KR20180013745A - 반도체 패터닝 애플리케이션들을 위한 도핑된 ald 막들 - Google Patents

반도체 패터닝 애플리케이션들을 위한 도핑된 ald 막들 Download PDF

Info

Publication number
KR20180013745A
KR20180013745A KR1020170093932A KR20170093932A KR20180013745A KR 20180013745 A KR20180013745 A KR 20180013745A KR 1020170093932 A KR1020170093932 A KR 1020170093932A KR 20170093932 A KR20170093932 A KR 20170093932A KR 20180013745 A KR20180013745 A KR 20180013745A
Authority
KR
South Korea
Prior art keywords
substrate
doped
dopant
core material
oxide
Prior art date
Application number
KR1020170093932A
Other languages
English (en)
Other versions
KR102273916B1 (ko
Inventor
샹카 스와미나단
리처드 필립스
애드리언 라보이
Original Assignee
램 리써치 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 램 리써치 코포레이션 filed Critical 램 리써치 코포레이션
Publication of KR20180013745A publication Critical patent/KR20180013745A/ko
Priority to KR1020210086044A priority Critical patent/KR102510157B1/ko
Application granted granted Critical
Publication of KR102273916B1 publication Critical patent/KR102273916B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02129Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being boron or phosphorus doped silicon oxides, e.g. BPSG, BSG or PSG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

포지티브 패터닝 스킴을 사용하여 기판들을 패터닝하기 위한 방법들 및 장치들이 본 명세서에 기술된다. 방법들은 패터닝된 코어 재료를 가진 기판을 수용하는 단계, 패터닝된 코어 재료 위에 도핑된 스페이서 재료를 컨포멀하게 증착하는 단계, 스페이서 마스크를 형성하도록 도핑된 스페이서 재료에 대해 코어 재료를 선택적으로 에칭하는 단계, 및 기판 상에 타깃 층을 에칭하도록 스페이서 마스크를 사용하는 단계를 수반한다. 스페이서 재료들은 붕소, 갈륨, 인, 비소, 알루미늄, 및 하프늄 중 임의의 것을 사용하여 도핑될 수도 있다. 실시예들은 복수의 패터닝 애플리케이션들의 적용들에 적합하다.

Description

반도체 패터닝 애플리케이션들을 위한 도핑된 ALD 막들{DOPED ALD FILMS FOR SEMICONDUCTOR PATTERNING APPLICATIONS}
진보된 집적 회로들의 제조는 고 볼륨의 반도체들의 제작시 작은 피처들의 패터닝을 종종 수반한다. 멀티플 패터닝 기법들은 리소그래피 기법들, 예컨대, 193 ㎚ 침지 리소그래피에 기초하여 피처 사이즈 스케일링을 가능하게 할 수도 있다. 자기-정렬된 더블 패터닝은 멀티플 패터닝 기법의 예이다.
반도체 기판들을 프로세싱하는 방법들 및 장치가 본 명세서에 제공된다. 일 양태는 포지티브 패터닝을 사용하여 기판을 패터닝하는 방법을 수반하고, 방법은: 패터닝된 코어 재료를 가진 기판을 제공하는 단계; 코어 재료 위에 도핑된 스페이서 재료를 컨포멀하게 증착하는 단계; 마스크를 형성하기 위해 스페이서에 대해 코어 재료를 선택적으로 에칭하는 단계로서, 도핑된 스페이서의 에칭 레이트는 코어 재료의 에칭 레이트보다 약 5 내지 약 20 배 더 빠른, 스페이서에 대해 코어 재료를 선택적으로 에칭하는 단계; 및 마스크를 사용하여 타깃 층을 에칭하는 단계를 포함한다.
도핑된 스페이서를 증착하는 단계는 실리콘 산화물의 하나 이상의 층들을 증착하는 단계 및 도펀트 산화물의 하나 이상의 층들을 증착하는 단계를 포함할 수도 있고, 도펀트는 붕소, 갈륨, 인, 알루미늄, 및 비소 중 임의의 것이다. 일부 실시예들에서, 도핑된 스페이서를 증착한 후 그리고 코어 재료를 선택적으로 에칭하기 전에, 기판을 약 400 ℃ 미만의 온도로 어닐링된다.
도핑된 스페이서를 증착하는 단계는: 기판의 표면을 포화시키기에 불충분한 지속기간 동안 기판을 제 1 도즈의 실리콘-함유 전구체에 노출시키는 단계; 기판의 표면 상에 도펀트 및 실리콘-함유 전구체의 부분적으로 포화된 표면을 형성하도록 기판의 표면을 포화시키기에 불충분한 지속기간 동안 기판을 제 2 도즈의 도펀트 전구체에 노출시키는 단계; 및 컨포멀하게 도핑된 실리콘 산화물 재료를 형성하기 위해 기판을 산화제에 노출시키는 단계를 포함할 수도 있다. 일부 실시예들에서 산화제는 산소, 이산화탄소, 물, 아산화질소, 및 이들의 조합들 중 임의의 것이다. 기판을 산화제에 노출시키는 단계는 아르곤, 질소, 및 헬륨으로 구성된 그룹으로부터 선택된 불활성 가스를 흘리는 단계를 포함할 수도 있다. 일부 실시예들에서, 기판을 하우징하는 프로세스 챔버는 단계 (i) 을 수행하는 단계와 단계 (ii) 를 수행하는 단계 사이에 퍼지된다. 일부 실시예들에서, 기판을 산화제에 노출시키는 단계는 산화제를 도입하는 단계 및 플라즈마를 점화하는 단계를 포함한다.
코어 재료는 기판을 탄화불소 가스에 노출시키고 플라즈마를 점화함으로써 에칭될 수도 있다. 탄화불소 가스는 CF4, CHF3, CH2F2, 및 CH3F 중 임의의 것일 수도 있다.
일부 실시예들에서, 형성된 마스크는 약 50 ㎚ 미만의 피치를 갖는다.
도핑된 스페이서는 약 50 ℃ 내지 약 200 ℃의 기판 온도로 증착될 수도 있다.
일부 실시예들에서, 도핑된 스페이서는 게르마늄 산화물의 하나 이상의 층들을 증착함으로써 증착된 게르마늄-함유 재료를 포함하고 그리고 도핑된 스페이서는 인 또는 아르곤으로 도핑된다.
도핑된 스페이서는 50 Å 내지 300 Å의 두께로 증착될 수도 있다. 일부 실시예들에서, 코어 재료는 탄소를 포함한다.
도핑된 스페이서는 약 1E20 at/cc 내지 약 2E22 at/cc의 도펀트 밀도를 가질 수도 있다.
도펀트는 붕소일 수도 있고 그리고 도펀트 산화물의 하나 이상의 층들을 증착하는 단계는 TMB (trimethylborate), TEB (triethylborate), B2H6 (diborane), 트리메틸보란, 트리에틸보란, 및 이들의 조합들 중 임의의 것과 같은 도펀트 전구체에 기판을 노출시키는 단계를 포함할 수도 있다.
도펀트는 인일 수도 있고 그리고 도펀트 산화물의 하나 이상의 층들을 증착하는 단계는 TEPO (triethyl phosphate) (PO(OC2H5)3); TMPO (trimethyl phosphate) (PO(OCH3)3); TMPi (trimethyl phosphite) (P(OCH3)3); TDMAP (trisdimethylaminophosphorus) (((CH3)2N)3P); 삼염화인 (PCl3); TMSP (trismethylsilyl phosphine) (P(Si(CH3)3)3); 및 옥시염화인 (POCl3) 중 임의의 것과 같은 도펀트 전구체에 기판을 노출시키는 단계를 포함할 수도 있다.
또 다른 양태는 기판들을 패터닝하는 장치를 수반하고, 장치는: 하나 이상의 프로세스 챔버들; 플로우-제어 하드웨어와 연관되고 하나 이상의 프로세스 챔버들로의 하나 이상의 가스 유입부들; LFRF (low frequency radio frequency) 생성기; HFRF (high frequency radio frequency) 생성기; 및 적어도 하나의 프로세서 및 메모리를 가진 제어기를 포함하고, 적어도 하나의 프로세서 및 메모리는 서로 통신 가능하게 연결되고, 적어도 하나의 프로세서는 적어도 플로우-제어 하드웨어, LFRF 생성기, 및 HFRF 생성기와 동작 가능하게 연결되고, 그리고 메모리는, 코어 재료 위에 실리콘 산화물의 하나 이상의 층들을 증착하고; 도핑된 스페이서 재료를 형성하기 위해 붕소 산화물, 갈륨 산화물, 인 산화물, 알루미늄 산화물, 및 비소 산화물로 구성된 그룹으로부터 선택된 도펀트 산화물의 하나 이상의 층들을 증착하고; 마스크를 형성하기 위해 코어 재료의 에칭 레이트보다 약 5 내지 약 20 배 더 빠른 도핑된 스페이서 재료의 에칭 레이트로 도핑된 스페이서 재료에 대해 코어 재료를 선택적으로 에칭하고; 그리고 마스크를 사용하여 타깃 층을 에칭하기 위해서, 적어도 플로우-제어 하드웨어, HFRF 생성기, 및 LFRF 생성기를 제어하도록 적어도 하나의 프로세서를 제어하기 위한 컴퓨터-실행 가능한 인스트럭션들을 저장한다.
또 다른 양태는 기판들을 패터닝하는 장치를 수반하고, 장치는: 하나 이상의 프로세스 챔버들; 플로우-제어 하드웨어와 연관되고 하나 이상의 프로세스 챔버들로의 하나 이상의 가스 유입부들; LFRF (low frequency radio frequency) 생성기; HFRF (high frequency radio frequency) 생성기; 및 적어도 하나의 프로세서 및 메모리를 가진 제어기를 포함하고, 적어도 하나의 프로세서 및 메모리는 서로 통신 가능하게 연결되고, 적어도 하나의 프로세서는 적어도 플로우-제어 하드웨어, LFRF 생성기, 및 HFRF 생성기와 동작 가능하게 연결되고, 그리고 메모리는, 기판의 표면을 포화시키기에 불충분한 지속기간 동안 제 1 도즈의 실리콘-함유 전구체를 도입하고; 기판의 표면 상에 도펀트 및 실리콘-함유 전구체의 부분적으로 포화된 표면을 형성하도록 기판의 표면을 포화시키기에 불충분한 지속기간 동안 제 2 도즈의 도펀트 전구체를 도입하고; 그리고 도핑된 스페이서 재료를 형성하기 위해 산화제를 도입함으로써, 코어 재료 위에 도핑된 스페이서 재료를 증착하고; 마스크를 형성하기 위해 코어 재료의 에칭 레이트보다 약 5 내지 약 20 배 더 빠른 도핑된 스페이서 재료의 에칭 레이트로 도핑된 스페이서 재료에 대해 코어 재료를 선택적으로 에칭하고; 그리고 마스크를 사용하여 타깃 층을 에칭하기 위해서, 적어도 플로우-제어 하드웨어, HFRF 생성기, 및 LFRF 생성기를 제어하도록 적어도 하나의 프로세서를 제어하기 위한 컴퓨터-실행 가능한 인스트럭션들을 저장한다.
이들 및 다른 양태들은 도면들을 참조하여 이하에 더 기술된다.
도 1a 내지 도 1f는 포지티브 자기-정렬된 더블 패터닝 스킴을 겪은 기판의 개략적인 예시들이다.
도 2는 특정한 개시된 실시예들에 따른 패터닝 스킴에 대한 동작들을 도시한 프로세스 흐름도이다.
도 3 및 도 4는 특정한 개시된 실시예들에 따른 방법들에 대한 동작들을 도시한 프로세스 흐름도들이다.
도 5a 내지 도 5f는 특정한 개시된 실시예들에 따른 포지티브 자기-정렬된 더블 패터닝 스킴을 겪은 기판의 개략적인 예시들이다.
도 6은 특정한 개시된 실시예들을 수행하기 위한 예시적인 프로세스 챔버의 개략도이다.
도 7은 특정한 개시된 실시예들을 수행하기 위한 예시적인 프로세스 툴의 개략도이다.
도 8은 특정한 개시된 실시예들을 수행하기 위한 예시적인 프로세스 챔버의 개략도이다.
도 9는 특정한 개시된 실시예들을 수행하기 위한 예시적인 프로세스 툴의 개략도이다.
다음의 기술에서, 다수의 특정 세부사항들이 제공된 실시예들의 완전한 이해를 제공하기 위해서 제시된다. 개시된 실시예들은 이러한 특정 세부사항들의 일부 또는 전부 없이 실시될 수도 있다. 다른 예들에서, 공지된 프로세스 동작들은 개시된 실시예들을 불필요하게 모호하게 하지 않도록 하기 위해서 상세히 기술되지 않았다. 개시된 실시예들이 특정 실시예들과 함께 기술될 것이지만, 개시된 실시예들을 제한하도록 의도되지 않음이 이해될 것이다.
이하에 개시된 구현예들은 기판, 예컨대, 웨이퍼, 기판, 또는 다른 워크피스 상의 재료의 증착을 기술한다. 워크피스는 다양한 형상들, 사이즈들, 및 재료들일 수도 있다. 본 출원에서, 용어들 "반도체 웨이퍼", "웨이퍼", "기판", "웨이퍼 기판", 및 "부분적으로 제조된 집적 회로"는 상호교환 가능하게 사용된다. 당업자는 용어 "부분적으로 제조된 집적 회로"가 상부에서의 집적 회로 제조의 많은 스테이지들 중 임의의 스테이지 동안 실리콘 웨이퍼를 지칭할 수 있다는 것을 이해할 것이다.
패터닝 방법들은 많은 반도체 제작 프로세스들에서 사용된다. 특히, 더블 패터닝은 광학적 한계들을 넘어 리소그래피 기술을 확장시키기 위해 사용된다. 더블 패터닝은 광학적 한계들을 넘어 리소그래피 기술을 확장시키기 위한 일 예시적인 기술이고 이제 약 80 ㎚ 미만의 임의의 피치들을 위해 산업계에서 폭 넓게 사용된다. 현재의 더블 패터닝 기술들은 종종 트렌치들을 패터닝하도록 2 개의 마스킹 단계들을 사용하고 측벽 스페이서들을 사용한다. 더블 패터닝, 특히 라인 패터닝의 방법들은, 포지티브 및 네거티브 더블 패터닝 프로세스들 양자에서, 스페이서들 및 마스크들의 사용을 수반한다. 예를 들어, 도 1a 내지 도 1f에서, 도시된 바와 같은 기판 (100) 은 포지티브 더블 패터닝 스킴에 대한 것이다. 그러나, 도 1a 내지 도 1f에서, 코어 재료와 스페이서 재료 간의 불량한 에칭 선택도는 불량한, 불안정한, 그리고 약한 마스크를 발생시켜서 불량하게 에칭된 타깃 층을 발생시킨다. 도 2는 전체 포지티브 더블 패터닝 스킴의 프로세스 흐름도를 제공한다. 도 1a 내지 도 1f 및 도 2는 함께 논의될 것이다.
