伏應力係與習知物(例:聚合體X4)相同程度,且表示高拉張彈性係數。亦即,表示本發明之新穎之1-丁烯聚合體,係剛性及降伏應力之平衡優越。
[實施例1B]
於經充分氮置換之30mL具枝管之燒瓶中放入攪拌子,加入過渡金屬化合物(觸媒C)4.6mg、甲苯22.0mL、Tosho FineChem公司製甲基鋁氧烷(TMAO-341)0.58mL(Al/Zr=300、莫耳比),攪拌30分鐘以上,得到觸媒C濃度0.25mmol/L之觸媒溶液。
於氮環境下,在Biotage公司製平行聚合裝置之反應器中裝入0.05M三異丁基鋁4-甲基-1-戊烯溶液0.4mL、4-甲基-1-戊烯2.7mL,升溫至70℃。
將上述觸媒溶液0.2mL導入至反應器中,接著導入甲苯0.7mL使聚合開始。進行聚合20分鐘,裝入異丁基醇使聚合停止。將所得聚合物溶液加入至甲醇中,使聚合物析出。將聚合物以80℃減壓乾燥12小時。結果整合示於表4。
[實施例2B~4B、比較例1B]
於實施例1B中,除了將過渡金屬化合物之種類及觸媒溶液之觸媒濃度如表4記載般變更以外,其餘依與實施例1B相同之方法進行。結果整合示於表4。
[實施例1C]
於經充分氮置換之30mL具枝管之燒瓶中放入攪拌子,加入過渡金屬化合物(觸媒D)3.4mg、甲苯5mL、Tosho FineChem公司製甲基鋁氧烷(TMAO-341)0.30mL(Al/Zr=310、莫耳比),攪拌30分鐘以上,得到觸媒溶液。
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基-1-戊烯750mL、1-辛烯75mL、0.5M之三異丁基鋁甲苯溶液1.5mL後,將高壓釜加熱至50℃。
將上述觸媒溶液全量導入至高壓釜中,以50℃進行聚合15分鐘,於高壓釜中裝入甲醇使聚合停止。將所得聚合物溶液加入至甲醇與丙酮之混合溶媒(體積比1:1)2L中,使聚合物析出。將聚合物以80℃減壓乾燥10小時。結果整合示於表5。
[實施例2C~4C]
於實施例1C中,除了將辛烯量及聚合時間如表5記載般變更以外,其餘依與實施例1C相同之方法進行。結果整合示於表5。
[實施例5C]
於經充分氮置換之30mL具枝管之燒瓶中放入攪拌子,加入0.25mg/mL之過渡金屬化合物(觸媒D)甲苯溶液4.4mL、Tosho FineChem公司製甲基鋁氧烷(TMAO-341)0.10mL(Al/Zr=310、莫耳比),攪拌30分鐘以上,得到觸媒溶液。
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基-1-戊烯750mL、1-辛烯8mL、0.5M之三異丁基鋁甲苯溶液1.5mL後,將高壓釜加熱至50℃。
將氫0.25NL導入至高壓釜後,將使上述觸媒溶液0.2mL以甲苯4.8mL稀釋的溶液全量裝入,以50℃進行聚合15分鐘,裝入甲醇使聚合停止。將所得聚合物溶液加入至甲醇與丙酮之混合溶媒(體積比1:1)2L中,使聚合物析出。將聚合物以80℃減壓乾燥10小時。結果整合示於表5。
[實施例6C~8C]
於實施例5C中,除了將辛烯量、氫量及聚合時間如表5記載般變更以外,其餘依與實施例5C相同之方法進行。結果整合示於表5。
[實施例9C]
於經充分氮置換之30mL具枝管之燒瓶中放入攪拌子,加入過渡金屬化合物(觸媒D)3.4mg、甲苯5mL、Tosho FineChem公司製甲基鋁氧烷(TMAO-341)0.30mL(Al/Zr=310、莫耳比),攪拌30分鐘以上,得到觸媒溶液。
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基-1-戊烯400mL、環己烷350mL、1-辛烯4mL、0.5M之三 異丁基鋁甲苯溶液1.5mL後,將高壓釜加熱至65℃。
將上述觸媒溶液全量導入至高壓釜中,以65℃進行聚合20分鐘,於高壓釜中裝入甲醇使聚合停止。將所得聚合物溶液加入至甲醇與丙酮之混合溶媒(體積比1:1)2L中,使聚合物析出。將聚合物以80℃減壓乾燥10小時。結果整合示於表5。
[實施例10C]
於實施例9C中,除了將過渡金屬化合物變更為觸媒E 3.4mg以外,其餘依與實施例9C相同之方法進行。結果整合示於表5。
[實施例11C]
於經充分氮置換之30mL具枝管之燒瓶中放入攪拌子,加入過渡金屬化合物(觸媒E)4.6mg、甲苯8.8mL、Tosho FineChem公司製甲基鋁氧烷(TMAO-341)0.41mL(Al/Zr=310、莫耳比),攪拌30分鐘以上,得到觸媒溶液。
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基-1-戊烯400mL、環己烷350mL、1-辛烯4mL、0.5M之三異丁基鋁甲苯溶液1.5mL後,將高壓釜加熱至65℃。
將氫0.06NL導入至高壓釜後,將使上述觸媒溶液0.4mL以甲苯4.6mL稀釋的溶液全量裝入,以65℃進行聚合20分鐘,裝入甲醇使聚合停止。將所得聚合物溶液加入至甲醇與丙酮之混合溶媒(體積比1:1)2L中,使聚合物析出。將聚合物以80℃減壓乾燥10小時。結果整合示於表5。
[實施例1D]
於經充分氮置換之30mL具枝管之燒瓶中放入攪拌子,加入過渡金屬化合物(觸媒C)1.1mg、甲苯5mL、Tosho FineChem公司製甲基鋁氧烷(TMAO-341)0.11mL(Al/Zr=310、莫耳比),攪拌30分鐘以上,得到觸媒溶液。
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基-1-戊烯750mL、0.5M之三異丁基鋁甲苯溶液1.5mL後,將高壓釜加熱至70℃,依高壓釜內之壓力成為0.30MPaG之方式裝入氮後,依上述壓力成為0.50MPaG之方式裝入丙烯。
將上述觸媒溶液全量導入至高壓釜中,以70℃進行聚合20分鐘,聚合中係依高壓釜內之壓力維持為0.50MPaG之方式供給丙烯。於高壓釜中裝入甲醇使聚合停止。將所得聚合物溶液加入至甲醇與丙酮之混合溶媒(體積比1:1)2L中,使聚合物析出。將聚合物以80℃減壓乾燥12小時。結果整合示於表6。
[實施例2D]
於經充分氮置換之30mL具枝管之燒瓶中放入攪拌子,加入過渡金屬化合物(觸媒C)3.3mg、甲苯5mL、甲基鋁氧烷(TMAO-341)0.30mL(Al/Zr=310、莫耳比),攪拌30分鐘以上,得到觸媒溶液。
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基-1-戊烯750mL、0.5M之三異丁基鋁甲苯溶液1.5mL後,將高壓釜加熱至70℃,依高壓釜內之壓力成為0.40MPaG之方式裝入 氮後,依上述壓力成為0.50MPaG之方式裝入丙烯。
將上述觸媒溶液全量導入至高壓釜中,以70℃進行聚合20分鐘,聚合中係依高壓釜內之壓力維持為0.50MPaG之方式供給丙烯。於高壓釜中裝入甲醇使聚合停止。之後操作係依與實施例1D相同的方法進行。結果整合示於表6。
[實施例3D]
於經充分氮置換之30mL具枝管之燒瓶中放入攪拌子,加入過渡金屬化合物(觸媒C)2.2mg、甲苯5mL、甲基鋁氧烷(TMAO-341)0.22mL(Al/Zr=310、莫耳比),攪拌30分鐘以上,得到觸媒溶液。
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基-1-戊烯750mL、0.5M之三異丁基鋁甲苯溶液1.5mL後,將高壓釜加熱至70℃,依高壓釜內之壓力成為0.45MPaG之方式裝入氮後,依上述壓力成為0.50MPaG之方式裝入丙烯。
將上述觸媒溶液全量導入至高壓釜中,以70℃進行聚合20分鐘,聚合中係依高壓釜內之壓力維持為0.50MPaG之方式供給丙烯。於高壓釜中裝入甲醇使聚合停止。之後操作係依與實施例1D相同的方法進行。結果整合示於表6。
[實施例4D]
