RU2476414C2 - Способ гидродехлорирования для получения гидрофторированных олефинов - Google Patents

Способ гидродехлорирования для получения гидрофторированных олефинов Download PDF

Info

Publication number
RU2476414C2
RU2476414C2 RU2010103460/04A RU2010103460A RU2476414C2 RU 2476414 C2 RU2476414 C2 RU 2476414C2 RU 2010103460/04 A RU2010103460/04 A RU 2010103460/04A RU 2010103460 A RU2010103460 A RU 2010103460A RU 2476414 C2 RU2476414 C2 RU 2476414C2
Authority
RU
Russia
Prior art keywords
catalyst
copper
1316mxx
nickel
hydrogen
Prior art date
Application number
RU2010103460/04A
Other languages
English (en)
Other versions
RU2010103460A (ru
Inventor
Марио Джозеф НАППА
Екатерина Н. СВЕАРИНГЕН
Original Assignee
Е.И.Дюпон Де Немур Энд Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Е.И.Дюпон Де Немур Энд Компани filed Critical Е.И.Дюпон Де Немур Энд Компани
Publication of RU2010103460A publication Critical patent/RU2010103460A/ru
Application granted granted Critical
Publication of RU2476414C2 publication Critical patent/RU2476414C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/628Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/868Chromium copper and chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/12Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к способу получения фторсодержащих олефинов. Описан способ получения фторсодержащих олефинов, включающий контактирование хлорфторалкена формулы RfCCl=CClRf, где каждый Rf является перфторалкильной группой, независимо выбранной из группы, состоящей из CF3, C2F5, n-C3F7, i-C3F7, n-C4F9, i-C4F9 и t-C4F9, и где одной из групп Rf может быть F, с водородом в присутствии катализатора при температуре от приблизительно 200°C до приблизительно 450°C, чтобы вызвать замещение хлорных заместителей хлорфторалкена водородом для получения фторсодержащего олефина, имеющего формулу Е- или Z-R1CH=CHR2, где каждый R1 и R2 являются перфторалкильными группами, независимо выбранными из группы, состоящей из CF3, C2F5, n-C3F7, i-C3F7, n-C4F9, i-C4F9 и t-C4F9, и где R2 может быть F. 10 з.п. ф-лы, 14 табл., 16 пр.

