WO2020145313A1 - 方向性電磁鋼板、仕上焼鈍用鋼板、焼鈍分離剤、方向性電磁鋼板の製造方法、及び仕上焼鈍用鋼板の製造方法 - Google Patents

方向性電磁鋼板、仕上焼鈍用鋼板、焼鈍分離剤、方向性電磁鋼板の製造方法、及び仕上焼鈍用鋼板の製造方法 Download PDF

Info

Publication number
WO2020145313A1
WO2020145313A1 PCT/JP2020/000337 JP2020000337W WO2020145313A1 WO 2020145313 A1 WO2020145313 A1 WO 2020145313A1 JP 2020000337 W JP2020000337 W JP 2020000337W WO 2020145313 A1 WO2020145313 A1 WO 2020145313A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
primary coating
annealing
region
group
Prior art date
Application number
PCT/JP2020/000337
Other languages
English (en)
French (fr)
Inventor
龍太郎 山縣
宣郷 森重
田中 一郎
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to US17/421,338 priority Critical patent/US20220081743A1/en
Priority to CN202080007025.8A priority patent/CN113195751B/zh
Priority to BR112021012986-3A priority patent/BR112021012986A2/pt
Priority to EP20738801.8A priority patent/EP3910080A4/en
Priority to KR1020217019856A priority patent/KR102550567B1/ko
Priority to JP2020565182A priority patent/JP7180691B2/ja
Publication of WO2020145313A1 publication Critical patent/WO2020145313A1/ja
Priority to US17/901,936 priority patent/US20230002849A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/053Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet, a steel sheet for finish annealing, an annealing separator, a method for producing a grain-oriented electrical steel sheet, and a method for manufacturing a steel sheet for finish annealing.
  • Oriented electrical steel sheet is a steel sheet containing 0.5 to 7% by mass of Si and having crystal orientations accumulated in ⁇ 110 ⁇ 001> orientation (goss orientation). A catastrophic grain growth phenomenon called secondary recrystallization is used to control the crystal orientation.
  • the method of manufacturing grain-oriented electrical steel is as follows. A slab is heated and hot rolling is performed to manufacture a hot rolled steel sheet. The hot rolled steel sheet is annealed as necessary. Pickling the hot rolled steel sheet. The hot-rolled steel sheet after pickling is cold-rolled at a cold rolling ratio of 80% or more to produce a cold-rolled steel sheet. Decarburization annealing is performed on the cold-rolled steel sheet to develop primary recrystallization. Finish annealing is performed on the cold-rolled steel sheet after decarburization annealing to cause secondary recrystallization. Through the above steps, the grain-oriented electrical steel sheet is manufactured.
  • an annealing separating agent containing MgO as a main component is attached to the surface of the cold rolled steel sheet.
  • the method is carried out by applying an aqueous slurry containing an annealing separator component to a cold rolled steel sheet and drying. After the cold-rolled steel sheet to which the annealing separating agent is attached is wound on a coil, finish annealing is performed.
  • MgO in the annealing separator reacts with SiO 2 in the internal oxide layer formed on the surface of the cold-rolled steel sheet during decarburization annealing, and mainly contains forsterite (Mg 2 SiO 4 ).
  • a primary coating is formed on the steel plate surface.
  • an insulating coating liquid also referred to as a secondary coating
  • the primary coating and the insulating coating have a coefficient of thermal expansion smaller than that of the base steel sheet. Therefore, the primary coating, together with the insulating coating, imparts tension to the base steel sheet to reduce iron loss.
  • the primary coating further enhances the adhesion of the insulating coating to the base steel sheet. Higher adhesion of the primary coating to the base steel sheet is preferred.
  • a base material steel plate contains a magnetic property improving element (Cu, Sn, Sb, Bi, Te, Pb, Se, etc.) that strengthens the action of an inhibitor (precipitate that suppresses normal grain growth). .. Thereby, the integration of the crystal orientation in the Goss orientation is enhanced, and the magnetic flux density of the grain-oriented electrical steel sheet can be enhanced.
  • a magnetic property improving element Cu, Sn, Sb, Bi, Te, Pb, Se, etc.
  • the base material steel plate/primary coating interface is formed so that the interface energy is as low as possible, the aforementioned base material steel plate/primary coating interface is flat.
  • the base steel sheet contains a magnetic property improving element, it tends to become flatter. If the base steel sheet/primary coating interface becomes flatter, the insertion structure of the primary coating that creates the physical bonding force between the primary coating and the base steel sheet is lost, and the primary coating is transferred to the base steel sheet. Adhesion of is reduced. In particular, due to the compressive stress generated by bending, peeling is likely to occur, and the adhesiveness is significantly reduced.
  • Patent Documents 4 and 5 disclose techniques for improving the adhesion of the primary coating to the steel sheet.
  • Patent Document 4 0.001 to 0.1 mass% of Ce is contained in the slab component, and a primary coating film containing 0.01 to 1000 mg/m 2 of Ce is formed on the surface of the steel sheet.
  • the grain-oriented electrical steel sheet contains Si: 1.8 to 7% by mass, has a primary coating containing forsterite as a main component on its surface, and Ce, La, Pr, Nd is contained in the primary coating.
  • Sc, Y in an amount of 0.001 to 1000 mg/m 2 per one side in a basis weight, and one or more of Sr, Ca, Ba in a basis weight in a total amount per side. It is characterized by containing 0.01 to 100 mg/m 2 .
  • Patent Document 5 discloses a manufacturing method including a series of steps in which an annealing separator is applied to the surface of a base steel sheet subjected to decarburization annealing, followed by drying and finish annealing.
  • a method for producing a grain-oriented electrical steel sheet excellent in magnetic properties and primary coating adhesion characterized in that two or more kinds are contained in a total amount of 0.01 to 14 mass% with respect to MgO in terms of metal. It is disclosed.
  • JP-A-6-88171 Japanese Patent Laid-Open No. 8-269552 JP, 2005-290446, A JP, 2008-127634, A JP 2012-214902 A
  • the adhesion of the primary coating is referred to as an effect of reducing end surface peeling caused by shearing, but as to peeling resistance to bending, bending of about several tens of mm ⁇ is required. It is not evaluated as being less worked than shearing. Since the peeling behavior due to shearing and bending is different, it is more difficult than conventional to secure the adhesion of the primary coating to the base material steel sheet as an electromagnetic steel sheet for iron core manufacturing methods with a high degree of bending in recent years. Adhesion is required so that the primary coating does not peel off when subjected to bending, and even a material having no problem with peeling resistance of the sheared end face may not necessarily obtain severe resistance to bending.
  • gas such as nitrogen contained in the steel plate escapes.
  • the primary coating slows gas permeation.
  • the gas pressure becomes high at the interface between the primary coating and the base metal, and the primary coating may be blown off and destroyed.
  • dot-shaped exposed base metal portions having a size that can be visually identified appear on the surface of the steel sheet. If these dot-shaped exposed portions of the base material are generated at a somewhat high number density over a wide range on the surface of the steel sheet, they become serious defects in terms of insulation and appearance quality. Since the above-mentioned technique for improving the adhesion of the primary coating does not necessarily suppress the point defects, a control technique of the primary coating form that does not cause the point defects is required.
  • the object of the present invention is excellent in magnetic properties and adhesion to the base material steel sheet of the primary coating, the grain-oriented electrical steel sheet with few defects in which the base material is exposed in spots, and finish annealing steel sheet, annealing separator, direction To provide a method for producing a strong electromagnetic steel sheet and a method for producing a steel sheet for finish annealing.
  • the present invention controls and regulates the characteristics of the structure of the interface between the primary coating of a grain-oriented electrical steel sheet and the base material steel sheet to specify the structure of the primary coating.
  • the primary coating is divided into two regions in the plate thickness direction based on the geometrical features schematically shown in FIG. 1 to define the structure in each region.
  • the term "surface oxide layer (1)” on the surface side and the term "inserted oxide layer (2)" on the base material steel sheet side are used to express two regions.
  • the surface oxide layer (1) is a plate thickness at which a primary coating part that covers the surface of the base steel sheet relatively uniformly (hereinafter, this may be referred to as “surface oxide”) is present. This is the area of the direction.
  • the inlaid oxide layer (2) is a region in the plate thickness direction in which a primary coating portion (hereinafter, sometimes referred to as “inlaid oxide”) that has digged into the base steel sheet exists.
  • the reference value H0 of the depth for dividing the two will be described later.
  • the structure of the interface is defined by the morphological characteristics of the primary coating observed from the mother steel sheet side. Details will be described later together with the measuring method.
  • the structure of the interface between the primary coating film and the base steel sheet, particularly the characteristic of the shape, may be generally expressed by using the term "root".
  • the interface between the primary coating of the grain-oriented electrical steel sheet and the base steel sheet has an uneven shape in which the inlaid oxide penetrates into the base steel sheet.
  • the penetration depth of the embedded oxide becomes deep and the number density (number/ ⁇ m 3 ) of the number of oxide particles increases, the adhesion of the primary coating to the base material steel plate increases due to the so-called anchor effect.
  • the infiltrated oxide penetrates too much into the base steel sheet, it becomes a factor that hinders the crystal grain growth of the steel sheet during secondary recrystallization and the domain wall movement during magnetization, deteriorating the magnetic properties.
  • the primary coating has the effect of imparting tension to the steel sheet and reducing iron loss.
  • the surface oxide layer (1) of the primary coating preferably has a high content of Mg 2 SiO 4 having a small linear expansion coefficient, and the surface oxide layer (1) is thick. Is desirable.
  • the present inventors have found that the magnetic properties of the grain-oriented electrical steel sheet containing a magnetic property improving element and the annealing containing Y, La, Ce compounds and Ca, Sr, Ba compounds.
  • the adhesiveness of the primary coating formed by using the separating agent was investigated and examined.
  • the present inventors have obtained the following findings.
  • one or more elements selected from the group consisting of Y, La, and Ce are collectively referred to as “Y group element”, and one or more elements selected from the group consisting of Ca, Sr, and Ba.
  • the elements may be collectively described as "Ca group element".
  • the coating adhesion to the shearing process may be sufficient, but the coating adhesion to the bending process may not be sufficiently obtained. .. Further, if a large amount of the Y group element and the Ca group element are added at the same time in order to improve the adhesion of the coating film against bending, iron loss and magnetic flux density may decrease. Further, even if the surface area of the inlaid oxide layer (2) is increased in order to control the morphology of the primary coating and enhance the coating adhesion, the primary coating is blown off by the gas generated from the steel sheet during finish annealing. As a result, defects may occur in which the base material is exposed in spots.
  • the embedded oxide layer (2) becomes thick. This improves the film adhesion to shearing. Further, when the annealing separator contains a Ca group element, the number density of the inlaid oxide layer (2) of the formed primary coating increases, and the coating adhesion to shearing improves. Furthermore, as the total content of the Ca group elements specified below in the primary coating, the total content of the Ca group elements contained as impurities in the MgO raw material powder and the compound of the Ca group element contained outside the MgO raw material powder If the content of is adjusted to an appropriate ratio, the adhesion of the coating film to bending is enhanced, deterioration of magnetic properties is suppressed, and point defects are also suppressed.
  • the thickness of the surface oxide layer (1) becomes uniform and the Mg 2 SiO 4 phase increases. Furthermore, the embedded oxide layer (2) becomes longer not only in the plate thickness direction but also in the longitudinal width direction.
  • the improvement of the film adhesion to bending is that the thickness of the surface oxide layer (1) becomes uniform, and the local stress is concentrated on the region where the thickness of the surface oxide layer (1) during bending is thin. It is thought that this is due to the avoidance of. Further, it is considered that the improvement of the magnetic properties is caused by the increase in the tension acting on the steel sheet because the amount of Mg 2 SiO 4 phase in the surface oxide layer (1) increases.
  • the primary coating having such good characteristics is characterized not only by the shape of the interface irregularities but also by the morphology of Al existing near the interface of the primary coating. Further, the characteristics of the annealing separator used to form such a primary coating were clarified. Since the interface between the base steel sheet and the primary coating has a complicated three-dimensional shape having irregularities as shown in FIG. 1, an attempt was made to define the structural characteristics of the interface having this three-dimensional shape.
  • the steel sheet for finish annealing for producing the grain-oriented electrical steel sheet satisfies the following condition (9).
  • (9) Number density D42 of particles containing a Ca group element in the Ca group element concentrated region of the annealing separator layer: 0.005 to 1.400 particles/ ⁇ m 3 .
  • the primary separator and the annealing separator capable of forming the annealing separator layer satisfy the following conditions (10) to (17).
  • the gist of the present invention obtained from these findings is as follows.
  • the grain-oriented electrical steel sheet according to the present invention is, in mass %, C: 0.0050% or less, Si: 2.5 to 4.5%, Mn: 0.02 to 0.20%, from the group consisting of S and Se.
  • One or more selected elements 0.005% or less in total, sol.
  • a primary coating containing 2 SiO 4 as a main component and in the plate thickness direction of the steel plate, the primary coating surface of the steel plate when the direction from the primary coating to the base steel plate is positive
  • the information of the unevenness is projected and developed on a plane parallel to the steel plate surface, and the median value of the surface height of the primary coating on the base material steel plate side is defined as H0.
  • the primary coating is classified as an "inserted oxide layer area” and the primary coating existing on the primary coating side with respect to H0 + 0.2 ⁇ m is classified as a "surface oxide layer area", and the information of the primary coating is parallel to the steel sheet surface.
  • the maximum value of the characteristic X-ray intensity of Al (aluminum) is specified in the characteristic X-ray intensity and unevenness correlation distribution chart projected and developed on a flat surface, and 20% or more of the maximum value of the characteristic X-ray intensity of Al is specified.
  • the primary coating is (1) Number density D3 of the Al concentrated region: 0.015 to 0.150/ ⁇ m 2 , (2) (Area S5 of the area which is the inlaid oxide layer area and is the Al concentrated area)/(Area S3 of the Al concentrated area) ⁇ 0.30, (3) Distance H5 obtained by subtracting H0 from the average value of the height in the plate thickness direction of the area that is the inlaid oxide layer area and that is the Al concentrated area, H5: 0.4 to 4.0 ⁇ m, (4) (peripheral length L5 of the area that is the above-mentioned inlaid oxide layer area and that is the above Al concentrated area)/(observation area S0): 0.020 to 0.500 ⁇ m/ ⁇ m 2 , (5) It is characterized in that the condition of (area S1 of the fitting oxide layer region)/(observation area S0) ⁇ 0.15 is satisfied.
  • the primary coating contains one or more elements selected from the group consisting of Y, La, and Ce, and one or more elements selected from the group consisting of Ca, Sr, and Ba.
  • the maximum value of the characteristic X-ray intensity of each of Ca, Sr, and Ba is specified, and 20% or more of the maximum value of the characteristic X-ray intensity of Ca is contained.
  • the area where the characteristic X-ray intensity of Ca is obtained the area where the characteristic X-ray intensity of Sr is 20% or more of the maximum value of the characteristic X-ray intensity of Sr, and the maximum value of the characteristic X-ray intensity of Ba.
  • the steel sheet for finish annealing for producing the grain-oriented electrical steel sheet is, in mass %, C: 0.1% or less, Si: 2.5 to 4.5%, Mn: 0.02 to 0.20. %, one or more elements selected from the group consisting of S and Se: 0.005 to 0.07% in total, sol.
  • the maximum value of the characteristic X-ray intensity of each of Ca, Sr, and Ba is specified, and a region where the characteristic X-ray intensity of Ca of 20% or more of the maximum value of the characteristic X-ray intensity of Ca is obtained, and the characteristic X of Sr.
  • a region where a characteristic X-ray intensity of Sr of 20% or more of the maximum value of the line intensity is obtained and a region where the characteristic X-ray intensity of Ba of 20% or more of the maximum value of the characteristic X-ray intensity of Ba is combined.
  • the annealing separator layer is (9) Ca, Sr in the Ca group element enriched region existing in a region of 0 to 3.0 ⁇ m from the base steel plate surface. , Ba satisfying the number density D42: 0.005 to 1.400 particles/ ⁇ m 3 of particles containing at least one element selected from the group consisting of Ba, Ba and Ba.
  • the annealing separating agent according to the present invention is an annealing separating agent containing MgO as a main component, and comprises one or more elements selected from the group consisting of Y, La, and Ce, and a group consisting of Ca, Sr, and Ba. Containing one or more elements selected, the content of Mg, Y, La, Ce, Ca, Sr, Ba contained in the annealing separator with respect to the content of MgO contained in the annealing separator.
  • the production method of the grain-oriented electrical steel sheet according to the present invention comprises, in mass%, C: 0.1% or less, Si: 2.5 to 4.5%, Mn: 0.02 to 0.20%, S and Se.
  • the manufacturing method of the steel sheet for finish annealing is, in mass %, C: 0.1% or less, Si: 2.5 to 4.5%, Mn: 0.02 to 0.20%, a group consisting of S and Se.
  • the method is characterized by comprising a step of producing and a step of applying an aqueous slurry on the surface of the decarburized annealed plate and drying the same, wherein the aqueous slurry contains the above-mentioned annealing separator.
  • the grain-oriented electrical steel sheet according to the present invention has excellent magnetic properties and excellent adhesion of the primary coating to the base material steel sheet.
  • the method for producing a grain-oriented electrical steel sheet according to the present invention can produce the grain-oriented electrical steel sheet described above.
  • the annealing separator according to the present invention is applied to the above manufacturing method, whereby the grain-oriented electrical steel sheet of the present invention can be manufactured.
  • the steel sheet for finish annealing according to the present invention is for producing the grain-oriented electrical steel sheet of the present invention.
  • the method for producing a steel sheet for finish annealing according to the present invention can produce the steel sheet for finish annealing described above.
  • the surface of the side that was in close contact with the base material steel sheet of the primary coating separated from the grain-oriented electrical steel sheet is observed.
  • This observation surface is analyzed by a scanning confocal laser scanning microscope to obtain the unevenness distribution of the interface (information in the depth direction of the interface). Further, the observation surface is analyzed using SEM-EDS, and the concentration distribution of various elements existing in the primary coating is obtained from the characteristic X-ray intensity.
  • the obtained information is the information of the primary coating having a three-dimensional structure (concavities and convexities, characteristic X-ray intensity) on the steel sheet surface. It is projected on parallel planes. It is first noted that the following description of the interface in the present specification uses the "features on the projection plane". For example, the “area” related to the structure of the interface is the area obtained on the projection plane, and the region where the element exists is specified based on the characteristic X-ray intensity of the element obtained on the projection plane.
  • the characteristics obtained on these projection planes can well define the characteristics of the present invention, and the present invention will be described by the information of the primary film on these projection planes. It goes without saying that does not impair the meaning of the present invention.
  • the notation “A to B” for the numerical values A and B means “not less than A and not more than B” unless otherwise specified. When a unit is attached only to the numerical value B in this notation, the unit is also applied to the numerical value A.
  • the “main component” means a component contained in a certain substance in an amount of 50% by mass or more, preferably 70% by mass or more, and more preferably 90% by mass or more.
  • a method for producing a grain-oriented electrical steel sheet and a grain-oriented electrical steel sheet according to the present invention an annealing separator used in the production of a grain-oriented electrical steel sheet, a finish annealing steel sheet for producing a grain-oriented electrical steel sheet and a finish annealing steel sheet.
  • the manufacturing method will be described in detail.
  • % relating to the content of an element means mass% unless otherwise specified.
  • the grain-oriented electrical steel sheet according to the present invention comprises a base material steel sheet and a primary coating formed on the surface of the base material steel sheet.
  • the chemical composition of the base steel sheet forming the grain-oriented electrical steel sheet described above contains the following elements.
  • the feature of the present invention resides in the primary coating, and the base steel sheet does not need to be special.
  • the base steel sheet is produced by performing cold rolling using a hot-rolled steel sheet having a chemical composition described later, and the components lost during finish annealing. Therefore, the chemical composition of the base steel sheet and the chemical composition of the hot-rolled steel sheet constituting the grain-oriented electrical steel sheet are significantly different.
  • Carbon (C) is an element effective for controlling the structure until the completion of the decarburization annealing step in the manufacturing process, but if the C content exceeds 0.0050%, it is a product plate. The magnetic properties of the grain-oriented electrical steel sheet deteriorate. Therefore, the C content is 0.0050% or less. It is preferable that the C content is as low as possible. However, even if the C content is reduced to less than 0.0001%, only the manufacturing cost is required, and the above effect does not change so much. Therefore, the preferable lower limit of the C content is 0.0001%.
  • Si 2.5-4.5%
  • Si increases the electrical resistance of steel and reduces eddy current loss. If the Si content is less than 2.5%, the above effect cannot be sufficiently obtained. On the other hand, if the Si content exceeds 4.5%, the cold workability of the steel deteriorates. Therefore, the Si content is 2.5 to 4.5%.
  • the lower limit of the Si content is preferably 2.6%, and more preferably 2.8%.
  • the upper limit of the Si content is preferably 4.0%, and more preferably 3.8%.
  • Mn 0.02 to 0.20%
  • Manganese (Mn) combines with S and Se described later to form MnS and MnSe during the manufacturing process. These precipitates function as inhibitors (inhibitors of normal grain growth) and cause secondary recrystallization in steel. Mn further enhances the hot workability of steel. If the Mn content is less than 0.02%, the above effect cannot be sufficiently obtained. On the other hand, if the Mn content exceeds 0.20%, secondary recrystallization does not occur and the magnetic properties of the steel may deteriorate. Therefore, the Mn content is 0.02 to 0.20%.
  • the preferable lower limit of the Mn content is 0.03%, more preferably 0.04%.
  • the preferable upper limit of the Mn content is 0.13%, more preferably 0.1%.
  • One or more elements selected from the group consisting of S and Se 0.005% or less in total Sulfur (S) content and selenium (Se) combine with Mn during the manufacturing process to function as an inhibitor. MnS and MnSe are formed. However, if the total content of these elements exceeds 0.005%, the magnetic properties deteriorate due to the remaining inhibitors. Further, segregation of S and Se may cause surface defects in the grain-oriented electrical steel sheet. Therefore, in the grain-oriented electrical steel sheet, the total content of one or more elements selected from the group consisting of S and Se is 0.005% or less. The total content of S and Se in the grain-oriented electrical steel sheet is preferably as low as possible.
  • the preferable lower limit of the total content of at least one selected from the group consisting of S and Se in the grain-oriented electrical steel sheet is 0.0001%.
  • sol. Al 0.010% or less
  • Aluminum (Al) combines with N to form AlN and functions as an inhibitor during the production process of the grain-oriented electrical steel sheet.
  • the Al content is 0.010% or less.
  • the preferable upper limit of the Al content is 0.004%, and more preferably 0.003%. sol.
  • the Al content is preferably as low as possible.
  • the preferable lower limit of the Al content is 0.0001%. In the present specification, sol.
  • Al means acid-soluble Al. Therefore, sol.
  • the Al content is the content of acid-soluble Al.
  • Al which is a feature of the primary coating of the present invention, is derived from the base steel sheet, as will be described later. Therefore, at first glance, the fact that the Al content of the base steel sheet is zero seems to contradict with the presence of Al in the primary coating, but the concentration in the primary coating is " In the grain-oriented electrical steel sheet of the present invention, which is "Al contained in the steel sheet", by the high temperature heat treatment also called “purification annealing” in one process of finish annealing after the concentration of Al, which is a feature of the present invention, occurs. Al of the base steel sheet is discharged out of the system. Therefore, there is no contradiction that the final base material steel plate does not contain Al and that the final primary coating film contains Al derived from the base material steel plate.
  • N 0.010% or less Nitrogen (N) forms AlN by combining with Al during the manufacturing process of the grain-oriented electrical steel sheet, and functions as an inhibitor.
  • N content in the grain-oriented electrical steel sheet exceeds 0.010%, the above-mentioned inhibitor excessively remains in the grain-oriented electrical steel sheet, and the magnetic properties deteriorate. Therefore, the N content is 0.010% or less.
  • the preferable upper limit of the N content is 0.004%, and more preferably 0.003%.
  • the N content is preferably as low as possible. However, even if the total content of N in the grain-oriented electrical steel sheet is reduced to less than 0.0001%, the manufacturing cost only increases and the above effect does not change so much. Therefore, the preferable lower limit of the N content in the grain-oriented electrical steel sheet is 0.0001%.
  • the balance of the chemical composition of the base steel sheet of the grain-oriented electrical steel sheet according to the present invention consists of Fe and impurities.
  • the impurities when industrially producing the base steel sheet, ore as a raw material, scrap, or those mixed from the production environment, or in the steel without being completely purified in the purification annealing.
  • the following remaining elements and the like are meant as long as they are permitted within a range that does not adversely affect the grain-oriented electrical steel sheet of the present invention.
  • a grain-oriented electrical steel sheet having a primary coating film formed on its surface is subjected to constant potential electrolysis in an electrolytic solution so that only the base material steel sheet is dissolved, and then the primary coating film is separated from the base material steel sheet to obtain an observation sample.
  • electrolysis for sampling since the base material steel sheet at the interface is selectively electrolyzed, it is not necessary to electrolyze all the base material steel sheet, and an appropriate amount of electrolysis may be set.
  • the amount of electrolysis is, for example, 80 C (80 C/cm 2 ) per 1 cm 2 of the steel plate area.
  • this separated coating may be referred to as an “interface observation sample”, and the surface of the primary coating to be observed, which is in close contact with the base steel sheet, may be referred to as an “observation surface”.
  • the interface observation sample is observed with various observation devices from the direction perpendicular to the original steel plate surface (the thickness direction of the grain-oriented electrical steel plate). Therefore, the data obtained from each device is the information of the interface observation sample developed on the projection plane.
  • the following description will be made on the premise of data on this projection plane. That is, for example, the description “at the interface” is a description of the situation of data on the projection plane.
  • the plate thickness direction the direction from the primary coating film side to the base material steel plate side is positive.
  • the term “height” used below means that the direction from the primary coating side to the base steel sheet side is high.
  • a region of 20 ⁇ m ⁇ 15 ⁇ m or more is analyzed with a scanning confocal laser microscope (model number: VK9710, manufactured by KEYENCE) to obtain surface irregularity data on the projection plane.
  • the scanning step is 0.1 ⁇ m or less.
  • Smoothing is performed once on the obtained 30,000 or more (200 ⁇ 150) concavo-convex data by a Gaussian filter of size 3 ⁇ 3 (FIG. 2).
