RU2550675C1 - Способ изготовления листа из текстурированной электротехнической стали - Google Patents

Способ изготовления листа из текстурированной электротехнической стали Download PDF

Info

Publication number
RU2550675C1
RU2550675C1 RU2014104557/02A RU2014104557A RU2550675C1 RU 2550675 C1 RU2550675 C1 RU 2550675C1 RU 2014104557/02 A RU2014104557/02 A RU 2014104557/02A RU 2014104557 A RU2014104557 A RU 2014104557A RU 2550675 C1 RU2550675 C1 RU 2550675C1
Authority
RU
Russia
Prior art keywords
annealing
coating
sheet
temperature
mgo
Prior art date
Application number
RU2014104557/02A
Other languages
English (en)
Inventor
Макото ВАТАНАБЭ
Юкихиро СИНГАКИ
Тосито ТАКАМИЯ
Томоюки ОКУБО
Кунихиро СЕНДА
Original Assignee
ДжФЕ СТИЛ КОРПОРЕЙШН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ДжФЕ СТИЛ КОРПОРЕЙШН filed Critical ДжФЕ СТИЛ КОРПОРЕЙШН
Application granted granted Critical
Publication of RU2550675C1 publication Critical patent/RU2550675C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • C23C22/33Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation

Abstract

Изобретение относится к области металлургии. Для повышения магнитных свойств и качества покрытия листа из текстурированной электротехнической стали способ включает горячую прокатку стального сляба, содержащего, в мас.%: C 0,001-0,10, Si 1,0-5,0, Mn 0,01-1,0, по меньшей мере, один элемент из S и Se 0,01-0,05 в сумме, раств. Al 0,003-0,050, N 0,001-0,020, однократную или многократную холодную прокатку с промежуточным отжигом между ними до конечной толщины, первичный рекристаллизационный отжиг, нанесение сепаратора отжига, состоящего, главным образом, из MgO, и окончательный отжиг, при этом при первичном рекристаллизационном отжиге скорость S1 повышения температуры между 500-600°C составляет не менее 100°C/с и скорость S2 повышения температуры между 600-700°C составляет 30°C/c-0,6×S1°C/c. Сепаратор отжига из MgO содержит элемент, имеющий ионный радиус 0,6~1,3 Å и силу притяжения между ионом и кислородом не более 0,7 Å-2, общее содержание которого W(% мол.) регулируют так, чтобы S2 удовлетворяло уравнению 0,01S2-5,5≤Ln(W)≤0,01S2-4,3. 6 з.п. ф-лы, 3 табл., 2 пр.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к способу изготовления листа из текстурированной электротехнической стали, и более конкретно, к способу изготовления листа из текстурированной электротехнической стали, имеющего превосходные свойства потерь в железе и свойства покрытия по всей длине конечного рулона. В изобретении "покрытие" означает керамическое покрытие в основном состоящее из форстерита (Mg2SiO4) (далее именуемое просто "покрытие") и "свойства покрытия" означает качество внешнего вида покрытия, такое как наличие или отсутствие цветовой неоднородности, точечных дефектов покрытия или тому подобное.
Известный уровень техники
Листы из электротехнической стали являются мягкими магнитными материалами широко используемыми в качестве материалов сердечников трансформаторов, генераторов и тому подобного. В частности, лист из текстурированной электротехнической стали имеет хорошие свойства потерь в железе непосредственно ведущие к снижению потерь энергии в трансформаторах, генераторах и т.п., поскольку ориентация его кристаллов в значительной степени является {110}<001> ориентацией, называемой ориентацией Госса. Известно, что для улучшения свойств потерь в железе эффективными являются уменьшение толщины листа, увеличение удельного электрического сопротивления за счет добавления Si или т.п., улучшение ориентации в ориентировке кристаллов, приложение напряжения к стальному листу, сглаживание поверхности стального листа, измельчение зерна вторичной рекристаллизации, модификация магнитного домена и т.д.
Среди них, способ быстрого нагрева во время обезуглероживающего отжига или способ, в котором текстура первичной рекристаллизации улучшается быстрым нагревом непосредственно перед обезуглероживающим отжигом известен как метод измельчения зерна вторичной рекристаллизации. Например, патентный документ 1 раскрывает способ изготовления листа из текстурированной электротехнической стали с низкими потерями в железе быстрым нагревом стального листа прокатанного до конечной толщины 800-950°C со скоростью нагрева не менее 100°C/с в атмосфере с содержанием кислорода не более чем 500 ч/млн до обезуглероживающего отжига и подвергают обезуглероживающему отжигу в условиях, при которых температура предыдущей зоны обезуглероживающего отжига составляет 775-840°C, т.е. ниже чем температура достигаемая быстрым нагревом, и температура последующей зоны составляет 815-875°C, т.е. выше чем температура предыдущей зоны, и патентный документ 2 раскрывает способ получения листа из текстурированной электротехнической стали с низкими потерями в железе нагревом стального листа прокатанного до конечной толщины до температуры не ниже 700°C со скоростью нагрева не менее 100°C/с в неокислительной атмосфере с PH2O/PH2 не более 0,2 непосредственно перед обезуглероживающим отжигом.
Кроме того, патентный документ 3 раскрывает способ изготовления листа из электротехнической стали с отличными свойствами покрытия и магнитными свойствами, в котором зону с температурой не ниже, по меньшей мере, чем 600°C на стадии повышения температуры стадии обезуглероживающего отжига, нагревают выше 800°C со скоростью нагрева 95°C/с в атмосфере этой зоны, состоящей из инертного газа, содержащего 10-6-10-1 объемной доли кислорода и в атмосфере выдержки при обезуглероживающем отжиге, состоящей из H2 и H2O или H2, H2O и инертного газа в качестве компонента, и с PH2O/PH2 0,05-0,75 и расходом газа на единицу площади 0,01-1 нм3/мин·м2, и углом отклонения кристаллической ориентации кристаллического зерна стального листа в смешанной области между покрытием и стальным листом, поддерживаемым в соответствующем диапазоне, от ориентации Госса, и патентный документ 4 раскрывает способ изготовления листа из текстурированной электротехнической стали с превосходными свойствами покрытия и магнитными свойствами, в котором зону с температурой не ниже, по меньшей мере, чем 650°C на стадии повышения температуры стадии обезуглероживающего отжига, нагревают выше 800°C со скоростью нагрева 100°C/с в атмосфере этой зоны, состоящей из инертного газа, содержащего 10-6-10-2 объемной доли кислорода, тогда как атмосфера при выдержке в обезуглероживающем отжиге является H2 и H2O или H2 и H2O и инертный газ в качестве компонента, и с PH2O/PH2 0,15-0,65, при этом время разряда определяющее пик интенсивности излучения Al в GDS (спектрометрия тлеющего разряда) анализе покрытия и время разряда указывающее, что интенсивность излучения Fe составляет 1/2 основной величины, поддерживается в соответствующих пределах.
Документы известного уровня техники
Патентные документы
Патентный документ 1: JP-A-H10-298653
Патентный документ 2: JP-A-H07-062436
Патентный документ 3: JP-A-2003-27194
Патентный документ 4: JP 3537339
Краткое изложение существа изобретения
Проблема, решаемая изобретением
Применением этих способов вторичной рекристаллизации уменьшают размер зерна и улучшаются свойства покрытия, но ситуацию трудно назвать идеальной. Например, в способе патентного документа 1 проводится обработка при поддержании температуры при температуре более низкой, чем температура, достигаемая, когда температура повышается до определенной высокой температуры, но достигаемая температура часто не соответствует заданной температуре, поскольку их трудно контролировать. В результате возникает проблема, заключающаяся в том, что изменение качества в одном и том же рулоне или от рулона к рулону является значительным и не достаточно стабильным. В способе патентного документа 2 PH2O/PH2 атмосферы при повышении температуры уменьшается до не более 0,2, но нельзя сказать, что это даст достаточное улучшение свойств покрытия, потому что не только отношение парциального давления РН2О/PH2 в H2O и H2, но и абсолютное парциальное давление H2O в конечном счете влияет на свойства покрытия, как описано в патентном документе 4, так что остается возможность дальнейшего улучшения.
Признаком способа патентного документа 3 является то, что ориентация кристаллического зерна в смешанной зоне между покрытием и основным металлом смещается от ориентации Госса, однако это может привести к ухудшению магнитных свойств при наложении гармоник из-за сложного процесса намагничивания при введении в трансформатор, хотя магнитные свойства образца для испытаний мерной длины улучшаются. В способе патентного документа 4 температуру повышают при том же парциальном давлении кислорода, что и в патентном документе 3, так что существует проблема, заключающаяся в том, что ориентация кристаллического зерна в смешанной области между покрытием и основным металлом отклоняется от ориентации Госса, как в патентном документе 3. Кроме того, существует проблема, состоящая в том, что положение пика алюминия в GDS изменяется при незначительном изменении химического состава стали или технологических условий на стадии холодной прокатки и становится нестабильным. То есть положение пика Al может быть смещено в сторону поверхности стального листа при незначительном изменении ингредиентов, таких как Al, С, Si, Mn и т.п., или температурного профиля, атмосферы или т.п., при отжиге горячекатаного листа, что вызывает проблему нестабильности магнитных свойств или свойств покрытия.
Изобретение создано с учетом вышеуказанных проблем обычных технологий и предлагает преимущественный способ изготовления листа из текстурированной электротехнической стали, который обеспечивает свойства низких потерь в железе по всей длине конечного рулона уменьшением размера зерна вторичной рекристаллизации, и может формировать однородное покрытие.
Пути решения проблемы
Для решения вышеуказанных проблем авторы настоящего изобретения сконцентрировались на процессе повышения температуры при первичном рекристаллизационном отжиге и второстепенных ингредиентах, добавленных к сепаратору отжига и исследовали условия, необходимые для стабильного уменьшения размера зерна вторичной рекристаллизации и обеспечения равномерности покрытия. В результате было установлено, что эффективным является разделение процесса нагрева при первичном рекристаллизационном отжиге на зону низкой температуры и зону высокой температуры и раздельный контроль скорости повышения температуры в каждой температурной зоне в соответствующем диапазоне. Было известно, что размер зерна вторичной рекристаллизации уменьшается при увеличении скорости повышения температуры первичного рекристаллизационного отжига, но изобретатели дополнительно исследовали этот процесс и установили, что скорость повышения температуры в процессе переработки в качестве предварительного процесса первичной рекристаллизации выше, чем скорость повышении температуры в обычном обезуглероживающем отжиге, в то время как скорость повышения температуры в зоне высокой температуры, вызывающей первичную рекристаллизацию, ограничена не более чем 60% скорости повышения температуры в зоне низкой температуры, в результате чего можно избежать отрицательного влияния изменения технологических условий, стабильно обеспечивая эффект снижения потерь в железе. Кроме того, было установлено, что равномерное покрытие может стабильно формироваться корректировкой количества второстепенного компонента, добавляемого к сепаратору отжига в соответствующем диапазоне в соответствии с вышеуказанной скоростью повышения температуры в зоне высокой температуры. Это и позволило совершить изобретение.
