RU2520472C2 - Способ и устройство для выращивания монокристаллов сапфира - Google Patents

Способ и устройство для выращивания монокристаллов сапфира Download PDF

Info

Publication number
RU2520472C2
RU2520472C2 RU2012113230/05A RU2012113230A RU2520472C2 RU 2520472 C2 RU2520472 C2 RU 2520472C2 RU 2012113230/05 A RU2012113230/05 A RU 2012113230/05A RU 2012113230 A RU2012113230 A RU 2012113230A RU 2520472 C2 RU2520472 C2 RU 2520472C2
Authority
RU
Russia
Prior art keywords
crucible
sapphire
temperature
seed crystal
crystal
Prior art date
Application number
RU2012113230/05A
Other languages
English (en)
Other versions
RU2012113230A (ru
Inventor
Чон Тхэ АН
Original Assignee
Кристек Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Кристек Ко., Лтд. filed Critical Кристек Ко., Лтд.
Publication of RU2012113230A publication Critical patent/RU2012113230A/ru
Application granted granted Critical
Publication of RU2520472C2 publication Critical patent/RU2520472C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/02Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method without using solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/36Single-crystal growth by pulling from a melt, e.g. Czochralski method characterised by the seed, e.g. its crystallographic orientation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B17/00Single-crystal growth onto a seed which remains in the melt during growth, e.g. Nacken-Kyropoulos method
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1092Shape defined by a solid member other than seed or product [e.g., Bridgman-Stockbarger]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Изобретение относится к технологии производства монокристаллов сапфира, используемых для изготовления синего или белого светодиодов. Устройство содержит печь 10, выполненную с возможностью нагрева и термоизоляции от окружающего воздуха для обеспечения температуры внутри печи, превышающей температуру плавления обломков сапфира; тигель 20, расположенный в печи таким образом, чтобы обеспечить расплавление обломков сапфира в тигле 20 и рост монокристалла в длину из затравочного кристалла 51 в тигле 20; нагреватель 30, расположенный снаружи тигля 20 для расплавления обломков сапфира; и охлаждающие средства 40, расположенные на нижней части тигля 20 для предотвращения полного расплавления затравочного кристалла 51, при этом нагреватель 30 выполнен в виде нескольких отдельных нагревателей, которые управляются независимо друг от друга отдельно установленными температурными датчиками, регуляторами мощности и блоками регулирования температуры таким образом, что он равномерно поддерживает температуру внутри тигля в горизонтальном направлении. Нагреватель 30 может содержать несколько боковых нагревательных элементов 32, которые расположены с обеих сторон тигля 20 рядом с его наружными стенками, каждый из них соединен с соответствующим электродом 31, а также содержит соединительный нагревательный элемент 33, расположенный на верхних частях боковых нагревательных элементов 32 для соединения боковых нагревательных элементов друг с другом таким образом, чтобы создать вертикальный градиент температуры и сократить количество электродов. Изобретение обеспечивает равномерное поддержание температуры внутри тигля в горизонтальном направлении даже при использовании прямоугольного тигля, что позволяет повысить качество монокристалла, а также снизить вероятность нарушения его роста. В результате получают высококачественные удлиненные монокристаллы, выращенные из удлиненного затравочного кристалла в направлении оси «с» в течение короткого промежутка времени в длинном прямоугольном тигле. 5 н. и 6 з.п. ф-лы, 4 ил., 2 пр.

