RU2077541C1 - Способ получения синдиотактических полиолефинов и синдиотактический полипропилен - Google Patents

Способ получения синдиотактических полиолефинов и синдиотактический полипропилен Download PDF

Info

Publication number
RU2077541C1
RU2077541C1 SU894614707A SU4614707A RU2077541C1 RU 2077541 C1 RU2077541 C1 RU 2077541C1 SU 894614707 A SU894614707 A SU 894614707A SU 4614707 A SU4614707 A SU 4614707A RU 2077541 C1 RU2077541 C1 RU 2077541C1
Authority
RU
Russia
Prior art keywords
catalyst
polymer
syndiotactic
ring
catalysts
Prior art date
Application number
SU894614707A
Other languages
English (en)
Inventor
Разави Аббас
А.Ивен Джон
Original Assignee
Фина Текнолоджи Инк
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22821664&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2077541(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Фина Текнолоджи Инк filed Critical Фина Текнолоджи Инк
Application granted granted Critical
Publication of RU2077541C1 publication Critical patent/RU2077541C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/72Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44
    • C08F4/74Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from refractory metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/622Component covered by group C08F4/62 with an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/639Component covered by group C08F4/62 containing a transition metal-carbon bond
    • C08F4/63912Component covered by group C08F4/62 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/639Component covered by group C08F4/62 containing a transition metal-carbon bond
    • C08F4/6392Component covered by group C08F4/62 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/63922Component covered by group C08F4/62 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/63927Component covered by group C08F4/62 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Настоящее изобретение охватывает металлоценновый катализатор, используемый для получения синдиотактических полиолефинов. Этот катализатор включает металлоцен с мостиковой связью в котором одно из циклопентадиениловых колец замещено иным образом, чем другое кольцо. Установлено, что этот тип катализатора является в высокой степени синдиоспецифическим, и кроме того он образует полир с новой микроструктурой. Кроме того, данное изобретение включает использование одного или более чем одного из данных катализаторов в процессе полимеризации. Этот катализатор обычно описывается формулой:
R"(CpRn) (CpR'm) MeQк,
в которой каждая из Cp представляет собой циклопентадиениловое кольцо или замещенное циклопентадиениловое кольцо; каждая из Rn и R'm имеют одинаковые или различные значения и представляют собой гидрокарбильные радикалы с содержанием 1-20 атомов C; R" является структурным мостиком между двумя кольцами Cp, придающим стереожесткость катализатору. Me представляет собой металл из группы 4 b, 5 b или 6 b периодической таблицы элементов; каждая из Q представляет собой гидрокарбильный радикал, содержащий 1-20 атомов углерода или представляет собой галоген; 0≅k≅3; 0≅n≅4; 1≅m≅4; и где R'm выбрана таким образом, чтобы (CpR'm) стерически было кольцом отличным от (CpR'n). 6 з. п. ф-лы, 4 табл., 4 ил.

Description

Изобретение касается металлоценового катализатора, используемого для получения синдиотактических полиолефинов. Данный катализатор состоит из металлоцена с мостиковой связью, в котором одно из циклопентадиениловых колец замещено отличным образом от другого кольца. Кроме того, данное изобретение охватывает способ получения синдиотактических полиолефинов, который включает использование одного или более чем одного из описанных катализаторов, а также способ получения этих катализаторов.
Изобретение охватывает катализатор и способ полимеризации олефинов, включающих три или более атомов углерода, с получением полимера синдиотактической стереохимической конфигурации. Данные катализатор и способ применяются, в частности, для полимеризации пропилена с получением высоко кристаллической формы синдиотактического полипропилена с новой микроструктурой.
Как уже известно, синдиотактические полимеры имеют уникальную стереохимическую структуру, в которой мономерные звенья, имеющие энантиоморфную конфигурацию асимметрических атомов углерода, следуют друг за другом с правильным чередованием в основной молекулярной цепи. Синдиотактический полипропилен впервые был описан Натта и до. в патенте США N 3258455. Группой Натта был получен синдиотактический полипропилен с использованием катализатора, полученного из трихлорида титана и монохлорида, полученного из трихлорида титана и монохлорида диэтилалюминия. В патенте Натта и др. США N 3305538 описывается использование триацетилацетоната ванадия или галогенированных ванадиевых соединений в комбинации с органическими алюминиевыми соединениями для получения синдиотактического полипропилена. В патенте США N 3364190 описывается система катализатора, состоящая из тонко измельченного трихлорида титана или ванадия, хлорида алюминия, триалкилалюминия и фосфорсодержащего основания Льюиса для получения синдиотактического полипропилена.
Как описано в этих патентных публикациях и как известно из существующей практики, структура и свойства синдиотактического полипропилена значительно отличаются от структуры и свойств изотактического полипропилена. Изотактическая структура обычно описывается как структура, включающая метиловые группы, связанные с углеродными атомами последовательных мономерных звеньев с одной и той же стороны гипотетической плоскости, проходящей через основную цепь полимера, например метиловые группы, находящиеся все сверху или все снизу плоскости. Используя модель Фишера, стереохимическую последовательность изотактического полипропилена можно описать следующим образом:
Figure 00000002

Другим путем описания структуры является использование ЯМР. Номенклатура ЯМР Бови для изотактической пентады являетсяmm mm. где каждая "m" представляет собой "мезо" диаду или последовательные метиловые группы с одной и той же стороны плоскости. Как уже известно из существующей практики, любое отклонение или инверсия в структуре молекулярной цепи снижает степень изотактичности и степень кристалличности полимера.
В отличие от изотактических полимеров, синдиотактические полимеры это такие полимеры, в которых метиловые группы связаны с третичными углеродными атомами последовательных мономерных звеньев в цепи, полипропилен показан как полимер зигзагообразной конфигурации, как показано ниже:
Figure 00000003

Используя модель Фишера, можно представить структуру синдиотактического полимера следующим образом:
Figure 00000004

В номенклатуре ЯМР это пятивалентное звено представлено какrrr. в котором r представляет собой рацемическую диаду, то есть последовательные метиловые группы, расположенные с разных сторон плоскости. Процент диад "r" в молекулярной цепи определяет степень синдиотактичности полимера. Синдиотактические полимеры представляют собой кристаллические вещества и, как и изотактические полимеры, не растворимы в ксилоле. Эта кристалличность отличает от синдиотактической, так и изотактический полимеры от атактического полимера, который растворим в ксилоле. Атактический полимер не имеет правильного порядка конфигураций повторяющихся звеньев в полимерной цепи и образует воскообразный продукт.
Хотя катализатор может привести к образованию всех трех типов полимера, желателен катализатор, способный привести к образованию предпочтительно изотактического или синдиоактического полимера с очень небольшим количеством атактического полимера. Катализаторы, образующие изотактические полиолефины, описываются в рассматриваемых одновременно патентных заявках США N 034472, поданной 3 апреля 1987 года; N 096075, поданной 11 сентября 1987 года; и N 095755, поданной 11 сентября 1987 года. Эти патентные заявки описывают клешневидные стереожесткие металлоценовые катализаторы, которые полимеризуют олефины с образованием изотактических полимеров, и особенно полезное применение они находят для полимеризации высоко изотактического полипропилена. Однако данное изобретение предусматривает другой класс металлоценовых катализаторов, которые находят полезное использование для полимеризации синдиотактических полиолефинов, и, в частности, синдиотактического полипропилена.
Наряду с открытым новым катализатором настоящее изобретение охватывает синдиотактический полипропилен с новой микроструктурой. Было установлено, что структура катализатора не только влияет на образование синдиотактического полимера, а не изотактического полимера, но также влияет на тип и число отклонений в молекулярной цепи от основного ряда повторяющихся звеньев в полимере. Как было известно ранее, катализаторы, используемые для получения синдиотактического полипропилена, осуществляли регулирование конца молекулярной цепи в ходе всего механизма полимеризации. Эти известные ранее катализаторы, например такие, которые описаны Натта и др. в описанной выше публикации, приводят к образованию предпочтительно синдиотактических полимеров, имеющих структуру:
Figure 00000005