於經充分氮置換之30mL具枝管之燒瓶中放入攪拌子,加入過渡金屬化合物(觸媒D)3.5mg、甲苯5mL、甲基鋁氧烷(TMAO-341)0.35mL(Al/Zr=310、莫耳比),攪拌30分鐘以上,得到觸 媒溶液。
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基-1-戊烯750mL、0.5M之三異丁基鋁甲苯溶液1.5mL後,將高壓釜加熱至70℃,於高壓釜中裝入氫0.13NL後,依高壓釜內之壓力成為0.40MPaG之方式裝入氮後,依上述壓力成為0.50MPaG之方式裝入丙烯。
將使上述觸媒溶液0.2mL以甲苯4.8mL稀釋之溶液全量導入至高壓釜中,以70℃進行聚合10分鐘,聚合中係依高壓釜內之壓力維持為0.50MPaG之方式供給丙烯。於高壓釜中裝入甲醇使聚合停止。之後操作係依與實施例1D相同的方法進行。結果整合示於表6。
[實施例5D]
於經充分氮置換之30mL具枝管之燒瓶中放入攪拌子,加入過渡金屬化合物(觸媒D)2.9mg、甲苯2.9mL、甲基鋁氧烷(TMAO-341)0.25mL(Al/Zr=310、莫耳比),攪拌30分鐘以上,得到觸媒溶液。
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基-1-戊烯750mL、0.5M之三異丁基鋁甲苯溶液1.5mL後,將高壓釜加熱至80℃,於高壓釜中裝入氫0.06NL後,依高壓釜內之壓力成為0.40MPaG之方式裝入氮後,依上述壓力成為0.50MPaG之方式裝入丙烯。
將使上述觸媒溶液0.2mL以甲苯4.8mL稀釋之溶液全量導入至高壓釜中,以80℃進行聚合10分鐘,聚合中係依高壓釜內之壓力維持為0.50MPaG之方式供給丙烯。於高壓釜中裝入甲醇使聚合停 止。之後操作係依與實施例1D相同的方法進行。結果整合示於表6。
[實施例6D]
於經充分氮置換之30mL具枝管之燒瓶中放入攪拌子,加入過渡金屬化合物(觸媒D)1.7mg、甲苯5mL、甲基鋁氧烷(TMAO-341)0.15mL(Al/Zr=310、莫耳比),攪拌30分鐘以上,得到觸媒溶液。
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基-1-戊烯750mL、0.5M之三異丁基鋁甲苯溶液1.5mL後,將高壓釜加熱至70℃,依高壓釜內之壓力成為0.25MPaG之方式裝入氮後,依上述壓力成為0.50MPaG之方式裝入丙烯。
將上述觸媒溶液全量導入至高壓釜中,以70℃進行聚合20分鐘,聚合中係依高壓釜內之壓力維持為0.50MPaG之方式供給丙烯。於高壓釜中裝入甲醇使聚合停止。之後操作係依與實施例1D相同的方法進行。結果整合示於表6。
[實施例7D]
於經充分氮置換之30mL具枝管之燒瓶中放入攪拌子,加入過渡金屬化合物(觸媒D)3.2mg、甲苯3.2mL、甲基鋁氧烷(TMAO-341)0.15mL(Al/Zr=310、莫耳比),攪拌30分鐘以上,得到觸媒溶液。
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基-1-戊烯750mL、0.5M之三異丁基鋁甲苯溶液1.5mL後,將高壓釜加熱至70℃,依高壓釜內之壓力成為0.20MPaG之方式裝入 氮後,依上述壓力成為0.50MPaG之方式裝入丙烯。
將上述觸媒溶液1.7mL導入至高壓釜中,以70℃進行聚合20分鐘,聚合中係依高壓釜內之壓力維持為0.50MPaG之方式供給丙烯。於高壓釜中裝入甲醇使聚合停止。之後操作係依與實施例1D相同的方法進行。結果整合示於表6。
[實施例8D]
於實施例2D中,除了將過渡金屬化合物設為觸媒A 3.0mg以外,其餘依與實施例2D相同之方法進行。結果整合示於表6。
[實施例9D]
於經充分氮置換之30mL具枝管之燒瓶中放入攪拌子,加入過渡金屬化合物(觸媒E)4.2mg、甲苯6.2mL、甲基鋁氧烷(TMAO-341)0.37mL(Al/Zr=310、莫耳比),攪拌30分鐘以上,得到觸媒溶液。
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基-1-戊烯750mL、0.5M之三異丁基鋁甲苯溶液1.5mL後,將高壓釜加熱至70℃,依高壓釜內之壓力成為0.20MPaG之方式裝入氮後,依上述壓力成為0.60MPaG之方式裝入丙烯。
將上述觸媒溶液5.3mL導入至高壓釜中,以70℃進行聚合20分鐘,聚合中係依高壓釜內之壓力維持為0.60MPaG之方式供給丙烯。於高壓釜中裝入甲醇使聚合停止。之後操作係依與實施例1D相同的方法進行。結果整合示於表6。
[實施例10D]
於經充分氮置換之30mL具枝管之燒瓶中放入攪拌子,加入過渡金屬化合物(觸媒E)2.9mg、甲苯2.7mL、甲基鋁氧烷(TMAO-341)0.26mL(Al/Zr=310、莫耳比),攪拌30分鐘以上,得到觸媒溶液。
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基-1-戊烯750mL、0.5M之三異丁基鋁甲苯溶液1.5mL後,將高壓釜加熱至70℃,於高壓釜中裝入氫0.06NL,依高壓釜內之壓力成為0.20MPaG之方式裝入氮後,依上述壓力成為0.60MPaG之方式裝入丙烯。
將使上述觸媒溶液0.5mL以甲苯4.5mL稀釋之溶液全量導入至高壓釜中,以70℃進行聚合10分鐘,聚合中係依高壓釜內之壓力維持為0.60MPaG之方式供給丙烯。於高壓釜中裝入甲醇使聚合停止。之後操作係依與實施例1D相同的方法進行。結果整合示於表6。
[比較例1D]
於實施例3D中,除了將過渡金屬化合物設為觸媒b 3.2mg、甲基鋁氧烷(TMAO-341)之使用量設為0.30mL以外,其餘依與實施例3D相同之方法進行。結果整合示於表6。
[比較例2D]
於實施例2D中,除了將過渡金屬化合物設為觸媒a 2.9mg、甲基鋁氧烷(TMAO-341)之使用量設為0.30mL以外,其餘依與實施例2D相同之方法進行。結果整合示於表6。
[實施例1E]
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基-1-戊烯500mL、環己烷250mL、1-辛烯85mL、0.5M之三異丁基鋁甲苯溶液1.5mL。將高壓釜加熱至60℃,於高壓釜中裝入氫0.09NL後,依高壓釜內之壓力成為0.10MPaG之方式裝入氮。於此導入事先混合之含有過渡金屬化合物(觸媒D)0.11μmol與甲基鋁氧烷(TMAO-341)0.03mmol(Al/Zr=310、莫耳比)的甲苯溶液,以60℃進行聚合20分鐘。於高壓釜中裝入甲醇使聚合停止。將所得聚合物溶液加入至甲醇與丙酮之混合溶媒(體積比1:1)2L中,使聚合物析出。將聚合物以80℃減壓乾燥12小時。聚合物之產量為16.7g。結果整合示於表7-1。
[實施例2E]
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基-1-戊烯750mL、0.5M之三異丁基鋁甲苯溶液1.5mL。將高壓釜加熱至70℃,於高壓釜中裝入氫0.06NL後,依高壓釜內之壓力成為0.40MPaG之方式裝入氮,依上述壓力成為0.50MPaG之方式裝入丙烯。於此導入事先混合之含有過渡金屬化合物(觸媒D)0.22μmol與甲基鋁氧烷(TMAO-341)0.07mmol(Al/Zr=310、莫耳比)的甲苯溶液,以70℃進行聚合18.5分鐘。聚合中係將高壓釜內之壓力維持為0.50MPaG而供給丙烯。於高壓釜中裝入甲醇使聚合停止。之後操作係依與實施例1E相同的方法進行。聚合物之產量為50.9g。結果整合示於表7-1。
[實施例3E]