  • automatic quadratic surface correction is performed on the unevenness data after smoothing with the center line in the width direction and the center line in the height direction as the reference, and this data is developed on the projection plane to obtain 200 pieces ⁇ 150 pieces.
  • a final unevenness distribution map is obtained.
  • FIG. 3 is a schematic view showing a three-dimensional structure of the back surface of the peeled primary coating and the fitting portion.
  • H0 is the median value of the surface height of the primary coating.
  • H1 is an average value of the heights of the fitting portions existing at positions higher than H0. This position (H1-H0) is 0.40 to 2.00 ⁇ m in the present invention.
  • the projection of FIG. 3 on a plane parallel to the steel plate surface is a projection plane having height unevenness distribution information. Further, within the observation region, characteristic X-ray intensity analysis of Ca, Sr, Ba and Al is performed using SEM-EDS (model number: JSM-7900F, manufactured by JEOL Ltd.).
  • the scanning step is set to 0.1 ⁇ m or less, and a characteristic X-ray intensity distribution chart of 200 ⁇ 150 pixels on the projection plane is obtained.
  • an area of 200 ⁇ 150 pixels or more is made to overlap the unevenness distribution map with reference to the resolution of the characteristic X-ray intensity distribution map. That is, for each pixel in the area of 200 ⁇ 150 pixels or more of the digital image of the characteristic X-ray intensity distribution map, at least one or more (preferably all points) height data of the unevenness distribution map of the corresponding area is associated.
  • this is referred to as a characteristic X-ray intensity and unevenness correlation distribution chart, and a schematic diagram showing this is shown in FIG. A method for identifying the morphology of the film using the information obtained from this figure will be described.
  • the areas A0 to A5 are determined in the observation area by the following procedure.
  • A0 In the schematic view of the characteristic X-ray intensity and unevenness correlation distribution chart shown in FIG. 4, all the observation areas in the outermost frame are indicated by A0.
  • the region filled with dark gray is a region higher than the median value H0 of the unevenness.
  • the inside of the frame indicated by the light gray line is a region (inserted oxide region) A1 which is 0.2 ⁇ m higher than H0. Outside the frame indicated by the light gray line is the surface oxide layer region A2.
  • the Al (aluminum) concentrated region is represented by A3 (shown by dots) and A5 (shown by black).
  • A5 indicates an Al (aluminum) concentrated region existing in the inlaid oxide region (A1).
  • the area A4 (inside the frame of the dotted line) shows the Ca group element concentrated area described below.
  • the area A0 is the entire observation area, that is, an area of at least 20 ⁇ m ⁇ 15 ⁇ m or more, and all the pixels of the characteristic X-ray and the unevenness correlation distribution map correspond to this area A0.
  • A0 may be described as an “observation region”.
  • the area A1 and the area A2 are divided based on the characteristic X-ray intensity and the unevenness correlation distribution chart.
  • the primary coating is classified into two regions in the thickness direction based on the position H0 in the thickness direction of the steel sheet, the "inserted oxide layer (2)" and the "surface oxide layer (1)".
  • Areas A1 and A2 are areas where this classification is developed on the projection plane.
  • H0 is the median value of the height data of the characteristic X-ray intensity and the unevenness correlation distribution chart. Here, it is an arithmetic average value of two height values of 200 ⁇ 150 close to the center.
  • the region having a height of H0+0.2 ⁇ m or more is the “inserted oxide layer (2)”, and the one seen on the projection plane is the “inserted oxide layer region” A1.
  • the area having a height of less than H0+0.2 ⁇ m is the “surface oxide layer (1)”, and is the “surface oxide layer area” A2 on the projection plane.
  • the areas A3 and A4 are divided based on the characteristic X-ray intensity and the unevenness correlation distribution chart.
  • the maximum value of the characteristic X-ray intensity of Al (aluminum) is specified, and the region in which the intensity is 20% or more of the maximum value of the characteristic X-ray intensity of Al is A3. is there.
  • the region A3 will be referred to as "Al concentrated region”.
  • the characteristic X-ray intensities of Ca, Sr, and Ba are specified, and the characteristic X-ray intensity of Ca that is 20% or more of the maximum value of the characteristic X-ray intensity of Ca is obtained.
  • A4 is the area including the area where is obtained. That is, the region A4 is a region in which the characteristic X-ray intensity of any element of Ca, Sr, and Ba is 20% or more of the maximum characteristic X-ray intensity of the element.
  • A4 is described as "Ca group element concentrated region”.
  • A5 a region existing in the inlaid oxide layer region A1 and being an Al (aluminum) concentrated region A3 is specified as A5.
  • the area A5 will be referred to as an “inserted Al (aluminum) area”.
  • the number density (number/ ⁇ m 2 ) of the number of each region, the total area ( ⁇ m 2 ) of each region, and the position (height ( ⁇ m)) in the plate thickness direction of each region are specified. Areas are required for the areas A0, A1, A3, and A5, and the respective areas are S0, S1, S3, and S5. It is A3 and A4 that the number density of the number of regions is required. The number densities of the numbers of A3 and A4 areas are D3 and D4, respectively.
  • one region is defined as a region in which pixels are vertically or horizontally contiguous in pixel units, and a region composed of four or more pixels is specified to calculate the number.
  • D3 is the area of the observation area A0 (that is, the total observation area S0, which is the total number of areas measured by regarding the area A3 in which the pixels are continuous in pixels as one area). ) Divided by. D4 is calculated by the same method.
  • the region A5 is required to have a position in the plate thickness direction.
  • the position of the area A5 is H5.
  • This position is specified with reference to H0, which is the boundary between the surface oxide layer (1) and the fitting oxide layer (2). Specifically, it is a value obtained by subtracting H0 from the average value of the heights of all the pixels in the area A5. Since the area A5 exists at a position where the height in the characteristic X-ray intensity and the unevenness correlation distribution diagram is H0+0.2 ⁇ m or more, the average value of the height of the pixels in the area A5 is always H0+0.2 ⁇ m or more, and the result H5 has a value of 0.2 ⁇ m or more.
  • the characteristic primary coating film of the present invention will be described below.
  • the primary coating of the present invention contains Mg 2 SiO 4 as a main component, it has a great feature in the Al distribution in the vicinity of the interface between the primary coating and the base steel sheet.
  • the characteristics of the intercalated oxide layer (2) will be described first, and then the characteristics of the entire primary coating will be described.
  • the present invention is characterized in that D3, which is the number density of the Al concentrated region A3 near the interface, is D3: 0.015 to 0.150/ ⁇ m 2 . If D3 is out of this range, the effect of improving the coating adhesion to bending cannot be obtained.
  • a region that is a fitting oxide layer region that is, a region that is a fitting oxide layer region A1 and is an Al (aluminum)-rich region A3 (fitting Al region A5) has a peripheral length L5 of
  • the ratio to the observed area, L5/S0 is in the range of 0.020 to 0.500 ⁇ m/ ⁇ m 2 . If this ratio is less than 0.02 ⁇ m/ ⁇ m 2 , the effect of improving the coating adhesion to bending cannot be obtained. On the other hand, if it exceeds 0.500 ⁇ m/ ⁇ m 2 , the core loss characteristics deteriorate.
  • the perimeter L5 is the total of the perimeters of the fitting Al region A5, and the perimeter of the fitting Al region A5 is the perimeter of consecutive pixels forming one fitting Al region A5. Furthermore, the position H5 in the plate thickness direction of the fitted Al region is H5: 0.4 to 4.0 ⁇ m. If this value is less than 0.4 ⁇ m, the effect of improving the coating adhesion to bending cannot be obtained. On the other hand, if it exceeds 4.0 ⁇ m, the embedded oxide is excessively elongated in the plate thickness direction, so that the circumferential length is reduced, the gas escape property is not improved, and point defects occur.
  • Al is an element having a strong tendency to form an oxide
  • Al is selectively oxidized on the surface of the steel sheet during finish annealing, and Al diffuses from the inside of the base steel sheet toward the surface.
  • MgAl 2 O 4 the amount of Mg 2 SiO 4 is reduced, the amount thereof is decreased, and the linear expansion coefficient is increased.
  • the thickness of the surface oxide layer (1) mainly composed of Mg 2 SiO 4 becomes nonuniform.
  • the present invention has a structure in which the Al-based oxide is formed at the tip position of the inlaid oxide deeply penetrating the mother steel plate, thereby improving the magnetic properties and improving the adhesion of the coating film against bending. It seems that they have achieved both at the same time.
  • the specified value representing this is H5, and in the present invention, H5 is 0.4 ⁇ m or more, that is, the inserted Al region is formed at a position separated from H0 by 0.4 ⁇ m or more to the steel plate inner side (the tip side of the inserted oxide).
  • the above structure is achieved by setting the peripheral length L5 of the fitted Al region per observation area to be 0.02 ⁇ m or more.
  • the fact that such an inserted Al region A5 is at the tip of the inserted oxide also leads to D3 being a numerical value within an appropriate range. That is, if the number density of the inserted Al regions A5 is small, D3 is low. Further, even if a situation occurs in which the density of the inlaid Al regions becomes excessively high temporarily, the distance between the adjacent inlaid Al regions A5 becomes short, so they are united as the primary coating grows. Finally, D3 is unlikely to be an excessively high value.
  • Al diffused from the inside of the steel sheet will not reach the surface oxide layer (1), so that S5/S3 is inevitably high.
  • the state of Al in the Al-concentrated region A3 is not specified at all, but considering that the main component of the primary coating is Mg 2 SiO 4 , Al in A3 is an oxide. It is reasonable to think that it exists as.
  • the shape of the inlaid oxide layer (2) cannot be said to have a remarkable external characteristic, but the above-mentioned characteristic Al distribution of the inlaid oxide layer (2) is not so remarkable. Since the phenomenon in the tip region is utilized, it is difficult to form a characteristic Al distribution unless the inlaid oxide itself exists. Therefore, the area ratio of the embedded oxide layer region on the projection plane is defined as the presence of the embedded oxide.
  • the specified numerical range itself is such that it can be observed even in grain-oriented electrical steel sheets with excellent coating adhesion in general shearing, but it is important as a necessary condition for obtaining a characteristic Al distribution. Can also be said.
  • the primary coating of the present invention contains forsterite (Mg 2 SiO 4 ) as a main component. More specifically, the primary coating contains 50-95 wt% Mg 2 SiO 4 .
  • the balance is generally known oxides such as MgAl 2 O 4 and sulfides such as MnS.
  • the primary coating of the present invention has a total Y group element content of 0.1 to 6.00 mass% and a total Ca group element content of 0.1 to 6.0% by mass relative to the content of Mg 2 SiO 4 in the primary coating film. It is preferably contained in an amount of up to 6.00 mass %.
  • an annealing separator containing a Y group element in order to realize the above-mentioned Al oxidation state.
  • the Y group element remains in the primary coating after the finish annealing.
  • the total content of the Y group element in the primary coating is less than 0.1% by mass, the content of the Y group element in the annealing separator cannot be said to be sufficient, and the coating adhesion to bending is not improved. If it exceeds 6.00 mass %, the thickness of the inlaid oxide layer (2) becomes too thick, and the oxide hinders the domain wall movement during magnetization, so that the adverse effect on the magnetic properties becomes remarkable.
  • an annealing separator containing a Ca group element in order to realize the above-described Al oxidation state, it is preferable to use an annealing separator containing a Ca group element.
  • the Ca group element will remain in the primary coating after the finish annealing. If the total content of Ca group elements in the primary coating is less than 0.1% by mass, the content of Ca group elements in the annealing separator cannot be said to be sufficient, and the coating adhesion in bending cannot be improved. If it exceeds 6.00% by mass, the number density of the intruding oxide layer (2) becomes too high, and the intruding oxides adjacent to each other are united and integrated, so that not only the number density of the intruding oxide decreases as a result. Since it is not possible to obtain a characteristic Al distribution, it is not possible to improve the coating adhesion in bending.
  • the content of Mg 2 SiO 4 in the primary coating is quantitatively analyzed by inductively coupled plasma mass spectrometry (ICP-MS) using the primary coating separated from the magnetic steel sheet by the method described above as a sample.
  • the product of the obtained quantitative value (mass %) and the molecular weight of Mg 2 SiO 4 is divided by twice the atomic weight of Mg to obtain the content of Mg 2 SiO 4 .
  • quantitative analysis is performed by the same method as described above, and the same calculation as above is performed for the obtained content value (mass %). Then, the contents of these elements were calculated.
  • the obtained total content of Ca, Ba, and Sr was defined as "Ca group element content”
  • the obtained total content of Y, La, and Ce was defined as "Y group element content”.
  • the "number density of Ca group element concentrated regions A4" D4 on the projection plane is 0.005/ ⁇ m 2 or more.
  • the number density D4 of the Ca group element-enriched region A4 in the primary coating defined here represents a form in which the Ca group element that has acted on the formation of the inlaid oxide during the formation of the primary coating remains in the primary coating.
  • D4 is preferably 2.000/ ⁇ m 2 or less.
  • An example of the method for manufacturing the grain-oriented electrical steel sheet according to the present invention will be described.
  • An example of a method for producing a grain-oriented electrical steel sheet includes a steel making step, a hot rolling step, a hot rolled sheet annealing, a cold rolling step, a decarburizing annealing step, a finishing annealing step, a flattening annealing step, and a film baking. And a magnetic domain control step.
  • each step will be described.
  • molten steel is melted by a usual method such as a converter, and a well-known refining process and casting process are carried out to manufacture a slab having the following chemical composition.
  • a well-known refining process and casting process are carried out to manufacture a slab having the following chemical composition.
  • each element of the chemical composition of the slab is removed to some extent from the components in the steel in the finish annealing step described later.
  • S, Al, N, etc. which function as inhibitors, are largely removed. Therefore, the chemical composition of the slab described here is different from the chemical composition of the steel plate of the final product.
  • the C content in the slab is 0.1 mass% or less.
  • the preferable upper limit of the C content in the slab is 0.092% by mass, more preferably 0.085% by mass.
  • the C content is less than 0.005 mass%, the dispersed state of precipitates such as MnS, MnSe, and AlN and the steel grain structure after decarburization annealing cannot be uniformly obtained, and Goss after secondary recrystallization is not obtained.
  • the azimuth integration degree may be deteriorated. Therefore, the lower limit of the C content in the slab is 0.005% by mass.
  • a preferred lower limit of the C content in the slab is 0.02% by mass, more preferably 0.04% by mass.
  • Si 2.5 to 4.5 mass%
  • Si enhances the electric resistance of steel, but if it is present in excess, the cold workability deteriorates.
  • the Si content in the slab is 2.5 to 4.5 mass %
  • the Si content in the grain-oriented electrical steel sheet after the finish annealing step will be 2.5 to 4.5 mass %.
  • the preferable upper limit of the Si content in the slab is 4.0% by mass, and the more preferable upper limit is 3.8% by mass.
  • the preferable lower limit of the Si content in the slab is 2.6%, and the more preferable lower limit is 2.8% by mass.
  • Mn 0.02 to 0.20 mass%
  • Mn combines with S and Se to form a precipitate during the manufacturing process, and functions as an inhibitor. Mn further enhances the hot workability of steel.
  • the Mn content in the slab is 0.02 to 0.20 mass %
  • the Mn content in the grain-oriented electrical steel sheet after the finish annealing step is 0.05 to 0.20 mass %.
  • the preferable upper limit of the Mn content in the slab is 0.13% by mass, and the more preferable upper limit is 0.10% by mass.
  • a preferable lower limit of the Mn content in the slab is 0.03% by mass, and a more preferable lower limit thereof is 0.04% by mass.
  • One or more elements selected from the group consisting of S and Se 0.005 to 0.070 mass% in total
  • sulfur (S) and selenium (Se) combine with Mn to form MnS and MnSe. Both MnS and MnSe function as inhibitors necessary for suppressing grain growth during secondary recrystallization. If the total content of one or more elements selected from the group consisting of S and Se is less than 0.005% by mass, it is difficult to obtain the above effect. On the other hand, if the total content of one or more elements selected from the group consisting of S and Se exceeds 0.070 mass %, secondary recrystallization does not occur during the manufacturing process and the magnetic properties of the steel deteriorate. To do.
  • the total content of one or more elements selected from the group consisting of S and Se is 0.005 to 0.070 mass %.
  • a preferable lower limit of the total content of at least one selected from the group consisting of S and Se is 0.008% by mass, and more preferably 0.016% by mass.
  • a preferable upper limit of the total content of one or more kinds selected from the group consisting of S and Se is 0.060% by mass, and more preferably 0.050% by mass.
  • sol. Al 0.005 to 0.050 mass%
  • AlN functions as an inhibitor.
  • the Al content is 0.005 to 0.050 mass %.
  • the preferable upper limit of the Al content is 0.040% by mass, and more preferably 0.035% by mass.
  • the preferable lower limit of the Al content is 0.010% by mass, and more preferably 0.015% by mass.
  • N 0.0030 to 0.0300 mass%
  • nitrogen (N) combines with Al to form AlN that functions as an inhibitor. If the N content in the slab is less than 0.0030% by mass, the above effect cannot be obtained. On the other hand, if the N content in the slab exceeds 0.0300 mass %, AlN becomes coarse. In this case, AlN becomes difficult to function as an inhibitor, and secondary recrystallization may not occur. Therefore, the N content in the slab is 0.0030 to 0.0300 mass %.
  • the preferable upper limit of the N content in the slab is 0.0200% by mass, more preferably 0.0150% by mass.
  • the preferable lower limit of the N content in the slab is 0.0040 mass%, more preferably 0.0060 mass%.
  • the balance of the chemical composition in the slab of the present invention consists of Fe and impurities.
  • the impurities are those that are mixed in from the ore as a raw material, scrap, or the manufacturing environment when the slab is industrially manufactured, and are allowed within a range that does not adversely affect the slab of the present embodiment. Means something.
  • the slab according to the present invention may further contain one or more kinds selected from the group consisting of Cu, Sn and Sb in total of 0.60% by mass or less in place of a part of Fe. All of these elements are arbitrary elements.
  • One or more elements selected from the group consisting of Cu, Sn and Sb: 0 to 0.60 mass% in total Copper (Cu), tin (Sn) and antimony (Sb) are all optional elements and may not be contained.
  • Cu, Sn and Sb all increase the magnetic flux density of the grain-oriented electrical steel sheet. If Cu, Sn, and Sb are contained in any amount, the above effect can be obtained to some extent. However, if the total content of Cu, Sn and Sb exceeds 0.6% by mass, it becomes difficult to form the internal oxide layer during decarburization annealing.
  • the total content of one or more elements selected from the group consisting of Cu, Sn and Sb is 0 to 0.6% by mass.
  • a preferable lower limit of the total content of one or more elements selected from the group consisting of Cu, Sn, and Sb is 0.005% by mass, and more preferably 0.007% by mass.
  • the preferable upper limit of the total content of one or more elements selected from the group consisting of Cu, Sn and Sb is 0.50% by mass, and more preferably 0.45% by mass.
  • the slab according to the present invention may further contain one or more selected from the group consisting of Bi, Te and Pb in total of 0.030 mass% or less in place of a part of Fe. All of these elements are arbitrary elements.
  • One or more elements selected from the group consisting of Bi, Te and Pb: 0 to 0.030% in total Bismuth (Bi), tellurium (Te), and lead (Pb) are all optional elements, but they are noteworthy elements in the present invention from the following viewpoints. These elements increase the magnetic flux density of the grain-oriented electrical steel sheet.
  • the lower limit value of the total content of one or more selected from the group consisting of Bi, Te and Pb is 0.0005%, and more preferably 0.001% by mass.
  • the inlaid oxide layer (2) does not become thick and the coating adhesion of the primary coating deteriorates.
  • the amount of addition has to be limited to about 0.005 mass% or less in order to secure the adhesion of the coating film, although it has the effect of increasing the magnetic flux density. Since the effect of the present invention improves the film adhesion by changing the structure of the oxide to be inserted, it is also particularly effective when a manufacturing method containing these elements is applied. When the present invention is applied, even if these elements are 0.010% by mass or more, and further 0.015% by mass or more, it becomes possible to secure good film adhesion. However, if it is contained in excess, the lowering of the adhesiveness cannot be avoided even with the effect of the present invention, so the upper limit is made 0.030 mass %. A preferable upper limit is 0.020%, and a more preferable upper limit is 0.015% by mass.
  • Hot rolling process A slab having the above chemical composition is heated.
  • the heating temperature of the slab is, for example, more than 1280°C to 1350°C.
  • Hot rolling is performed on the heated slab to produce a hot rolled steel sheet.
  • the hot-rolled steel sheet may be annealed if necessary.
  • the conditions for hot-rolled sheet annealing are, for example, 900 to 1100° C. and 3 to 5 minutes.
  • Cold rolling process In the cold rolling step, cold rolling is performed on the hot rolled steel sheet to produce a cold rolled steel sheet.
  • Cold rolling is performed on the prepared hot-rolled steel sheet to produce a cold-rolled steel sheet which is the base steel sheet.
  • Cold rolling may be carried out only once, or may be carried out plural times.
  • intermediate annealing for the purpose of softening is performed, and then cold rolling is further performed.
  • Cold rolling is performed once or a plurality of times to manufacture a cold rolled steel sheet having a product sheet thickness (sheet thickness as a product).
  • the cold rolling rate in one or more times of cold rolling is 80% or more.
  • the cold rolling rate (%) is defined as follows.
  • Cold rolling rate (%) 1-plate thickness of cold rolled steel plate after the last cold rolling/plate thickness of hot rolled steel plate before the start of the first cold rolling ⁇ 100
  • the preferable upper limit of the cold rolling rate is 95%. Further, before performing cold rolling on the hot rolled steel sheet, heat treatment may be performed on the hot rolled steel sheet, or pickling may be performed.
  • Decarburization annealing is performed on the cold rolled steel sheet manufactured by the cold rolling step, and nitriding annealing is performed as necessary.
  • the decarburization annealing is performed in a well-known wet atmosphere containing hydrogen and nitrogen.
  • the decarburization annealing reduces the C concentration of the grain-oriented electrical steel sheet to 50 ppm or less, which can suppress the magnetic aging deterioration.
  • Decarburization annealing further causes primary recrystallization in the steel sheet structure to release the processing strain introduced by the cold rolling process. Further, in the decarburization annealing step, an internal oxide layer containing SiO 2 as a main component is formed on the surface layer portion of the base steel sheet.
  • the SiO 2 formed here reacts with MgO in the aqueous slurry containing the annealing separator applied subsequently during the finish annealing to form a primary coating whose morphology is controlled in the present invention.
  • the annealing temperature in the decarburization annealing step is well known and is, for example, 750 to 950°C.
  • the holding time at the annealing temperature is, for example, 1 to 5 minutes.
  • the “annealing separating agent” refers to a substance formed on the surface of the above decarburized and annealed plate, which is subjected to finish annealing, to impart a seizure prevention function during finish annealing.
  • the layer of the annealing separating agent formed on the surface of the decarburized annealing plate is referred to as "annealing separating agent layer”.
  • an aqueous slurry containing a compound that constitutes the annealing separator is prepared.
  • the aqueous slurry is prepared by adding the elements constituting the annealing separator described later as pure compounds to pure water and stirring.
  • This slurry is applied to the surface of the above decarburized and annealed plate with a roll coater, a spray, or the like.
  • the steel sheet coated with the slurry is inserted into a furnace kept at 400 to 1000° C. and kept for 10 to 90 seconds to dry the slurry on the surface.
  • the temperature of the steel sheet itself rises only up to about 400° C. (no change in crystal structure such as recrystallization occurs).
  • the annealing separator in the present invention and the state in which the annealing separator adheres to the surface of the steel sheet before finish annealing is called the annealing separator layer.
  • the annealing separator finally covering the surface of the steel sheet before finish annealing is simply a mixture of various compounds used as the raw materials.
  • finish annealing After the annealing separator is dried, finish annealing is performed.
  • the annealing temperature is set to 1150 to 1250° C. and the base steel sheet (cold rolled steel sheet) is soaked.
  • the soaking time is, for example, 15 to 30 hours.
  • the atmosphere in the furnace during finish annealing is a known atmosphere.
  • a part of the elements such as S, Al, and N that function as inhibitors are discharged out of the system. This process is sometimes called "purification (annealing)".
  • a primary coating film containing Mg 2 SiO 4 as a main component is formed.
  • the interface structure between the base steel sheet and the primary coating satisfies the requirements of the present invention, and the coating adhesion is improved.
  • each element of the chemical composition of the hot rolled steel sheet is removed to some extent from the components in the steel by the decarburization annealing process and the finish annealing process.
  • S, Al, N, etc. which function as inhibitors, are largely removed. Therefore, as compared with the chemical composition of the hot rolled steel sheet, the element content in the chemical composition of the base steel sheet of the grain-oriented electrical steel sheet is low as described above. If the above-mentioned manufacturing method is carried out using a hot rolled steel sheet having the above-mentioned chemical composition, a grain-oriented electrical steel sheet having the base material steel sheet having the above-mentioned chemical composition can be produced.
  • an insulating film forming step may be further performed after the finish annealing step.
  • baking is performed after applying an insulating coating agent mainly containing colloidal silica and phosphate on the surface of the grain-oriented electrical steel sheet after the temperature has been decreased during the finish annealing.
  • an insulating coating which is a tension coating, is formed on the primary coating.
  • the grain-oriented electrical steel sheet according to the present invention may be further subjected to a well-known magnetic domain subdivision treatment step after cold rolling, decarburization annealing, finish annealing step, insulating film forming step, or the like.
  • the magnetic domain subdivision processing step the surface of the grain-oriented electrical steel sheet is irradiated with laser light having a magnetic domain subdivision effect, or a groove is formed on the surface. In this case, a grain-oriented electrical steel sheet having further excellent magnetic properties can be manufactured.
  • the annealing separator of the present invention contains magnesium oxide (MgO) as a main component, and further comprises one or more elements (Y group elements) selected from the group consisting of Y, La, and Ce, and Ca, Sr, and Ba. It contains at least one element (Ca group element) selected from the group consisting of
  • the annealing separator represents the ratio of the respective contents of Y, La, Ce, and Mg with respect to the content of MgO in the annealing separator by%, and represents [Y], [La], [Ce], and [Mg]. To do.
  • the annealing separator has the following formula: (0.00562[Y]+0.00360[La]+0.00712[Ce])/0.0412[Mg] ⁇ 100(%): 0.20 to 1.60(%) Meet
  • the respective coefficients of the above equation are obtained by assuming that Y, La, Ce, and Mg atoms present in the annealing separator are the stable oxides Y 2 O 3 , La 2 O 3 , Ce 2 O 3, and MgO, respectively. It is a coefficient for determining the abundance ratio that is considered to be contained, and is calculated as follows.
  • (0.00562[Y]+0.00360[La]+0.00714[Ce])/0.0412[Mg] ⁇ 100 is the total calculated by converting the Y group element in the annealing separator as a stable oxide of each element. It is the ratio (percentage) of the above-mentioned content and MgO which is a main constituent substance in the annealing separator. In other words, it can also be said to be an index showing the magnitude of the influence of the Y group element on Mg in the oxide. Below, (0.00562[Y]+0.00360[La]+0.00714[Ce])/0.0412[Mg] ⁇ 100 is described as CY.
  • the Y group element needs to be contained as a compound containing oxygen or a compound that is oxidized during finish annealing to be converted into a compound containing oxygen.