или в номенклатуре ЯМР-структуруrrrrrmrrrrr.
Анализ ЯМР этой структуры синдиотактического полипропилена представлен Замбелли и др. Maxromolecules том 13, стр. 267-270, 1980 г. Анализ Замбелли показывает преобладание единственной мезо диаоды над любым другим отклонением в молекулярной цепи. Однако было установлено, что катализаторы, отвечающие данному изобретению, образуют полимер с микроструктурой, отличной от известной и описанной ранее и в дополнение к этому имеющий высокий процент рацемических диад в структуре.
Настоящее изобретение предусматривает катализатор и способ получения синдиотактических полиолефинов, в частности синдиотактического полипропилена. Катализатор и способ данного изобретения обеспечивают получение полимера с высоким синдиотактическим показателем и с новой синдиотактической микроструктурой. Кроме того, данное изобретение охватывает способ получения синдиотактического полипропилена, имеющего широкий диапазон распределения молекулярного веса, и способ регулирования свойств полимера, таких как точка плавления, за счет изменения структуры катализатора.
Новый катализатор, отвечающий данному изобретению, является стереожестким металлоценовым катализатором, описываемый формулой:
R"(CpRn)(CpR'm)MeQк
в которой каждая Cp представляет собой циклопентадиениловoе или замещенное циклопентадиениловое кольцо; каждая из Rn и R'm представляет собой гидрокарбильный радикал с содержанием 1-20 атомов углерода; R" представляет собой структурный мостик между двумя кольцами Cp, придающий стереожесткость кольцам Cp; Me представляет собой переходный металл; каждая Q представляет собой гидрокарбильный радикал или галоген. Кроме того, R'm выбирается таким образом, чтобы (CpR'm) было замещенным циклопентадиеновым кольцом, стерически отличным от (CpRn. Было установлено, что использование металлоценового катализатора со стерически отличными циклопентадиениловыми кольцами приводит к образованию предпочтительно синдиотактического полимера, а не изотактического полимера.
Кроме того, данное изобретение охватывает способ получения синдиотактических полиолефинов, в частности синдиотактического полипропилена, который включает использование, по меньшей мере, одного катализатора, описанного представленной выше формулой, и ввод этого катализатора в реакционную зону полимеризации, включающую олефиновый мономер. Кроме того, в реакционную зону может быть введено соединение и/или сокатализатор, являющиеся электронным донором. Данный катализатор может быть также предварительно полимеризован до ввода его в реакционную зону и/или до стабилизации реакционных условий в реакторе.
Настоящее изобретение охватывает также способ получения синдиотактических полиолефинов, имеющих широкое распределение по молекулярному весу. Данный способ включает использование не менее двух различных катализаторов, описанных приведенной выше формулой, в процессе полимеризации.
Кроме того, установлено, что свойства полимера, полученного описанным здесь способом полимеризации, могут регулироваться путем изменения температуры полимеризации или структуры катализатора. В частности, было установлено, что более высокая температура полимеризации приводит в результате к образованию синдиотактического полимера со смешанной микроструктурой. Кроме того, установлено, что точки плавления полимера зависят от температуры реакции, соотношения катализатор и сокатализатор и структуры катализатора. Более высокая температура реакции обычно приводит к менее кристаллическому полимеру, имеющем более низкую точку плавления. Далее полимерные продукты с различными точками плавления могут получаться в результате изменения структуры катализатора.
Изобретение охватывает способ получения связанного мостиковой связью металлоценового катализатора, включающий контактирование циклопентадиена или замещенного циклопентадиена с фульвеном или замещенным фульвеном в условиях реакции, обеспечивающих получение циклопентадиена или замещенного циклопентадиена с мостиковой связью. Далее данный способ включает контактирование циклопентадиена с мостиковой связью с соединением металла формулы MeO, как определено выше, в условиях реакций, обеспечивающих комплексообразование дициклопентадиена с мостиковой связью с получением металлоцена с мостиковой связью.
Рисунок 1 является иллюстрацией структуры предпочтительного катализатора, отвечающего данному изобретению, в частности является иллюстрацией структуры дихлорида изо-пропил (циклопентадиенил) (флуоренил) гафния.
Рисунок 2 показывает спектр ЯМР полимера, полученного согласно примеру 1, с использованием дихлорида изопропил (циклопентадиенил) (флуоренил) циркония. Этот полимер однократно перекристаллизован из ксилола.
Рисунки 3 и 4 являются иллюстрацией ИК-спектров полимеров, полученных согласно примерам 7 и 8 соответственно, где полимер трехкратно перекристаллизован из ксилола.
Настоящее изобретение предусматривает катализатор и способ получения синдиотактических полиолефинов, в частности полипропилена. Катализаторы, отвечающие настоящему изобретению, обеспечивают не только получение синдиотактического полипропилена, но получение полимера с новой микроструктурой.
При полимеризации пропилена или других альфа-олефинов с использованием катализатора, состоящего из соединения переходного металла, полимерный продукт обычно из смеси аморфной атактической и кристаллической растворимых в ксилоле фракций. Кристаллическая фракция может включать либо изотактический, либо синдиотактический полимер или смесь обоих полимеров. Высоко изоспецифические металлоценовые катализатора описываются в рассматриваемых одновременно патентных заявках США NN 034 472; 096 075. В противоположность катализаторам, описанным в этих патентных заявках, катализаторы, отвечающие настоящему изобретению, являются синдиоспецифическими и образуют полимер с высоким синдиотактическим показателем. Было обнаружено, что синдиотактические полимеры обычно имеют более низкие значения теплоты кристаллизации, чем соответствующие изотактические полимеры. Кроме того, при одинаковом числе дефектов в полимерной цепи синдиотактические полимеры имеют более высокую точку плавления, чем изотактические полимеры.
Металлоценовые катализаторы, отвечающие данному изобретению, могут быть описаны формулой R"(CpRn)(CpR'm)MeQк, в которой каждая Cp представляет собой циклопентадиениловое или замещенное циклопентадиениловое кольцо; Rn и R'm представляют собой гидрокарбильные радикалы с содержанием 1-20 атомов углерода, причем каждая Rn может иметь одинаковые или различные значения и каждая R'm также может иметь одинаковые или различные значения; R" представляет собой структурный мостик между двумя кольцами Cp, сообщающий стереожесткость кольцам Cp в катализаторе, и R" выбирается предпочтительно из группы, включающей алкильный радикал, содержащий 1-4 атома углерода, или гидрокарбильный радикал, содержащий кремний, германий, фосфор, азот, бор, или алюминий; Me представляет собой металл, взятый из группы 4b, 5b или 6b периодической таблицы элементов; каждая Q представляет собой гидрокарбильный радикал с содержанием 1-20 атомов углерода или галоген; 0≅K≅3; 0≅n≅4; и 1≅m≅4. Установлено для условия синдиоспецифичности Cp кольца в металлоценовых катализаторах должны быть замещены иным образом, так чтобы между кольцами Cp было стерическое различие, и ввиду этого R'm выбирается таким образом, чтобы (CpR'm представляла собой замещенное кольцо, отличное от (CpRn). Для того, чтобы получить синдиотактический полимер, очень важны характеристики групп, замещенных непосредственно в циклопентадиеновых кольцах. Так, под "стерическим различием" или "стерически различающимися" в данном описании имеется в виду различие между стерическими характеристиками Cp колец, которые регулируют приближение каждого последовательного мономерного звена, которое вводится в полимерную цепь. Стерическое различие между кольцами p вызывает блокирование мономера от неупорядоченного приближения и регулирует приближение таким образом, чтобы мономер вводился в полимерную цепь в синдиотактической конфигурации.
Можно полагать, что в процессе реакции полимеризации как катализатор, так и приближающиеся мономерные звенья, согласно данному изобретению (как определено в формуле изобретения), изомеризуются с каждым мономером, вводимым в полимерную цепь. Такая изомеризация мономера, которая регулируется стерическим блокированием различно замещенных колец Cp, приводит в результате к чередующемуся пространственному расположению, характерному для синдиотактических полимеров, и это отличается от регулирования конца цепи с использованием катализаторов, описанных Натта и др. Различный механизм реакции также приводит в результате к отличающейся структуре полимера.
Предпочтительным катализатором, отвечающим данному изобретению, является такой, в котором Me представляет собой титан, цирконий или гафний; Q представляет собой предпочтительно галоген и, наиболее предпочтительно, - хлор; к предпочтительно равно 2, но эта величина может изменяться с изменением валентности металлического атома. Примерами гидрокарбильных радикалов являются метил, этил, пропил, изопропил, бутил, изобутил, амил, азоамил, гексил, гептил, октил, нонил, децил, цетил, фенил и т. д. Другими гидрокарбильными радикалами, используемыми в данных катализаторах, являются другие алкильные, арильные, алкенильные, алкиларильные или арилалкильные радикалы. Кроме того, Rn и R'm могут включать гидрокарбильные радикалы, связанные с единственным углеродным атомом в кольце Cp, а также радикалы, которые связаны с двумя углеродными атомами в кольце. На рисунке 1 представлена структура предпочтительного катализатора дихлорида изопропил (флуоренил) (циклопентадиенил) гафния. Циркониевый аналог данного катализатора, представленный на рисунке 1, также является предпочтительным.
Данный катализатор может быть получен любым уже известным ранее способом. В нижеследующих примерах описываются два способа получения катализатора, где второй способ является предпочтительным, поскольку он обеспечивает получение более стабильного и активного катализатора. Очень важно, чтобы комплексное катализаторное соединение было "чистым", поскольку при использовании засоренных катализаторов получаются обычно низкомолекулярный аморфный полимер. Обычно получение комплексного катализаторного соединения заключается в получении и выделении Cp или замещенных Cp лиганд, которые затем химически взаимодействуют с галогенированным металлом с образованием комплекса.
Металлоценовые катализаторы, отвечающие настоящему изобретению, используются во многих уже известных ранее способах полимеризации, включая многие из тех, которые служат для получения изотактического полипропилена. При использовании катализаторов, отвечающих данному изобретению, в указанных типах способов данные способы обеспечивают получение синдиотактических полимеров, а не изотактических полимеров. Другие примеры процессов полимеризации, используемых в практике данного изобретения, включают примеры, описанные в патентной заявке США N 009712, поданной 2 февраля 1987 г, и в патентной заявке США N 095755, поданной 11 сентября 1987 года, описания которых приводятся здесь как противопоставленный материал. Эти предпочтительные процессы полимеризации включают этап предварительной полимеризации катализатора и/или предварительного контактирования катализатора и сокатализатора, и олефинового мономера до ввода катализатора в реакционную зону.
Как и в предыдущих описаниях металлоценовых катализаторов для получения изотактических полимеров, синдиотактические катализаторы, отвечающие настоящему изобретению, находят особенно полезное применение в комбинации с алюминиевым сокализатором, предпочтительно алюмоксаном, алкилалюминием или их смесью. Кроме того, может быть выделено комплексное соединение, образуемое между металлоценовым катализатором, как описано в данной заявке, и алюминиевым сокатализатором, как описано в европейской патентной заявке N 226463, опубликованной 24 июня 1987 года, принадлежащей Эксан Кемикал Пайтентс Инк. Ховард Тернер, который считается изобретателем. Согласно данному описанию, металлоцен химически взаимодействует с избытком алюмоксана в присутствии подходящего растворителя. Комплекс металлоцена и алюмоксана может быть выделен и использован в качестве катализатора при осуществлении настоящего изобретения. Алюмоксаны, используемые в комбинации с катализаторами, отвечающими настоящему изобретению, либо в реакции полимеризации, либо при получении комплекса, описанного Тернер, могут быть представлены общей формулой (R-Al-O-) в циклической форме и R(R-Al-O)n-AlR2 в линейной форме, где R представляет собой группу алкила с содержанием от 2 до 5 атомов углерода, и n является целым числом от 1 до примерно 20. Наиболее предпочтительно R представляет собой метиловую группу. Алюмоксаны могут быть получены различными известными способами. Они получаются путем контактирования воды с раствором триалкилалюминия, например триметилалюминия, в подходящем растворителе, таким как бензол. Другой предпочтительный способ включает получение алюмоксана в присутствии гидратированного сульфата меди, как описано в патенте США B 4404344, описание которого приводится здесь как противопоставленный материал. Данный способ заключается в обработке разбавленного раствора триметилалюминия в толуоле сульфатом меди. Получение других алюминиевых сокатализаторов, используемых в данном изобретении, может осуществляться способами, уже известными для специалистов в данной области.
Изложенные ниже примеры иллюстрируют настоящее изобретение и различные его преимущества и достоинства более подробно. Описываются два различных приема синтеза, обозначаемые (А) и (В), как для циркониевых, так и для гафниевых металлоценовых катализаторов. Процедуры синтеза при осуществлении обоих приемов производятся в атмосфере инертного газа с использованием метода вакуумного мешка или метода Шанка. Процесс синтеза обычно включает следующие этапы: 1) получение галогенированного или алкилированного металлического соединения; 2) получение лиганда; 3) синтез комплексного соединения; 4) очистка комплексного соединения. Синтез замещенного дициклопентадиенилового лиганда с мостиковой связью осуществляется путем контактирования фульвена или замещенного фульвена с циклопентадиенилом или замещенным циклопентадиенилом в условиях реакции, обеспечивающих получение дициклопентадиена или замещенного дициклопентадиена с мостиковой связью. Как уже известно, фульвен представляет собой Cp=C, в котором углеродный атом связан двойной связью с циклопентадиениловым кольцом. Замещенный фульвен, используемый в данной процедуре, служит для образования (CpRa)=CR'b, где фульвен замещается либо в кольце Cp, либо у концевого углеродного атома, либо и там, и там. Ra и R"b представляет собой гидрокарбильные радикалы, где Ra и R'b каждая имеют одинаковые или различные значения, и 0≅a≅4, и 0≅b≅2. Другие три этапа синтеза могут осуществляться как показано ниже или другими известными способами. Обычная формула катализатора, получаемого этими способами это изопропил (флуоренил) (циклопентадиенил) MeCl2, где Me либо цирконий, либо гафний, в зависимости от осуществляемого примера. На рисунке 1 показана структура гафниевого катализатора, и циркониевый катализатор имеет в основном такую же структуру, в которой на месте атома Hf располагается атом Zr.
Получение катализатора Способ А.
В способе А приготавливается галогенированное металлическое соединение с использованием тетрагидрофуран (ТНГ) в качестве растворителя, в результате чего тетрагидрофуран связывается с конечным катализатором, образуя комплекс. В частности, MeCl4THF получается таким же образом, как описано Manzerh. Jnorg. synth. 21, 135-36, 1982. В изложенных ниже примерах Me представляет собой цирконий и гафний, но он может представлять собой также титан или другие переходные металлы.
Замещенный дициклопентадиениловый лиганд может быть получен с использованием различных уже известных способов, выбор которых зависит от специфических мостиковых или кольцевых заместителей. Согласно предпочтительному принципу осуществления способа, изложенного в нижеследующих примерах, лиганд представляет собой 2,2-изопропил (флуорен) циклопентадиен. Для получения этого лиганда 44 г (0,25 моль) флуорена растворяют в 350 мл тетрагидрофурана в круглодонной колбе, снабженной лопастной мешалкой и капельной воронкой. Содержимым воронки является 0,25 моль метиллития (CH3Li) в простом эфире (1,4 М). CH3Li вводится по каплям в раствор флуорена, и этот раствор густо оранжево-красного цвета перемешивается в течение нескольких часов. После прекращения газовыделения раствор охлаждается до -78oС и в него вводится по каплям 100 мл тетрагидрофурана, содержащего 26,5 г (0,25 моль) 6,6-диметилфульвена. Этот раствор красного цвета медленно нагревается до комнатной температуры и перемешивается в течение ночи. Раствор обрабатывается 200 мл воды и перемешивается в течение 10 мин. Органическая фракция раствора экстрагируется несколько раз 100-миллилитровыми порциями простого диэтилового эфира, и соединенные органические фазы высушиваются над сульфатом магния. После удаления простого эфира из органической фазы остается желтое твердое вещество, которое растворяется в 500 мл флороформа и перекристаллизовывается путем ввода избыточного количества метанола при температуре 2oС и в результате получается белый порошок.
Элементарный анализ лиганда показал, что содержание углерода составляет 91,8 мас. от количества соединения и содержание водорода составляет 7,4 мас. Это соответствует весовому содержанию углерода 92,6 и водорода 7,4 в соединении C21H20. Спектр ЯМР данного лиганда показывает структуру, которая включает циклопентадиениловое кольцо, связанное через изопропиловый мостик с вторым циклопентадиениловым кольцом, которое замещено с образованием флуоренилового радикала.
Синдиоспецифический катализаторный комплекс синтезируется с использованием лиганда и комплекса тетрахлорид металла-THF. Этот катализатор получается путем ввода 0,05 моль N-бутиллитийгексана (1,6 моль) по каплям в 100 мл раствора тетрагидрофурена (THF), содержащего 6,8 г (0,025 моль) лиганда Cp, описанного выше. Раствор перемешивается при температуре 35oС в течение 12 ч, после чего 9,4 г (0,025 моль) ZrCl4 2THF, содержащегося в 200 мл тетрагидрофурана (THF), быстро канюлируется вместе с раствором лиганда в 500 мл круглодонную колбу с интенсивным перемешиванием. Этот раствор густо оранжево-красного цвета перемешивается в течение 12 ч при нагревании с обратным холодильником. Смесь LiCl и красного твердого вещества отделяется путем удаления растворителей в вакууме.
Катализаторные комплексные соединения, полученные согласно способу (А), несколько загрязнены и чрезвычайно чувствительны к воздействию воздуха и влаги. В результате этого, как описано в нижеследующих примерах, катализаторы, полученные по способу А, очищаются с использованием одной или нескольких из указанных ниже процедур очистки:
1. Экстракция пентаном. Следовые количества примеси желтого цвета, содержащейся в твердом катализаторном комплексном соединении красного цвета, повторно экстрагируются пентаном до тех пор, пока пентан не станет прозрачным.
2. Фракционная перекристаллизация. Данное комплексное соединение красного цвета отделяется от белого LiCl путем растворения его в 100 мл толуола, фильтрация его через тонкопористую спеченную стеклянную фритту и получение насыщенного раствора путем ввода пентана. Циркониевое комплексное соединение красного цвета извлекается путем кристаллизации при температуре 20oС.
3. Хроматограф на био-частицах. 50 г био-частиц SM-2 (сферические частицы размером 20-50 меш (0,84-0,29 мм) стиролдивинилбензольного сополимера с поперечной микросшивкой молекул из лаборатории Био-Рэд (высушивались в вакууме при температуре 70oС в течение 48 ч в колонке 30х1,5 см. Эти сферические частицы затем доводились до равновесного состояния толуолом в течение нескольких часов. Концентрированный раствор данного катализаторного комплексного соединения красного цвета в толуоле элюировался из колонки посредством 150-200 мл толуола. Это комплексное соединение извлекалось путем выпаривания толуола в вакууме.
Процедура синтеза катализатора Способ В.
Другой возможный способ синтеза, способ В, позволяет получать катализаторы, которые более устойчивы в воздухе, более активны и обеспечивают получение более высокого процента синдиотактического полипропилена. Согласно данному способу, в качестве некоординирующего растворителя используется хлористый метилен. Согласно описанному ниже способу в качестве переходного металла используется гафний, но данная процедура пригодна для использования циркония, титана и других переходных металлов. Замещенный дициклопентадиениловый лиганд синтезируется в тетрагидрофуране (THF) таким же образом, как описано выше в способе (А). Красная дилитиосоль лиганда (0,025 моль) выделялась таким же образом, как описано в способе А, путем удаления растворителей в вакууме и путем промывки пентаном.
Выделенная красная дилитиосоль растворялась в 125 мл холодного метиленхлорида и эквивалентное количество (0,025 моль) HfCl4 отдельно перемешивалось в 125 мл хлористого метилена при температуре 78oС. Эта суспензия HfCl4 быстро каннюлировалась в колбу, содержащую раствор лиганда. Смесь перемешивалась в течение 2 ч при температуре 78oС, медленно нагревалась до 25oС и дополнительно перемешивалась в течение 12 ч. Полученная нерастворимая белая ось (LiCl) отфильтровывалась. При охлаждении буро-желтого раствора хлористого метилена до -20oС в течение 12 ч и обратном каннюлировании всплывшего слоя получался желтый порошок, умеренно чувствительный к воздействию воздуха. Этот светло-желтый продукт промывалcя на оплавленном стеклянном фильтре с повторной фильтрацией охлажденного всплывшего слоя, который был каннюлирован над ним. Комплексное катализаторное соединение извлекалось путем отсасывания растворителя в вакууме и оно подвергалось воздействию сухого делксигенированного аргона. В результате данного процесса получалось 5,5 г катализаторного комплексного соединения.
Элементарный анализ гафниевого катализаторного комплексного соединения, полученного с использованием способа В, показал, что этот катализатор состоит из 48,79 мас. углерода, 3,4% водорода, 15,14 хлора и 33,2% гафния. Согласно теоретическому анализу в соответствии с формулой C2H18HfCl2 эти содержания будут составлять: 48,39% углерода, 3,45% водорода, 13,59% хлора и 34,11 гафния. Аналогично этому, циркониевые катализаторы, полученные с использованием способа В, будут иметь состав, согласно элементарному анализу, близкий к рассчитанному или теоретическому составу. Кроме того, некоторые из гафниевых комплексных соединений, иллюстрированных в изложенных ниже примера, получаются с использованием HfCl4 со степенью частоты 96% который также содержит примерно 4% ZrCl4. Другие образцы катализаторов приготавливаются с использованием HfCl4 чистотой 99,99% Обнаруживаются от различия в распределениях молекулярного веса полимеров, полученных с использованием чистого гафниевого катализатора по сравнению с полимерами, полученными с использованием катализаторов, содержащих небольшой процент циркония. Этот смешанный катализатор обеспечивает получение полимера с более широким распределением по молекулярному весу, чем система чистого катализатора.
Нижеследующие примеры иллюстрируют осуществление способа данного изобретения и различные его преимущества более подробно. Результаты процесса полимеризации и данные анализа полимера представлены в таблице 1 для примеров 1-17, в таблице 2 для примеров 18-33.
Пример 1. Осуществляется полимеризация пропилена с использованием 0,16 мг дихлорида изопропил (циклопентадиенил) (флоренил) циркония, полученного согласно описанному выше способу А. Данный катализатор очищается посредством фракционной перекристаллизации. Катализатор предварительно контактирует в течение 20 мин с раствором толуола, содержащим 10,7 мас. метилалюмоксана (МАО) со средним молекулярным весом примерно 1300. Алюмоксана служит в качестве сокатализатора в реакции полимеризации. В процессе полимеризации используются 10 см3 раствора МАО. Затем в реактор Зипперклав вводится раствор катализатора с сокатализатором при комнатной температуре, после чего вводится 1,2 л жидкого пропилена. Далее содержимое реактора нагревается до температуры полимеризации, Т, как показано в таблиц. 1 и 2, с выдержкой при 20oС в течение менее примерно 5 мин. В течение этого времени происходит предварительная полимеризация катализатора. Реакция полимеризации осуществляется в течение 60 мин, в ходе чего реактор поддерживается при температуре полимеризации. Полимеризация завершается путем быстрого вывода мономера. Содержимое реактора промывается 50% метанолом в разбавленном растворе HCl и высушивается в вакууме. В результате полимеризации получается 14 г полипропилена "как полимеризованного продукта", то есть без последующих его извлечений или очистки.
Анализ полимера.
Осуществляется анализ полимера с целью определения точки плавления, Tm, теплоты кристаллизации Hc, значений молекулярного веса Mp, Mw и Mn, процентного содержания нерастворимых в ксилоле веществ XI и синдиотактического показателя S. I. Анализ осуществляется на не растворимoй в ксилоле фракции (если не оговорено особо) полимера, который включает синдиотактическую фракцию, и любого образуемого изотактического полимера. Атактический полимер удаляется путем растворения данного полимерного продукта в горячем ксилоле, охлаждения раствора до 0oС и осаждения из ксилола не растворимой в ксилоле фракции. Последовательные перекристаллизации осуществляются указанным образом, что приводят в результате к удалению практически всего атактического полимера из нерастворимой в ксилоле фракции.
Точки плавления, Tm, определяются по данным дифференциальной сканирующей калориметрии (DSC) как уже известно. Точки плавления T 1 m и T 2 m , приведенные в табл. 1 и 2, не являются точками плавления истинного состояния равновесия, а являются пиковыми температурами DSC. Для пропилена не принято получение верхней и нижней пиковой температуры, то есть двух пиков, и обе точки плавления приводятся в табл. 1 и 2 как более низкая точка плавления, рассматриваемая как T 1 m , и более высокая точка плавления T 2 m . Истинные равновесные точки плавления, полученные за период, составляющий несколько часов, наиболее вероятно на несколько градусов выше, чем наименьшие пиковые точки плавления DSC. Как уже известно из существующей практики, точки плавления полипропилена определяются по кристалличности не растворимой в ксилоле фракции полимера. Это подтверждено измерением точек плавления DSC перед и после удаления растворимой в ксилоле или атактической формы полимера. Результаты показывают различие точек появления лишь 1-2oС после того, как наибольшая часть атактического полимера была удалена. Как показано в таблице 1, определяемые точки плавления составляют 145oС и 150oС для полимера, полученного в примере 1. Данные DSC используются также для определения теплоты кристаллизации, -Hc, как показано в таблицах 1 и 2, которая измеряется Джоулях на грамм. Точки плавления и -Hc определяются на "заполимеризованном" образце до удаления атактического полимера.
Значения молекулярного веса полимера рассчитываются посредством гель-проникающей хроматографии (GPC), осуществляемой с помощью прибора Вотерс 150 С, с силикагелевой колонкой и с применением сверхвысокомолекулярного смешанного слоя. Растворителем является трихлорбензол и рабочая температура составляет 140oС. Посредством гель-проникающей хроматографии для не растворимой в ксилоле фракции получают значения Mp, являющейся пиковым молекулярным весом, Mn являющейся среднечисловым молекулярным весом, и Mn, являющейся средневесовым молекулярным весом. Распределение по молекулярному весу, MWD обычно измеряется как Mw, деленное на Mn. Значения, определяемые для данного образца, представлены в таблице 1. Анализ методом гель-проникающей хроматографии (GPC) используется также для определения синдиотактического показателя. S.I% приведенного в таблицах 1 и 2. Синдиотактический показатель показывает процент синдиотактической структуры, получаемой в процессе реакции полимеризации, и он определяется по молекулярному весу образцов, "как полимеризованного продукта".
Анализ методом ЯМР используется для определения микроструктуры полимера. Образец полимера, полученный как описано выше, растворяется в 20%-ном растворе 1, 2, 4-трихлорбензола d6-бензола и исследуется в спектрометре Брукера АМ 300 WB с использованием метода разрыва связей в обратном диапазоне широкой полосы частот. Экспериментальные условия: частота излучателя 75,47 МГц; частота разрывателя связи 300,3 МГц; период повторения импульса 12 с; время восприятия 1,38 с; угол импульса 90o, ширина импульса 11,5 мкс; размеры памяти 74 К точек; спектральное окно 12195 Гц. Накапливается семь тысяч переходов, и температура пробника составляет 133oС. Спектр ЯМР полученного и однократно перекристаллиззованного из ксилола полимера показан на рисунке 2. Рассчитанные и наблюдаемые экспериментально значения спектров приведены в таблице 3 вместе с примером 1, где представлены данные для образца, перекристаллизованного однократно из ксилола, и примером 1-А, где представлены данные для образца, перекристаллизованного трехкратно из ксилола. Рассчитанные значения получены с использованием вероятных уравнений Бернули как описано в работе I пош Y и др. Polymer том 25, стр. 1640, 1984 г. и как уже известно из существующей практики.
Данные результаты показывают, что в образце, перекристаллизованном однократно из ксилола, процент рацемических диод (r) составляет 95% У образца, перекристаллизационного трехкратно из ксилола, процент диад (r) составляет 98% что указывает на то, что полимер состоит из: 2% или менее мезодиад (m). Кроме того, спектр ЯМР показывает, что двухвалентные мезодиады преобладают в парах, то есть в виде триад mm в отличие от уже известной одиночной диадной структуры m в молекулярной цепи. Таким образом, катализаторы, отвечающие настоящему изобретению, приводят к образованию полимерного продукта с новой микроструктурой, отличной от структуры известного полимера.
Пример 2. Осуществляется процедура таким же образом, как и в примере 1, с той разницей, что в реакции полимеризации используется 500 мл толуола в качестве сорастворителя. Кроме того, в процессе полимеризации используется 1 г МАО, и температура реакции составляет 50oС. Наряду с полимерным продуктом получается 15 г масла. Полимер анализируется согласно методикам, описанным выше, и результаты анализа представлены в таблице 1.
Пример 3. Осуществляется процедура таким же образом, как описано в примере 2, с той разницей, что в катализаторе в качестве переходного металла используется гафний. Другие используемые условия реакции представлены в таблице 1, и свойства полученного полимера, определяемые в ходе анализа, также представлены в таблице 1.
Примеры 4-8. Осуществляются процедуры таким же образом, как и в примере 1, с той разницей, что используются другие условия реакции, показанные в таблице 1. Кроме того, в примере 4 для очистки использовалась хроматография, в примере 5 процедура очистки не осуществлялась. Результаты полимеризации и данные анализа полимера представлены в таблице 1.
На рисунках 3 и 4 показаны спектры ИК для полимера, полученных согласно примерам 7 и 8. Легко видимым характеристические спектральные полосы, соответствующие 977 см-1 и 962 см -1, для синдиотактического полипропилена. Присутствие этих полос еще раз подтверждает синдиотактическую структуру полимера. Соответствующие полосы изотактического полипропилена составляют 995 и 974 см-1.
Примеры 9-16. Осуществляются процедуры таким же образом, как и в примере 1, с той разницей, что изменены количества катализатора и сокатализатора, как указано в таблице 1. Кроме того, катализаторы в примерах 9-13 и 15 очищаются с использованием как экстракции пентаном, так и фракционной перекристаллизации. В примере 14 используется экстракция пентаном и хроматография для процесса очистки. В примере 16 не осуществляется никакой очистки.
Пример 17. Осуществляются процедуры таким же образом, как описано в примере 1, с той разницей, что в катализаторе в качестве переходного металла используется гафний.
Другие условия реакции такие же, как показано в таблице 1. Катализатор очищается путем экстракции пентаном и фракционной перекристаллизации. Результаты полимеризации представлены в таблице 1.
Примеры 18 и 19. Осуществляется синтез гафниевого металлоценового катализатора с использованием способа В, как описано выше, и с использованием HfCl4 со степенью чистоты 95% который содержит 4% ZrCl4. Полимеризация осуществляется с использованием процедур полимеризации, описанных в примере 1, в условиях, приведенных в таблице 2. Полимеры анализируются согласно методикам, описанным в примере 1, и результаты анализа приведены в таблице 2.
Примеры 20-31.
Получают циркониевый металлоценовый катализатор путем синтеза по способу В, и полимеризация пропилена осуществляется в условиях, показанных для каждого примера в таблице 2. Полученные полимерные продукты анализируются согласно методикам, описанным в примере 1, и полученные результаты приведены в таблице 2. Следует отметить, что согласно примерам 20-22, синдиотактический показатель S. I определяется для не растворимой в ксилоле фракции. Синдиотактический показатель для этих фракций составляет примерно 100% Наблюдаемые данные спектра ЯМР для продукта примеров 20 и 22 приводятся в таблице 4. Данные для примеров 20 и 22 взяты из данных для полимеров, полученных в примерах 20 и 22, соответственно и однократно перекристаллизованных из ксилола. Полимер примера 22-А представляет собой полимер примера 22, подвергнутый трехкратной перекристаллизации из ксилола.
Примеры 32-33. Получают гафниевый металлоценовый катализатор путем синтеза по способу В. Катализатор примера 32 получается с использованием HfCl4 со степенью чистоты 99% в то время как катализатор примера 33 получается с использованием HfCl4 со степенью чистоты 95% который содержит примерно 4% ZnCl4. Полимеризация осуществляется согласно процедурам, описанным в примере 1, в условиях показанных для примеров 32 и 33 в таблице 2. Результаты анализа полимера, полученного в этих примерах, показаны в таблице 2. Данные спектра ЯМР полимера, полученного в этих примерах, также показаны в таблице 2. Данные спектра ЯМР полимера 33 показаны в таблице 4 с образцом, однократно перекристаллизованным из ксилола (пример 33) и трехкратно перекристаллизованным из ксилола (пример 33А).
Данные, представленные в таблицах 1-4 и показанные на рисунках 2 и 3, показывают, что катализаторы, отвечающие настоящему изобретению, обеспечивают получение предпочтительно синдиотактического полимера, который имеет высокую степень кристалличности и новую микроструктуру. В частности, данные спектра ЯМР показанные в таблицах 3 и 4, показывают, что не растворимая в ксилоле фракция состоит из синдиотактического полимера в очень большом процентном количестве, и процентное содержание в ней изотактического полимера очень небольшое или даже он вовсе отсутствует. Кроме того, синдиотактический полимер имеет очень высокий процент групп "r" и пентад "rrrr", и это говорит о том, что имеется лишь очень небольшой процент отклонений от структуры ". rrrr." в данной полимерной цепи. Отклонения, которые действительно существуют, являются предпочтительно отклонениями типа "mm".
Результаты для примера 1-А в таблице 3 действительно показывают, что единственным в цепи является отклонение типа "mm". Другие образцы ЯМР показывают преобладание отклонения "mm" над отклонением "n". Таким образом, была открыта новая микроструктура синдиотактического полипропилена.
Данные в таблицах 1 и 2 показывают высокую степень кристалличности полимерного продукта. Относительно высокие точки плавления T 1 m и T 2 m относительно высокие значения теплоты кристаллизации, Hc, показывают, что данные полимеры являются высоко кристаллическими. Кроме того, эти данные показывают связь между температурой реакции полимеризации, Т, и точками плавления, молекулярными весами и значениями теплоты кристаллизации полимера. По мере увеличения температуры реакции все эти три свойства снижаются. Существует также температурный интервал, при котором выход полимера максимален. Этот температурный интервал изменяется в зависимости от типа используемого катализатора, но обычно он составляет 50-70oС.
Концентрация метилалюмоксана (МАО) также влияет на выход полимера. Полученные данные показывают, что чем выше концентрация МАО, тем больше выход полимера. Концентрация МАО оказывает небольшое влияние на количество образуемого атактического полимера. МАО показывает такое же действие как и противонагарная присадка для примесей и имеет тенденцию снижать количество получаемого атактического полимера.
Кроме того, эти данные показывают различие между циркониевыми катализаторами и гафниевыми катализаторами, отвечающими настоящему изобретению. Полимеры, полученные с гафниевыми катализаторами, имеют тенденцию к меньшей степени кристалличности и имеют более низкие точки плавления, чем полимеры, образуемые с циркониевыми катализаторами. Данные в таблице 4 показывают также, что гафниевый катализатор обеспечивает получение более высокого процентного количества изотактических блоков в полимерной цепи, что определяется по присутствию изотактической пентады mmmm.
Примеры 18, 19 и 33 показывают возможность получения более широкого распределения по молекулярному весу, MWD=Mw/Mn за счет использования смеси двух или более катализаторов, отвечающих данному изобретению. Катализаторы в этих примерах получаются с использованием HfCl4, который содержит примерно 4% ZrCl4. Распределение по молекулярному весу (MWD) в этих примерах значительно больше, чем распределение по молекулярному весу (MWD) полимера, полученного с применением практически чистого гафниевого катализатора смотри пример 32. Таким образом, для получения полимера с широким спектром распределения по молекулярному весу можно использовать смесь двух различных катализаторов.
Следует также иметь в виду, что синдиоспецифические катализаторы, отвечающие настоящему изобретению, не ограничиваются специфическими структурами, представленными в примерах, а включают катализаторы, описанные общей формулой, приведенной в данной заявке, в которой Cp кольцо замещено иным образом, так чтобы иметь другую стерическую конфигурацию. В изложенных выше примерах кольца включали незамещенное кольцо Cp и замещенное кольцо Cp, которые образуют флуорениловый радикал, но аналогичные результаты получаются при использовании других лигандов, состоящих из колец Cp с мостиковой связью, в которых одно из колец Cp замещено иным образом, чем другое кольцо Cp, например индениловый радикал и кольцо Cp, замещенное тетраметилом кольцо Cp и кольцо Cp; замещенное диалкилом кольцо Cp и замещенное моноалкилом кольцо Cp, и т. д.
Из подробного описания изобретения, приведенного выше, ясно, что данное изобретение охватывает катализатор и способ получения синдиотактических полиолефинов. Из изложенных нескольких принципов осуществления изобретения для специалистов в данной области должно быть ясно, что возможны различные модификации и изменения описанных катализаторов и способов, но так, чтобы при этом не выходить за пределы сферы действия данного изобретения.