Изобретение, основанное на вышеуказанном факте, является способом изготовления листа из текстурированной электротехнической стали горячей прокаткой стального сляба химического состава, включающего С: 0,001-0,10 мас.%, Si: 1,0-5,0 мас.%, Mn: 0,01-1,0 мас.%, по меньшей мере, один из S и Se: 0,01-0,05 мас.% в сумме, раств. Al: 0,003-0,050 мас.%, N: 0,001-0,020 мас.%, остальное Fe и неизбежные примеси, однократной холодной прокаткой или двукратной, или большим числом холодных прокаток с промежуточным отжигом между ними до конечной толщины и далее первичным рекристаллизационным отжигом, нанесением сепаратора отжига, состоящего, главным образом, из MgO и окончательным отжигом, характеризующийся тем, что при первичном рекристаллизационном отжиге скорость S1 повышения температуры между 500-600°C составляет не менее 100°C/с и скорость S2 повышения температуры между 600-700°C составляет 30°C/с - 0,6×S1°C/c, тогда как общее содержание W (% мол.) элемента, имеющего ионный радиус 0,6-1,3 Å и силу притяжения между ионом и кислородом не более 0,7 Å-2 включенного в сепаратор отжига MgO, регулируют так, чтобы S2 удовлетворяла следующему уравнению (I):
0,01 S 2 5,5 L n ( W ) 0,01 S 2 4,3 ( 1 )
Figure 00000001
Способ изготовления листа из текстурированной электротехнической стали согласно изобретению характеризуется тем, что обезуглероживающий отжиг проводят после первичного рекристаллизационного отжига.
Кроме того, способ изготовления листа из текстурированной электротехнической стали согласно изобретению характеризуется тем, что элемент, имеющий ионный радиус 0,6-1,3 Å и силу притяжения между ионом и кислородом не более 0,7 Å-2, представляет собой, по меньшей мере, один из Ca, Sr, Li и Na.
Кроме того, способ изготовления листа из текстурированной электротехнической стали согласно изобретению характеризуется тем, что в дополнение к вышеуказанному химическому составу, стальной сляб включает, по меньшей мере, один элемент, выбранный из Cu: 0,01-0,2 мас.%, Ni: 0.01-0,5 мас.%, Cr: 0,01-0,5 мас.%, Sb: 0,01-0,1 мас.%, Sn: 0,01-0,5 мас.%, Mo: 0,01-0,5 мас.% и Bi: 0,001-0,1 мас.%
Кроме того, способ изготовления листа из текстурированной электротехнической стали согласно изобретению характеризуется тем, что в дополнение к вышеуказанному химическому составу, стальной сляб включает, по меньшей мере, один элемент, выбранный из B: 0,001-0,01 мас.%, Ge: 0,001-0,1 мас.%, As: 0,005-0,1 мас.%, P: 0,005-0,1 мас.%, Те: 0,005-0,1 мас.%, Nb: 0,005-0,1 мас.%, Ti: 0,005-0,1 мас.% и V: 0,005-0,1 мас.%
Эффект изобретения
В соответствии с изобретением размер зерна вторичной рекристаллизации может быть уменьшен по всей длине конечного рулона листа из текстурированной электротехнической стали для снижения потерь в железе и, кроме того может быть сформировано равномерное покрытие по всей длине рулона, так что в значительной степени может быть улучшен выход продукта. Кроме того, свойства потерь в железе трансформатора или т.п., могут быть значительно улучшены с использованием листа из текстурированной электротехнической стали, изготовленного способом изобретения.
Осуществления изобретения
Во-первых, химический состав стального сляба в качестве материала для листа из текстурированной электротехнической стали изобретения будет описан ниже.
С: 0,001-0,10 мас.%
С является элементом, полезным для формирования зерна в ориентации Госса и для проявления такого эффекта его необходимо включать в количестве не менее 0,001 мас.% Однако когда содержание С превышает 0,10 мас.%, трудно обезуглероживать более чем на 0,005 мас.% в последующем обезуглероживающем отжиге, чтобы не вызывать магнитное старение. Таким образом, содержание С составляет 0,001-0,10 мас.%, предпочтительно оно составляет 0,01-0,08 мас.%
Si: 1,0-5,0 мас.%
Si является элементом, необходимым для увеличения электрического сопротивления стали, чтобы уменьшить потери в железе и стабилизации ВСС структуры железа для проведения термической обработки при более высокой температуре, и его следует добавлять в количестве, по меньшей мере, 1,0 мас.% Однако добавка, превышающая 5,0 мас.%, упрочняет сталь и затрудняет холодную прокатку. Таким образом, содержание Si составляет 1,0-5,0 мас.%, предпочтительно оно составляет 2,5-4,0 мас.%
Mn: 0,01-1,0 мас.%
Mn эффективно способствует улучшению горячей хрупкости стали и также является элементом, формирующим выделения MnS, MnSe и т.п. для проявления функции ингибитора, когда присутствуют S и Se. Когда содержание Mn менее 0,01 мас.%, вышеуказанные эффекты не достигаются в достаточной мере, а когда оно превышает 1,0 мас.%, выделения, такие как MnSe и т.п. укрупняются до отсутствия эффекта ингибитора. Таким образом, содержание Mn составляет 0,01-1,0 мас.%, предпочтительно оно составляет 0,04-0,40 мас.%
раств. Al: 0,003-0,050 мас.%
Al является полезным элементом, образующим AlN в стали, который выделяется в виде второй дисперсной фазы и действует в качестве ингибитора. Однако когда добавляемое количество составляет менее 0,003 мас.% раств. Al, количество выделившегося AlN недостаточно, тогда как если оно превышает 0,050 мас.% выделяется крупнозернистый AlN, теряющий свойства ингибитора. Таким образом, содержание Al составляет 0,003-0,050 мас.% раств. Al, предпочтительно оно составляет 0,01-0,04 мас.%
N: 0,001-0,020 мас.%
N является элементом, необходимым для формирования AlN, подобно Al. Однако когда добавляемое количество составляет менее 0,001 мас.%, выделение AlN недостаточно, тогда как если оно превышает 0,020 мас.% то вызывает пузырчатость при нагреве сляба. Таким образом, содержание N составляет 0,001-0,020 мас.%, предпочтительно оно составляет 0,005-0,010 мас.%
По меньшей мере, один из S и Se: 0.01-0.05 мас.% в сумме
S и Se являются полезными элементами, действующими в качестве ингибитора, которые образуют MnSe, MnS, Cu2-xSe или Cu2-xS взаимодействием с Mn или Cu и выделением в стали в качестве второй дисперсной фазы. Когда общее количество S и Se составляет менее 0,01 мас.% указанный эффект не достигается в достаточной мере, а когда оно превышает 0,05 мас.%, не только растворимость является недостаточной при нагреве сляба, но также возникают дефекты поверхности в конечном листе. Таким образом, содержание S и Se составляет 0,01-0,05 мас.% при добавлении одного или при совместном добавлении. Предпочтительно оно составляет 0,01-0,03 мас.% в сумме.
В дополнение к вышеуказанным необходимым ингредиентам лист из текстурированной электротехнической стали изобретения может включать, по меньшей мере, один элемент, выбранный из Cu: 0,01-0,2 мас.%, Ni: 0,01-0,5 мас.%, Cr: 0,01-0,5 мас.%, Sb: 0,01-0,1 мас.%, Sn: 0,01-0,5 мас.%, Mo: 0,01-0,5 мас.% и Bi: 0,001-0,1 мас.% Cu, Ni, Cr, Sb, Sn, Mo и Bi являются элементами, которые легко сегрегируют на границу кристаллического зерна или поверхности, а также являются элементами, имеющими вспомогательное действие в качестве ингибитора, так что они могут быть добавлены для дальнейшего улучшения магнитных свойств. Однако, когда добавляемое количество любого элемента меньше вышеуказанного нижнего предела, то эффект подавления укрупнения зерна первичной рекристаллизации в зоне более высокой температуры процесса вторичной рекристаллизации недостаточен, тогда как, когда добавляемое количество превышает верхний вышеуказанный предел существует опасность получения плохого внешнего вида покрытия или плохой вторичной рекристаллизации. Таким образом, если элементы добавлены, предпочтительно их добавлять в вышеуказанном диапазоне.
В дополнение к вышеуказанным необходимым ингредиентам и необязательным дополнительным ингредиентам, стальной сляб для листа из текстурированной электротехнической листовой стали изобретения может включать, по меньшей мере один элемент, выбранный из B: 0,001-0,01 мас.%, Ge: 0,001-0,1 мас.%. В: 0,005-0,1 мас.%, Р: 0,005-0,1 мас.%, Te: 0,005-0,1 мас.%, Nb: 0,005-0,1 мас.%, Ti: 0,005-0,1 мас.% и V: 0,005-0,1 мас.%
B, Ge, As, P, Те, Nb, Ti и V имеют также вспомогательное действие в качестве ингибитора и эти элементы эффективны для дальнейшего улучшения магнитных свойств. Однако когда их меньше, чем вышеуказанное количество, эффект подавления повышения размера зерна первичной рекристаллизации в зоне более высокой температуры процесса вторичной рекристаллизации недостаточен, в то время, когда добавляемое количество превышает вышеуказанный верхний предел, существует опасность плохого качества вторичной рекристаллизации или плохого внешнего вида покрытия. Таким образом, если элементы будут добавлены, предпочтительно их добавлять в вышеуказанном диапазоне.
Далее будет описан способ изготовления листа из текстурированной электротехнической листовой стали в соответствии с изобретением.
Лист из текстурированной электротехнической стали изобретения изготавливают способом, включающим ряд стадий плавления стали, имеющей вышеуказанный химический состав, обычным хорошо известным процессом обработки, получая сырой материал стали (стальной сляб) способом, таким как способ непрерывного литья, способом изготовления слитков на блюминге и т.п., горячей прокаткой стального сляба для получения горячекатаного листа, при необходимости отжигом горячекатаного листа, однократной холодной прокаткой или двукратной или большим числом холодных прокаток, включая промежуточный отжиг для формирования холоднокатаного листа конечной толщины, первичным рекристаллизационным отжигом холоднокатаного листа и обезуглероживающим отжигом, нанесением сепаратора отжига, состоящего в основном из MgO, окончательным отжигом и после отжигом-правкой при необходимости совместно с нанесением/прокалкой изоляционного покрытия.
В этом способе изготовления технологические условия, кроме первичного рекристаллизационного отжига и сепаратора отжига, не имеют особых ограничений, поскольку являются обычными известными способами, которые могут быть использованы. Поэтому ниже будут описаны условия первичного рекристаллизационного отжига и сепаратор отжига.
Первичной рекристаллизационный отжиг