  • the compound of the Y group element is, for example, an oxide, or a hydroxide, a carbonate, a sulfate or the like, which is partially or wholly converted into an oxide by the baking treatment (drying treatment) and finish annealing treatment described later.
  • CY is 0.20 to 1.60%.
  • the preferable lower limit of CY is 0.40%, more preferably 0.50%.
  • the preferable upper limit is 1.40%, and more preferably 1.30%.
  • the reason why the adhesion can be improved by controlling the content of the Y group element is not completely clear, but it is considered as follows. That is, the group Y element containing oxygen releases oxygen during finish annealing, maintains the oxygen partial pressure between the steel sheets of the coil during finish annealing, and develops the inlaid oxide layer (2) of the primary coating.
  • the inlaid oxide layer is composed of Mg 2 SiO 4 formed by the reaction between MgO in the annealing separator and SiO 2 inside the base steel sheet. That is, in order to obtain a fitting structure with severe irregularities, it is necessary that SiO 2 which is an oxide in the steel sheet originally has severe irregularities.
  • SiO 2 having such an interface has a high interfacial energy, it is unstable during finish annealing performed at a high temperature. Therefore, during finish annealing, SiO 2 formed inside the base material steel plate once decomposes and diffuses as Si and O in the base material steel plate, and is flattened. Furthermore, since the finish annealing is performed in a hydrogen atmosphere, the oxygen supply to the base steel sheet is small. In addition, the formation of an Al-based oxide, which is a more stable oxide than SiO 2 , reduces oxygen in the base steel sheet and makes SiO 2 more and more unstable.
  • the decomposition of SiO 2 existing inside the base steel sheet becomes more remarkable than the depth formed by the Al-based oxide, and the SiO 2 becomes even more flattened through diffusion after decomposition, and the embedded oxide layer of the primary coating ( 2) is also flattened.
  • the Y group element containing oxygen contained in the annealing separator releases oxygen, the oxygen partial pressure between the steel sheets of the coil during finish annealing becomes high. Due to the increase of the oxygen partial pressure between the steel sheets, oxygen is supplied into the base steel sheet, and the flattening of the internal oxide SiO 2 is delayed. Delaying the flattening of SiO 2 during finish annealing means that Mg 2 SiO 4 with severe irregularities is formed. Mg 2 SiO 4 is more stable than SiO 2 and its morphological change due to subsequent finish annealing is small. As a result, the irregularities of the inlaid oxide layer (2) of the primary coating become severe.
  • the total content of Ca group elements contained in the annealing separator, the total content of Ca group elements contained as impurities in the MgO raw material powder contained in the annealing separator, and the ratio of these contents are defined. To do.
  • the annealing separator represents the ratio of the respective contents of Ca, Sr, Ba and Mg to the content of MgO contained in the annealing separator in%, and represents [Ca], [Sr], [Ba], [Mg ]]
  • the annealing separator is Ca, Sr, Ba, Mg content contained in the MgO raw powder with respect to the content of MgO in the MgO raw powder contained in the annealing separator is [Ca'], [Sr'], Let [Ba'] and [Mg'].
  • the annealing separator has the following formula: (0.0249[Ca']+0.0114[Sr']+0.0073[Ba'])/0.0412[Mg'] ⁇ 100(%): 0.010 to 0.080(%) are satisfied.
  • the total content of Ca group elements contained in the annealing separator and the total content of Ca group elements in the MgO raw material powder contained in the annealing separator are (Ca of MgO raw material powder contained in the annealing separator).
  • the total content of group elements)/(total content of Ca group elements contained in the annealing separator): 0.020 to 0.200 is satisfied.
  • each coefficient of the above formula is obtained by containing Ca, Ba, Sr, and Mg atoms present in the annealing separator or MgO raw material powder as the respective stable oxides CaO, BaO, SrO, and MgO.
  • the coefficient calculated to compare the substance ratio can be calculated as follows.
  • the total abundance ratio (0.0249[Ca]+0.0114[Sr]+0.0073[Ba])/0.0412[Mg] ⁇ 100(%) of Ca group elements contained in the annealing separator is CC
  • the total abundance ratio of Ca group elements contained as impurities in the MgO raw material powder contained in the annealing separator (0.0249[Ca']+0.0114[Sr']+0.0073[Ba'])/0. 0412 [Mg'] x 100 (%) is described as CC'.
  • the Ca group element is, for example, an oxide, or a hydroxide, a carbonate, or a sulfate, which is partially or wholly converted into an oxide by the baking treatment (drying treatment) and finish annealing treatment described later.
  • the Ca group element diffuses in the primary coating during finish annealing, reaches the interface of the primary coating on the mother steel sheet side, and reacts with SiO 2 existing in the surface area of the mother steel sheet serving as the starting point for forming the primary coating to form an intrusion oxide.
  • SiO 2 existing in the surface area of the mother steel sheet serving as the starting point for forming the primary coating to form an intrusion oxide.
  • the base steel sheet is oxidized by decarburization annealing, and SiO 2 is formed in the surface layer region.
  • This is the phenomenon itself in which Mg contained as an element diffuses toward the inner side of the base material steel sheet of SiO 2 and forms Mg 2 SiO 4 there.
  • the Al-enriched region which is a feature of the present invention, is concentrated in the region due to Al diffused from the inside of the steel sheet reacting with Mg 2 SiO 4 .
  • the Al-enriched region is also formed on the inner side of the mother steel sheet.
  • the Ca group element has a function similar to that of Mg and forms a composite oxide of Ca group element oxide and Si oxide. It is considered that when this composite oxide reacts with Al, it concentrates Al in the reaction region.
  • the Ca group element is faster, and when the Ca group element is present in the annealing separator, the composite oxide of SiO 2 and Ca group element is It increases the speed at which the inlaid oxide, which is formed in the inner region of the base steel sheet and advances into the steel sheet earlier than Mg 2 SiO 4 which is a composite oxide of SiO 2 and Mg, advances.
  • the annealing separator containing the Ca group element not only increases the thickness of the inlaid oxide layer (2), but also increases the Al concentration position in the oxide, that is, H5. Become.
  • the Ca group element becomes a compound containing an oxide or oxygen before the aqueous slurry is prepared or after the drying step and is dispersed in the annealing separator.
  • the MgO raw material powder contains Ca group element as an impurity, the reactivity of the raw material powder MgO with SiO 2 is increased, and the MgO raw material powder functions as a relatively stable Ca group element source even in the latter stage of annealing.
  • the primary coating film oxide can be stabilized by supplying a Ca group element source to.
  • unstable SiO 2 can be replaced with a stable oxide film such as CaMgSi 2 O 6 at an early stage, and CaMgSi 2 O 6 is stabilized as a Ca group element source that does not limit the supply route of Mg.
  • CaMgSi 2 O 6 is stabilized as a Ca group element source that does not limit the supply route of Mg.
  • the form can be maintained until CaMgSi 2 O 6 is replaced with Mg 2 SiO 4 .
  • the impurity Ca group element in MgO becomes excessively large, the amount of Ca supplied becomes excessive with respect to Mg, and for forming CaMgSi 2 O 6 necessary for maintaining the morphology of the primary coating in a complicated manner.
  • the supply of Mg group elements decreases with respect to Ca group elements, and the formation of more stable MgSi 2 O 4 is delayed, so that the primary coating film undergoes a morphological change due to the thermal effect of annealing, and it becomes complicated to prevent point defects.
  • the complicated primary film morphology cannot be maintained.
  • point defects increase.
  • the impurity Ca group element in MgO is excessively small, even if the Ca group element-containing additive added to the outside of the MgO raw material powder supplies sufficient Ca group element, the supply of Mg is relatively small.
  • the more stable formation of MgSi 2 O 4 is delayed, and the point defects increase for the same reason.
  • CC is less than 0.20, the above effect cannot be sufficiently obtained.
  • the CC exceeds 1.80, the inlaid oxide layer may be excessively thick and the magnetic properties may be deteriorated.
  • CC is 0.20 to 1.80, it is possible to improve the adhesion of the primary coating to the base material steel sheet while suppressing the deterioration of magnetic properties.
  • CC' is less than 0.010 or more than 0.080, or CC'/CC is less than 0.020 or more than 0.200, point defects occur. Therefore, the CC′ range of the present invention is 0.010 to 0.080, and the CC′/CC range is 0.020 to 0.200.
  • the annealing separator may further contain Ti, Zr, and Hf, if necessary.
  • Ti group element one or more elements selected from the group consisting of Ti, Zr, and Hf may be described as “Ti group element”.
  • the respective content ratios of Ti, Zr, Hf, and Mg with respect to the content of MgO contained in the annealing separator are represented by %, and are represented by [Ti], [Zr], [Hf], and [Mg].
  • the annealing separator has the following formula: (0.0209[Ti]+0.0110[Zr]+0.0056[Hf])/0.0412[Mg] ⁇ 100(%) ⁇ 5.0(%) Meet
  • each coefficient in the above formula is considered to contain Ti, Zr, and Hf present in the annealing separator as respective stable oxides TiO 2 , ZrO 2 , HfO 2, and MgO, and
  • the coefficient calculated by the abundance ratio can be calculated as follows.
  • the Ti group element in the annealing separator is the Ti group element in the annealing separator as a stable oxide of each element. It is the ratio (percentage) of the converted total content and MgO which is the main constituent in the annealing separator. In other words, it can also be said to be an index showing the magnitude of the influence of the Ti group element on Mg in the oxide.
  • CT The Ti group element can be contained as a simple substance, an alloy, or a compound.
  • the compound is, for example, sulfate, carbonate, hydroxide or the like.
  • the Ti group element accelerates the reaction between MgO in the annealing separator and SiO 2 on the surface layer of the mother steel sheet formed by decarburization annealing during finish annealing, and promotes the formation of Mg 2 SiO 4 .
  • the effect is saturated when CT exceeds 5.0, so 5.0 is made the upper limit.
  • the annealing separator may contain an element whose known effect is known within a range not impairing the effect of the present invention.
  • the annealing separating agent of the present invention contains the above-mentioned various elements, but they are present not only as elemental metals but also in the state of being mixed as various compounds.
  • the present invention makes several provisions regarding this mixed situation.
  • the average particle size of MgO is 0.1 to 2.8 ⁇ m.
  • the average particle size of MgO is described as R1.
  • R1 is less than 0.1 ⁇ m, MgO is too active, and after finishing annealing, seizure occurs between the plates of the coil, which deteriorates the properties as an annealing separator.
  • R1 exceeds 2.8 ⁇ m, MgO is too inactive and the formation of the primary coating is delayed. Therefore, R1 is 0.1 to 2.8 ⁇ m.
  • R1 and R2 are measured as follows.
  • the raw material powder is measured by a laser diffraction/scattering method according to JIS Z8825 (2013) using a laser diffraction/scattering particle size distribution measuring device to obtain a volume-based particle size distribution. Further, this is converted into a particle size distribution based on the number of particles, and finally the average particle size based on the number of particles of each element is obtained.
  • the particles containing Ca group element have an average particle size of 0.2 to 3.0 ⁇ m.
  • the average particle size of particles containing a Ca group element is described as R2.
  • R2 is less than 0.2 ⁇ m, Ca is too active, and the amount of Ca group element supplied to the primary coating film being formed becomes too large with respect to the amount of Mg supplied. Therefore, the reaction between Mg and Si is delayed, so that the formation of Mg 2 SiO 4 is rather delayed, and the adhesion of the primary coating is deteriorated.
  • R2 exceeds 3.0 ⁇ m, the contact between MgO and SiO 2 is lost, so that the formation of Mg 2 SiO 4 is delayed and the adhesion of the primary coating is deteriorated. The method of measuring R2 will be described later.
  • R1 and R2 defined in the present invention are values calculated on the basis of the number of particles.
  • the average particle size of particles is often specified on a weight basis.
  • the abundance ratio of particles within a specific particle size range is expressed as a ratio to the total weight.
  • This weight-based average particle size cannot be a representative particle of the entire measurement target in the particle size distribution. For example, when the abundance ratio of coarse particles having a very low existence frequency slightly changes, the average particle size obtained is largely changed because the ratio of the coarse particles to the whole is large.
  • the average particle size based on the number of particles defined in the present invention is based on the number of particles classified by size, if the number of particles of a specific size itself does not significantly change, the entire average particle size. Does not fluctuate significantly. That is, it is a value that reflects the particle size of particles having a high frequency of existence. In other words, this value has a strong correlation with the number of particles per unit volume.
  • the effect of the present invention is controlled by the particle size of particles having a high frequency of occurrence, as described later, and the definition of the invention needs to be based on the average particle size based on the number of particles rather than the weight.
  • the ratio of R2 to R1, that is, R2/R1 is within the range of 0.5 to 3.0. If R2/R1 is less than 0.5, the area ratio (S1/S0) of the inlaid oxide layer of the formed primary coating decreases, and the coating adhesion deteriorates. It is preferably 0.6 or more, and more preferably 0.8 or more. On the other hand, when R2/R1 exceeds 3.0, the area ratio (S1/S0) of the inlaid oxide of the formed primary coating decreases, and the coating adhesion deteriorates. It is preferably 2.6 or less, more preferably 2.2 or less.
  • the supply of Mg is delayed in the region where only the Ca group element is in contact with the base steel sheet, so that the formation of the primary coating is delayed and the coating adhesion becomes poor. ..
  • R2/R1 exceeds 3.0
  • the Ca group element is dispersed less in MgO, so that the supply of Ca is delayed and the film adhesion of the formed primary film becomes poor. This means that the compound of the Ca group element is present between MgO and the steel sheet, which hinders the supply of Mg to the base steel sheet.
  • the region where MgO is not in contact with the base steel sheet was a void if the compound of the Ca group element was not relatively fine, whereas the region where the compound of the Ca group element was relatively fine was the base material. It means changing to a region in which the supply of Mg to the steel sheet is hindered. As a result, in the region where MgO is in contact with the base steel plate and the region where it is not in contact, a significant difference is generated in the supply of Mg to the base steel plate, and the development of the primary coating becomes uneven. For this reason, the number density of the inlaid oxide becomes excessive, which becomes a factor of impeding the magnetic properties.
  • the range in which the Ca group element can be supplied is reduced.
  • the number density of the roots of the primary capsule becomes overcrowded in the place where the roots were supplied to.
  • R2/R1 is in an appropriate range, the number density of compounds of the Ca group element dispersed in the annealing separator layer near the steel sheet increases, so rather than simply refining the compound of the Ca group element in a large amount.
  • the supply of Ca, Sr, and Ba to the base steel sheet is made uniform, and as a result, the number density of the oxides to be inserted can be made uniform.
  • the present invention defines the structure of the annealing separating agent layer in a state of being adhered to the surface of the steel sheet immediately after the finish annealing that has completed the annealing separating agent layer forming step.
  • the number density of particles containing Ca group element in the Ca group enriched region existing in the region of 0 to 3.0 ⁇ m from the surface of the base material steel plate is 0.003 to 1.400/ It is ⁇ m 2 .
  • this "number density of particles containing Ca group element in the Ca group enriched region” is described as D42. Controlling D42 within the above range improves the adhesion of the primary coating after finish annealing.
  • the Ca group element contained in the annealing separator diffuses toward the base metal steel sheet side in the primary coating formed during the finish annealing, and the base metal steel sheet side of the primary coating, that is, the base metal side at the tip of the inserted oxide. As described above, it is considered that it forms a complex oxide with Al supplied from Al and acts so as to keep Al at the tip of the inserted oxide.
  • the existence position of the Ca group element in the annealing separator layer is important, and the Ca group element is present on the base steel plate side, that is, in the region of 0 to 3.0 ⁇ m from the base steel plate surface. It is expedient for the thickened regions to be present. Further, as described above, the contact with the base steel sheet should not have a local bias, and the appropriate elemental dispersion state in the annealing separator for this purpose is due to the Ca group enriched region of the formed primary coating. It is considered to correlate with number density.
  • D42 can be obtained by the following method.
  • EDS-SEM analyzes the cross section obtained by CP-processing the annealing separating agent layer on the surface of the finished annealing steel sheet together with the finishing annealing steel sheet, and obtains the characteristic X-ray intensity distribution of the Ca group element. That is, the obtained characteristic X-ray intensity distribution map is a distribution map developed by projecting the information of the annealing separator on a plane parallel to the section in the plate thickness direction of the finish annealing steel plate.
  • the characteristic X-ray intensity distribution map of the Ca group element is such that the boundary line between the steel plate surface and the annealing separating agent layer is as parallel as possible to the upper and lower pieces of the observation area, and the annealing separating agent layer is outside from the upper and lower ends of the observation field. Acquire with a field of view that does not overflow.
  • the observation width direction of the steel sheet surface and the annealing separator layer, and the direction orthogonal to the observation width direction will be referred to as the observation height direction.
  • the scanning step of the characteristic X-ray intensity distribution chart is the same in the observation width direction and the observation height direction, and the length is 0.1 ⁇ m or less.
  • the length in the observation width direction is at least 20 ⁇ m or more.
  • the characteristic X-ray intensity distribution map is decomposed into at least 200 pixels in the observation width direction.
  • the characteristic X-ray intensities of Ca, Sr, and Ba are specified, and the characteristic X-ray intensity of Ca is 20% or more of the maximum value of the characteristic X-ray intensity of Ca.
  • each pixel of this Ca group element enriched region is regarded as one region in which the pixels are vertically and horizontally continuous, and a region composed of four or more pixels is determined as a particle. Further, the coordinates of the center of gravity of each Ca group element enriched region in the observation region are obtained by image analysis. Then, the number N1 of particles having a center of gravity at a height of 3 ⁇ m from the surface of the base steel plate in the plate thickness direction is counted.
  • An average value R2 of the circle equivalent diameter ( ⁇ ((area of 1 pixel) ⁇ (number of pixels of continuum) ⁇ 4/ ⁇ )) of the circle containing particles of Ca group element in the Ca group element concentrated region is calculated.
  • the obtained N1, R2 obtained as described above, the length of the observation region and the observation width direction (the length of the observation region in the direction orthogonal to the plate thickness direction in the cross section (width of finish annealing steel plate) D42 N1/(3 ⁇ L ⁇ R2) (pieces/ ⁇ m 3 ) can be obtained from (direction observation region length)) L ⁇ m.
  • the average particle size (for example, R1) of the compound dispersed in the annealing separating agent layer should be substantially the same as the average particle size obtained from the particle size distribution of the raw material powder of the simple substance added when preparing the aqueous slurry. I know. Therefore, the average particle size of each compound can be determined from the average particle size of the raw material powder by using the same method as the method of calculating R1. It is not necessary to limit the method for controlling the diameter of the compound particles containing each element in the raw material powder within a specific range, and it is possible to produce a powder having a desired particle size distribution by adjusting firing conditions and classification. It is not difficult for those skilled in the art of manufacturing raw material powder.
  • the number density of the Ca group enriched region in the region of 0 to 3.0 ⁇ m from the base material steel plate surface in the annealing separator layer is appropriate. Can be controlled.
  • the present invention relates to an annealing separating agent applied to a steel sheet before finish annealing and a primary coating formed by the same, which has an important role in forming a primary coating, and the base steel sheet does not need to be special. .. Therefore, in this example, the steel sheet was manufactured under constant conditions (hot rolling, cold rolling, annealing, etc.) that were not directly related to the effect of the invention.
  • the common conditions of all the examples will be described, and then the results of examining the effects of the invention by changing the conditions related to the formation of the primary coating in the examples 1 and 2 will be described.
  • Each slab of Table 1 heated at 1350°C was hot rolled to produce a hot rolled steel sheet having a plate thickness of 2.3 mm.
  • molten steel No. 5 since the content of Si in the molten steel was too large, cracking occurred during hot rolling, and the hot rolled steel sheet could not be manufactured.
  • the obtained hot rolled steel sheet was annealed, and then the hot rolled steel sheet was pickled.
  • the hot-rolled sheet annealing was performed at 1100° C. for 5 minutes.
  • the hot-rolled steel sheet after pickling was cold-rolled to produce a cold-rolled steel sheet having a thickness of 0.22 mm.
  • the cold rolling rate is 90.4%.
  • the cold-rolled steel sheet after the primary recrystallization annealing was applied to the front and back surfaces with an aqueous slurry prepared by mixing the annealing separator having the components shown in Table 2 with pure water.
  • the decarburized annealed plate having the surface coated with the aqueous slurry was held in a furnace at 900° C. for 10 seconds to dry the aqueous slurry.
  • a sample is taken from the steel sheet for finish annealing obtained in this step, and selected from the group consisting of Ca, Sr, and Ba in the Ca group element-enriched region existing in the region of 0 to 3.0 ⁇ m from the surface of the base material steel plate.
  • the number density D42 of the particles containing at least one element is measured. The values are shown in Table 2.
  • the content of Al or N is out of the range of an appropriate amount for forming a precipitate necessary for the secondary recrystallization, and the secondary recrystallization was not performed, so that the value of the magnetic flux density B8 was extremely deteriorated. It was outside the scope of the invention.
  • the Cu content was too high, and the coating adhesion was extremely poor, which was outside the scope of the present invention.
  • the Sn content was too high and the coating adhesion was inferior, which was outside the scope of the present invention.
  • the total content of Bi, Te and Pb was too large, and the coating adhesion was inferior, which was outside the scope of the present invention.
  • the composition of the base steel sheet becomes different from that of the slab that was the raw material, because decarburization annealing and finish annealing (purification annealing) were performed, similar to general grain-oriented electrical steel sheets.
  • Table 3 shows the chemical composition of the base steel sheet of the produced grain-oriented electrical steel sheet.
  • ⁇ Adhesion> A sample with a length of 60 mm and a width of 15 mm was sampled from the grain-oriented electrical steel sheet of each test number, and a bending test was performed with a curvature of 10 mm. The bending test was carried out by using a cylindrical mandrel bending tester and installing the sample so that the axial direction of the cylinder coincided with the width direction of the sample. The surface of the sample after the bending test was observed, and the total area of the region where the primary coating remained without peeling was determined. The primary coating residual rate was determined by the following formula.
  • Primary coating residual rate total area of the area where the primary coating remains without peeling/area of sample surface ⁇ 100
  • the primary coating residual rate of 90% or more was considered to be excellent in coating adhesion.
  • ⁇ Spot defect> A sample having a length of 1 m and a width of 1 m was taken from the grain-oriented electrical steel sheet of each test number, and the occurrence frequency NP (Number Density of Pore) of dot defects was visually determined. If the number of point defects in 1 m 2 was 5 or less, it was determined that the point defects were suppressed.
  • ⁇ Primary coating structure> A sample having a length of 300 mm and a width of 60 mm was taken from the grain-oriented electrical steel sheet of each test number in the rolling direction and subjected to constant-potential electrolysis in an electrolytic solution so that only the base steel sheet was dissolved to peel off the primary coating, The structure and composition were investigated.
  • the stripping method and the measuring method were according to the above-mentioned means, and the electrolyte solution component used was a non-aqueous solvent system 10% acetylacetone-1% tetramethylammonium chloride-methanol, and the amount of electrolysis was 80 C/cm 2 . Finally, the following values were obtained.
  • ⁇ Annealing agent layer> Cut a sample from the steel sheet in a state of drying the aqueous slurry before finish annealing, observe the annealing separator layer according to the method described above, (10) Number density D42 of Ca group enriched region in the annealing separator layer Got
  • ⁇ annealing separator> The following values were obtained from the raw material powder of the annealing separator of the aqueous slurry according to the above-mentioned means. (11) Y group element total abundance ratio CY(0.00562[Y]+0.00360[La]+0.00714[Ce])/0.0412[Mg] ⁇ 100(%) (12) Ca group element content CC (0.0249 [Ca] + 0.0114 [Sr] + 0.0073 [Ba])/0.0412 [Mg] x 100 (%) (13) Average particle size R1 of MgO (14) Average particle size R2 of Ca group element-containing particles Further, only the annealing separator MgO was separated to obtain the following values.
  • Example 1 The aqueous slurry applied to the steel sheet after decarburization annealing was prepared by mixing MgO, a compound of Y group element-containing compound and a compound of Ca group element-containing water with each group element content as shown in Table 2. At this time, the abundance ratio (CY, CC) of the compound species and each group element was changed.
  • the area ratio S1/S0 of the inlaid oxide layer is 0.15 or more
  • the area S5/S3 that is the inlaid Al area A5 is 0.30 or more
  • the distance H5 is 0.4 or more
  • Al The number density D3 of the concentrated region was 0.020 or more, which was within the range of the present invention.
  • the magnetic flux density B8 was 1.93T or more, and excellent magnetic characteristics were obtained.
  • the residual rate of the primary coating was 90% or more, and the number of point defects NP was 5/m 2 or less, showing excellent primary coating characteristics.
  • test number 26 R1 was too large and the supply of Mg to the primary coating was delayed. As a result, S1/S0, S5/S3, L5/S0, and H5 all fell below the standard value. As a result, the residual rate of the primary coating was 42% and the coating adhesion was inferior.
  • test number 33 R1 and R2 were within the range, but R2/R1 exceeded 3.0. As a result, the residual rate of the primary coating was less than 90%, and the coating adhesion was poor.
  • R1 and R2 were within the range, but R2/R1 was less than 0.3. As a result, five / m 2 or more point-like defect occurs, the point defect becomes inferior, and primary film residual ratio is below 90%, the coating adhesion becomes inferior.
  • the annealing separator was within the range, but the Bi, Te, and Pb contents in the molten steel component exceeded 0.03%. As a result, the residual rate of the primary coating was less than 90%, and the coating adhesion was poor.
  • Example 2 The aqueous slurry applied to the steel sheet after decarburization annealing was treated with MgO, a Ti group element-containing compound, a total Y group element-containing compound, and a Ca group element-containing compound so that each group element content was as shown in Table 5. Mixed and adjusted. At this time, the compound species and the abundance ratio of each group element (CY, CC, CT) were changed.
  • Table 6 shows the results. When the residual rate of the primary coating was 90% or more, it was judged that the adhesion of the primary coating to the mother steel sheet was excellent. Other criteria also refer to Example 1. It can be seen from Table 6 that those satisfying the requirements of the present invention can obtain good characteristics.
  • test number 54 the total abundance ratio CC of the Ca group elements was too large, and the morphology of the primary coating was excessively developed, so that D3 exceeded 0.150 pieces/ ⁇ m 2 . As a result, the iron loss W17/50 exceeded 0.75, and the magnetic properties were inferior.
  • test number 60 R1 and R2 were within the range, but R2/R1 was less than 0.3. As a result, five / m 2 or more point-like defect occurs, the point defect becomes inferior, and primary film residual ratio is below 90%, the adhesion became inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