Description

Перекрестная ссылка на родственные заявки
Настоящей патентной заявкой испрашивается приоритет по корейской патентной заявке №10-2009-0083722, поданной 5 сентября 2009 г. в ведомство по интеллектуальной собственности Кореи, которая включена в настоящее описание полностью ссылкой.
Область техники, к которой относится изобретение
Настоящее изобретение относится к способу и устройству для выращивания монокристаллов сапфира и, в частности, относится к способу и устройству для выращивания монокристаллов сапфира, при использовании которых обеспечивается получение высококачественного удлиненного монокристалла, выращенного из удлиненного затравочного кристалла в направлении оси «с» в течение короткого промежутка времени в длинном прямоугольном тигле.
Уровень техники
При изготовлении синего или белого светодиодов, которые изобретены в последнее время, используется полупроводник GaN. В принципе, для выращивания полупроводника GaN методом химического осаждения из паровой фазы нужна монокристаллическая пластина GaN в качестве подложки. Однако монокристалл GaN трудно вырастить, и до сих пор не разработан способ выращивания монокристалла GaN, который может найти практическое применение.
К настоящему времени японская фирма Nakamura изготовила синий светодиод, который содержит монокристалл GaN, выращенный на пластине сапфира, и добилась того, чтобы синий светодиод нашел практическое применение. На протяжении последних 20 лет, или около того, многие кристаллографы прикладывали усилия, направленные на выращивание монокристалла GaN, но их усилия оказались тщетными, т.к. в итоге не был найден экономически эффективный способ. Таким образом, было общепризнано, что следует использовать монокристаллическую сапфировую (Al2O3) пластину для изготовления синего или белого светодиода, благодаря чему мгновенно возрос спрос на монокристаллическую сапфировую пластину.
Монокристаллический сапфир может быть выращен различными способами, например с использованием метода Вернейля (Verneuil), гидротермального метода, метода Чохральского (Czochralski), метода теплообменника, метода Киропулоса (Kyropoulos), метода Степанова (с ограничением края и подпиткой расплава (EFG)) и т.д. Из перечисленных методов выращивания монокристалла сапфира, обладающего требуемыми характеристиками и размером для использования в качестве подложки при изготовлении светодиодов, наиболее подходящими являются метод теплообменника и метод Киропулоса. Следует отметить, что для изготовления светодиодов используется пластина сапфира с базовой плоскостью «с». С точки зрения выхода годного продукта целесообразным является изготовление вытянутого вдоль оси «с» сапфира цилиндрической формы для получения сапфировой пластины с базовой плоскостью «с».
Для выращивания цилиндрического монокристалла предпочтительным является метод Чохральского. Поскольку монокристалл сапфира трудно вырастить в направлении оси «с», можно использовать слиток, выращенный, главным образом, в направлении оси «а» по методу Чохральского, и в вертикальном направлении вырезать сердцевину в форме цилиндра, вытянутого вдоль оси «с», как показано на фиг.1а. Затем, цилиндрический слиток, вырезанный из сердцевины, нарезают слоями для изготовления пластин; при этом выход годного продукта является небольшим (максимум 30%).
Применяя для выращивания монокристалла метод Киропулоса, можно получить короткий толстый цилиндрический слиток вместо удлиненного цилиндрического слитка и таким образом повысить выход годного продукта. Кроме того, что касается качества кристаллов, выращенных указанным методом, то оно превосходит качество кристаллов, выращенных методом Чохральского. Однако в настоящее время для выращивания монокристалла требуются пластины большого диаметра, например от 2 дюймов до 4 дюймов, поэтому при использовании указанного метода Киропулоса для выращивания монокристалла выход годного продукта составляет не более 32% или около этого. Кроме того, существует проблема, состоящая в том, что для изготовления большой пластины метод Киропулоса трудно использовать.
К примеру, в патенте США №3898051 (опубликованном 5 августа 1975 г.), который относится к выращиванию монокристалла сапфира с использованием метода теплообменника, описывается выращивание короткого цилиндрического кристалла, при этом, как показано на фиг.1b, выход годного продукта составляет 32-34% и подобен выходу годного продукта при использовании метода Киропулоса. Общепризнано, что за счет применения квадратного тигля, представленного на фиг.1с, выход готового продукта можно существенно повысить, и он может составлять около 70%. При изменении формы тигля на удлиненную, например прямоугольную, может возникнуть проблема, состоящая в том, что в таком тигле достаточно трудно равномерно поддерживать температуру. Это происходит в связи с тем, что нагреватель окружает наружную стенку тигля, и в центре тигля отмечается самая низкая температура, которая постепенно увеличивается от центра к краю тигля. Иначе говоря, на каждом из концов затравочного кристалла температура выше, чем в центральной части кристалла.
Вышеуказанная проблема была исследована и для ее решения, в зарегистрированном корейском патенте №0428699 (заявка №10-2001-0011553) предлагается способ, благодаря которому при использовании длинного тигля за счет изменения ширины и толщины нагревателя обеспечивается требуемый вертикальный и горизонтальный градиент температур при кристаллизации (VHGF). Однако при использовании удлиненного стержнеобразного затравочного кристалла возникает проблема, связанная с тем, что по всей длине затравочного кристалла не может равномерно поддерживаться температура. В частности, при увеличении длины тигля будет затруднительно равномерно поддерживать температуру в горизонтальном направлении тигля, т.е. температуру на обоих концах и в центральной части тигля. Кроме того, возникает проблема, связанная с тем, что состояние изоляционного материала изменяется в зависимости от частоты использования и продолжительности использования тигля при температуре выше 2000°C, и, несмотря на то что корректировкой ширины и толщины нагревателя стремятся поддерживать внутри тигля равномерную температуру, она изменяется в зависимости от продолжительности использования и частоты использования тигля. Таким образом, если в горизонтальном направлении тигля температура поддерживается неравномерно, в частности при использовании удлиненного стержнеобразного затравочного кристалла, то соответственно положению в продольном направлении тигля затравочный кристалл в центральной части основания тигля может расплавиться, либо сырьевой материал, загруженный в тигель, может не расплавиться. При возникновении указанного явления монокристалл не может быть выращен. Кроме того, не полностью расплавленный затравочный кристалл имеет неравномерную форму, в связи с чем ухудшается качество выращенного кристалла.
Таким образом, чтобы предотвратить указанные недостатки изобретатели установили: (1) если снаружи тигля расположить несколько отдельных нагревателей, работающих независимо друг от друга, то внутри тигля можно равномерно поддерживать температуру в горизонтальном направлении; (2) если нагреватель содержит боковой нагревательный элемент и используется соединительный нагревательный элемент, то обеспечивается вертикальный градиент температуры и можно сократить количество электродов; (3) если нижняя часть тигля сформирована вогнутой внутрь или выгнутой наружу, можно предотвратить неполное расплавление обломков сапфира или полное расплавление затравочного кристалла; (4) если после завершения выращивания монокристалла выполняется стадия отжига, качество монокристалла может быть улучшено, что является итогом настоящего изобретения.
Раскрытие изобретения
Задача настоящего изобретения состоит в том, чтобы предложить способ и устройство для выращивания монокристаллов сапфира, при использовании которых может быть получен высококачественный удлиненный монокристалл, выращенный в направлении оси «с» в течение короткого промежутка времени в длинном прямоугольном тигле.
Другая задача настоящего изобретения состоит в том, чтобы предложить способ и устройство для выращивания монокристаллов сапфира, при использовании которых может быть легко получен вертикальный температурный градиент и количество электродов может быть сокращено.
Еще одна из задач настоящего изобретения состоит в том, чтобы предложить способ и устройство для выращивания монокристаллов сапфира, при использовании которых внутри тигля может равномерно поддерживаться температура в горизонтальном направлении, причем даже при некоторой неравномерности поддержания температуры внутри тигля может быть получен высококачественный монокристалл.
Для выполнения вышеупомянутых задач согласно настоящему изобретению предлагается устройство для выращивания монокристаллов сапфира, содержащее: печь, выполненную с возможностью нагрева и термоизоляции от окружающего воздуха таким образом, чтобы температура внутри печи поднималась до температуры, превышающей температуру плавления обломков сапфира; тигель, расположенный в печи таким образом, что обеспечивает расплавление обломков сапфира в тигле и обеспечивает рост монокристалла в длину из затравочного кристалла в тигле; нагреватель, расположенный снаружи тигля, таким образом, чтобы расплавлять обломки сапфира; и охлаждающие средства, расположенные на нижней части тигля таким образом, чтобы предотвращать полное расплавление затравочного кристалла, причем нагреватель, расположенный снаружи тигля, выполнен в виде нескольких отдельных нагревателей, которые работают независимо друг от друга таким образом, что он равномерно поддерживает температуру внутри тигля в горизонтальном направлении.
Кроме того, согласно настоящему изобретению предлагается способ выращивания монокристалла сапфира с использованием устройства для выращивания монокристалла сапфира, который включает стадию расплавления обломков сапфира и стадию выращивания монокристалла из затравочного кристалла при регулировании температуры внутри тигля посредством нескольких независимых нагревателей, расположенных снаружи тигля.
Кроме того, согласно настоящему изобретению предлагается устройство для выращивания монокристаллов сапфира, содержащее: печь, выполненную с возможностью нагрева и термоизоляции от окружающего воздуха таким образом, чтобы температура внутри печи поднималась до температуры, превышающей температуру плавления обломков сапфира; тигель, расположенный в печи таким образом, что обеспечивает расплавление обломков сапфира в тигле и обеспечивает рост монокристалла в длину из затравочного кристалла в тигле; нагреватель, расположенный снаружи тигля таким образом, чтобы расплавлять обломки сапфира; и охлаждающие средства, расположенные на нижней части тигля таким образом, чтобы предотвращать полное расплавление затравочного кристалла, причем нижняя часть тигля, на которую помещен затравочный кристалл, сформирована вогнутой внутрь или выгнутой наружу таким образом, чтобы предотвращать неполное расплавление обломков сапфира или полное расплавление затравочного кристалла.
Кроме того, согласно настоящему изобретению предлагается способ выращивания монокристаллов сапфира с использованием устройства для выращивания монокристалла сапфира, который включает стадии расплавления обломков сапфира и стадию выращивания монокристалла из затравочного кристалла.