Claims (7)

1. Способ получения синдиотактических полиолефинов полимеризацией С3- или более альфа-олефинов в присутствии каталитической системы, представляющей собой продукт взаимодействия металлоцена с алюмоксаном, отличающийся тем, что в качестве каталитической системы применяют продукт взаимодействия, полученный с использованием в качестве металлоцена соединения общей формулы
Figure 00000006

где
Figure 00000007
углеводородный замещенный или незамещенный циклопентадиенил;
Figure 00000008
углеводородный замещенный или незамещенный флуоренил;
R'' двухвалентный алкиленовый мостик С1 С4 или углеводородный радикал, содержащий кремний, германий, фосфор, азот, бор или алюминий;
Ме переходный металл IV В подгруппы Периодической системы;
Q- галоген;
n от 0 до 4;
m от 0 до 4;
n ≠ m ≠ 0.
2. Способ по п.1, отличающийся тем, что используют каталитическую систему, полученную в присутствии мономера.
3. Способ по п.1, отличающийся тем, что процесс осуществляют при 50 - 70oС.
4. Способ по п.1, отличающийся тем, что используют каталитическую систему, полученную из металлоцена на основе циркония или гафния.
5. Способ по п.1, отличающийся тем, что используют каталитическую систему, полученную из металлоцена, где R'' C2 или -изо-С3-алкилен.
6. Способ по п.1, отличающийся тем, что процесс проводят в присутствии каталитической системы, представляющей собой продукт взаимодействия металлоцена с алюмоксаном при мольном соотношении от 1 1350 до 34480,0 1.
7. Синдиотактический полипропилен, полученный способом по п.1.
SU894614707A 1988-07-15 1989-07-10 Способ получения синдиотактических полиолефинов и синдиотактический полипропилен RU2077541C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/220,007 US4892851A (en) 1988-07-15 1988-07-15 Process and catalyst for producing syndiotactic polyolefins
US220007 1994-03-28

Publications (1)

Publication Number Publication Date
RU2077541C1 true RU2077541C1 (ru) 1997-04-20

Family

ID=22821664

Family Applications (2)

Application Number Title Priority Date Filing Date
SU894614707A RU2077541C1 (ru) 1988-07-15 1989-07-10 Способ получения синдиотактических полиолефинов и синдиотактический полипропилен
SU914894660A RU2017519C1 (ru) 1988-07-15 1991-03-05 Способ получения металлоценового катализатора

Family Applications After (1)

Application Number Title Priority Date Filing Date
SU914894660A RU2017519C1 (ru) 1988-07-15 1991-03-05 Способ получения металлоценового катализатора

Country Status (16)

Country Link
US (2) US4892851A (ru)
EP (1) EP0351392B2 (ru)
JP (1) JP2851867B2 (ru)
KR (1) KR0145313B1 (ru)
CN (1) CN1059448C (ru)
AT (1) ATE200902T1 (ru)
AU (1) AU610731B2 (ru)
CA (1) CA1338600C (ru)
CZ (1) CZ283418B6 (ru)
DD (2) DD300545A5 (ru)
DE (1) DE68929293T3 (ru)
ES (1) ES2157194T5 (ru)
FI (1) FI97894C (ru)
NO (1) NO172588C (ru)
RU (2) RU2077541C1 (ru)
SK (1) SK280700B6 (ru)