磁気特性および一次被膜の母材鋼板への密着性に優れ、母材が点状に露出する欠陥の少ない方向性電磁鋼板、及び方向性電磁鋼板の製造方法を提供することである。 母材鋼板と、一次被膜とを備え、一次被膜が、(1)Al濃化領域の数密度D3:0.015~0.150個/μm(2)(嵌入酸化物層領域でありかつAl濃化領域である領域の面積S5)/(Al濃化領域の面積S3)≧0.30(3)嵌入酸化物層領域でありかつAl濃化領域である領域の板厚方向の長さの平均値からH0を引いた距離H5:0.4~4.0μm(4)(嵌入酸化物層領域でありかつAl濃化領域である領域の周長L5)/(観察面積S0):0.020~0.500μm/μm(5)(嵌入酸化物層領域の面積S1)/(観察面積S0)≧0.15を満足することを特徴とする。

Description

方向性電磁鋼板、仕上焼鈍用鋼板、焼鈍分離剤、方向性電磁鋼板の製造方法、及び仕上焼鈍用鋼板の製造方法
 本発明は、方向性電磁鋼板、仕上焼鈍用鋼板、焼鈍分離剤、方向性電磁鋼板の製造方法、及び仕上焼鈍用鋼板の製造方法に関する。
 方向性電磁鋼板は、質量%で、Siを0.5~7%程度含有し、結晶方位を{110}<001>方位(ゴス方位)に集積させた鋼板である。結晶方位の制御には、二次再結晶と呼ばれるカタストロフィックな粒成長現象が利用される。
 方向性電磁鋼板の製造方法は次のとおりである。スラブを加熱して熱間圧延を実施して、熱延鋼板を製造する。熱延鋼板を必要に応じて焼鈍する。熱延鋼板を酸洗する。酸洗後の熱延鋼板に対して、80%以上の冷延率で冷間圧延を実施して、冷延鋼板を製造する。冷延鋼板に対して脱炭焼鈍を実施して、一次再結晶を発現させる。脱炭焼鈍後の冷延鋼板に対して仕上焼鈍を実施して、二次再結晶を発現させる。以上の工程により、方向性電磁鋼板が製造される。
 上述の脱炭焼鈍後であって、仕上焼鈍前に、冷延鋼板の表面上に、MgOを主成分とする焼鈍分離剤を付着させる。通例、その方法は、焼鈍分離剤成分を含有する水性スラリーを冷延鋼板に塗布し、乾燥させることによって実施される。焼鈍分離剤が付着した冷延鋼板をコイルに巻取った後、仕上焼鈍を実施する。仕上焼鈍時に、焼鈍分離剤中のMgOと、脱炭焼鈍時に冷延鋼板の表面に形成された内部酸化層中のSiOとが反応し、フォルステライト(MgSiO)を主成分とする一次被膜が鋼板表面上に形成される。一次被膜が形成された後、一次被膜上に、たとえば、コロイダルシリカ及びリン酸塩からなる絶縁コーティング液を塗布して、絶縁被膜(二次被膜ともいう)を形成する。一次被膜及び絶縁被膜は、母材鋼板よりも熱膨脹率が小さい。そのため、一次被膜は、絶縁被膜とともに、母材鋼板に張力を付与して鉄損を低減する。一次被膜はさらに、絶縁被膜の母材鋼板への密着性を高める。一次被膜の母材鋼板への密着性は高い方が好ましい。
 一方で、方向性電磁鋼板の低鉄損化には、磁束密度を高くしてヒステリシス損を低下することも有効である。
 方向性電磁鋼板の磁束密度を高めるには、母材鋼板の結晶方位をGoss方位に集積させることが有効である。Goss方位への集積を高めるための技術が、特許文献1~3に提案されている。これらの特許文献では、インヒビター(正常結晶粒成長を抑制する析出物)の作用を強化する磁気特性改善元素(Cu、Sn、Sb、Bi、Te、Pb、Se等)を母材鋼板に含有させる。これにより、結晶方位のGoss方位への集積が高まり、方向性電磁鋼板の磁束密度を高めることができる。
 しかしながら、母材鋼板/一次被膜界面は、なるべく界面エネルギーが低くなるように形成するため、前述の母材鋼板/一次被膜界面は平坦になる。特に、母材鋼板が、磁気特性改善元素を含有する場合、より平坦になりやすい。母材鋼板/一次被膜界面が、より平たんとなった場合は、一次被膜と母材鋼板の物理的な結合力を生む一次被膜の嵌入構造が失われることで、一次被膜の母材鋼板への密着性が低下する。特に、曲げ加工によって生じる圧縮応力により剥離しやすくなり、密着性が著しく低下する。
 一次被膜の鋼板への密着性を高める技術が特許文献4、及び5に開示されている。
 特許文献4では、スラブ成分にCeを0.001~0.1質量%含有させ、鋼板表面にCeを0.01~1000mg/m含む一次被膜を形成する。特許文献5では、方向性電磁鋼板は、Si:1.8~7質量%を含有し、表面にフォルステライトを主成分とする一次被膜を有し、一次被膜中にCe、La、Pr、Nd、Sc、Yの1種または2種を目付量で片面あたり0.001~1000mg/m含有し、Sr、Ca、Baの内の1種または2種以上を目付量で、片面あたり総量で0.01~100mg/m含有することを特徴とする。
 特許文献5では、脱炭焼鈍を施した母材鋼板表面に、焼鈍分離剤を塗布、乾燥し、仕上焼鈍を行う一連の工程を含む製造方法が開示されている。MgOを主成分とした焼鈍分離剤の中に平均粒径が0.1~25μmのCe、La、Pr、Nd、Sc、Yの酸化物、水酸化物、硫酸塩または炭酸塩の1種または2種以上を、金属換算でMgOに対して総量で0.01~14質量%の範囲で含有させることを特徴とする、磁気特性と一次被膜密着性に優れた方向性電磁鋼板の製造方法が開示されている。
特開平6-88171号公報 特開平8-269552号公報 特開2005-290446号公報 特開2008-127634号公報 特開2012-214902号公報
 しかしながら、特許文献5では、一次被膜の密着性については、剪断加工によって生じる端面剥離を減少させる効果について言及されているが、曲げ加工への剥離耐性については、数十mmφ程度の曲げ加工は、剪断加工よりも加工度が小さいとして評価されていない。剪断と曲げによる剥離挙動は異なっているため、近年の、曲げ加工度が高い鉄心製造法に供する電磁鋼板として、一次被膜の母材鋼板への密着性を確保するためには、従来よりも厳しい曲げ加工を施した際に一次被膜が剥離しない密着性が必要であり、剪断端面の剥離耐性に問題ない材料であっても、厳しい曲げ加工への耐性が必ずしも得られない場合がある。
 また、仕上焼鈍の後段、鋼板成分を純化する工程にて、鋼板に含まれる窒素などのガスが抜ける。この時、一次被膜はガスの透過を遅くする。この際、一次被膜のガスの透過が遅くなりすぎると、一次被膜と地鉄の界面にてガス圧が高圧となり、一次被膜が吹き飛ばされて破壊されることがある。これにより、鋼板表面に肉眼で判別可能なサイズの点状の母材露出部が現れる。この点状の母材露出部が、鋼板表面の広い範囲に亘ってにある程度高い数密度で発生すると、絶縁性、外観品質上重大な欠陥となる。上記に挙げた一次被膜密着性を改善する手法は必ずしも点状欠陥を抑制しないため、点状欠陥の生じない一次被膜形態の制御技術が求められている。
 一次被膜の密着性については、剪断加工での端面剥離、曲げ加工での表面剥離について、さまざまな検討がなされているが、これを厳密に区別しての最適な鋼板及び製法が提示されているとは言えない。剪断と曲げ、高圧ガスの発生による剥離挙動および機構は異なっているため、曲げ加工を要する鉄心製造法に供するうえでは、従来よりも厳しい曲げ加工を施した際に一次被膜が剥離しない密着性、および鋼板からのガス発生に起因する一次被膜欠陥の抑制が必要となっている。焼鈍分離剤にY、La、Ce、Sr、Ca、Baを含有させて、Y、La、Ce、Sr、Ca、Baを含有する一次被膜を形成する場合、剪断加工への一次被膜密着性に問題がなくても曲げ加工に対する一次被膜密着性が不足する場合や、仕上焼鈍中に鋼板から発生するガスによって母材鋼板の一次被膜が破壊され、鋼板表面が点状に露出する欠陥が発生する場合などの課題がある。そのため、絶縁性および外観に問題がない、信頼性の高い電磁鋼板として、曲げ加工に対する一次被膜密着性(以下、単に「被膜密着性」という)を持ち、母材が点状に露出する欠陥の少ない材料が望まれている。
 本発明の目的は、磁気特性および一次被膜の母材鋼板への密着性に優れ、母材が点状に露出する欠陥の少ない方向性電磁鋼板、並びに、仕上焼鈍用鋼板、焼鈍分離剤、方向性電磁鋼板の製造方法、及び仕上焼鈍用鋼板の製造方法を提供することである。
 本発明は、方向性電磁鋼板の一次被膜と母材鋼板の界面の構造の特徴を制御し規定して、一次被膜の構造を特定するものである。
 本発明では、図1に模式的に示す形状的特徴を基に、一次被膜を板厚方向に2つの領域に分割してそれぞれの領域における構造を規定する。以下の説明において、2つの領域を表現するために、表面側を「表面酸化物層(1)」、母材鋼板側を「嵌入酸化物層(2)」という用語を用いる。表面酸化物層(1)とは、母材鋼板の表面を比較的一様に被覆している一次被膜部分(以下、これを「表面酸化物」と記述することがある)が存在する板厚方向の領域である。嵌入酸化物層(2)とは、母材鋼板中に食い込んだ一次被膜部分(以下、これを「嵌入酸化物」と記述することがある)が存在する板厚方向の領域である。両者を分割する深さの基準値H0については後述する。
 本明細書では、界面の構造を、一次被膜を母鋼板側から観察した形態的特徴で規定する。詳細は測定法とともに後述する。
 このような一次被膜と母材鋼板の界面の構造、特に形状の特徴は、一般的には「根」という用語を用いて表現されることがある。
 方向性電磁鋼板の一次被膜と母材鋼板との界面は、嵌入酸化物が母材鋼板内部に進入した凹凸形状となっている。嵌入酸化物の侵入深さが深くなり、酸化物粒子の個数の数密度(個/μm)が増加すると、いわゆるアンカー効果により一次被膜の母材鋼板に対する密着性は高まる。
 一方で、嵌入酸化物が母材鋼板内部に進入しすぎると、二次再結晶時の鋼板の結晶粒成長や磁化時の磁壁移動の阻害要因となり、磁気特性が劣化する。
 また、一次被膜は鋼板に張力を付与し鉄損を下げる効果がある。張力を大きくするためには、一次被膜のうちの表面酸化物層(1)は、線膨張係数の小さいMgSiOの含有量が高いことが好ましく、表面酸化物層(1)が厚いことが望ましい。
 以上の一般的な認識に基づいて、本発明者らは、磁気特性改善元素を含有する方向性電磁鋼板の磁気特性、及び、Y、La、Ce化合物およびCa、Sr、Ba化合物を含有する焼鈍分離剤を使用して形成される一次被膜の密着性について調査及び検討を行った。その結果、本発明者らは次の知見を得た。
 ここで、以下の説明では、Y、La、Ceからなる群から選択される1種以上の元素をまとめて「Y群元素」、Ca、Sr、Baからなる群から選択される1種以上の元素をまとめて「Ca群元素」と記述することがある。
 焼鈍分離剤にY群元素及びCa群元素を含有させて一次被膜を形成した場合、剪断加工に対する被膜密着性は十分であっても、曲げ加工に対する被膜密着性が十分に得られないことがある。また、曲げ加工に対する被膜密着性を高めるために、上記Y群元素とCa群元素を同時に大量添加すると、鉄損や磁束密度が低下することがある。
 また、一次被膜の形態を制御して、被膜密着性を高めるために、嵌入酸化物層(2)の表面の面積を大きくしても、仕上焼鈍中に鋼板から発生するガスによって一次被膜が吹き飛ばされ、点状に母材が露出する欠陥が生じることがある。
 以降、剪断加工に対する被膜密着性と曲げ加工に対する被膜密着性を明確に区別する箇所以外で単に「密着性」と記述する場合、剪断加工に対する被膜密着性と曲げ加工に対する被膜密着性を含めた意図として用いることがある。
 また、以降、単に「点状欠陥」と記述する場合、仕上焼鈍中に鋼板から発生するガスによって一次被膜が吹き飛ばされ、母材鋼板が点状に露出する欠陥を意図して用いることがある。
 本発明者らは、焼鈍分離剤中のY群元素及びCa群元素の影響についてさらに検討した結果、次の知見を得た。
 焼鈍分離剤にY群元素が含有される場合、嵌入酸化物層(2)が厚くなる。これにより剪断加工に対する被膜密着性が改善する。
 また、焼鈍分離剤にCa群元素が含有される場合、形成される一次皮膜の嵌入酸化物層(2)の数密度が増加し、剪断加工に対する被膜密着性が改善する。さらに、一次皮膜中の以下に規定するCa群元素の合計含有量として、MgO原料粉末中に不純物として含まれるCa群元素の合計含有量と、MgO原料粉末外に含まれるCa群元素の化合物由来の含有量を適当な比率にすると、曲げ加工に対する被膜密着性が高くなり、磁気特性の劣化も抑えられ、さらに点状欠陥も抑えられる。このとき一次被膜は、表面酸化物層(1)の厚さが均一になるとともに、MgSiO相が増加する。またさらに、嵌入酸化物層(2)は、板厚方向以外にも、長手幅方向にも長くなる。曲げ加工に対する被膜密着性の改善は、表面酸化物層(1)の厚さが均一になり、曲げ加工時の表面酸化物層(1)の厚さが薄い領域への局所的な応力の集中が回避されることが原因と考えられる。また、磁気特性の改善は、表面酸化物層(1)中のMgSiO相の量が増すため、鋼板に作用する張力が高くなることが原因と考えられる。また、点状欠陥の抑制は、密着性を担う嵌入酸化物層(2)の界面の面積が単に増えるだけでなく、酸化物の形態が入り組み、ガスの拡散経路の多い構造となることで、嵌入酸化物層(2)のガス透過性が良くなることが原因であると考えられる。
 さらに、このような良好な特性を持つ一次被膜は、単に界面凹凸の形状だけでなく、一次被膜の界面近傍におけるAlの存在形態により特徴づけられることを明らかにした。また、このような一次被膜を形成するために使用する焼鈍分離剤が有する特徴を明確にした。
 母材鋼板と一次被膜の界面は、図1に示すように凹凸を有する複雑な三次元形状となるため、この三次元形状である界面の構造的な特徴を規定することを試みた。その規定は本質的には「三次元的な構造」を定量化すべきものではあるが、三次元であり、かつ複雑な構造のため困難であった。このため、本発明者らは、界面構造に関する情報を後述のように鋼板表面に平行な面に投影し、その「平面」において界面が有する特徴を規定することを試みた。そして、本発明の効果が、この「投影平面上の特徴」による定量的な規定により評価および説明が可能であることを確認した。
 これら知見により得られる本発明の特徴は以下の通りである。
 すなわち、MgOを主体とし、Y群元素およびCa群元素が含有される焼鈍分離剤を用いて、MgSiOを主体とし、Y群元素および、Ca群元素を含有する一次被膜を形成させる場合、一次被膜および一次被膜と母材鋼板の界面が次の(1)~(8)に示す特徴を満足すれば、嵌入酸化物層(2)および表面酸化物層(1)の形態が適切で、剪断加工および曲げ加工に対する一次被膜の密着性と鉄損特性の両立が可能となる。
 (1) Al濃化領域の個数の数密度D3:0.015~0.150個/μm
 (2) (嵌入酸化物層領域でありかつAl濃化領域である領域の面積S5)/(Al濃化領域の面積S3)≧0.30、
 (3) 嵌入酸化物層領域でありかつAl濃化領域である領域の、板厚方向の高さの平均値から、H0を引いた距離H5:0.4~4.0μm、
 (4) (嵌入酸化物層領域でありかつAl濃化領域である領域の合計周長L5)/(観察面積S0):0.020~0.500μm/μm
 (5) (嵌入酸化物層領域の面積S1)/(観察面積S0)≧0.15、
 (6) Y群元素の合計含有量:0.1~6.0質量%、
 (7) Ca群元素の合計含有量:0.1~6.0質量%、
 (8) Ca群濃化領域の数密度D4:0.005~2.000個/μm
 また、上記方向性電磁鋼板を製造するための仕上焼鈍用鋼板は、次の条件(9)を満たす。
 (9) 焼鈍分離剤層のCa群元素濃化領域におけるCa群元素を含有する粒子の数密度D42:0.005~1.400個/μm
 そして、上記の一次被膜、および焼鈍分離剤層を形成できる焼鈍分離剤は次の(10)~(17)の条件を満たす。
 (10) (0.00562[Y]+0.00360[La]+0.00712[Ce])/0.0412[Mg]×100(%):0.20~1.60%、
 (11) (1.40[Ca]+1.18Sr+1.12Ba)/1.66[Mg]×100:0.20~1.80%、
 (12) (0.0249[Ca´]+0.0114[Sr´]+0.0073[Ba´])/0.0412[Mg´]×100:0.010~0.080%、
 (13) (12) (10)/(11):0.020~0.200、
 (14) MgOの平均粒径R1:0.1~2.8μm、
 (15) Ca群元素濃化領域におけるCa群元素を含有する粒子の平均粒径R2:0.2~3.0μm、
 (16) (平均粒径R2)/(平均粒径R1):0.5~3.0。
 これら知見により得られる本発明の要旨は以下の通りである。
 本発明による方向性電磁鋼板は、質量%で、C:0.0050%以下、Si:2.5~4.5%、Mn:0.02~0.20%、S及びSeからなる群から選択される1種以上の元素:合計で0.005%以下、sol.Al:0.010%以下、及びN:0.010%以下を含有し、残部はFe及び不純物からなる化学組成を有する母材鋼板と、前記母材鋼板の表面上に形成されており、MgSiOを主成分として含有する一次被膜とを備え、前記鋼版の板厚方向において、前記一次被膜側から前記母材鋼板側に向かう方向を正としたときの前記鋼板の前記一次被膜表面の凹凸の情報を鋼板表面に平行な面に投影して展開し、前記一次被膜の母材鋼板側の表面高さの中央値をH0として、H0+0.2μmより前記母材鋼板側に存在する前記一次被膜を「嵌入酸化物層領域」と、H0+0.2μmより前記一次被膜側に存在する前記一次被膜を「表面酸化物層領域」と分類し、かつ前記一次被膜が持つ情報を鋼板表面に平行な面に投影して展開した特性X線強度及び凹凸相関分布図において、Al(アルミニウム)の特性X線強度の最大値を特定し、該Alの特性X線強度の最大値の20%以上のAlの特性X線強度が得られる領域を「Al濃化領域」としたとき、前記一次被膜が、
(1)前記Al濃化領域の数密度D3:0.015~0.150個/μm
(2)(前記嵌入酸化物層領域でありかつ前記Al濃化領域である領域の面積S5)/(前記Al濃化領域の面積S3)≧0.30、
(3)前記嵌入酸化物層領域でありかつ前記Al濃化領域である領域の板厚方向の高さの平均値からH0を引いた距離H5:0.4~4.0μm、
(4)(前記嵌入酸化物層領域でありかつ前記Al濃化領域である領域の周長L5)/(観察面積S0):0.020~0.500μm/μm
(5)(前記嵌入酸化物層領域の面積S1)/(前記観察面積S0)≧0.15、の条件を満足することを特徴とする。
 さらに上記方向性電磁鋼板は、前記一次被膜がY、La、Ceからなる群から選択される1種以上の元素、及び、Ca、Sr、Baからなる群から選択される1種以上の元素を含有し、かつ、前記特性X線強度及び凹凸相関分布図において、Ca、Sr、Baそれぞれの特性X線強度の最大値を特定し、前記Caの特性X線強度の最大値の20%以上のCaの特性X線強度が得られる領域と、前記Srの特性X線強度の最大値の20%以上のSrの特性X線強度が得られる領域と、前記Baの特性X線強度の最大値の20%以上のBaの特性X線強度が得られる領域とを合せて「Ca群元素濃化領域」としたとき、
(6)前記一次被膜中のMgSiOの含有量に対する、前記Y、La、Ceからなる群から選択される1種以上の元素の合計含有量の割合:0.1~6.0%、
(7)前記一次被膜中のMgSiOの含有量に対する、前記Ca、Sr、Baからなる群から選択される1種以上の元素の合計含有量の割合:0.1~6.0%、(8)前記Ca群元素濃化領域の数密度D4:0.005~2.000個/μmの条件を満足することを特徴とする。
 また、上記方向性電磁鋼板を製造するための仕上焼鈍用鋼板は、質量%で、C:0.1%以下、Si:2.5~4.5%、Mn:0.02~0.20%、S及びSeからなる群から選択される1種以上の元素:合計で0.005~0.07%、sol.Al:0.005~0.05%、及び、N:0.003~0.030%を含有し、残部がFe及び不純物からなる化学組成を有する母材鋼板と、前記母材鋼板の表面上に付着する、MgOを主成分として含有する焼鈍分離剤層とを備え、前記焼鈍分離剤層が持つ情報を板厚方向断面に平行な面に投影して展開した特性X線強度分布図において、Ca、Sr、Baそれぞれの特性X線強度の最大値を特定し、前記Caの特性X線強度の最大値の20%以上のCaの特性X線強度が得られる領域と、前記Srの特性X線強度の最大値の20%以上のSrの特性X線強度が得られる領域と、前記Baの特性X線強度の最大値の20%以上のBaの特性X線強度が得られる領域とを合せて「Ca群元素濃化領域」としたとき、前記焼鈍分離剤層は、(9)母材鋼板表面から0~3.0μmの領域に存在する前記Ca群元素濃化領域における前記Ca、Sr、Baからなる群から選択される1種以上の元素を含有する粒子の数密度D42:0.005~1.400個/μm、を満足することを特徴とする。
 本発明による焼鈍分離剤は、MgOを主成分とする焼鈍分離剤であって、Y、La、Ceからなる群から選択される1種以上の元素、及び、Ca、Sr、Baからなる群から選択される1種以上の元素を含有し、前記焼鈍分離剤に含まれる前記MgOの含有量に対する、前記焼鈍分離剤に含まれるMg、Y、La、Ce、Ca、Sr、Baの含有量の割合(%)をそれぞれ[Mg]、[Y]、[La]、[Ce]、[Ca]、[Sr]、[Ba]としたとき、
(10)(0.00562[Y]+0.00360[La]+0.00714[Ce])/0.0412[Mg]×100(%):0.20~1.60(%)、
(11)(0.0249[Ca]+0.0114[Sr]+0.0073[Ba])/0.0412[Mg]×100(%):0.20~1.80(%)、
を満たし、かつ、前記焼鈍分離剤に含まれるMgO原料粉末中の前記MgOの含有量に対する、前記MgO原料粉末中に含まれるMg、Ca、Sr、Baの含有量の割合(%)をそれぞれ、[Mg´]、[Ca´]、[Sr´]、[Ba´]としたとき、
(12)(0.0249[Ca´]+0.0114[Sr´]+0.0073[Ba´])/0.0412[Mg]×100(%):0.010~0.080(%)、を満たし、さらに、
(13)前記(0.0249[Ca]+0.0114[Sr]+0.0073[Ba])/0.0412[Mg]×100に対する前記(0.0249[Ca´]+0.0114[Sr´]+0.0073[Ba´])/0.0412[Mg´]×100の比が0.200~0.020であり、
(14)前記MgOの平均粒径R1:0.1~2.8μm、
(15)前記Ca、Sr、Baからなる群から選択される1種以上の元素を含有する粒子の平均粒径R2:0.2~3.0μm、
(16)(前記平均粒径R2)/(前記平均粒径R1):0.5~3.0、
を満足することを特徴とする。
 本発明による方向性電磁鋼板の製造方法は、質量%で、C:0.1%以下、Si:2.5~4.5%、Mn:0.02~0.20%、S及びSeからなる群から選択される1種以上の元素:合計で0.005~0.07%、sol.Al:0.005~0.05%、及び、N:0.003~0.030%を含有し、残部がFe及び不純物からなるスラブを熱間圧延して熱延鋼板を製造する工程と、前記熱延鋼板に対して80%以上の冷延率で冷間圧延を実施して冷延鋼板を製造する工程と、前記冷延鋼板に対して脱炭焼鈍を実施して脱炭焼鈍板を製造する工程と、前記脱炭焼鈍板の表面に、水性スラリーを塗布し乾燥する工程と、前記水性スラリーが乾燥された後の鋼板に対して仕上焼鈍を実施する工程とを備え、前記水性スラリーが、上述した焼鈍分離剤を含むことを特徴とする。
 上記仕上焼鈍用鋼板の製造方法は、質量%で、C:0.1%以下、Si:2.5~4.5%、Mn:0.02~0.20%、S及びSeからなる群から選択される1種以上の元素:合計で0.005~0.07%、sol.Al:0.005~0.05%、及び、N:0.003~0.030%を含有し、残部がFe及び不純物からなるスラブを熱間圧延して熱延鋼板を製造する工程と、前記熱延鋼板に対して80%以上の冷延率で冷間圧延を実施して冷延鋼板を製造する工程と、前記冷延鋼板に対して脱炭焼鈍を実施して脱炭焼鈍板を製造する工程と、前記脱炭焼鈍板の表面に、水性スラリーを塗布し乾燥する工程とを備え、前記水性スラリーが,上述した焼鈍分離剤を含むことを特徴とする。
 本発明による方向性電磁鋼板は、磁気特性に優れ、一次被膜の母材鋼板への密着性に優れる。本発明による方向性電磁鋼板の製造方法は、上述の方向性電磁鋼板を製造できる。本発明による焼鈍分離剤は、上記製造方法に適用され、これにより、本発明の方向性電磁鋼板を製造できる。本発明による仕上焼鈍用鋼板は、本発明の方向性電磁鋼板を製造するためのものである。本発明による仕上焼鈍用鋼板の製造方法は、上記の仕上焼鈍用鋼板を製造することができる。
20μm×15μm一次被膜サンプルの模式図である。 レーザ顕微鏡で得られる高さ情報データに適用するガウシアンフィルターを説明する図である。 剥離させた一次被膜裏面と嵌入部の三次元構造を示す模式図である。 特性X線強度及び凹凸相関分布図を説明する図である。
 詳細は後述するが、本発明では方向性電磁鋼板の一次被膜と母材鋼板の界面の構造を特定するため、方向性電磁鋼板から剥離した一次被膜の母材鋼板に密着していた側の表面、つまり一次被膜と母材鋼板との界面を形成していた側の一次被膜の面を観察する。この観察面を走査型共焦点レーザ顕微鏡で分析して界面の凹凸分布(界面の深さ方向の情報)を得る。さらに観察面をSEM-EDSを用いて分析し、特性X線強度から一次被膜に存在する各種元素の濃度分布を得る。これらの各機器での観察が剥離元の鋼板表面に対して垂直な方向で行われるため、得られる情報は、三次元構造を有する一次被膜の情報(凹凸、特性X線強度)を鋼板表面に平行な平面に投影したものとなる。
 以降の本明細書における界面に関する説明は、「上記投影平面上の特徴」を用いた説明であることを最初に断っておく。例えば界面の構造に関する「面積」は上記の投影平面上で得られる面積であり、元素の存在領域は、上記投影面上で得られる元素の特性X線強度に基づき特定されるものである。