Description

ОПИСАНИЕ
ПЕРЕСКРЕСТНАЯ(ЫЕ) ССЫЛКА(И) НА РОДСТВЕННУЮ(ЫЕ) ЗАЯВКУ(И)
Данная патентная заявка заявляет преимущество приоритета предварительной заявки США 60/958190, поданной 3 июля 2007 г., и предварительной заявки США 61/004518, поданной 27 ноября 2007 г.
Область техники
Данное описание, в общем, относится к способам синтеза фторированных олефинов.
Описание уровня техники
Фторуглеродная промышленность на протяжении последних нескольких десятилетий работает над тем, чтобы найти хладагенты, служащие заменой для истощающих озон хлорфторуглеродов (CFC) и гидрохлорфторуглеродов (HCFC), использование которых прекращается по решению Монреальского протокола. Решением проблемы для многих применений стало коммерческое применение соединений гидрофторуглерода (HFC) в качестве хладагентов, растворителей, огнетушащих средств, раздувающих средств и пропеллентов. Эти новые соединения, такие как HFC хладагенты, HFC-134a и HFC-125, наиболее широко используемые в данное время, обладают нулевым потенциалом истощения озона и, таким образом, к ним не относится действующее распоряжение о прекращении применения по решению Монреальского протокола.
В дополнение к принятой во внимание проблеме истощения озона глобальное потепление является еще одной экологической проблемой, учитываемой во многих из этих применений. Таким образом, существует потребность в композициях, которые как соответствуют стандартам незначительного истощения озона, так и имеют низкие потенциалы глобального потепления. Полагают, что определенные гидрофторолефины подходят для двух этих целей. Таким образом, существует потребность в способах производства, предоставляющих галогенированные углеводороды и фторолефины, не содержащие хлор, которые также имеют низкий потенциал глобального потепления.
КРАТКОЕ ИЗЛОЖЕНИЕ ИЗОБРЕТЕНИЯ
Раскрыт способ получения фторсодержащих олефинов, включающий взаимодействие хлорфторалкена с водородом в присутствии катализатора при температуре, достаточной, чтобы вызвать замещение заместителей хлора хлорфторалкена водородом для получения фторсодержащего олефина. Также раскрыты композиции катализатора для гидродехлорирования хлорфторалкенов, содержащие металлическую медь, размещенную на подложке, и содержащие палладий, размещенный на фториде кальция, отравленный свинцом.
Дальнейшее общее описание и последующее подробное описание даны только в качестве примера и объяснения и не ограничивают данное изобретение, как определено в приложенной формуле изобретения.
ПОДРОБНОЕ ОПИСАНИЕ
Раскрыт способ получения фторсодержащих олефинов, включающий взаимодействие хлорфторалкена с водородом в присутствии катализатора при температуре, достаточной, чтобы вызвать замещение заместителей хлора хлорфторалкена водородом для получения фторсодержащего олефина. Также раскрыты композиции катализатора для гидродехлорирования хлорфторалкенов, содержащие металлическую медь, размещенную на подложке, и содержащие палладий, размещенный на фториде кальция, отравленный свинцом.
Многие аспекты и варианты осуществления были описаны выше и являются только примерными и неограничивающими. После прочтения данного описания специалистам в данной области техники будет понятно, что возможны другие аспекты и варианты осуществления, не выходящие за объем данного изобретения.
Другие признаки и преимущества любого одного или большего количества вариантов осуществления будут очевидны из следующего подробного описания и из формулы изобретения.
Прежде чем обратиться к подробностям вариантов осуществления, описанным ниже, определены или разъяснены некоторые выражения.
Использованное здесь выражение «хлорфторалкен» относится к соединениям формулы RfCCl=CClRf, где каждый Rf является перфторалкильной группой, независимо выбранной из группы, состоящей из CF3, C2F5, n-C3F7, i-C3F7, n-C4F9, i-C4F9 и t-C4F9, и где одной из групп Rf может быть F. Использованные здесь хлорфторалкены могут быть E-стереоизомером, Z-стереоизомером или любой смесью из них.
Использованное здесь выражение «фторсодержащий олефин» относится к соединениям формулы E- или Z-R1CH=CHR2, где каждый из R1 и R2 является перфторалкильными группами, независимо выбранными из группы, состоящей из CF3, C2F5, n-C3F7, i-C3F7, n-C4F9, i-C4F9 и t-C4F9, и где R2 может быть F.
Использованный здесь сплав является металлом, который представляет собой комбинацию двух или более элементов, по меньшей мере, одним из которых является металл.
В одном варианте осуществления процесс протекает в присутствии катализатора.
Из уровня техники известны гидрогенизирующие катализаторы, содержащие медь, никель, хром, палладий и рутений. Они могут быть получены как способами осаждения, так и способами пропитывания, как в общем описано Satterfield, стр. 87-112 в Heterogeneous Catalysis in Industrial Practice, изд. 2-ое (McGraw-Hill, New York, 1991).
В одном варианте осуществления катализатор для способа выбран из группы, состоящей из меди на углероде, меди на фториде кальция, палладия на сульфате бария, хлорида палладия/бария на оксиде алюминия, катализатора Линдлара (палладия на CaCO3, отравленного свинцом), палладия на фториде кальция, отравленного свинцом, меди или никеля на углероде, никеля на углероде, никеля на фториде кальция, меди/никеля/хрома на фториде кальция и сплавов меди и никеля без подложки.
В другом варианте осуществления катализатор выбран из группы, состоящей из меди на углероде, меди на фториде кальция, меди и никеля на углероде, никеля на углероде, меди/никеля/хрома на фториде кальция и сплавов меди и никеля без подложки. В одном варианте осуществления количество меди на подложке из углерода или фторида кальция составляет от приблизительно 1% по весу до приблизительно 25% по весу. Подложкой из углерода может являться обработанный кислотой углерод.
В одном варианте осуществления палладий может содержаться на катализаторе сульфата бария от приблизительно 0,05% до 10% по весу палладия. В одном варианте осуществления медь и никель могут содержаться на углероде от приблизительно 1% до приблизительно 25% по весу меди и никеля, объединенных на подложке углерода. Подложкой углерода может быть любая из подложек углерода, как было ранее описано для других катализаторов. Соотношение веса меди к никелю в меди и никеле на углеродном катализаторе может изменяться от приблизительно 2:1 до приблизительно 1:2.
В одном варианте осуществления хлорид палладия/бария может содержаться на катализаторе оксиде алюминия от приблизительно 1% до приблизительно 25% по весу хлорида бария и от приблизительно 0,05% до приблизительно 10% по весу палладия относительно общего веса композиции катализатора. Получение хлорида палладия/бария на катализаторе оксиде алюминия описано в патенте США № 5243103, описание которого включено путем ссылки.
В одном варианте осуществления палладий может содержаться на катализаторе фториде кальция, отравленный свинцом, от приблизительно 0,02% до приблизительно 5% палладия по весу. В одном варианте осуществления при получении палладия на катализаторе фториде кальция, отравленный свинцом, соотношение ацетата свинца в растворе к палладию на подложке составляет от приблизительно 0,5:1 до приблизительно 2:1.
В одном варианте осуществления молярное отношение оксид меди:оксид никеля:оксид хрома в медь/никель/хром на катализаторе фториде кальция составляет от приблизительно 0 до приблизительно 1 меди, от приблизительно 0,5 до приблизительно 3,0 никеля и от приблизительно 0 до приблизительно 2 хрома. В одном варианте осуществления молярное отношение медь:никель:хром в медь/никель/хром на катализаторе фториде кальция составляет 1,0:1,0:1,0. В другом варианте осуществления молярное отношение составляет 1,0:2,0:1,0. В еще одном варианте осуществления молярное отношение составляет 1,0:2,0:0,25. В еще одном варианте осуществления молярное отношение составляет 0,5:3,0:0,5. В еще одном варианте осуществления молярное отношение составляет 0,5:0,5:2,0. В еще одном варианте осуществления молярное отношение составляет 0:3,0:1,0. В еще одном варианте осуществления молярное отношение составляет 1:3,0:0. В еще одном варианте осуществления соотношение веса всего материала катализатора к материалу подложки может составлять от приблизительно 1:2 до приблизительно 2:1. Способ получения катализатора меди/никеля/хрома описан в патенте США № 2900423, описание которого включено здесь путем ссылки.
В одном варианте осуществления сплавы меди и никеля без подложки включают сплавы, описанные Boudart в Journal of Catalysis, 81, 204-13, 1983, описание которого включено здесь путем ссылки. В одном варианте осуществления молярное отношение Cu:Ni в катализаторах может изменяться в пределах от приблизительно 1:99 до приблизительно 99:1. В другом варианте осуществления молярное отношение Cu:Ni составляет приблизительно 1:1.
В одном варианте осуществления время контакта для способа изменяется в пределах от приблизительно 2 до приблизительно 120 секунд.