Кроме того, согласно настоящему изобретению предлагается устройство для выращивания монокристаллов сапфира, содержащее: печь, выполненную с возможностью нагрева и термоизоляции от окружающего воздуха таким образом, чтобы температура внутри печи поднималась до температуры, превышающей температуру плавления обломков сапфира; тигель, расположенный в печи таким образом, что обеспечивает расплавление обломков сапфира в тигле и обеспечивает рост монокристалла в длину из затравочного кристалла в тигле; нагреватель, расположенный снаружи тигля таким образом, чтобы расплавлять обломки сапфира; и охлаждающие средства, расположенные на нижней части тигля таким образом, чтобы предотвращать полное расплавление затравочного кристалла, причем нагреватель содержит пару боковых нагревательных элементов, которые расположены с обеих сторон тигля рядом с наружными стенками тигля и каждый из них соединен с соответствующим электродом, а также содержит соединительный нагревательный элемент, расположенный на верхних частях боковых нагревательных элементов, для соединения пары боковых нагревательных элементов друг с другом таким образом, чтобы создать вертикальный градиент температуры и сократить количество электродов.
Кроме того, согласно настоящему изобретению предлагается способ выращивания монокристаллов сапфира с использованием устройства для выращивания монокристаллов сапфира, который включает стадию плавления обломков сапфира и стадию выращивания монокристалла из затравочного кристалла.
К тому же согласно настоящему изобретению предлагается способ выращивания монокристаллов сапфира, включающий: стадию, на которой после размещения затравочного кристалла на нижней части тигля и заполнения тигля измельченными обломками сапфира, указанные обломки сапфира расплавляют с получением расплава путем повышения температуры внутри тигля от комнатной температуры до температуры, превышающей температуру плавления обломков сапфира, посредством электрического нагревателя; при этом нижнюю часть тигля охлаждают с использованием охлаждающих средств, установленных на нижней стороне тигля таким образом, чтобы предотвращать полное расплавление затравочного кристалла; а также стадию, на которой монокристалл сапфира выращивают из затравочного кристалла путем постепенного снижения температуры нагревателя при охлаждении нижней части тигля с использованием охлаждающих средств, причем способ дополнительно включает стадию, на которой после завершения роста кристалла осуществляют отжиг путем прерывания процесса охлаждения, проводимого с использованием охлаждающих средств, до того как тигель будет охлажден до комнатной температуры.
Краткое описание чертежей
Вышеупомянутые и другие задачи, признаки и преимущества настоящего изобретения будут очевидны из следующего подробного описания предпочтительных вариантов осуществления изобретения со ссылкой на прилагаемые чертежи.
Фиг.1a-1c - виды в перспективе кристалла, сформированного с использованием способа выращивания монокристаллов сапфира согласно известному уровню техники.
Фиг.2 - вид сверху и в поперечном сечении устройства для выращивания монокристаллов сапфира согласно одному из вариантов осуществления настоящего изобретения.
Фиг.3 - схематичный вид в разрезе по линии А-А устройства, представленного на фиг.2.
Фиг.4 - схематичный вид в поперечном сечении устройства для выращивания монокристаллов сапфира согласно другому варианту осуществления настоящего изобретения.
Перечень ссылочных позиций
10: печь
11~16: отдельные зоны
20, 21: тигель
21a: выступающая часть (сформирована выгнутой наружу)
30: нагреватель
31: электрод
32: боковой нагревательный элемент
33: соединительный нагревательный элемент
40: охлаждающие средства
50: расплав
51, 52: затравочный кристалл
Осуществление изобретения
Ниже представлено подробное описание настоящего изобретения.
Авторы настоящего изобретения пытались выяснить, можно ли при выращивании монокристалла сапфира в прямоугольном тигле равномерно поддерживать температуру тигля в горизонтальном направлении, если использовать несколько отдельных нагревателей, регулируемых независимо, вместо единственного нагревателя.
Согласно одному из вариантов осуществления настоящего изобретения было изготовлено устройство для выращивания монокристаллов, содержащее шесть нагревателей, и монокристалл сапфира был выращен при использовании указанного устройства для выращивания монокристаллов. Было установлено, что при выращивании монокристалла сапфира равномерно поддерживалась температура тигля в горизонтальном направлении, в результате чего был получен высококачественный монокристалл.
Таким образом, согласно одному аспекту настоящее изобретение относится к устройству для выращивания монокристаллов сапфира, содержащему: печь, выполненную с возможностью нагрева и термоизоляции от окружающего воздуха таким образом, чтобы температура внутри печи поднималась до температуры, превышающей температуру плавления обломков сапфира; тигель, расположенный в печи таким образом, что обеспечивает расплавление обломков сапфира в тигле и обеспечивает рост монокристалла в длину из затравочного кристалла в тигле; нагреватель, расположенный снаружи тигля, таким образом, чтобы расплавлять обломки сапфира; и охлаждающие средства, расположенные на нижней части тигля таким образом, чтобы предотвращать полное расплавление затравочного кристалла, причем нагреватель, расположенный снаружи тигля, выполнен в виде нескольких отдельных нагревателей, которые работают независимо друг от друга, таким образом, что он равномерно поддерживает температуру внутри тигля в горизонтальном направлении.
Нагреватели 30 обеспечивают подачу тепла к тиглю 20 таким образом, чтобы расплавить обломки сапфира, заполняющие тигель 20. Применяемые нагреватели 30 могут представлять собой нагреватели из тугоплавкого металла, графитовые нагреватели и т.п., обычно используются электрические нагреватели.
Для независимой регулировки нагревателей 30 могут использоваться температурный датчик, регулятор мощности, блок регулирования температуры и т.д.
Согласно настоящему изобретению длина каждого из отдельных нагревателей 30, предпочтительно, составляет от 5 см до 25 см. Если длина каждого нагревателя составляет менее 5 см, необходимо увеличить количество нагревателей и элементов, регулирующих температуру нагревателей, в результате чего, устройство усложняется и повышаются затраты на изготовление устройства. С другой стороны, если длина каждого нагревателя превышает 25 см, трудно равномерно поддерживать температуру тигля в горизонтальном направлении. Количество нагревателей может изменяться в зависимости от длины тигля.
Другими словами, в настоящем изобретении возможно получить эффект разделения тигля на несколько зон в горизонтальном направлении путем размещения нескольких отдельных нагревателей снаружи тигля. Кроме того, температурный датчик, регулятор мощности и блок регулирования температуры отдельно установлены для каждой из отдельных зон тигля, чтобы регулировка температуры выполнялась с помощью обратной связи, так, чтобы температура тигля в горизонтальном направлении поддерживалась равномерно, независимо от длины тигля. Таким образом, при использовании устройства согласно изобретению несмотря на изменение характеристик изоляционного материала в зависимости от частоты использования температура внутри тигля всегда может равномерно поддерживаться. Теоретически, с увеличением количества отдельных зон, улучшается равномерность температуры внутри тигля. Например, если тигель длиной примерно от 30 до 40 см имеет от трех до шести отдельных зон (см. фиг.2), может быть выращен монокристалл сапфира высокого качества.
Нагреватель 30 содержит пару боковых нагревательных элементов 32, которые расположены с обеих сторон тигля рядом с наружными стенками тигля 20, каждый из них соединен с соответствующим электродом 31, а также содержит соединительный нагревательный элемент 33, расположенный на верхних частях боковых нагревательных элементов 32 для соединения пары боковых нагревательных элементов 32 друг с другом.
Как показано на фиг.3, нагреватель 30 устройства для выращивания монокристалла сапфира согласно одному из вариантов осуществления настоящего изобретения содержит пару боковых нагревательных элементов 32, которые расположены с обеих сторон тигля рядом с наружными стенками тигля 20, каждый из них соединен с соответствующим электродом 31, а также содержит соединительный нагревательный элемент 33, расположенный на верхних частях боковых нагревательных элементов 32 для соединения пары боковых нагревательных элементов 32. Благодаря конструкции нагревателя 30 легко обеспечивается вертикальный градиент температуры и можно сократить количество электродов, даже если используется несколько нагревателей 30, что позволяет упростить конструкцию всего устройства и снизить затраты на изготовление устройства. Как показано на фиг.2, нагреватели 30, расположенные в отдельной зоне 16, соответствующей обоим концам тигля, могут быть соединены друг с другом через основание тигля. Кроме того, вертикальный градиент температуры может регулироваться системой охлаждения и изоляции основания тигля.
Согласно настоящему изобретению тигель предназначен для обеспечения расплавления обломков сапфира и обеспечения выращивания монокристалла из затравочного кристалла. Тигель может быть изготовлен из молибдена или аналогичного тугоплавкого материала. Нижняя часть тигля, на которую помещен затравочный кристалл, предпочтительно сформирована вогнутой внутрь или выгнутой наружу так, чтобы предотвращать неполное расплавление обломков сапфира и/или полное расплавление затравочного кристалла.
Согласно другому аспекту настоящее изобретение относится к способу выращивания монокристаллов сапфира с использованием указанного устройства, который включает стадию расплавления обломков сапфира и стадию выращивания монокристалла из затравочного кристалла при регулировании температуры внутри тигля с использованием нескольких нагревателей, расположенных снаружи тигля.
Способ выращивания монокристалла сапфира согласно настоящему изобретению включает стадию расплавления обломков сапфира и стадию выращивания монокристалла из затравочного кристалла 51 по традиционной технологии.
Таким образом, перед проведением стадии расплавления обломков сапфира удлиненный вдоль оси «с» затравочный кристалл 51 размещают на дне длинного прямоугольного тигля 20, продолжающегося в печи 10 в горизонтальном направлении, после чего тигель 20 заполняют измельченными обломками сапфира. Затем посредством электрического нагревателя повышают температуру внутри тигля от комнатной температуры до температуры, превышающей температуру плавления обломков сапфира, благодаря чему обломки сапфира расплавляются с образованием расплава, при этом, чтобы предотвращалось полное расплавление затравочного кристалла, нижнюю часть тигля охлаждают с помощью охлаждающих средств 40, установленных с нижней стороны тигля.
После полного расплавления обломков сапфира проводят стадию выращивания монокристалла из затравочного кристалла 51, путем постепенного снижения температуры нагревателя 30 при охлаждении нижней части тигля с использованием охлаждающих средств 40, установленных с нижней стороны тигля 20.