Условия первичного рекристаллизационного отжига холоднокатаного листа окончательной толщины, в частности, скорость повышения температуры в процессе нагрева имеет большое влияние на структуру вторичной рекристаллизации, как было указано выше, так что требуется строго контролировать скорость повышения температуры. Поэтому в изобретении процесс нагрева разделен на зону низкой температуры для проведения переработки и зону высокой температуры, обеспечивающую первичную рекристаллизацию, и скорость повышения температуры в каждой зоне соответственно контролируют для стабильного уменьшения размера зерна вторичной рекристаллизации по всей длине конечного рулона, чтобы повысить долю с превосходными свойствами потерь в железе конечного рулона.
Более конкретно, скорость S1 повышения температуры в зоне низкой температуры (500-600°C), обуславливающая переработку в качестве процесса, предшествующего первичной рекристаллизации, составляет не менее чем на 100°C/с выше, чем в обычном случае, в то время как скорость S2 повышения температуры в зоне высокой температуры (600-700°C), обуславливающая первичную рекристаллизацию, составляет не менее 30°C/с и не более 60% от скорости повышения температуры в зоне низкой температуры. Таким образом, даже если изменяются химический состав стали или технологические условия до первичного рекристаллизационного отжига, размер зерна вторичной рекристаллизации может быть снижен для обеспечения низких потерь в железе по всей длине конечного рулона.
Объяснение этого состоит в том, что как известно, зародыши вторичной рекристаллизации ориентации Госса {110}<001> присутствуют в полосе деформации обусловленной <111> волоконной структурой, склонной к накоплению энергии деформации в прокатанной текстуре. Полоса деформации является областью в значительной степени накапливающей энергии деформацию в <111> волокнистой текстуре.
Когда скорость S1 повышения температуры в зоне низкой температуры (500-600°C) в процессе нагрева первичного рекристаллизационного отжига составляет менее 100°C/с, измельчение (ослабление энергии деформации) преимущественно происходит в полосе деформации, имеющей очень высокую энергию деформации, так что не может быть усилена рекристаллизация ориентации Госса {110}<001>. Напротив, когда S1 составляет не менее 100°C/с, деформационная структура может сохраняться до более высокой температуры, с высокой энергией деформации, так что рекристаллизация ориентации Госса {110}<001> может быть выполнена при относительно низкой температуре (около 600°C). Это является причиной того, что S1 составляет не менее 100°C/с.
Предпочтительно S1 составляет не менее 120°C/с.
С другой стороны, для того чтобы контролировать размер зерна вторичной рекристаллизации ориентации Госса {110}<001>, важно контролировать в соответствующем диапазоне количество <111> структуры в ориентации Госса {110}<001>. То есть, когда доля <111> ориентации является слишком большой, усиливается рост зерна вторичной рекристаллизации и существует опасность, что даже если существует много зародышей ориентации Госса {110}<001>, одна структура укрупняется с образованием крупного зерна до роста этих зародышей, в то время как при слишком незначительной ориентации <111>, затруднен рост зерна вторичной рекристаллизации и существует опасность нарушения вторичной рекристаллизации.
Поскольку <111> ориентация обусловлена рекристаллизацией <111> волокнистой текстуры с более высокой энергией деформации, выше, чем у окружающей среды, хотя его энергия деформации ниже чем в полосе деформации, она является ориентацией кристалла, легко вызывающей рекристаллизацию рядом с ориентацией Госса {110}<001> при термической обработке изобретения, в которой нагрев проводят до 600°C со скоростью S1 повышения температуры не менее 100°C/с. Поэтому, когда нагрев проводят с высокой скоростью повышения температуры до такой высокой температуры, что кристаллическое зерно, с ориентацией отличной от ориентации Госса, вызывает первичную рекристаллизацию (не ниже 700°C), ориентация Госса {110}<001> и последующие рекристаллизуемые <111> ориентации, остаются при высокой температуре в состоянии затрудненной рекристаллизации, а после этого все ориентации сразу проходят рекристаллизацию. В результате текстура после первичной рекристаллизации разупорядочена для снижения ориентации Госса {110}<001> и зерно вторичной рекристаллизации не может расти в достаточной степени. В изобретении, таким образом, скорость S2 повышения температуры при 600-700°C составляет не более 0,6×S1°C/c, т.е. ниже, чем скорость повышения температуры, определяемая S1.
В свою очередь, когда скорость повышения температуры при 600-700°C составляет менее 30°C/с, рекристаллизуемая <111> ориентация следующая после ориентации Госса {110}<001> увеличивается, и, следовательно, существует опасность укрупнения зерна вторичной рекристаллизации. Вышеуказанное является причиной того, почему S2 должна быть не менее 30°C/с, но не более 0,6×S1°C/c. Предпочтительно нижний предел S2 составляет 50°C/с и верхний предел составляет 0,55×S1°C/c.
Таким образом, снижение скорости S2 повышения температуры в зоне высокой температуры оказывает благоприятное влияние не только на ориентацию кристалла, но также и на формирование покрытия. Потому, хотя формирование покрытия начинается примерно при 600°C в процессе нагрева, если быстрый нагрев проводят в этой зоне температуры выдержка достигается в состоянии, в котором отсутствует начальное окисление, так что жестокое окисление происходит во время выдержки и, следовательно, подслойный диоксид кремния (SiO2) принимает форму вытянутых дендритов, направленных в виде стержня внутрь стального листа. Если окончательный отжиг проводят в таком состоянии, перемещение SiO2 к поверхности затрудняется и свободный форстерит формируется во внутренней части железной матрицы, что приводит к ухудшению магнитных свойств или свойств покрытия. Таким образом, вышеуказанные вредные эффекты быстрого нагрева можно избежать за счет снижения S2.
В патентных документах 1-4 раскрыт способ улучшения характеристик атмосферы во время нагрева. В этих документах, однако, быстрый нагрев осуществляется до высокой температуры 600-700°C, так что имеется изменение в достижении температуры в конце быстрого нагрева и трудно контролировать форму подслойной окалины. Таким образом, не может быть обеспечена однородность подслойной окалины в конечном рулоне и трудно получить конечный лист с превосходными магнитными свойствами и свойствами покрытия по всей его длине.
Кроме того, первичный рекристаллизационный отжиг может быть проведен обычным образом и другие условия первичного рекристаллизационного отжига после конечной холодной прокатки, такие как температуры выдержки, время выдержки, атмосфера выдержки, скорость охлаждения и т.п. особенно не ограничены.
В общем, первичный рекристаллизационный отжиг часто проводится в сочетании с обезуглероживающим отжигом. В изобретении может проводиться как первичный рекристаллизационный отжиг в сочетании с обезуглероживающим отжигом, так и обезуглероживающий отжиг может осуществляется отдельно после первичного рекристаллизационного отжига.
Кроме того, азотирование обычно проводят перед или после первичного рекристаллизационного отжига или во время первичного рекристаллизационного отжига для упрочнения ингибитора. В изобретении можно применять азотирование.
Сепаратор отжига
На стальной лист после первичного рекристаллизационного отжига или после обезуглероживающего отжига наносят сепаратор отжига и выполняют окончательный отжиг для проведения вторичной рекристаллизации. В изобретении содержание второстепенных ингредиентов, добавленных к сепаратору отжига, доводят до соответствующего диапазона в соответствии со скоростью S2 повышения температуры, в то время как второстепенные ингредиенты ограничены элементами, имеющими радиус иона 0,6-1,3 Å и силу притяжения между ионом и кислородом не более 0,7 Å-2. Элементами, удовлетворяющими этим условиям, являются Са, Sr, Li и Na. Они могут быть добавлены отдельно или в сочетании двух или более.
Причина, по которой радиус иона добавляемых второстепенных ингредиентов ограничен диапазоном 0,6-1,3 Å, вызвана тем, что он близок к радиусу иона 0,78 Å для иона магния MgO, который является основным ингредиент сепаратора отжига. То есть реакция формирования покрытия является реакцией формирования форстерита путем перемещения иона Mg2+ или иона О2- в сепараторе отжига за счет диффузии для реакции с SiO2 на поверхности стального листа следующим образом:
2MgO+SiO2→Mg2SiO4
Введением элемента, имеющего радиус иона вышеуказанного диапазона, вышеуказанная реакция может быть активирована, поскольку ион Mg2+ заменяется на указанные ионы в окончательном отжиге, в то время как дефект решетки вводится в решетку MgO несоответствием решеток, возникающим из-за разницы радиусов ионов, облегчая диффузию. Когда ионный радиус слишком велик или слишком мал по сравнению с вышеуказанным диапазоном, не идет реакция замещения иона Mg2+ и, следовательно, нельзя ожидать эффект активации реакции.
Ионный радиус относится к MgO, как указано выше, тогда как сила притяжения между ионом и кислородом является значением, представленным 2Z/(Ri+RO)2, где ионный радиус атома представлен Ri и его валентность представлена Z и ионный радиус иона кислорода представлен RO и его валентность равна 2, которое является показателем, представляющим степень воздействия преимущественно на SiO2 со стороны подслойной окалины с добавлением второстепенного ингредиента. Более конкретно, когда значение уменьшается, обогащение поверхностного слоя SiO2 усиливается во время окончательного отжига.
То есть считается, что SiO2 перемещается в направлении поверхностного слоя стального листа за счет процесса диссоциации-реагрегации, такого как Оствальдовское созревание в формировании покрытия. В этом случае, когда вводится ион, имеющий силу притяжения между ионом и кислородом не более 0,7 Å-2, связь с SiO2 легко разрывается, вызывая процесс диссоциации и обогащения поверхностного слоя SiO2 для повышения вероятности контакта с MgO и ускорения реакции формирования форстерита. Однако, когда сила притяжения между ионом и кислородом превышает 0,7 Å-2, указанный эффект не достигается.
Кроме того, необходимо, чтобы содержание ингредиента в сепараторе отжига удовлетворяющее вышеуказанным условиям, поддерживалось в диапазонах, удовлетворяющих следующему уравнению (1):
0,01 × S 2 5,5 L n ( W ) 0,01 × S 2 4,3 ( 1 )
Figure 00000002