В одном варианте осуществления отношение водорода к хлорфторалкену составляет от приблизительно 1:1 до приблизительно 7,5:1. В другом варианте осуществления отношение водорода к хлорфторалкену составляет от приблизительно 1:1 до приблизительно 5:1. В другом варианте осуществления соотношение водорода к хлорфторалкену составляет от приблизительно 5:1 до приблизительно 10:1.
В другом варианте осуществления способ получения фторсодержащих олефинов включает реакцию хлорфторалкена с водородом в реакционном сосуде, сделанном из материала кислотостойкого сплава. Такие материалы кислотостойкого сплава включают нержавеющие стали, сплавы с высоким содержанием никеля, такие как монель, хастеллой и инконель. В одном варианте осуществления реакция происходит в паровой фазе.
В одном варианте осуществления температура, при которой проходит способ, может быть температурой, достаточной, чтобы вызвать замещение заместителей хлора водородом. В другом варианте осуществления способ проводят при температуре от приблизительно 100°C до приблизительно 450°C.
В некоторых вариантах осуществления давление для реакции гидродехлорирования не является критическим. В других вариантах осуществления способ выполняют при атмосферном или автогенном давлении. Может быть предоставлено устройство для сброса избыточного давления хлорида водорода, образовавшегося в ходе реакции, и которое может давать преимущество в минимизации образования побочных продуктов.
Дополнительные продукты реакции могут включать частично гидродехлорированные промежуточные соединения; насыщенные гидрогенизованные соединения; различные частично хлорированные промежуточные соединения или насыщенные соединения и хлорид водорода (HCl). К примеру, где хлорфторалкен является 2,3-дихлор-1,1,1,4,4,4-гексафтор-2-бутеном (CFC-1316mxx, E- и/или Z-изомеры), соединения, сформированные в дополнение к E- и/или Z-1,1,1,4,4,4-гексафтор-2-бутену (E- и/или Z-HFC-1336mzz), могут включать 1,1,1,4,4,4-гексафторобутан (HFC-356mff), пентафторбутан (HFC-1345, разные изомеры), 2-хлор-1,1,1,4,4,4-гексафторбутан (HFC-346mdf), E- и/или Z-2-хлор-1,1,1,4,4,4-гексафтор-2-бутен (E- и/или Z-HCFC-1326mxz) и 1,1,1,4,4,4-гексафтор-2-бутин (HFB).
В определенных вариантах осуществления данное описание предоставляет композицию катализатора для гидродехлорирования хлорфторалкенов, включающую металлическую медь, размещенную на подложке.
В одном варианте осуществления композиция катализатора для гидродехлорирования хлорфторалкенов включает металлическую медь, размещенную на подложке, включающей обработанный кислотой углерод или фторид кальция.
В одном варианте осуществления композиция катализатора для гидродехлорирования хлорфторалкенов включает металлическую медь, размещенную на подложке, где указанная медь составляет от приблизительно 5% до приблизительно 25% по весу композиции катализатора.
Использованные здесь выражения “содержит”, “содержащий”, “включает”, “включающий”, “имеет”, “имеющий” или любой их вариант предназначены охватить то, что не включено. Например, процесс, способ, изделие или устройство, которое содержит перечень элементов, не обязательно ограничивается только этими элементами, а может включать и другие элементы, не перечисленные определенно или присущие такому процессу, способу, изделию или устройству. Кроме того, если не предусмотрено другое, «или» относится к охватывающему «или» и не охватывающему «или». Например, условие A или B выполняется любым из следующего: A верно (или присутствует) и B неверно (или не присутствует), A неверно (или не присутствует) и B верно (или присутствует), и оба A и B верны (или присутствуют).
Также, единичные формы использованы для описания элементов и компонентов в данном описании. Это сделано только для удобства и чтобы дать общее представление об объеме изобретения. Данное описание следует читать, как включает одно или, по меньшей мере, одно, и форма единственного числа также включает множественное число, если не является очевидным противоположное.
Номерами групп, соответствующих столбцам в периодической таблице элементов, используются условные обозначения "New Notation", как видно в CRC Handbook of Chemistry and Physics, 81st Edition (2000-2001).
Если не установлено другое, все использованные здесь технические и научные выражения имеют одинаковое значение для широкого понимания специалистами в данной области техники, к которой принадлежит данное изобретение. Хотя на практике или в испытании вариантов осуществления данного изобретения могут быть использованы способы и материалы, подобные или соответствующие описанным здесь, подходящие способы и материалы описаны ниже. Все публикации, патентные заявки, патенты, а также упомянутые здесь ссылки полностью включены в описание данной ссылкой, если не приведен определенный отрывок. В случае возникновения конфликта, он будет урегулирован данным описанием, включающим определения. В дополнение, материалы, способы и примеры являются только иллюстративными и не предназначены для ограничения.
ПРИМЕРЫ
Концепции, изложенные здесь, далее будут описаны в последующих примерах, которые не ограничивают объем данного изобретения, описанный в формуле изобретения.
В примерах могут быть использованы следующие аббревиатуры или коды:
ВК = время контакта
t-1336 = E-1336mzz = E-CF3CH=CHCF3
c-1336 = Z-1336mzz = Z-CF3CH=CHCF3
356mff = CF3CH2CH2CF3
1345 = C4H3F5
346mdf = CF3CHClCH2CF3
1326 = E- и/или Z-CF3CH=CClCF3
t-1326mxz = Z-1326mxz = Z-CF3CH=CClCF3
c-1326mxz = E-1326mxz = E-CF3CH=CClCF3
1316mxx = E/Z-CF3CCl=CClCF3
t-1316mxx = E-1316mxx = E-CF3CCl=CClCF3
c-1316mxx = Z-1316mxx = Z-CF3CCl=CClCF3
171-14mccxx = E/Z-CF3CF2CF2CCl=CClCF2CF2CF3
173-14mcczz = E/Z-CF3CF2CF2CH=CHCF2CF2CF3
t-172-14 = E-CF3CF2CF2CCl=CHCF2CF2CF3
c-172-14 = Z-CF3CF2CF2CCl=CHCF2CF2CF3
HFB = CF3C≡CCF3
Пример 1
Пример 1 демонстрирует преобразование CFC-1316mxx в HFC-1336mzz посредством Cu на катализаторе углероде.
Пробирку Инконель® (наружный диаметр 5/8 дюймов) заполнили 13 см3 (5,3 г) 25% Cu на обработанном кислотой углероде (18-30 меш). Температуру реактора увеличивали до 100ºC в течение 30 минут в потоке N2 (30 sccm, 5,0×10-7 м3/сек). Затем температуру поднимали до 250°C в потоке H2 в течение одного часа. Температуру и потоки изменяли, как описано в экспериментах в таблице 1 ниже, и элюат из реактора анализировали посредством ГХМС (газовая хроматография-масс-спектрометрия) для предоставления следующего молярного процента продуктов).
Таблица 1
Темп.°C ВК (сек) Молярное отношение H2/1316 Концентрация элюата из реактора (молярный %)
t-1336 356mff 1345 c-1336 346mdf 1316mxx 1326
310 74 5,2:1 12 0 0 5 0 0 81
310 120 2,9:1 40 3 4 9 2 0 42
310 120 3,0:1 40 4 4 9 2 0 40
310 121 2,9:1 36 2 2 8 2 0 50
311 125 2,7:1 28 0 0 6 0 0 65
339 74 5,1:1 36 2 2 10 2 0 47
340 97 3,4:1 48 3 5 12 0 0 33
340 100 3,4:1 46 3 3 11 2 0 36
340 68 5,3:1 40 2 4 12 2 0 40
340 73 4,8:1 29 1 2 11 0 0 57
340 123 2,4:1 52 3 3 11 0 0 30
340 71 5,4:1 39 2 4 11 2 0 42
340 118 2,6:1 52 3 5 11 0 0 27
Пример 2
Пример 2 демонстрирует преобразование CFC-1316mxx в HFC-1336mzz посредством катализатора Pd/BaCl2/Al2O3.
Реактор из хастеллоя 10"л × 1/2" наружный диаметр × 0,034" толщины стенки заполнили 11 см3 катализатора. Катализатор обрабатывали при 150°C в течение 65 часов в потоке водорода 50 sccm (8,3×10-7 м3/сек). Затем температуру поднимали до 300°C в течение 2 часов в том же потоке. Гидродехлорирование 1316mxx наблюдали при температурах 240-400°C, как показано в таблице 2. Продукты реакции анализировали посредством ГХМС для предоставления следующих молярных концентраций.
Таблица 2
Темп. °C ВК (сек) Моляр-ное отно-шение H2/1316 mxx Концентрация элюата из реактора (молярный %)
t-1336 1345 356 mff c-1336 t-1326 mxz c-1326 mxz t-1316 mxx c-1316 mxx
240 30 1:1 11,96 0,65 7,58 1,14 19,41 0,62 49,70 1,82
240 30 1:1 11,39 0,57 7,81 1,13 20,35 0,64 49,21 1,79
300 10 2:1 23,55 3,38 13,30 1,39 27,14 0.27 15,98 0,26
300 10 2:1 22,31 2,55 14,59 1,35 27,50 0,32 17,76 0,37
325 30 1:1 26,95 0,30 3,14 3,80 19,77 0.99 38,91 3,06
325 30 1:1 24,08 0,30 2,63 4,92 18,51 1,00 42,39 3,31
350 30 1:1 23,51 1,72 6,66 7,15 22,53 0,80 29,95 2,17
400 30 1:1 17,66 1,43 2,40 1,19 15,65 1,01 47,46 7,84
Пример 3
Пример 3 демонстрирует преобразование CFC-1316mxx в HFC-1336mzz посредством катализатора Pd/BaSO4.
Реактор из хастеллоя 10"л × 1/2" наружный диаметр × 0,034" толщины стенки заполнили 11 см3 (19,36 г) катализатора. Катализатор обрабатывали при 300°C в течение 2 часов в потоке водорода 50 sccm (8,3×10-7 м3/сек). Гидродехлорирование 1316mxx наблюдали при 100-200°C, как показано в таблице 3 ниже. Молярное отношение водорода к 1316mxx было 1:1. Время контакта для всех опытов в таблице 3 было 60 секунд. Продукты реакции анализировали посредством ГХМС для предоставления следующих молярных концентраций.
Таблица 3
Темп. °C Концентрация элюата из реактора (молярный %)
t-1336 356mff c-1336 t-1326mxz 346mdf c-1326mxz t-1316mxx c-1316mxx