도 2를 참조하면, 동작 201에서, 패터닝된 코어 재료 및 타깃 층을 가진 기판이 제공된다. 도 1a는 하부층 (101), 타깃 층 (102), 및 패터닝된 코어 재료 (106) 를 가진 이러한 기판 (100) 의 예를 제공한다.
도 2를 참조하면, 동작 203에서, 스페이서 재료는 기판 위에 컨포멀하게 증착된다. 도 1b는 코어 재료 (106) 위에 컨포멀하게 증착된 스페이서 재료 (104) 를 도시한다.
도 2를 참조하면, 동작 205에서, 스페이서 재료로 이루어진 마스크를 형성하기 위해 기판은 에칭 백되고 (etched back) 코어 재료는 선택적으로 에칭된다. 도 1c를 다시 참조하면, 코어 재료 (116) 를 노출하기 위해 스페이서 재료 (114) 가 에칭 백된다. 부가적으로, 하단들 (108) 의 스페이서 재료 (114) 를 제거하기 위해 스페이서 재료 (114) 는 방향성으로 에칭된다. 도 1d에서, 코어 재료 (116) 는 건식 에칭 화학반응을 사용하여 스페이서 재료 (114) 에 대해 선택적으로 에칭된다. 그러나, 종래의 스페이서 재료에 대한 코어 재료의 불량한 에칭 선택도에 기인하여, 에칭은 측벽들 (114s) 을 따라서 도시된 바와 같이, 고르지 않은 에칭된 스페이서 재료 (114) 를 발생시킨다. 도 1d는 차후의 에칭을 위해 사용되는 마스크인 스페이서 재료 (114) 를 도시한다. 스페이서 재료 (114) 의 품질은 스페이서 재료 (114) 에 대해 코어 재료 (116) 를 제거하기 위한 불량한 에칭 선택도에 기인하여 저하된다는 것을 주의하라.
도 2를 다시 참조하면, 동작 207에서, 기판 상의 타깃 층이 마스크를 사용하여 에칭된다. 도 1e에서, 스페이서 재료 (114) 는 타깃 층 (102) 을 에칭하기 위한 마스크로서 사용되고, 불량하게 패터닝된 타깃 층 (112) 을 발생시킨다. 마스크는 하부층 (101) 위에 기판 상에 남는 패터닝된 타깃 층 (112) 을 남기기 위해 도 1f에서 제거될 수도 있다. 타깃 층을 패터닝하기 위해 사용되는 마스크가 열화되고, 불안정하고, 약하기 때문에, 결과로 발생한 타깃 층 (112) 의 패턴은 불량한 품질을 갖는다는 것을 주의하라. 현 방법들은 반도체들 내에 고 종횡비 피처들의 효과적인 형성을 제공할 수 없는 불량한, 불안정한, 그리고 약한 마스크들을 제공한다.
노드가 목표된 패턴에 대해 축소됨에 따라, 코어 재료가 건식 에칭 시퀀스를 사용하여 에칭될 때 독립된 스페이서의 보다 고 선택도가 목표된다. 일부 기법들은 코어 재료를 선택적으로 에칭하도록 채용된다. 일 기법은 상이한 스페이서 재료, 예컨대, 고 모듈러스 티타늄 산화물 재료를 사용하는 것을 수반한다. 그러나, 새로운 스페이서 재료를 사용하는 것은 고가일 수도 있는 새로운 증착 하드웨어 및 새로운 에칭 화학물질들의 구현을 수반하고, 따라서 전체 제작 비용을 증가시킨다. 더욱이, 금속 산화물 스페이서들은 상이한 코어 재료들, 예컨대, 비정질 실리콘을 사용한다. 이는 비정질 실리콘 에칭 프로파일들을 획득하기가 보다 어렵기 때문에 집적 문제를 제기한다. 그러므로, 실리콘 산화물의 저비용 동작 및 프로세싱의 용이성 때문에 실리콘 산화물이 스페이서 재료들에 종종 사용된다. 더욱이, 스페이서 재료들은 에칭될 때 형성된 부산물에 따라 선택된다. 예를 들어, 불소-함유 에칭 화학물질을 사용하여 티타늄-함유 스페이서 재료를 에칭하는 것은 50 ℃에서 고체인 티타늄 불화물의 형성을 발생시키고, 따라서 챔버 표면들로부터 부산물 재료를 제거하기 위해 가열 하드웨어를 수반한다. 대조적으로, 특정한 개시된 실시예들에서 사용된 바와 같은 도핑된 스페이서 재료, 예컨대, 붕소-도핑된 또는 인-도핑된 스페이서 재료는 기존의 세정 하드웨어와 양립 가능한 휘발성 불화물을 형성할 수 있다.
또 다른 기법은 보다 높은 막 밀도를 달성하기 위해 스페이서 재료를 증착하는 반응 동안 온도 또는 플라즈마 에너지를 조절하여, 건식 에칭 레이트를 감소시키고 스페이서 재료에 대한 코어 재료의 에칭 선택도를 개선하는 것이다. 그러나, 실리콘 산화물 스페이서 재료를 형성하기 위해 고 플라즈마 또는 고온을 사용하는 것은 민감한 코어 재료에 손상을 유발할 수도 있다. 예를 들어, 보다 높은 온도는 코어-산화물 계면에서의 거칠기를 증가시키고 보다 높은 플라즈마 에너지는 코어 재료를 애시할 (ash) 수 있는 보다 높은 플라즈마 밀도를 발생시킬 것이고, 심각한 패턴 붕괴 이슈들 또는 증가된 라인 에지 거칠기를 야기한다.
코어 재료에 비해 저 건식 에칭 레이트를 가진 도핑된 스페이서 재료를 사용한 포지티브 패터닝 스킴들을 사용하여 기판을 패터닝하는 방법들 및 장치들이 본 명세서에 제공된다. 방법들은 쿼드 (quad) 패터닝 스킴들을 위한 더블 패터닝에서 스페이서 재료들인 실리콘 산화물 및/또는 게르마늄 산화물 막들을 도핑하는 것을 수반한다. 예시적인 도펀트들은 붕소, 갈륨, 인, 비소, 알루미늄, 및 하프늄을 포함한다. 방법들은 또한 ALD에 의해 DxOy/SiO2의 나노라미네이트들을 형성하는 것을 수반하고, 여기서 D는 다음의 도펀트들: 붕소, 갈륨, 인, 비소, 알루미늄, 및 하프늄 중 임의의 도펀트 또는 이들의 임의의 조합이다. DxOy에서 값들 x 및 y는 사용된 도펀트 D에 따라 결정된다. 예를 들어, 일부 실시예들에서, 붕소 산화물에 대해, B2O3에 대하여 x는 2일 수도 있고 y는 3일 수도 있다. 일부 실시예들에서, 알루미산염 또는 알루미늄-도핑된 규산염이 형성되도록 금속성 도펀트들, 예컨대, 알루미늄이 사용될 수도 있다. 알루미산염들 및 알루미늄-도핑된 규산염들이 탄소-함유 코어 재료에 대해 사용될 수도 있다 (반면에 티타늄 산화물 스페이서 재료들은 상기에 기술된 바와 같이 비정질 실리콘 코어 재료와 양립 가능함). 다양한 실시예들에서, 비-티타늄 금속성 도펀트가 사용될 수도 있다. 일반적으로, x:y 비는 1:1, 1:2, 1:3, 2:3, 및 3:4 중 임의의 것일 수도 있다. "DxOy/SiO2"의 나노라미네이트들은 DxOy 및 SiO2 양자를 포함한 재료로 구성된다는 것이 이해될 것이다. 일부 실시예들은 도펀트의 농도를 증가시키고, 막 품질을 증가시키고, 막 밀도를 증가시키고, 그리고/또는 도펀트로 하여금 스페이서 재료 내에 보다 고르게 분포되게 하기 위해 도핑된 스페이서 재료를 증착한 후 기판을 어닐링하는 것을 수반할 수도 있고 이에 따라 균질한 도핑된 스페이서 재료를 형성할 수도 있다. 개시된 실시예들은 탄소-함유 코어 재료 위에 스페이서 재료로서 사용된 종래에 증착된 실리콘 산화물 막들에 비해 적어도 약 15 % 내지 20 %만큼 에칭 선택도를 증가시킨다. 예를 들어, 코어 재료 대 다양한 개시된 실시예들을 사용하여 증착된 도핑된 스페이서 재료의 에칭 선택도는 적어도 약 5:1일 수도 있다.
도핑된 스페이서들은 도펀트 산화물 재료와 스페이서 산화물 재료의 교번하는 층들뿐만 아니라 스페이서 재료 내로 주입된 도펀트를 포함할 수도 있다는 것이 이해될 것이다. 스페이서 재료 내로 주입된 도펀트는 다양한 개시된 실시예들에 따라 도펀트 산화물의 층들을 증착하기 위해 사용되고 그리고/또는 기판 상으로 아포화된 (sub-saturated) 도즈들로 흡착하기 위해 사용된 도펀트 전구체 또는 도펀트 소스와 화학적으로 관련된 종일 수도 있다는 것이 더 이해될 것이다. 예를 들어, 도펀트 전구체는 인 함유 화합물일 수도 있고, 도펀트 자체는 인 함유 화합물 내의 인 원자일 수도 있다.
도 3 및 도 4는 특정한 개시된 실시예들에 따른 방법들을 수행하기 위한 프로세스 흐름도들을 제공한다. 도 3은 스페이서 재료와 도펀트 산화물 재료의 교번하는 층들을 증착함으로써 코어 재료 위에 도핑된 스페이서를 형성하는 것을 수반한 방법을 수행하기 위한 프로세스 흐름도를 제공한다. 도 4는 스페이서 재료 전구체 및 도펀트 전구체 양자를 포함한 흡착된 층을 형성하기 위해 스페이서 재료 전구체 (예를 들어, 실리콘-함유 전구체 또는 게르마늄-함유 전구체) 로 기판을 미화시키고 도펀트 전구체로 기판을 아포화시킴으로써 도핑된 스페이서 재료를 증착하는 것을 수반한 공-증착 방법을 수행함으로써 코어 재료 위에 도핑된 스페이서를 형성하고, 이어서 도핑된 스페이서 재료를 형성하기 위해 산화제를 도입하기 위한 프로세스 흐름도를 제공한다. ALD를 사용하여 도핑된 실리콘 산화물을 증착하는 방법들은 모든 목적들을 위해 전체가 참조로서 본 명세서에 인용되는, 2015년 2월 17일 허여되고, 발명의 명칭이 "CONFORMAL DOPING VIA PLASMA ACTIVATED ATOMIC LAYER DEPOSITION AND CONFORMAL FILM DEPOSITION"인 미국 특허 번호 제 8,956,983 호에 더 기술된다.
도 3 및 도 4에서 수행된 동작들은 도 2에 도시된 바와 같은 패터닝 스킴으로 수행된다는 것이 이해될 것이다. 도 2의 동작들 201 및 205는 도 3 및 도 4에 포함되지만, 이들 동작들은 사용된 패터닝 스킴에 따라 가변할 수도 있음이 이해될 것이다. 예를 들어, 더블 패터닝 스킴 및 쿼드 패터닝 스킴은 상이한 그리고/또는 부가적인 동작들을 가질 수도 있다.
도 3을 참조하면, 동작 201에서, 타깃 층 위에 패터닝된 코어 재료를 가진 기판이 제공된다. 다양한 실시예들에서, 기판은 반도체 기판이다. 기판은 재료, 예컨대, 상부에 증착된 유전체, 도전성, 또는 반도전성 재료의 하나 이상의 층들을 가진 웨이퍼들을 포함하여, 실리콘 웨이퍼, 예를 들어, 200-㎜ 웨이퍼, 300-㎜ 웨이퍼, 또는 450-㎜ 웨이퍼일 수도 있다.
기판은 패터닝된 코어 재료를 포함할 수도 있다. 코어 재료는 포토레지스트일 수도 있거나 비정질 탄소 재료 또는 비정질 실리콘 재료로 이루어질 수도 있다. 일부 실시예들에서, 코어 재료는 투명할 수도 있다. 코어 재료는 증착 기법, 예컨대, PECVD (plasma-enhanced chemical vapor deposition) 에 의해 증착될 수도 있고, 증착 기법은 증착 챔버 내에서 탄화수소 전구체를 포함한 증착 가스들로부터 플라즈마를 생성시키는 것을 수반할 수도 있다. 탄화수소 전구체는 화학식 C a H b 로 규정될 수도 있고, 여기서 a는 2 내지 10의 정수이고, b는 2 내지 24의 정수이다. 예들은 메탄 (CH4), 아세틸렌 (C2H2), 에틸렌 (C2H4), 프로필렌 (C3H6), 부탄 (C4H10), 사이클로헥산 (C6H12), 벤젠 (C6H6), 및 톨루엔 (C7H8) 을 포함한다. HF (high frequency) 전력 및 LF (low frequency) 전력을 포함한 듀얼 RF (radio frequency) 플라즈마 소스가 사용될 수도 있다. 코어 재료는 패터닝되기 전에 타깃 층 위에 증착된다.
타깃 층은 결국 패터닝될 층일 수도 있다. 타깃 층은 반도체, 유전체, 또는 다른 층일 수도 있고 예를 들어 실리콘 (Si), 실리콘 산화물 (SiO2), 실리콘 질화물 (SiN), 또는 티타늄 질화물 (TiN) 로 이루어질 수도 있다. 타깃 층은 ALD, PEALD (plasma-enhanced ALD), CVD (chemical vapor deposition), 또는 다른 적합한 증착 기법에 의해 증착될 수도 있다. 도 5a는 타깃 층 (502) 및 패터닝된 코어 재료 (506) 를 포함한 기판 (500) 의 예를 도시한다.