Чтобы равномерно поддерживать температуру в каждой из отдельных зон 11-16 при проведении вышеупомянутых стадий плавления обломков сапфира и выращивания монокристалла, блок управления регулирует электропитание нагревателя 30 на основании данных, полученных от температурных датчиков (не показано), установленных в каждой из отдельных зон 11-16.
Таким образом, температура внутри тигля 20 в горизонтальном направлении поддерживается равномерно, в результате чего обеспечивается превосходное качество выращенного кристалла, в частности качество выращенного кристалла обеспечивается независимо от изменения характеристик изоляционного материала.
Вышеупомянутый способ выращивания монокристалла сапфира согласно настоящему изобретению может дополнительно включать стадию, на которой после завершения роста кристалла осуществляют отжиг путем прерывания процесса охлаждения, проводимого с использованием охлаждающих средств, до того как тигель будет охлажден до комнатной температуры.
При этом авторы настоящего изобретения установили, что при использовании нагревателя, содержащего пару противоположных боковых нагревательных элементов, расположенных с левой и правой сторон тигля, и содержащего соединительный нагревательный элемент для соединения пары противоположных боковых нагревательных элементов друг с другом, внутри тигля можно обеспечить вертикальный градиент температуры и снизить тепловые потери электродов в результате сокращения их количества.
Таким образом, настоящее изобретение относится к устройству для выращивания монокристаллов сапфира, содержащему: печь, выполненную с возможностью нагрева и термоизоляции от окружающего воздуха таким образом, чтобы температура внутри печи поднималась до температуры, превышающей температуру плавления обломков сапфира; тигель, расположенный в печи таким образом, что обеспечивает расплавление обломков сапфира в тигле и обеспечивает рост монокристалла в длину из затравочного кристалла в тигле; нагреватель, расположенный снаружи тигля таким образом, чтобы расплавлять обломки сапфира; и охлаждающие средства, расположенные на нижней части тигля таким образом, чтобы предотвращать полное расплавление затравочного кристалла, причем нагреватель содержит пару боковых нагревательных элементов, которые расположены с обеих сторон тигля рядом с наружными стенками тигля и каждый из них соединен с соответствующим электродом, а также содержит соединительный нагревательный элемент, расположенный на верхних частях боковых нагревательных элементов для соединения пары боковых нагревательных элементов друг с другом таким образом, чтобы создать вертикальный градиент температуры и сократить количество электродов.
В устройстве для выращивания монокристаллов сапфира можно обеспечить равномерность температуры тигля в горизонтальном направлении за счет регулирования ширины и толщины нагревателя. Как упомянуто выше, нижняя часть тигля, на которую помещен затравочный кристалл, предпочтительно, сформирована вогнутой внутрь или выгнутой наружу, с целью предотвращения неполного расплавления обломков сапфира и полного расплавления затравочного кристалла.
Согласно следующему аспекту настоящее изобретение относится к способу выращивания монокристаллов сапфира с использованием указанного устройства для выращивания монокристаллов сапфира, который включает стадию расплавления обломков сапфира и стадию выращивания монокристалла из затравочного кристалла.
В одном из вариантов осуществления настоящего изобретения было обнаружено, что при замене прямоугольного тигля тиглем с вогнутой внутрь или выгнутой наружу нижней частью увеличивается охлаждаемая поверхность основания выращиваемого кристалла, вследствие чего улучшается качество монокристалла, а также снижается вероятность нарушения роста монокристалла.
Согласно еще одному аспекту настоящее изобретение относится к устройству для выращивания монокристаллов сапфира, содержащему: печь, выполненную с возможностью нагрева и термоизоляции от окружающего воздуха таким образом, чтобы температура внутри печи поднималась до температуры, превышающей температуру плавления обломков сапфира; тигель, расположенный в печи таким образом, что обеспечивает расплавление обломков сапфира в тигле и обеспечивает рост монокристалла в долину из затравочного кристалла в тигле; нагреватель, расположенный снаружи тигля таким образом, чтобы расплавлять обломки сапфира; и охлаждающие средства, расположенные на нижней части тигля таким образом, чтобы предотвращать полное расплавление затравочного кристалла, причем нижняя часть тигля, на которую помещен затравочный кристалл, сформирована вогнутой внутрь или выгнутой наружу таким образом, чтобы предотвращать неполное расплавление обломков сапфира или полное расплавление затравочного кристалла.
На фиг.4 представлен один из вариантов осуществления настоящего изобретения, согласно которому нижняя часть тигля, на которую помещен затравочный кристалл, сформирована вогнутой внутрь или выгнутой наружу и имеет поперечное сечение в виде буквы W или V.
Когда нижняя часть тигля сформирована вогнутой внутрь или выгнутой наружу, охлаждаемая поверхность основания выращиваемого кристалла увеличивается, в результате чего возрастает разность температур между верхней частью и нижней частью затравочного кристалла и, соответственно, предотвращается неполное расплавление обломков сапфира, которые расположены выше затравочного кристалла, а также полное расплавление затравочного кристалла, даже если температура тигля в горизонтальном направлении будет неравномерной или температура тигля несоответственно отрегулирована.
Иначе говоря, в устройстве для выращивания монокристаллов сапфира, благодаря тому что нижняя часть тигля имеет форму острого клина, тигель может в достаточной степени охлаждаться с помощью охлаждаемой пластины, расположенной под нижней частью тигля, даже если температура тигля в горизонтальном направлении будет неравномерной. Таким образом, устройство согласно настоящему изобретению имеет преимущество, состоящее в том, что снижается вероятность полного расплавления затравочного кристалла и неполного расплавления материала, загруженного в тигель. Кроме того, поскольку тигель в верхней части расширен, облегчается загрузка материала в тигель.
Как описывалось выше, нагреватель устройства для выращивания монокристаллов сапфира состоит из нескольких отдельных нагревателей. К тому же, нагреватель, предпочтительно, содержит несколько боковых нагревательных элементов и соединительный нагревательный элемент для соединения боковых нагревательных элементов.
Согласно дополнительному аспекту настоящее изобретение относится к способу выращивания монокристаллов сапфира с использованием указанного устройства для выращивания монокристаллов сапфира, который включает стадию расплавления обломков сапфира и стадию выращивания монокристалла из затравочного кристалла.
Наконец, авторы настоящего изобретения установили, что при осуществлении стадии отжига после завершения роста кристалла, до того как температура тигля достигнет комнатной температуры, качество монокристалла может быть улучшено, поскольку снижаются напряжения в выращенном кристалле, возникающие из-за градиента температуры тигля и выращенного кристалла.
Согласно еще одному дополнительному аспекту настоящее изобретение относится к способу выращивания монокристаллов сапфира, включающему: стадию, на которой после размещения затравочного кристалла на нижней части тигля и заполнения тигля измельченными обломками сапфира указанные обломки сапфира расплавляют с получением расплава путем повышения температуры внутри тигля от комнатной температуры до температуры, превышающей температуру плавления обломков сапфира посредством электрического нагревателя; при этом нижнюю часть тигля охлаждают с использованием охлаждающих средств, установленных на нижней стороне тигля таким образом, чтобы предотвращать полное расплавление затравочного кристалла; а также стадию, на которой монокристалл сапфира выращивают из затравочного кристалла путем постепенного снижения температуры нагревателя при охлаждении нижней части тигля с использованием охлаждающих средств, причем, способ дополнительно включает стадию, на которой после завершения роста кристалла осуществляют отжиг путем прерывания процесса охлаждения, проводимого с использованием охлаждающих средств, и равномерно поддерживают температуру внутри тигля, до того как тигль будет охлажден до комнатной температуры.
Стадию отжига выполняют при поддержании температуры внутри тигля в диапазоне от 1700°С до 2000°С в течение от 1 до 50 часов.
Как правило, обломки сапфира расплавляются при температуре выше 2100°С, и монокристалл выращивается при температуре в диапазоне примерно от 1920°С до 2100°С. Таким образом, поскольку температура плавления сапфира составляет 2045°С, то указанная температура, составляющая 2045°С, является температурой начала плавления и начальной температурой выращивания кристалла. Поскольку место замера температуры может не совпадать с местом выращивания монокристалла и расплавления материала, может возникать указанная разность температур, и при изменении места замера температуры указанная разность температур может быть другой.
Согласно настоящему изобретению охлаждающие средства обеспечивают снижение температуры нижней части тигля для предотвращения полного расплавления затравочного кристалла, который помещен на нижнюю часть тигля. Охлаждающие средства могут представлять собой традиционные охлаждающие средства. Примером охлаждающих средств может являться изготовленная из вольфрама или молибдена охлаждающая плита, при этом охлаждение обеспечивается газом или жидкостью. Таким образом, когда охлаждающим средством является охлаждающая плита, процесс охлаждения прерывают, отделяя от тигля охлаждающую плиту при вертикальном перемещении охлаждающей плиты или тигля.
Примеры
Далее настоящее изобретение будет описываться более подробно посредством примеров. Для специалистов в данной области техники является очевидным, что указанные примеры приведены только с иллюстративной целью и не должны рассматриваться как ограничивающие объем настоящего изобретения.
Далее будут приводиться конкретные варианты осуществления вышеупомянутого устройства для выращивания монокристаллов сапфира согласно настоящему изобретению, при описании конструкции которого для краткости изложения будут опущены конструктивные элементы, подобные конструктивным элементам устройств известного уровня техники. Хотя согласно варианту осуществления изобретения, описываемому ниже и сопровождаемому чертежами, в устройстве используется длинный прямоугольный тигель, настоящее изобретение этим не ограничивается. Точно также изобретение не ограничивается описываемым удлиненным затравочным кристаллом 52, используемым для выращивания удлиненного монокристалла в квадратном тигле. Хотя в примере 2 настоящего изобретения приведена конкретная форма поперечного сечения тигля, этим изобретение не ограничивается.
Пример 1: устройство для выращивания монокристаллов сапфира, содержащее несколько отдельных нагревателей
Далее приводятся технические характеристики устройства для выращивания монокристаллов сапфира и используемые материалы.
Материал тигля: Мо (молибден).