 ただし、これらの投影平面上で得られた特徴は本発明の特徴を良好に規定できるものであることは確認しており、これらの投影平面上での一次皮膜の情報により本発明を説明することが本発明の意義を失わせるものでないことは言うまでもない。
 また、本明細書において、特に断らない限り、数値A及びBについて「A~B」という表記は「A以上B以下」を意味するものとする。かかる表記において数値Bのみに単位を付した場合には、当該単位が数値Aにも適用されるものとする。さらに、本明細書において、「主成分」とはある物質に50質量%以上含まれている成分ことを言い、好ましくは70質量%以上、より好ましくは90質量%以上であることを意味する。
 以下、本発明による方向性電磁鋼板及び方向性電磁鋼板の製造方法、方向性電磁鋼板の製造に用いられる焼鈍分離剤、方向性電磁鋼板を製造するための仕上焼鈍用鋼板及び仕上焼鈍用鋼板の製造方法について詳述する。本明細書において、元素の含有量に関する%は、特に断りのない限り、質量%を意味する。
 本発明による方向性電磁鋼板は、母材鋼板と、母材鋼板表面に形成されている一次被膜とを備える。
 [母材鋼板]
 上述の方向性電磁鋼板を構成する母材鋼板の化学組成は、次の元素を含有する。ただし、本発明の特徴は一次被膜にあり、母材鋼板は特別なものである必要はない。なお、後述の製造方法で説明するとおり、母材鋼板は、後述する化学組成を有する熱延鋼板を用いて、冷間圧延を実施することにより製造され、また、仕上焼鈍中に失われる成分があるため、方向性電磁鋼板を構成する母材鋼板の化学組成と熱延鋼板の化学組成は大きく異なるものとなる。
 C:0.0050%以下
 炭素(C)は、製造工程中における脱炭焼鈍工程完了までの組織制御に有効な元素であるが、C含有量が0.0050%を超えれば、製品板である方向性電磁鋼板の磁気特性が低下する。したがって、C含有量は0.0050%以下である。C含有量はなるべく低い方が好ましい。しかしながら、C含有量を0.0001%未満に低減しても、製造コストが掛るだけで、上記効果はそれほど変化しない。したがって、C含有量の好ましい下限は0.0001%である。
 Si:2.5~4.5%
 シリコン(Si)は鋼の電気抵抗を高めて、渦電流損を低減する。Si含有量が2.5%未満であれば、上記効果が十分に得られない。一方、Si含有量が4.5%を超えれば、鋼の冷間加工性が低下する。したがって、Si含有量は2.5~4.5%である。Si含有量の好ましい下限は2.6%であり、さらに好ましくは2.8%である。Si含有量の好ましい上限は4.0%であり、さらに好ましくは3.8%である。
 Mn:0.02~0.20%
 マンガン(Mn)は、製造工程中において、後述のS及びSeと結合してMnS及びMnSeを形成する。これらの析出物は、インヒビター(正常結晶粒成長の抑制剤)として機能し、鋼において、二次再結晶を起こさせる。Mnはさらに、鋼の熱間加工性を高める。Mn含有量が0.02%未満であれば、上記効果が十分に得られない。一方、Mn含有量が0.20%を超えれば、二次再結晶が発現せず、鋼の磁気特性が低下する虞がある。したがって、Mn含有量は0.02~0.20%である。Mn含有量の好ましい下限は0.03%であり、さらに好ましくは0.04%である。Mn含有量の好ましい上限は0.13%であり、さらに好ましくは0.1%である。
 S及びSeからなる群から選択される1種以上の元素:合計で0.005%以下
 硫黄(S)含有量及びセレン(Se)は、製造工程中において、Mnと結合して、インヒビターとして機能するMnS及びMnSeを形成する。しかしながら、これらの元素の含有量が合計で0.005%を超えれば、残存するインヒビターにより、磁気特性が低下する。さらに、S及びSeの偏析により、方向性電磁鋼板において、表面欠陥が発生する場合がある。したがって、方向性電磁鋼板において、S及びSeからなる群から選択される1種以上の元素の合計含有量は0.005%以下である。方向性電磁鋼板におけるS及びSe含有量の合計はなるべく低い方が好ましい。しかしながら、方向性電磁鋼板中のS含有量及びSe含有量の合計を0.0001%未満に低減しても、製造コストが高くなるだけで、上記効果はそれほど変化しない。したがって、方向性電磁鋼板中のS及びSeからなる群から選択される1種以上の合計含有量の好ましい下限は0.0001%である。
 sol.Al:0.010%以下
 アルミニウム(Al)は、方向性電磁鋼板の製造工程中において、Nと結合してAlNを形成し、インヒビターとして機能する。しかしながら、方向性電磁鋼板中のsol.Al含有量が0.010%を超えれば、母材鋼板中に上記インヒビターが過剰に残存するため、磁気特性が低下する。したがって、sol.Al含有量は0.010%以下である。sol.Al含有量の好ましい上限は0.004%であり、さらに好ましくは0.003%である。sol.Al含有量はなるべく低い方が好ましい。しかしながら、方向性電磁鋼板中のsol.Al含有量を0.0001%未満に低減しても、製造コストが高くなるだけで、上記効果はそれほど変化しない。したがって、方向性電磁鋼板中のsol.Al含有量の好ましい下限は0.0001%である。なお、本明細書において、sol.Alは酸可溶Alを意味する。したがって、sol.Al含有量は、酸可溶Alの含有量である。
 注意を要するのは、後述するように本発明の一次被膜の特徴となるAlは母材鋼板を由来とするものであることである。このため、一見すると母材鋼板のAl含有量がゼロであることが、一次被膜にAlが存在することと矛盾するように思えるが、一次被膜に濃化するのは、「製造途中の母材鋼板に含有されていたAl」であり、本発明の方向性電磁鋼板では、本発明の特徴であるAlの濃化が起きた後に、仕上焼鈍の一過程で「純化焼鈍」とも呼ばれる高温熱処理により母材鋼板のAlは系外に排出される。このため、最終的な母材鋼板にAlが含有されないことと、最終的な一次被膜に母材鋼板由来のAlが存在することとは矛盾するものではない。
 N:0.010%以下
 窒素(N)は、方向性電磁鋼板の製造工程中において、Alと結合してAlNを形成し、インヒビターとして機能する。しかしながら、方向性電磁鋼板中のN含有量が0.010%を超えれば、方向性電磁鋼板中に上記インヒビターが過剰に残存するため、磁気特性が低下する。したがって、N含有量は0.010%以下である。N含有量の好ましい上限は0.004%であり、さらに好ましくは0.003%である。N含有量はなるべく低い方が好ましい。しかしながら、方向性電磁鋼板中のN含有量の合計を0.0001%未満に低減しても、製造コストが高くなるだけで、上記効果はそれほど変化しない。したがって、方向性電磁鋼板中のN含有量の好ましい下限は0.0001%である。
 本発明による方向性電磁鋼板の母材鋼板の化学組成の残部は、Fe及び不純物からなる。ここで、不純物とは、母材鋼板を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境などから混入されるもの、又は、純化焼鈍において完全に純化されずに鋼中に残存する下記の元素等であって、本発明の方向性電磁鋼板に悪影響を与えない範囲で許容されるものを意味する。
 <不純物について>
 銅(Cu)、スズ(Sn)、アンチモン(Sb)、ビスマス(Bi)、テルル(Te)及び鉛(Pb)は、仕上焼鈍の一過程で「純化焼鈍」とも呼ばれる高温熱処理により、母材鋼板の中のCu、Sn、Sb、Bi、Te及びPbの一部が系外に排出される。これらの元素は仕上焼鈍において二次再結晶の方位選択性を高めて磁束密度を改善する作用を発揮するが、仕上焼鈍完了後は母材鋼板中に残存すると単なる不純物として鉄損を劣化させる。したがって、Cu、Sn、Sb、Bi、Te及びPbからなる群から選択される1種以上の元素の合計含有量は0.30%以下である。上述のとおりこれらの元素は不純物であるため、これらの元素の合計含有量はなるべく低い方が好ましい。
 [一次被膜]
 一次被膜構造の特徴は本発明における最も重要である。この特徴は前述のように、その測定方法の限界もある。本発明では、一次被膜と母材鋼板の界面の情報を鋼板表面と平行な平面に投影し、その平面(以降、単に「投影平面」と記述することがある)の上で規定する。一次被膜の特徴を把握するには、この測定方法の理解が重要と考えられるので、最初に測定方法について説明する。
 <一次被膜、特に界面構造の測定方法>
 表面に一次被膜が形成された方向性電磁鋼板を、母材鋼板のみが溶解するように電解液中で定電位電解したのち、母材鋼板から一次被膜を分離し、観察用試料とする。なお、試料採取のための電解にあたっては、界面の母材鋼板が選択的に電解されることから、母材鋼板全てを電解する必要はなく、適当な電解量を設定すればよい。電解量は、たとえば、鋼板面積1cm当たり80C(80C/cm)である。一次被膜の分離にあたっては、市販されている金属製のテープ等の粘着面に一次被膜を付着させたのち母材鋼板を取り除く方法などにより、テープ側に残ったものを観察する方法や、パラフィンを用いて包埋させたあと、パラフィンを取り除く方法などがある。
 以降、この分離した被膜を「界面観察用サンプル」、観察すべき一次被膜の母材鋼板に密着していた側の表面を「観察面」と記述することがある。
 次に界面観察用サンプルを元の鋼板表面に垂直な方向(方向性電磁鋼板の板厚方向)から各種の観察機器で観察を行う。よって、各機器から得られるデータは界面観察用サンプルの持つ情報を、投影平面上に展開したものとなる。以降の説明はこの投影平面におけるデータを前提として説明する。つまり、例えば「界面において」という記述は、上記投影平面におけるデータの状況について説明したものとなる。ここで、上記板厚方向において、一次被膜側から母材鋼板側へ向かう方向を正とする。以下に使用する「高さ」の用語は、一次被膜側から母材鋼板側へ向かう方向を高いと表す。
 界面観察用サンプルの観察面について、20μm×15μm以上の領域を走査型共焦点レーザ顕微鏡(型番:VK9710、キーエンス製)で分析し、投影平面上での界面の凹凸データを得る。この際、走査ステップは0.1μm以下とする。得られた30000個(200個×150個)以上の凹凸データに対し、サイズ3×3のガウシアンフィルタ(図2)によるスムージングを1回実施する。さらに、スムージング後の凹凸データに対して幅方向の中心線、高さ方向の中心線を基準とした、自動の二次曲面補正を行い、このデータを投影平面上に展開し、200個×150個の最終的な凹凸分布図を得る。
 図3は、剥離させた一次被膜裏面と嵌入部の三次元構造を示す模式図である。H0は、一次被膜の表面高さの中央値である。H1はH0よりも高い位置に存在する嵌入部の高さの平均値である。この位置(H1-H0)は、本発明では、0.40~2.00μmである。図3を鋼板表面と平行な平面に投影したものが高さの凹凸分布情報を有する投影平面である。
 また、上記観察領域内で、SEM-EDS(型番:JSM-7900F、日本電子製)を用いて、Ca、Sr、BaおよびAlの特性X線強度分析を行う。この際、走査ステップは0.1μm以下とし、投影平面上での200個×150画素の特性X線強度分布図を得る。このとき、特性X線強度分布図の解像度を基準に、200×150画素以上の領域が、凹凸分布図と重なるようにする。つまり、特性X線強度分布図のデジタル画像の200×150画素以上の領域の各画素に対して、対応する領域の凹凸分布図の高さデータを少なくとも1点以上(好ましくは全ての点)対応させることができるようにする。以下、これを特性X線強度及び凹凸相関分布図と呼び、これを表した模式図を図4に示す。この図から得られる情報を用いて被膜の形態を特定する方法について述べる。
 このようにして得られる、特性X線強度および凹凸相関分布図から、以下の手順で観察領域内に領域A0~A5を確定する。
 図4に示す特性X線強度及び凹凸相関分布図の模式図では、最外枠内の全ての観察領域をA0で示す。濃いグレーで塗りつぶした領域は、凹凸の中央値H0よりも高い領域である。薄いグレーの線で示す枠内はH0よりもさらに0.2μm高い領域(嵌入酸化物領域)A1である。薄いグレーの線で示す枠の外は、表面酸化物層領域A2である。Al(アルミニウム)濃化領域をA3(点で示す)およびA5(黒色で示す)で表す。特にA5は嵌入酸化物領域(A1)内に存在するAl(アルミニウム)濃化領域を示す。A4の領域(点線の枠内)は、以下に説明するCa群元素濃化領域を示す。
 領域A0は、観察領域全体、つまり少なくとも20μm×15μm以上の領域であり、特性X線及び凹凸相関分布図の全画素がこの領域A0に相当するものとなる。以下、A0を「観察領域」と記述することがある。
 領域A1および領域A2は、特性X線強度及び凹凸相関分布図をもとにして区分される。
 本発明では、一次被膜を鋼板厚さ方向の位置H0を基準として厚さ方向に2つの領域、「嵌入酸化物層(2)」と「表面酸化物層(1)」に分類することは、前述の通りである。領域A1および領域A2はこの分類を投影平面上に展開した領域となる。
 H0は特性X線強度及び凹凸相関分布図の高さデータの中央値である。ここでは、200×150個の中央に近い2つの高さの値の算術平均値である。そして、H0+0.2μm以上の高さとなる領域が「嵌入酸化物層(2)」であり、投影平面上で見たものが「嵌入酸化物層領域」A1である。同様に、H0+0.2μm未満の高さとなる領域が「表面酸化物層(1)」であり、投影平面上では「表面酸化物層領域」A2である。
 領域A3および領域A4は特性X線強度及び凹凸相関分布図をもとにして区分される。
 特性X線強度及び凹凸相関分布図において、Al(アルミニウム)の特性X線強度の最大値を特定し、該Alの特性X線強度の最大値の20%以上の強度が得られる領域がA3である。以下、領域A3を「Al濃化領域」と記述する。
 また、特性X線強度及び凹凸相関分布図において、Ca、Sr、Baそれぞれの特性X線強度を特定し、Caの特性X線強度の最大値の20%以上のCaの特性X線強度が得られる領域と、Srの特性X線強度の最大値の20%以上のSrの特性X線強度が得られる領域と、Baの特性X線強度の最大値の20%以上のBaの特性X線強度が得られる領域とを合わせた領域がA4である。つまり領域A4は、Ca、Sr、Baのいずれかの元素について、特性X線強度が、その元素の最大の特性X線強度の20%以上の強度となっている領域である。以下、A4を「Ca群元素濃化領域」と記述する。
 さらに、嵌入酸化物層領域A1に存在し、かつAl(アルミニウム)濃化領域A3である領域をA5として特定する。以下、領域A5を「嵌入Al(アルミニウム)領域」と記述する。
 次に上記領域において、各領域の個数の数密度(個/μm)、各領域の総面積(μm)、各領域の板厚方向の位置(高さ(μm))を特定する。面積が必要なのは、領域A0、A1、A3、及びA5であり、それぞれの面積をS0、S1、S3、及びS5とする。
 領域の個数の数密度が必要なのは、A3およびA4である。A3及びA4領域の個数の数密度を、それぞれD3、D4とする。領域の個数の数密度の特定においては、画素単位で画素が上下または左右に連続している領域を一つの領域とし、さらに4つ以上の画素からなる領域を特定して個数を算定する。なお、1つの画素の面積は、前述したように測定時の走査ステップ0.1μm(より詳しくは0.092μm)であることから、領域の面積=0.1μm×0.1μm(より詳しくは0.092μm×0.092μm)×領域個数となる。
 言うまでもないが、例えばD3は、領域A3について、画素単位で画素が連続している領域を一つの領域と見なして計測した領域の合計個数を、観察領域A0の面積(すなわち全観察面積であるS0)で除した値である。D4も同様の方法で算出している。
 領域の板厚方向の位置が必要なのは、領域A5である。領域A5の位置をH5とする。なお、この位置は、表面酸化物層(1)と嵌入酸化物層(2)の境界であるH0を基準として特定するものである。具体的には領域A5であるすべての画素についての高さの平均値から、H0を引いた値である。領域A5は特性X線強度及び凹凸相関分布図における高さがH0+0.2μm以上の位置に存在する領域なので、領域A5の画素についての高さの平均値は必ずH0+0.2μm以上であり、結果的にH5は0.2μm以上の値となる。
<一次被膜の特徴/嵌入酸化物層内のAl分布>
 以下では本発明の特徴的な一次被膜について説明する。本発明の一次被膜はMgSiOを主成分とするが、一次被膜と母材鋼板との界面近傍でのAl分布に大きな特徴があり、この特徴は主として、「嵌入酸化物層(2)」において特定できるので、最初に嵌入酸化物層(2)に関する特徴を、次に一次被膜全体の特徴を説明する。
 本発明は界面近傍におけるAl濃化領域A3の数密度である上記D3について、D3:0.015~0.150個/μmであることを特徴とする。D3がこの範囲を外れると、曲げ加工に対する被膜密着性の向上効果を得ることができない。
 また、Al濃化領域のうち、嵌入酸化物層領域である領域、すなわち嵌入酸化物層領域A1でありかつAl(アルミニウム)濃化領域A3である領域(嵌入Al領域A5)の周長L5の観察面積に対する割合、L5/S0について0.020~0.500μm/μmの範囲であることを特徴とする。この比が0.02μm/μm未満になると、曲げ加工に対する被膜密着性の向上効果を得ることができない。また、0.500μm/μmを超えると、鉄損特性を劣化する。ここで、周長L5とは嵌入Al領域A5の周長の合計であり、嵌入Al領域A5の周長とは、1つの嵌入Al領域A5を形成する連続する画素の周長である。
 さらに、嵌入Al領域の板厚方向の位置H5について、H5:0.4~4.0μmであることを特徴とする。この値が0.4μm未満になると、曲げ加工に対する被膜密着性の向上効果を得ることができない。また4.0μm超になると嵌入酸化物が板厚方向に伸びすぎているため周長が減少し、ガス抜け性が改善されなくなって点状欠陥が発生するようになる。
 上記のAl分布が曲げ加工性に影響を及ぼす理由は明確ではないが、以下のように考えている。
 Alは強い酸化物形成傾向を持つ元素であるため、仕上焼鈍中に、鋼板表面ではAlが選択的に酸化され母材鋼板内部から表面に向かってAlが拡散する。この際、焼鈍分離剤が反応して形成されている表面酸化物において、その一部がMgAlに置換される場合、MgSiOが還元されその量が低下し線膨張係数が高まり磁気特性を劣化させるとともに、MgSiOを主体とする表面酸化物層(1)の厚さが不均一になる。これを回避するにはAlを鋼板の内部で酸化させ、表面酸化物層(1)への到達を阻害すれば良い。つまり、本発明は、母鋼板に深く侵入している嵌入酸化物の先端位置にてAl系酸化物が形成された構造となることで、磁気特性の向上と曲げ加工に対する被膜密着性の改善を両立して達成できていると考えられる。
 これを表す規定値が、H5であり、本発明ではH5を0.4μm以上、すなわち嵌入Al領域をH0から0.4μm以上鋼板内部側(嵌入酸化物の先端側)に離れた位置に形成し、かつ観察面積当たりの嵌入Al領域の周長L5を0.02μm以上とすることで上記の構造が達成されていると考えられる。
 そしてこのような嵌入Al領域A5が嵌入酸化物の先端にあるということは、D3が適度な範囲内の数値になることにもつながる。すなわち嵌入Al領域A5の数密度が少なければ、D3が低いことになる。また、一時的に嵌入Al領域の密度が過剰に高くなるような状況が生じたとしても、隣接する嵌入Al領域A5同士の距離が短くなるため、一次被膜の成長に伴いそれらは合体してしまい最終的にはD3は過度に高い値にはなりにくい。
 また、上記のような適切な嵌入Al領域A5が形成されていれば、鋼板内部から拡散するAlは表面酸化物層(1)には到達しなくなるので、S5/S3は必然的に高い値となる。
 なお、本発明ではAl濃化領域A3におけるAlの状態については何ら規定するものではないが、一次被膜の主成分がMgSiOであることを考慮すれば、上記A3内のAlは酸化物として存在していると考えることが妥当である。
<一次被膜の特徴/嵌入酸化物層領域の存在>
 本発明の一次被膜において、嵌入酸化物層(2)の形状は、外形的には顕著な特徴を有するとまでは言えないが、上述の特徴的なAl分布が嵌入酸化物層(2)の先端領域での現象を活用したものであることから、嵌入酸化物自体が存在しなければ特徴的なAl分布の形成も困難となる。
 このため、嵌入酸化物の存在を規定するものとして、投影平面上における嵌入酸化物層領域の面積割合を規定する。なお、この規定の数値範囲自体は一般的な剪断加工における被膜密着性が優れた方向性電磁鋼板においても観察される程度のものであるが、特徴的なAl分布を得るための必要条件として重要とも言える。
 本発明においては、(嵌入酸化物層領域の面積S1)/(観察面積S0)≧0.15であることが必要である。この値が0.15未満になるということは、1つずつの嵌入酸化物がそれなりの面積で形成されているとしても嵌入酸化物の個数の数密度が非常に低いか、または数密度がある程度の値であったとしても1つずつの嵌入酸化物の面積が小さいか、の状況になる。どちらの場合も、嵌入酸化物同士の間隔が比較的広くなっている状況を表している。詳細は後述するが、このような状況では、前述の特徴的なAl分布の形成が困難となる。
 <一次被膜の特徴/一次被膜の組成とCa群元素の分布>
 本発明の一次被膜はフォルステライト(MgSiO)を主成分とする。より具体的には、一次被膜は50~95質量%のMgSiOを含有する。残部は一般的に知られている主としてMgAlなどの酸化物やMnSなどの硫化物である。
 さらに、本発明の一次被膜は、一次被膜中のMgSiOの含有量に対して、Y群元素を合計で0.1~6.00質量%と、Ca群元素を合計で0.1~6.00質量%含有することが好ましい。
 詳細は後述するが、上述したAlの酸化状況を実現するには、Y群元素を含有する焼鈍分離剤を使用することが好ましい。この場合、仕上焼鈍後の一次被膜にもY群元素が残存することになる。一次被膜におけるY群元素の合計含有量が0.1質量%未満では、焼鈍分離剤でのY群元素の含有が十分とは言えず、曲げ加工に対する被膜密着性が向上しない。6.00質量%超では、嵌入酸化物層(2)の厚さが厚くなりすぎて、酸化物が磁化時の磁壁移動を妨げるため、磁気特性への悪影響が顕著となる。
 同様に、上述したAlの酸化状況を実現するには、Ca群元素を含有する焼鈍分離剤を使用することが好ましい。この場合、仕上焼鈍後の一次被膜にもCa群元素が残存することになる。一次被膜におけるCa群元素の合計含有量が0.1質量%未満では、焼鈍分離剤でのCa群元素の含有が十分とは言えず、曲げ加工における被膜密着性を高めることができない。6.00質量%超では、嵌入酸化物層(2)の数密度が高くなりすぎて隣接する嵌入酸化物同士が合体して一体化するため、結果として嵌入酸化物の数密度が低下するばかりか、特徴的なAl分布を得ることができないため、曲げ加工における被膜密着性を高めることができない。
 一次被膜中のMgSiO含有量は、前述の方法で電磁鋼板から分離した一次被膜を試料として、試料中のMgを誘導結合プラズマ質量分析法(ICP―MS)で定量分析する。得られた定量値(質量%)とMgSiOの分子量との積を、Mgの原子量2倍で除したものをMgSiOの含有量とする。
 さらに同様に、Ca、Ba、Sr及びY、La、Ceのそれぞれについて、上記と同様の方法で定量分析を行い、得られた含有値(質量%)に対して、上記と同様の計算を行ってこれらの元素の含有量を算出した。得られたCa、Ba、Srの含有量の合計を「Ca群元素含有量」とし、得られたY、La、Ceの含有量の合計を「Y群元素含有量」とした。
 さらに本発明の一次被膜は、上記投影平面上における「Ca群元素濃化領域A4の数密度」D4が0.005個/μm以上であることが好ましい。詳細は後述するが、焼鈍分離剤が含有するCa群元素は、一次被膜の形成過程で嵌入酸化物の数密度を制御するために重要な役割をしていると考えられる。ここで規定する一次被膜におけるCa群元素濃化領域A4の数密度D4は、一次被膜の形成過程で嵌入酸化物の形成に作用したCa群元素が一次被膜中に残存する場合の形態を表していると考えられる。D4が高くなると、Ca群元素が嵌入酸化物に偏りなく供給されるため、Al系酸化物の個数密度であるD3が高くなると同時に、嵌入酸化物の母鋼材の内部への進行を助長する。
 D4が0.005個/μm未満になると、嵌入酸化物粒子の数密度が十分に得られず密着性が向上しないばかりか、前述の特徴的なAl分布を得ることができない虞がある。
 上限は特に設定しないが、D4があまりに高いと、これに関連して形成される嵌入酸化物粒子の形成頻度も過度に高くなり、隣接する嵌入酸化物同士が合体して一体化するため、特徴的なAl分布の形成を阻害することは前述の通りである。そのため、D4は2.000個/μm以下であることが好ましい。
 [製造方法]
 本発明による方向性電磁鋼板の製造方法の一例を説明する。
 方向性電磁鋼板の製造方法の一例は、製鋼工程と、熱延工程と、熱延板焼鈍と、冷延工程と、脱炭焼鈍工程と、仕上焼鈍工程と、平坦化焼鈍工程、被膜の焼付工程、磁区制御工程とを備える。以下、各工程について説明する。なお、以下の各工程の処理条件については、一般的な範囲を逸脱するものでなく、特別なものである必要はない。本発明方法において特徴的なのは、一次被膜の構造を制御するための、仕上焼鈍前の鋼板における焼鈍分離剤を含む鋼板表面の状態である。
 <製鋼工程>