Families Citing this family (382)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324800A (en) * 1983-06-06 1994-06-28 Exxon Chemical Patents Inc. Process and catalyst for polyolefin density and molecular weight control
ES2082745T3 (es) * 1987-04-03 1996-04-01 Fina Technology Sistemas cataliticos metalocenos para la polimerizacion de las olefinas presentando un puente de hidrocarburo de silicio.
US5001244A (en) * 1988-06-22 1991-03-19 Exxon Chemical Patents Inc. Metallocene, hydrocarbylaluminum and hydrocarbylboroxine olefin polymerization catalyst
US5155080A (en) * 1988-07-15 1992-10-13 Fina Technology, Inc. Process and catalyst for producing syndiotactic polyolefins
US5223468A (en) * 1988-07-15 1993-06-29 Fina Technology, Inc. Process and catalyst for producing syndiotactic polymers
US5223467A (en) * 1988-07-15 1993-06-29 Fina Technology, Inc. Process and catalyst for producing syndiotactic polymers
US5304523A (en) * 1988-07-15 1994-04-19 Fina Technology, Inc. Process and catalyst for producing crystalline polyolefins
US5243002A (en) * 1988-07-15 1993-09-07 Fina Technology, Inc. Process and catalyst for producing syndiotactic polymers
US5158920A (en) * 1988-07-15 1992-10-27 Fina Technology, Inc. Process for producing stereospecific polymers
KR100197327B1 (ko) * 1988-07-15 1999-06-15 치어즈 엠. 노우드 신디오택틱 폴리프로필렌
US5162278A (en) * 1988-07-15 1992-11-10 Fina Technology, Inc. Non-bridged syndiospecific metallocene catalysts and polymerization process
JP2768479B2 (ja) * 1988-12-27 1998-06-25 三井化学株式会社 オレフィン重合用触媒成分およびオレフィンの重合方法
JP2685264B2 (ja) * 1988-12-27 1997-12-03 三井石油化学工業株式会社 α―オレフィン系ランダム共重合体の製造方法
IT8919252A0 (it) * 1989-01-31 1989-01-31 Ilano Catalizzatori per la polimerizzazione di olefine.
IT1237398B (it) * 1989-01-31 1993-06-01 Ausimont Srl Catalizzatori per la polimerizzazione di olefine.
IT1228916B (it) * 1989-02-28 1991-07-09 Himont Inc Polimeri a struttura sindiotattica delle alfa olefine
IT1228906B (it) * 1989-02-28 1991-07-09 Giampiero Cislaghi Chiusura per contenitori con sigillo di garanzia incorporato, particolarmente per vasetti di prodotti alimentari,cosmetici e simili.
US5830087A (en) * 1995-06-26 1998-11-03 Lisco, Inc. Multi-layer golf ball
DE3907964A1 (de) * 1989-03-11 1990-09-13 Hoechst Ag Verfahren zur herstellung eines syndiotaktischen polyolefins
DE3907965A1 (de) * 1989-03-11 1990-09-13 Hoechst Ag Verfahren zur herstellung eines syndiotaktischen polyolefins
JP2691023B2 (ja) * 1989-03-20 1997-12-17 株式会社トクヤマ 超高分子量ポリプロピレン及びその製造方法
JP3048591B2 (ja) * 1989-04-11 2000-06-05 三井化学株式会社 シンジオタクチックポリオレフィンの製造方法
US5278216A (en) * 1989-04-18 1994-01-11 Mitsui Toatsu Chemicals, Incorporated Syndiotactic polypropylene resin composition
PT93853A (pt) * 1989-04-28 1990-11-20 Mitsui Toatsu Chemicals Processo para a preparacao de um copolimero de polipropileno sindiotatico
US6255425B1 (en) * 1989-04-28 2001-07-03 Mitsui Chemicals, Inc. Syndiotactic polypropylene copolymer and extruded polypropylene articles
JP2764052B2 (ja) * 1989-05-02 1998-06-11 三井化学株式会社 シンジオタクチックポリプロピレンの製造方法
DE3916553A1 (de) * 1989-05-20 1990-11-22 Hoechst Ag Syndio- isoblockpolymer und verfahren zu seiner herstellung
US5187250A (en) * 1989-06-05 1993-02-16 Mitsui Toatsu Chemicals, Incorporated Poly-α-olefins
NO902455L (no) * 1989-06-05 1990-12-06 Mitsui Toatsu Chemicals Nye poly-alfa-olefiner.
JP2818199B2 (ja) * 1989-06-12 1998-10-30 三井化学株式会社 シンジオタクチックポリプロピレン樹脂組成物およびその製造方法
JP2668732B2 (ja) * 1989-06-09 1997-10-27 チッソ株式会社 オレフィン重合体製造用触媒
JP2668733B2 (ja) * 1989-06-09 1997-10-27 チッソ株式会社 ポリオレフィン製造用触媒
US5157092A (en) * 1989-06-21 1992-10-20 Mitsui Toatsu Chemicals, Incorporated Polymer of 4-methylpentene-1
US5004820A (en) * 1989-08-07 1991-04-02 Massachusetts Institute Of Technology Preparation of chiral metallocene dihalides
JP2854886B2 (ja) * 1989-08-10 1999-02-10 三井化学株式会社 プロピレンとブテンの共重合体
EP0414047B1 (en) * 1989-08-25 1997-01-08 MITSUI TOATSU CHEMICALS, Inc. A novel polypropylene fiber and a preparation process thereof
WO1991003500A1 (en) * 1989-09-08 1991-03-21 Fina Research S.A. Catalyst and process for the polymerization of olefins
US5026798A (en) 1989-09-13 1991-06-25 Exxon Chemical Patents Inc. Process for producing crystalline poly-α-olefins with a monocyclopentadienyl transition metal catalyst system
US5266641A (en) * 1989-10-06 1993-11-30 Mitsui Toatsu Chemicals, Inc. Butene-1 copolymers and resin compositions containing the same
US5206324A (en) * 1989-10-06 1993-04-27 Mitsui Toatsu Chemicals, Inc. Butene-1 copolymer and resin composition containing the same
US5036034A (en) * 1989-10-10 1991-07-30 Fina Technology, Inc. Catalyst for producing hemiisotactic polypropylene
US5763549A (en) * 1989-10-10 1998-06-09 Fina Technology, Inc. Cationic metallocene catalysts based on organoaluminum anions
US5117020A (en) * 1989-10-30 1992-05-26 Fina Research, S.A. Process for the preparation of metallocenes
US5387568A (en) * 1989-10-30 1995-02-07 Fina Technology, Inc. Preparation of metallocene catalysts for polymerization of olefins
ES2089008T3 (es) * 1989-10-30 1996-10-01 Fina Research Proceso de fabricacion de copolimeros sindiotacticos de propileno y de olefinas.
CA2028770A1 (en) * 1989-10-30 1991-05-01 Luc Haspeslagh Syndiotactic homopolymers of olefins
ATE127129T1 (de) * 1989-10-30 1995-09-15 Fina Research Verfahren zur herstellung von polyolefinpulver mit kontrollierter morphologie unter anwendung eines metallocenhaltigen katalytorsystems.
JP2977595B2 (ja) * 1989-11-20 1999-11-15 三井化学株式会社 シンジオタクチックポリプロピレン成形体およびその製造方法
JP3024685B2 (ja) * 1989-11-28 2000-03-21 三井化学株式会社 α―オレフィン―アルケニルシラン共重合体およびその製造方法
US6156846A (en) * 1989-11-28 2000-12-05 Idemitsu Petrochemical Co., Ltd. Flexible polypropylene resins, propylene bases elastomer compositions and process for production of olefin polymers
JP2894823B2 (ja) * 1989-12-06 1999-05-24 三井化学株式会社 耐放射線ポリプロピレン樹脂組成物及び耐放射線成形物の製造方法
US5104956A (en) * 1989-12-19 1992-04-14 Board Of Trustees Of The Leland Stanford Junior Univ. Stereoregular cyclopolymers and method
DE3942365A1 (de) * 1989-12-21 1991-06-27 Hoechst Ag Verfahren zur herstellung einer polypropylen-formmasse
DE3942366A1 (de) * 1989-12-21 1991-06-27 Hoechst Ag Verfahren zur herstellung eines syndiotaktischen propylen-copolymers
JP2974404B2 (ja) * 1989-12-28 1999-11-10 三井化学株式会社 新規な重合体およびそれを含むポリプロピレン樹脂組成物
JP2775706B2 (ja) * 1990-01-18 1998-07-16 三井化学株式会社 幅広い分子量分布を有するシンジオタクチックポリ―α―オレフィンの製造方法
GB2241244B (en) * 1990-02-22 1994-07-06 James C W Chien Thermoplastic elastomers
JP2780123B2 (ja) * 1990-03-26 1998-07-30 三井化学株式会社 幅広い分子量分布を有するシンジオタクチックポリ―α―オレフィンの製造方法
DE69112322T2 (de) * 1990-04-09 1996-03-28 Mitsui Toatsu Chemicals Propylen-copolymer.
US5200131A (en) * 1990-04-09 1993-04-06 Mitsui Toatsu Chemicals, Inc. Method for molding syndiotactic polypropylene
JP3020250B2 (ja) * 1990-04-09 2000-03-15 三井化学株式会社 シンジオタクチックポリプロピレンの製造方法
US5260395A (en) * 1990-04-09 1993-11-09 Mitsui Toatsu Chemicals, Inc. Method for molding syndiotactic polypropylene and molded article
US5200439A (en) * 1990-04-13 1993-04-06 Mitsui Toatsu Chemicals, Inc. Method for increasing intrinsic viscosity of syndiotactic polypropylene
DE69130403T2 (de) * 1990-04-18 1999-04-15 Mitsui Chemicals, Inc., Tokio/Tokyo Syndiotaktisches Propylencopolymer, Herstellung davon und dieses Copolymer enthaltende Zusammensetzung
US5326824A (en) * 1990-05-18 1994-07-05 Mitsui Toatsu Chemicals, Incorporated Syndiotactic propylene copolymer, method for preparing same, and its use
DE4017331A1 (de) * 1990-05-30 1991-12-05 Hoechst Ag Verfahren zur herstellung eines polyolefins
IT1249008B (it) * 1990-06-27 1995-02-11 Himont Inc Copolimeri cristallini sindiotattici del propilene
KR940009020B1 (ko) * 1990-07-24 1994-09-29 미쓰이 도오아쓰 가가쿠 가부시키가이샤 α-올레핀의 중합촉매 및 그것을 이용한 폴리 α-올레핀의 제조방법
US5272003A (en) * 1990-10-26 1993-12-21 Exxon Chemical Patents Inc. Meso triad syndiotactic polypropylene fibers
US5317070A (en) * 1990-11-09 1994-05-31 Exxon Chemical Patents, Inc. Syndiotactic hot melt adhesive
USRE39532E1 (en) 1990-11-12 2007-03-27 Basell Polyolefine Gmbh Metallocenes containing ligands of 2-substituted indenyl derivatives, process for their preparation, and their use as catalysts
DE59107926D1 (de) 1990-11-12 1996-07-18 Hoechst Ag Metallocene mit Liganden aus 2-substituierten Indenylderivaten, Verfahren zu ihrer Herstellung und ihre Verwendung als Katalysatoren
ES2071888T3 (es) * 1990-11-12 1995-07-01 Hoechst Ag Bisindenilmetalocenos sustituidos en posicion 2, procedimiento para su preparacion y su utilizacion como catalizadores en la polimerizacion de olefinas.
DE69116814T2 (de) * 1990-11-20 1996-09-26 Mitsubishi Chem Corp Funktionalisierte Olefinpolymere
US5252677A (en) * 1990-11-20 1993-10-12 Mitsubishi Petrochemical Company Limited Functionalized olefin polymers
AU9159191A (en) * 1990-12-28 1992-08-17 Exxon Chemical Patents Inc. Syndiotactic polypropylene
EP0770644A1 (en) * 1991-02-15 1997-05-02 Mitsui Toatsu Chemicals, Incorporated Transparent impact-resistant molded articles
DE4104931A1 (de) * 1991-02-18 1992-08-20 Hoechst Ag Verfahren zur herstellung substituierter indene
ATE223440T1 (de) 1991-03-09 2002-09-15 Basell Polyolefine Gmbh Metallocen und katalysator
JP3117231B2 (ja) * 1991-03-11 2000-12-11 三井化学株式会社 幅広い分子量分布を有するシンジオタクチックポリ−α−オレフィンの製造方法
JP3176386B2 (ja) * 1991-04-30 2001-06-18 三菱化学株式会社 アミノ基含有重合体
CA2067525C (en) * 1991-05-09 1998-09-15 Helmut G. Alt Organometallic fluorenyl compounds, preparation and use
US5399636A (en) * 1993-06-11 1995-03-21 Phillips Petroleum Company Metallocenes and processes therefor and therewith
US5466766A (en) * 1991-05-09 1995-11-14 Phillips Petroleum Company Metallocenes and processes therefor and therewith
US5436305A (en) * 1991-05-09 1995-07-25 Phillips Petroleum Company Organometallic fluorenyl compounds, preparation, and use
US5571880A (en) * 1991-05-09 1996-11-05 Phillips Petroleum Company Organometallic fluorenyl compounds and use thereof in an alpha-olefin polymerization process
US5191132A (en) * 1991-05-09 1993-03-02 Phillips Petroleum Company Cyclopentadiene type compounds and method for making
US5401817A (en) 1991-05-09 1995-03-28 Phillips Petroleum Company Olefin polymerization using silyl-bridged metallocenes
US5393911A (en) * 1991-05-09 1995-02-28 Phillips Petroleum Company Cyclopentadiene type compounds and method for making
DE59204800D1 (de) * 1991-05-27 1996-02-08 Hoechst Ag Verfahren zur Herstellung von syndiotaktischen Polyolefinen mit breiter Molmassenverteilung
US5594078A (en) 1991-07-23 1997-01-14 Phillips Petroleum Company Process for producing broad molecular weight polyolefin
NL9101502A (nl) * 1991-09-06 1993-04-01 Dsm Nv Werkwijze voor het bereiden van een gebrugde metalloceenverbinding alsmede een katalysatorcomponent en een werkwijze voor de polymerisatie van een olefinen.
EP0538749B1 (en) * 1991-10-21 1995-01-11 Mitsubishi Petrochemical Co., Ltd. Propylene copolymer composition
US5331071A (en) * 1991-11-12 1994-07-19 Nippon Oil Co., Ltd. Catalyst components for polymerization of olefins
US5830821A (en) * 1991-11-30 1998-11-03 Targor Gmbh Process for olefin preparation using metallocenes having benzo-fused indenyl derivatives as ligands
US5932669A (en) * 1991-11-30 1999-08-03 Targor Gmbh Metallocenes having benzo-fused indenyl derivatives as ligands, processes for their preparation and their use as catalysts
TW309523B (ru) * 1991-11-30 1997-07-01 Hoechst Ag
US5378672A (en) * 1992-03-04 1995-01-03 Fina Technology, Inc. Methods and systems for multi-component catalyst formulation
US6184326B1 (en) 1992-03-20 2001-02-06 Fina Technology, Inc. Syndiotactic polypropylene
US5302733A (en) * 1992-03-30 1994-04-12 Ethyl Corporation Preparation of metallocenes
US5330948A (en) * 1992-03-31 1994-07-19 Northwestern University Homogeneous catalysts for stereoregular olefin polymerization
EP0563834B1 (en) * 1992-04-01 1995-10-11 MITSUI TOATSU CHEMICALS, Inc. Syndiotactic polypropylene wax, production process thereof, and heating roll fixing-type toner composition making use of the wax
US5308817A (en) * 1992-05-18 1994-05-03 Fina Technology, Inc. Metallocene catalyst component with good catalyst efficiency after aging
US5393851A (en) * 1992-05-26 1995-02-28 Fina Technology, Inc. Process for using metallocene catalyst in a continuous reactor system
US5710222A (en) 1992-06-22 1998-01-20 Fina Technology, Inc. Method for controlling the melting points and molecular weights of syndiotactic polyolefins using metallocene catalyst systems
DE69326463T2 (de) * 1992-07-01 2000-05-04 Exxon Chemical Patents, Inc. Olefinpolymerisationskatalysatoren auf basis von uebergangsmetallen
ES2114978T3 (es) * 1992-08-03 1998-06-16 Targor Gmbh Procedimiento para la obtencion de un polimero de olefina bajo empleo de metalocenos con ligandos indenilo de substitucion especial.
USRE39156E1 (en) 1992-08-15 2006-07-04 Basell Polyolefine Gmbh Process for the preparation of polyolefins
US5269807A (en) * 1992-08-27 1993-12-14 United States Surgical Corporation Suture fabricated from syndiotactic polypropylene
EP0586777B1 (en) * 1992-08-31 1999-04-28 Fina Research S.A. Process for producing liquid ethylene-type random copolymers
JPH07507095A (ja) * 1992-11-25 1995-08-03 ザ・ボード・オブ・トラスティーズ・オブ・ザ・リーランド・スタンフォード・ジュニア・ユニバーシティ チーグラー・ナッタ触媒で官能化した単量体の重合
US5332706A (en) * 1992-12-28 1994-07-26 Mobil Oil Corporation Process and a catalyst for preventing reactor fouling
US5602067A (en) * 1992-12-28 1997-02-11 Mobil Oil Corporation Process and a catalyst for preventing reactor fouling
DE59408260D1 (de) * 1993-02-12 1999-06-24 Ticona Gmbh Verfahren zur Herstellung von Cycloolefinpolymeren
US6468936B1 (en) * 1993-04-28 2002-10-22 Fina Technology, Inc. Solid MAO/metallocene catalyst complex for propylene polymerization
US5804524A (en) * 1993-04-28 1998-09-08 Fina Technology, Inc. Process for a isotactic/syndiotactic polymer blend in a single reactor
US5643846A (en) * 1993-04-28 1997-07-01 Fina Technology, Inc. Process for a isotactic/syndiotactic polymer blend in a single reactor
CA2120315C (en) * 1993-04-30 2001-05-15 Joel L. Williams Medical articles and process therefor
CA2129794A1 (en) * 1993-08-10 1995-02-11 Toshiyuki Tsutsui Olefin polymerization catalysts and methods of olefin polymerization
US5446117A (en) * 1993-08-19 1995-08-29 Queen's University At Kingston Process for producing amorphous syndiotactic polystyrene
US5486585A (en) * 1993-08-26 1996-01-23 Exxon Chemical Patents Inc. Amidosilyldiyl bridged catalysts and method of polymerization using said catalysts.
US5459117A (en) * 1993-08-27 1995-10-17 Ewen; John A. Doubly-conformationally locked, stereorigid catalysts for the preparation of tactiospecific polymers
DE4330661A1 (de) * 1993-09-10 1995-03-16 Basf Ag Kälteschlagzähe Propylenpolymerisate
US5631202A (en) * 1993-09-24 1997-05-20 Montell Technology Company B.V. Stereospecific metallocene catalysts with stereolocking α-CP substituents
DE4333128A1 (de) * 1993-09-29 1995-03-30 Hoechst Ag Verfahren zur Herstellung von Polyolefinen
US5510075A (en) * 1993-11-04 1996-04-23 Becton, Dickinson And Company Mold process for syndiotactic polypropylene
FI945959A (fi) * 1993-12-21 1995-06-22 Hoechst Ag Metalloseenejä ja niiden käyttö katalyytteinä