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基-1-戊烯500mL、環己烷250mL、出光興產製之LINEALENE168 10.4mL、0.5M之三異丁基鋁甲苯溶液1.5mL。LINEALENE168係1-十六烯及1-十八烯之混合α-烯烴。將高壓釜加熱至60℃,於高壓釜中裝入氫0.13NL後,依高壓釜內之壓力成為0.14MPaG之方式裝入氮。於此導入事先混合之含有過渡金屬化合物(觸媒D)0.11μmol與甲基鋁氧烷(TMAO-341)0.04mmol(Al/Zr=310、莫耳比)的甲苯溶液,以60℃進行聚合20分鐘。於高壓釜中裝入甲醇使聚合停止。之後操作係依與實施例1E相同的方法進行。聚合物之產量為54.7g。結果整合示於表7-1。
[實施例4E]
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基-1-戊烯750mL、1-辛烯26mL、0.5M之三異丁基鋁甲苯溶液1.5mL。將高壓釜加熱至50℃,於高壓釜中裝入氫0.25NL後,依高壓釜內之壓力成為0.14MPaG之方式裝入氮。於此導入事先混合之含有過渡金屬化合物(觸媒D)0.06μmol與甲基鋁氧烷(TMAO-341)0.02mmol(Al/Zr=310、莫耳比)的甲苯溶液,以50℃進行聚合15分鐘。於高壓釜中裝入甲醇使聚合停止。之後操作係依與實施例1E相同的方法進行。聚合物之產量為45.5g。結果整合示於表7-1。
[實施例5E]
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基-1-戊烯500mL、環己烷250mL、1-癸烯9.8mL、0.5M之三異丁基鋁甲 苯溶液1.5mL。將高壓釜加熱至60℃,於高壓釜中裝入氫0.13NL後,依高壓釜內之壓力成為0.14MPaG之方式裝入氮。於此導入事先混合之含有過渡金屬化合物(觸媒D)0.11μmol與甲基鋁氧烷(TMAO-341)0.04mmol(Al/Zr=310、莫耳比)的甲苯溶液,以60℃進行聚合20分鐘。於高壓釜中裝入甲醇使聚合停止。之後操作係依與實施例1E相同的方法進行。聚合物之產量為49.0g。結果整合示於表7-1。
[實施例6E]
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基-1-戊烯750mL、0.5M之三異丁基鋁甲苯溶液1.5mL。將高壓釜加熱至70℃,於高壓釜中裝入氫0.06NL後,依高壓釜內之壓力成為0.50MPaG之方式裝入氮。於此導入事先混合之含有過渡金屬化合物(觸媒D)0.11μmol與甲基鋁氧烷(TMAO-341)0.04mmol(Al/Zr=310、莫耳比)的甲苯溶液,以70℃進行聚合20分鐘。於高壓釜中裝入甲醇使聚合停止。之後操作係依與實施例1E相同的方法進行。聚合物之產量為29.6g。結果整合示於表7-1。
[比較例1E]
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基-1-戊烯750mL、0.5M之三異丁基鋁甲苯溶液1.5mL。將高壓釜加熱至70℃,依高壓釜內之壓力成為0.40MPaG之方式裝入氮,依上述壓力成為0.50MPaG之方式裝入丙烯。於此導入事先混合之含有過渡金屬化合物(觸媒b)3.87μmol與甲基鋁氧烷(TMAO-341)1.17mmol(Al/Zr=310、莫耳比)的甲苯溶液,以70℃進行聚 合20分鐘。聚合中係將高壓釜內之壓力維持為0.50MPaG而供給丙烯。於高壓釜中裝入甲醇使聚合停止。之後操作係依與實施例1E相同的方法進行。聚合物之產量為20.5g。結果整合示於表7-2。
[比較例2E]
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基-1-戊烯500mL、環己烯250mL、出光興產製LINEALENE168 5.0mL、0.5M之三異丁基鋁甲苯溶液1.5mL。將高壓釜加熱至50℃,依高壓釜內之壓力成為0.16MPaG之方式裝入氮。於此導入事先混合之含有過渡金屬化合物(觸媒b)11μmol與甲基鋁氧烷(TMAO-341)1.17mmol(Al/Zr=100、莫耳比)的甲苯溶液,以50℃進行聚合40分鐘。於高壓釜中裝入甲醇使聚合停止。之後操作係依與實施例1E相同的方法進行。聚合物之產量為43.2g。結果整合示於表7-2。
[比較例3E]
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基-1-戊烯500mL、環己烷250mL、1-辛烯7.5mL、0.5M之三異丁基鋁甲苯溶液1.5mL。將高壓釜加熱至50℃,依高壓釜內之壓力成為0.16MPaG之方式裝入氮。於此導入事先混合之含有過渡金屬化合物(觸媒b)3.87μmol與甲基鋁氧烷(TMAO-341)1.17mmol(Al/Zr=310、莫耳比)的甲苯溶液,以50℃進行聚合20分鐘。於高壓釜中裝入甲醇使聚合停止。之後操作係依與實施例1E相同的方法進行。聚合物之產量為11.1g。結果整合示於表7-2。
[比較例4E]
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基-1-戊烯500mL、環己烷250mL、1-癸烯3.5mL、0.5M之三異丁基鋁甲苯溶液1.5mL。將高壓釜加熱至50℃,依高壓釜內之壓力成為0.16MPaG之方式裝入氮。於此導入事先混合之含有過渡金屬化合物(觸媒b)3.87μmol與甲基鋁氧烷(TMAO-341)1.17mmol(Al/Zr=310、莫耳比)的甲苯溶液,以50℃進行聚合20分鐘。於高壓釜中裝入甲醇使聚合停止。之後操作係依與實施例1E相同的方法進行。聚合物之產量為19.8g。結果整合示於表7-2。
[比較例5E~8E]
使用以下所示之三井化學(股)製之TPX(甲基戊烯聚合物),作為由鈦觸媒所合成之4-甲基-戊烯-1共聚合體。結果整合示於表7-2。
比較例5E:MX002(MFR=21g/10分鐘,Tm=224℃)
比較例6E:MX004(MFR=26g/10分鐘,Tm=228℃)
比較例7E:RT18(MFR=25g/10分鐘,Tm=233℃)
比較例8E:MX019(MFR=90g/10分鐘,Tm=243℃)
於表7-1及表7-2中,物性評價係如以下般進行。
<拉張試驗(壓製片材)>
屬於拉張特性之楊氏率(YM)、斷裂伸度(EL)之評價,係以由以下方法所得之1mm厚壓製片材所衝穿之JIS K7113之2號型試驗片1/2作為評價用試料,於23℃環境下以拉張速度200mm/min實施。
壓製片材製作條件:使用神藤金屬工業股份有限公司製之油壓式熱壓製機,依270℃、10MPa之條件對試驗對象進行加熱加壓5分鐘後,依30℃、10MPa之條件進行冷卻加壓5分鐘。
<Izod衝擊試驗(壓製片材)>
使用依以下方法所製作之厚3mm之壓製片材,根據艾氏ASTM,依錘容量3.92J、擺晃角度149.1度、試驗溫度23℃之條件實施衝擊試驗。
壓製片材製作條件:使用神藤金屬工業股份有限公司製之油壓式熱壓製機,依270℃、10MPa之條件對試驗對象進行加熱加壓5分鐘後,依30℃、10MPa之條件進行冷卻加壓5分鐘。
<菲卡軟化溫度(壓製片材)>
使用依以下方法所製作之厚3mm壓製片材,根據ASTM D1525,使用安田精機股份有限公司製試驗機,依升溫速度50℃/hr、試驗負重10N實施菲卡軟化溫度試驗。
壓製片材製作條件:使用神藤金屬工業股份有限公司製之油壓式熱壓製機,依270℃、10MPa之條件對試驗對象進行加熱加 壓5分鐘後,依30℃、10MPa之條件進行冷卻加壓5分鐘。
<評價>
表7-1記載之例中,屬於剛性指標之楊氏率高,且屬於靭性指標之斷裂伸度亦與習知物為相同程度。另一方面,表7-2記載之例中,楊氏率低。針對表7-1及表7-2記載之例,於圖2表示相對於斷裂伸度標繪了楊氏率的圖表。