동작들 302 내지 312는 약 50 ℃ 내지 약 200 ℃의 온도, 및 약 1.0 Torr 내지 약 9.0 Torr의 압력으로 수행될 수도 있다. 본 명세서에 기술된 방법들은 ALD를 수반할 수도 있다. 예를 들어, 도 3에서, 동작들 302 내지 312는 ALD의 일 사이클을 구성할 수도 있다. ALD는 순차적인 자기-제한 반응들을 사용하여 재료의 박층들을 증착하는 기법이다. ALD 프로세스들은 사이클들에서 층 단위 기반으로 막들을 증착하기 위한 표면-매개된 증착 반응들을 사용한다. 예로서, ALD 사이클은 다음의 동작들: (i) 전구체의 전달/흡착, (ii) 챔버로부터 전구체의 퍼지, (iii) 제 2 반응물질의 전달 및 선택 가능하게 플라즈마 퍼지, 및 (iv) 챔버로부터 부산물들의 퍼지를 포함할 수도 있다. 기판의 표면 상에 막을 형성하기 위한 제 2 반응물질과 흡착된 전구체 간의 반응은 막 조성 및 특성들, 예컨대, 불균일성, 응력, 습식 에칭 레이트, 건식 에칭 레이트, 전기적 특성들 (예를 들어, 항복 전압 및 누설 전류), 등에 영향을 준다.
ALD 프로세스의 일 예에서, 표면 활성 사이트들의 집단을 포함하는 기판 표면은, 기판을 하우징하는 챔버에 제공된 도즈의 실리콘 함유 전구체와 같은 제 1 전구체의 가스 상 분배에 노출된다. 이 제 1 전구체의 분자들은 기판 표면 상에 흡착되고, 제 1 전구체의 화학흡착 종 및/또는 물리흡착 분자들을 포함한다. 본 명세서에 기술된 바와 같이 화합물이 기판 표면 상에 흡착될 때 흡착된 층은 화합물뿐만 아니라 화합물의 유도체들을 포함할 수도 있다는 것이 이해되어야 한다. 예를 들어, 실리콘 함유 전구체의 흡착된 층은 실리콘 함유 전구체뿐만 아니라 실리콘 함유 전구체의 유도체들을 포함할 수도 있다. 제 1 전구체 도즈 후에, 이어서 챔버는 주로 또는 흡착된 종만 남도록 가스 상으로 남는 제 1 전구체의 대부분 또는 모두를 제거하도록 배기된다. 일부 구현예들에서, 챔버는 완전히 배기되지 않을 수도 있다. 예를 들어, 반응기는 가스 상의 제 1 전구체의 분압이 반응을 완화시키기에 충분히 낮도록 배기될 수도 있다. 제 2 반응물질, 예컨대 산소-함유 가스가 챔버로 도입되어 제 2 반응물질의 분자들의 일부가 표면 상에 흡착된 제 1 전구체와 반응한다. 일부 프로세스에서, 제 2 전구체는 흡착된 제 1 전구체와 즉시 반응한다. 다른 실시예들에서, 제 2 반응물질은 활성화 소스, 예컨대, 플라즈마가 적용된 직후에만 일시적으로 반응한다. 이어서 챔버는 결합되지 않은 제 2 반응물질 분자들을 제거하기 위해 다시 배기될 수도 있다. 상기 기술된 바와 같이, 일부 실시예들에서, 챔버는 완전히 배기되지 않을 수도 있다. 부가적인 ALD 사이클들은 막 두께를 구축하기 위해 사용될 수도 있다.
일부 구현예들에서, ALD 방법들은 플라즈마 활성화를 포함한다. 본 명세서에 기술된 바와 같이, 본 명세서에 기술된 ALD 방법들 및 장치들은 전체가 참조로서 본 명세서에 인용되는, 발명의 명칭이 "PLASMA ACTIVATED CONFORMAL FILM DEPOSITION"이고 2011년 4월 11일 출원된 미국 특허 번호 제 8,728,956 호, 및 발명의 명칭이 "SILICON NITRIDE FILMS AND METHODS"이고 2011년 4월 11일 출원된 미국 특허 출원 공보 번호 제 2011/0256734 호에 일반적으로 기술되는 CFD (conformal film deposition) 방법들일 수도 있다.
도 3을 참조하면, 동작 302에서, 기판은 기판 표면 상에 전구체를 흡착하기 위해 스페이서 재료 전구체에 노출된다. 일부 실시예들에서, 전구체는 적어도 약 80 %의 표면 활성 사이트들 상에 흡착할 수도 있다. 일부 실시예들에서, 전구체가 코어 재료의 노출된 표면들 및 타깃 층의 노출된 구역들 상에 흡착하도록 전구체는 기판의 표면을 완전히 포화시키기 위해 기판 상에 흡착할 수도 있다. 기판을 스페이서 재료 전구체에 노출시키는 지속기간은 약 0.1 초 내지 약 2 초일 수도 있다.
스페이서 재료 전구체는 스페이서로 사용된 재료에 따라 선택된다. 스페이서 재료는 실리콘 산화물 또는 게르마늄 산화물일 수도 있다. 실리콘 산화물 스페이서들에 대해, 스페이서 재료 전구체는 실리콘-함유 전구체일 수도 있다. 개시된 실시예들에 따라 사용되기에 적합한 실리콘-함유 전구체들은 폴리실란들 (H3Si-(SiH2)n-SiH3) 을 포함하고, 여기서 n ≥ 0이다. 실란들의 예들은 실란 (SiH4), 디실란 (Si2H6), 및 유기실란들, 예컨대 메틸실란, 에틸실란, 이소프로필실란, t-부틸실란, 디메틸실란, 디에틸실란, 디-t-부틸실란, 아릴실란, sec-부틸실란, 덱실실란, 이소아밀실란, t-부틸디실란, 디-t-부틸디실란, 등이다.
할로실란은 적어도 하나의 할로겐기를 포함하고, 수소기들 및/또는 탄소기들을 포함하거나 포함하지 않을 수도 있다. 할로실란들의 예들은 요오드실란들, 브로모실란들, 클로로실란들 및 플루오로실란들이다. 할로실란들, 특히 플루오로실란들은 플라즈마가 스트라이킹될 때 실리콘 재료들을 에칭할 수 있는 반응성 할라이드 종을 형성할 수도 있지만, 할로실란이 일부 실시예들에서, 플라즈마가 스트라이킹될 때 챔버로 도입되지 않을 수도 있어서, 할로실란으로부터 반응성 할라이드 종의 형성이 완화될 수도 있다. 구체적인 클로로실란들은 테트라클로로실란, 트리클로로실란, 디클로로실란, 모노클로로실란, 클로로아릴실란, 클로로메틸실란, 디클로로메틸실란, 클로로디메틸실란, 클로로에틸실란, t-부틸클로로실란, 디-t-부틸클로로실란, 클로로이소프로필실란, 클로로-sec-부틸실란, t-부틸디메틸클로로실란, 덱실디메틸클로로실란, 등이다.
아미노실란은 실리콘 원자에 결합된 적어도 하나의 질소 원자를 포함하지만, 또한 수소들, 산소들, 할로겐들, 및 탄소들을 함유할 수도 있다. 아미노실란들의 예들은 모노-아미노실란, 디-아미노실란, 트리-아미노실란 및 테트라-아미노실란 (각각 H3Si(NH2)4, H2Si(NH2)2, HSi(NH2)3 및 Si(NH2)4) 뿐만 아니라, 치환된 모노-아미노실란, 디-아미노실란, 트리-아미노실란 및 테트라-아미노실란, 예를 들어, t-부틸아미노실란, 메틸아미노실란, tert-부틸실란아민, BTBAS (bis(tertiarybutylamino)silane) (SiH2(NHC(CH3)3)2, tert-부틸 실릴카바메이트, SiH(CH3)-(N(CH3)2)2, SiHCl-(N(CH3)2)2, (Si(CH3)2NH)3 등이다. 아미노실란의 다른 예는 트리실릴아민 (N(SiH3)) 이다.
동작 304에서, 기판을 하우징하는 프로세스 챔버는 기판 표면 상에 흡착되지 않은 전구체들을 제거하기 위해 퍼지될 수도 있다. 챔버를 퍼지하는 것은 다른 동작들에서 사용되는 캐리어 가스일 수도 있거나 상이한 가스일 수도 있는 퍼지 가스 또는 스윕핑 가스를 흘리는 것을 수반할 수도 있다. 다양한 실시예들에서, 퍼지 가스는 불활성 가스이다. 예시적인 불활성 가스들은 아르곤, 질소, 및 헬륨을 포함한다. 일부 실시예들에서, 퍼지하는 것은 챔버를 배기하는 것을 수반할 수도 있다. 예시적인 퍼지 가스들은 아르곤, 질소, 수소, 및 헬륨을 포함한다. 일부 실시예들에서, 동작 304은 프로세스 챔버를 배기하기 위한 하나 이상의 배기 서브페이즈들을 포함할 수도 있다. 대안적으로, 동작 304은 일부 실시예들에서 생략될 수도 있음이 이해될 것이다. 동작 304는 임의의 적합한 지속기간, 예컨대, 약 0.1 초 내지 약 2 초를 가질 수도 있다.
동작 310에서, 흡착된 전구체들을 스페이서 재료로 변환하기 위한 조건들 하에서 기판이 산화제에 노출되고 플라즈마가 점화된다. 예를 들어, 실리콘 산화물 스페이서가 증착되는 경우에, 기판 표면 상에 흡착된 실리콘-함유 전구체는 실리콘 산화물을 형성하기 위해 산화 플라즈마와 반응한다. 예시적인 산화제들은 산소 가스, 물, 이산화탄소, 아산화질소, 및 이들의 조합들을 포함한다.
플라즈마 에너지는 산소-함유 가스와 같은 제 2 반응물질을 제 1 전구체의 흡착된 층과 반응하는 이온들 및 라디칼들 및 다른 활성화된 종으로 활성화하도록 제공된다. 예를 들어, 플라즈마는 산소 라디칼들 또는 이온들을 형성하기 위해 산소-함유 가스상 분자들을 직접적으로 또는 간접적으로 활성화할 수도 있다.
기판 상에 스페이서 재료를 형성하기 위한 플라즈마 조건들은 사용되는 산화제의 타입에 따라 선택된다. 일부 실시예들에서, 플라즈마는 약 0.25 초 내지 약 10 초의 시간 동안 점화된다.
다양한 실시예들에서, 점화된 플라즈마는 단일 또는 이중 무선 주파수 플라즈마일 수도 있다. 단일 주파수 플라즈마들은 통상적으로, 반드시 그러한 것은 아니지만, HF (high frequency) 만이고, 이중 주파수 플라즈마들은 통상적으로 또한 LF (low frequency) 컴포넌트 (component) 를 포함한다. 다양한 실시예들에서, 플라즈마가 챔버 내에서 기판 표면 바로 위에 형성되도록 플라즈마는 인-시츄 (in-situ) 플라즈마이다. 인-시츄 플라즈마는 약 0.2122 W/㎠ 내지 약 2.122 W/㎠의 기판 면적당 전력으로 점화될 수도 있다. 예를 들어, 전력은 4 개의 300 ㎜ 웨이퍼들을 프로세싱하는 챔버에 대해, 약 200 W 내지 약 6000 W 범위일 수도 있다. 예를 들어, ALD 프로세스들을 위한 플라즈마들은 2 개의 용량 결합된 플레이트들을 사용하여 가스에 RF (radio frequency) 필드를 인가함으로써 생성될 수도 있다. RF 필드에 의한 플레이트들 사이의 가스의 이온화는 플라즈마를 점화하고, 플라즈마 방전 구역 내에 자유 전자들을 생성한다. 이들 전자들은 RF 필드에 의해 가속되고 그리고 가스상 반응물질 분자들과 충돌할 수도 있다. 이들 전자들과 반응물질 분자들의 충돌은 증착 프로세스에 참여하는 라디칼 종을 형성할 수도 있다. RF 필드는 임의의 적합한 전극들을 통해 커플링될 수도 있다는 것이 이해될 것이다. 다양한 실시예들에서, 적어도 약 13.56 ㎒, 또는 적어도 약 27 ㎒, 또는 적어도 약 40 ㎒, 또는 적어도 약 60 ㎒의 주파수를 가진 고 주파수 플라즈마가 사용된다. 일부 실시예들에서, 마이크로파-기반 플라즈마가 사용될 수도 있다. 전극들의 비제한적인 예들은 프로세스 가스 분배 샤워헤드들 및 기판 지지 페데스탈들을 포함한다. ALD 프로세스들을 위한 플라즈마들은 가스에 대한 RF 필드의 용량성 결합과는 다른 하나 이상의 적합한 방법들에 의해 형성될 수도 있다는 것이 이해될 것이다. 일부 실시예들에서, 플라즈마는 산화제가 챔버의 업스트림의 리모트 플라즈마 생성기 내에서 점화되고, 이어서 기판이 하우징되는 챔버로 전달되는, 리모트 플라즈마이다.
동작 312에서, 프로세스 챔버는 산화제 내 스페이서 재료 전구체 사이의 반응으로부터 모든 과잉의 부산물들을 제거하고 기판 표면 상에서 스페이서 재료 전구체와 반응하지 않는 과잉의 산화제를 제거하기 위해 퍼지될 수도 있다. 동작 312에 대한 프로세스 조건들은 동작 304에 대해 상기에 기술된 조건들 중 임의의 조건들일 수도 있다. 일부 실시예들에서, 챔버는 약 5 slm 내지 약 30 slm의 플로우 레이트로 흐르는 불활성 가스를 사용하여 퍼지된다.
동작 314에서, 도펀트 산화물이 기판 위에 증착된다. 일부 실시예들에서, 스페이서 재료가 도펀트 산화물을 증착하기 전에 증착될 수도 있지만, 일부 실시예들에서, 도펀트 산화물이 스페이서 재료를 증착하기 전에 증착될 수도 있다는 것이 이해될 것이다. 도펀트 산화물은 이로 제한되지 않지만, ALD (atomic layer deposition), CVD (chemical vapor deposition), 스퍼터링, 및 스핀 온 방법들을 포함하는 임의의 적합한 기법을 사용하여 증착된다. 기판 위에 증착된 도펀트 산화물은 붕소 산화물, 인 산화물, 알루미늄 산화물, 비소 산화물, 하프늄 산화물, 갈륨 산화물, 및 이들의 조합들 중 임의의 것일 수도 있다. 본 명세서에 기술된 실시예들이 붕소 도펀트들 및 인 도펀트들을 수반하지만, 임의의 도펀트 산화물을 증착하기 적합한 전구체들이 사용될 수도 있다는 것이 이해될 것이다.