 製鋼工程では、転炉などの通常の方法で溶鋼を溶製し、周知の精錬工程及び鋳造工程を実施することにより次の化学組成を有するスラブを製造する。なおスラブの化学組成の各元素は、後述の仕上焼鈍工程にて鋼中成分からある程度取り除かれる。特に、インヒビターとして機能するS、Al、N等は大幅に取り除かれる。そのため、ここで記載するスラブの化学組成は最終製品の鋼版の化学組成とは異なる。
 C:0.1%質量以下、
 C含有量が0.1%を超えれば、脱炭焼鈍に必要となる時間が長くなる。この場合、製造コストが高くなり、かつ、生産性も低下する。したがって、スラブ中のC含有量は0.1質量%以下である。スラブ中のC含有量の好ましい上限は0.092質量%であり、さらに好ましくは0.085質量%である。また、C含有量が0.005質量%を下回れば、MnS、MnSe及びAlNなどの析出物の分散状態ならびに脱炭焼鈍後の鋼板粒組織が均一に得られず、二次再結晶後のGoss方位集積度を悪化させる可能性がある。したがって、スラブ中のC含有量の下限は0.005質量%である。スラブ中のC含有量の好ましい下限は0.02質量%であり、さらに好ましくは0.04質量%である。
 Si:2.5~4.5質量%、
 製品である方向性電磁鋼板の化学組成の項目で説明したとおり、Siは鋼の電気抵抗を高めるが、過剰に存在すると、冷間加工性が低下する。スラブ中のSi含有量が2.5~4.5質量%であれば、仕上焼鈍工程後の方向性電磁鋼板のSi含有量が2.5~4.5質量%となる。スラブ中のSi含有量の好ましい上限は4.0質量%であり、より好ましい上限は3.8質量%である。スラブ中のSi含有量の好ましい下限は2.6%であり、より好ましい下限は2.8質量%である。
 Mn:0.02~0.20質量%
 製品である方向性電磁鋼板の化学組成の項目で説明したとおり、製造工程中において、MnはS及びSeと結合して析出物を形成し、インヒビターとして機能する。Mnはさらに、鋼の熱間加工性を高める。スラブ中のMn含有量が0.02~0.20質量%であれば、仕上焼鈍工程後の方向性電磁鋼板のMn含有量が0.05~0.20質量%となる。スラブ中のMn含有量の好ましい上限は0.13質量%であり、より好ましい上限は0.10質量%である。スラブ中のMn含有量の好ましい下限は0.03質量%であり、より好ましい下限は0.04質量%である。
 S及びSeからなる群から選択される1種以上の元素:合計で0.005~0.070質量%
 製造工程中において、硫黄(S)及びセレン(Se)はMnと結合して、MnS及びMnSeを形成する。MnS及びMnSeはいずれも、二次再結晶中の結晶粒成長を抑制するために必要なインヒビターとして機能する。S及びSeからなる群から選択される1種以上の元素の合計含有量が0.005%質量未満であれば、上記効果が得られにくい。一方、S及びSeからなる群から選択される1種以上の元素の合計含有量が0.070質量%を超えれば、製造工程中において二次再結晶が発現せず、鋼の磁気特性が低下する。したがって、スラブにおいて、S及びSeからなる群から選択される1種以上の元素の合計含有量は0.005~0.070質量%である。S及びSeからなる群から選択される1種以上の合計含有量の好ましい下限は0.008質量%であり、さらに好ましくは0.016質量%である。S及びSeからなる群から選択される1種以上の合計含有量の好ましい上限は0.060質量%であり、さらに好ましくは0.050質量%である。
 sol.Al:0.005~0.050質量%
 製造工程中において、アルミニウム(Al)は、Nと結合してAlNを形成する。AlNはインヒビターとして機能する。スラブ中のsol.Al含有量が0.005質量%未満であれば、上記効果が得られない。一方、スラブ中のsol.Al含有量が0.050質量%を超えれば、AlNが粗大化する。この場合、AlNがインヒビターとして機能しにくくなり、二次再結晶が発現しない場合がある。したがって、スラブ中のsol.Al含有量は0.005~0.050質量%である。スラブ中のsol.Al含有量の好ましい上限は0.040質量%であり、さらに好ましくは0.035質量%である。スラブ中のsol.Al含有量の好ましい下限は0.010質量%であり、さらに好ましくは0.015質量%である。
 N:0.0030~0.0300質量%
 製造工程中において、窒素(N)はAlと結合して、インヒビターとして機能するAlNを形成する。スラブ中のN含有量が0.0030質量%未満であれば、上記効果が得られない。一方、スラブ中のN含有量が0.0300質量%を超えれば、AlNが粗大化する。この場合、AlNがインヒビターとして機能しにくくなり、二次再結晶が発現しない場合がある。したがって、スラブ中のN含有量は0.0030~0.0300質量%である。スラブ中のN含有量の好ましい上限は0.0200質量%であり、さらに好ましくは0.0150質量%である。スラブ中のN含有量の好ましい下限は0.0040質量%であり、さらに好ましくは0.0060質量%である。
 本発明のスラブ中の化学組成の残部は、Fe及び不純物からなる。ここで、不純物とは、スラブを工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境などから混入するものであって、本実施形態のスラブに悪影響を与えない範囲で許容されるものを意味する。
 <任意元素について>
 本発明によるスラブはさらに、Feの一部に代えて、Cu、Sn及びSbからなる群から選択される1種以上を合計で0.60質量%以下含有してもよい。これらの元素はいずれも任意元素である。
 Cu、Sn及びSbからなる群から選択される1種以上の元素:合計で0~0.60質量%
 銅(Cu)、スズ(Sn)及びアンチモン(Sb)はいずれも任意元素であり、含有しなくてもよい。含有する場合、Cu、Sn及びSbはいずれも、方向性電磁鋼板の磁束密度を高める。Cu、Sn及びSbが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Cu、Sn及びSb含有量が合計で0.6質量%を超えれば、脱炭焼鈍時に内部酸化層が形成しにくくなる。この場合、仕上焼鈍時に、焼鈍分離剤のMgO及び内部酸化層のSiOが反応して進行する一次被膜形成が遅延する。その結果、一次被膜の密着性が低下する。また、純化焼鈍後にCu、Sn、Sbが不純物元素として残存しやすくなる。その結果、磁気特性が劣化する。したがって、Cu、Sn及びSbからなる群から選択される1種以上の元素の含有量は合計で0~0.6質量%である。Cu、Sn及びSbからなる群から選択される1種以上の元素の合計含有量の好ましい下限は0.005質量%であり、さらに好ましくは、0.007質量%である。Cu、Sn及びSbからなる群から選択される1種以上の元素の合計含有量の好ましい上限は0.50質量%であり、さらに好ましくは、0.45質量%である。
 本発明によるスラブはさらに、Feの一部に代えて、Bi、Te及びPbからなる群から選択される1種以上を合計で0.030質量%以下含有してもよい。これらの元素はいずれも任意元素である。
 Bi、Te及びPbからなる群から選択される1種以上の元素:合計で0~0.030%
 ビスマス(Bi)、テルル(Te)及び鉛(Pb)はいずれも任意元素であるが、以下の観点で本発明においては注目すべき元素である。
 これら元素は方向性電磁鋼板の磁束密度を高める。このためのBi、Te及びPbからなる群から選択される1種以上の合計含有量の好ましい下限値は、0.0005%であり、さらに好ましくは、0.001質量%である。
 一方、仕上焼鈍時にこれらの元素が表面に偏析すると、嵌入酸化物層(2)が厚くならず一次被膜の被膜密着性が低下する。このため、磁束密度を高める効果を有するにも関わらず被膜密着性を確保するため添加量を0.005質量%程度以下に制限せざるを得なかった。本発明効果は嵌入酸化物の構造を変えることで被膜密着性を向上させるため、これらの元素を含有する製造法を適用する場合に特に有効なものともなる。本発明を適用する場合、これら元素が0.010質量%以上、さらには0.015質量%以上でも良好な被膜密着性の確保が可能となる。とは言え、過剰に含有する場合は本発明効果をもっても密着性の低下を回避できないため、上限は0.030質量%とする。好ましい上限は0.020%であり、より好ましい上限は0.015質量%である。
 <熱延工程>
 上述の化学組成を有するスラブを加熱する。スラブの加熱温度はたとえば、1280℃超~1350℃である。加熱されたスラブに対して熱間圧延を実施し、熱延鋼板を製造する。熱延鋼板は必要に応じて、焼鈍を施してもよい。熱延板焼鈍の条件は例えば、900~1100℃、3~5分間である。
 <冷延工程>
 冷延工程では、熱延鋼板に対して冷間圧延を実施して、冷延鋼板を製造する。
 準備された熱延鋼板に対して、冷間圧延を実施して、母材鋼板である冷延鋼板を製造する。冷間圧延は1回のみ実施してもよいし、複数回実施してもよい。冷間圧延を複数回実施する場合、冷間圧延を実施した後、軟化を目的とした中間焼鈍を実施し、その後、さらに冷間圧延を実施する。1回又は複数回の冷間圧延を実施して、製品板厚(製品としての板厚)を有する冷延鋼板を製造する。
 1回又は複数回の冷間圧延における、冷延率は80%以上である。ここで、冷延率(%)は次のとおり定義される。
 冷延率(%)=1-最後の冷間圧延後の冷延鋼板の板厚/最初の冷間圧延開始前の熱延鋼板の板厚×100
 なお、冷延率の好ましい上限は95%である。また、熱延鋼板に対して冷間圧延を実施する前に、熱延鋼板に対して熱処理を実施してもよいし、酸洗を実施してもよい。
 <脱炭焼鈍工程>
 冷延工程により製造された冷延鋼板に対して、脱炭焼鈍を実施し、必要に応じて窒化焼鈍を行う。脱炭焼鈍は、周知の水素-窒素含有湿潤雰囲気中で実施される。脱炭焼鈍により、方向性電磁鋼板のC濃度を、磁気時効劣化を抑制可能な50ppm以下に低減する。脱炭焼鈍ではさらに、鋼板組織において、一次再結晶が発現して、冷延工程により導入された加工ひずみが解放される。さらに、脱炭焼鈍工程では、母材鋼板の表層部にSiOを主成分とする内部酸化層が形成される。ここで形成されたSiOが、その後塗布される焼鈍分離剤を含有する水性スラリー中のMgOと、仕上焼鈍中に反応して、本発明で形態が制御される一次被膜を形成する。脱炭焼鈍工程での焼鈍温度は周知であり、たとえば750~950℃である。焼鈍温度での保持時間はたとえば、1~5分である。
 <焼鈍分離剤層形成工程>
 本発明において「焼鈍分離剤」とは、仕上焼鈍を実施する、上記の脱炭焼鈍板の表面に、仕上焼鈍中の焼き付き防止機能を付与するために形成された物質を指す。また、脱炭焼鈍板の表面に形成された焼鈍分離剤の層を「焼鈍分離剤層」と呼ぶ。
 この工程では、焼鈍分離剤を構成する化合物等を含有する水性スラリーを準備する。水性スラリーは後述の焼鈍分離剤を構成する元素を化合物等として純水に添加して撹拌し調製したものである。このスラリーを上記の脱炭焼鈍板の表面にロールコーターやスプレーなどで塗布する。スラリーが塗布された鋼板を400~1000℃に保持した炉内に挿入し、10~90秒保持することで、表面のスラリーを乾燥する。なお、この際、鋼板自体の温度は400℃程度までしか上昇しない(再結晶等の結晶組織の変化は起きない)。この時点で鋼板表面に残存したものが本発明における焼鈍分離剤であり、焼鈍分離剤が仕上焼鈍前の鋼板の表面に付着した状態を焼鈍分離剤層と呼ぶ。
 基本的には最終的に仕上焼鈍前の鋼板の表面を被覆している焼鈍分離剤は、その原料として使用した各種の化合物等を単純に混合したものとなっていると考えて良い。
<仕上焼鈍工程>
 焼鈍分離剤を乾燥後、仕上焼鈍を実施する。仕上焼鈍では、焼鈍温度を1150~1250℃として、母材鋼板(冷延鋼板)を均熱する。均熱時間はたとえば15~30時間である。仕上焼鈍における炉内雰囲気は周知の雰囲気である。なお、仕上焼鈍工程の最終過程において、特に、インヒビターとして機能するS、Al、N等の元素の一部を系外に排出する。この過程は「純化(焼鈍)」と呼ばれることがある。
 以上の製造工程により製造された方向性電磁鋼板では、MgSiOを主成分として含有する一次被膜が形成される。この際、後述する焼鈍分離剤を適用することにより母材鋼板と一次被膜の界面構造が本発明の規定を満たすものとなり、被膜密着性が改善する。
 なお、脱炭焼鈍工程及び仕上焼鈍工程により、熱延鋼板の化学組成の各元素が鋼中成分からある程度取り除かれる。特に、インヒビターとして機能するS、Al、N等は大幅に取り除かれる。そのため、熱延鋼板の化学組成と比較して、方向性電磁鋼板の母材鋼板の化学組成中の元素含有量は上記のとおり低くなる。上述の化学組成の熱延鋼板を用いて上記製造方法を実施すれば、上記化学組成の母材鋼板を有する方向性電磁鋼板を製造できる。
 <絶縁被膜形成工程>
 本発明による方向性電磁鋼板の製造方法の一例ではさらに、仕上焼鈍工程後に絶縁被膜形成工程を実施してもよい。絶縁被膜形成工程では、仕上焼鈍の降温後の方向性電磁鋼板の表面に、コロイド状シリカ及びリン酸塩を主体とする絶縁コーティング剤を塗布した後、焼付けを実施する。これにより、一次被膜上に、張力被膜である絶縁被膜が形成される。
 <磁区細分化処理工程>
 本発明による方向性電磁鋼板はさらに、冷間圧延後、脱炭焼鈍後、仕上焼鈍工程後、又は絶縁被膜形成工程後などに、周知の磁区細分化処理工程を実施してもよい。磁区細分化処理工程では、方向性電磁鋼板の表面に、磁区細分化効果のあるレーザ光を照射したり、表面に溝を形成したりする。この場合、さらに磁気特性に優れる方向性電磁鋼板が製造できる。
 [焼鈍分離剤]
 本発明の焼鈍分離剤は、酸化マグネシウム(MgO)を主成分とし、さらに、Y、La、Ceからなる群から選択される1種以上の元素(Y群元素)と、Ca、Sr、Baからなる群から選択される1種以上の元素(Ca群元素)とを含有する。
 <Y、La、Ce>
 焼鈍分離剤は、焼鈍分離剤中のMgOの含有量に対するY、La、Ce、Mgのそれぞれの含有量の割合を%で表し、[Y]、[La]、[Ce]、[Mg]とする。焼鈍分離剤は、これらの元素を、下記式:
  (0.00562[Y]+0.00360[La]+0.00712[Ce])/0.0412[Mg]×100(%):0.20~1.60(%)
を満たす。
 ここで上記式の各係数は、焼鈍分離剤中に存在するY、La、Ce、Mg原子を、それぞれの安定酸化物であるY、La、CeおよびMgOとして含有されていると考え、その存在比を求めるための係数であり、次のように計算される。
 Yの係数:1/Y原子量/2=1/88.9/2=0.00562
 Laの係数:1/La原子量/2=1/138.9/2=0.00360
 Ceの係数:1/Ce原子量=1/140.1=0.00714
 Mgの係数:1/Mg原子量=1/24.3=0.0412
(0.00562[Y]+0.00360[La]+0.00714[Ce])/0.0412[Mg]×100は、焼鈍分離剤中のY群元素を各元素の安定酸化物として換算し合計した含有量と、焼鈍分離剤中の主要な構成物質であるMgOとの比率(百分率)である。言い換えると、酸化物中でのMgに対するY群元素の影響の大きさを表す指標とも言える。以下では、(0.00562[Y]+0.00360[La]+0.00714[Ce])/0.0412[Mg]×100をCYと記述する。
 なお、Y群元素は酸素を含む化合物、あるいは仕上焼鈍中に酸化して酸素を含む化合物に変化する化合物として含有させる必要がある。
 Y群元素の化合物はたとえば、酸化物、または、後述の焼付け処理(乾燥処理)及び仕上焼鈍処理で一部又は全部が酸化物に変化する水酸化物、炭酸塩、硫酸塩等である。
 Y群元素の化合物が添加される焼鈍分離剤は、後述の酸素放出効果により、一次被膜の根が発達する。その結果、一次被膜の母材鋼板に対する密着性が高まる。CYが0.20%未満であれば、上記効果が十分に得られない。一方、CYが1.60%を超えれば、一次被膜の根が過剰に発達し、磁気特性が低下する。したがって、CYは0.20~1.60%である。CYの好ましい下限は0.40%であり、さらに好ましくは0.50%である。好ましい上限は1.40%であり、さらに好ましくは1.30%である。
 Y群元素の含有量の制御により、密着性を改善できる理由は完全には明らかではないが、以下のように考えられる。つまり、酸素を含有するY群元素は仕上焼鈍中に酸素を放出し、仕上焼鈍中のコイルの鋼板間の酸素分圧を維持し、一次被膜の嵌入酸化物層(2)を発達させる。以下、酸素放出と嵌入酸化物層(2)の発達の関係について詳述する。
 嵌入酸化物層は、焼鈍分離剤中のMgOと母材鋼板内部のSiOが反応して形成するMgSiOで構成される。すなわち、凹凸が激しい嵌入構造を得るためには、鋼板内にある酸化物であるSiOがもともと激しい凹凸を持っている必要がある。このような界面を持つSiOは高い界面エネルギーをもつため、高温で実施する仕上焼鈍中は不安定である。そのため、仕上焼鈍中、母材鋼板中の内部に形成したSiOは母材鋼板中にSiとOとして一度分解、拡散し、平坦化する。さらに、仕上焼鈍は水素雰囲気下で実施するため、母材鋼板中への酸素供給は少ない。加えて、SiOよりも安定な酸化物であるAl系酸化物が形成することにより、母材鋼板中の酸素が減少して、SiOはますます不安定となる。結果として、Al系酸化物が形成する深さよりも母材鋼板内方に存在するSiOの分解が著しくなり、分解後の拡散を通じてSiOはますます平坦化し、一次被膜の嵌入酸化物層(2)も平坦化する。
 ここで、焼鈍分離剤に含有される酸素を含むY群元素が酸素を放出することで、仕上焼鈍中のコイルの鋼板間の酸素分圧が高くなる。鋼板間の酸素分圧の高まりにより、母材鋼板中に酸素が供給され、内部酸化SiOの平坦化が遅れる。仕上焼鈍中にSiOの平坦化が遅れることは、すなわち、凹凸の激しいMgSiOが形成されることを意味している。MgSiOはSiOに比較して安定であり、その後の仕上焼鈍による形態変化は小さい。結果として、一次被膜の嵌入酸化物層(2)の凹凸が激しくなる。
 <Ca、Sr、Ba>
 本発明では焼鈍分離剤に含まれるCa群元素の合計含有量、焼鈍分離剤に含まれるMgO原料粉末中に、不純物として含まれるCa群元素の合計含有量、およびこれらの含有量の比率を規定する。
 焼鈍分離剤は、焼鈍分離剤中に含まれるMgOの含有量に対するCa、Sr、BaおよびMgのそれぞれの含有量の割合を%で表し、[Ca]、[Sr]、[Ba]、[Mg]とする。焼鈍分離剤は、これらの元素を、下記式:
  (0.0249[Ca]+0.0114[Sr]+0.0073 [Ba])/0.0412[Mg]×100(%)=0.20~1.80(%)を満たす。
 また、焼鈍分離剤は、焼鈍分離剤に含まれるMgO原料粉末中のMgOの含有量に対するMgO原料粉末中に含まれるCa、Sr、Ba、Mg含有量を[Ca´]、[Sr´]、[Ba´]および[Mg´]とする。焼鈍分離剤は、これらの元素を、下記式:
(0.0249[Ca´]+0.0114[Sr´]+0.0073[Ba´])/0.0412[Mg´]×100(%):0.010~0.080(%)を満たす。
 さらに、焼鈍分離剤に含まれるCa群元素の合計含有量と、焼鈍分離剤に含まれるMgO原料粉末中のCa群元素の合計含有量とは、(焼鈍分離剤に含まれるMgO原料粉末のCa群元素の合計含有量)/(焼鈍分離剤に含まれるCa群元素の合計含有量):0.020~0.200の関係を満足する。
 ここで上記式の各係数は、焼鈍分離剤中あるいはMgO原料粉末中に存在するCa、Ba、Sr、およびMg原子を、それぞれの安定酸化物であるCaO、BaO、SrOおよびMgOとして含有されていると考え、その物質量比を比較するために計算される係数で以下の通り計算できる。
 Caの係数:1/Ca原子量=1/40.1=0.0249
 Srの係数:1/Sr原子量=1/87.6=0.0114
 Baの係数:1/Ba原子量=1/137.3=0.0073
 Mgの係数:1/Mg原子量=1/24.3=0.0412
(0.0249[Ca]+0.0114[Sr]+0.0073[Ba])/0.0412[Mg]×100(%)は、焼鈍分離剤中のCa群元素を各元素の安定酸化物として換算し合計した含有量と、焼鈍分離剤中の主要な構成物質であるMgOとの比率(百分率)である。言い換えると、酸化物中でのMgに対するCa群元素の影響の大きさを表す指標とも言える。以下では、焼鈍分離剤に含まれるCa群元素の合計存在比(0.0249[Ca]+0.0114[Sr]+0.0073[Ba])/0.0412[Mg]×100(%)をCC、焼鈍分離剤に含まれるMgO原料粉末中に、不純物として含まれるCa群元素の合計存在比(0.0249[Ca´]+0.0114[Sr´]+0.0073[Ba´])/0.0412[Mg´]×100(%)をCC´と記述する。
 Ca群元素はたとえば、酸化物、または、後述の焼き付け処理(乾燥処理)および仕上焼鈍処理で一部または全部が酸化物に変化する水酸化物、炭酸塩、硫酸塩などである。
 Ca群元素は仕上焼鈍中に一次被膜中を拡散して一次被膜の母鋼板側界面に到達し、一次被膜形成の起点となる母鋼板表面領域に存在するSiOと反応して、嵌入酸化物を形成しやすくするものと考えている。すなわち嵌入酸化物領域の個数の数密度を増加させるものと考えている。
 このような作用を示す理由は明確ではないが、以下のように考えられる。
 母材鋼板は脱炭焼鈍で酸化され、その表層領域にはSiOが形成している。MgSiOを主体とする一次被膜の一部である嵌入酸化物の母材鋼板の内部への成長、すなわち嵌入酸化物層(2)の厚さが増大する現象は、焼鈍分離剤の主要元素として含有されるMgがSiOの母材鋼板の内部側に向かって拡散し、そこでMgSiOをする現象そのものである。同時に本発明が特徴とするAl濃化領域は、鋼板内部から拡散してくるAlがMgSiOと反応して、その領域で濃化したものと考えられる。すなわちMgSiOが母鋼板の内部側で形成されるほどAl濃化領域も母鋼板の内部側で形成されることになる。
 Ca群元素は、Mgと同様の働きを有し、Ca群元素の酸化物とSiの酸化物の複合酸化物を形成する。この複合酸化物はAlと反応するとその反応領域にAlを濃化させるものと考えられる。そして、SiO中のMgとCa群元素の拡散速度を比較すると、Ca群元素の方が早く、焼鈍分離剤中にCa群元素が存在すると、SiOとCa群元素の複合酸化物は、SiOとMgの複合酸化物であるMgSiOよりも早期に母鋼板内部領域に形成され嵌入酸化物が鋼板内部に進行する速度を増大させる。このようにして、Ca群元素を含有する焼鈍分離剤は、嵌入酸化物層(2)の厚さを増大させるだけでなく、その中でのAlの濃化位置、すなわちH5を増大させることとなる。そのため、Ca群元素は水性スラリー調整前あるいは、乾燥工程後にすでに酸化物または酸素を含有する化合物となって焼鈍分離剤中に分散している必要がある。
 また、MgO原料粉末中に不純物としてCa群元素が含まれる場合、原料粉末MgOとしてSiOとの反応性が高まるとともに、焼鈍後期においても比較的安定なCa群元素源として機能し、一次被膜中にCa群元素源を供給することで一次被膜酸化物を安定化できる。この場合、不安定なSiOをCaMgSi等の安定的な酸化物被膜を早期に置換できるうえ、Mgの供給経路を制限しないCa群元素源としてCaMgSiを安定化する。この結果、CaMgSiがMgSiOに置換するまで形態を維持できる。しかし、MgO中の不純物Ca群元素が過度に大きくなると、Caの供給量がMgに対して過剰になり、一次被膜の形態を複雑に維持するために必要なCaMgSiを形成させるためのMg群元素の供給がCa群元素に対して減少するとともに、より安定なMgSiの形成が遅れることで、焼鈍の熱影響により一次被膜が形態変化をおこし、点状欠陥を防ぐ複雑に入り組んだ一次被膜形態を維持できなくなる。その結果、点状欠陥が増加する。また、MgO中の不純物Ca群元素が過度に小さい場合も同様に、MgO原料粉末外に添加したCa群元素含有添加物が十分なCa群元素を供給しても、Mgの供給が相対的に減少することで、より安定なMgSiの形成が遅れ、同様の理由で点状欠陥が増加する。Mg、Ca供給量のバランスが取れる焼鈍分離剤中のCa群元素の合計存在比として、CC=0.20~1.80、CC’=0.010~0.080であり、CC’/CC=0.020~0.200である。
 CCが0.20未満であれば、上記効果を十分に得られない。一方、CCが1.80を超えれば、嵌入酸化物層が過剰に厚くなり、磁気特性が低下する場合がある。CCが0.20~1.80であれば、磁気特性の低下を抑制しつつ、一次被膜の母材鋼板への密着性を高めることができる。
 また、CC’が0.010未満あるいは0.080超もしくは、CC’/CCが0.020未満あるいは0.200超で点状欠陥が生じる。そのため、本発明のCC’の範囲は0.010~0.080であり、CC’/CCの範囲は0.020~0.200である。
 <焼鈍分離剤の任意成分>
 上記焼鈍分離剤はさらに、必要に応じて、Ti、Zr、Hfを含有してもよい。以降、Ti、Zr、Hfからなる群から選択される1種以上の元素を「Ti群元素」と記述することがある。
 焼鈍分離剤に含まれるMgOの含有量対する、Ti、Zr、Hf、Mgのそれぞれの含有量割合を%で表し、[Ti]、[Zr]、[Hf]、[Mg]とする。焼鈍分離剤は、これらの元素を、下記式:
  (0.0209[Ti]+0.0110[Zr]+0.0056[Hf])/0.0412[Mg]×100(%)≦5.0(%)
を満たす。
 ここで上記式の各係数は、焼鈍分離剤中に存在するTi、Zr、Hfを、それぞれの安定酸化物であるTiO、ZrO、HfOおよびMgOとして含有されていると考え、それぞれの存在比で計算される係数で以下の通り計算できる。
 Tiの係数:1/Ti原子量=1/47.9=0.0209
 Zrの係数:1/Zr原子量=1/91.2=0.0110