200 10,64 13,35 0,45 31,66 10,91 0,90 29,81 0,54
200 10,25 13,40 0,44 30,56 10,16 0,99 31,85 0,61
Пример 4
Пример 4 демонстрирует преобразование CFC-1316mxx в HFC-1336mzz посредством катализатора Линдлара.
Катализатор Линдлара (от Strem Chemicals, Inc., Newburyport, MA, USA) гранулировали и просеяли до 12/20 меш. Загрузили 25 граммов катализатора в реактор из хастеллоя 10"л × 1/2" наружный диаметр × 0,034" толщины стенки. Катализатор обрабатывали при 300ºC в течение 2 часов в потоке водорода 50 sccm (8,3×10-7 м3/сек). Гидродехлорирование 1316mxx наблюдали при 200-250°C. Молярное отношение водород:1316 составляло 2:1, и время контакта составляло 45 секунд для всех опытов в таблице 4. Продукты реакции анализировали посредством ГХМС для предоставления следующих молярных концентраций.
Таблица 4
Темп. °C Концентрация элюата из реактора (молярный %)
t-1336 356mff c-1336 t-1326mxz 346mdf c-1326mxz t-1316mxx c-1316mxx
200 6,17 7,64 19,74 25,59 0,28 0,29 38,00 1,20
200 3,39 4,04 14,07 20,34 0,29 0,53 53,90 2,31
250 2,33 1,03 49,75 7,70 0,00 0,66 33,03 2,82
Пример 5
Пример 5 демонстрирует преобразование CFC-1316mxx в HFC-1336mzz посредством Cu на катализаторе углероде.
В 400-мл стакане Пирекс раствор 10,73 г CuCl2·2H2O приготовили в 65 мл 10% HCl в деионизированной воде. В раствор добавили 46,0 г обработанного кислотой углерода (10/30 меш). Густой взвеси дали постоять при комнатной температуре в течение 1 часа, периодически перемешивая. Затем взвесь сушили при 110-120°C на воздухе в течение ночи. После этого катализатор перемещали в кварцевую пробирку, которую очищали 500 sccm (8,3×10-6 м3/сек) N2 при 25°C в течение 15 минут, затем 100 sccm каждого He и H2 в течение 15 минут. Затем катализатор нагревали при 5°C/мин до 500°C в течение 6 часов в He/H2. Данным способом получали 48,52 г катализатора.
Реактор из хастеллоя 10"л × 1/2" наружный диаметр × 0,034" толщины стенки заполняли 11 см3 (4,73 г) 8% Cu на катализаторе, обработанном кислотой углероде. Катализатор обрабатывали при 150°C в течение 16 часов в потоке водорода 50 sccm (8,3×10-7 м3/сек). Температуру повышали до 350°C в течение 2 часов в потоке водорода 50 sccm (8,3×10-7 м3/сек). Гидродехлорирование 1316mxx наблюдали при температурах, изменяющихся от приблизительно 300 до 400°C, как показано в таблице 5 ниже. Продукты реакции анализировали посредством ГХМС для предоставления следующих молярных концентраций.
Таблица 5
Темп. °C Концентрация элюата из реактора (молярный %)
ВК (сек) Моляр-ное отно-шение H2/1316 t-1336 1345 356 mff c-1336 t-1326 mxz c-1326 mxz t-1316 mxx t-1316 mxx
300 30 4:1 0,58 0,0 0,40 0,09 31,47 1,65 34,41 29,85
300 60 4:1 1,65 0,0 1,18 0,12 73,93 4,16 5,16 11,72
340 60 4:1 27,34 0,06 0,90 1,38 66,35 2,87 0,0 0,0
340 75 5:1 56,81 1,18 3,42 3,25 32,00 1,14 0,0 0,0
325 75 5:1 35,80 0,66 2,62 2,63 53,64 2,05 0,0 0,0
360 75 5:1 68,83 2,54 5,14 3,21 17,76 0,63 0,0 0,0
360 75 5:1 66,08 2,63 5,27 3,39 19,91 0,68 0,0 0,0
400 75 5:1 65,00 9,13 17,40 2,10 0,48 0,00 0,0 0,0
400 50 5:1 69,78 5,93 8,94 4,39 7,07 0,08 0,0 0,0
Пример 6
Пример 6 демонстрирует преобразование CFC-1316mxx в HFC-1336mzz посредством Cu на катализаторе фториде кальция.
Реактор из хастеллоя 10"л × 1/2" наружный диаметр × 0,034" толщины стенки заполняли 10,5 см3 (15,22 г) 8% катализатора Cu на CaF2. Катализатор обрабатывали при 300°C в течение 18 часов в потоке водорода 50 sccm (8,3×10-7 м3/сек). Гидродехлорирование 1316mxx наблюдали при диапазоне температур 250-450°C, как показано в таблице 6 ниже. Время контакта составляло 45 секунд, и молярное отношение водород:1316 составляло 5:1 для всех опытов в таблице 6. Продукты реакции анализировали посредством ГХМС для предоставления следующих молярных концентраций.
Таблица 6
Темп. °C Концентрация элюата из реактора (молярный %)
HFB t-1336 356mff c-1336 t-1326mxz c-1326mxz t-1316mxx c-1316mxx
250 0,32 0,21 0,43 0,68 0,72 0,12 87,73 9,21
250 0,27 0,21 0,38 0,59 0,71 0,12 87,65 9,49
300 0,86 0,14 0,24 0,28 0,92 0,19 87,01 9,66
300 0,95 0,16 0,31 0,15 1,04 0,21 87,14 9,48
400 8,04 0,16 0,22 0,11 1,77 0,42 75,64 12,98
450 3,36 0,13 0,19 0,09 1,93 0,48 58,16 35,07
Пример 7
Пример 7 демонстрирует преобразование CFC-1316mxx в HFC-1336 посредством Cu/Ni на катализаторе углероде.
Реактор из хастеллоя 15"л × 1" наружный диаметр × 0,074" толщины стенки заполняли 23 см3 (8,7 г) 1% Cu/1% Ni на катализаторе углерода. Катализатор обрабатывали 50 sccm (8,3×10-7 м3/сек) потока водорода в соответствии со следующим протоколом: 1 час при 50°C, с последующим 1 часом при 100°C, с последующим 1 часом при 150°C, с последующим 1 часом при 200°C, с последующим 1 часом при 250°C, с последующими 2 часами при 300°C, с последующими заключительными 16 часами при 200°C.
Гидродехлорирование 1316mxx наблюдали при диапазоне температур 200-375°C. Продукты реакции анализировали посредством ГХМС для предоставления молярных концентраций, как приведено в таблице 7.
Таблица 7
Темп. °C ВК(сек) Молярное отношение H2/1316 Концентрация элюата из реактора (молярный %)
t-1336 c-1336 t-1326mxz c-1326mxz t-1316 mxx c-1316 mxx
200 75 5:1 0,14 0,47 40,50 1,24 51,34 5,38
300 75 5:1 7,10 0,61 87,28 3,91 0,08 0,12
300 75 7,5:1 34,31 4,04 58,68 1,64 0,00 0,00
350 30 7,5:1 60,33 6,51 29,96 0,47 0,00 0,00
375 30 7,5:1 75,71 6,98 8,41 0,05 0,00 0,00
Пример 8
Пример 8 демонстрирует преобразование CFC-1316mxx в HFC-1336mzz посредством Ni на катализаторе углероде.
Реактор из хастеллоя 15"л × 1" наружный диаметр × 0,074" толщины стенки заполняли 23 см3 (10,58 г) 8% Ni на катализаторе углерода. Катализатор обрабатывали при 50 sccm (8,3×10-7 м3/сек) потока водорода в соответствии со следующим протоколом: 1 час при 50°C, с последующим 1 часом при 100°C, с последующим 1 часом при 150°C, с последующим 1 часом при 200°C, с последующим 1 часом при 250°C, с последующими 2 часами при 300°C и в заключение с последующими 16 часами при 250°C.
Гидродехлорирование 1316mxx наблюдали при диапазоне температур 250-375°C. Продукты реакции анализировали посредством ГХМС для предоставления молярных концентраций, как приведено в таблице 8.
Таблица 8
Темп. °C ВК (сек) Мо-ляр-ное от-ше-ние H2/
1316
Концентрация элюата из реактора (молярный %)
HFB t-1336 1345 356mff c-1336 t-1326 mxz c-1326 mxz t-1316 mxx c-1316 mxx
250 30 7,5:1 0,00 0,30 0,0 0,08 1,53 12,01 0,65 73,11 11,75
275 30 7,5:1 0,04 0,51 0,04 0,12 3,13 17,14 0,90 54,74 22,59
300 30 7,5:1 0,13 1,24 0,08 0,19 5,65 27,44 1,32 36,19 26,62
325 30 7,5:1 0,39 3,71 0,15 0,28 8,84 44,78 2,13 20,05 18,01
350 30 7,5:1 1,04 12,05 0,30 0,48 11,69 58,59 2,68 5,70 5,12
375 30 7,5:1 0,74 30,63 0,62 1,12 11,84 47,46 1,78 1,00 0,86
375 75 7,5:1 0,04 61,30 1,29 3,06 6,97 21,86 0,39 0,00 0,00
375 75 4:1 0,19 49,61 0,59 1,17 8,05 34,63 1,02 0,13 0,12
Пример 9
Пример 9 демонстрирует преобразование CFC-1316mxx в HFC-1336mzz посредством Ni на катализаторе фториде кальция.
В 400-мл стакане Пирекс раствор 5,698 г Ni(NO3)2·6H2O готовили в 25 мл деионизированной воды. В раствор добавляли 21,76 г CaF2 (12/30 меш, спекшийся). В раствор добавляли 46,0 г обработанного кислотой углерода (10/30 меш). Смесь помещали на нагретую плиту и сушили до влажного остатка 150-160°C на воздухе в течение ночи. Затем катализатор помещали в кварцевую пробирку, которую очищали 500 sccm (8,3×10-6 м3/сек) N2 при 25°C в течение 30 минут, затем 100 sccm каждого из He и H2 в течение 15 минут. Затем катализатор нагревали при 0,5°C/мин до 350°C в течение 12 часов в He/H2. После охлаждения в He/H2 образец пассивировали в 2% O2·N2 при комнатной температуре в течение 30 минут. Получили 22,728 г катализатора.
Реактор из хастеллоя 15"л × 1" наружный диаметр × 0,074" толщины стенки заполняли 23 см3 (15,24 г) 5% Ni на катализаторе CaF2. Катализатор обрабатывали при 50 sccm (8,3×10-7 м3/сек) потока водорода в соответствии со следующим протоколом: 1 час при 50°C, с последующим 1 часом при 100°C, с последующим 1 часом при 150°C, с последующим 1 часом при 200°C и в заключение с последующими 16 часами при 250°C.
Гидродехлорирование 1316mxx наблюдали при диапазоне температур 250-450°C и продукты, указанные в таблице 9, ниже. Время контакта составляло 75 секунд во всех случаях. Соотношение водорода к 1316mxx составляло 5:1 во всех случаях. Продукты реакции анализировали посредством ГХМС для предоставления молярных концентраций, как приведено в таблице 9.
Таблица 9
Темп.
°C
Концентрация элюата из реактора (молярный %)
t-1336 1345 356mff c-1336 t-1326mxz c-1326mxz t-1316mxx c-1316mxx
250 0,09 0,23 0,64 2,45 1,08 0,19 84,59 9,49
400 7,52 1,42 1,93 29,96 3,37 0,54 31,20 13,76
450 12,37 1,40 3,54 35,69 3,07 0,41 14,26 12,00
450 2,49 0,34 0,81 12,95 1,97 0,40 39,60 33,21
Пример 10
Пример 10 демонстрирует преобразование CFC-1316mxx в HFC-1336mzz посредством Cu/Ni/Cr на катализаторе фториде кальция.