붕소 산화물을 증착하기 위해, 다음의 붕소-함유 전구체들: TMB (trimethylborate), TEB (triethylborate), B2H6 (diborane), 트리메틸보란, 트리에틸보란, 및 이들의 조합들 중 임의의 것이 사용될 수도 있다. 또 다른 예에서, 인-도핑된 실리콘 산화물 막을 증착하기 위해, TEPO (triethyl phosphate) (PO(OC2H5)3); TMPO (trimethyl phosphate) (PO(OCH3)3); TMPi (trimethyl phosphite) (P(OCH3)3); TDMAP (trisdimethylaminophosphorus) (((CH3)2N)3P); 삼염화인 (PCl3); TMSP (trismethylsilyl phosphine) (P(Si(CH3)3)3); 및 옥시염화인 (POCl3) 과 같은 인 전구체가 사용될 수도 있다.
ALD에 의해 증착된 도펀트 산화물은 기판을 도펀트 전구체에 노출시키는 것, 선택 가능하게 프로세스 챔버를 퍼지하는 것, 기판을 산화 플라즈마에 노출시키는 것, 선택 가능하게 프로세스 챔버를 퍼지하는 것, 및 선택 가능하게 이들 동작들을 반복하는 것을 수반할 수도 있다. 기판은 약 0.1 초 내지 약 5 초의 도즈 시간 동안 도펀트 전구체에 노출될 수도 있다. 도펀트 전구체는 아르곤과 같은 캐리어 가스를 사용하여 흐를 수도 있고, 아르곤은 약 200 sccm 내지 약 5000 sccm의 플로우 레이트로 흐른다. 퍼지 동작들은 약 0.1 초 내지 약 5 초의 지속기간 동안 수행될 수도 있다. 기판은 약 0.1 초 내지 약 5 초의 지속기간 동안 산화 플라즈마에 노출될 수도 있다. 플라즈마는 4 개의 기판들에 대해 약 200 W 내지 약 6000 W의 RF 전력으로 점화될 수도 있다. 산화 플라즈마에 대한 노출 후 수행된 퍼지 동작들은 약 0.1 초 내지 약 5 초의 지속기간 동안 수행될 수도 있다. 퍼지 동작들 동안 불활성 가스 플로우는 산화 플라즈마에 대한 노출 후 수행된 퍼지 동작들에 대해 약 5 slm 내지 약 30 slm일 수도 있다. 도펀트 산화물의 증착은 약 1.0 Torr 내지 약 9.0 Torr의 챔버 압력으로 수행될 수도 있다.
다양한 실시예들에서, 동작들 302 내지 314가 선택 가능하게 반복되도록 도펀트 산화물 및 스페이서 재료의 교번하는 층들이 기판 위에 증착될 수도 있다. 임의의 수의 스페이서 재료 층들이 도펀트 산화물 층마다 증착될 수도 있다. 예를 들어, 스페이서 재료 내 목표된 도펀트의 양은 스페이서 재료 층들에 대한 도펀트 산화물 층들의 상대적인 비를 선택함으로써 조절될 수도 있다. 일부 실시예들에서, PEALD에 의해 증착된 약 3 개 내지 약 5 개의 실리콘 산화물 층들마다 ALD에 의해 일 도펀트 산화물 층이 증착될 수도 있다.
동작 316에서, 기판은 선택 가능하게 어닐링될 수도 있다. 어닐링은 최대 약 400 ℃, 예컨대, 약 150 ℃ 내지 약 400 ℃의 기판 온도로 수행될 수도 있다. 도핑된 스페이서 재료가 일반적으로 균질하도록 어닐링은 스페이서 재료 도펀트 산화물을 포함한 기판 상의 증착된 재료 및 분자들을 재배치할 수도 있다. 일반적으로 균질하다 함은 스페이서 재료 전반에 걸쳐 고르게 분산된 도펀트들을 갖는 것으로서 규정될 수도 있다. 일부 실시예들에서, 도펀트는 약 1E20 내지 약 5E22 at/cc, 예컨대, 약 8E21 내지 약 1.8E22 at/cc의 밀도로 스페이서 재료 내에 증착될 수도 있다.
동작들 302 내지 316은 약 50 Å 내지 약 300 Å의 두께를 갖는 도핑된 스페이서를 증착하기 위해 사용될 수도 있다. 개시된 실시예들을 사용하여 증착된 스페이서들은 적어도 약 1:5, 예컨대, 약 1:5 내지 약 1:20의 탄소-함유 코어 재료에 대한 에칭 선택도를 가질 수도 있다. 즉, 탄소-함유 코어 재료의 에칭 레이트는 도핑된 스페이서의 에칭 레이트보다 적어도 5 배 더 빠를 수도 있다. 코어 재료 대 도핑된 스페이서 재료의 선택도는 약 5:1 내지 약 20:1일 수도 있다.
동작 205에서, 스페이서로 이루어진 마스크를 형성하기 위해 기판은 에칭 백될 수도 있고 코어 재료는 선택적으로 에칭된다. 동작 207에서, 스페이서 마스크가 기판 상의 타깃 층을 에칭하기 위해 사용될 수도 있다. 개시된 실시예들은 자기-정렬된 더블 패터닝 및 자기-정렬된 쿼드 패터닝 스킴들에 대한 포지티브 패터닝 스킴의 일부로서 사용될 수도 있다. 동작들 205 및 207은 도 2에 대해 상기에 기술된 에칭 화학물질들 및 기법들을 사용하여 수행될 수도 있다.
도 4는 특정한 개시된 실시예들에 따라 사용되는 도핑된 스페이서 재료들을 형성하는 대안적인 방법을 제공한다. 동작들 201, 205, 및 207은 도 2에 대해 상기에 기술된 바와 같은 동작들 201, 205, 및 207에 대응한다. 기판을 에칭 백하도록 사용된 에칭 화학물질들은 임의의 종래의 에칭 화학물질일 수도 있지만 코어 재료가 스페이서 재료보다 적어도 5 배 더 빨리 에칭되도록 동작들 402 내지 416에서 증착된 도핑된 스페이서가 에칭 선택도를 증가시킨다는 것이 이해될 것이다.
동작 201 후에, 동작 402에서, 기판은 스페이서 재료 전구체로 기판 표면을 포화시키기에 불충분한 지속기간 동안 스페이서 재료 전구체에 노출된다. 스페이서 재료 전구체는 기판 표면 상에 스페이서 재료 전구체의 아포화된 층을 형성하기 위한 조건들 하에서 아포화된 도즈로 기판으로 도입된다. 일부 실시예들에서, ALD 사이클의 도즈 페이즈는 표면을 고르게 포화시키기 위해 전구체가 기판과 콘택트하기 전에 종료된다. 예를 들어, 노출의 지속기간은 이 동작에서 감소될 수도 있다. 통상적으로, 전구체 플로우가 이 지점에서 턴 오프되거나 방향 전환되고, 퍼지 가스만이 흐른다. 이 아포화 레짐 (regime) 으로 동작함으로써, ALD 프로세스는 사이클 시간을 감소시키고 쓰루풋을 증가시킨다. 그러나, 전구체 흡착이 포화 제한되지 않기 때문에, 흡착된 전구체 농도는 기판 표면에 걸쳐 약간 가변할 수도 있다. 아포화 레짐으로 동작하는 ALD 프로세스들의 예들은 전체가 참조로서 본 명세서에 인용되는 2013년 10월 23일 출원되고 발명의 명칭이 "SUB-SATURATED ATOMIC LAYER DEPOSITION AND CONFORMAL FILM DEPOSITION"인 미국 특허 출원 번호 제 14/061,587 호에 제공된다.
선택된 스페이서 재료 전구체는 도 3의 동작 302에 대해 상기에 기술된 것들 중 임의의 것일 수도 있다.
동작 404에서, 프로세스 챔버는 가스상의 과잉의 전구체를 제거하기 위해 퍼지될 수도 있다. 동작 404는 도 3의 동작 304에 대해 상기에 기술된 프로세스 조건들 및 퍼지 가스들 중 임의의 것을 수반할 수도 있다.
동작 406에서, 기판은 기판 표면 상에 도펀트 전구체를 흡착하기 위해 아포화된 도즈 동안 도펀트 전구체에 노출된다. 이 동작 동안, 도펀트는 스페이서 재료 전구체에 의해 점유되지 않은 기판 표면 상의 활성 사이트들 상에 흡착할 수도 있다. 이러한 도즈 후에, 스페이서 재료 전구체 및 도펀트 양자를 포함한 대부분 또는 완전히 포화된 층이 기판의 표면 상에 있다. 동작들 402 및 406이 본 명세서에서 순서대로 논의되지만, 일부 실시예들에서, 동작 402가 동작 406 전에 수행될 수도 있고, 일부 실시예들에서, 동작 406이 동작 402 전에 수행될 수도 있다는 것이 이해될 것임을 주의하라.
동작 408에서, 프로세스 챔버는 챔버로부터 가스상의 과잉의 도펀트를 제거하기 위해 퍼지될 수도 있다. 퍼지 프로세스 조건들 및 퍼지 가스들은 도 3의 동작 304에 대해 상기에 기술된 것들 중 임의의 것일 수도 있다. 일부 실시예들에서, 동작 408에 대해 사용된 퍼지 가스들 및 프로세스 조건들은 동작 404의 퍼지 가스들 및 프로세스 조건들과 상이할 수도 있음이 이해될 것이다. 더욱이, 일부 실시예들에서, 동작 408에 대해 사용된 퍼지 가스들 및 프로세스 조건들은 동작 404의 퍼지 가스들 및 프로세스 조건들과 동일할 수도 있다.
동작 410에서, 기판 상에 도핑된 스페이서 재료를 형성하기 위한 조건들 하에서 기판이 산화제에 노출되고 플라즈마가 점화된다. 기판 위에 도핑된 스페이서 재료를 형성하기 위해 산화제 플라즈마는 기판 표면 상의 도펀트 전구체들 및 기판 표면 상의 스페이서 재료 전구체들 양자와 반응한다. 예를 들어, 붕소-도핑된 실리콘 산화물 스페이서를 증착하기 위해, 동작 410은 산소 가스를 흘리고 플라즈마를 점화하여 기판의 표면 상에 흡착된 실리콘-함유 전구체들 및 붕소-함유 전구체들을 실리콘 산화물 및 붕소 산화물로 변환하여, 붕소-도핑된 실리콘 산화물 막을 형성하는 것을 수반할 수도 있다.
동작 412에서, 기판은 동작 304에 대해 상기에 기술된 조건들 및 퍼지 가스들 중 임의의 조건들 및 퍼지 가스들을 사용하여 선택 가능하게 퍼지될 수도 있다.
동작들 402 내지 412는 목표된 두께를 가진 도핑된 스페이서 재료를 증착하기 위해 임의의 적합한 수의 사이클들 동안 선택 가능하게 반복될 수도 있다. 일부 실시예들에서, 도펀트 아포화된 도즈는 사이클마다 수행되지 않을 수도 있다.
동작 416에서, 기판은 보다 균질한 도핑된 스페이서를 형성하기 위해 선택 가능하게 어닐링될 수도 있다. 어닐링 프로세스 조건들은 도 3의 동작 316에 대해 상기에 기술된 어닐링 프로세스 조건들 중 임의의 어닐링 프로세스 조건들일 수도 있다.
동작 205에서, 마스크로서 기판 상에 도핑된 스페이서 재료를 남기기 위해 기판이 에칭 백될 수도 있고 코어 재료가 선택적으로 에칭될 수도 있다. 동작들 402 내지 416은 약 50 Å 내지 약 300 Å의 두께를 가진 도핑된 스페이서를 증착하기 위해 사용될 수도 있다. 개시된 실시예들을 사용하여 증착된 스페이서들은 적어도 약 1:5, 예컨대, 약 1:5 내지 약 1:20의 탄소-함유 코어 재료에 대한 에칭 선택도를 가질 수도 있다. 즉, 탄소-함유 코어 재료의 에칭 레이트는 도핑된 스페이서의 에칭 레이트보다 적어도 5 배 더 빠를 수도 있다. 코어 재료 대 도핑된 스페이서 재료의 선택도는 약 5:1 내지 약 20:1일 수도 있다.
동작 207에서, 기판의 타깃 층은 마스크로서 도핑된 스페이서를 사용하여 에칭될 수도 있다. 도 4와 관련된 실시예들은 포지티브 패터닝 스킴들, 예컨대, 자기-정렬된 더블 패터닝 및 자기-정렬된 쿼드 패터닝 스킴들에서 사용된 포지티브 패터닝 스킴들에 대해 사용될 수도 있다.
도 5a 내지 도 5f는 다양한 개시된 실시예들을 겪은 기판 (500) 의 일련의 예시적인 개략적인 예시들을 제공한다. 도 5a는 하부층 (501), 타깃 층 (502), 및 패터닝된 코어 재료 (506) 를 가진 기판 (500) 을 도시한다. 다양한 실시예들에서, 도 5a에 도시된 기판은 도 2, 도 3, 및 도 4에 대해 상기에 기술된 바와 같이 동작 201에서 제공된 기판일 수도 있다.
도 5b에서, 도핑된 스페이서 재료 (504) 는 코어 재료 (506) 위에 컨포멀하게 증착된다. 도핑된 스페이서 재료 (504) 는 도 3에 대해 상기에 기술된 바와 같이 스페이서 재료 및 도펀트 산화물의 층들의 교번하는 증착들을 사용하여 증착될 수도 있다. 예를 들어, 도핑된 스페이서 재료 (504) 는 3 개의 실리콘 산화물 층들마다 증착된 일 붕소 산화물 층에 증착될 수도 있고, 붕소 산화물 및 실리콘 산화물 양자는 PEALD 기법들을 사용하여 증착된다. 대안적으로, 스페이서 재료 전구체 및 도펀트 전구체 양자의 흡착된 층을 형성하기 위해 기판 위에 스페이서 재료 전구체 및 도펀트 전구체의 아포화된 도즈들을 수행하고, 그리고 도 4에 대해 상기에 기술된 바와 같은 산화제 및 플라즈마를 사용하여 흡착된 층을 반응시킴으로써 도핑된 스페이서 재료 (504) 가 증착될 수도 있다. 예를 들어, 일부 실시예들에서, 기판 표면 상에 실리콘-함유 전구체 및 붕소-함유 전구체 흡착된 층을 형성하기 위해 실리콘-함유 전구체가 표면 상에 아포화될 수도 있고, 붕소-함유 전구체가 표면 상에 아포화될 수도 있다. 이어서 흡착된 층은 붕소-도핑된 실리콘 산화물 막을 형성하기 위해 산화 플라즈마와 반응할 수도 있다. 이어서 이러한 동작들은 도 5b에 도시된 도핑된 스페이서 재료 (504) 와 같이 보다 두꺼운 붕소-도핑된 실리콘 산화물 스페이서를 형성하기 위해 1 회 이상 반복될 수도 있다. 도핑된 스페이서 재료 (504) 는 또한 균질한 막을 형성하기 위해 어닐링될 수도 있다.