根據表7-1及表7-2的結果,於圖3表示相對於融點(Tm)標繪了融解熱量(△Hm)的圖表。由表7-1及表7-2之結果(圖2、圖3)可知,剛性及靭性之平衡優越的聚合體,係相對於靭性雖同等但剛性差的聚合體,在與具有同程度Tm之聚合體相比對時,其具有較大之△Hm。
於此,結晶性聚合物中,通常Tm與△Hm呈幾乎比例關係。因此,由此等例之Tm及△Hm的值,於圖3中,可理解到其可畫出剛性及靭性之平衡優越的4MP1聚合體(為了方便記載為「實施例」)、與靭性同等但剛性差之4MP1聚合體(為了方便記載為「比較例」)的直線。藉由根據所畫出之直線實施數值解析,擬合畫出實施例、比較例數據之直線,結果成為△Hm=0.5×Tm-76。
從而,藉由表7-1及表7-2記載之各聚合體的對比,在滿足關係式(1):△Hm≧0.5×Tm-76的情況,可理解其成為剛性及靭性之平衡優越的聚合體。
[實施例1F]
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基 -1-戊烯750mL、0.5M之三異丁基鋁甲苯溶液1.5mL。將高壓釜加熱至70℃,於高壓釜中裝入氫0.13NL後,依高壓釜內之壓力成為0.20MPaG之方式裝入氮,依上述壓力成為0.60MPaG之方式裝入丙烯。於此導入事先混合之含有過渡金屬化合物(觸媒D)0.22μmol與甲基鋁氧烷(TMAO-341)0.07mmol(Al/Zr=310、莫耳比)的甲苯溶液,以70℃進行聚合10分鐘,聚合中係將高壓釜內之壓力維持為0.60MPaG而供給丙烯。於高壓釜中裝入甲醇使聚合停止。之後操作係依與實施例2E相同的方法進行。聚合物之產量為53.2g。結果整合示於表8。
[實施例2F]
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基-1-戊烯750mL、0.5M之三異丁基鋁甲苯溶液1.5mL。將高壓釜加熱至70℃,依高壓釜內之壓力成為0.20MPaG之方式裝入氮,依上述壓力成為0.60MPaG之方式裝入丙烯。於此導入事先混合之含有過渡金屬化合物(觸媒D)3.8μmol與甲基鋁氧烷(TMAO-341)1.18mmol(Al/Zr=310、莫耳比)的甲苯溶液,以70℃進行聚合20分鐘,聚合中係將高壓釜內之壓力維持為0.60MPaG而供給丙烯。於高壓釜中裝入甲醇使聚合停止。之後操作係依與實施例2E相同的方法進行。聚合物之產量為63.0g。結果整合示於表8。
[比較例1F]
於經充分氮置換之內容量1,500mL之SUS製高壓釜中裝入4-甲基-1-戊烯400mL、己烷300mL、1.0M之三異丁基鋁甲苯溶液0.75mL。將高壓釜加熱至60℃,依高壓釜內之壓力成為0.40MPaG之方式裝入丙 烯。於此導入事先混合之含有過渡金屬化合物(觸媒b)10μmol與甲基鋁氧烷(TMAO-341)1.00mmol(Al/Zr=100、莫耳比)的甲苯溶液,以60℃進行聚合60分鐘,聚合中係將高壓釜內之壓力維持為0.40MPaG而供給丙烯。於高壓釜中裝入甲醇使聚合停止。之後操作係依與實施例1E相同的方法進行。結果整合示於表8。聚合物之產量為36.9g。
表8中,物性評價係如以下般進行。
<損耗正切(tanδ)(壓製片材)>
依以下條件作成厚3mm之壓製片材,再切出動態黏彈性測定所需要之45mm×10mm×3mm之短片。使用ANTONPaar公司製MCR301,依10rad/s頻率測定-70~180℃之動態黏彈性之溫度依存性,測定由玻璃轉移溫度所起因之損耗正切(tanδ)的波峰值。
壓製片材製作條件:使用神藤金屬工業股份有限公司製之油壓式熱壓製機,依200℃、10MPa之條件對試驗對象進行加熱加壓5分鐘後,依30℃、10MPa之條件進行冷卻加壓5分鐘。
<拉張永久伸度(150%)>
依以下條件作成厚1mm之壓製片材,將JIS K7113之2號型試驗片1/2衝穿作為評價用試料。依拉張速度30mm/min測定設為伸長率150%之試驗片的夾具間距離。將該試驗片於23℃環境下保持10分鐘,測定放開10分鐘後之試驗片的夾具間距離,由其差求得拉張永久伸長。
壓製片材製作條件:使用神藤金屬工業股份有限公司製之油壓式熱壓製機,依200℃、10MPa之條件對試驗對象進行加熱加壓5分鐘後,依30℃、10MPa之條件進行冷卻加壓5分鐘。
<壓縮永久應變(壓製片材)>
壓縮永久應變係將依以下條件作成厚3mm之壓製片材重疊4片,作成12mm之樣本,根據JIS K6262,將樣本壓縮25%後,以23℃進行熱處理22小時,其後於23℃放置2小時後,測定厚度,計算試驗前 後之應變量而獲得。
壓製片材製作條件:使用神藤金屬工業股份有限公司製之油壓式熱壓製機,依200℃、10MPa之條件對試驗對象進行加熱加壓5分鐘後,依30℃、10MPa之條件進行冷卻加壓5分鐘。
<評價>
實施例1F、2F所得之聚合體,係內消旋二元體分率(m)為98.5%以上,且融點Tm未檢測出。此聚合體係如表8所示,損耗正切與比較例1F之聚合體為相同程度,但顯示較小之壓縮永久應變。亦即,本發明之新穎的非晶性4-甲基-1-戊烯聚合體,顯示優越之黏彈性特性的平衡。
使用了載持觸媒之4-甲基-1-戊烯聚合 [實施例1G] (1)使用了觸媒D之載持觸媒的調製
將以200℃經乾燥3小時之二氧化矽(AGC Si-Tech製SUNSPHERE H-31)8.5kg以33L之甲苯作成懸浮狀後,歷時30分鐘滴下甲基鋁氧烷之甲苯溶液(Al=1.42莫耳/L)124.5L。接著,歷時1.5小時升溫至115℃,依此溫度反應4小時。其後降溫至60℃,以傾析法去除上清液。將所得固體觸媒成分以甲苯洗淨3次後,以甲苯再懸浮化(0.16g/mL,1.5mmol-Al/mL)而得到二氧化矽載持甲基鋁氧烷(MAO/Si=1.25莫耳比)。
於經充分氮置換之內容積100mL之三口燒瓶中,依鋁換算計裝入4.5mmol之二氧化矽載持甲基鋁氧烷,懸浮於甲苯39mL。於 此懸浮液中,將[合成例4]所合成之過渡金屬化合物(觸媒D)15.5mg(18μmol)作成甲苯溶液(2.3mmol/L)並加入。1小時後停止攪拌,藉傾析法洗淨3次,將溶媒置換為癸烷。接著,加入二異丁基氫化鋁(癸烷溶液1.0mmol/mL)2.0mmol,再加入3-甲基-1-戊烯(2.2mL)。1小時後停止攪拌,藉傾析法洗淨3次,作成觸媒懸浮液(癸烷漿料5g/L,0.18mmol-Zr/L)。
(2)4-甲基-1-戊烯聚合
於氮氣流下,在內容積500mL之玻璃製聚合器中,室溫下加入4-甲基-1-戊烯300mL,並升溫。流通氫0.5L/h與氮15L/h的混合氣體,加入三異丁基鋁(癸烷溶液1.0mmol/mL)0.1mmol、及上述調製之觸媒懸浮液(以鋯原子換算計為0.001mmol),將聚合器內保持為40℃並攪拌。聚合時間經過1小時後,於聚合器內加入異丁基醇使聚合結束,立即過濾聚合液而得到固體狀聚合體。於減壓下,以80℃乾燥8小時,得到產量11.0g之聚合體。此聚合體係極限黏度[η]=5.58dl/g、Tm=242.6℃,溶媒可溶份量(SP)0.38重量%。
[比較例1G]
於觸媒懸浮液之調製中,除了使用比較合成例4之過渡金屬化合物(觸媒d)12.5mg(17μmol)、二氧化矽載持甲基鋁氧烷以鋁換算計4.6mmol作為觸媒以外,以及聚合時之觸媒使用鋯原子換算量計0.4mmol以外,其餘與實施例1G同樣進行4-甲基-1-戊烯聚合。得到聚合體5.8g。此聚合體係極限黏度[η]=1.50dl/g、Tm=232.8℃,溶媒可溶份量(SP)17重量%。
(產業上之可利用性)
藉由本發明之烯烴聚合體之製造方法,可經濟性地製造具有高耐熱性及高分子量、有用之烯烴聚合體。因此,本發明之製造方法係在工業上極具價值。又,本發明之新穎之1-丁烯聚合體及4-甲基-1-戊烯聚合體係具有各種優越特性。