в соответствии со скоростью S2 повышения температуры в зоне высокой температуры первичного рекристаллизационного отжига, когда добавляемое количество MgO равняется W (% мол.). Когда скорость S2 повышения температуры в зоне высокой температуры слишком высока, получаемый в виде дендритов диоксид кремния (SiO2) в подслойной окалине, глубоко проникает под поверхностный слой стального листа, так что необходимо активизировать перемещение SiO2 к поверхности стального листа во время окончательного отжига увеличением добавляемого количество вспомогательного ингредиента. И наоборот, когда S2 является слишком низкой, диоксид кремния в виде дендритов глубоко не проникает, так что SiO2 может перемещаться к поверхности стального листа, даже если добавленное количество вспомогательного ингредиента является небольшим. Таким образом, добавляемое количество W вспомогательного компонента необходимо поддерживать в подходящем диапазоне в соответствии со скоростью S2 повышения температуры. Когда W меньше, чем в диапазоне уравнения (1), не достигается эффект активирования перемещения SiO2 к поверхности, тогда как если превышает диапазон уравнения (1), перемещение SiO2 к поверхности значительно увеличивается и форма форстерита ухудшается, что приводит к ухудшению внешнего вида покрытия. Нижний предел Ln (W) предпочтительно составляет 0,01×S2-5,2, и его верхний предел составляет 0,01×S2-4,5.
В качестве вспомогательного ингредиента добавляемого к сепаратору отжига могут быть добавлены обычные хорошо известные оксид титана, борат, хлорид и т.п. в дополнение к вышеуказанным элементам. Они улучшают магнитные свойства и увеличивают количества покрытия путем дополнительного окисления, а также эти эффекты не зависят от вышеуказанного вспомогательного ингредиента, так что они могут быть добавлены совместно.
Кроме того, сепаратор отжига предпочтительно наносят в количестве 8-14 г/м2 на обе поверхности в виде суспензионного жидкого покрытия так, чтобы потери воды при прокаливании составляли 0,5-3,7 мас.%, и затем сушат.
В способе изготовления листа из текстурированной электротехнической стали согласно изобретению модификация магнитного домена облучением лазером, плазмой, электронным пучком или тому подобным, может быть осуществлена после окончательного отжига и формирования изоляционного покрытия. В частности, средство для упрочнения покрытия в соответствии с изобретением можно эффективно использовать в способе облучения электронным пучком. То есть облучение электронными пучками способствует легкому отслаиванию покрытия, потому что электронные пучки проходят покрытие, повышая температуру поверхности стального листа. Напротив, в соответствии с изобретением, однородное и прочное покрытие может быть сформировано активированием реакции формирования форстерита, в результате чего отслаивание покрытия при облучении электронными пучками может быть подавлено.
Пример 1
Стальной сляб, включающий C: 0,06 мас.%, Si: 3,3 мас.%, Mn: 0,08 мас.%, S: 0,023 мас.%, раств. Al: 0,03 мас.%, N: 0,007 мас.%, Cu: 0,2 мас.% и Sb: 0,02 мас.%, нагревают до 1430°C и выдерживают в течение 30 мин и затем проводят горячую прокатку для формирования горячекатаного листа толщиной 2,2 мм, который отжигают при 1000°C в течение 1 минуты и затем холодную прокатку для формирования холоднокатаного листа толщиной 0,23 мм. После этого лист нагревают при изменении скорости S1 повышения температуры между 500 и 600°C и скорости S2 повышения температуры между 600 и 700°C соответственно, как показано в таблице 1, и затем проводят первичный рекристаллизационный отжиг совместно с обезуглероживающим отжигом выдержкой при 840°C в течение 2 минут. Далее, наносят суспензию сепаратора отжига, состоящего главным образом из MgO и включающего 10 мас.% TiO2 и переменное количество вспомогательных ингредиент(ов) в виде оксида, имеющих различные ионные радиусы и силы притяжения ион-кислород, как показано в таблице 1, суспензию наносят на лист в количестве 12 г/м2 (на обе поверхности) так, чтобы обеспечить потери воды при прокаливании 3,0 мас.%, и затем лист сушат, сматывают в рулон, проводят окончательный отжиг с последующим нанесением жидкого покрытия, включающего фосфат магния-коллоидный диоксид кремния-хромовый ангидрид-порошок диоксида кремния, и затем проводят отжиг с правкой совместно с прокалкой жидкого покрытия и правкой стального листа при 800°C в течение 30 секунд, чтобы получить конечный рулон.
Из полученного таким образом конечного рулона отбирают образцы для испытаний на заданном интервале в продольном направлении, чтобы определить потери в железе по всей длине рулона, по которым определяется доля части, имеющей потери в железе W17/50 не более 0,80 Вт/кг по всей длине конечного рулона. Кроме того, поверхность стального листа проверяют визуально при отборе образцов для испытаний, чтобы подтвердить наличие или отсутствие дефектов покрытия, таких как затемнение цвета, точечные дефекты покрытия или т.п., из чего определяется доля недефектных частей, не имеющих дефектов покрытия по всей длине.
Результаты также показаны в таблице 1. Как видно из этих результатов, стальные листы примеров изобретения, изготовленные в условиях скорости повышения температуры и добавления вспомогательного ингредиента в сепаратор отжига, применяемых в изобретении, обладают хорошими магнитными свойствами и свойствами покрытия, поскольку доля W17/50≤0,80 Вт/кг составляет не менее 70% и доля части с хорошим внешним видом покрытия не менее 99% по всей длине.
Figure 00000003
Figure 00000004
Пример 2
Стальной сляб химического состава, показанного в таблице 2, нагревают до 1430°C и выдерживают в течение 30 минут и проводят горячую прокатку для получения горячекатаного листа толщиной 2,2 мм, который отжигают при 1000°C в течение 1 минуты, проводят холодную прокатку до толщины 1,5 мм, промежуточный отжиг при 1100°C в течение 2 минут и дальнейшую холодную прокатку для формирования холоднокатаного листа конечной толщины 0,23 мм. Проводят модификацию магнитного домена холоднокатаного листа для формирования линейной канавки путем электролитического травления и нагревают до 700°C в таких условиях, что скорость S1 повышения температуры между 500 и 600°C составляет 200°C/с и скорость S2 повышения температуры между 600 и 700°C составляет 50°C/с и затем проводят первичный рекристаллизационный отжиг совместно с обезуглероживающим отжигом при 840°C в атмосфере PH2O/PH2 0,4 в течение 2 минут. Далее, суспензию сепаратора отжига, состоящего главным образом из MgO, и содержащего 10 мас.% TiO2 и переменное количество оксида Li, имеющего радиус иона 0,88 Å и силу притяжения ион-кислород 0,38 Å-2, наносят на лист в количестве 12 г/м2 (на обе поверхности) таким образом, чтобы получить потери воды при прокаливании 3,0 мас.%, и затем лист сушат, сматывают в рулон, проводят окончательный отжиг с последующим нанесением жидкого покрытия, включающего фосфат магния-коллоидный диоксид кремния-хромовый ангидрид-порошок диоксида кремния, и затем проводят отжиг с правкой совместно с прокалкой жидкого покрытия и правкой стального листа при 800°C в течение 20 секунд, чтобы получить конечный рулон.
Из полученного таким образом конечного рулона отбирают образцы для испытаний на заданном интервале в продольном направлении, проводят отжиг для снятия внутренних напряжений, при 800°C в атмосфере азота в течение 3 часов, и после этого определяют потери в железе W17/50 с помощью испытания по методу Эпштейна для определения доли, имеющей потери в железе W17/50 не более 0,80 Вт/кг по всей длине конечного рулона. Кроме того, поверхность стального листа проверяют визуально при отборе образцов для испытаний, чтобы подтвердить наличие или отсутствие дефектов покрытия, таких как затемнение цвета, точечные дефекты покрытия или т.п., из чего определяется доля частей, не имеющих дефектов покрытия по всей длине.
Результаты также показаны в таблице 2. Как видно из этих результатов, стальные листы примеров изобретения, изготовленные в условиях скорости повышения температуры и добавления вспомогательного ингредиента в сепаратор отжига, применимых в изобретении, обладают хорошими магнитными свойствами и свойствами покрытия, поскольку доля W17/50≤0,80 Вт/кг составляет не менее 70% и доля части с хорошим внешним видом покрытия не менее 99% по всей длине.
Figure 00000005
Пример 3
Стальной сляб, включающий C: 0,06 мас.%, Si: 3,3 мас.%, Mn: 0,08 мас.%, S: 0,023 мас.%, раств. Al: 0,03 мас.%, N: 0,007 мас.%, Cu: 0,2 мас.% и Sb: 0,02 мас.%, нагревают до 1430°C и выдерживают в течение 30 минут и проводят горячую прокатку для получения горячекатаного листа толщиной 2,2 мм, который отжигают при 1000°C в течение 1 минуты и проводят холодную прокатку для формирования холоднокатаного листа толщиной 0,23 мм. После этого проводят первичный рекристаллизационный отжиг нагревом до 700°C в таких условиях, что скорость S1 повышения температуры между 500 и 600°C составляет 200°C/с и скорость повышения температуры S2 между 600 и 700°C составляет 50°C/с и затем проводят охлаждение в качестве первичного рекристаллизационного отжига и затем обезуглероживающий отжиг при 840°C в атмосфере PH2O/PH2 0,4 в течение 2 минут. Далее, суспензию сепаратора отжига, состоящего главным образом из MgO, и содержащего 10 мас.% TiO2, 5 мас.% сульфата магния и переменное количество оксида Sr, имеющего ионный радиус 1,3 Å и силу притяжения ион-кислород 0,55 Å-2, наносят на лист в количестве 12 г/м2 (на обе поверхности) таким образом, чтобы получить потери воды при прокаливании 3,0 мас.%, и затем лист сушат, сматывают в рулон, проводят окончательный отжиг с последующим нанесением жидкого покрытия включающего фосфат магния-коллоидный диоксид кремния-хромовый ангидрид-порошок диоксида кремния, проводят отжиг с правкой совместно с прокалкой жидкого покрытия и правкой стального листа при 800°C в течение 20 секунд и затем модификацию магнитного домена облучением электронным пучком поверхности стального листа, чтобы получить конечный рулон.
Из полученного таким образом конечного рулона отбирают образец из листа мерной длины для измерения потерь в железе W17/50 на испытательной машине SST (Single Sheet Teste), а маслонаполненный трансформатор 1000 кВА изготавливают из оставшегося конечного рулона, чтобы определить потери в железе в реальном трансформаторе. Кроме того, поверхность стального листа визуально проверяют по всей длине рулона при отборе образца из листа мерной длины, чтобы подтвердить наличие или отсутствие дефектов покрытия, таких как затемнение цвета, точечные дефекты покрытия или т.п., из чего определяется доля недефектных частей, не имеющих дефектов покрытия по всей длине.
Результаты также показаны в таблице 3. Как видно из этих результатов, стальные листы примеров изобретения, изготовленные в условиях скорости повышения температуры и вспомогательного ингредиента в сепаратор отжига, применяемых в изобретении, не только обладают превосходными свойствами потерь в железе и покрытия конечного рулона, но также низким коэффициентом заполнения (BF: отношение потерь в железе трансформатора к потерям в железе стального листа) и обладают хорошими свойствами потерь в железе после сборки трансформатора.
Figure 00000006