Реактор из хастеллоя 10"л × 1/2" наружный диаметр × 0,034" толщины стенки заполняли 11 см3 катализатора Cu/Ni/Cr/CaF2 (с молярным отношением металлов 1:1:1), который получен способом, описанным в патенте США № 2900423. Данный катализатор анализировали посредством рентгеновской флуоресценции и обнаружили содержание (молярный %) 61,0% F, 13,5% Ca, 9,4% Cr, 6,9% Ni и 6,1% Cu, и 3,0% K. Катализатор обрабатывали при 250°C в течение 90 часов в потоке водорода 50 sccm (8,3×10-7 м3/сек). Повышали температуру до 400°C в течение 2 часов в потоке водорода 50 sccm (8,3×10-7 м3/сек). Гидродехлорирование 1316mxx наблюдали при диапазоне температур 350-450°C, как указано посредством результатов в таблице 10 ниже. Для всех опытов в таблице 10 соотношение водород:1316 составляло 2:1. Продукты реакции анализировали посредством ГХМС для предоставления молярных концентраций, как приведено в таблице 10.
Таблица 10
Темп. °C ВК
(сек)
Концентрация элюата из реактора (молярный %)
HFB t-1336 356 mff c-1336 t-1326mxz c-1326mxz t-1316mxx c-1316mxx
350 15 22,9 0,4 0,0 1,8 3,7 0,3 61,9 6,7
400 15 29,5 0,7 0,0 3,2 2,8 0,3 53,4 6,8
450 15 30,5 0,6 0,4 0,8 2,2 0,4 41,2 14,8
400 30 40,5 0,9 0,7 2,3 5,0 0,6 35,1 6,8
400 45 43,3 1,1 0,6 2,7 6,0 0,7 30,1 6,1
450 45 53,1 4,5 0,4 10,7 6,1 0,5 8,5 3,9
Пример 11
Пример 11 демонстрирует преобразование CFC-1316mxx в HFC-1336mzz посредством Cu/Ni/Cr на катализаторе фториде кальция.
Реактор из хастеллоя 10"л × 1/2" наружный диаметр × 0,034" толщины стенки заполняли 11 см3 катализатора Cu/Ni/Cr/CaF2 (с молярным соотношением металлов 1:2:1), который получен способом, описанным в патенте США № 2900423. Катализатор обрабатывали при 400°C в течение 2 часов в потоке водорода 50 sccm (8,3×10-7 м3/сек). Гидродехлорирование 1316mxx наблюдали при диапазоне температур 350-450°C. Продукты реакции анализировали посредством ГХМС для предоставления молярных концентраций, как указано посредством результатов в таблице 11 ниже.
Таблица 11
Темп. °C ВК (сек) Моляр-ное отно-шение H2/1316 Концентрация элюата из реактора (молярный %)
HFB t-1336 c-1336 1345 t-1326 mxz c-1326 mxz t-1316 mxx c-1316 mxx
350 30 2:1 16,91 2,77 22,22 6,90 16,96 2,25 19,55 1,60
375 30 2:1 27,69 2,81 24,73 5,66 13,25 1,08 13,64 1,05
375 45 2:1 29,86 2,22 22,32 2,94 12,85 0,98 19,42 1,86
375 45 4:1 23,30 5,68 38,11 2,25 16,84 0,85 6,68 0,70
375 45 6:1 4,51 1,69 47,19 2,4 6,89 0,42 26,09 3,16
Пример 12
Пример 12 демонстрирует приготовление катализатора меди/никеля без подложки.
Растворили 115 г (0,48 моль) Cu(NO3)2*4H2O в 250 мл воды. Растворили 145,5 г (0,5 моль) Ni(NO3)2*6H2O в 250 мл H2O, смешанной вместе с раствором меди, а затем добавили к 174 г (2,2 г) NH4HCO3, растворенного в 2 л H2O. Полученную взвесь перемешивали в течение 1 часа, дали отстояться за ночь и отфильтровали (бумажный фильтр). Твердые вещества поместили в стакан с 2 литрами воды, помешали и снова отфильтровали. Смешанные карбонаты сушили в вакууме при 90°C в течение 24 часов. Затем их размельчали и прокаливали воздухом при 400°C в течение 2 часов, затем повторно размельченными поместили в печь и восстановили в следующем порядке. Температуру повысили от комнатной до 260°C в He. В течение 4 часов концентрацию H2 увеличили до чистого H2, после чего температуру повысили до 350°C и выполняли восстановление в течение 16 часов. Образцы пассивировали посредством охлаждения до комнатной температуры в потоке He, последовательно увеличивая концентрацию O2 в потоке He в течение 2 часов. Получили 46 г порошка черного цвета. Порошок сжали и гранулировали в размер 12-20 меш.
Пример 13
Пример 13 иллюстрирует преобразование CFC-1316mxx в HFC-1336mzz посредством катализатора из примера 12.
Реактор из хастеллоя 15"л × 1" наружный диаметр × 0,074" толщины стенки заполнили 10 см3 (25 г) катализатора Cu/Ni. Катализатор обрабатывали при 50 sccm (8,3×10-7 м3/сек) потока водорода при 350°C. Гидродехлорирование 1316mxx наблюдали при диапазоне температур 250-325°C и продукты, приведенные в таблице ниже. Время контакта составляло 15-60 секунд. Отношение водорода к 1316mxx составляло 5:1 или 7:1. Продукты реакции анализировали посредством ГХМС для предоставления молярных концентраций, как приведено в таблице 12.
Таблица 12
Темп. °C
H2/1316
отношение
ВК
(сек)
t-1336 1345 356 mff c-1336 t-1326 mxz t-1316 mxx c-1316 mxx
5:1 30 250 0,09 0,47 0,15 5,7 1,4 54,75 35,98
5:1 30 300 0,54 1,28 0,49 21,56 3,41 44,24 24,98
5:1 30 325 1,04 2,13 2,13 33 4,04 36,39 17,41
7:1 30 325 1 2,23 0,65 39,2 3,18 32,46 17,36
5:1 45 325 0,88 1,54 0,51 34,28 3,66 35,2 20,39
5:1 60 325 1 1,96 062 42,78 4,46 30,27 15,24
5:1 15 325 0,5 0,8 0,27 24,26 1,41 43 28,14
Пример 14
Пример 14 иллюстрирует преобразование 4,5-дихлорперфтор-4-октена (CFC-171-14mccx) в 4,5-дигидроперфтор-4-октен (173-14mccz) посредством катализатора Cu:Ni:Cr (0,5:0,48:0,02).
Пробирку Инконель® (с наружным диаметром 5/8 дюймов) заполнили 11 см3 катализатора Cu:Ni:Cr (12-20 меш). Катализатор активировали при 350°C в течение 2 часов в потоке H2. 4,5-Дихлорперфтор-4-октен выпаривали при 200°C и подали в реактор при скорости потока 1 мл/час. Реакцию проводили при 300°C. В таблице 13 показано время контакта и отношение водорода к 171-14, а также композиция элюата из реактора, как проанализировано посредством ГХМС, для предоставления следующего молярного процента продуктов.
Таблица 13
Темп. °C Время контакта (сек) Молярное отношение H2:171-14 c-173-14 t-172-14 c-172-14 t-171-14
300 30 10:1 53,1 5,2 7,7 22,6
Пример 15
В 400-мл тефлоновом стакане приготовили раствор 3,33 г PdCl2 (60% Pd) в 100 мл 10% HCl/H2O. В стакан добавили 98 г CaF2. Взвеси дали настояться при комнатной температуре в течение 1 часа, периодически помешивая, а затем высушили при 110°C, периодически помешивая. Высушенное твердое вещество перемололи в порошок и порошок восстанавливали при 300°C в потоке He-H2 в течение 8 часов. Начальной газовой композицией для восстановления является 10% H2, увеличенный до 100% за 4 часа. Затем 2,45 г ацетата свинца растворили в 100 мл воды. В стакан с раствором ацетата свинца добавили 99,3 г 2% Pd/CaF2. Взвесь перемешивали при 50°C в течение 2 часов. Твердое вещество собрали на фильтровальной бумаге и сушили при 110°C в течение 16 часов. Катализатор сжали и гранулировали до 12-20 размера меш.
Пример 16
Реактор из хастеллоя 15"л × 1" наружный диаметр × 0,074" толщины стенки заполнили 5 см3 катализатора из примера 15. Катализатор обрабатывали при 50 sccm (8,3×10-7 м3/сек) потока водорода при 250°C. Гидродехлорирование 1316mxx изучали при диапазоне температур 200-300°C, и продукты, приведенные в таблице 14 ниже. Время контакта составило от 2,5 до 30 секунд. Отношение водорода к 1316mxx составило от 2:1 до 6,3:1, как показано. Продукты реакции проанализировали посредством ГХМС для предоставления молярных концентраций, как перечислено в таблице 14.
Таблица 14
Время кон-такта,
сек
Темп. °C
Отноше-ние H2/1316 t-1336 356 mff c-1336 t-1326 mxz 346 mdf t-1316 mxx c-1316 mxx
2:1 30 200 4,78 9,26 13,22 11,46 2,32 37,35 16,17
2:1 30 250 14,96 16,21 17,97 25,4 3,21 17,22 2,65
2:1 4 250 2,66 2,85 13,03 8,91 1,14 41,28 23,37
4:1 2,5 250 2,79 3,59 13,52 8,96 1,42 40,54 22,56
6,3:1 2,5 200 2,92 5,65 12,57 12,83 1,73 47,16 13,65
6,3:1 2,5 250 6,68 8,11 23,58 21,26 1,32 31,64 5,39
Следует отметить, что могут потребоваться не все действия, описанные выше в общем описании или примерах, часть определенного действия может не потребоваться, и что одно или более дополнительных действий могут быть выполнены в дополнение к уже описанным. Более того, порядок, в котором перечислены действия, необязательно является порядком их выполнения.
В вышеприведенном описании концепты были описаны со ссылкой на определенные варианты осуществления. Однако специалистом в данной области техники будет отмечено, что различные модификации и изменения могут быть выполнены, не отходя от объема изобретения, определенного нижеследующей формулой изобретения. Соответственно, описание и иллюстративный материал должны быть рассмотрены скорее в смысле иллюстрации, а не ограничения, и подразумевается, что все такие модификации должны быть включены в объем изобретения.
Выгоды, другие преимущества и решения задач были описаны выше со ссылкой на определенные варианты осуществления. Однако выгоды, преимущества, решения задач и любой признак(и), которые могут повлечь выгоду, преимущество или решение, которые появятся или станут более четко выраженными, не будут трактоваться как критический, требуемый или основной признак любого или всех пунктов формулы.
Следует также отметить, что для ясности определенные признаки, описанные здесь в контексте с отдельными вариантами осуществления, могут быть также даны в комбинации в одном варианте осуществления. И наоборот, различные признаки, которые для краткости описаны в контексте одного варианта осуществления, могут также быть предоставлены по отдельности или в любой подкомбинации. Также любая ссылка на значения, которые заданы в диапазонах, включает все и каждое значение в пределах данного диапазона.