Размеры тигля: 110Ш ×200B×400Д (Единицы измерения: мм).
Размер затравочного кристалла: 30Ш×10B×380Д (Единицы измерения: мм).
Охлаждающая плита (охлаждающее средство): Мо 20×360Д (Единицы измерения: мм).
Количество отдельных зон: 6 (с учетом зон слева и справа). Нагреватель (нагревательный элемент): изотропный графит 8t высокой чистоты. Температурный датчик: пирометр / место измерения температуры: поверхность нагревателя.
Регулирование температуры: пропорционально-интегрально-дифференциальный контроллер.
Вид охлаждения охлаждающей плиты: водяное охлаждение.
Монокристалл сапфира выращивали при использовании устройства для выращивания монокристаллов сапфира, имеющего шесть отдельных зон, разделенных нагревателями. Обломки сапфира в количестве 19,5 кг сначала размельчали и затем вводили в тигель. После этого в течение 15 часов температуру внутри тигля повышали от комнатной температуры до 2110°C и затем данную температуру поддерживали в течение 2 часов. Выращивание кристалла проводили путем постепенного снижения температуры нагревателя до 1920°C со скоростью 5°C /час. После этого температуру нагревателя постепенно снижали до комнатной температуры в течение 30 часов.
На стадии завершения расплавления, т.е. на стадии непосредственно перед тем, как монокристалл будет выращен, температуру нагревателя (а именно температуру центральной части бокового нагревательного элемента) поддерживали 2100°C. Температуру держателя тигля (на высоте, соответствующей центральной части бокового нагревательного элемента) измеряли пирометром в зоне, располагаемой вдоль (продольно) тигля, занимающего горизонтальное положение. В результате было установлено, что температура вдоль держателя тигля находится в диапазоне от 2080°C до 2085°C, т.е. отклонение температуры в продольном направлении тигля составляет менее 5°C. Отклонение температуры в продольном направлении держателя тигля больше указанной величины может привести к возникновению участков, где затравочный кристалл полностью расплавлен. Если отклонение температуры в продольном направлении держателя тигля составляет примерно 5°C или около того, отклонение температуры в продольном направлении затравочного кристалла, помещенного на дно тигля, установленного на охлаждающей плите, составляет значительно меньшую величину. К тому же было установлено, что внутри тигля обеспечивается более равномерное поддержание температуры и, следовательно, не наблюдается нарушение роста монокристалла. При измерении температуры пирометром боковая стенка тигля находилась вне зоны наблюдения, поэтому измерялась температура держателя тигля, имеющего одинаковую высоту с нагревателем.
В выращенном таким образом монокристалле сапфира отсутствовали какие-либо дефекты, например воздушные пузыри, трещины и т.п. Выращенный монокристалл сапфира обрабатывали с получением пластины монокристалла сапфира и проводили травление в растворе КОН при температуре 300°C. Затем измеряли плотность фигур травления (EPD), по результатам измерения было установлено, что существует разница между значениями EPD в монокристалле, из которого вырезана пластина, и в самой пластине, при этом среднее значение составляет примерно 400 см-2.
Качество полученной таким образом пластины монокристалла сапфира (среднее значение EPD составляет 400 см-2) превосходит качество используемой в настоящее время на практике пластины (среднее значение EPD составляет от 500 см-2 до 1000 см-2), которая изготавливается по традиционной технологии. Считается, что при равномерной регулировке температуры в горизонтальном направлении тигля отсутствует какой-либо температурный градиент и формируется почти линейная граница раздела твердое вещество-жидкость. Таким образом, если используется тигель согласно известному уровню техники с аспектным отношением более 1,5:1, то регулировка температуры усложняется, в связи с чем использование удлиненного затравочного кристалла является проблематичным и, соответственно, невозможно вырастить удлиненный монокристалл. В противоположность этому в устройстве согласно настоящему изобретению можно использовать более длинный тигель, т.е. тигель с аспектным отношением, превышающим 1,5:1, и, следовательно, можно использовать удлиненный затравочный кристалл, продолжающийся в направлении оси «с», в результате чего можно вырастить более длинный монокристалл в направлении оси «с». Поскольку для выращивания удлиненного высококачественного кристалла согласно изобретению затрачивается такой же промежуток времени, что и для выращивания кристалла согласно известному уровню техники, производительность на единицу времени значительно повышается. Согласно изобретению можно получить слиток размером 100×100×400 мм, который больше слитка, получаемого за тот же промежуток времени согласно известному уровню техники и имеющего размер 100×100×100 мм, в результате чего производительность возрастает в четыре раза, при этом затраты не превышают 55% затрат на изготовление слитка согласно известному уровню техники, в связи с чем указанные значительные преимущества можно получить при небольших инвестициях. Можно вырастить кристалл большой длины. Явным достоинством настоящего изобретения является возможность выращивания кристалла любой длины. Из практических соображений, предпочтительный размер слитка должен составлять 100×100×400-600 мм или около того. Если размер слитка будет превышать 100×100×400-600 мм, то могут возникнуть сложности при его обработке.
Пример 2: устройство для выращивания монокристаллов сапфира, содержащее тигель, имеющий V-образное поперечное сечение
Далее приводятся технические характеристики устройства для выращивания монокристаллов сапфира и используемые материалы.
Материал тигля: Мо (молибден).
Размеры тигля: длина каждой стороны тигля в виде равностороннего треугольника составляет 200×400Д (Единицы измерения: мм).
Размер затравочного кристалла: 30Ш×26B×380Д (Единицы измерения: мм).
Охлаждающая плита: Мо 20×360Д (Единицы измерения: мм, в верхней части плиты имеется углубление).
Количество отдельных зон: 6.
Нагреватель: изотропный графит 8t высокой чистоты.
Температурный датчик: пирометр / место измерения температуры: поверхность нагревателя.
Регулирование температуры: пропорционально-интегрально-дифференциальный контроллер.
Вид охлаждения охлаждающей плиты: водяное охлаждение (охлаждающую плиту отделяют от нижней части тигля после выращивания монокристалла).
Монокристалл сапфира выращивался при использовании устройства для выращивания монокристаллов сапфира, в котором тигель имел V-образное поперечное сечение и было образовано шесть отдельных зон, разделенных нагревателем, к тому же была добавлена стадия отжига. Обломки сапфира в количестве 44,5 кг сначала размельчали и затем вводили в тигель. После этого в течение 15 часов температуру внутри тигля повышали от комнатной температуры до 2120°C и данную температуру поддерживали в течение 2 часов. Выращивание кристалла проводили путем постепенного снижения температуры нагревателя до 1920°C со скоростью 5°C /час. После завершения выращивания монокристалла охлаждающую пластину, которая находилась в непосредственном контакте с нижней стороной тигля, отделяли от тигля и отводили вниз. Затем выполняли стадию отжига, поддерживая температуру тигля в течение 3 часов.
Температуру держателя тигля измеряли пирометром в зоне, располагаемой вдоль (продольно) тигля, занимающего горизонтальное положение. В результате было установлено, что отклонение температуры в продольном направлении тигля не превышает 6°C. К тому же было установлено, что внутри тигля обеспечивается более равномерное поддержание температуры и, следовательно, не наблюдается нарушение роста монокристалла.
Благодаря отжигу, который выполняли путем отделения охлаждаемой пластины от нижней части тигля, время, затрачиваемое на охлаждение кристалла в тигле до комнатной температуры, можно было сократить до 20 часов, при этом в кристалле не происходило образование трещин. Если отжиг не выполняли, в большинстве кристаллов, охлаждаемых в течение 20 часов, образовывались трещины. В выращенном таким образом монокристалле сапфира отсутствовали какие-либо дефекты, например воздушные пузыри, трещины и т.п., аналогично монокристаллу, полученному согласно примеру 1. Выращенный монокристалл сапфира обрабатывали с получением пластины монокристалла сапфира и проводили травление в растворе КОН при температуре 300°C. Затем измеряли плотность фигур травления (EPD), по результатам измерения было установлено, что существует разница между значениями EPD в монокристалле, из которого вырезана пластина, и в самой пластине, при этом среднее значение составляет примерно 300 см-2, что свидетельствует о более высоком качестве полученной пластины по сравнению с применяемой в настоящее время на практике пластиной и пластиной, изготовленной согласно примеру 1.
В данном описании изобретения конструкции, режимы и условия, аналогичные применяемым согласно известному уровню техники, подробно не раскрываются, и их конкретные детали и чертежи опущены.
Промышленная применимость
Из вышеприведенного описания следует, что согласно настоящему изобретению для выращивания монокристалла можно использовать удлиненный затравочный кристалл, продолжающийся вдоль оси «с», поскольку тигель разделен на несколько зон в горизонтальном направлении, и температуру в горизонтальном направлении можно равномерно регулировать, независимо от состояния изоляционного материала, от частоты использования и продолжительности использования. Преимуществом настоящего изобретения является то, что затравочный кристалл равномерно расплавляется в верхней части, в результате чего обеспечивается равномерный рост монокристалла из затравочного кристалла и получается высококачественный монокристалл. Кроме того, при увеличении длины тигля, т.е. при использовании тигля с аспектным отношением, превышающим 1,5:1, может быть выращен более длинный кристалл в направлении оси «с».
Кроме того, настоящее изобретение обеспечивает полезный эффект, состоящий в том, что благодаря нагревателю, содержащему пару противоположных боковых нагревательных элементов и соединительный нагревательный элемент для соединения боковых нагревательных элементов, может быть легко получен температурный градиент в вертикальном направлении, при этом за счет сокращения количества электродов можно сократить потери тепла, к тому же изготовление всего устройства не требует больших затрат. Кроме того, после завершения выращивания монокристалла выполняют отжиг, способствующий повышению качества выращенного монокристалла. Благодаря тому что нижняя часть тигля, на которую помещают затравочный кристалл, сформирована вогнутой внутрь или выгнутой наружу, увеличивается охлаждаемая поверхность основания выращиваемого кристалла, что также способствует повышению качества монокристалла и снижению вероятности нарушения роста монокристалла.
Наряду с тем что настоящее изобретение было подробно описано со ссылкой на определенные признаки, для специалистов в данной области техники очевидно, что объем настоящего изобретения не ограничивается только описанным предпочтительным вариантом осуществления изобретения. Таким образом, фактический объем настоящего изобретения будет определен пунктами прилагаемой формулы изобретения и их эквивалентами.