Claims (7)

1. Способ изготовления листа из текстурированной электротехнической стали, характеризующийся тем, что включает горячую прокатку стального сляба, содержащего, мас.%: C 0,001-0,10, Si 1,0-5,0, Mn 0,01-1,0, по меньшей мере, один элемент из S и Se 0,01-0,05 в сумме, раств. Al 0,003-0,050, N 0,001-0,020, остальное Fe и неизбежные примеси, однократную холодную прокатку или двукратную или многократную холодную прокатку с промежуточным отжигом между ними до конечной толщины, первичный рекристаллизационный отжиг, нанесение сепаратора отжига, содержащего MgO, и окончательный отжиг, при этом при первичном рекристаллизационном отжиге скорость S1 повышения температуры между 500-600°C составляет не менее 100°C/с и скорость S2 повышения температуры между 600-700°C составляет 30°C/c-0,6×S1°C/c, при этом в сепаратор отжига из MgO включают элемент, имеющий ионный радиус 0,6-1,3 Å и силу притяжения между ионом и кислородом не более 0,7 Å-2, общее содержание которого W регулируют согласно уравнению (1), мол.%:
Figure 00000007
0,01 S 2 5,5 L n ( W ) 0,01 S 2 4,3 ( 1 )
Figure 00000008
2. Способ по п.1, в котором после первичного рекристаллизационного отжига проводят обезуглероживающий отжиг.
3. Способ по п.1, в котором в сепаратор отжига из MgO включают по меньшей мере один элемент, выбранный из Са, Sr, Li и Na, имеющий ионный радиус 0,6-1,3 Å и силу притяжения между ионом и кислородом не более 0,7 Å-2.
4. Способ по п.2, в котором в сепаратор отжига из MgO включают по меньшей мере один элемент, выбранный из Са, Sr, Li и Na, имеющий ионный радиус 0,6-1,3 Å и силу притяжения между ионом и кислородом не более 0,7 Å-2.
5. Способ по любому из пп.1-4, в котором стальной сляб дополнительно содержит по меньшей мере один элемент, выбранный из, мас.%: Cu 0,01-0,2, Ni 0,01-0,5, Cr 0,01-0,5%, Sb 0,01-0,1, Sn 0,01-0,5, Mo 0,01-0,5 и Bi 0,001-0,1.
6. Способ по любому из пп.1-4, в котором стальной сляб дополнительно содержит по меньшей мере один элемент, выбранный из, мас.%: B 0,001-0,01, Ge 0,001-0,1, As 0,005-0,1, P 0,005-0,1, Te 0,005-0,1, Nb 0,005-0,1, Ti 0,005-0,1 и V 0,005-0,1.
7. Способ по п.5, в котором стальной сляб дополнительно содержит по меньшей мере один элемент, выбранный из, мас.%: В 0,001-0,01, Ge 0,001-0,1, As 0,005-0,1, Р 0,005-0,1, Те 0,005-0,1, Nb 0,005-0,1, Ti 0,005-0,1 и V 0,005-0,1.
RU2014104557/02A 2011-08-18 2012-08-15 Способ изготовления листа из текстурированной электротехнической стали RU2550675C1 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011178841 2011-08-18
JP2011-178841 2011-08-18
JP2012-161139 2012-07-20
JP2012161139A JP5360272B2 (ja) 2011-08-18 2012-07-20 方向性電磁鋼板の製造方法
PCT/JP2012/070758 WO2013024874A1 (ja) 2011-08-18 2012-08-15 方向性電磁鋼板の製造方法