도 5c에서, 기판은 CMP (chemical mechanical planarization) 기법들에 의해서와 같이, 에칭 백되고, 그리고 기판은 또한 508에서 도핑된 스페이서 재료를 제거하기 위해 방향성으로 에칭될 수도 있다. 도핑된 스페이서 재료 (504) 의 무결성이 유지되고 에칭이 도 5c에 도시된 바와 같이 스페이서 재료를 개방하고 코어 재료 (516) 를 노출시키기 위해 수행되도록 이 에칭 동작이 수행된다. 이 동작은 일부 실시예들에서, 방향성 이온 스퍼터링 기법들 또는 탄화불소 에칭 화학물질을 사용한 건식 에칭 기법들을 수반할 수도 있다.
도 5d에서, 도 5c로부터의 코어 재료 (516) 는 마스크로서 기판 상에 남는 도핑된 스페이서 재료 (514) 를 남기기 위해 선택적으로 에칭된다. 코어 재료 (516) 는 도핑된 스페이서 재료 (514) 의 에칭 레이트보다 적어도 5 배 더 빠른 에칭 레이트로 에칭된다. 도 5a와 비교하여, 도 5d에 도시된 기판은 자기-정렬된 더블 패터닝 마스크로서 타깃 층 (502) 을 에칭하기 위해 사용되게 준비되고 피치는 절반으로 감소된다. 개선된 에칭 선택도는 스페이서 재료 (514) 를 열화하지 않고 스페이서 재료 (514) 의 평활한 측벽들을 유지한다.
도 5e에서, 타깃 층 (512) 은 마스크로서 도핑된 스페이서 (514) 를 사용하여 에칭된다. 코어 재료 대 도핑된 스페이서 재료의 에칭 선택도가 개선되기 때문에, 마스크로서 사용된 도핑된 스페이서 (514) 는 타깃 층 (512) 내 고품질 에칭 프로파일을 발생시킨다.
도 5f에서, 도핑된 스페이서 (514) 가 제거되고, 기판 상에 에칭된 타깃 층 (512) 을 남긴다. 도 1f와 비교하여, 에칭된 타깃 층 (512) 은 우수한 에칭 프로파일을 갖는다.
탄소-함유 재료들 대 도핑된 스페이서 재료의 에칭 선택도 및 에칭 레이트는 도핑된 스페이서 재료의 에칭 레이트를 더 감소시키기 위해 기판의 온도 (예를 들어, 기판을 홀딩하는 페데스탈이 설정되는 온도) 를 변화시키고, 플라즈마 전력을 증가시키고, 불활성 가스 플로우, 예컨대, 아르곤 가스 플로우를 증가시킴으로써 더 조절될 수도 있다는 것이 이해될 것이다. 본 명세서에 기술된 바와 같이 증착 후 어닐링은 에칭 레이트를 감소시키기 위해 사용될 수도 있다.
장치
도 6은 저압 분위기를 유지하기 위한 프로세스 챔버 바디 (602) 를 갖는 ALD (atomic layer deposition) 프로세스 스테이션 (600) 의 실시예의 개략도를 도시한다. 복수의 ALD 프로세스 스테이션들 (600) 은 공동 저압 프로세스 툴 분위기에 포함될 수도 있다. 예를 들어, 도 7은 멀티스테이션 프로세싱 툴 (700) 의 실시예를 도시한다. 일부 실시예들에서, 이하에 상세히 기술될 것들을 포함하는, ALD 프로세스 스테이션 (600) 의 하나 이상의 하드웨어 파라미터들은 하나 이상의 컴퓨터 제어기들 (650) 에 의해 프로그램적으로 조정될 수도 있다.
ALD 프로세스 스테이션 (600) 은 프로세스 가스들을 분배 샤워헤드 (606) 로 전달하기 위한 반응물질 전달 시스템 (601a) 과 유체적으로 연통한다. 반응물질 전달 시스템 (601a) 은 샤워헤드 (606) 로 전달할 프로세스 가스들, 예컨대 실리콘-함유 전구체 가스, 도펀트 전구체 가스, 또는 산화제 가스를 블렌딩 및/또는 컨디셔닝하기 위한 혼합 용기 (604) 를 포함한다. 하나 이상의 혼합 용기 유입 밸브들 (620) 은 혼합 용기 (604) 로의 프로세스 가스들의 도입을 제어할 수도 있다. 도핑된 스페이서 재료에 대해 코어 재료를 선택적으로 에칭하기 위한 개시된 실시예들은 하나 이상의 프로세스 챔버들 내에서 수행될 수도 있다. 예를 들어, 도핑된 스페이서 재료가 프로세스 챔버, 예컨대, ALD 프로세스 스테이션 (600) 내에서 증착될 수도 있지만, ALD 프로세스 스테이션 (600) 은 도 7 및 도 9에 대해 이하에 기술되는 바와 같은 보다 큰 툴 또는 장치의 일부일 수도 있다. 에칭 동작들은 도 8에 대해 이하에 기술되는 바와 같은 분리된 프로세스 챔버 내에서 수행될 수도 있다.
예로서, 도 6의 실시예는 혼합 용기 (604) 로 공급될 액체 반응물질을 기화하기 위한 기화 지점 (603) 을 포함한다. 일부 실시예들에서, 기화 지점 (603) 은 가열된 기화기일 수도 있다. 이러한 기화기들로부터 생성된 포화된 반응물질 증기는 다운스트림 전달 파이프에서 응결될 수도 있다. 양립할 수 없는 가스들의 응결된 반응물질로의 노출은 작은 입자들을 생성할 수도 있다. 이들 작은 입자들은 파이프를 막고 (clog), 밸브 동작을 지연시키고, 기판들을 오염시키는 등을 할 수도 있다. 이들 문제들을 해결하기 위한 일부 방법들은 잔여 반응물질을 제거하기 위해 전달 파이프를 퍼지 및/또는 배기하는 것을 수반한다. 그러나, 전달 파이프를 퍼지하는 것은 프로세스 스테이션 사이클 시간을 증가시킬 수도 있고, 프로세스 스테이션 쓰루풋을 저하시킨다. 따라서, 일부 실시예들에서, 기화 지점 (603) 의 전달 파이프 다운스트림에서 열 추적될 수도 있다. 일부 예들에서, 혼합 용기 (604) 가 또한 열 추적될 수도 있다. 비제한적인 일 예에서, 기화 지점 (603) 의 파이프 다운스트림은 혼합 용기 (604) 에서 대략 100 ℃ 내지 대략 150 ℃로 연장하는 증가하는 온도 프로파일을 갖는다.
일부 실시예들에서, 액체 전구체 또는 액체 반응물질은 액체 주입기에서 기화될 수도 있다. 예를 들어, 액체 주입기는 액체 반응물질의 펄스들을 혼합 용기의 업스트림에서 캐리어 가스 스트림으로 주입할 수도 있다. 일 실시예에서, 액체 주입기는 보다 높은 압력으로부터 보다 낮은 압력으로 액체를 플래시함으로써 반응물질을 기화시킬 수도 있다. 또 다른 예에서, 액체 주입기는 가열된 전달 파이프에서 나중에 기화되는 분산된 마이크로드롭릿들로 액체를 원자화할 수도 있다. 보다 작은 드롭릿들이 보다 큰 드롭릿들보다 보다 고속으로 기화될 수 있어서, 액체 주입과 기화 완료 간의 지연을 감소시킨다. 보다 고속의 기화는 기화 지점 (603) 으로부터 파이프 다운스트림의 길이를 감소시킬 수도 있다. 일 시나리오에서, 액체 주입기는 혼합 용기 (604) 에 바로 장착될 수도 있다. 또 다른 시나리오에서, 액체 주입기는 분배 샤워헤드 (606) 에 바로 장착될 수도 있다.
일부 실시예들에서, 기화 지점 (603) 의 업스트림에, 액체 유량 제어기 (LFC) 가 기화 및 프로세스 스테이션 (600) 으로의 전달을 위해 액체의 질량 유량을 제어하기 위해 제공될 수도 있다. 예를 들어, 액체 유량 제어기 (LFC) 는 LFC의 다운스트림에 위치된 열적 질량 유량 미터 (MFM) 를 포함할 수도 있다. 이어서 LFC의 플런저 밸브가 MFM과 전기적으로 통신하는 PID (proportional-integral-derivative) 제어기에 의해 제공된 피드백 제어 신호들에 응답하여 조정될 수도 있다. 그러나, 이는 피드백 제어를 사용하여 액체 플로우를 안정화시키기 위해 1 초 이상 걸릴 수도 있다. 이는 액체 반응물질을 도징하기 위한 시간을 연장할 수도 있다. 따라서, 일부 실시예들에서, LFC는 피드백 제어 모드와 직접 제어 모드 사이에서 동적으로 전환될 수도 있다. 일부 실시예들에서, LFC 및 PID 제어기의 센스 튜브를 디스에이블함으로써 동적 전환이 수행될 수도 있다.
분배 샤워헤드 (606) 는 기판 (612) 을 향하여 프로세스 가스들을 분배한다. 도 6에 도시된 실시예에서, 기판 (612) 은 분배 샤워헤드 (606) 아래에 위치되고, 페데스탈 (608) 상에 놓인 것으로 도시된다. 분배 샤워헤드 (606) 는 임의의 적합한 형상을 가질 수도 있고, 기판 (612) 으로 프로세스 가스들을 분배하기 위해 임의의 적합한 수 및 배열의 포트들을 가질 수도 있다.
일부 실시예들에서, 페데스탈 (608) 은, 기판 (612) 을 기판 (612) 과 분배 샤워헤드 (606) 사이의 볼륨에 노출시키기 위해 상승되거나 하강될 수도 있다. 일부 실시예들에서, 페데스탈 높이는 적합한 컴퓨터 제어기 (650) 에 의해 프로그램적으로 조정될 수도 있다는 것이 이해될 것이다.
또 다른 시나리오에서, 페데스탈 (608) 의 높이를 조정하는 것은 플라즈마 밀도로 하여금 증착 프로세스에 포함된 플라즈마 활성화 동안 가변되게 할 수도 있다. 프로세스 페이즈의 종료 시, 페데스탈 (608) 은 또 다른 기판 이송 페이즈 동안 페데스탈 (608) 로부터 기판 (612) 의 제거를 허용하도록 하강될 수도 있다.
일부 실시예들에서, 분배 샤워헤드 (606) 의 위치는 기판 (612) 과 분배 샤워헤드 (606) 사이의 볼륨을 가변시키기 위해 페데스탈 (608) 에 대해 조정될 수도 있다. 또한, 페데스탈 (608) 및/또는 분배 샤워헤드 (606) 의 수직 위치는 본 개시의 범위 내에 있는 임의의 적합한 메커니즘에 의해 가변될 수도 있다는 것이 이해될 것이다. 일부 실시예들에서, 페데스탈 (608) 은 기판 (612) 의 배향을 회전시키기 위한 회전 축을 포함할 수도 있다. 일부 실시예들에서, 하나 이상의 이들 예시적인 조정들은 하나 이상의 적합한 컴퓨터 제어기들 (650) 에 의해 프로그램적으로 수행될 수도 있다는 것이 이해될 것이다. 컴퓨터 제어기 (650) 는 도 7의 제어기 (750) 에 대해 이하에 기술된 특징들 중 임의의 특징을 포함할 수도 있다.
상기 논의된 바와 같이 플라즈마가 사용될 수도 있는 일부 실시예들에서, 분배 샤워헤드 (606) 및 페데스탈 (608) 은 플라즈마에 전력을 공급하기 위해 RF 전력 공급부 (614) 및 매칭 네트워크 (616) 와 전기적으로 통신한다. 일부 실시예들에서, 플라즈마 에너지는 프로세스 스테이션 압력, 가스 농도, RF 소스 전력, RF 소스 주파수, 및 플라즈마 전력 펄스 타이밍 중 하나 이상을 제어함으로써 제어될 수도 있다. 예를 들어, RF 전력 공급부 (614) 및 매칭 네트워크 (616) 는 목표된 조성의 라디칼 종을 갖는 플라즈마를 형성하기 위해 임의의 적합한 전력으로 동작될 수도 있다. 적합한 전력들의 예들은 상기에 포함되었다. 유사하게, RF 전력 공급부 (614) 는 임의의 적합한 주파수의 RF 전력을 제공할 수도 있다. 일부 실시예들에서, RF 전력 공급부 (614) 는 서로 독립적으로 고 주파수 및 저 주파수 RF 전력 소스들을 제어하도록 구성될 수도 있다. 예시적인 저 주파수 RF 주파수들은 이로 제한되는 것은 아니지만, 0 ㎑ 내지 500 ㎑의 주파수를 포함할 수도 있다. 예시적인 고 주파수 RF 주파수들은 이로 제한되는 것은 아니지만, 1.8 ㎒ 내지 2.45 ㎓, 또는 약 13.56 ㎒ 초과, 또는 27 ㎒ 초과, 또는 40 ㎒ 초과, 또는 60 ㎒초과의 주파수들을 포함할 수도 있다. 표면 반응들을 위한 플라즈마 에너지를 제공하도록 임의의 적합한 파라미터들이 불연속적으로 또는 연속적으로 조절될 수도 있다는 것이 이해될 것이다.
일부 실시예들에서, 플라즈마는 하나 이상의 플라즈마 모니터들에 의해 인-시츄 모니터링될 수도 있다. 일 시나리오에서, 플라즈마 전력은 하나 이상의 전압, 전류 센서들 (예를 들어, VI 프로브들) 에 의해 모니터링될 수도 있다. 또 다른 시나리오에서, 플라즈마 밀도 및/또는 프로세스 가스 농도는 하나 이상의 OES (optical emission spectroscopy sensors) 에 의해 측정될 수도 있다. 일부 실시예들에서, 하나 이상의 플라즈마 파라미터들은 이러한 인-시츄 플라즈마 모니터들로부터의 측정치들에 기초하여 프로그램적으로 조정될 수도 있다. 예를 들어, OES 센서는 플라즈마 전력의 프로그램적인 제어를 제공하기 위해 피드백 루프에서 사용될 수도 있다. 일부 실시예들에서, 플라즈마 및 다른 프로세스 특성들을 모니터링하기 위해 다른 모니터들이 사용될 수도 있다는 것이 이해될 것이다. 이러한 모니터들은 이로 제한되는 것은 아니지만, 적외선 (IR) 모니터들, 음향 모니터들, 및 압력 트랜스듀서들을 포함할 수도 있다.