CA2139064A1 (en) * 1993-12-27 1995-06-28 Mitsui Chemicals, Inc. Olefin polymerization catalyst and process for olefin polymerization
DE4402192A1 (de) * 1994-01-26 1995-07-27 Witco Gmbh Verfahren zur Herstellung von Biscyclopentadienyl-Verbindungen
IT1273420B (it) 1994-04-06 1997-07-08 Spherilene Srl Composti metallocenici, procedimento per la preparazione e loro utilizzo in catalizzatori per la polimerizzazione delle olefine
US5541272A (en) 1994-06-03 1996-07-30 Phillips Petroleum Company High activity ethylene selective metallocenes
US5420320A (en) * 1994-06-08 1995-05-30 Phillips Petroleum Company Method for preparing cyclopentadienyl-type ligands and metallocene compounds
US5525690A (en) * 1994-08-05 1996-06-11 Solvay (Societe Anonyme) Process for the preparation of a polyolefin and syndiotactic polypropylene
IT1274606B (it) 1994-08-09 1997-07-18 Spherilene Srl Miscele di polipropilene atattico e polipropilene sindiotattico
US5741195A (en) * 1994-09-30 1998-04-21 Lisco, Inc. High visibility inflated game ball
ES2161919T3 (es) * 1994-11-22 2001-12-16 Atofina Res Metalocenos puenteados para uso en sistemas cataliticos para la polimerizacion de olefinas.
JP3850048B2 (ja) * 1994-12-08 2006-11-29 東ソー株式会社 有機遷移金属化合物およびそれを用いたポリオレフィンの製造方法
US6214954B1 (en) 1994-12-13 2001-04-10 Asahi Kasei Kogyo Kabushiki Kaisha Olefin polymerization catalyst
KR0159685B1 (ko) * 1995-01-19 1998-12-15 사토 아키오 폴리프로필렌 다층블로성형체
IT1272923B (it) 1995-01-23 1997-07-01 Spherilene Srl Composti metallocenici,procedimento per la loro preparazione,e loro utilizzo in catalizzatori per la polimerizzazione delle olefine
US5631203A (en) * 1995-05-04 1997-05-20 Phillips Petroleum Company Metallocene compounds and preparation thereof containing terminal alkynes
DE19516801A1 (de) * 1995-05-08 1996-11-14 Hoechst Ag Organometallverbindung
US6407177B1 (en) * 1995-06-07 2002-06-18 Fina Technology, Inc. Polypropylene blend
DE19522105A1 (de) * 1995-06-19 1997-01-02 Hoechst Ag Stereorigide Metallocenverbindung
DE19523595A1 (de) * 1995-06-30 1997-01-02 Hoechst Ag Verfahren zur Herstellung einer kohlenstoffverbrückten Biscyclopentadienverbindung
US6211109B1 (en) * 1995-07-18 2001-04-03 Fina Technology, Inc. Process for treating silica with alumoxane
CA2181413A1 (en) 1995-07-18 1998-01-18 Edwar S. Shamshoum Process for the syndiotactic propagation of olefins
US5648308A (en) * 1995-08-10 1997-07-15 Albemarle Corporation Process for upgrading metallocene catalysts
US6403772B1 (en) * 1995-09-11 2002-06-11 Montell Technology Company, Bv Open-pentadienyl metallocenes, precursors thereof and polymerization catalysts therefrom
US5709921A (en) * 1995-11-13 1998-01-20 Kimberly-Clark Worldwide, Inc. Controlled hysteresis nonwoven laminates
US6066588A (en) * 1995-11-22 2000-05-23 Fina Research, S.A. Bridged metallocenes catalyst for polymerization of olefins
US5854362A (en) * 1995-12-11 1998-12-29 The Dow Chemical Company Supported biscyclopentadienyl metal complexes
US5679814A (en) * 1995-12-11 1997-10-21 Albemarle Corporation Purification of metallocenes
DE19549352A1 (de) * 1995-12-22 1997-06-26 Gerhard Edwin Herberich Übergangsmetallverbindung der Formel Ln Am MXK (M=Metall der Gruppe IIIb oder Vb) und Verfahren zur Herstellung der Verbindung sowie Verwendung der Verbindung als Katalysatorkomponente bei der Polymerisation von Olefinen
DE69720823T2 (de) 1996-01-25 2004-01-22 Tosoh Corp., Shinnanyo Verfahren zur Olefinpolymerisierung unter Verwendung eines Übergangsmetallkatalysators.
DE19608814A1 (de) * 1996-03-07 1997-10-02 Hoechst Ag Verfahren zur Herstellung von Indenen
EP0889913B1 (en) * 1996-03-27 2003-07-02 Dow Global Technologies Inc. Allyl containing metal complexes and olefin polymerization process
US6225426B1 (en) 1996-04-10 2001-05-01 Uniroyal Chemical Company, Inc. Process for producing polyolefin elastomer employing a metallocene catalyst
US5644007A (en) * 1996-04-26 1997-07-01 Minnesota Mining And Manufacturing Company Continuous process for the production of poly(1-alkenes)
KR100474129B1 (ko) * 1996-05-07 2005-08-17 다우 글로벌 테크놀로지스 인크. 비닐리덴방향족단량체의신디오택틱중합체의제조방법
US5945365A (en) * 1996-05-20 1999-08-31 Fina Technology, Inc. Stereorigid bis-fluorenyl metallocenes
US6313242B1 (en) 1996-05-20 2001-11-06 Fina Technology, Inc. Stereorigid bis-fluorenyl metallocenes
DE19621838A1 (de) * 1996-05-31 1997-12-04 Basf Ag Verfahren zur Herstellung von Polymerisaten von C¶2¶- bis C¶1¶¶2¶-Alkenen unter Zusatz eines Reaktionsverzögerers
ES2158567T3 (es) 1996-06-17 2001-09-01 Exxonmobil Chem Patents Inc Sistemas cataliticos de metales de transicion mixtos para la polimerizacion de olefinas.
DE19624581C2 (de) * 1996-06-20 1999-02-04 Targor Gmbh Übergangsmetallverbindung und ein Verfahren zu ihrer Herstellung, sowie ihre Verwendung
US5710299A (en) * 1996-06-27 1998-01-20 Albemarle Corporation Production of bridged metallocene complexes and intermediates therefor
US6630550B1 (en) * 1996-07-11 2003-10-07 Fina Research, S.A. Olefin polymerization catalyst
EP1083188A1 (en) * 1999-09-10 2001-03-14 Fina Research S.A. Catalyst and process for the preparation of syndiotactic / atactic block polyolefins
DE19637669A1 (de) 1996-09-16 1998-03-19 Hoechst Ag Verfahren zur Herstellung einer methylenverbrückten Biscyclopentadienylverbindung
US5760262A (en) * 1996-09-17 1998-06-02 Albemarle Corporation Enhanced production of bridged hafnocenes
US5936108A (en) * 1996-10-17 1999-08-10 Albemarle Corporation Metallocene synthesis
EP1327636B1 (en) * 1996-11-15 2006-01-11 Basell Polyolefine GmbH Heterocyclic metallocenes and polymerisation catalysts
US5968864A (en) * 1996-12-20 1999-10-19 Fina Technology, Inc. Catalyst efficiency for supported metallocene catalyst
US6660809B1 (en) * 1997-02-07 2003-12-09 Exxonmobil Chemical Patents Inc. Propylene polymers incorporating polyethylene macromers
KR100503523B1 (ko) 1997-02-07 2005-07-25 엑손모빌 케미칼 패턴츠 인코포레이티드 비닐-함유 거대단량체의 제조방법
US5807800A (en) * 1997-02-11 1998-09-15 Fina Technology, Inc. Process for producing stereospecific polymers
US6552126B2 (en) 1997-03-03 2003-04-22 Spalding Sports Worldwide, Inc. Golf ball cover containing a blend of ionomer and plastomer, and method of making same
US6160072A (en) * 1997-05-02 2000-12-12 Ewen; John A. Process for polymerizing tactioselective polyolefins in condensed phase using titanocenes
DE19719103A1 (de) 1997-05-06 1998-11-12 Targor Gmbh Stereorigide Metallocenverbindung
DE19728126A1 (de) * 1997-07-02 1999-01-07 Bayer Ag Katalysatorsystem auf Basis von Monoazadien-Metallkomplexen
US6153551A (en) 1997-07-14 2000-11-28 Mobil Oil Corporation Preparation of supported catalyst using trialkylaluminum-metallocene contact products
US6074590A (en) * 1997-07-28 2000-06-13 Fina Technology, Inc. Process of making a bicomponent fiber
DE19732804A1 (de) 1997-07-30 1999-02-04 Bayer Ag Katalysatoren auf Basis von Fulven-Metallkomplexen
US6159612A (en) * 1997-08-25 2000-12-12 Mobil Oil Corporation Multi-layer films with syndiotactic barrier layer containing a wax
US5908594A (en) * 1997-09-24 1999-06-01 Fina Technology, Inc. Process of making polypropylene fiber
US6265512B1 (en) 1997-10-23 2001-07-24 3M Innovative Company Elastic polypropylenes and catalysts for their manufacture
US6025407A (en) * 1997-10-30 2000-02-15 Occidental Chemical Corporation Photo-polymerization of vinyl chloride using metallocene catalysts
JP2001522856A (ja) 1997-11-07 2001-11-20 バイエル・アクチエンゲゼルシヤフト フルベン−金属錯体の製造方法
US6677265B1 (en) 1997-12-08 2004-01-13 Albemarle Corporation Process of producing self-supported catalysts
EP1037931B1 (en) 1997-12-08 2004-02-04 Albemarle Corporation Catalyst compositions of enhanced productivity
US6551955B1 (en) 1997-12-08 2003-04-22 Albemarle Corporation Particulate group 4 metallocene-aluminoxane catalyst compositions devoid of preformed support, and their preparation and their use
US6197910B1 (en) 1997-12-10 2001-03-06 Exxon Chemical Patents, Inc. Propylene polymers incorporating macromers
US6117962A (en) * 1997-12-10 2000-09-12 Exxon Chemical Patents Inc. Vinyl-containing stereospecific polypropylene macromers
US6184327B1 (en) 1997-12-10 2001-02-06 Exxon Chemical Patents, Inc. Elastomeric propylene polymers
DE19812881A1 (de) 1998-03-24 1999-10-07 Bayer Ag Neue dendrimere Verbindungen, ein Verfahren zu deren Herstellung sowie deren Verwendung als Katalysatoren
JP3559894B2 (ja) * 1998-04-01 2004-09-02 日産自動車株式会社 樹脂製ウィンドウ及びその製法
KR100380018B1 (ko) 1998-04-09 2003-10-04 주식회사 엘지화학 메탈로센담지촉매및이를이용한올레핀중합방법
US6207606B1 (en) 1998-05-15 2001-03-27 Univation Technologies, Llc Mixed catalysts and their use in a polymerization process
EP0965603A1 (en) * 1998-06-19 1999-12-22 Fina Research S.A. Polyolefin production
DE19837734C1 (de) 1998-08-20 1999-12-23 Bayer Ag Verfahren zur Herstellung von Katalysatoren auf Basis von Fulven-Metallkomplexen
WO2000012572A1 (en) 1998-08-26 2000-03-09 Exxon Chemical Patents Inc. Branched polypropylene compositions
US6225427B1 (en) 1998-10-15 2001-05-01 Uniroyal Chemical Company, Inc. Olefin polymerization process employing metallocene catalyst provided by cocatalyst activation of a metallocene procatalyst
RU2232766C2 (ru) 1998-10-23 2004-07-20 Эксонмобил Кемикэл Пейтентс Инк. Связанные мостиками металлоцены, способ полимеризации
US6270912B1 (en) 1999-02-25 2001-08-07 Mobil Oil Corporation Multi-layer films with core layer of metallocene-catalyzed polypropylene
US20010055692A1 (en) 1999-03-17 2001-12-27 Michael T. Heffelfinger Multi-layer film with core layer of syndiotactic polypropylene
US6432860B1 (en) * 1999-03-22 2002-08-13 Fina Technology, Inc. Supported metallocene catalysts
US6410124B1 (en) 1999-03-30 2002-06-25 Exxonmobil Oil Corporation Films with improved metallizable surfaces
US6632885B2 (en) 1999-04-13 2003-10-14 Mitsui Chemicals, Inc. Soft syndiotactic polypropylene composition and molded product
US6416699B1 (en) 1999-06-09 2002-07-09 Fina Technology, Inc. Reduced shrinkage in metallocene isotactic polypropylene fibers
US6303718B1 (en) 1999-09-17 2001-10-16 Bayer Aktiengesellschaft Composition based on fluorine-containing metal complexes
US6476164B1 (en) 1999-10-22 2002-11-05 Exxonmobil Chemical Patents Inc. Carbenium cationic complexes suitable for polymerization catalysts
US6475946B1 (en) 1999-10-22 2002-11-05 Exxonmobil Chemical Patents Inc. Olefin polymerization catalysis with aryl substituted carbenium cationic complexes
JP2001122886A (ja) 1999-10-26 2001-05-08 Repsol Quimica Sa 単一の炭素架橋したビスシクロペンタジエニル化合物及びこれのメタロセン錯体
US6878782B2 (en) * 1999-12-01 2005-04-12 General Electric Thermoset composition, method, and article
US6641913B1 (en) * 1999-12-03 2003-11-04 Fina Technology, Inc. Heat-sealable films
US6822057B2 (en) * 1999-12-09 2004-11-23 Exxon Mobil Chemical Patents Inc. Olefin polymerization catalysts derived from Group-15 cationic compounds and processes using them
US6489480B2 (en) 1999-12-09 2002-12-03 Exxonmobil Chemical Patents Inc. Group-15 cationic compounds for olefin polymerization catalysts
WO2001046273A1 (en) 1999-12-20 2001-06-28 Exxon Chemical Patents Inc. Processes for the preparation polyolefin resins using supported ionic catalysts
KR100718424B1 (ko) 1999-12-22 2007-05-14 엑손모빌 케미칼 패턴츠 인코포레이티드 폴리프로필렌계 접착제 조성물
US6809209B2 (en) 2000-04-07 2004-10-26 Exxonmobil Chemical Patents Inc. Nitrogen-containing group-13 anionic compounds for olefin polymerization
US6875719B2 (en) * 2000-04-27 2005-04-05 Industrial Technology Research Institute Catalyst composition for preparing olefin polymers
US6673869B2 (en) 2000-07-27 2004-01-06 Basell Poliolefine Italia S.P.A. Transparent elastomeric thermoplastic polyolefin compositions
US6747077B2 (en) 2000-10-17 2004-06-08 Ciba Specialty Chemicals Corporation Stabilized metallocene polypropylene
WO2002060957A2 (en) 2001-01-16 2002-08-08 Exxonmobil Chemical Patents Inc. Catalysts with at least two transition metal compounds and polymerization processes using them
JP2002234589A (ja) * 2001-02-07 2002-08-20 Fuji Photo Film Co Ltd 磁気テープカセット用収納ケース
AU2002315077A1 (en) 2001-06-20 2003-01-08 Exxonmobil Chemical Patents Inc. Polyolefins made by catalyst comprising a noncoordinating anion and articles comprising them
CN1276018C (zh) * 2001-06-22 2006-09-20 埃克森美孚化学专利公司 作为抗冲改性剂的茂金属生产的极低密聚乙烯或线型低密度聚乙烯
US6562930B2 (en) 2001-09-18 2003-05-13 Cornell Research Foundation, Inc. Bis(salicylaldiminato)titanium complex catalysts, highly syndiotactic polypropylene by a chain-end control mechanism, block copolymers containing this
EP1300423A1 (en) * 2001-09-27 2003-04-09 Atofina Research S.A. Catalyst system comprising a mixture of catalyst components for producing a polyolefin blend
EP1298148A1 (en) 2001-09-27 2003-04-02 Atofina Research S.A. Catalyst component comprising a metallocene with two tetrahydroindenyl ligands for producing a polyolefin
US6653385B2 (en) 2001-10-18 2003-11-25 Bostik Findley, Inc. Hot melt adhesive composition based on a blend of amorphous poly-α-olefin and syndiotactic polypropylene
US6758994B2 (en) * 2002-03-28 2004-07-06 Fina Technology, Inc. Method of producing polypropylene tapes
US6998431B2 (en) 2002-03-28 2006-02-14 Fina Technology, Inc. Polymerization process
US7025919B2 (en) * 2002-03-28 2006-04-11 Fina Technology, Inc. Syndiotactic polypropylene fibers
US20030215588A1 (en) * 2002-04-09 2003-11-20 Yeager Gary William Thermoset composition, method, and article
US6642290B1 (en) 2002-04-12 2003-11-04 Milliken & Company Highly nucleated syndiotactic polypropylene
AU2003226284A1 (en) * 2002-04-12 2003-10-27 Milliken And Company Highly nucleated syndiotactic polypropylene
US6703434B2 (en) 2002-04-12 2004-03-09 Milliken & Company Methods of producing highly nucleated syndiotactic polypropylene
US6878327B2 (en) * 2002-04-19 2005-04-12 Fina Technology, Inc. Process of making polypropylene fibers
AU2003259234A1 (en) * 2002-07-31 2004-02-25 Exxonmobil Chemical Patents Inc. Silane crosslinkable polyethylene
KR100630590B1 (ko) 2002-08-27 2006-10-04 미쓰이 가가쿠 가부시키가이샤 열가소성 엘라스토머 및 그 성형체
AU2003269970A1 (en) * 2002-09-05 2004-03-29 Exxonmobil Chemical Patents Inc. Shrink film
AU2003274920A1 (en) * 2002-09-05 2004-03-29 Exxonmobil Chemical Patents Inc. Stretch film
US6773818B2 (en) 2002-09-06 2004-08-10 Exxonmobil Oil Corporation Metallized, metallocene-catalyzed, polypropylene films
EP1403293A1 (en) * 2002-09-27 2004-03-31 ATOFINA Research Société Anonyme Silicon containing cyclopentadienyl ring for metallocene catalyst component
CN100595202C (zh) 2002-09-27 2010-03-24 三井化学株式会社 烯烃聚合用交联金属茂化合物及使用该化合物的烯烃聚合方法
US7150919B2 (en) * 2002-09-30 2006-12-19 The Goodyear Tire & Rubber Company Overmolded grip
US7264868B2 (en) * 2002-09-30 2007-09-04 The Goodyear Tire & Rubber Company Overmolded grip
US7550528B2 (en) 2002-10-15 2009-06-23 Exxonmobil Chemical Patents Inc. Functionalized olefin polymers
US7223822B2 (en) * 2002-10-15 2007-05-29 Exxonmobil Chemical Patents Inc. Multiple catalyst and reactor system for olefin polymerization and polymers produced therefrom
KR101113341B1 (ko) * 2002-10-15 2012-09-27 엑손모빌 케미칼 패턴츠 인코포레이티드 올레핀 중합용 다중 촉매 시스템 및 이로부터 제조된중합체
US7700707B2 (en) 2002-10-15 2010-04-20 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