Claims (6)

  1. 一種1-丁烯聚合體,係以13C-NMR所測定之內消旋五元體分率為超過98.0%且99.8%以下。
  2. 如申請專利範圍第1項之1-丁烯聚合體,其中,於以鄰二氯苯作為洗提液之交叉分級層析法(CFC)中,在將洗提開始溫度(累積洗提重量%成為0.5重量%的溫度)設為[TS]、將洗提結束溫度(累積洗提重量%成為99重量%之溫度)設為[TE]時,相對於總洗提量,於由([TS]+[TE])/2所特定之溫度[TX]下的累積洗提量為40重量%以上。
  3. 如申請專利範圍第1項之1-丁烯聚合體,其中,以13C-NMR光譜所求得之總1-丁烯構成單位中之1-丁烯單體,根據2,1-插入的位置不規則性單位的比例與根據1,4-插入的位置不規則性單位的比例之合計比例,為0.1莫耳%以下。
  4. 如申請專利範圍第1項之1-丁烯聚合體,其中,重量平均分子量(Mw)與數量平均分子量(Mn)之比的分子量分佈(Mw/Mn),係1.5~5.0。
  5. 一種4-甲基-1-戊烯聚合體,係滿足下述要件(a)~(c):(a)來自4-甲基-1-戊烯之構成單位量為100~80莫耳%,來自由碳數2~30之烯烴(4-甲基-1-戊烯除外)所選擇之至少1種的構成單位量為0~20莫耳%;(b)以13C-NMR所測定之內消旋二元體分率(m)為98.5%以上且100%以下;(c)由示差掃描型熱量測定(DSC)所測定之融解熱量△Hm(單位:J/g)與融點Tm(單位:℃)係滿足以下關係式(1);關係式(1):△Hm≧0.5×Tm-76。
  6. 一種4-甲基-1-戊烯聚合體,係滿足下述要件(d)~(f):(d)來自4-甲基-1-戊烯之構成單位量為超過50莫耳%且未滿80莫耳 %,來自由碳數2~30之烯烴(4-甲基-1-戊烯除外)所選擇之至少1種的構成單位量為超過20莫耳%且未滿50莫耳%;(e)以13C-NMR所測定之內消旋二元體分率(m)為98.5%以上且100%以下;(f)由示差掃描型熱量測定(DSC)所測定之融點Tm為未滿100℃或實質上不存在。
TW102134481A 2012-09-25 2013-09-25 烯烴聚合體 TWI598369B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012211234 2012-09-25