일부 실시예들에서, 제어기 (650) 에 대한 인스트럭션들은 IOC (input/output control) 시퀀싱 인스트럭션들을 통해 제공될 수도 있다. 일 예에서, 프로세스 페이즈를 위해 조건들을 설정하기 위한 인스트럭션들은 프로세스 레시피의 대응하는 레시피 페이즈에 포함될 수도 있다. 일부 경우들에서, 프로세스 레시피 페이즈들은 프로세스 페이즈를 위한 모든 인스트럭션들이 이 프로세스 페이즈와 동시에 실행되도록 순차적으로 배열될 수도 있다. 일부 실시예들에서, 하나 이상의 반응기 파라미터들을 설정하기 위한 인스트럭션들은 레시피 페이즈에 포함될 수도 있다. 예를 들어, 제 1 레시피 페이즈는 스페이서 재료 전구체 가스의 플로우 레이트를 설정하기 위한 인스트럭션들, 및 캐리어 가스의 플로우 레이트를 조절하기 위한 인스트럭션들, 및 제 1 레시피 페이즈에 대한 시간 지연 인스트럭션들을 포함할 수도 있다. 제 2 레시피 페이즈는 스페이서 재료 전구체 가스의 플로우 레이트를 조절하거나 중지시키기 위한 인스트럭션들, 캐리어 또는 퍼지 가스의 플로우 레이트를 조절하기 위한 인스트럭션들, 및 제 2 레시피 페이즈에 대한 시간 지연 인스트럭션들을 포함할 수도 있다. 제 3 레시피 페이즈는 불활성 및/또는 반응물질 가스 (예를 들어, 산화제) 의 플로우 레이트를 설정하기 위한 인스트럭션들, 캐리어 가스 (예컨대, 아르곤) 의 플로우 레이트를 설정하기 위한 인스트럭션들, 및 제 3 레시피 페이즈에 대한 시간 지연 인스트럭션들을 포함할 수도 있다. 제 4, 후속하는 레시피 페이즈는 불활성 및/또는 반응물질 가스의 플로우 레이트를 조절하거나 중지시키기 위한 인스트럭션들, 및 캐리어 또는 퍼지 가스의 플로우 레이트를 조절하기 위한 인스트럭션들 및 제 4 레시피 페이즈에 대한 시간 지연 인스트럭션들을 포함할 수도 있다. 제 5 레시피 페이즈는 붕소-함유 전구체와 같은 도펀트 전구체 가스의 플로우 레이트를 조절하기 위한 인스트럭션들, 캐리어 또는 퍼지 가스의 플로우 레이트를 조절하기 위한 인스트럭션들, 및 제 5 레시피 페이즈에 대한 시간 지연 인스트력션들을 포함할 수도 있다. 제 6, 후속하는 레시피 페이즈는 불활성 및/또는 반응물질 가스의 플로우 레이트를 조절하거나 중지시키기 위한 인스트럭션들, 플라즈마를 점화하기 위한 인스트럭션들, 및 캐리어 또는 퍼지 가스의 플로우 레이트를 조절하기 위한 인스트럭션들 및 제 6 레시피 페이즈에 대한 시간 지연 인스트럭션들을 포함할 수도 있다. 이들 레시피 페이즈들은 본 개시의 범위 내에서 임의의 적합한 방식으로 더 세분화될 수도 있고/있거나 반복될 수도 있다는 것이 이해될 것이다. 일부 실시예들에서, 레시피 페이즈들은 도핑된 스페이서 재료를 형성하기 위해, 스페이서 재료 전구체 가스의 아포화된 도즈를 도입하고, 도펀트 전구체 가스의 아포화된 도즈를 도입하고, 산화제를 도입하고 그리고 플라즈마를 점화하도록 선택될 수도 있다.
일부 실시예들에서, 페데스탈 (608) 은 히터 (610) 를 통해 온도 제어될 수도 있다. 일부 실시예들에서, 페데스탈 (608) 은 도핑된 스페이서 재료를 증착한 후에 기판을 어닐링하기 위해 최대 약 400 ℃의 온도에서 기판을 가열하도록 조절될 수도 있다. 또한, 일부 실시예들에서, 프로세스 스테이션 (600) 을 위한 압력 제어가 버터플라이 밸브 (618) 에 의해 제공될 수도 있다. 도 6의 실시예에 도시된 바와 같이, 버터플라이 밸브 (618) 는 다운스트림 진공 펌프 (미도시) 에 의해 제공된 진공을 쓰로틀한다. 그러나, 일부 실시예들에서, 프로세스 스테이션 (600) 의 압력 제어는 또한 프로세스 스테이션 (600) 에 도입된 하나 이상의 가스들의 플로우 레이트를 가변시킴으로써 조정될 수도 있다.
상기에 기술된 바와 같이, 하나 이상의 프로세스 스테이션들은 멀티스테이션 프로세싱 툴에 포함될 수도 있다. 도 7은 인바운드 로드록 (702) 및 아웃바운드 로드록 (704) 중 하나 또는 양자가 리모트 플라즈마 소스를 포함할 수도 있는, 인바운드 로드록 (702) 및 아웃바운드 로드록 (704) 을 갖는, 멀티스테이션 프로세싱 툴 (700) 의 실시예의 개략도를 도시한다. 대기압에서 로봇 (706) 은, 카세트로부터 포드 (708) 를 통해 인바운드 로드록 (702) 으로 로딩된 웨이퍼들을 대기 포트 (710) 를 통해 이동시키도록 구성된다. 웨이퍼는 인바운드 로드록 (702) 내의 페데스탈 (712) 상에 로봇 (706) 에 의해 배치되고, 대기 포트 (710) 는 폐쇄되고, 로드록은 펌프 다운된다 (pump down). 인바운드 로드록 (702) 이 리모트 플라즈마 소스를 포함하면, 웨이퍼는 프로세싱 챔버 (714) 내로 도입되기 전에 로드록 내에서 리모트 플라즈마 처리에 노출될 수도 있다. 또한, 웨이퍼는 또한 예를 들어, 수분 및 흡착된 가스들을 제거하기 위해 인바운드 로드록 (702) 내에서 가열될 수도 있다. 다음에, 프로세싱 챔버 (714) 로의 챔버 이송 포트 (716) 가 개방되고, 또 다른 로봇 (미도시) 이 프로세싱을 위해 반응기 내에 도시된 제 1 스테이션의 페데스탈 상의 반응기 내로 웨이퍼를 배치한다. 도 7에 도시된 실시예는 로드록들을 포함하지만, 일부 실시예들에서, 웨이퍼의 프로세스 스테이션으로의 직접적인 진입이 제공될 수도 있다는 것이 이해될 것이다.
도시된 프로세싱 챔버 (714) 는 도 7에 도시된 실시예들에서 1 내지 4로 번호가 붙여진, 4 개의 프로세스 스테이션들을 포함한다. 스테이션 각각은 가열된 페데스탈 (스테이션 1에 대해 718로 도시됨), 및 가스 라인 유입부들을 갖는다. 일부 실시예들에서, 프로세스 스테이션 각각이 상이한 목적 또는 다수의 목적들을 가질 수도 있다는 것이 이해될 것이다. 예를 들어, 일부 실시예들에서, 프로세스 스테이션은 ALD와 PEALD 프로세스 모드 사이에서 전환가능할 수도 있다. 일부 실시예들에서, 기판이 다양한 개시된 실시예들을 수행하기 위해 프로세스 스테이션들 사이에서 셔틀되거나 이동될 수도 있도록 스페이서 재료가 일 프로세스 스테이션 내에서 증착될 수도 있고 도펀트 산화물 층이 제 2 프로세스 스테이션 내에서 증착될 수도 있다. 부가적으로 또는 대안적으로, 일부 실시예들에서, 프로세싱 챔버 (714) 는 ALD 및 PEALD 프로세스 스테이션들의 하나 이상의 매칭된 쌍들을 포함할 수도 있다. 도시된 프로세싱 챔버 (714) 는 4 개의 스테이션들을 포함하지만, 본 개시에 따른 프로세싱 챔버는 임의의 적합한 수의 스테이션들을 가질 수도 있다는 것이 이해될 것이다. 예를 들어, 일부 실시예들에서, 프로세싱 챔버는 5 개 이상의 스테이션들을 갖는 반면, 다른 실시예들에서 프로세싱 챔버는 3 개 이하의 스테이션들을 가질 수도 있다.
도 7은 프로세싱 챔버 (714) 내에서 웨이퍼들을 이송하기 위한 웨이퍼 핸들링 시스템 (790) 의 실시예를 도시한다. 일부 실시예들에서, 웨이퍼 핸들링 시스템 (790) 은 다양한 프로세스 스테이션들 사이 및/또는 프로세스 스테이션과 로드 록 사이에서 웨이퍼들을 이송할 수도 있다. 임의의 적합한 웨이퍼 핸들링 시스템이 채용될 수도 있다는 것이 이해될 것이다. 비제한적인 예들은 웨이퍼 캐로절들 (carousels) 및 웨이퍼 핸들링 로봇들을 포함한다. 도 7은 또한 프로세스 툴 (700) 의 프로세스 조건들 및 하드웨어 상태들을 제어하도록 채용된 시스템 제어기 (750) 의 실시예를 도시한다. 시스템 제어기 (750) 는 하나 이상의 메모리 디바이스들 (756), 하나 이상의 대용량 저장 디바이스들 (754), 및 하나 이상의 프로세서들 (752) 을 포함할 수도 있다. 프로세서 (752) 는 CPU 또는 컴퓨터, 아날로그 입력/출력 연결부 및/또는 디지털 입력/출력 연결부, 스텝퍼 모터 제어 보드들, 등을 포함할 수도 있다.
일부 실시예들에서, 시스템 제어기 (750) 는 프로세스 툴 (700) 의 모든 액티비티들을 제어한다. 시스템 제어기 (750) 는 대용량 저장 디바이스 (754) 에 저장되고, 메모리 디바이스 (756) 로 로딩되고, 프로세서 (752) 상에서 실행되는 시스템 제어 소프트웨어 (758) 를 실행한다. 대안적으로, 제어 로직은 제어기 (750) 내에서 하드코딩될 수도 있다. ASIC (Applications Specific Intergrated Circuits), PLD (Programmable Logic Devices) (예를 들어, FPGA (field-progra㎜able gate array)), 등이 이 목적들을 위해 사용될 수도 있다. 이하의 논의에서, "소프트웨어" 또는 "코드"가 사용될 때마다, 기능적으로 유사한 하드코딩된 로직이 그 자리에 사용될 수도 있다. 시스템 제어 소프트웨어 (758) 는 타이밍, 가스들의 혼합, 가스 플로우 레이트들, 챔버 및/또는 스테이션 압력, 챔버 및/또는 스테이션 온도, 웨이퍼 온도, 타깃 전력 레벨들, RF 전력 레벨들, 기판 페데스탈, 척 및/또는 서셉터 위치, 및 프로세스 툴 (700) 에서 수행된 특정한 프로세스의 다른 파라미터들을 포함할 수도 있다. 시스템 제어 소프트웨어 (758) 는 임의의 적합한 방식으로 구성될 수도 있다. 예를 들어, 다양한 프로세스 툴 구성요소 서브루틴들 또는 제어 객체들이 다양한 프로세스 툴 프로세스들을 수행하기 위해 사용된 프로세스 툴 구성요소들의 동작을 제어하도록 작성될 수도 있다. 시스템 제어 소프트웨어 (758) 는 임의의 적합한 컴퓨터 판독가능 프로그래밍 언어로 코딩될 수도 있다.
일부 실시예들에서, 시스템 제어 소프트웨어 (758) 는 상기에 기술된 다양한 파라미터들을 제어하기 위한 IOC (input/output control) 시퀀싱 (sequencing) 인스트럭션들을 포함할 수도 있다. 시스템 제어기 (750) 와 연관된 대용량 저장 디바이스 (754) 및/또는 메모리 디바이스 (756) 에 저장된 다른 컴퓨터 소프트웨어 및/또는 프로그램들이 일부 실시예들에서 채용될 수도 있다. 이러한 목적을 위한 프로그램들 또는 프로그램들의 섹션들의 예들은 기판 포지셔닝 (positioning) 프로그램, 프로세스 가스 제어 프로그램, 압력 제어 프로그램, 히터 제어 프로그램, 및 플라즈마 제어 프로그램을 포함한다.
기판 포지셔닝 프로그램은 페데스탈 (718) 상에 기판을 로딩하고 기판과 프로세스 툴 (700) 의 다른 부분들 사이의 간격을 제어하도록 사용된 프로세스 툴 컴포넌트들에 대한 프로그램 코드를 포함할 수도 있다.
프로세스 가스 제어 프로그램은 프로세스 스테이션 내의 압력을 안정화시키기 위해 증착 전에 가스 조성 (예를 들어, 실리콘-함유 가스들, 산소-함유 가스들, 붕소-함유 가스들, 인-함유 가스들, 및 본 명세서에 기술된 바와 같은 퍼지 가스들) 및 플로우 레이트들을 제어하기 위한 코드 및 선택 가능하게 하나 이상의 프로세스 스테이션들로 가스를 흘리기 위한 코드를 포함할 수도 있다. 압력 제어 프로그램은 예를 들어, 프로세스 스테이션의 배기 시스템의 쓰로틀 밸브, 프로세스 스테이션으로의 가스 플로우, 등을 조절함으로써 프로세스 스테이션 내의 압력을 제어하기 위한 코드를 포함할 수도 있다.
히터 제어 프로그램은 기판을 가열하기 위해 사용된 히팅 유닛으로의 전류를 제어하기 위한 코드를 포함할 수도 있다. 대안적으로, 히터 제어 프로그램은 기판으로의 (헬륨과 같은) 열 전달 가스 (heat transfer gas) 의 전달을 제어할 수도 있다.
플라즈마 제어 프로그램은 본 명세서의 실시예들에 따른, 하나 이상의 프로세스 스테이션들 내의 프로세스 전극들에 인가된 RF 전력 레벨들을 설정하기 위한 코드를 포함할 수도 있다.
압력 제어 프로그램은 본 명세서의 실시예들에 따른 반응 챔버 내에서 압력을 유지하기 위한 코드를 포함할 수도 있다.
일부 실시예들에서, 시스템 제어기 (750) 와 연관된 사용자 인터페이스가 있을 수도 있다. 사용자 인터페이스는 디스플레이 스크린, 장치의 그래픽적인 소프트웨어 디스플레이 및/또는 프로세스 조건들의 그래픽적인 소프트웨어 디스플레이, 및 포인팅 디바이스들, 키보드들, 터치 스크린들, 마이크로폰들 등의 사용자 입력 디바이스들을 포함할 수도 있다.