US7541402B2 (en) * 2002-10-15 2009-06-02 Exxonmobil Chemical Patents Inc. Blend functionalized polyolefin adhesive
EP1422249A1 (en) * 2002-11-20 2004-05-26 ATOFINA Research New metallocene catalyst system
DE602004025804D1 (de) 2003-01-27 2010-04-15 Mitsui Chemicals Inc Propylenpolymerzusammensetzung und Verwendung davon
WO2004072174A1 (ja) 2003-02-14 2004-08-26 Mitsui Chemicals, Inc. シンジオタクティックプロピレン系重合体組成物
US6855783B2 (en) 2003-04-11 2005-02-15 Fina Technology, Inc. Supported metallocene catalysts
EP1648946B1 (en) 2003-07-04 2015-07-15 Basell Polyolefine GmbH Olefin polymerization process
US6846561B1 (en) 2003-08-06 2005-01-25 Fina Technology, Inc. Bicomponent fibers of isotactic and syndiotactic polypropylene
US7087301B2 (en) * 2003-08-06 2006-08-08 Fina Technology, Inc. Bicomponent fibers of syndiotactic polypropylene
US6878787B2 (en) * 2003-08-26 2005-04-12 Fina Technology, Inc. Polyamide supported metallocene catalysts
JP2005099712A (ja) * 2003-08-28 2005-04-14 Sharp Corp 表示装置の駆動回路および表示装置
US7211536B2 (en) * 2004-10-22 2007-05-01 Fina Technology, Inc. Supported metallocene catalysts and their use in producing stereospecific polymers
US7285608B2 (en) * 2004-04-21 2007-10-23 Novolen Technology Holdings C.V. Metallocene ligands, metallocene compounds and metallocene catalysts, their synthesis and their use for the polymerization of olefins
US7365131B2 (en) * 2004-04-28 2008-04-29 The Goodyear Tire & Rubber Company Thermoplastic vulcanizate composition
US20060052540A1 (en) 2004-09-09 2006-03-09 Maria Ellul Thermoplastic vulcanizates
US7795194B2 (en) 2004-11-26 2010-09-14 Mitsui Chemicals, Inc. Synthetic lubricating oil and lubricating oil composition
US20060118237A1 (en) * 2004-12-03 2006-06-08 Fina Technology, Inc. Polymer films having good print and heat seal properties and laminates prepared therewith
US7413812B2 (en) * 2005-04-26 2008-08-19 Fina Technology, Inc. Polypropylene article and method of preparing polypropylene article
EP1896542B1 (en) 2005-06-24 2018-06-20 ExxonMobil Chemical Patents Inc. Plasticized functionalized propylene copolymer adhesive composition
DE112006001733T5 (de) 2005-07-01 2008-07-31 Albemarle Corporation Aluminoxanatsalzzusammensetzungen mit verbesserter Stabilität in aromatischen und aliphatischen Lösungsmitteln
US7989670B2 (en) * 2005-07-19 2011-08-02 Exxonmobil Chemical Patents Inc. Process to produce high viscosity fluids
WO2007011462A1 (en) 2005-07-19 2007-01-25 Exxonmobil Chemical Patents Inc. Lubricants from mixed alpha-olefin feeds
AU2006270436B2 (en) * 2005-07-19 2011-12-15 Exxonmobil Chemical Patents Inc. Polyalpha-olefin compositions and processes to produce the same
EP1924648B1 (en) 2005-08-17 2012-06-20 Bostik, Inc. Polyolefin based hot melt adhesive having improved heat resistance
US7662895B2 (en) 2005-11-22 2010-02-16 Exxonmobil Chemical Patents Inc. Syndiotactic propylene elastomers
US7709577B2 (en) 2005-12-07 2010-05-04 Exxonmobil Chemical Patents Inc. Process of making polymer blends
US7517939B2 (en) 2006-02-02 2009-04-14 Chevron Phillips Chemical Company, Lp Polymerization catalysts for producing high molecular weight polymers with low levels of long chain branching
JPWO2007094383A1 (ja) * 2006-02-15 2009-07-09 三井化学株式会社 耐環境応力破壊改良剤及びこれを含んで成る耐環境応力破壊性改良樹脂組成物
EP1992649A4 (en) * 2006-02-15 2009-04-22 Mitsui Chemicals Inc ETHYLENE RESIN AND EXTRUSION-BLOW MOLDED ARTICLE COMPRISING THE SAME
US7619047B2 (en) 2006-02-22 2009-11-17 Chevron Phillips Chemical Company, Lp Dual metallocene catalysts for polymerization of bimodal polymers
US20070255028A1 (en) * 2006-04-28 2007-11-01 Fina Technology, Inc. Fluorinated transition metal catalysts and formation thereof
US7951873B2 (en) * 2006-05-05 2011-05-31 Exxonmobil Chemical Patents Inc. Linear low density polymer blends and articles made therefrom
US8921290B2 (en) 2006-06-06 2014-12-30 Exxonmobil Research And Engineering Company Gear oil compositions
US8834705B2 (en) 2006-06-06 2014-09-16 Exxonmobil Research And Engineering Company Gear oil compositions
US8535514B2 (en) * 2006-06-06 2013-09-17 Exxonmobil Research And Engineering Company High viscosity metallocene catalyst PAO novel base stock lubricant blends
US8501675B2 (en) 2006-06-06 2013-08-06 Exxonmobil Research And Engineering Company High viscosity novel base stock lubricant viscosity blends
US8299007B2 (en) * 2006-06-06 2012-10-30 Exxonmobil Research And Engineering Company Base stock lubricant blends
US8188170B2 (en) 2006-06-20 2012-05-29 Chemtura Corporation Polymers with low gel content and enhanced gas-fading
WO2008010862A1 (en) 2006-07-19 2008-01-24 Exxonmobil Chemical Patents Inc. Process to produce polyolefins using metallocene catalysts
US7601255B2 (en) 2006-09-06 2009-10-13 Chemtura Corporation Process for removal of residual catalyst components
WO2008035584A1 (fr) 2006-09-20 2008-03-27 Mitsui Chemicals, Inc. Composition de polyoléfine
JP5863157B2 (ja) 2006-12-18 2016-02-16 日東電工株式会社 粘着シート
US7256240B1 (en) 2006-12-22 2007-08-14 Exxonmobil Chemical Patents Inc. Process of making polymer blends
MY152879A (en) * 2007-07-04 2014-11-28 Mitsui Chemicals Inc Transition metal complex compounds, olefin oligomerization catalysts including the compounds, and processes for producing olefin oligomers using the catalysts
US8513478B2 (en) * 2007-08-01 2013-08-20 Exxonmobil Chemical Patents Inc. Process to produce polyalphaolefins
EP2058337A1 (en) 2007-11-06 2009-05-13 Total Petrochemicals Research Feluy Process for preparing a polyethylene resin in a double loop reactor with a mixture of bis-indenyl and bis-tetrahydroindenyl catalyst components
CA2706822C (en) 2007-11-19 2013-05-28 Mitsui Chemicals, Inc. Bridged metallocene compound, olefin polymerization catalyst containing the same, and ethylene polymer obtained with the catalyst
DE102008005945A1 (de) 2008-01-24 2009-07-30 Evonik Degussa Gmbh Verfahren zur Herstellung von Polyolefinen mit syndiotaktischen Strukturelementen, Polyolefine und deren Verwendung
CA2710926C (en) * 2008-01-31 2012-10-30 Exxonmobil Chemical Patents Inc. Improved utilization of linear alpha olefins in the production of metallocene catalyzed poly-alpha olefins
US8865959B2 (en) * 2008-03-18 2014-10-21 Exxonmobil Chemical Patents Inc. Process for synthetic lubricant production
CN105175597A (zh) 2008-03-31 2015-12-23 埃克森美孚化学专利公司 剪切稳定的高粘度pao 的制备
US7880047B2 (en) * 2008-05-06 2011-02-01 Chemtura Corporation Polyalphaolefins and processes for forming polyalphaolefins
CN102083914B (zh) 2008-07-10 2015-02-04 三井化学株式会社 4-甲基-1-戊烯类聚合物以及含有4-甲基-1-戊烯类聚合物的树脂组合物及其母料以及它们的成型品
US8765872B2 (en) * 2008-07-10 2014-07-01 Mitsui Chemicals, Inc. 4-methyl-1-pentene polymer, resin composition containing 4-methyl-1-pentene polymer, masterbatch thereof, and formed product thereof
CN103951769A (zh) 2008-08-01 2014-07-30 埃克森美孚化学专利公司 催化剂体系和用于烯烃聚合的方法
US8580902B2 (en) * 2008-08-01 2013-11-12 Exxonmobil Chemical Patents Inc. Catalyst system, process for olefin polymerization, and polymer compositions produced therefrom
US8394746B2 (en) * 2008-08-22 2013-03-12 Exxonmobil Research And Engineering Company Low sulfur and low metal additive formulations for high performance industrial oils
US8476205B2 (en) * 2008-10-03 2013-07-02 Exxonmobil Research And Engineering Company Chromium HVI-PAO bi-modal lubricant compositions
US8114946B2 (en) * 2008-12-18 2012-02-14 Chevron Phillips Chemical Company Lp Process for producing broader molecular weight distribution polymers with a reverse comonomer distribution and low levels of long chain branches
JP5525847B2 (ja) 2009-03-17 2014-06-18 日本ポリプロ株式会社 プロピレン系多層シートおよびそれを用いた加圧処理用包装袋
US9127151B2 (en) 2009-04-28 2015-09-08 Exxonmobil Chemical Patents Inc. Polymer compositions having improved properties as viscosity index improvers and use thereof in lubricating oils
US20120028866A1 (en) 2010-07-28 2012-02-02 Sudhin Datta Viscosity Modifiers Comprising Blends of Ethylene-Based Copolymers
US8378042B2 (en) 2009-04-28 2013-02-19 Exxonmobil Chemical Patents Inc. Finishing process for amorphous polymers
DE102009027447A1 (de) 2009-07-03 2011-01-05 Evonik Degussa Gmbh Modifizierte Polyolefine mit besonderem Eigenschaftsprofil, Verfahren zu deren Herstellung und deren Verwendung
US8067652B2 (en) 2009-08-13 2011-11-29 Chemtura Corporation Processes for controlling the viscosity of polyalphaolefins
US8716201B2 (en) * 2009-10-02 2014-05-06 Exxonmobil Research And Engineering Company Alkylated naphtylene base stock lubricant formulations
JP5762303B2 (ja) 2009-11-06 2015-08-12 三井化学株式会社 4−メチル−1−ペンテン・α−オレフィン共重合体、該共重合体を含む組成物および4−メチル−1−ペンテン共重合体組成物
US8530712B2 (en) * 2009-12-24 2013-09-10 Exxonmobil Chemical Patents Inc. Process for producing novel synthetic basestocks
CN102741303B (zh) 2010-01-22 2015-05-06 埃克森美孚化学专利公司 润滑油组合物及其制造方法
US8728999B2 (en) * 2010-02-01 2014-05-20 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
US8642523B2 (en) * 2010-02-01 2014-02-04 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
US8598103B2 (en) * 2010-02-01 2013-12-03 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low, medium and high speed engines by reducing the traction coefficient
US8759267B2 (en) * 2010-02-01 2014-06-24 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
US8748362B2 (en) * 2010-02-01 2014-06-10 Exxonmobile Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed gas engines by reducing the traction coefficient
WO2011135763A1 (ja) 2010-04-28 2011-11-03 三井化学株式会社 4-メチル-1-ペンテン系重合体からなる樹脂微粉末、およびそれを含む組成物、ならびにその製造方法
US20120135903A1 (en) 2010-05-11 2012-05-31 Mitsui Chemicals, Inc. Lubricating oil composition
US9815915B2 (en) 2010-09-03 2017-11-14 Exxonmobil Chemical Patents Inc. Production of liquid polyolefins
ES2540117T3 (es) 2010-11-22 2015-07-08 Albemarle Corporation Composiciones de activador, su preparación, y su uso en catálisis
US9643900B2 (en) 2011-03-25 2017-05-09 Dow Global Technologies Llc Hyperbranched ethylene-based oils and greases
CN103717673B (zh) 2011-08-01 2016-03-23 三井化学株式会社 反射材用热塑性树脂组合物、反射板及发光二极管元件
WO2013055480A1 (en) 2011-10-10 2013-04-18 Exxonmobil Research And Engineering Company Low viscosity engine oil compositions
EP2799488B1 (en) 2011-12-27 2016-07-20 Mitsui Chemicals, Inc. 4-methyl-1-pentene (co)polymer composition, and film and hollow molded body, each of which is formed from 4-methyl-1-pentene (co)polymer composition
US10316176B2 (en) 2012-02-03 2019-06-11 Exxonmobil Chemical Patents Inc. Polymer compositions and methods of making them
US9139794B2 (en) 2012-02-03 2015-09-22 Exxonmobil Chemical Patents Inc. Process for the production of polymeric compositions useful as oil modifiers
CN109135034A (zh) 2012-02-03 2019-01-04 埃克森美孚化学专利公司 可用于油料改性剂的聚合物组合物的制备方法
CN104204002B (zh) 2012-03-28 2016-08-17 三井化学株式会社 丙烯·α-烯烃共聚物及其用途
US20130281340A1 (en) 2012-04-19 2013-10-24 Exxonmobil Chemical Patents Inc. Lubricant Compositions Comprising Ethylene Propylene Copolymers and Methods for Making Them
BR112014026674B1 (pt) 2012-04-27 2021-10-05 W.R.Grace & Co.-Conn Composição de precursor de ativador e processo de formação
JP5925322B2 (ja) 2012-08-22 2016-05-25 三井化学株式会社 不織布積層体
US8895679B2 (en) 2012-10-25 2014-11-25 Chevron Phillips Chemical Company Lp Catalyst compositions and methods of making and using same
US8937139B2 (en) 2012-10-25 2015-01-20 Chevron Phillips Chemical Company Lp Catalyst compositions and methods of making and using same
WO2014070414A1 (en) 2012-10-31 2014-05-08 Exxonmobil Chemical Patents Inc. Propylene copolymer compositions and processes to produce them
KR101821868B1 (ko) 2012-11-19 2018-01-24 미쯔이가가꾸가부시끼가이샤 폴리에스테르 수지 조성물과 그 제조 방법, 그것을 포함하는 카메라 모듈
KR20150076238A (ko) 2012-11-30 2015-07-06 미쓰이 가가쿠 가부시키가이샤 광학 재료용 조성물 및 그 용도
US8877672B2 (en) 2013-01-29 2014-11-04 Chevron Phillips Chemical Company Lp Catalyst compositions and methods of making and using same
US9034991B2 (en) 2013-01-29 2015-05-19 Chevron Phillips Chemical Company Lp Polymer compositions and methods of making and using same
KR101811117B1 (ko) 2013-06-07 2017-12-20 미쓰이 가가쿠 가부시키가이샤 프로필렌·α-올레핀 공중합체를 포함하는 올레핀계 도료
JP6525981B2 (ja) 2013-06-28 2019-06-05 ダウ グローバル テクノロジーズ エルエルシー 軽分岐疎水性物質ならびに対応する界面活性剤の調製のための方法、及びその適用
CA2915067C (en) 2013-06-28 2021-08-03 Dow Global Technologies Llc Hyperbranched ethylene-based oligomers
ES2660464T3 (es) 2013-06-28 2018-03-22 Dow Global Technologies Llc Proceso para la preparación de poliolefinas ramificadas para aplicaciones lubricantes
US10072116B2 (en) 2013-11-05 2018-09-11 Mitsui Chemicals, Inc. Modified propylene-(α-olefin) copolymer, method for producing same, coating material comprising same, resin composition for molding use, and hot-melt composition
BR112016016396B1 (pt) 2014-02-13 2021-08-10 Mitsui Chemicals, Inc. Processo para a produção de copolímero de etileno/a-olefina
KR101909799B1 (ko) 2014-02-28 2018-10-18 미쓰이 가가쿠 가부시키가이샤 가교체와 그의 제조 방법 및 용도, 및 에틸렌계 공중합체
JP6253765B2 (ja) 2014-03-28 2017-12-27 三井化学株式会社 オレフィン系樹脂およびその製造方法
KR101814320B1 (ko) 2014-03-28 2018-01-02 미쓰이 가가쿠 가부시키가이샤 에틸렌/α-올레핀 공중합체 및 윤활유
KR101970078B1 (ko) 2014-09-10 2019-04-17 미쓰이 가가쿠 가부시키가이샤 윤활유 조성물
KR101889669B1 (ko) 2014-09-11 2018-08-17 미쓰이 가가쿠 가부시키가이샤 1-뷰텐 유래의 구성 단위를 포함하는 올레핀 (공)중합체의 제조 방법
JP6258496B2 (ja) 2014-12-09 2018-01-10 三井化学株式会社 プロピレン系樹脂組成物
JP6439039B2 (ja) 2015-03-20 2018-12-19 三井化学株式会社 熱可塑性エラストマー組成物、その用途、その製造方法、エチレン・α−オレフィン・非共役ポリエン共重合体およびその用途
WO2017054398A1 (zh) 2015-09-28 2017-04-06 中国石油天然气股份有限公司 一种球形负载型过渡金属催化剂
CN108779308A (zh) 2016-03-25 2018-11-09 三井化学株式会社 伸缩性结构体、多层伸缩片、纺织纱线以及纤维结构体
EP3564346A4 (en) 2016-12-27 2020-09-02 Mitsui Chemicals, Inc. LUBRICATING OIL COMPOSITION, LUBRICATING OIL VISCOSITY MODIFIER, AND LUBRICATING OIL ADDITIVE COMPOSITION
KR102208021B1 (ko) 2017-01-16 2021-01-26 미쓰이 가가쿠 가부시키가이샤 자동차 기어용 윤활유 조성물
JP6821711B2 (ja) 2017-02-02 2021-01-27 三井化学株式会社 発泡体、ポリオレフィン系発泡シートおよび複合体
MX2019009838A (es) 2017-02-20 2019-10-04 Mitsui Chemicals Inc Laminado.
US20200338121A1 (en) 2017-10-20 2020-10-29 Mitsui Chemicals, Inc. Carbon dioxide slow-release pack for skin and method of slowly releasing carbon dioxide to skin
EP3714025A1 (en) 2017-11-21 2020-09-30 ExxonMobil Chemical Patents Inc. Bimodal copolymer compositions useful as oil modifiers
CN111465677B (zh) 2017-12-13 2023-07-07 雪佛龙奥伦耐有限责任公司 用作油改性剂的双峰共聚物组合物和包含该组合物的润滑油
JP6980092B2 (ja) 2018-03-13 2021-12-15 三井化学株式会社 通気性シート、積層体および複合体
WO2019180802A1 (ja) 2018-03-20 2019-09-26 三井化学株式会社 エチレン・α-オレフィン・非共役ポリエン共重合体、その製造方法および用途
CN112969726A (zh) 2018-12-04 2021-06-15 三井化学株式会社 含有4-甲基-1-戊烯共聚物的树脂组合物及电容器用膜
KR102603770B1 (ko) 2019-03-28 2023-11-20 미츠이·다우 폴리케미칼 가부시키가이샤 실런트용 수지 조성물, 적층체, 포장재 및 포장 용기
WO2021039818A1 (ja) 2019-08-29 2021-03-04 三井化学株式会社 潤滑油組成物
EP4059969A4 (en) 2019-11-15 2023-12-06 Mitsui Chemicals, Inc. RESIN COMPOSITION AND MOLDED ARTICLE
JP7434527B2 (ja) 2020-03-19 2024-02-20 三井化学株式会社 自己粘着シート
WO2021193537A1 (ja) 2020-03-27 2021-09-30 三井化学株式会社 積層体、これを用いたロール体および梱包体
JPWO2021201112A1 (ru) 2020-03-31 2021-10-07
EP4159439A4 (en) 2020-06-02 2023-12-06 Japan Polypropylene Corporation POLYPROPYLENE-BASED RESIN COMPOSITION, LAMINATE, AND METHODS OF MAKING THE SAME
CN112430280B (zh) * 2020-11-23 2023-04-28 天津华聚化工科技有限公司 一种茂锆型烯烃聚合催化剂及其制备方法和应用
JPWO2022186208A1 (ru) 2021-03-02 2022-09-09
EP4410933A1 (en) 2021-09-30 2024-08-07 Mitsui Chemicals, Inc. Lubricating oil composition