Publications (2)

Publication Number Publication Date
TW201422657A TW201422657A (zh) 2014-06-16
TWI598369B true TWI598369B (zh) 2017-09-11

Family

ID=50388216

Family Applications (2)

Application Number Title Priority Date Filing Date
TW106127102A TWI654208B (zh) 2012-09-25 2013-09-25 烯烴聚合體之製造方法
TW102134481A TWI598369B (zh) 2012-09-25 2013-09-25 烯烴聚合體

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW106127102A TWI654208B (zh) 2012-09-25 2013-09-25 烯烴聚合體之製造方法

Country Status (8)

Country Link
US (4) US9458257B2 (zh)
EP (1) EP2902419B1 (zh)
JP (1) JP5980339B2 (zh)
KR (1) KR101640356B1 (zh)
CN (1) CN104662050B (zh)
SG (1) SG11201502288TA (zh)
TW (2) TWI654208B (zh)
WO (1) WO2014050817A1 (zh)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6033322B2 (ja) * 2012-09-25 2016-11-30 三井化学株式会社 遷移金属化合物、オレフィン重合用触媒およびオレフィン重合体の製造方法
SG11201507471PA (en) * 2013-03-12 2015-10-29 Mitsui Chemicals Inc Production method of olefin polymer and olefin polymerization catalyst
WO2016039416A1 (ja) * 2014-09-11 2016-03-17 三井化学株式会社 1-ブテン由来の構成単位を含むオレフィン(共)重合体の製造方法
JP2016098257A (ja) * 2014-11-18 2016-05-30 三井化学株式会社 4−メチル−1−ペンテン系重合体を含む樹脂組成物からなるフィルム
JP6679345B2 (ja) * 2015-02-27 2020-04-15 三井化学株式会社 1−ブテン由来の構成単位を含むオレフィン(共)重合体の製造方法
KR101831418B1 (ko) * 2015-04-13 2018-02-22 주식회사 엘지화학 가공성 및 표면 특성이 우수한 에틸렌/알파-올레핀 공중합체
WO2016197037A1 (en) * 2015-06-05 2016-12-08 Exxonmobil Chemical Patents Inc. Catalyst system comprising supported alumoxane and unsupported alumoxane particles
US9920176B2 (en) 2015-06-05 2018-03-20 Exxonmobil Chemical Patents Inc. Single site catalyst supportation
US10329360B2 (en) 2015-06-05 2019-06-25 Exxonmobil Chemical Patents Inc. Catalyst system comprising supported alumoxane and unsupported alumoxane particles
US9809664B2 (en) 2015-06-05 2017-11-07 Exxonmobil Chemical Patents Inc. Bimodal propylene polymers and sequential polymerization
US9725569B2 (en) 2015-06-05 2017-08-08 Exxonmobil Chemical Patents Inc. Porous propylene polymers
US10294316B2 (en) 2015-06-05 2019-05-21 Exxonmobil Chemical Patents Inc. Silica supports with high aluminoxane loading capability
US10077325B2 (en) 2015-06-05 2018-09-18 Exxonmobil Chemical Patents Inc. Silica supports with high aluminoxane loading capability
US10280233B2 (en) 2015-06-05 2019-05-07 Exxonmobil Chemical Patents Inc. Catalyst systems and methods of making and using the same
US10280235B2 (en) 2015-06-05 2019-05-07 Exxonmobil Chemical Patents Inc. Catalyst system containing high surface area supports and sequential polymerization to produce heterophasic polymers
US9738779B2 (en) 2015-06-05 2017-08-22 Exxonmobil Chemical Patents Inc. Heterophasic copolymers and sequential polymerization
US9725537B2 (en) 2015-06-05 2017-08-08 Exxonmobil Chemical Patents Inc. High activity catalyst supportation
CN107922537B (zh) 2015-06-05 2021-07-27 埃克森美孚化学专利公司 气相或淤浆相中多相聚合物的制备
WO2016196331A1 (en) 2015-06-05 2016-12-08 Exxonmobil Chemical Patents Inc. Supported metallocene catalyst systems for polymerization
EP3303423A1 (en) 2015-06-05 2018-04-11 ExxonMobil Chemical Patents Inc. Single reactor production of polymers in gas or slurry phase
JP6970619B2 (ja) * 2016-01-28 2021-11-24 三井化学株式会社 ブテン系重合体、樹脂組成物および成形体
SG11201807510VA (en) 2016-03-03 2018-09-27 Mitsui Chemicals Inc 4-methyl-1-pentene polymer, resin composition and molded article
KR102398733B1 (ko) 2016-03-25 2022-05-16 미쓰이 가가쿠 가부시키가이샤 신축성 구조체, 다층 신축 시트, 방적사 및 섬유 구조체
KR102362915B1 (ko) * 2016-03-28 2022-02-16 주식회사 쿠라레 합판 유리용 중간막
WO2017204830A1 (en) 2016-05-27 2017-11-30 Exxonmobil Chemical Patents, Inc. Metallocene catalyst compositions and polymerization process therewith
JP6755967B2 (ja) 2016-12-27 2020-09-16 三井化学株式会社 ポリエステルシート
WO2018124070A1 (ja) 2016-12-27 2018-07-05 三井化学株式会社 潤滑油組成物、潤滑油用粘度調整剤、および潤滑油用添加剤組成物
CN115059809B (zh) 2017-01-20 2023-12-08 三井化学株式会社 带缠绕管
JP6977272B2 (ja) * 2017-02-08 2021-12-08 凸版印刷株式会社 蓄電装置用外装材及び蓄電装置
JP6855823B2 (ja) * 2017-02-08 2021-04-07 凸版印刷株式会社 蓄電装置用外装材
US20190382573A1 (en) 2017-02-23 2019-12-19 Mitsui Chemicals, Inc. Molded product and method for producing the same
CN110382564B (zh) * 2017-03-27 2021-09-07 三井化学株式会社 4-甲基-1-戊烯系聚合物、树脂组合物及成型体
CN110461580A (zh) 2017-03-29 2019-11-15 三井化学株式会社 层叠体及其制造方法
KR20200010167A (ko) * 2017-05-19 2020-01-30 세키스이가가쿠 고교가부시키가이샤 접합 유리용 중간막 및 접합 유리
TW201900421A (zh) * 2017-05-19 2019-01-01 日商積水化學工業股份有限公司 層合玻璃用中間膜及層合玻璃
CN110741427B (zh) * 2017-11-10 2021-10-22 深圳市柔宇科技股份有限公司 柔性面板的制作方法、柔性面板和显示装置
CN111954685B (zh) * 2018-04-11 2023-08-08 三井化学株式会社 4-甲基-1-戊烯系聚合物粒子及4-甲基-1-戊烯系树脂的制造方法
JP7182644B2 (ja) 2018-12-04 2022-12-02 三井化学株式会社 4-メチル-1-ペンテン共重合体を含有する樹脂組成物、およびキャパシタ用フィルム
CN109541937A (zh) * 2018-12-14 2019-03-29 汕头市东方科技有限公司 一种继电器的脉冲控制系统和控制方法
KR20210105896A (ko) * 2018-12-21 2021-08-27 세키스이가가쿠 고교가부시키가이샤 접합 유리용 중간막, 및 접합 유리
EP3943543A4 (en) 2019-03-19 2022-12-14 Mitsui Chemicals, Inc. PROPYLENE RESIN COMPOSITION, MOLDING AND PROPYLENE POLYMER
US20220127443A1 (en) 2019-03-28 2022-04-28 Dow-Mitsui Polychemicals Co., Ltd. Resin composition for sealant, multilayered body, packaging material and packaging container
JP6555733B1 (ja) * 2019-05-31 2019-08-07 ティグロン株式会社 オーディオ機器用アクセサリ及びその製造方法
BR112022002330A2 (pt) 2019-08-08 2022-04-19 Mitsui Chemicals Inc Composição de polímero de propileno e artigo modelado
JP7223862B2 (ja) * 2019-08-29 2023-02-16 三井化学株式会社 潤滑油組成物
CN114651044B (zh) 2019-11-15 2024-02-20 三井化学株式会社 树脂组合物和成型体
CN113845612B (zh) * 2020-06-28 2023-02-28 中国石油天然气股份有限公司 主催化剂的制备方法、催化剂及其应用
KR20230043957A (ko) 2020-09-01 2023-03-31 미쓰이 가가쿠 가부시키가이샤 수지 조성물 및 성형체
KR20230079442A (ko) 2020-12-23 2023-06-07 미쓰이 가가쿠 가부시키가이샤 배양 부재 및 그 용도
WO2022158511A1 (ja) 2021-01-25 2022-07-28 三井化学株式会社 樹脂組成物および成形体
US20240076425A1 (en) * 2021-03-02 2024-03-07 Mitsui Chemicals, Inc. 4-methyl-1-pentene polymer
US20240123716A1 (en) 2021-03-02 2024-04-18 Mitsui Chemicals, Inc. Multilayer film, container, pack for cell culture and method for producing multilayer film
CN115073629B (zh) * 2021-03-15 2023-09-26 中国石油天然气股份有限公司 负载型茂金属催化剂体系及其制备方法与应用
WO2023054440A1 (ja) 2021-09-30 2023-04-06 三井化学株式会社 潤滑油組成物
KR20240047461A (ko) 2021-10-25 2024-04-12 미쓰이 가가쿠 가부시키가이샤 맨드릴, 및 당해 맨드릴을 이용하여 이루어지는 고무호스의 제조 방법
JP7364825B2 (ja) 2021-11-09 2023-10-18 三井化学株式会社 培養容器及び培養方法
CN116178595A (zh) * 2021-11-26 2023-05-30 中国石油天然气股份有限公司 烯烃聚合用负载茂金属催化剂及其制备方法和应用
CN116178594A (zh) * 2021-11-26 2023-05-30 中国石油天然气股份有限公司 烯烃聚合用原位负载茂金属催化剂及其制备方法和应用
WO2023190212A1 (ja) * 2022-03-30 2023-10-05 三井化学株式会社 オレフィン重合体の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1965001A (zh) * 2004-06-10 2007-05-16 三井化学株式会社 烯烃系聚合物及其用途
CN101087821A (zh) * 2004-12-22 2007-12-12 三井化学株式会社 丙烯系聚合物、含有该聚合物的组合物及由其得到的成型体