Publications (1)

Publication Number Publication Date
RU2550675C1 true RU2550675C1 (ru) 2015-05-10

Family

ID=47715190

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014104557/02A RU2550675C1 (ru) 2011-08-18 2012-08-15 Способ изготовления листа из текстурированной электротехнической стали

Country Status (8)

Country Link
US (1) US9290824B2 (ru)
EP (1) EP2746410B1 (ru)
JP (1) JP5360272B2 (ru)
KR (1) KR101499404B1 (ru)
CN (1) CN103687967B (ru)
BR (1) BR112014002666B1 (ru)
RU (1) RU2550675C1 (ru)
WO (1) WO2013024874A1 (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2660145C1 (ru) * 2016-05-13 2018-07-05 Коносима Кемикал Ко., Лтд. Порошок оксида магния и способ его получения
RU2682357C1 (ru) * 2015-07-08 2019-03-19 ДжФЕ СТИЛ КОРПОРЕЙШН Текстурированная электротехническая листовая сталь и способ ее производства
RU2726527C1 (ru) * 2017-07-13 2020-07-14 Ниппон Стил Корпорейшн Электротехнический стальной лист с ориентированной зеренной структурой
RU2768905C1 (ru) * 2019-01-16 2022-03-25 Ниппон Стил Корпорейшн Способ производства листа электротехнической стали с ориентированной зеренной структурой
RU2771130C1 (ru) * 2019-01-16 2022-04-26 Ниппон Стил Корпорейшн Способ производства листа электротехнической стали с ориентированной зеренной структурой
RU2771315C1 (ru) * 2019-01-16 2022-04-29 Ниппон Стил Корпорейшн Способ производства листа электротехнической стали с ориентированной зеренной структурой
RU2776472C1 (ru) * 2019-01-16 2022-07-21 Ниппон Стил Корпорейшн Лист анизотропной электротехнической стали