Claims (11)

1. Способ получения фторсодержащих олефинов, включающий контактирование хлорфторалкена формулы RfCCl=CClRf, где каждый Rf является перфторалкильной группой, независимо выбранной из группы, состоящей из CF3, C2F5, n-C3F7, i-C3F7, n-C4F9, i-C4F9 и t-C4F9, и где одной из групп Rf может быть F, с водородом в присутствии катализатора при температуре от приблизительно 200 до приблизительно 450°C, чтобы вызвать замещение хлорных заместителей хлорфторалкена водородом для получения фторсодержащего олефина, имеющего формулу Е- или Z-R1CH=CHR2, где каждый R1 и R2 является перфторалкильными группами, независимо выбранными из группы, состоящей из CF3, C2F5, n-C3F7, i-C3F7, n-C4F9, i-C4F9 и t-C4F9, и где R2 может быть F.
2. Способ по п.1, отличающийся тем, что указанный катализатор выбирают из группы, состоящей из меди на углероде, меди на фториде кальция, меди и никеля на углероде, никеля на углероде, меди/никеля/хрома на фториде кальция и сплавов меди и никеля без подложки.
3. Способ по п.1, отличающийся тем, что каждый Rf является CF3.
4. Способ по п.1, отличающийся тем, что каждый Rf является n-C3F7.
5. Способ по п.1, отличающийся тем, что каждый из R1 и R2 является CF3.
6. Способ по п.1, отличающийся тем, что каждый из R1 и R2 является n-C3F7.
7. Способ по п.1, отличающийся тем, что отношение водорода к хлорфторалкену составляет от приблизительно 1:1 до приблизительно 10:1.
8. Способ по п.1, отличающийся тем, что отношение водорода к хлорфторалкену составляет от приблизительно 1:1 до приблизительно 7,5:1.
9. Способ по п.2, отличающийся тем, что молярное отношение медь : никель : хром в катализаторе медь/никель/хром на фториде кальция составляет от приблизительно 0 до приблизительно 1 меди, от приблизительно 0,5 до приблизительно 3,0 никеля и от приблизительно 0 до приблизительно 2 хрома.
10. Способ по п.2, отличающийся тем, что количество меди на углероде или фториде кальция составляет от приблизительно 1 до приблизительно 25% по весу.
11. Способ по п.2, отличающийся тем, что количество меди на углероде или фториде кальция составляет от приблизительно 5 до приблизительно 25% по весу.
RU2010103460/04A 2007-07-03 2008-06-30 Способ гидродехлорирования для получения гидрофторированных олефинов RU2476414C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US95819007P 2007-07-03 2007-07-03
US60/958,190 2007-07-03
US451807P 2007-11-27 2007-11-27
US61/004,518 2007-11-27
PCT/US2008/068695 WO2009006358A1 (en) 2007-07-03 2008-06-30 Method of hydrodechlorination to produce dihydrofluorinated olefins