Claims (11)

1. Устройство для выращивания монокристаллов сапфира, содержащее: печь, выполненную с возможностью нагрева и термоизоляции от окружающего воздуха таким образом, чтобы температура внутри печи поднималась до температуры, превышающей температуру плавления обломков сапфира; тигель, расположенный в печи таким образом, что обеспечивает расплавление обломков сапфира в тигле и обеспечивает рост монокристалла в длину из затравочного кристалла в тигле; нагреватель, расположенный снаружи тигля таким образом, чтобы расплавлять обломки сапфира; и охлаждающие средства, расположенные на нижней части тигля таким образом, чтобы предотвращать полное расплавление затравочного кристалла,
причем нагреватель, расположенный снаружи тигля, выполнен в виде нескольких отдельных нагревателей, которые управляются независимо друг от друга отдельно установленными температурными датчиками, регуляторами мощности и блоками регулирования температуры таким образом, что он равномерно поддерживает температуру внутри тигля в горизонтальном направлении.
2. Устройство по п.1, в котором длина каждого из отдельных нагревателей составляет от 5 см до 25 см.
3. Устройство по п.1, в котором нагреватель содержит несколько боковых нагревательных элементов, которые расположены с обеих сторон тигля рядом с наружными стенками тигля, каждый из них соединен с соответствующим электродом, а также содержит соединительный нагревательный элемент, расположенный на верхних частях боковых нагревательных элементов для соединения боковых нагревательных элементов друг с другом таким образом, чтобы создать вертикальный градиент температуры и сократить количество электродов.
4. Устройство по п.1, в котором нижняя часть тигля, на которую помещают затравочный кристалл, сформирована вогнутой внутрь или выгнутой наружу таким образом, чтобы предотвращать неполное расплавление обломков сапфира и полное расплавление затравочного кристалла.
5. Способ выращивания монокристаллов сапфира с использованием устройства по любому из пп.1-4, который включает стадию расплавления обломков сапфира и стадию выращивания монокристалла из затравочного кристалла, при этом температуру внутри тигля регулируют несколькими нагревателями, расположенными снаружи тигля, причем нагреватель, расположенный снаружи тигля, выполнен в виде нескольких отдельных нагревателей, которые управляются независимо друг от друга отдельно установленными температурными датчиками, регуляторами мощности и блоками регулирования температуры, таким образом, что он равномерно поддерживает температуру внутри тигля в горизонтальном направлении.
6. Способ по п.5, дополнительно включающий стадию, на которой после завершения роста кристалла осуществляют отжиг путем прерывания процесса охлаждения, проводимого с использованием охлаждающих средств, и равномерно поддерживают температуру внутри тигля до того, как тигель будет охлажден до комнатной температуры.
7. Устройство для выращивания монокристаллов сапфира, содержащее: печь, выполненную с возможностью нагрева и термоизоляции от окружающего воздуха таким образом, чтобы температура внутри печи поднималась до температуры, превышающей температуру плавления обломков сапфира; тигель, расположенный в печи таким образом, что обеспечивает расплавление обломков сапфира в тигле и обеспечивает рост монокристалла в длину из затравочного кристалла в тигле; нагреватель, расположенный снаружи тигля, таким образом, чтобы расплавлять обломки сапфира; и охлаждающие средства, расположенные на нижней части тигля таким образом, чтобы предотвращать полное расплавление затравочного кристалла,
причем нагреватель, расположенный снаружи тигля, выполнен в виде нескольких отдельных нагревателей, и
указанный нагреватель содержит (a) пару боковых нагревательных элементов, которые расположены с обеих сторон тигля рядом с наружными стенками тигля, каждый из них соединен с соответствующим электродом, и (b) соединительный нагревательный элемент, расположенный на верхних частях боковых нагревательных элементов для соединения пары боковых нагревательных элементов друг с другом таким образом, чтобы создать вертикальный градиент температуры и сократить количество электродов, при этом указанные несколько отдельных нагревателей выполнены с возможностью независимого регулирования.
8. Устройство по п.7, в котором нижняя часть тигля, на которую помещен затравочный кристалл, сформирована вогнутой внутрь или выгнутой наружу таким образом, чтобы предотвращать неполное расплавление обломков сапфира и полное расплавление затравочного кристалла.
9. Способ выращивания монокристаллов сапфира с использованием устройства по п.7 или 8, который включает стадию расплавления обломков сапфира и стадию выращивания монокристалла из затравочного кристалла.
10. Способ выращивания монокристаллов сапфира с использованием устройства по любому из пп.1-4 или 7-8, включающий: стадию, на которой после размещения затравочного кристалла на нижней части тигля и заполнения тигля измельченными обломками сапфира указанные обломки сапфира расплавляют с получением расплава путем повышения температуры внутри тигля от комнатной температуры до температуры, превышающей температуру плавления обломков сапфира посредством электрического нагревателя, при этом нижнюю часть тигля охлаждают с использованием охлаждающей плиты, установленной на нижней стороне тигля таким образом, чтобы предотвращать полное расплавление затравочного кристалла; а также стадию, на которой монокристалл сапфира выращивают из затравочного кристалла путем постепенного снижения температуры нагревателя при охлаждении нижней части тигля с использованием охлаждающей плиты, причем способ дополнительно включает стадию, на которой после завершения роста кристалла осуществляют отжиг путем прерывания процесса охлаждения, проводимого за счет отделения охлаждающей плиты от тигля путем вертикального перемещения охлаждающей плиты или тигля, и равномерно поддерживают температуру внутри тигля до того, как тигель будет охлажден до комнатной температуры.
11. Способ по п.10, в котором стадию отжига выполняют при поддержании температуры внутри тигля в диапазоне от 1700°C до 2000°C в течение от 1 до 50 часов.
RU2012113230/05A 2009-09-05 2010-08-26 Способ и устройство для выращивания монокристаллов сапфира RU2520472C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2009-0083722 2009-09-05
KR1020090083722A KR101136143B1 (ko) 2009-09-05 2009-09-05 사파이어 단결정 성장방법과 그 장치
PCT/KR2010/005731 WO2011027992A2 (ko) 2009-09-05 2010-08-26 사파이어 단결정 성장방법과 그 장치