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE591537A (ru) * 1959-06-06
US3305538A (en) * 1961-11-22 1967-02-21 Montedison Spa Polymerization process
US3268627A (en) * 1963-05-16 1966-08-23 Standard Oil Co Blends of isotactic and syndiotactic polypropylene
US3364190A (en) * 1964-04-27 1968-01-16 Standard Oil Co Process for polymerizing propylene to syndiotactic polypropylene
US4411821A (en) * 1981-02-23 1983-10-25 E. I. Du Pont De Nemours And Company 1-Olefin polymerization catalyst
DE3127133A1 (de) * 1981-07-09 1983-01-27 Hoechst Ag, 6000 Frankfurt Verfahren zur herstellung von polyolefinen und deren copolymerisaten
US4497906A (en) * 1982-02-16 1985-02-05 Sumitomo Chemical Company, Limited Solid catalyst component for olefin polymerization
US4935474A (en) * 1983-06-06 1990-06-19 Exxon Research & Engineering Company Process and catalyst for producing polyethylene having a broad molecular weight distribution
US4522982A (en) * 1983-06-06 1985-06-11 Exxon Research & Engineering Co. Isotactic-stereoblock polymers of alpha-olefins and process for producing the same
US4530914A (en) * 1983-06-06 1985-07-23 Exxon Research & Engineering Co. Process and catalyst for producing polyethylene having a broad molecular weight distribution
DE3466880D1 (en) * 1983-06-06 1987-11-26 Exxon Research Engineering Co Process and catalyst for producing reactor blend polyolefins
ZA844157B (en) * 1983-06-06 1986-01-29 Exxon Research Engineering Co Process and catalyst for polyolefin density and molecular weight control
DE3443087A1 (de) * 1984-11-27 1986-05-28 Hoechst Ag, 6230 Frankfurt Verfahren zur herstellung von polyolefinen
EP0227653A1 (en) * 1985-06-24 1987-07-08 BRONSTEIN, Leonard Contact lens
US4701432A (en) * 1985-11-15 1987-10-20 Exxon Chemical Patents Inc. Supported polymerization catalyst
IL80888A (en) * 1985-12-12 1991-12-12 Exxon Chemical Patents Inc Olefin polymerization catalysts,their preparation and use thereof
US4752597A (en) * 1985-12-12 1988-06-21 Exxon Chemical Patents Inc. New polymerization catalyst
US4658078A (en) * 1986-08-15 1987-04-14 Shell Oil Company Vinylidene olefin process
DE3640924A1 (de) * 1986-11-29 1988-06-01 Hoechst Ag 1-olefin-stereoblockpolymer und verfahren zu seiner herstellung
IL85097A (en) 1987-01-30 1992-02-16 Exxon Chemical Patents Inc Catalysts based on derivatives of a bis(cyclopentadienyl)group ivb metal compound,their preparation and their use in polymerization processes
JP2538588B2 (ja) * 1987-04-03 1996-09-25 三井石油化学工業株式会社 オレフイン重合用固体触媒の製法
JPH0713075B2 (ja) * 1988-06-20 1995-02-15 チッソ株式会社 橋架け構造のビス置換シクロペンタジエニル配位子を有するジルコニウム化合物
US4931417A (en) * 1987-11-09 1990-06-05 Chisso Corporation Transition-metal compound having a bis-substituted-cyclopentadienyl ligand of bridged structure
JP2587251B2 (ja) * 1987-11-09 1997-03-05 チッソ株式会社 立体規則性オレフィン重合体製造用触媒
JPH0720973B2 (ja) * 1988-06-20 1995-03-08 チッソ株式会社 橋架け構造のビス置換シクロペンタジエニル配位子を有するハフニウム化合物
US5036034A (en) 1989-10-10 1991-07-30 Fina Technology, Inc. Catalyst for producing hemiisotactic polypropylene