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122718A (ja) 1974-08-20 1976-02-23 Gifu Seratsuku Seizosho Kk Kenzaiyokeisankarushiumubanno tosohoho oyobi keshoban
JPS6122718A (ja) 1984-07-06 1986-01-31 富士通株式会社 過電流保護回路
JPS6157661A (ja) 1984-08-29 1986-03-24 Kobe Paint Kk 船底塗料用シ−リング組成物
IL85097A (en) 1987-01-30 1992-02-16 Exxon Chemical Patents Inc Catalysts based on derivatives of a bis(cyclopentadienyl)group ivb metal compound,their preparation and their use in polymerization processes
PL276385A1 (en) 1987-01-30 1989-07-24 Exxon Chemical Patents Inc Method for polymerization of olefines,diolefins and acetylene unsaturated compounds
US5155080A (en) 1988-07-15 1992-10-13 Fina Technology, Inc. Process and catalyst for producing syndiotactic polyolefins
KR930002411B1 (ko) 1988-09-14 1993-03-30 미쓰이세끼유 가가꾸고오교오 가부시끼가이샤 벤젠불용성 유기알루미늄 옥시화합물 및 그 제조방법
JP2693517B2 (ja) 1988-09-14 1997-12-24 三井石油化学工業株式会社 ベンゼン不溶性の有機アルミニウムオキシ化合物の製造方法
US4960878A (en) 1988-12-02 1990-10-02 Texas Alkyls, Inc. Synthesis of methylaluminoxanes
US5041584A (en) 1988-12-02 1991-08-20 Texas Alkyls, Inc. Modified methylaluminoxane
DE3907965A1 (de) 1989-03-11 1990-09-13 Hoechst Ag Verfahren zur herstellung eines syndiotaktischen polyolefins
JPH03122718A (ja) 1989-10-05 1991-05-24 Fujitsu Ltd パイプライン計算機における条件分岐命令実行制御方式
US5036034A (en) 1989-10-10 1991-07-30 Fina Technology, Inc. Catalyst for producing hemiisotactic polypropylene
CA2027145C (en) 1989-10-10 2002-12-10 Michael J. Elder Metallocene catalysts with lewis acids and aluminum alkyls
DE69026679T3 (de) 1989-10-30 2005-10-06 Fina Technology, Inc., Houston Addition von Alkylaluminium zum Verbessern eines Metallocenkatalysators
US5387568A (en) 1989-10-30 1995-02-07 Fina Technology, Inc. Preparation of metallocene catalysts for polymerization of olefins
DE69018376T3 (de) 1989-10-30 2002-05-16 Fina Technology Herstellung von Metallocenkatalysatoren für Olefinpolymerisation.
JP2545006B2 (ja) 1990-07-03 1996-10-16 ザ ダウ ケミカル カンパニー 付加重合触媒
JP2929746B2 (ja) 1991-02-25 1999-08-03 東亞合成株式会社 低分子量(メタ)アクリル酸塩系重合体の製造方法
US5416228A (en) 1991-10-07 1995-05-16 Fina Technology, Inc. Process and catalyst for producing isotactic polyolefins
ES2114978T3 (es) 1992-08-03 1998-06-16 Targor Gmbh Procedimiento para la obtencion de un polimero de olefina bajo empleo de metalocenos con ligandos indenilo de substitucion especial.
JP3193796B2 (ja) 1992-12-29 2001-07-30 キヤノン株式会社 画像形成装置
JP3207703B2 (ja) 1995-04-11 2001-09-10 象印マホービン株式会社 金属製断熱二重容器
JP3207704B2 (ja) 1995-04-12 2001-09-10 中部電力株式会社 超電導体の製造方法
DE19522105A1 (de) * 1995-06-19 1997-01-02 Hoechst Ag Stereorigide Metallocenverbindung
JP3179005B2 (ja) 1995-10-05 2001-06-25 信越化学工業株式会社 室温発泡硬化型シリコーン組成物
JP3179006B2 (ja) 1995-11-14 2001-06-25 本多通信工業株式会社 I/oコネクタの製造方法
DE69720823T2 (de) 1996-01-25 2004-01-22 Tosoh Corp., Shinnanyo Verfahren zur Olefinpolymerisierung unter Verwendung eines Übergangsmetallkatalysators.
JP3978798B2 (ja) 1996-01-25 2007-09-19 東ソー株式会社 遷移金属化合物、それからなるオレフィン重合触媒およびこれを用いたオレフィン重合体の製造方法
DE19719103A1 (de) * 1997-05-06 1998-11-12 Targor Gmbh Stereorigide Metallocenverbindung
EP0881236A1 (en) 1997-05-26 1998-12-02 Fina Research S.A. Metallocene catalyst component for use in producing isotactic polyolefins
DE19739946A1 (de) * 1997-09-11 1999-03-18 Targor Gmbh Verfahren zur Herstellung von Metallocenen
DE19850898A1 (de) 1998-11-05 2000-05-11 Bayer Ag Verfahren zur Herstellung von EP(D)M
KR100786742B1 (ko) * 1999-10-08 2007-12-18 미쓰이 가가쿠 가부시키가이샤 폴리올레핀
DE60034308T2 (de) 1999-10-08 2007-12-20 Mitsui Chemicals, Inc. Metallocene, ein Verfahren zur deren Herstellung, Olefinpolymerisationskatalysator, und ein Verfahren zur Herstellung von Polyolefinen
JP4268304B2 (ja) 2000-02-09 2009-05-27 萩原工業株式会社 耐熱性ラミネートクロスおよびそれを用いたホットカーペット用表皮材
JP2012036411A (ja) 2000-08-22 2012-02-23 Idemitsu Kosan Co Ltd 1−ブテン系共重合体及び該共重合体からなる成形体
US6930160B2 (en) 2000-08-22 2005-08-16 Idemitsu Petrochemical Co. Ltd. 1-Butene polymer and molded product consisting of the polymer
CA2421708A1 (en) 2000-09-18 2002-03-28 3M Innovative Properties Company Imidate-containing fluoropolymer compositions
US7254530B2 (en) 2001-09-26 2007-08-07 The Trustees Of Columbia University In The City Of New York System and method of generating dictionary entries
WO2003082879A1 (en) 2002-03-28 2003-10-09 Albemarle Corporation Ionic aluminoxanate compositions and their use in catalysis
JP3973472B2 (ja) 2002-04-03 2007-09-12 日本ポリプロ株式会社 オレフィン重合用触媒成分、オレフィン重合用触媒、およびオレフィン重合体の製造方法
JP2004051676A (ja) 2002-07-16 2004-02-19 Mitsui Chemicals Inc エチレン系共重合体の製造方法
DE60318616T2 (de) 2002-12-04 2009-01-08 Basell Polyolefine Gmbh Verfahren zur herstellung von1-buten-polymeren
EP1988104B1 (en) 2003-03-28 2010-03-03 Mitsui Chemicals, Inc. Propylene copolymer, polypropylene composition, use thereof, transition metal compounds, and catalysts for olefin polymerization
KR101060985B1 (ko) 2003-05-12 2011-08-31 바젤 폴리올레핀 게엠베하 1-부텐의 중합 방법
US7193100B2 (en) 2003-12-31 2007-03-20 Albemarle Corporation Haloaluminoxane compositions, their preparation, and their use in catalysis
CA2573984A1 (en) 2004-07-22 2006-01-26 Basell Polyolefine Gmbh Process for producing fractionable 1-butene polymers
CN101010350B (zh) 2004-08-30 2013-01-02 三井化学株式会社 丙烯系聚合物的制造方法
WO2007003528A2 (en) 2005-06-30 2007-01-11 Basell Polyolefine Gmbh Metallocene compounds
JP3122718U (ja) 2006-04-11 2006-06-29 日本精密測器株式会社 電動排気弁及び血圧計
HUE048053T2 (hu) 2006-05-04 2020-05-28 Grace W R & Co Aluminoxán kompozíciók, elõállításuk, és katalízisben történõ alkalmazásuk
JP5260846B2 (ja) * 2006-08-11 2013-08-14 三井化学株式会社 包装材料用プロピレン系樹脂組成物
EP2053086A4 (en) * 2006-08-11 2010-12-22 Mitsui Chemicals Inc PROPYLENE RESIN COMPOSITION FOR PACKAGING MATERIAL
CN100488994C (zh) 2007-02-11 2009-05-20 寿光市天健化工有限公司 高全同聚丁烯-1的本体沉淀合成方法
US8409480B2 (en) 2007-12-04 2013-04-02 Mitsui Chemicals, Inc. Process for preparing organic alkali metal compound and organic transition metal compound
JP5303264B2 (ja) 2008-12-25 2013-10-02 三井化学株式会社 1−ブテン系重合体およびその製造方法
US9725540B2 (en) * 2009-11-06 2017-08-08 Mitsui Chemicals, Inc. 4-methyl-1-pentene/α-olefin copolymer, composition comprising the copolymer and 4-methyl-1-pentene copolymer composition
JP5913214B2 (ja) 2013-07-05 2016-04-27 株式会社神戸製鋼所 ボルト用鋼およびボルト、並びにそれらの製造方法
JP6122718B2 (ja) 2013-07-12 2017-04-26 タカノ株式会社 支持構造物の製造方法及び椅子
JP3193796U (ja) 2014-07-30 2014-10-23 積水化成品工業株式会社 発泡樹脂製容器
JP6157661B1 (ja) 2016-02-10 2017-07-05 株式会社Sdk 測定用ソケット