Publications (2)

Publication Number Publication Date
RU2012113230A RU2012113230A (ru) 2013-10-20
RU2520472C2 true RU2520472C2 (ru) 2014-06-27

Family

ID=43649757

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012113230/05A RU2520472C2 (ru) 2009-09-05 2010-08-26 Способ и устройство для выращивания монокристаллов сапфира

Country Status (8)

Country Link
US (1) US9790618B2 (ru)
EP (1) EP2474651A4 (ru)
JP (1) JP5596788B2 (ru)
KR (1) KR101136143B1 (ru)
CN (2) CN106978628A (ru)
RU (1) RU2520472C2 (ru)
TW (1) TWI404843B (ru)
WO (1) WO2011027992A2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2802604C1 (ru) * 2021-11-02 2023-08-30 Комадюр С.А. Способ изготовления монокристаллической сапфировой затравки, а также монокристалла сапфира с предпочтительной кристаллографической ориентацией и внешних деталей и функциональных компонентов для часового и ювелирного дела

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102330144A (zh) * 2011-10-08 2012-01-25 陕西合木实业有限公司 一种成品大面积籽晶和矩形大面积籽晶的制备方法及设备
US9206525B2 (en) * 2011-11-30 2015-12-08 General Electric Company Method for configuring a system to grow a crystal by coupling a heat transfer device comprising at least one elongate member beneath a crucible
KR101196445B1 (ko) 2012-05-03 2012-11-01 주식회사 크리스텍 사파이어 단결정 성장장치 및 이를 이용한 사파이어 단결정 성장방법
CN102828232A (zh) * 2012-09-25 2012-12-19 倪屹 三维蓝宝石晶体生长装置
KR101439380B1 (ko) * 2012-10-31 2014-09-11 주식회사 사파이어테크놀로지 사파이어 단결정 열처리 방법 및 장치
KR101420841B1 (ko) 2012-10-31 2014-07-17 주식회사 사파이어테크놀로지 사파이어 단결정 성장방법
CN103806101A (zh) * 2012-11-15 2014-05-21 上海中电振华晶体技术有限公司 一种方形蓝宝石晶体的生长方法及设备
CN103074668A (zh) * 2013-01-11 2013-05-01 元亮科技有限公司 水平温度梯度法生长大尺寸高温晶体的装置及方法
DE102013103271A1 (de) 2013-04-02 2014-10-02 Schott Ag Verfahren und Anordnung zur gerichteten Erstarrung eines einkristallinen plattenförmigen Körpers
CN103147121B (zh) * 2013-04-03 2015-10-21 中国科学院上海硅酸盐研究所 提拉泡生法生长晶体的装置
CN105401220B (zh) * 2014-09-12 2018-07-17 浙江汇锋塑胶科技有限公司 一种消除蓝宝石薄片应力的方法及设备
KR101654856B1 (ko) * 2015-01-22 2016-09-06 주식회사 사파이어테크놀로지 단결정 성장용 히터 및 이를 이용한 단결정 성장장치 및 성장방법.
CN104711676B (zh) * 2015-03-16 2017-05-24 内蒙古京晶光电科技有限公司 一种宝石单晶生长方法
TWI614473B (zh) * 2015-07-20 2018-02-11 茂迪股份有限公司 長晶爐設備
CN105088145B (zh) * 2015-08-19 2017-03-29 京东方科技集团股份有限公司 用于oled蒸发源的坩埚及其制造方法
KR101639627B1 (ko) 2015-09-07 2016-07-14 에스엠엔티 주식회사 도가니 지지체를 이용한 사파이어 단결정 성장장치 및 이를 이용한 사파이어 단결정 성장방법
CN105386125A (zh) * 2015-12-03 2016-03-09 河南西格马晶体科技有限公司 一种制备蓝宝石单晶体的控制方法
CN105350069A (zh) * 2015-12-24 2016-02-24 洛阳西格马炉业股份有限公司 一种蓝宝石晶体生长炉及制备蓝宝石晶体的方法
KR101785038B1 (ko) * 2016-03-21 2017-11-20 에스엠엔티 주식회사 보조 발열부가 구비된 결정성장장치
CN109725178A (zh) * 2017-10-27 2019-05-07 江苏维福特科技发展股份有限公司 晶体夹头
CN107881550B (zh) * 2017-11-08 2020-11-06 中国科学院合肥物质科学研究院 一种大尺寸晶体的熔体法晶体生长方法
KR20200046468A (ko) 2018-10-24 2020-05-07 주식회사 에스티씨 사파이어 단결정 성장장치용 도가니
KR20200046467A (ko) 2018-10-24 2020-05-07 주식회사 에스티씨 사파이어 단결정 성장장치 및 성장방법
JP7477997B2 (ja) 2019-03-25 2024-05-02 京セラ株式会社 サファイアリボンおよび単結晶リボン製造装置
CN109898136A (zh) * 2019-04-03 2019-06-18 贝民贤 多重蓝宝石单晶生长装置及生长方法
CN111411394A (zh) * 2020-04-08 2020-07-14 内蒙古露笑蓝宝石有限公司 一种大尺寸蓝宝石单晶的防断裂泡生制备方法
CN114318494B (zh) * 2021-11-30 2023-09-19 江苏吉星新材料有限公司 减少蓝宝石晶体长晶缺陷的方法及蓝宝石长晶炉
CN115044962A (zh) * 2022-07-13 2022-09-13 北京铭镓半导体有限公司 一种vgf法彩色宝石晶体生长坩埚盖

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423136B1 (en) * 2000-03-20 2002-07-23 Carl Francis Swinehart Crucible for growing macrocrystals
RU2261297C1 (ru) * 2004-08-05 2005-09-27 Амосов Владимир Ильич Способ выращивания монокристаллов из расплава методом амосова