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Выложенная заявка ФРГ N 3443087, кл. C 08 F 10/00, 1986. *

Also Published As

Publication number Publication date
AU610731B2 (en) 1991-05-23
ES2157194T5 (es) 2005-07-16
KR0145313B1 (ko) 1998-07-15
DE68929293T3 (de) 2005-11-17
DE68929293D1 (de) 2001-06-07
RU2017519C1 (ru) 1994-08-15
ES2157194T3 (es) 2001-08-16
DD300545A5 (de) 1992-06-17
JP2851867B2 (ja) 1999-01-27
CZ365589A3 (en) 1997-12-17
DE68929293T2 (de) 2001-09-20
EP0351392B1 (en) 2001-05-02
NO892330D0 (no) 1989-06-07
KR900001728A (ko) 1990-02-27
CZ283418B6 (cs) 1998-04-15
CN1040036A (zh) 1990-02-28
FI97894C (fi) 1997-03-10
NO172588C (no) 1993-08-11
FI97894B (fi) 1996-11-29
CN1059448C (zh) 2000-12-13
SK365589A3 (en) 2000-06-12
FI893140A (fi) 1990-01-16
JPH0241303A (ja) 1990-02-09
SK280700B6 (sk) 2000-06-12
AU3660589A (en) 1990-01-18
NO892330L (no) 1990-01-16
EP0351392A2 (en) 1990-01-17
FI893140A0 (fi) 1989-06-28
DD290200A5 (de) 1991-05-23
CA1338600C (en) 1996-09-17
US5334677A (en) 1994-08-02
NO172588B (no) 1993-05-03
EP0351392A3 (en) 1993-11-18
EP0351392B2 (en) 2005-03-02
US4892851A (en) 1990-01-09
ATE200902T1 (de) 2001-05-15

Similar Documents

Publication Publication Date Title
RU2077541C1 (ru) Способ получения синдиотактических полиолефинов и синдиотактический полипропилен
EP0351391B1 (en) Syndiotactic polypropylene
US5416228A (en) Process and catalyst for producing isotactic polyolefins
EP0910591B1 (en) Syndiotactic/atactic block polyolefins, catalysts and processes for producing the same
EP1083188A1 (en) Catalyst and process for the preparation of syndiotactic / atactic block polyolefins
JP2980977B2 (ja) プロピレンとオレフインとのシンジオタクチツク共重合体の製造法
CA2028770A1 (en) Syndiotactic homopolymers of olefins
CA2029077C (en) Syndiotactic copolymers of propylene and olefins
AU5450401A (en) Syndiotactic/atactic block polyolefins, catalysts and processes for producing the same

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20070711

REG Reference to a code of a succession state

Ref country code: RU

Ref legal event code: MM4A

Effective date: 20070711