Publications (2)

Publication Number Publication Date
RU2010103460A RU2010103460A (ru) 2011-08-10
RU2476414C2 true RU2476414C2 (ru) 2013-02-27

Family

ID=39942915

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010103460/04A RU2476414C2 (ru) 2007-07-03 2008-06-30 Способ гидродехлорирования для получения гидрофторированных олефинов

Country Status (11)

Country Link
US (3) US7795482B2 (ru)
EP (1) EP2173693B1 (ru)
JP (3) JP5660891B2 (ru)
KR (1) KR20100046147A (ru)
CN (2) CN103524297B (ru)
BR (1) BRPI0810961A2 (ru)
CA (1) CA2686603A1 (ru)
ES (1) ES2443024T3 (ru)
RU (1) RU2476414C2 (ru)
TW (1) TW200922906A (ru)
WO (1) WO2009006358A1 (ru)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795482B2 (en) 2007-07-03 2010-09-14 E. I. Du Pont De Nemours And Company Method of hydrodechlorination to produce dihydrofluorinated olefins
US7641808B2 (en) * 2007-08-23 2010-01-05 E.I. Du Pont De Nemours And Company Azeotropic compositions comprising fluorinated olefins for cleaning applications
US8399721B2 (en) * 2008-12-22 2013-03-19 E I Du Pont De Nemours And Company Method of hydrodechlorination to produce dihydrofluorinated olefins
MY159879A (en) 2009-06-03 2017-02-15 Du Pont Chiller apparatus containing cis-1,1,1,4,4,4-hexafluoro-2-butene and methods of producing cooling therein
ES2581516T3 (es) 2009-09-16 2016-09-06 The Chemours Company Fc, Llc Aparato enfriador que contiene trans-1,1,1,4,4,4-hexafluoro-2-buteno y procedimientos para producir enfriamiento en él
ES2582406T3 (es) 2009-09-16 2016-09-12 The Chemours Company Fc, Llc Aparato que comprende cis-1,1,1,4,4,4-hexafluoro-2-buteno y trans-1,2-dicloroetileno y procedimientos para producir enfriamiento en él
US20110144216A1 (en) * 2009-12-16 2011-06-16 Honeywell International Inc. Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene
US20110269860A1 (en) 2010-04-28 2011-11-03 E.I. Du Pont De Nemours And Company Foam expansion agent compositions containing hydrohaloolefin butene and water and their uses in the preparation of polyurethane and polyisocyanurate polymer foams
US8604257B2 (en) * 2010-05-21 2013-12-10 Honeywell International Inc. Process for the preparation of fluorinated cis-alkene
US8524955B2 (en) 2010-05-21 2013-09-03 Honeywell International Inc. Process for the preparation of hexafluoro-2-butyne
CN101961658B (zh) * 2010-09-07 2013-03-06 西安近代化学研究所 氟化钙基氟化催化剂及其用途
KR101944840B1 (ko) * 2010-11-02 2019-02-01 더 케무어스 컴퍼니 에프씨, 엘엘씨 클로로플루오로화합물의 탈할로겐화를 위한 구리-니켈 촉매의 용도
WO2012064477A2 (en) 2010-11-10 2012-05-18 E. I. Du Pont De Nemours And Company Compositions comprising cis-1,1,1,4,4,4-hexafluoro-2-butene and 2-difluoromethoxy-1,1,1,2-tetrafluoroethane and uses thereof
BR112014003778B1 (pt) 2011-08-19 2021-04-06 E.I. Du Pont De Nemours And Company Processo para a recuperação de calor, sistema de ciclo de rankine orgânico e método para a substituição de hfc-245fa
US9003797B2 (en) 2011-11-02 2015-04-14 E L Du Pont De Nemours And Company Use of compositions comprising 1,1,1,2,3-pentafluoropropane and optionally Z-1,1,1,4,4,4-hexafluoro-2-butene in power cycles
US20130104573A1 (en) 2011-11-02 2013-05-02 E I Du Pont De Nemours And Company Use of compositions comprising 1,1,1,2,3-pentafluoropropane and optionally z-1,1,1,4,4,4-hexafluoro-2-butene in chillers
US20130104575A1 (en) 2011-11-02 2013-05-02 E I Du Pont De Nemours And Company Use of compositions comprising 1,1,1,2,3-pentafluoropropane and optionally z-1,1,1,4,4,4-hexafluoro-2-butene in high temperature heat pumps
KR20140105797A (ko) 2011-12-02 2014-09-02 이 아이 듀폰 디 네모아 앤드 캄파니 Z-1,1,1,4,4,4-헥사플루오로-2-부텐을 함유하는 폼 팽창제 조성물, 및 폴리우레탄 및 폴리아이소시아누레이트 중합체 폼의 제조에 있어서 그의 용도
WO2013106305A1 (en) * 2012-01-09 2013-07-18 E.I. Du Pont De Nemours And Company Process for reactor passivation
IN2014DN06771A (ru) * 2012-02-17 2015-05-22 Du Pont
JP5817591B2 (ja) * 2012-03-01 2015-11-18 旭硝子株式会社 2,3,3,3−テトラフルオロプロペンの製造方法
CN103373896B (zh) * 2012-04-13 2015-03-18 中化蓝天集团有限公司 一种1,1,1,4,4,4-六氟-2-丁烯的制备方法
TW201413192A (zh) 2012-08-01 2014-04-01 Du Pont E-1,1,1,4,4,4-六氟-2-丁烯在熱泵的使用
KR102660930B1 (ko) * 2014-02-07 2024-04-26 더 케무어스 컴퍼니 에프씨, 엘엘씨 Z-1,1,1,4,4,4-헥사플루오로-2-부텐의 생산을 위한 통합 공정
CN111718234A (zh) 2014-04-16 2020-09-29 科慕埃弗西有限公司 将氯氟丙烷和氯氟丙烯转化成更需要的氟丙烷和氟丙烯
EP3187477A4 (en) 2014-08-25 2018-04-11 Asahi Glass Company, Limited Process for producing hydrofluoroolefin
WO2016031778A1 (ja) * 2014-08-25 2016-03-03 旭硝子株式会社 ハイドロフルオロオレフィンの製造方法
EP3253844B1 (en) 2015-02-06 2022-06-22 The Chemours Company FC, LLC Compositions comprising z-1,1,1,4,4,4-hexafluoro-2-butene and uses thereof
EP3253845B1 (en) 2015-02-06 2021-08-04 The Chemours Company FC, LLC Compositions comprising e-1,1,1,4,4,4-hexafluoro-2-butene and uses thereof
EP3331846B1 (en) 2015-08-07 2020-10-28 The Chemours Company FC, LLC Catalytic isomerization of z-1,1,1,4,4,4-hexafluoro-2-butene
CA3010359C (en) * 2016-01-22 2022-07-12 The Chemours Company Fc, Llc Foaming of polyisocyanate/active hydrogen-containing compound reaction product
CN107262092B (zh) * 2017-06-16 2021-03-09 巨化集团技术中心 一种合成顺式1,1,1,4,4,4-六氟-2-丁烯的催化剂及其制备方法和用途
CN107586251A (zh) * 2017-07-26 2018-01-16 江苏蓝色星球环保科技股份有限公司 一种1,1,1,4,4,4‑六氟‑2‑丁烯的制备方法
CN110437028B (zh) * 2019-07-30 2020-10-27 厦门大学 一种以铜为催化剂的氯代芳香化合物(R1-Xm)的脱氯方法
CN110981688B (zh) * 2019-10-31 2021-03-23 中国矿业大学(北京) 一种气相催化合成3,4,4-三氟环丁烯的方法
CN112876335B (zh) * 2019-11-29 2022-05-10 浙江蓝天环保高科技股份有限公司 一种1,1,1,4,4,4-六氟-2-丁烯的制备方法
CN110975893B (zh) * 2019-12-18 2023-04-18 浙江工业大学 用于二氟一氯甲烷高温裂解制四氟乙烯和六氟丙烯的金属氟化物催化剂、其制备方法和应用
CN111574321B (zh) * 2020-06-17 2021-09-03 广东电网有限责任公司电力科学研究院 一种反式-1,1,1,4,4,4-六氟-2-丁烯的制备方法
WO2022085544A1 (ja) 2020-10-22 2022-04-28 Agc株式会社 電気設備
CN112657508B (zh) * 2020-12-04 2022-07-08 中化蓝天集团有限公司 一种核壳结构的加氢脱氯催化剂、其制备方法及应用
EP4266339A1 (en) 2020-12-16 2023-10-25 Agc Inc. Electric equipment, filling equipment, and storage equipment
CN112745192A (zh) * 2020-12-31 2021-05-04 山东华夏神舟新材料有限公司 顺式六氟-2-丁烯的连续制备方法
CN114716297B (zh) * 2021-01-06 2023-10-27 浙江省化工研究院有限公司 一种e-1,1,1,4,4,4-六氟-2-丁烯的制备方法
CN112811975B (zh) * 2021-04-22 2021-07-30 泉州宇极新材料科技有限公司 气相异构化制备z-1-r-3,3,3-三氟丙烯的方法
CN114870858A (zh) * 2022-03-04 2022-08-09 中化蓝天集团有限公司 一种抗积碳催化剂、其制备方法及应用