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10010484A1 (de) * 2000-03-03 2001-09-13 Schott Glas Verfahren und Vorrichtung zur Züchtung von großvolumigen orientierten Einkristallen
US3898051A (en) 1973-12-28 1975-08-05 Crystal Syst Crystal growing
JPS59165469U (ja) * 1983-04-22 1984-11-06 株式会社トーキン るつぼ支持台
JPS6456394A (en) * 1987-08-28 1989-03-03 Nippon Mining Co Device for growing single crystal
US5116456A (en) * 1988-04-18 1992-05-26 Solon Technologies, Inc. Apparatus and method for growth of large single crystals in plate/slab form
JPH03115184A (ja) * 1989-09-29 1991-05-16 Tokin Corp フェライト単結晶の製造装置
JPH06166588A (ja) * 1992-11-30 1994-06-14 Furukawa Electric Co Ltd:The 単結晶製造用るつぼ
JP3368113B2 (ja) * 1995-09-05 2003-01-20 シャープ株式会社 多結晶半導体の製造方法
JPH10139580A (ja) * 1996-11-13 1998-05-26 Japan Steel Works Ltd:The 一方向凝固材の製造方法および一方向凝固装置
JP3520957B2 (ja) * 1997-06-23 2004-04-19 シャープ株式会社 多結晶半導体インゴットの製造方法および装置
JP3988217B2 (ja) * 1997-09-09 2007-10-10 株式会社ニコン 大口径蛍石の製造装置および製造方法
US6309461B1 (en) * 1999-06-07 2001-10-30 Sandia Corporation Crystal growth and annealing method and apparatus
DE19934940C2 (de) * 1999-07-26 2001-12-13 Ald Vacuum Techn Ag Vorrichtung zum Herstellen von gerichtet erstarrten Blöcken und Betriebsverfahren hierfür
KR20010011553A (ko) 1999-07-29 2001-02-15 김영환 반도체 소자의 게이트 전극 형성 방법
KR20010017991A (ko) * 1999-08-16 2001-03-05 이민상 개선된 단결정성장로
KR20020056247A (ko) * 2000-12-29 2002-07-10 김병관 사파이어 단결정 제조장치
US20030172870A1 (en) 2002-03-14 2003-09-18 Axt, Inc. Apparatus for growing monocrystalline group II-VI and III-V compounds
JP2003342098A (ja) * 2002-05-27 2003-12-03 Canon Inc フッ化物結晶の製造装置及び製造方法
CN1485467A (zh) 2003-08-08 2004-03-31 中国科学院上海光学精密机械研究所 大面积晶体的温梯法生长装置及其生长晶体的方法
US20070151510A1 (en) * 2003-08-27 2007-07-05 Andreas Muhe Crystal-Growing Furnace, In Particular A Vertical Bridgman Crystal-Growing Furnace Or A Vertical Gradient Freeze Crystal-Growing Furnace Having A Jacket Heater And A Method of Regulating The Heat Output of the Jacket Heater
KR100573525B1 (ko) * 2003-12-11 2006-04-26 주식회사 모노세라피아 단결정 성장장치
US20070195852A1 (en) * 2005-08-18 2007-08-23 Bp Corporation North America Inc. Insulation Package for Use in High Temperature Furnaces
US7344596B2 (en) * 2005-08-25 2008-03-18 Crystal Systems, Inc. System and method for crystal growing
DE102006017621B4 (de) * 2006-04-12 2008-12-24 Schott Ag Vorrichtung und Verfahren zur Herstellung von multikristallinem Silizium
DE102006020234A1 (de) * 2006-04-27 2007-10-31 Deutsche Solar Ag Ofen für Nichtmetall-Schmelzen
JP2008007353A (ja) * 2006-06-28 2008-01-17 Sumitomo Metal Mining Co Ltd サファイア単結晶育成装置およびそれを用いた育成方法
CN100436659C (zh) * 2007-01-17 2008-11-26 上海晶生实业有限公司 蓝宝石晶体多坩埚熔体生长技术
JP2008247706A (ja) * 2007-03-30 2008-10-16 Jfe Mineral Co Ltd コランダム単結晶の育成方法、コランダム単結晶およびコランダム単結晶ウェーハ
US20080257254A1 (en) * 2007-04-17 2008-10-23 Dieter Linke Large grain, multi-crystalline semiconductor ingot formation method and system
DE102007038851A1 (de) * 2007-08-16 2009-02-19 Schott Ag Verfahren zur Herstellung von monokristallinen Metall- oder Halbmetallkörpern
CN101323978B (zh) * 2008-07-29 2011-03-23 成都东骏激光股份有限公司 大尺寸蓝宝石晶体制备工艺及其生长装置
TWI519685B (zh) * 2009-07-22 2016-02-01 國立大學法人信州大學 藍寶石單結晶之製造方法以及藍寶石單結晶之製造裝置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423136B1 (en) * 2000-03-20 2002-07-23 Carl Francis Swinehart Crucible for growing macrocrystals
RU2261297C1 (ru) * 2004-08-05 2005-09-27 Амосов Владимир Ильич Способ выращивания монокристаллов из расплава методом амосова

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2802604C1 (ru) * 2021-11-02 2023-08-30 Комадюр С.А. Способ изготовления монокристаллической сапфировой затравки, а также монокристалла сапфира с предпочтительной кристаллографической ориентацией и внешних деталей и функциональных компонентов для часового и ювелирного дела

Also Published As

Publication number Publication date
US9790618B2 (en) 2017-10-17
EP2474651A2 (en) 2012-07-11
RU2012113230A (ru) 2013-10-20
KR20110025716A (ko) 2011-03-11
CN106978628A (zh) 2017-07-25
EP2474651A4 (en) 2013-07-31
WO2011027992A2 (ko) 2011-03-10
JP5596788B2 (ja) 2014-09-24
WO2011027992A3 (ko) 2011-07-21
TW201109487A (en) 2011-03-16
CN102597334A (zh) 2012-07-18
JP2013503810A (ja) 2013-02-04
KR101136143B1 (ko) 2012-04-17
TWI404843B (zh) 2013-08-11
US20120174857A1 (en) 2012-07-12

Similar Documents

Publication Publication Date Title
RU2520472C2 (ru) Способ и устройство для выращивания монокристаллов сапфира
US20170183792A1 (en) Apparatus for forming single crystal sapphire
JP5633732B2 (ja) サファイア単結晶の製造方法およびサファイア単結晶の製造装置
US8597756B2 (en) Resistance heated sapphire single crystal ingot grower, method of manufacturing resistance heated sapphire single crystal ingot, sapphire single crystal ingot, and sapphire wafer
US20150086464A1 (en) Method of producing monocrystalline silicon
JP4830312B2 (ja) 化合物半導体単結晶とその製造方法
KR101196445B1 (ko) 사파이어 단결정 성장장치 및 이를 이용한 사파이어 단결정 성장방법
KR20200046467A (ko) 사파이어 단결정 성장장치 및 성장방법
CN104073875A (zh) 一种大尺寸蓝宝石晶体动态温度场制备方法
KR20150064359A (ko) 단결정 성장 장치
JP5370394B2 (ja) 化合物半導体単結晶基板
KR101229984B1 (ko) 사파이어 단결정 성장방법과 그 장치
KR100428699B1 (ko) 수직-수평 온도구배를 갖는 대형 결정 육성장치 및 그육성방법
CN114737253A (zh) 生长大尺寸蓝宝石单晶板材的单晶炉热场结构及方法
KR20190075411A (ko) 리니지 결함을 제거할 수 있는 도가니부재, 이를 이용한 고품질 사파이어 단결정 성장장치 및 그 방법
CN109972196A (zh) 蓝宝石单晶生长装置用坩埚、蓝宝石单晶生长装置及方法
KR101434478B1 (ko) 장대형 사파이어 단결정 성장방법 및 이를 위한 성장장치
CN103352248B (zh) 多晶硅的结晶工艺和多晶硅的铸锭工艺
JP2017193469A (ja) アフターヒータ及びサファイア単結晶製造装置
CN109898136A (zh) 多重蓝宝石单晶生长装置及生长方法
JP2014156373A (ja) サファイア単結晶の製造装置
CN106854773B (zh) 一种晶体生长坩埚、装置及其生长方法
RU2531514C1 (ru) Нагреватель устройства для выращивания монокристаллов из расплава методом чохральского
KR101437281B1 (ko) 냉도가니를 이용한 유사단결정 잉곳성장방법
KR20130102829A (ko) 사파이어 단결정 성장장치