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5994981B2 (ja) * 2011-08-12 2016-09-21 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP5360272B2 (ja) 2011-08-18 2013-12-04 Jfeスチール株式会社 方向性電磁鋼板の製造方法
WO2013058239A1 (ja) * 2011-10-20 2013-04-25 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
KR20140099923A (ko) * 2011-12-28 2014-08-13 제이에프이 스틸 가부시키가이샤 코팅 부착 방향성 전자 강판 및 그의 제조 방법
JP6028933B2 (ja) * 2013-10-31 2016-11-24 Jfeスチール株式会社 方向性電磁鋼板の製造方法
EP3205738B1 (en) * 2014-10-06 2019-02-27 JFE Steel Corporation Low-core-loss grain-oriented electromagnetic steel sheet and method for manufacturing same
US11239012B2 (en) * 2014-10-15 2022-02-01 Sms Group Gmbh Process for producing grain-oriented electrical steel strip
RU2677561C1 (ru) * 2015-02-13 2019-01-17 ДжФЕ СТИЛ КОРПОРЕЙШН Лист из текстурированной электротехнической стали и способ его изготовления
WO2016139818A1 (ja) * 2015-03-05 2016-09-09 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
CN107429307B (zh) 2015-04-02 2019-05-14 新日铁住金株式会社 单向性电磁钢板的制造方法
CN107881411B (zh) * 2016-09-29 2019-12-31 宝山钢铁股份有限公司 一种低噪音变压器用低铁损取向硅钢产品及其制造方法
JP6572956B2 (ja) * 2016-10-19 2019-09-11 Jfeスチール株式会社 方向性電磁鋼板の製造方法
RU2714004C1 (ru) * 2016-12-14 2020-02-11 ДжФЕ СТИЛ КОРПОРЕЙШН Лист из текстурированной электрической стали и способ его изготовления
KR101947026B1 (ko) * 2016-12-22 2019-02-12 주식회사 포스코 방향성 전기강판 및 이의 제조방법
US11236427B2 (en) 2017-12-06 2022-02-01 Polyvision Corporation Systems and methods for in-line thermal flattening and enameling of steel sheets
JP7110642B2 (ja) * 2018-03-20 2022-08-02 日本製鉄株式会社 一方向性電磁鋼板の製造方法
JP7110641B2 (ja) * 2018-03-20 2022-08-02 日本製鉄株式会社 一方向性電磁鋼板の製造方法
JP7214974B2 (ja) * 2018-03-30 2023-01-31 日本製鉄株式会社 方向性電磁鋼板の製造方法
WO2020012665A1 (ja) * 2018-07-13 2020-01-16 日本製鉄株式会社 方向性電磁鋼板及びその製造方法
KR102120277B1 (ko) * 2018-09-27 2020-06-08 주식회사 포스코 방향성 전기강판 및 그 제조방법
WO2020145313A1 (ja) * 2019-01-08 2020-07-16 日本製鉄株式会社 方向性電磁鋼板、仕上焼鈍用鋼板、焼鈍分離剤、方向性電磁鋼板の製造方法、及び仕上焼鈍用鋼板の製造方法
CN113302316B (zh) * 2019-01-16 2023-11-28 日本制铁株式会社 方向性电磁钢板及其制造方法
CN113088795A (zh) * 2019-12-23 2021-07-09 岳阳市永金起重永磁铁有限公司 一种电磁铁用硅钢材料及其制备方法
WO2021171766A1 (ja) * 2020-02-28 2021-09-02 Jfeスチール株式会社 絶縁被膜付き方向性電磁鋼板およびその製造方法
JP7364966B2 (ja) * 2020-06-24 2023-10-19 日本製鉄株式会社 方向性電磁鋼板の製造方法
CN114717480B (zh) * 2022-04-14 2023-03-03 无锡普天铁心股份有限公司 一种b8≥1.90t中温普通取向硅钢及制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2096849C1 (ru) * 1996-01-10 1997-11-20 Акционерное общество "Новолипецкий металлургический комбинат" Электроизоляционная композиция
RU2097858C1 (ru) * 1996-01-10 1997-11-27 Акционерное общество "Новолипецкий металлургический комбинат" Состав для получения электроизоляционного покрытия
JP2791812B2 (ja) * 1989-12-30 1998-08-27 新日本製鐵株式会社 鉄心加工性、耐熱性および張力付与性の優れた方向性電磁鋼板の絶縁皮膜形成方法及び方向性電磁鋼板
RU2139945C1 (ru) * 1994-03-22 1999-10-20 ЕБГ Гезелльшафт Фюр Электромагнетище Веркштоффе мбХ Способ изготовления электротехнической листовой стали со стеклянным покрытием
RU2405842C1 (ru) * 2006-11-22 2010-12-10 Ниппон Стил Корпорейшн Лист из текстурированной электротехнической стали с превосходной адгезией покрытия и способ его производства