 Hfの係数:1/Hf原子量=1/178.5=0.0056
 Mgの係数:1/Mg原子量=1/24.3=0.0412
(0.0209[Ti]+0.0110[Zr]+0.0056[Hf])/0.0412[Mg]×100(%)は、焼鈍分離剤中のTi群元素を各元素の安定酸化物として換算し合計した含有量と、焼鈍分離剤中の主要な構成物質であるMgOとの比率(百分率)である。言い換えると、酸化物中でのMgに対するTi群元素の影響の大きさを表す指標とも言える。以下では、(0.0209[Ti]+0.0110[Zr]+0.0056[Hf])/0.0412[Mg]×100(%)を、CTと記述する。Ti群元素は単体、合金、または化合物として含有させることができる。化合物はたとえば、硫酸塩、炭酸塩、水酸化物などである。
 Ti群元素は、仕上焼鈍において、焼鈍分離剤中のMgOと脱炭焼鈍で形成された母鋼板表層のSiOとの反応を促進し、MgSiOの生成を促進する。一方、CTが5.0を超えると効果が飽和するため、5.0を上限とする。
 さらに、焼鈍分離剤は、本発明効果を阻害しない範囲で、公知の効果が知られている元素を含有することも可能である。
 上記CY、CC、CTの値を、焼鈍分離剤中の各群元素の含有量およびMgの含有量から求める。
<焼鈍分離剤中の元素分散>
 本発明の焼鈍分離剤は上記の各種元素を含有するが、それらは単体金属のみならず、各種の化合物として混合された状態で存在している。
 本発明ではこの混合された状況に関して、いくつかの規定を行う。
 本発明の焼鈍分離剤においては、MgOの平均粒径が0.1~2.8μmである。以下ではMgOの平均粒径をR1と記述する。
 R1が0.1μm未満ではMgOが活性すぎて、仕上焼鈍後に、コイルの板間で焼き付きが起こり、焼鈍分離剤としての特性が劣化する。
 R1が2.8μm超ではMgOが不活性すぎ、一次被膜の形成が遅れる。そのため、R1は0.1~2.8μmである。
 R1、R2は、以下のように測定する。すなわち、原料粉末を、レーザ回折/散乱式粒子径分布測定装置を用いて、JIS Z8825(2013)に準拠したレーザ回折・散乱法による測定を実施し、体積基準の粒度分布を得る。さらに、これを粒子数基準の粒度分布に変換し、最終的に各元素の粒子数基準の平均粒径を求める。
 本発明の焼鈍分離剤は、Ca群元素を含有する粒子の平均粒径が0.2~3.0μmである。以下ではCa群元素を含有する粒子の平均粒径をR2と記述する。
 R2が0.2μm未満ではCaが活性すぎ、形成中の一次被膜へのCa群元素の供給量がMgの供給量に対して大きくなり過ぎる。このため、MgとSiの反応が遅れることで、MgSiOの形成が却って遅れ、一次被膜の密着性が劣化する。
 R2が3.0μm超では、MgOとSiOの接触がなくなることによってMgSiOの形成が遅れ、一次被膜の密着性が劣化する。
 R2の測定方法については後述する。
 注意を要するのは、本発明で規定するR1およびR2は粒子数基準で算定される値であることである。
 一般的に、粒子の平均粒径は重量基準で規定されることが多い。重量基準では粒径が不均一な粉体において、特定の粒径の範囲にある粒子の存在比率を、全重量に占める割合で表現する。この重量基準の平均粒径は、粒径の分布において測定対象全体の代表的な粒子とはなり得ない。例えば存在頻度の非常に少ない粗大粒の存在比がわずかに変化すると、その粗大粒が重量としては全体に占める割合が大きいことから、得られる平均粒径が大きく変動するという特徴がある。
 一方、本発明で規定する粒子数基準の平均粒径は、サイズで区分される粒子の存在数を基準としているため、特定サイズの粒子の個数自体が大きく変化しなければ、全体の平均粒径が大きく変動することはない。つまり、存在頻度が高い粒子の粒径を反映した値となる。この値は言い換えると単位体積当たりの粒子数と強い相関を持つものとなる。
 本発明の効果は、後述するように存在頻度が高い粒子の粒径により制御されるものであり、発明の規定は、重量基準でなく粒子数基準の平均粒径によるものである必要がある。
 さらに本発明の焼鈍分離剤は、上記R2のR1に対する比、つまり、R2/R1が0.5~3.0の範囲内である。
 R2/R1が0.5未満になると、形成される一次皮膜の嵌入酸化物層の面積率(S1/S0)が低下し、被膜密着性が劣化する。好ましくは、0.6以上、さらに好ましくは0.8以上である。
 一方、R2/R1が3.0を超えた場合も、形成される一次皮膜の嵌入酸化物の面積率(S1/S0)が低下し、被膜密着性が劣化する。好ましくは2.6以下、さらに好ましくは2.2以下である。
 上記R1、R2およびR2/R1により、被膜密着性が改善される理由は明確ではないが、以下のように考えられる。
 一般に粉体は小さいほど凝集しやすく、粒子径が大きく異なる紛体化合物を混合すると、微細な化合物が凝集する。MgOとCa群元素の混合状況を考えると、Ca群元素の化合物が過度に微細で、R2/R1が0.5未満になると、Ca群元素の化合物が凝集する。このような混合物を母材鋼板表面に付着させた場合、母材鋼板との接触状況においては、Ca群元素のみが母材鋼板と接触した領域が相当の大きさの領域として存在することとなる。この状況で仕上焼鈍での一次被膜の形成が進行すると、Ca群元素のみが母材鋼板と接触した領域では、Mgの供給が遅れるため、一次被膜の形成が遅れ、被膜密着性が劣位になる。
 同様に、R2/R1が3.0を超えると、MgOに対して、Ca群元素の分散が疎になるため、Caの供給が遅れ、形成される一次皮膜の被膜密着性が劣位になる。
 これは、MgOと鋼板との間にCa群元素の化合物が存在していることとなり、母材鋼板へのMgの供給を阻害するものとなる。つまりMgOが母材鋼板に接触していない領域が、Ca群元素の化合物が相対的に微細でなければ単なる空隙であったものが、Ca群元素の化合物が相対的に微細であると母材鋼板へのMgの供給を阻害する領域に変化することを意味する。この結果、MgOが母材鋼板に接触している領域と接触していない領域で、母材鋼板へのMgの供給に顕著な差を生じることとなり、一次被膜の発達は不均一となる。このため嵌入酸化物の数密度が過剰となり、磁気特性の阻害要因となる。
 同様に、MgOの粒径に対して、過度に大きい粒径のCa群元素を添加しても、Ca群元素を供給できる範囲が減少するため、結局、Ca群元素の供給は片寄り、過剰に供給された場所では一次被膜の根の数密度が過密になる。
 一方、R2/R1が適切な範囲であれば、鋼板近傍の焼鈍分離剤層に分散するCa群元素の化合物の数密度が増えるため、Ca群元素の化合物を単に微細化し大量に添加するよりも母材鋼板へのCa、Sr、Baの供給が均一となり、結果として嵌入酸化物の数密度を均一にできる。
[焼鈍分離剤層]
 本発明は、前述の焼鈍分離剤層形成工程を終了した仕上焼鈍直前の鋼板の表面に付着した状態の焼鈍分離剤層についての構造を規定する。
 本発明の焼鈍分離剤層は、母材鋼板表面から0~3.0μmの領域に存在するCa群濃化領域におけるCa群元素を含有する粒子の数密度が0.003~1.400個/μmとなっている。以下では、この「Ca群濃化領域におけるCa群元素を含有する粒子の数密度」をD42と記述する。D42を上記範囲内に制御すると、仕上焼鈍後の一次被膜の密着性が改善される。
 D42が上記の範囲にあると、一次被膜の密着性が改善される原因は完全には明らかではないが、以下のように考えられる。焼鈍分離剤に含有されるCa群元素は仕上焼鈍中に形成される一次被膜中を母材鋼板側に向かって拡散し、一次被膜の母材鋼板側、すなわち嵌入酸化物の先端で母材側から供給されるAlとの複合酸化物を形成し、Alを嵌入酸化物先端にとどめるように作用していると考えられることは前述した。この作用を、さらに顕著にするために、焼鈍分離剤層中でのCa群元素の存在位置が重要で、母材鋼板側、すなわち母材鋼板表面から0~3.0μmの領域にCa群元素濃化領域が存在することが好都合となる。また母材鋼板との接触が局所的な偏りを持つべきでないことも前述の通りで、このための焼鈍分離剤中の適度な元素分散状態が、形成される一次皮膜のCa群濃化領域の数密度と相関すると考えられる。
 D42は以下の方法で求めることができる。
 乾燥後の仕上焼鈍用鋼板表面の焼鈍分離剤層を、仕上焼鈍用鋼板ごとCP加工して得られた断面をEDS-SEMで分析し、Ca群元素の特性X線強度分布を得る。すなわち、得られた特性X線強度分布図は、焼鈍分離剤が持つ情報を仕上焼鈍用鋼板の板厚方向断面に平行な面に投影して展開した分布図である。Ca群元素の特性X線強度分布図は、鋼板表面と焼鈍分離剤層の境界線が、観察領域の上下片と極力平行となるようにし、さらに、焼鈍分離剤層が観察視野上下端から外側にはみ出さないような視野で取得する。以降、鋼板表面と焼鈍分離剤層の観察幅方向、観察幅方向に直交する方向を観察高さ方向と呼ぶ。特性X線強度分布図の走査ステップは、観察幅方向と観察高さ方向で同一とし、長さにして0.1μ以下とする。また、観察幅方向は少なくとも、長さにして20μm以上とする。すなわち、特性X線強度分布図は、観察幅方向に、少なくとも200の画素に分解される。ここで、得られたCa群元素の特性X線強度分布において、Ca、Sr、Baそれぞれの特性X線強度を特定し、Caの特性X線強度の最大値の20%以上のCaの特性X線強度が得られる領域と、Srの特性X線強度の最大値の20%以上のSrの特性X線強度が得られる領域と、Baの特性X線強度の最大値の20%以上のBaの特性X線強度が得られる領域とを合せて「焼鈍分離層におけるCa群元素濃化領域」とする。さらに、このCa群元素濃化領域の各画素が、画素単位で上下左右に連続している領域を一つの領域とみなし、4つ以上の画素からなる領域を粒子と判定する。さらに、画像解析により観察領域の各Ca群元素濃化領域の重心の座標を得る。その後、母材鋼板表面から板厚方向に3μmの高さに重心が存在する粒子の数N1を数える。Ca群元素濃化領域におけるCa群元素を含む粒子の円相当径(√((1画素の面積)×(連続体の画素数)×4/π))の平均値R2を算出する。得られたN1と、前述のようにして得られたR2と、観察領域の長さ観察幅方向と(上記断面における板厚方向に直交する方向の観察領域の長さ(仕上焼鈍用鋼板の幅方向の観察領域の長さ))Lμmとから、D42=N1/(3×L×R2)(個/μm)を得ることができる。
 なお、焼鈍分離剤層中に分散する化合物の平均粒径(例えば、R1)は、水性スラリーとして調整する際に投入した単体の原料粉末の粒度分布から得られる平均粒径と略同じであることが分かっている。よって、各化合物の平均粒径は、R1の算出方法と同様の方法を用いて、原料粉末の平均粒径から求めることができる。原料粉末中の各元素を含有する化合物粒子の径を特定範囲に制御する方法は限定する必要はなく、焼成条件の調製および分級などにより目的とする粒度分布を持つ粉末を製造することが可能で、原料粉末を製造する当業者であれば困難なことではない。
 このようなCa群化合物粉末およびMgO粉末を水性スラリーの原料とすることで、焼鈍分離剤層のうち、母材鋼板表面から0~3.0μmの領域でCa群濃化領域の数密度を適切に制御することができる。
 以下に、本発明の態様を実施例により具体的に説明する。これらの実施例は、本発明の効果を確認するための一例であり、本発明を限定するものではない。
 本発明は、一次被膜形成に重要な役割を持つ、仕上焼鈍前の鋼板に塗布される焼鈍分離剤およびそれにより形成される一次被膜に関するもので、母材鋼板が特別なものである必要はない。このため本実施例では、鋼板は発明効果には直接関係しない条件(熱延、冷延、焼鈍条件など)を一定として製造した。まず、実施例全体の共通条件を説明した後、実施例1、2で一次被膜形成に関連する条件を変更して発明の効果を検討した結果を説明する。
 [方向性電磁鋼板の製造]
 表1に示す化学組成の溶鋼を、真空溶解炉にて製造した。製造された溶鋼を用いて、連続鋳造法によりスラブを製造した。
Figure JPOXMLDOC01-appb-T000001
 1350℃で加熱した表1の各スラブを熱間で圧延して、2.3mmの板厚を有する熱延鋼板を製造した。溶鋼番号5においては、溶鋼中のSiの含有量が多すぎたため、熱間圧延時に割れが発生して、熱延鋼板の製造ができなかった。
 得られた熱延鋼板に対して焼鈍処理を実施し、その後、熱延鋼板に対して酸洗を実施した。熱延板焼鈍は1100℃にて5分間実施した。
 酸洗後の熱延鋼板に対して、冷間圧延を実施し、0.22mmの板厚を有する冷延鋼板を製造した。冷延率は90.4%である。
 冷延鋼板に対して、脱炭焼鈍を兼ねた一次再結晶焼鈍を実施した。一次再結晶焼鈍での焼鈍温度は、750~950℃であり、焼鈍温度での保持時間は2分であった。
 一次再結晶焼鈍後の冷延鋼板に表裏面に対して、表2の成分の焼鈍分離剤を純水と混合して調製した水性スラリーを塗布した。
Figure JPOXMLDOC01-appb-T000002
 水性スラリーを表面に塗布した脱炭焼鈍板を、900℃の炉に10秒間保持して、水性スラリーを乾燥した。
 この工程で得られた仕上げ焼鈍用鋼板からサンプルを採取し、母材鋼板表面から0~3.0μmの領域に存在する前記Ca群元素濃化領域における前記Ca、Sr、Baからなる群から選択される1種以上の元素を含有する粒子の数密度D42を測定した。その値を表2に示す。
 さらに、1200℃で20時間保持する仕上焼鈍を実施した。以上の製造工程により、母材鋼板と一次被膜とを有する方向性電磁鋼板を製造した。
 溶鋼番号3においては、Cの含有量が多すぎ、二次再結晶後の鉄損の値が極めて劣化し、本発明の範囲外となった。溶鋼番号4は、Siの含有量が少なすぎ、二次再結晶しなかったため、磁束密度B8の値が極めて劣化し、本発明の範囲外となった。
 溶鋼番号6~17においては、Mn、S、Se、Sol.AlまたはNの含有量が、二次再結晶発現に必要な析出物を形成する適切な量の範囲を外れており、二次再結晶しなかったため、磁束密度B8の値が極めて劣化し、本発明の範囲外となった。
 溶鋼番号19においては、Cuの含有量が多すぎ、被膜密着性が極めて劣位となり、本発明の範囲外となった。
 溶鋼番号23においては、Snの含有量が多すぎ、被膜密着性が劣位となり、本発明の範囲外となった。
 溶鋼番号27においては、Bi、TeおよびPbの合計含有量が多すぎ、被膜密着性が劣位となり、本発明の範囲外となった。
 上記製造においては、一般的な方向性電磁鋼板と同じく、脱炭焼鈍や仕上焼鈍(純化焼鈍)を行ったことにより母材鋼板の組成は、素材であったスラブとは異なるものとなる。製造された方向性電磁鋼板の母材鋼板の化学組成を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 [特性評価]
 鋼板の成分が本発明の範囲内に入る鋼板番号1、2、16、18、19、20、21、22、24、25、26、27においては、製造した方向性電磁鋼板の磁気特性および一次被膜の密着性を評価した。製造した方向性電磁鋼板の磁気特性および一次被膜の密着性を、試験番号1~52として評価した。
<磁気特性>
 各試験番号の方向性電磁鋼板から圧延方向長さ300mm×幅60mmのサンプルを採取し、800A/mで励磁し、磁束密度B8を求めた。また、コロイド状シリカ及びリン酸塩を主体とする絶縁被膜を焼き付けた後、最大磁束密度1.7T、周波数50Hzで励磁した時の鉄損W17/50を測定した。磁束密度B8が1.92T以上かつW17/50が0.75W/kg以下である方向性電磁鋼板を、磁気特性が優れるとした。
 <密着性>
 各試験番号の方向性電磁鋼板から圧延方向長さ60mm×幅15mmのサンプルを採取し、10mmの曲率で曲げ試験を実施した。曲げ試験は、円筒型マンドレル屈曲試験機を用いて、円筒の軸方向がサンプルの幅方向と一致するようにサンプルに設置して実施した。曲げ試験後のサンプルの表面を観察し、一次被膜が剥離せずに残存している領域の総面積を求めた。次の式により、一次被膜残存率を求めた。
 一次被膜残存率=一次被膜が剥離せず残存している領域の総面積/サンプル表面の面積×100
 一次被膜残存率が、90%以上が被膜密着性に優れるとした。
 <点状欠陥>
 各試験番号の方向性電磁鋼板から圧延方向長さ1m×幅1mのサンプルを採取し、目視にて、点状欠陥の発生頻度NP(Number Density of Pore)を求めた。1m中の点状欠陥数が5個以内であれば、点状欠陥が抑制されたとした。
<一次被膜構造>
 各試験番号の方向性電磁鋼板から圧延方向長さ300mm×幅60mmのサンプルを採取し、母材鋼板のみが溶解するよう電解液中で定電位電解して、一次被膜を剥離し、一次被膜の構造および組成を調査した。剥離方法および測定方法は前述の手段に従い、使用した電解液成分は、非水溶媒系の10%アセチルアセトン‐1%テトラメチルアンモニウムクロライドーメタノールであり、電解量は80C/cmであった。最終的に以下の値を得た。
 (1)Al濃化領域の数密度D3
 (2)嵌入酸化物層領域でありかつAl濃化領域である領域の面積S5
 (3)Al濃化領域の面積S3
 (4)嵌入酸化物層領域でありかつAl濃化領域である領域の、表面酸化物層と嵌入酸化物層の境界の基準値H0からの距離H5
 (5)Y群元素の合計含有量
 (6)Ca群元素の合計含有量
 (7)Ca群濃化領域の数密度D4
 (8)嵌入酸化物層領域の面積S1
 (9)観察面積S0
<焼鈍分離剤層>
 仕上焼鈍前の水性スラリーを乾燥した状態の鋼板からサンプルを切り出し、焼鈍分離剤層を前述の方法に従い観察し、
(10)焼鈍分離剤層におけるCa群濃化領域の数密度D42
を得た。
<焼鈍分離剤>
 水性スラリーの焼鈍分離剤の原料粉末から、前述の手段に従い、以下の値を得た。
 (11) Y群元素の合計存在比CY(0.00562[Y]+0.00360[La]+0.00714[Ce])/0.0412[Mg]×100(%)
 (12) Ca群元素含有量CC(0.0249[Ca]+0.0114[Sr]+0.0073[Ba])/0.0412[Mg]×100(%)
 (13) MgOの平均粒径R1
 (14) Ca群元素含有粒子の平均粒径R2
また、焼鈍分離剤のMgOのみを分離して以下の値を得た。
 (16) MgO中の不純物Ca群元素量CC´(0.0249[Ca´]+0.0114[Sr´]+0.0073[Ba´])/0.0412×100(%)
 (17) 焼鈍分離剤中の全Ca群元素量に占めるMgO中の不純物の割合CC´/CC(16)/(12)
 なお、RCa、RSr、RBaは、Ca、Sr、Baそれぞれの円相当径の平均値である。
<実施例1>
 脱炭焼鈍後の鋼板に塗布する水性スラリーを、MgO、Y群元素含有化合物およびCa群元素含有化合物を各群元素含有量が表2のようになるよう水と混合して調整した。この際、化合物種および各群元素の存在比(CY、CC)を変化させた。
 表4に結果を示す。一次被膜残存率が90%以上であれば、一次被膜の母鋼板に対する密着性に優れると判断した。本発明の規定を満たすものは、良好な特性が得られることがわかる。また、磁束密度B8が1.92以上かつ、点状欠陥の発生量が5個/m以下であれば、点状欠陥の抑制に効果があったと判断した。本発明の規定を満たすものは、点状欠陥が抑制されていることがわかる。表4を参照して、試験番号35~51では、化学組成が適切であり、かつ、焼鈍分離剤中の条件(CC、CC´、CC´/CC、CY、R1、R2、R2/R1)が適切であった。その結果、嵌入酸化物層の面積率S1/S0が0.15以上であり、嵌入Al領域A5である領域S5/S3が0.30以上であり、距離H5が0.4以上であり、Al濃化領域の数密度D3が0.020以上となり、本発明の範囲内であった。その結果、これらの試験番号の方向性電磁鋼板において、磁束密度B8が1.93T以上であり、優れた磁気特性が得られた。さらに、一次被膜残存率が90%以上であり、点状欠陥発生個数NPが5個/m以下であり、優れた一次被膜特性を示した。
 一方、試験番号1~3では、Ca群元素の合計存在比CCが小さすぎ、一次被膜の形態が発達せず、S1/S0が0.18未満、S5/S3が0.30未満かつD3が0.005未満となった。その結果、一次被膜残存率が、それぞれ82%、84%および76%であり、被膜密着性が劣位となった。
 試験番号4~6では、Ca群元素の合計存在比CCが大きすぎ、一次被膜の形態が発達しすぎて、D3が0.150個/μmを超えた。その結果、鉄損W17/50が0.75を超え、磁気特性が劣位となった。
 試験番号7~9では、MgO中のCa群元素の合計存在比CC’が小さすぎ、また、試験番号13~15では、CC´/CCが低すぎたため、一次被膜の形態の発達が不十分になり、L5/S0が0.020μm/μm未満となった。その結果、5個/m以上の点状欠陥が発生し、点状欠陥が劣位になり、かつ、一次被膜残存率が90%を下回り、密着性が劣位になった。
 試験番号10~12では、MgO中のCa群元素の合計存在比CC’が大きすぎ、また、試験番号16~18では、CC´/CCが高すぎたため、一次被膜の形態が発達しすぎて、L5/S0が0.500μm/μmを超えた。その結果、鉄損W17/50 が0.75を超え、磁気特性が劣位となった。
 試験番号19~21では、Y群元素の合計存在比CYが少なすぎたため、一次被膜の形態の発達が不十分になりH5が0.4を下回った。その結果、一次被膜残存率が90%以下になり、密着性が劣化した。
 試験番号22~24では、Y群元素の合計存在比CYが多すぎたため、一次被膜の形態が発達しすぎ、H5が4.0を超えた。その結果、磁束密度が1.93T以下となった。
 試験番号25では、MgOの個数基準の平均粒径R1が小さすぎたため、仕上焼鈍中の板の焼き付きが起こった。
 試験番号26では、R1が大きすぎ、一次被膜へのMg供給が滞った。その結果、S1/S0、S5/S3、L5/S0、H5がいずれも基準値を下回った。その結果、一次被膜残存率が42%であり、被膜密着性が劣位であった。
 試験番号27、29、31では、R2が小さすぎ、Ca群元素とMgの供給が偏り、S1/S0が0.15未満となった。その結果、一次被膜残存率が90%未満であり、被膜密着性が劣位であった。
 試験番号28、30、32では、R2が大きすぎ、Ca群元素とMgの供給が偏り、S1/S0が0.15未満となり、かつD3が0.015未満となった。その結果、一次被膜残存率が90%未満であり、被膜密着性が劣位であった。
 試験番号33では、R1、R2は範囲内であったが、R2/R1が3.0を超えた。その結果、一次被膜残存率が90%未満であり、被膜密着性が劣位であった。
 試験番号34では、R1、R2は範囲内であったが、R2/R1が0.3を下回った。その結果、5個/m以上の点状欠陥が発生し、点状欠陥が劣位になり、かつ、一次被膜残存率が90%を下回り、被膜密着性が劣位になった。
 試験番号52では、焼鈍分離剤は、範囲内の条件であったが、溶鋼成分中のBi、Te、Pbの含有量が0.03%を超えた。その結果、一次被膜残存率が90%未満であり、被膜密着性が劣位であった。
Figure JPOXMLDOC01-appb-T000004
<実施例2>
 脱炭焼鈍後の鋼板に塗布する水性スラリーを、MgO、Ti群元素含有化合物、Y群元素の合計含有化合物およびCa群元素含有化合物を各群元素含有量が表5のようになるよう水と混合して調整した。この際、化合物種および各群元素の存在比(CY、CC、CT)を変化させた。
Figure JPOXMLDOC01-appb-T000005
 表6に結果を示す。一次被膜残存率が90%以上であれば、一次被膜の母鋼板に対する密着性に優れると判断した。その他の基準も実施例1を引用する。表6を参照して、本発明の規定を満たすものは、良好な特性が得られることがわかる。
 一方、試験番号53および56では、Ti群元素の合計存在比CTが大きすぎ、仕上焼鈍中、鋼中にTi系の介在物が形成し、純化されずに残留した。その結果、鉄損W17/50が劣化した。
 試験番号54では、Ca群元素の合計存在比CCが大きすぎ、一次被膜の形態が発達しすぎて、D3が0.150個/μmを超えた。その結果、鉄損W17/50が0.75を超え、磁気特性が劣位となった。
 試験番号55では、Y群元素の合計存在比CYが大きすぎたため、一次被膜の形態が発達しすぎ、H5が4.0を超えた。その結果、磁束密度が1.93T以下となった。
 試験番号57では、Ca群元素の合計存在比CCが小さすぎたため、一次被膜の形態の発達が不十分になりS5/S3が0.3を下回った。その結果、一次被膜残存率が90%以下になり、密着性が劣化した。
 試験番号58では、Y群元素の合計存在比CYが小さすぎたため、一次被膜の形態の発達が不十分になりH5が0.4を下回った。その結果、一次被膜残存率が90%以下になり、密着性が劣化した。
 試験番号59では、R1、R2は範囲内であったが、R2/R1が3.0を超えた。
 その結果、5個/m以上の点状欠陥が発生し、点状欠陥が劣位になり、かつ、一次被膜残存率が90%を下回り、密着性が劣位になった。
 試験番号60では、R1、R2は範囲内であったが、R2/R1が0.3を下回った。その結果、5個/m以上の点状欠陥が発生し、点状欠陥が劣位になり、かつ、一次被膜残存率が90%を下回り、密着性が劣位になった。
Figure JPOXMLDOC01-appb-T000006
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。
 1  表面酸化物層
 2  嵌入酸化物層
 3  最深嵌入位置
 A0  全ての観察領域
 A1  嵌入酸化物領域
 A2  表面酸化物層領域
 A3  Al(アルミニウム)濃化領域
 A4  Ca群元素濃化領域
 A5  嵌入酸化物領域内に存在するAl(アルミニウム)濃化領域