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1965001A (zh) * 2004-06-10 2007-05-16 三井化学株式会社 烯烃系聚合物及其用途
CN101087821A (zh) * 2004-12-22 2007-12-12 三井化学株式会社 丙烯系聚合物、含有该聚合物的组合物及由其得到的成型体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CLAUDIO DE ROSA ET AL, "Crystallization Properties and Polymorphic Behavior of Isotactic Poly(1-Butene) from Metallocene Catalysts: The Crystallization of Form I from the Melt", MACROMOLECULES, vol. 42, no. 21, 2 October ,2009 , pages 8286~8297 *

Also Published As

Publication number Publication date
US20150239996A1 (en) 2015-08-27
US20170327610A1 (en) 2017-11-16
US9896526B2 (en) 2018-02-20
US10336837B2 (en) 2019-07-02
EP2902419A1 (en) 2015-08-05
TW201802129A (zh) 2018-01-16
KR20150053797A (ko) 2015-05-18
US9458257B2 (en) 2016-10-04
TW201422657A (zh) 2014-06-16
JP5980339B2 (ja) 2016-08-31
US20170327611A1 (en) 2017-11-16
CN104662050B (zh) 2017-03-22
EP2902419A4 (en) 2016-06-08
SG11201502288TA (en) 2015-05-28
WO2014050817A1 (ja) 2014-04-03
TWI654208B (zh) 2019-03-21
US10336838B2 (en) 2019-07-02
JPWO2014050817A1 (ja) 2016-08-22
KR101640356B1 (ko) 2016-07-15
US20160376385A1 (en) 2016-12-29
CN104662050A (zh) 2015-05-27
EP2902419B1 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
TWI598369B (zh) 烯烴聚合體
JP4416507B2 (ja) 有機金属性遷移金属化合物、ビスシクロペンタジエニル配位子、触媒組成物、およびポリオレフィンの製造方法
KR101044134B1 (ko) 올레핀 중합용 촉매, 올레핀 중합체의 제조방법,프로필렌계 공중합체의 제조방법, 프로필렌 중합체,프로필렌계 중합체 조성물 및 이들의 용도
JP4823071B2 (ja) 有機金属遷移金属化合物、ビスシクロペンタジエニル配位子、触媒組成物、及びポリオレフィンの製造方法
JP6563884B2 (ja) プロピレン重合体および成形体
JP6253765B2 (ja) オレフィン系樹脂およびその製造方法
JP6920084B2 (ja) 4−メチル−1−ペンテン共重合体組成物
JP2016098257A (ja) 4−メチル−1−ペンテン系重合体を含む樹脂組成物からなるフィルム
WO2001025300A1 (fr) Polymeres de propylene, composition de resine et objet moule contenant ces polymeres
TWI734885B (zh) 4-甲基-1-戊烯系聚合物、樹脂組成物及成形體
CN107429011A (zh) 热塑性弹性体组合物及其制造方法
JP2015183141A (ja) 4−メチル−1−ペンテン系重合体を含む樹脂組成物からなる成形体
JPS59206408A (ja) オレフインの重合方法
JP2015137353A (ja) オレフィン重合体の製造方法
JP3954830B2 (ja) プロピレン−エチレンブロック共重合体及びその製造方法