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4504957A (en) 1982-10-20 1985-03-12 Armco Inc. High temperature box annealing furnace
US4898626A (en) 1988-03-25 1990-02-06 Armco Advanced Materials Corporation Ultra-rapid heat treatment of grain oriented electrical steel
JPH0535800A (ja) 1991-07-30 1993-02-12 Toshiba Corp 画像検索装置
JPH0578743A (ja) 1991-09-26 1993-03-30 Nippon Steel Corp 磁気特性、被膜特性ともに優れた方向性電磁鋼板の製造方法
JP3098628B2 (ja) 1992-09-17 2000-10-16 新日本製鐵株式会社 超高磁束密度一方向性電磁鋼板
KR960010595B1 (ko) * 1992-09-21 1996-08-06 신니뽄세이데스 가부시끼가이샤 1차 막이 최소화되고 자성이 뛰어나며 운용성이 우수한 배향 전기 강판의 제조방법
JPH06136446A (ja) * 1992-10-22 1994-05-17 Nippon Steel Corp グラス被膜を有しない鉄損の優れた方向性電磁鋼板の製造法
JP3236684B2 (ja) 1992-12-15 2001-12-10 川崎製鉄株式会社 曲げ特性及び鉄損特性の優れた方向性けい素鋼板
JP2983128B2 (ja) 1993-08-24 1999-11-29 新日本製鐵株式会社 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
KR0182802B1 (ko) 1993-01-12 1999-04-01 다나카 미노루 극히 낮은 철손을 갖는 일방향성 전자강판 및 그 제조방법
JP3598590B2 (ja) 1994-12-05 2004-12-08 Jfeスチール株式会社 磁束密度が高くかつ鉄損の低い一方向性電磁鋼板
JP3456862B2 (ja) 1997-04-25 2003-10-14 新日本製鐵株式会社 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JP3952606B2 (ja) 1998-08-19 2007-08-01 Jfeスチール株式会社 磁気特性および被膜特性に優れた方向性電磁鋼板およびその製造方法
EP0987343B1 (en) 1998-09-18 2003-12-17 JFE Steel Corporation Grain-oriented silicon steel sheet and process for production thereof
JP3386751B2 (ja) 1999-06-15 2003-03-17 川崎製鉄株式会社 被膜特性と磁気特性に優れた方向性けい素鋼板の製造方法
JP3873489B2 (ja) 1998-11-10 2007-01-24 Jfeスチール株式会社 被膜特性および磁気特性に優れる方向性けい素鋼板の製造方法
JP3537339B2 (ja) 1999-01-14 2004-06-14 新日本製鐵株式会社 皮膜特性と磁気特性に優れた方向性電磁鋼板及びその製造方法
JP2000256810A (ja) 1999-03-11 2000-09-19 Kawasaki Steel Corp 低磁場高周波での磁気特性及び打ち抜き加工性に優れる方向性けい素鋼板及びその製造方法
KR100359622B1 (ko) 1999-05-31 2002-11-07 신닛뽄세이테쯔 카부시키카이샤 고자장 철손 특성이 우수한 고자속밀도 일방향성 전자 강판 및 그의 제조방법
DE60144270D1 (de) 2000-08-08 2011-05-05 Nippon Steel Corp Verfahren zur Herstellung eines kornorientierten Elektrobleches mit hoher magnetischer Flussdichte
JP4598320B2 (ja) 2001-07-12 2010-12-15 新日本製鐵株式会社 方向性電磁鋼板の製造方法
EP1279747B1 (en) * 2001-07-24 2013-11-27 JFE Steel Corporation A method of manufacturing grain-oriented electrical steel sheets
JP4211260B2 (ja) * 2002-01-28 2009-01-21 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP4258157B2 (ja) * 2002-03-05 2009-04-30 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP3896937B2 (ja) * 2002-09-25 2007-03-22 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP4258278B2 (ja) 2003-05-30 2009-04-30 Jfeスチール株式会社 方向性電磁鋼板の製造方法
US7887646B2 (en) 2005-05-23 2011-02-15 Nippon Steel Corporation Oriented magnetic steel plate excellent in coating adhesion and method of production of same
WO2006132095A1 (ja) 2005-06-10 2006-12-14 Nippon Steel Corporation 磁気特性が極めて優れた方向性電磁鋼板及びその製造方法
EP3018221B1 (en) * 2006-05-24 2020-02-05 Nippon Steel Corporation Method of production of grain-oriented electrical steel sheet with high magnetic flux density
JP5300210B2 (ja) 2006-05-24 2013-09-25 新日鐵住金株式会社 方向性電磁鋼板の製造方法
KR100762436B1 (ko) 2006-10-18 2007-10-02 주식회사 포스코 표면성상이 우수한 방향성 전기강판용 소둔분리제 및 이를이용한 방향성 전기강판의 제조방법
JP5194641B2 (ja) 2007-08-23 2013-05-08 Jfeスチール株式会社 方向性電磁鋼板用絶縁被膜処理液および絶縁被膜付方向性電磁鋼板の製造方法
PL2330223T3 (pl) * 2008-09-10 2021-05-17 Nippon Steel Corporation Sposób wytwarzania blachy cienkiej ze stali elektrotechnicznej o ziarnach zorientowanych
JP5417936B2 (ja) 2009-03-31 2014-02-19 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP5332946B2 (ja) * 2009-06-25 2013-11-06 新日鐵住金株式会社 窒化型方向性電磁鋼板の窒化後のコイル巻き取り方法
JP4840518B2 (ja) 2010-02-24 2011-12-21 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP5760590B2 (ja) 2011-03-30 2015-08-12 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP5360272B2 (ja) 2011-08-18 2013-12-04 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP5434999B2 (ja) * 2011-09-16 2014-03-05 Jfeスチール株式会社 鉄損特性に優れる方向性電磁鋼板の製造方法
WO2013058239A1 (ja) 2011-10-20 2013-04-25 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2791812B2 (ja) * 1989-12-30 1998-08-27 新日本製鐵株式会社 鉄心加工性、耐熱性および張力付与性の優れた方向性電磁鋼板の絶縁皮膜形成方法及び方向性電磁鋼板
RU2139945C1 (ru) * 1994-03-22 1999-10-20 ЕБГ Гезелльшафт Фюр Электромагнетище Веркштоффе мбХ Способ изготовления электротехнической листовой стали со стеклянным покрытием
RU2096849C1 (ru) * 1996-01-10 1997-11-20 Акционерное общество "Новолипецкий металлургический комбинат" Электроизоляционная композиция
RU2097858C1 (ru) * 1996-01-10 1997-11-27 Акционерное общество "Новолипецкий металлургический комбинат" Состав для получения электроизоляционного покрытия
RU2405842C1 (ru) * 2006-11-22 2010-12-10 Ниппон Стил Корпорейшн Лист из текстурированной электротехнической стали с превосходной адгезией покрытия и способ его производства

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2682357C1 (ru) * 2015-07-08 2019-03-19 ДжФЕ СТИЛ КОРПОРЕЙШН Текстурированная электротехническая листовая сталь и способ ее производства
RU2660145C1 (ru) * 2016-05-13 2018-07-05 Коносима Кемикал Ко., Лтд. Порошок оксида магния и способ его получения
RU2726527C1 (ru) * 2017-07-13 2020-07-14 Ниппон Стил Корпорейшн Электротехнический стальной лист с ориентированной зеренной структурой
RU2768905C1 (ru) * 2019-01-16 2022-03-25 Ниппон Стил Корпорейшн Способ производства листа электротехнической стали с ориентированной зеренной структурой
RU2771130C1 (ru) * 2019-01-16 2022-04-26 Ниппон Стил Корпорейшн Способ производства листа электротехнической стали с ориентированной зеренной структурой
RU2771315C1 (ru) * 2019-01-16 2022-04-29 Ниппон Стил Корпорейшн Способ производства листа электротехнической стали с ориентированной зеренной структурой
RU2776472C1 (ru) * 2019-01-16 2022-07-21 Ниппон Стил Корпорейшн Лист анизотропной электротехнической стали

Also Published As

Publication number Publication date
EP2746410A4 (en) 2015-05-06
BR112014002666A2 (pt) 2017-06-13
BR112014002666B1 (pt) 2018-11-06
KR20140023442A (ko) 2014-02-26
CN103687967B (zh) 2016-06-15
BR112014002666A8 (pt) 2017-06-20
JP5360272B2 (ja) 2013-12-04
US9290824B2 (en) 2016-03-22
US20150007908A1 (en) 2015-01-08
EP2746410B1 (en) 2016-08-10
EP2746410A1 (en) 2014-06-25
KR101499404B1 (ko) 2015-03-05
CN103687967A (zh) 2014-03-26
WO2013024874A1 (ja) 2013-02-21
JP2013057119A (ja) 2013-03-28

Similar Documents

Publication Publication Date Title
RU2550675C1 (ru) Способ изготовления листа из текстурированной электротехнической стали
EP3050979B1 (en) Method for producing grain-oriented electromagnetic steel sheet
TWI472626B (zh) 方向性電磁鋼板的製造方法及方向性電磁鋼板的再結晶退火設備
JP6844125B2 (ja) 方向性電磁鋼板の製造方法
KR101620763B1 (ko) 방향성 전기 강판 및 그 제조 방법
RU2580776C1 (ru) Способ изготовления листа из текстурированной электротехнической стали
RU2613818C1 (ru) Способ изготовления листа из текстурированной электротехнической стали
WO2012001952A1 (ja) 方向性電磁鋼板およびその製造方法
KR101389248B1 (ko) 방향성 전자기 강판의 제조 방법
WO2011115120A1 (ja) 方向性電磁鋼板の製造方法
WO2016129291A1 (ja) 方向性電磁鋼板およびその製造方法
JP7010305B2 (ja) 方向性電磁鋼板
JP3386751B2 (ja) 被膜特性と磁気特性に優れた方向性けい素鋼板の製造方法
JP2001303214A (ja) 高周波磁気特性に優れた方向性電磁鋼板およびその製造方法
JP3846064B2 (ja) 方向性電磁鋼板
JP4258185B2 (ja) 方向性電磁鋼板およびその製造方法
JP4276547B2 (ja) 高磁場鉄損と被膜特性に優れる超高磁束密度一方向性電磁鋼板
JP4239456B2 (ja) 方向性電磁鋼板の製造方法
JP2008050663A (ja) 高珪素鋼板の製造方法
JPH06200325A (ja) 高磁性の珪素鋼板の製造法
RU2805838C1 (ru) Способ производства листа анизотропной электротехнической стали
JP7396545B1 (ja) 方向性電磁鋼板
JP2011208196A (ja) 著しく鉄損が低い方向性電磁鋼板の製造方法
JP2022161269A (ja) 方向性電磁鋼板の製造方法
JP4184755B2 (ja) 一方向性電磁鋼板