Claims (11)

  1.  質量%で、
     C:0.0050%以下、
     Si:2.5~4.5%、
     Mn:0.02~0.20%、
     S及びSeからなる群から選択される1種以上の元素:合計で0.005%以下、
     sol.Al:0.010%以下、及び
     N:0.010%以下
    を含有し、残部はFe及び不純物からなる化学組成を有する母材鋼板と、
     前記母材鋼板の表面上に形成されており、MgSiOを主成分として含有する一次被膜とを備え、
     前記母材鋼板の板厚方向において、前記一次被膜側から前記母材鋼板側に向かう方向を正としたときの前記一次被膜の表面の凹凸の情報を鋼板表面に平行な面に投影して展開し、
     前記一次被膜の表面高さの中央値をH0として、H0+0.2μmより前記母材鋼板側に存在する前記一次被膜を「嵌入酸化物層領域」と、H0+0.2μmより前記一次被膜側に存在する前記一次被膜を「表面酸化物層領域」と規定し、かつ
    前記一次被膜中の成分情報を鋼板表面に平行な面に投影して展開した特性X線強度及び凹凸相関分布図において、Alの特性X線強度の最大値を特定し、該Alの特性X線強度の最大値の20%以上のAlの特性X線強度が得られる領域を「Al濃化領域」としたとき、
     前記一次被膜が、
     (1) 前記Al濃化領域の数密度D3:0.015~0.150個/μm
     (2) (前記嵌入酸化物層領域でありかつ前記Al濃化領域である領域の面積S5)/(前記Al濃化領域の面積S3)≧0.30、
     (3) 前記嵌入酸化物層領域でありかつ前記Al濃化領域である領域の板厚方向の高さの平均値からH0を引いた距離H5:0.4~4.0μm、
     (4) (前記嵌入酸化物層領域でありかつ前記Al濃化領域である領域の周長L5)/(観察面積S0):0.020~0.500μm/μm
     (5) (前記嵌入酸化物層領域の面積S1)/(前記観察面積S0)≧0.15、
    の条件を満足することを特徴とする方向性電磁鋼板。
  2.  前記一次被膜がY、La、Ceからなる群から選択される1種以上の元素、及び、Ca、Sr、Baからなる群から選択される1種以上の元素を含有し、かつ、
     前記特性X線強度及び凹凸相関分布図において、Ca、Sr、Baそれぞれの特性X線強度の最大値を特定し、前記Caの特性X線強度の最大値の20%以上のCaの特性X線強度が得られる領域と、前記Srの特性X線強度の最大値の20%以上のSrの特性X線強度が得られる領域と、前記Baの特性X線強度の最大値の20%以上のBaの特性X線強度が得られる領域とを合せて「Ca群元素濃化領域」としたとき、
     (6) 前記一次被膜中のMgSiOの含有量に対する、前記Y、La、Ceからなる群から選択される1種以上の元素の合計含有量の割合:0.1~6.0%、
     (7) 前記一次被膜中のMgSiOの含有量に対する、前記Ca、Sr、Baからなる群から選択される1種以上の元素の合計含有量の割合:0.1~6.0%、
     (8) 前記Ca群元素濃化領域の数密度D4:0.005~2.000個/μm
    の条件を満足することを特徴とする、請求項1に記載の方向性電磁鋼板。
  3.  質量%で、
     C:0.1%以下、
     Si:2.5~4.5%、
     Mn:0.02~0.20%、
     S及びSeからなる群から選択される1種以上の元素:合計で0.005~0.07%、
     sol.Al:0.005~0.050%、及び、
     N:0.003~0.0300%
    を含有し、残部がFe及び不純物からなる化学組成を有する母材鋼板と、
     前記母材鋼板の表面上に付着する、MgOを主成分として含有する焼鈍分離剤層とを備え、
     前記焼鈍分離剤層が持つ情報を前記母材鋼板の板厚方向断面に平行な面に投影して展開した特性X線強度及び凹凸相関分布図において、Ca、Sr、Baそれぞれの特性X線強度の最大値を特定し、前記Caの特性X線強度の最大値の20%以上のCaの特性X線強度が得られる領域と、前記Srの特性X線強度の最大値の20%以上のSrの特性X線強度が得られる領域と、前記Baの特性X線強度の最大値の20%以上のBaの特性X線強度が得られる領域とを合せて「Ca群元素濃化領域」としたとき、
     前記焼鈍分離剤層は、
     (9) 母材鋼板表面から0~3.0μmの領域に存在する前記Ca群元素濃化領域における前記Ca、Sr、Baからなる群から選択される1種以上の元素を含有する粒子の数密度D42:0.005~1.400個/μm
    を満足することを特徴とする方向性電磁鋼板を製造するための仕上焼鈍用鋼板。
  4.  MgOを主成分とする焼鈍分離剤であって、
     Y、La、Ceからなる群から選択される1種以上の元素、及び、Ca、Sr、Baからなる群から選択される1種以上の元素を含有し、
     前記MgOの含有量に対する、前記焼鈍分離剤に含まれるMg、Y、La、Ce、Ca、Sr、Baの含有量の割合(%)をそれぞれ[Mg]、[Y]、[La]、[Ce]、[Ca]、[Sr]、[Ba]としたとき、
     (10) (0.00562[Y]+0.00360[La]+0.00714[Ce])/0.0412[Mg]×100(%):0.20~1.60(%)、
     (11) (0.0249[Ca]+0.0114[Sr]+0.0073[Ba])/0.0412[Mg]×100(%):0.20~1.80(%)、
    を満たし、
     かつ、前記焼鈍分離剤に含まれるMgO原料粉末中の前記MgOの含有量に対する、前記MgO原料粉末中に含まれるMg、Ca、Sr、Baの含有量の割合(%)をそれぞれ、[Mg´]、[Ca´]、[Sr´]、[Ba´]としたとき、
     (12) (0.0249[Ca´]+0.0114[Sr´]+0.0073[Ba´])/0.0412[Mg´]×100(%):0.010~0.080(%)、
    を満たし、
     さらに、 (13) 前記(0.0249[Ca]+0.0114[Sr]+0.0073[Ba])/0.0412[Mg]×100に対する前記(0.0249[Ca´]+0.0114[Sr´]+0.0073[Ba´])/0.0412[Mg´]×100の比が0.200~0.020であり、
     さらに、 (14) 前記MgOの平均粒径R1:0.1~2.8μm、
     (15) 前記焼鈍分離剤における前記Ca、Sr、Baからなる群から選択される1種以上の元素を含有する粒子の平均粒径R2:0.2~3.0μm、
     (16) (前記平均粒径R2)/(前記平均粒径R1):0.5~3.0、
    を満足することを特徴とする焼鈍分離剤。
  5.  Ti、Zr、Hfからなる群から選択される1種以上の元素をさらに含有することを特徴とする請求項4に記載の焼鈍分離剤。
  6.  質量%で、
     C:0.1%以下、
     Si:2.5~4.5%、
     Mn:0.02~0.20%、
     S及びSeからなる群から選択される1種以上の元素:合計で0.005~0.07%、
     sol.Al:0.005~0.05%、及び、
     N:0.003~0.030%
    を含有し、残部がFe及び不純物からなるスラブを熱間圧延して熱延鋼板を製造する工程と、
     前記熱延鋼板に対して80%以上の冷延率で冷間圧延を実施して冷延鋼板を製造する工程と、
     前記冷延鋼板に対して脱炭焼鈍を実施して脱炭焼鈍板を製造する工程と、
     前記脱炭焼鈍板の表面に、水性スラリーを塗布し乾燥する工程と、
     前記水性スラリーが乾燥された後の鋼板に対して仕上焼鈍を実施する工程とを備え、
     前記水性スラリーが、請求項4または5に記載の焼鈍分離剤を含むことを特徴とする、方向性電磁鋼板の製造方法。
  7.  前記Feの一部に代えて、さらにBi,Te及びPbからなる群から選択される1種以上の元素を、合計で0.030%以下含有する、請求項6に記載の方向性電磁鋼板の製造方法。
  8.  前記Feの一部に代えて、さらにCu、Sn及びSbからなる群から選択される1種以上の元素を、合計で0.60%以下含有する、請求項6または7に記載の方向性電磁鋼板の製造方法。
  9.  質量%で、
     C:0.1%以下、
     Si:2.5~4.5%、
     Mn:0.02~0.20%、
     S及びSeからなる群から選択される1種以上の元素:合計で0.005~0.07%、
     sol.Al:0.005~0.05%、及び、
     N:0.003~0.030%
     を含有し、残部がFe及び不純物からなるスラブを熱間圧延して熱延鋼板を製造する工程と、
     前記熱延鋼板に対して80%以上の冷延率で冷間圧延を実施して冷延鋼板を製造する工程と、
     前記冷延鋼板に対して脱炭焼鈍を実施して脱炭焼鈍板を製造する工程と、
     前記脱炭焼鈍板の表面に、水性スラリーを塗布し乾燥する工程とを備え、
     前記水性スラリーが、請求項4または5に記載の焼鈍分離剤を含むことを特徴とする、方向性電磁鋼板を製造するための仕上焼鈍用鋼板の製造方法。
  10.  前記Feの一部に代えて、さらにBi,Te及びPbからなる群から選択される1種以上の元素を、合計で0.030%以下含有する、請求項9に記載の仕上げ焼鈍用鋼板の製造方法。
  11.  前記Feの一部に代えて、さらにCu、Sn及びSbからなる群から選択される1種以上の元素を、合計で0.60%以下含有する、請求項9または10に記載の仕上げ焼鈍用鋼板の製造方法。
PCT/JP2020/000337 2019-01-08 2020-01-08 方向性電磁鋼板、仕上焼鈍用鋼板、焼鈍分離剤、方向性電磁鋼板の製造方法、及び仕上焼鈍用鋼板の製造方法 WO2020145313A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US17/421,338 US20220081743A1 (en) 2019-01-08 2020-01-08 Grain-oriented electrical steel sheet, finish annealing-use steel sheet, annealing separator, method for manufacturing grain-oriented electrical steel sheet, and method for manufacturing finish annealing-use steel sheet
CN202080007025.8A CN113195751B (zh) 2019-01-08 2020-01-08 方向性电磁钢板、成品退火用钢板、退火分离剂、方向性电磁钢板的制造方法及成品退火用钢板的制造方法
BR112021012986-3A BR112021012986A2 (pt) 2019-01-08 2020-01-08 Chapa de aço elétrico de grão orientado, chapa de aço de uso de recozimento final para a fabricação de chapa de aço elétrico de grão orientado, separador de recozimento, e, métodos para fabricar chapa de aço elétrico de grão orientado e para fabricar chapa de aço para uso em recozimento final
EP20738801.8A EP3910080A4 (en) 2019-01-08 2020-01-08 ORIENTED ELECTROMAGNETIC STEEL SHEET AND METHOD FOR MAKING THE SAME, STEEL SHEET FOR FINISH ANNEALING AND METHOD FOR MAKING THE SAME, AND ANNEALING RELEASE AGENT
KR1020217019856A KR102550567B1 (ko) 2019-01-08 2020-01-08 방향성 전자 강판, 마무리 어닐링용 강판, 어닐링 분리제, 방향성 전자 강판의 제조 방법 및 마무리 어닐링용 강판의 제조 방법
JP2020565182A JP7180691B2 (ja) 2019-01-08 2020-01-08 方向性電磁鋼板、仕上焼鈍用鋼板、焼鈍分離剤、方向性電磁鋼板の製造方法、及び仕上焼鈍用鋼板の製造方法
US17/901,936 US20230002849A1 (en) 2019-01-08 2022-09-02 Grain-oriented electrical steel sheet, finish annealing-use steel sheet, annealing separator, method for manufacturing grain-oriented electrical steel sheet, and method for manufacturing finish annealing-use steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-001158 2019-01-08
JP2019001158 2019-01-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/421,338 A-371-Of-International US20220081743A1 (en) 2019-01-08 2020-01-08 Grain-oriented electrical steel sheet, finish annealing-use steel sheet, annealing separator, method for manufacturing grain-oriented electrical steel sheet, and method for manufacturing finish annealing-use steel sheet
US17/901,936 Continuation-In-Part US20230002849A1 (en) 2019-01-08 2022-09-02 Grain-oriented electrical steel sheet, finish annealing-use steel sheet, annealing separator, method for manufacturing grain-oriented electrical steel sheet, and method for manufacturing finish annealing-use steel sheet

Publications (1)

Publication Number Publication Date
WO2020145313A1 true WO2020145313A1 (ja) 2020-07-16

Family

ID=71521630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000337 WO2020145313A1 (ja) 2019-01-08 2020-01-08 方向性電磁鋼板、仕上焼鈍用鋼板、焼鈍分離剤、方向性電磁鋼板の製造方法、及び仕上焼鈍用鋼板の製造方法

Country Status (7)

Country Link
US (1) US20220081743A1 (ja)
EP (1) EP3910080A4 (ja)
JP (1) JP7180691B2 (ja)
KR (1) KR102550567B1 (ja)
CN (1) CN113195751B (ja)
BR (1) BR112021012986A2 (ja)
WO (1) WO2020145313A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688171A (ja) 1992-09-09 1994-03-29 Nippon Steel Corp 超高磁束密度一方向性電磁鋼板の製造方法
JPH06220539A (ja) * 1993-01-21 1994-08-09 Nippon Steel Corp 磁区細分化一方向性電磁鋼板の製造法
JPH08269552A (ja) 1995-03-28 1996-10-15 Nippon Steel Corp 超高磁束密度一方向性電磁鋼板の製造方法
JP2005290446A (ja) 2004-03-31 2005-10-20 Jfe Steel Kk 磁気特性および被膜特性に優れる方向性電磁鋼板の製造方法
WO2006126660A1 (ja) * 2005-05-23 2006-11-30 Nippon Steel Corporation 被膜密着性に優れる方向性電磁鋼板およびその製造方法
WO2008062853A1 (fr) * 2006-11-22 2008-05-29 Nippon Steel Corporation Feuille d'acier électromagnétique à orientation unidirectionnelle de grains, ayant une excellente adhésion de film, et son procédé de fabrication
JP2008127634A (ja) 2006-11-21 2008-06-05 Nippon Steel Corp 一方向性電磁鋼板の製造方法
JP2017133072A (ja) * 2016-01-28 2017-08-03 新日鐵住金株式会社 皮膜密着性及び耐錆性の優れた一方向性電磁鋼板、一方向性電磁鋼板用原板及びそれらの製造方法
JP2018066061A (ja) * 2016-10-18 2018-04-26 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0619113B2 (ja) * 1987-04-07 1994-03-16 川崎製鉄株式会社 鉄損の極めて低い方向性電磁鋼板の製造方法
JP2005264280A (ja) * 2004-03-22 2005-09-29 Jfe Steel Kk 打ち抜き性及び耐被膜剥離性に優れた方向性電磁鋼板及びその製造方法
JP5360272B2 (ja) * 2011-08-18 2013-12-04 Jfeスチール株式会社 方向性電磁鋼板の製造方法
KR101568627B1 (ko) * 2011-10-04 2015-11-11 제이에프이 스틸 가부시키가이샤 방향성 전기강판용 어닐링 분리제
JP5884944B2 (ja) * 2013-09-19 2016-03-15 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
KR101693516B1 (ko) * 2014-12-24 2017-01-06 주식회사 포스코 방향성 전기강판 및 그 제조방법
WO2016105053A1 (ko) * 2014-12-24 2016-06-30 주식회사 포스코 방향성 전기강판 및 그 제조방법
JP6394837B1 (ja) * 2016-12-21 2018-09-26 Jfeスチール株式会社 方向性電磁鋼板および方向性電磁鋼板の製造方法
KR101906962B1 (ko) 2016-12-22 2018-10-11 주식회사 포스코 방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 방향성 전기강판의 제조방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688171A (ja) 1992-09-09 1994-03-29 Nippon Steel Corp 超高磁束密度一方向性電磁鋼板の製造方法
JPH06220539A (ja) * 1993-01-21 1994-08-09 Nippon Steel Corp 磁区細分化一方向性電磁鋼板の製造法
JPH08269552A (ja) 1995-03-28 1996-10-15 Nippon Steel Corp 超高磁束密度一方向性電磁鋼板の製造方法
JP2005290446A (ja) 2004-03-31 2005-10-20 Jfe Steel Kk 磁気特性および被膜特性に優れる方向性電磁鋼板の製造方法
WO2006126660A1 (ja) * 2005-05-23 2006-11-30 Nippon Steel Corporation 被膜密着性に優れる方向性電磁鋼板およびその製造方法
JP2012214902A (ja) 2005-05-23 2012-11-08 Nippon Steel Corp 被膜密着性に優れる方向性電磁鋼板およびその製造方法
JP2008127634A (ja) 2006-11-21 2008-06-05 Nippon Steel Corp 一方向性電磁鋼板の製造方法
WO2008062853A1 (fr) * 2006-11-22 2008-05-29 Nippon Steel Corporation Feuille d'acier électromagnétique à orientation unidirectionnelle de grains, ayant une excellente adhésion de film, et son procédé de fabrication
JP2017133072A (ja) * 2016-01-28 2017-08-03 新日鐵住金株式会社 皮膜密着性及び耐錆性の優れた一方向性電磁鋼板、一方向性電磁鋼板用原板及びそれらの製造方法
JP2018066061A (ja) * 2016-10-18 2018-04-26 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3910080A4

Also Published As

Publication number Publication date
BR112021012986A2 (pt) 2021-09-14
JP7180691B2 (ja) 2022-11-30
KR102550567B1 (ko) 2023-07-04
EP3910080A1 (en) 2021-11-17
JPWO2020145313A1 (ja) 2021-11-25
CN113195751A (zh) 2021-07-30
US20220081743A1 (en) 2022-03-17
KR20210094625A (ko) 2021-07-29
EP3910080A4 (en) 2022-09-28
CN113195751B (zh) 2023-01-10

Similar Documents

Publication Publication Date Title
KR101165430B1 (ko) 피막 밀착성이 우수한 일방향성 전자 강판 및 그 제조법
KR101453235B1 (ko) 방향성 전자기 강판 및 그 제조 방법
JP6624180B2 (ja) 方向性電磁鋼板およびその製造方法
WO2020145313A1 (ja) 方向性電磁鋼板、仕上焼鈍用鋼板、焼鈍分離剤、方向性電磁鋼板の製造方法、及び仕上焼鈍用鋼板の製造方法
WO2020145314A1 (ja) 方向性電磁鋼板、焼鈍分離剤、及び方向性電磁鋼板の製造方法
JP7352108B2 (ja) 方向性電磁鋼板
US20230002849A1 (en) Grain-oriented electrical steel sheet, finish annealing-use steel sheet, annealing separator, method for manufacturing grain-oriented electrical steel sheet, and method for manufacturing finish annealing-use steel sheet
JP2021123766A (ja) 方向性電磁鋼板、および方向性電磁鋼板の製造方法、ならびに焼鈍分離剤
RU2777398C1 (ru) Лист электротехнической стали с ориентированной зеренной структурой, стальной лист, используемый для финишного отжига, отжиговый сепаратор, способ изготовления листа электротехнической стали с ориентированной зеренной структурой и способ изготовления стального листа, используемого для финишного отжига
RU2792912C2 (ru) Лист электротехнической стали с ориентированной зеренной структурой, стальной лист, используемый для финишного отжига, отжиговый сепаратор, способ изготовления листа электротехнической стали с ориентированной зеренной структурой и способ изготовления стального листа, используемого для финишного отжига
RU2773042C1 (ru) Лист анизотропной электротехнической стали, сепаратор отжига и способ производства листа анизотропной электротехнической стали
JP2020111816A (ja) 方向性電磁鋼板及びその製造方法
JP7205555B2 (ja) 方向性電磁鋼板およびその製造方法、ならびに焼鈍分離剤
CN112771183B (zh) 方向性电磁钢板、方向性电磁钢板的制造方法及方向性电磁钢板的制造中利用的退火分离剂
CN113260718B (zh) 方向性电磁钢板、方向性电磁钢板的制造方法及方向性电磁钢板的制造中利用的退火分离剂
CN113195752B (zh) 方向性电磁钢板、方向性电磁钢板的制造方法及方向性电磁钢板的制造中利用的退火分离剂
WO2021085421A1 (ja) 方向性電磁鋼板とその製造方法
JP2021123767A (ja) 方向性電磁鋼板の製造方法および方向性電磁鋼板、ならびに焼鈍分離剤
JP2021123768A (ja) 方向性電磁鋼板の製造方法および方向性電磁鋼板、ならびに焼鈍分離剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738801

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020565182

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217019856

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021012986

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020738801

Country of ref document: EP

Effective date: 20210809

ENP Entry into the national phase

Ref document number: 112021012986

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210630