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2697124A (en) * 1952-02-25 1954-12-14 Kellogg M W Co Dehalogenation of fluorohalocarbons
US2774799A (en) * 1954-04-01 1956-12-18 Kellogg M W Co Selective dehydrohalogenation of fluorohaloalkanes using a copper catalyst
US2802887A (en) * 1955-08-08 1957-08-13 Allied Chem & Dye Corp Hydrogenation of chlorotrifluoroethylene
US2900423A (en) * 1957-12-13 1959-08-18 Allied Chem Manufacture of perfluoropropene
GB974612A (en) * 1962-07-03 1964-11-04 Allied Chem Preparation of hexafluoroisopropyl alcohol
EP0053657A1 (en) * 1980-12-09 1982-06-16 Allied Corporation Preparation of chlorotrifluoroethylene and trifluoroethylene
WO1990008748A1 (en) * 1989-02-03 1990-08-09 E.I. Du Pont De Nemours And Company Improved hydrogenolysis/dehydrohalogenation process
EP0471320A1 (en) * 1990-08-13 1992-02-19 F-Tech Inc. Method for producing trifluoroethylene
EP0485246A1 (fr) * 1990-11-06 1992-05-13 Elf Atochem S.A. Fabrication de fluoroéthylènes et de chlorofluoroéthylènes
US5243103A (en) * 1988-05-24 1993-09-07 Solvay S.A. Process for obtaining catalytic compositions and process for hydrogenation of chlorofluoroalkenes by means of these compositions
RU2026279C1 (ru) * 1989-02-03 1995-01-09 Е.И.Дюпон Де Немур Энд Компани Способ гидрогенолиза и/или дегидрогалогенирования фторгалоуглеродов и/или фторгалоуглеводородов
RU2053841C1 (ru) * 1993-05-26 1996-02-10 Иркутский институт органической химии СО РАН Катализатор селективного гидрирования третичных ацетиленовых спиртов
UA65595C2 (en) * 1997-11-06 2004-04-15 Beseitigung Von Umweltshaden M Supported catalyst and method for producing fluorocarbons
WO2004096737A2 (en) * 2003-04-29 2004-11-11 Central Glass Company, Limited Fluorobutene derivatives and process for producing same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS462324B1 (ru) * 1966-12-16 1971-01-21
IT1186307B (it) * 1985-06-10 1987-11-26 Montefluos Spa Procedimento per la preparazione di 1,2-difluoroetilene e 1-cloro-1,2-difluoro-etilene
JP2526661B2 (ja) * 1989-04-27 1996-08-21 ダイキン工業株式会社 フルオロアルキルビニル化合物の製造法
US5068472A (en) 1989-12-19 1991-11-26 E. I. Du Pont De Nemours And Company Multistep synthesis of hexafluoropropylene
US5097082A (en) * 1990-06-05 1992-03-17 E. I. Du Pont De Nemours And Company Production of saturated halohydrocarbons
JPH04286233A (ja) * 1991-03-14 1992-10-12 Nec Corp スタッフ同期回路
JP3275338B2 (ja) 1992-01-13 2002-04-15 ダイキン工業株式会社 1,1,1,4,4,4−ヘキサフルオロブタンの製造方法
JPH05213793A (ja) 1992-02-06 1993-08-24 Daikin Ind Ltd 1,1,1,4,4,4−ヘキサフルオロブタンの製造方法
JPH05215793A (ja) 1992-02-07 1993-08-24 Fujitsu Ltd 消費電流積算方式
JP2806781B2 (ja) * 1993-02-01 1998-09-30 セントラル硝子株式会社 フッ素化炭化水素の製造方法
DE4305163A1 (de) 1993-02-19 1994-08-25 Bayer Ag Verfahren zur Herstellung von Hexafluorbuten
JP2003176243A (ja) * 1993-06-10 2003-06-24 Daikin Ind Ltd 1,1,1,3,3−ペンタフルオロプロパン及び/又は1,1,3,3,3−ペンタフルオロプロペンの製造方法
WO1995005353A1 (en) 1993-08-16 1995-02-23 Alliedsignal Inc. Process for combining chlorine-containing molecules to synthesize fluorine-containing products
US5892135A (en) 1996-08-23 1999-04-06 E. I. Du Pont De Nemours And Company Process for the production of trifluoroethylene
JP3876951B2 (ja) * 1998-09-08 2007-02-07 日本ゼオン株式会社 フルオロシクロペンテン類の製造方法
US7795482B2 (en) 2007-07-03 2010-09-14 E. I. Du Pont De Nemours And Company Method of hydrodechlorination to produce dihydrofluorinated olefins

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2697124A (en) * 1952-02-25 1954-12-14 Kellogg M W Co Dehalogenation of fluorohalocarbons
US2774799A (en) * 1954-04-01 1956-12-18 Kellogg M W Co Selective dehydrohalogenation of fluorohaloalkanes using a copper catalyst
US2802887A (en) * 1955-08-08 1957-08-13 Allied Chem & Dye Corp Hydrogenation of chlorotrifluoroethylene
US2900423A (en) * 1957-12-13 1959-08-18 Allied Chem Manufacture of perfluoropropene
GB974612A (en) * 1962-07-03 1964-11-04 Allied Chem Preparation of hexafluoroisopropyl alcohol
EP0053657A1 (en) * 1980-12-09 1982-06-16 Allied Corporation Preparation of chlorotrifluoroethylene and trifluoroethylene
US5243103A (en) * 1988-05-24 1993-09-07 Solvay S.A. Process for obtaining catalytic compositions and process for hydrogenation of chlorofluoroalkenes by means of these compositions
WO1990008748A1 (en) * 1989-02-03 1990-08-09 E.I. Du Pont De Nemours And Company Improved hydrogenolysis/dehydrohalogenation process
RU2026279C1 (ru) * 1989-02-03 1995-01-09 Е.И.Дюпон Де Немур Энд Компани Способ гидрогенолиза и/или дегидрогалогенирования фторгалоуглеродов и/или фторгалоуглеводородов
EP0471320A1 (en) * 1990-08-13 1992-02-19 F-Tech Inc. Method for producing trifluoroethylene
EP0485246A1 (fr) * 1990-11-06 1992-05-13 Elf Atochem S.A. Fabrication de fluoroéthylènes et de chlorofluoroéthylènes
RU2053841C1 (ru) * 1993-05-26 1996-02-10 Иркутский институт органической химии СО РАН Катализатор селективного гидрирования третичных ацетиленовых спиртов
UA65595C2 (en) * 1997-11-06 2004-04-15 Beseitigung Von Umweltshaden M Supported catalyst and method for producing fluorocarbons
WO2004096737A2 (en) * 2003-04-29 2004-11-11 Central Glass Company, Limited Fluorobutene derivatives and process for producing same

Also Published As

Publication number Publication date
CN103524297B (zh) 2016-08-17
RU2010103460A (ru) 2011-08-10
CA2686603A1 (en) 2009-01-08
JP2010532760A (ja) 2010-10-14
USRE45076E1 (en) 2014-08-12
JP5660891B2 (ja) 2015-01-28
KR20100046147A (ko) 2010-05-06
US7795482B2 (en) 2010-09-14
CN101687736B (zh) 2013-10-30
US20090240089A1 (en) 2009-09-24
JP2015061861A (ja) 2015-04-02
EP2173693B1 (en) 2013-12-18
US20090012335A1 (en) 2009-01-08
EP2173693A1 (en) 2010-04-14
WO2009006358A1 (en) 2009-01-08
BRPI0810961A2 (pt) 2016-06-07
ES2443024T3 (es) 2014-02-17
JP2017075162A (ja) 2017-04-20
TW200922906A (en) 2009-06-01
US7795481B2 (en) 2010-09-14
CN103524297A (zh) 2014-01-22
CN101687736A (zh) 2010-03-31

Similar Documents

Publication Publication Date Title
RU2476414C2 (ru) Способ гидродехлорирования для получения гидрофторированных олефинов
US7872161B2 (en) Process for producing 2,3,3,3-tetrafluoropropene
US5945573A (en) Process for the manufacture of 1,1,1,3,3-pentafluoropropane
US7687670B2 (en) Coproduction of hydrofluoroolefins
US8148586B2 (en) Catalytic production processes for making tetrafluoropropenes and pentafluoropropenes
US8133406B2 (en) Processes for producing 2,3,3,3-tetrafluoropropene and/or 1,2,3,3-tetrafluoropropene
US8058489B2 (en) Processes for producing pentafluoropropenes and azeotropes comprising HF and certain halopropenes of the formula C3Cl2F4, C3ClF5, or C3HF5
WO2007019355A1 (en) Process for the preparation of 1,3,3,3-tetrafluoropropene and/or 2,3,3,3-tetrafluoropropene
EP2091899A2 (en) Processes for producing 2,3,3,3-tetrafluoropropene, a process for producing 1-chloro-2,2,3,3,3-pentafluoropropane and azeotropic compositions of 1-chloro-2,3,3,3-tetrafluoropropene with hf
US9000241B2 (en) Use of copper-nickel catalysts for dehlogenation of chlorofluorocompounds
WO2007019358A2 (en) Process for the preparation of 1,3,3,3-tetrafluoropropene and/or 1,1,3,3,3-pentafluoropropene
EP2099733A1 (en) Process for the synthesis and separation of hydrofluoroolefins
US8163964B2 (en) Processes for producing pentafluoropropenes and certain azeotropes comprising HF and certain halopropenes of the formula C3 HClF4
WO2007019353A1 (en) Process for the preparation of 1,1,1,3,3-pentafluoropropane and 1,1,1,2,3-pentafluoropropane
US8053611B2 (en) Process or the preparation of 1,1,1,3,3,3-hexafluoro-propane and at least one of 1,1,1,2,3,3-hexafluoropropane, hexafluoropropane and 1,1,1,2,3,3,3-heptafluoropropane
WO2007019357A1 (en) Process for the preparation of 1,1,1,3,3-pentafluoropropane and/or 1,1,1,3,3,3,-hexafluoropropane
CN115403442A (zh) 一种2,3,3,3-四氟丙烯的制备方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130701