일부 실시예들에서, 시스템 제어기 (750) 에 의해 조정된 파라미터들은 프로세스 조건들과 관련될 수도 있다. 비제한적인 예들은 프로세스 가스 조성 및 플로우 레이트들, 온도, 압력, (RF 바이어스 전력 레벨들과 같은) 플라즈마 조건들, 압력, 온도 등을 포함한다. 이들 파라미터들은 사용자 인터페이스를 활용하여 입력될 수도 있는, 레시피의 형태로 사용자에게 제공될 수도 있다.
프로세스를 모니터링하기 위한 신호들은 다양한 프로세스 툴 센서들로부터 시스템 제어기 (750) 의 아날로그 입력 연결부 및/또는 디지털 입력 연결부에 의해 제공될 수도 있다. 프로세스를 제어하기 위한 신호들은 프로세스 툴 (700) 의 아날로그 출력 연결부 및/또는 디지털 출력 연결부 상에 출력될 수도 있다. 모니터링될 수도 있는 프로세스 툴 센서들의 비제한적인 예들은 질량 유량 제어기들, (압력계들 (manometers) 과 같은) 압력 센서들, 열적 커플링들 (thermocouple), 등을 포함한다. 적절하게 프로그램된 피드백 및 제어 알고리즘들이 프로세스 조건들을 유지하기 위해 이들 센서들로부터의 데이터를 사용할 수도 있다.
시스템 제어기 (750) 는 상기에 기술된 증착 프로세스들을 구현하기 위한 프로그램 인스트럭션들을 제공할 수도 있다. 프로그램 인스트럭션들은 DC 전력 레벨, RF 바이어스 전력 레벨, 압력, 온도, 등과 같은 다양한 프로세스 파라미터들을 제어할 수도 있다. 인스트럭션들은 본 명세서에 기술된 다양한 실시예들에 따른 막 스택들의 인-시츄 증착을 동작시키기 위한 파라미터들을 제어할 수도 있다.
시스템 제어기 (750) 는, 통상적으로 장치가 개시된 실시예들에 따른 방법을 수행하도록 인스트럭션들을 실행하도록 구성된 하나 이상의 프로세서들 및 하나 이상의 메모리 디바이스들을 포함할 것이다. 개시된 실시예들에 따른 프로세스 동작들을 제어하기 위한 인스트럭션들을 포함하는 머신 판독가능 매체는 시스템 제어기 (750) 에 커플링될 수도 있다.
일부 구현예들에서, 시스템 제어기 (750) 는 상술한 예들의 일부일 수도 있는 시스템의 일부이다. 이러한 시스템들은, 프로세싱 툴 또는 툴들, 챔버 또는 챔버들, 프로세싱용 플랫폼 또는 플랫폼들, 및/또는 특정 프로세싱 컴포넌트들 (웨이퍼 페데스탈, 가스 플로우 시스템, 등) 을 포함하는, 반도체 프로세싱 장비를 포함할 수 있다. 이들 시스템들은 반도체 웨이퍼 또는 기판의 프로세싱 이전에, 프로세싱 동안에 그리고 프로세싱 이후에 그들의 동작을 제어하기 위한 전자장치에 통합될 수도 있다. 전자장치들은 시스템 또는 시스템들의 다양한 컴포넌트들 또는 하위부품들을 제어할 수도 있는 "제어기"로서 지칭될 수도 있다. 시스템 제어기 (750) 는, 시스템의 프로세싱 조건들 및/또는 타입에 따라서, 프로세싱 가스들의 전달, 온도 설정사항들 (예를 들어, 가열 및/또는 냉각), 압력 설정사항들, 진공 설정사항들, 전력 설정사항들, 무선 주파수 (RF) 생성기 설정사항들, RF 매칭 회로 설정사항들, 주파수 설정사항들, 플로우 레이트 설정사항들, 유체 전달 설정사항들, 위치 및 동작 설정사항들, 툴들 및 다른 이송 툴들 및/또는 특정 시스템과 연결되거나 인터페이싱된 로드록들 내외로의 웨이퍼 이송들을 포함하는, 본 명세서에 개시된 프로세스들 중 임의의 프로세스들을 제어하도록 프로그램될 수도 있다.
일반적으로 말하면, 시스템 제어기 (750) 는 인스트럭션들을 수신하고, 인스트럭션들을 발행하고, 동작을 제어하고, 세정 동작들을 인에이블하고, 엔드포인트 측정들을 인에이블하는 등을 하는 다양한 집적 회로들, 로직, 메모리, 및/또는 소프트웨어를 갖는 전자장치로서 규정될 수도 있다. 집적 회로들은 프로그램 인스트럭션들을 저장하는 펌웨어의 형태의 칩들, 디지털 신호 프로세서들 (DSP), ASIC (application specific integrated circuit) 으로서 규정되는 칩들 및/또는 프로그램 인스트럭션들 (예를 들어, 소프트웨어) 을 실행하는 하나 이상의 마이크로프로세서들, 또는 마이크로제어기들을 포함할 수도 있다. 프로그램 인스트럭션들은 반도체 웨이퍼 상에서 또는 반도체 웨이퍼에 대한 특정 프로세스를 실행하기 위한 동작 파라미터들을 규정하는, 다양한 개별 설정사항들 (또는 프로그램 파일들) 의 형태로 시스템 제어기 (750) 로 또는 시스템으로 전달되는 인스트럭션들일 수도 있다. 일부 실시예들에서, 동작 파라미터들은 하나 이상의 층들, 재료들, 금속들, 산화물들, 실리콘, 이산화 실리콘, 표면들, 회로들, 및/또는 웨이퍼의 다이들의 제조 동안에 하나 이상의 프로세싱 단계들을 달성하도록 프로세스 엔지니어에 의해서 규정된 레시피의 일부일 수도 있다.
시스템 제어기 (750) 는, 일부 구현예들에서, 시스템에 통합되거나, 시스템에 커플링되거나, 이와 달리 시스템에 네트워킹되거나, 또는 이들의 조합으로 될 수 있는 컴퓨터에 커플링되거나 이의 일부일 수도 있다. 예를 들어, 시스템 제어기 (750) 는 웨이퍼 프로세싱의 리모트 액세스를 가능하게 할 수 있는 공장 (fab) 호스트 컴퓨터 시스템의 전부 또는 일부이거나 "클라우드" 내에 있을 수도 있다. 컴퓨터는 제조 동작들의 현 진행을 모니터링하고, 과거 제조 동작들의 이력을 조사하고, 복수의 제조 동작들로부터 경향들 또는 성능 계측치들을 조사하고, 현 프로세싱의 파라미터들을 변경하고, 현 프로세싱을 따르는 프로세싱 단계들을 설정하고, 또는 새로운 프로세스를 시작하기 위해서 시스템으로의 리모트 액세스를 인에이블할 수도 있다. 일부 예들에서, 리모트 컴퓨터 (예를 들어, 서버) 는 로컬 네트워크 또는 인터넷을 포함할 수도 있는 네트워크를 통해서 프로세스 레시피들을 시스템에 제공할 수 있다. 리모트 컴퓨터는 차후에 리모트 컴퓨터로부터 시스템으로 전달될 파라미터들 및/또는 설정사항들의 입력 또는 프로그래밍을 인에이블하는 사용자 인터페이스를 포함할 수도 있다. 일부 예들에서, 시스템 제어기 (750) 는 하나 이상의 동작들 동안에 수행될 프로세스 단계들 각각에 대한 파라미터들을 특정한, 데이터의 형태의 인스트럭션들을 수신한다. 이 파라미터들은 시스템 제어기 (750) 가 제어하거나 인터페이싱하도록 구성된 툴의 타입 및 수행될 프로세스의 타입에 특정적일 수도 있다는 것이 이해되어야 한다. 따라서, 상술한 바와 같이, 시스템 제어기 (750) 는 예를 들어 서로 네트워킹되어서 함께 공통 목적을 위해서, 예를 들어 본 명세서에 기술된 프로세스들 및 제어들을 위해서 협력하는 하나 이상의 개별 제어기들을 포함함으로써 분산될 수도 있다. 이러한 목적을 위한 분산형 제어기의 예는 챔버 상의 프로세스를 제어하도록 조합되는, (예를 들어, 플랫폼 레벨에서 또는 리모트 컴퓨터의 일부로서) 원격으로 위치한 하나 이상의 집적 회로들과 통신하는 챔버 상의 하나 이상의 집적 회로들일 수 있다.
비한정적으로, 예시적인 시스템들은 플라즈마 에칭 챔버 또는 모듈, 증착 챔버 또는 모듈, 스핀-린스 챔버 또는 모듈, 금속 도금 챔버 또는 모듈, 세정 챔버 또는 모듈, 베벨 에지 에칭 챔버 또는 모듈, PVD (physical vapor deposition) 챔버 또는 모듈, CVD (chemical vapor deposition) 챔버 또는 모듈, ALD (atomic layer deposition) 챔버 또는 모듈, ALE (atomic layer etch) 챔버 또는 모듈, 이온 주입 챔버 또는 모듈, 트랙 (track) 챔버 또는 모듈, 및 반도체 웨이퍼들의 제조 및/또는 제작 시에 사용되거나 연관될 수도 있는 임의의 다른 반도체 프로세싱 시스템들을 포함할 수도 있다.
상술한 바와 같이, 툴에 의해서 수행될 프로세스 단계 또는 단계들에 따라서, 시스템 제어기 (750) 는, 반도체 제작 공장 내의 툴 위치들 및/또는 로드 포트들로부터/로 웨이퍼들의 컨테이너들을 이동시키는 재료 이송 시에 사용되는, 다른 툴 회로들 또는 모듈들, 다른 툴 컴포넌트들, 클러스터 툴들, 다른 툴 인터페이스들, 인접 툴들, 이웃하는 툴들, 공장 도처에 위치한 툴들, 메인 컴퓨터, 또 다른 제어기 또는 툴들 중 하나 이상과 통신할 수도 있다.
본 명세서에 개시된 방법들을 수행하기 위한 적절한 장치는 각각 전체가 본 명세서에 참조로서 인용된, 2011년 4월 11일 출원되고 발명의 명칭이 "PLASMA ACTIVATED CONFORMAL FILM DEPOSITION"인 미국 특허 출원 번호 제 13/084,399 호 (현재 미국 특허 번호 제 8,728,956 호), 및 2011년 4월 11일 출원되고 발명의 명칭이 "SILICON NITRIDE FILMS AND METHODS"인 미국 특허 출원 번호 제 13/084,305 호에서 더 논의되고 기술된다.
본 명세서에 기술된 장치/프로세스는 예를 들어, 반도체 디바이스들, 디스플레이들, LED들, 광전 패널들 등의 제조 또는 제작을 위한 리소그래픽 패터닝 툴들 또는 프로세스들과 함께 사용될 수도 있다. 통상적으로, 반드시 그러한 것은 아니지만, 이러한 툴들/프로세스들은 공동 제조 설비 내에서 함께 사용되거나 수행될 것이다. 막의 리소그래픽 패터닝은 통상적으로, 단계들 각각이 다수의 가능한 툴들을 사용하여 인에이블되는, 이하의 단계들: (1) 스핀-온 (spin-on) 툴 또는 스프레이-온 (spray-on) 툴을 사용하여 워크피스, 즉, 기판 상에 포토레지스트를 도포하는 단계; (2) 고온 플레이트 또는 노 또는 UV 경화 툴을 사용하여 포토레지스트를 경화하는 단계; (3) 웨이퍼 스텝퍼와 같은 툴을 사용하여 가시광선 또는 UV 또는 x-선 광에 포토레지스트를 노출시키는 단계; (4) 습식 벤치와 같은 툴을 사용하여 레지스트를 선택적으로 제거하여 레지스트를 패터닝하도록 레지스트를 현상하는 단계; (5) 건식 또는 플라즈마 보조 에칭 툴을 사용함으로써 하부 막 또는 워크피스 내로 레지스트 패턴을 전사하는 단계; 및 (6) RF 또는 마이크로파 플라즈마 레지스트 스트립퍼와 같은 툴을 사용하여 레지스트를 제거하는 단계의 일부 또는 전부를 포함한다.
스페이서 재료에 대해 코어 재료를 선택적으로 에칭하는 것과 같은, 본 명세서에 기술된 에칭 동작들은 임의의 적합한 프로세스 챔버 내에서 수행될 수도 있다. 일부 실시예들에서, 기판들은 도 8에 도시된 바와 같은 ICP (inductively coupled plasma) 반응기 내에서 에칭될 수도 있다.
특정한 실시예들에서, 에칭 동작들 및 ALD 동작들에 적합할 수도 있는 ICP 반응기들이 이제 기술된다. 이러한 ICP 반응기들은 전체가 참조로서 모든 목적들을 위해 본 명세서에 인용되는, 2013년 12월 10일 출원되고, 발명의 명칭이 "IMAGE REVERSAL WITH AHM GAP FILL FOR MULTIPLE PATTERNING"인, 미국 특허 출원 공보 번호 제 2014/0170853 호에 또한 기술된다. ICP 반응기들이 본 명세서에 기술되지만, 일부 실시예들에서, CCP (capacitively coupled plasma) 반응기들이 또한 사용될 수도 있다는 것이 이해되어야 한다.
도 8은 본 명세서의 특정한 실시예들을 구현하기 위해 적합한 유도 결합 플라즈마 통합된 에칭 및 증착 장치 (800) 의 단면도를 개략적으로 도시하고, 그 예는 캘리포니아, 프리몬트 소재의 Lam Research Corp.에 의해 생산된 Kiyo™이다. 유도 결합 플라즈마 장치 (800) 는 챔버 벽들 (801) 및 윈도우 (811) 에 의해 구조적으로 규정된 전체 프로세스 챔버 (801) 를 포함한다. 챔버 벽들 (801) 은 스테인리스 강 또는 알루미늄으로 제조될 수도 있다. 윈도우 (811) 는 석영 또는 다른 유전체 재료로 제조될 수도 있다. 선택 가능한 내부 플라즈마 그리드 (850) 는 전체 프로세싱 챔버 (801) 를 상부 서브-챔버 (802) 및 하부 서브-챔버 (803) 로 분할한다. 대부분의 실시예들에서, 플라즈마 그리드 (850) 는 제거될 수도 있어서, 서브-챔버들 (802 및 803) 로 이루어진 챔버 공간을 활용한다. 척 (817) 은 하단 내측 표면 근방의 하부 서브-챔버 (803) 내에 위치된다. 척 (817) 은 반도체 웨이퍼 (819) 를 수용 및 홀딩하도록 구성되고, 반도체 웨이퍼 위에서 에칭 및 증착 프로세스들이 수행된다. 척 (817) 은 존재한다면 웨이퍼 (819) 를 지지하기 위한 정전 척일 수 있다. 일부 실시예들에서, 에지 링 (미도시) 은 척 (817) 을 둘러싸고, 그리고 웨이퍼 (819) 가 척 (817) 위에 존재한다면 웨이퍼 (819) 의 상단 표면과 거의 편평한 상부 표면을 갖는다. 척 (817) 은 또한 웨이퍼를 척킹 및 디척킹하기 위한 정전 전극들을 포함한다. 필터 및 DC 클램프 전력 공급부 (미도시) 는 이 목적을 위해 제공될 수도 있다. 웨이퍼 (819) 를 척 (817) 으로부터 리프팅하기 위한 다른 제어 시스템들이 또한 제공될 수 있다. 척 (817) 은 RF 전력 공급부 (823) 를 사용하여 전기적으로 대전될 수 있다. RF 전력 공급부 (823) 는 연결부 (827) 를 통해 매칭 회로 (821) 에 연결된다. 매칭 회로 (821) 는 연결부 (825) 를 통해 척 (817) 에 연결된다. 이러한 방식으로, RF 전력 공급부 (823) 가 척 (817) 에 연결된다.
플라즈마 생성을 위한 엘리먼트들은 윈도우 (811) 위에 위치된 코일 (833) 을 포함한다. 일부 실시예들에서, 코일은 개시된 실시예들에서 사용되지 않는다. 코일 (833) 은 전기적으로 도전성 재료로 제조되고 그리고 적어도 하나의 완전한 턴 (turn) 을 포함한다. 도 8에 도시된 코일 (833) 의 예는 3개의 턴들을 포함한다. 코일 (833) 의 단면들이 심볼들로 도시되고, "X"를 갖는 코일들은 페이지 내로 회전하며 연장하는 반면, "
Figure pat00001
"를 갖는 코일들은 페이지로부터 회전하며 연장한다. 플라즈마 생성을 위한 엘리먼트들은 또한 코일 (833) 에 RF 전력을 공급하도록 구성된 RF 전력 공급부 (841) 를 포함한다. 일반적으로, RF 전력 공급부 (841) 는 연결부 (845) 를 통해 매칭 회로 (839) 에 연결된다. 매칭 회로 (839) 는 연결부 (843) 를 통해 코일 (833) 에 연결된다. 이러한 방식으로, RF 전력 공급부 (841) 는 코일 (833) 에 연결된다. 선택 가능한 Faraday 차폐부 (849) 는 코일 (833) 과 윈도우 (811) 사이에 위치된다. Faraday 차폐부 (849) 는 코일 (833) 에 대해 이격된 관계로 유지된다. Faraday 차폐부 (849) 는 윈도우 (811) 바로 위에 배치된다. 코일 (833), Faraday 차폐부 (849), 및 윈도우 (811) 는 각각 서로에 실질적으로 평행하도록 구성된다. Faraday 차폐부는 플라즈마 챔버의 유전체 윈도우 상에 금속 또는 다른 종이 증착되는 것을 방지할 수도 있다.
프로세스 가스들 (예를 들어 아르곤, 탄화불소들, 예컨대, C a H b , 등) 은 프로세싱 챔버 내로 상부 챔버 내에 위치된 하나 이상의 주요 가스 플로우 유입부들 (860) 을 통해 그리고/또는 하나 이상의 측면 가스 플로우 유입부들 (870) 을 통해 흐를 수도 있다. 마찬가지로, 명확하게 도시되지 않았지만, 유사한 가스 플로우 유입부들은 프로세스 가스들을 용량 결합 플라즈마 프로세싱 챔버로 공급하도록 사용될 수도 있다. 진공 펌프, 예를 들어, 1 또는 2 단계 기계식 건조 펌프 및/또는 터보분자 펌프 (840) 가 프로세스 챔버 (801) 로부터 프로세스 가스들을 인출하도록 그리고 프로세스 챔버 (801) 내의 압력을 유지하도록 사용될 수도 있다. 예를 들어, 펌프는 ALD의 퍼지 동작 동안 챔버 (801) 를 배기하도록 사용될 수도 있다. 밸브-제어된 도관은 진공 펌프에 의해 제공된 진공 환경의 적용을 선택적으로 제어하기 위해서 프로세싱 챔버에 진공 펌프를 유체적으로 연결하도록 사용될 수도 있다. 이는 동작 플라즈마 프로세싱 동안 쓰로틀 밸브 (미도시) 또는 펜듈럼 밸브 (미도시) 와 같은 폐루프-제어된 플로우 제한 디바이스를 채용하여 행해질 수도 있다. 마찬가지로, 용량 결합 플라즈마 프로세싱 챔버로의 진공 펌프 및 밸브 제어된 유체적 연결이 또한 채용될 수도 있다.
장치의 동작 동안, 하나 이상의 프로세스 가스들이 가스 플로우 유입부들 (860 및/또는 870) 을 통해 공급될 수도 있다. 특정한 실시예들에서, 프로세스 가스는 주요 가스 플로우 유입부 (860) 를 통해서만, 또는 측면 가스 플로우 유입부 (870) 를 통해서만 공급될 수도 있다. 일부 경우들에서, 도면에 도시된 가스 플로우 유입부들은 예를 들어, 보다 복잡한 가스 플로우 유입부들, 하나 이상의 샤워헤드들로 대체될 수도 있다. Faraday 차폐부 (849) 및/또는 선택 가능한 그리드 (850) 는 챔버로의 프로세스 가스들의 전달을 허용하는 내부 채널들 및 홀들을 포함할 수도 있다. Faraday 차폐부 (849) 및 선택 가능한 그리드 (850) 중 하나 또는 양자는 프로세스 가스들의 전달을 위한 샤워헤드로서 기능할 수도 있다. 일부 실시예들에서, 액체 기화 및 전달 시스템은 일단 액체 반응물질이 기화된다면, 기화된 반응물질이 가스 플로우 유입부 (860 및/또는 870) 를 통해 챔버 내로 도입되도록, 챔버 (801) 의 업스트림에 위치될 수도 있다.
무선 주파수 전력은 RF 전류로 하여금 코일 (833) 을 통해 흐르게 하도록 RF 전력 공급부 (841) 로부터 코일 (833) 로 공급된다. 코일 (833) 을 통해 흐르는 RF 전류는 코일 (833) 주위에 전자기장을 생성한다. 전자기장은 상부 서브-챔버 (802) 내에 유도 전류를 생성한다. 웨이퍼 (819) 와 다양한 생성된 이온들 및 라디칼들의 물리적 및 화학적 상호작용들은 선택적으로 웨이퍼 상의 피처들을 에칭하고 그리고 웨이퍼 상에 층들을 증착한다.
상부 서브-챔버 (802) 및 하부 서브-챔버 (803) 양자가 있도록 플라즈마 그리드가 사용된다면, 유도 전류는 상부 서브-챔버 (802) 내에 전자-이온 플라즈마를 생성하도록 상부 서브-챔버 (802) 내에 존재하는 가스 상에 작용한다. 선택 가능한 내부 플라즈마 그리드 (850) 는 하부 서브-챔버 (803) 내의 고온 전자들의 양을 제한한다. 일부 실시예들에서, 장치는 하부 서브-챔버 (803) 내에 존재하는 플라즈마가 이온-이온 플라즈마이도록 설계되고 동작된다.
상부 전자-이온 플라즈마 및 하부 이온-이온 플라즈마 양자가 양 이온들과 음 이온들을 포함할 수도 있지만, 이온-이온 플라즈마는 양 이온들에 대한 음 이온들의 보다 큰 비를 가질 것이다. 휘발성 에칭 및/또는 증착 부산물들은 하부 서브-챔버 (803) 로부터 포트 (822) 를 통해 제거될 수도 있다. 본 명세서에 개시된 척 (817) 은 약 10 ℃ 내지 약 850 ℃ 범위의 상승된 온도들로 동작할 수도 있다. 온도는 에칭 프로세스 동작 및 특정한 레시피에 따라 결정될 것이다.
챔버 (801) 는 챔버 (801) 가 클린 룸 또는 제조 설비 내에 설치될 때 설비들 (미도시) 에 커플링될 수도 있다. 설비들은 프로세싱 가스들, 진공, 온도 제어, 및 환경 입자 제어를 제공하는 배관을 포함한다. 이들 설비들은 챔버 (801) 가 타깃 제조 설비 내에 설치될 때 챔버 (801) 에 커플링된다. 부가적으로, 챔버 (801) 는 로보틱스 (robotics) 로 하여금 통상적인 자동화를 사용하여 챔버 (801) 내외로 반도체 웨이퍼들을 이송하게 하는 이송 챔버에 커플링될 수도 있다.
일부 실시예들에서, 시스템 제어기 (830) (하나 이상의 물리 또는 로직 제어기들을 포함할 수도 있음) 는 프로세싱 챔버의 동작들 중 일부 또는 전부를 제어한다. 시스템 제어기 (830) 는 시스템 제어기 (650) 에 대해 상기에 기술된 임의의 하나 이상의 특성들을 포함할 수도 있다.
도 9는 VTM (vacuum transfer module) (938) 과 인터페이싱하는 다양한 모듈들을 가진 반도체 프로세스 클러스터 아키텍처를 도시한다. 복수의 저장 설비들과 프로세싱 모듈들 사이에서 웨이퍼들을 "이송시키기" 위한 이송 모듈들의 구성은 "클러스터 툴 아키텍처" 시스템으로서 지칭될 수도 있다. 로드록 또는 이송 모듈로서 또한 알려진 에어록 (airlock) (930) 은 다양한 제조 프로세스들을 수행하도록 각각 최적화될 수도 있는, 4 개의 프로세싱 모듈들 (920a 내지 920d) 을 가진 VTM (938) 내에 도시된다. 예로서, 프로세싱 모듈들 (920a 내지 920d) 은 기판 에칭, 증착, 이온 주입, 웨이퍼 세정, 스퍼터링, 및/또는 다른 반도체 프로세스을 수행하도록 구현될 수도 있다. 일부 실시예들에서, ALD 및 선택적인 에칭이 동일한 모듈에서 수행된다. 일부 실시예들에서, ALD 및 선택적인 에칭이 동일한 툴의 상이한 모듈들에서 수행된다. 기판 에칭 프로세싱 모듈들 중 하나 이상 (920a 내지 920d 중 임의의 것) 은 본 명세서에 개시된 바와 같이, 즉, 컨포멀한 막들을 증착하기 위해, ALD에 의해 막들을 선택적으로 증착하기 위해, 패턴들을 에칭하기 위해, 그리고 개시된 실시예들에 따라 다른 적합한 기능들을 위해 구현될 수도 있다. 에어록 (930) 및 프로세스 모듈 (920) 은 "스테이션들"로서 지칭될 수도 있다. 스테이션 각각은 VTM (938) 에 스테이션을 인터페이싱하는 패싯 (936) 을 가진다. 패싯 각각 내부에서, 센서들 (1 내지 18) 은 각각의 스테이션들 사이에서 이동될 때 웨이퍼 (926) 의 통과를 검출하도록 사용된다.
로봇 (922) 은 스테이션들 사이에서 웨이퍼 (926) 를 이송한다. 일 실시예에서, 로봇 (922) 은 하나의 암을 갖고, 또 다른 실시예에서, 로봇 (922) 은 2 개의 암들을 갖고, 암 각각은 이송을 위해 웨이퍼 (926) 와 같은 웨이퍼들을 집도록 (pick) 엔드 이펙터 (924) 를 갖는다. ATM (atmospheric transfer module) (940) 내의 프런트-엔드 로봇 (932) 은, 웨이퍼들 (926) 을 카세트 또는 LPM (Load Port Module) (942) 내의 FOUP (Front Opening Unified Pod) (934) 로부터 에어록 (930) 으로 이송시키도록 사용된다. 프로세스 모듈 (920) 내부의 모듈 중심 (928) 은 웨이퍼 (926) 를 배치하기 위한 일 위치이다. ATM (940) 내의 얼라이너 (944) 는 웨이퍼들을 정렬시키도록 사용된다.
예시적인 프로세싱 방법에서, 웨이퍼는 LPM (942) 내의 FOUP들 (934) 중 하나 내에 배치된다. 프런트-엔드 로봇 (932) 은 웨이퍼를 FOUP (934) 로부터 얼라이너 (944) 로 이송시키고, 이는 웨이퍼 (926) 가 에칭되거나 프로세싱되기 전에 웨이퍼 (926) 로 하여금 적절하게 중심에 위치되게 한다. 정렬된 후에, 웨이퍼 (926) 는 프런트-엔드 로봇 (932) 에 의해 에어록 (930) 내로 이동된다. 에어록 모듈들이 ATM과 VTM 사이의 환경을 매칭하는 능력을 갖기 때문에, 웨이퍼 (926) 는 손상되지 않고 2 개의 압력 환경들 사이를 이동할 수 있다. 에어록 모듈 (930) 로부터, 웨이퍼 (926) 는 로봇 (922) 에 의해 VTM (938) 을 통해 그리고 프로세스 모듈들 (920a 내지 920d) 중 하나 내로 이동된다. 이 웨이퍼 이동을 달성하도록, 로봇 (922) 은 로봇의 암들 각각 상의 엔드 이펙터들 (924) 을 사용한다. 일단 웨이퍼 (926) 가 프로세싱된다면, 웨이퍼 (926) 는 로봇 (922) 에 의해 프로세스 모듈들 (920a 내지 920d) 로부터 에어록 모듈 (930) 로 이동된다. 에어록 모듈 (930) 로부터, 웨이퍼 (926) 는 프런트-엔드 로봇 (932) 에 의해 FOUP들 (934) 중 일 FOUP로 또는 얼라이너 (944) 로 이동될 수도 있다.
웨이퍼 이동을 컴퓨터 제어하는 것은 클러스터 아키텍처에 대해 국부적일 수 있거나, 제작 플로어 내 또는 리모트 위치 내에서 클러스터 아키텍처에 대해 외부에 위치될 수 있고 네트워크를 통해 클러스터 아키텍처에 연결될 수 있다는 것을 주의해야 한다. 도 7에 대해 상기에 기술된 바와 같은 제어기는 도 9의 툴을 사용하여 구현될 수도 있다.
실험
실험은 ALD를 사용하여 증착된 붕소-도핑된 실리콘 산화물 막 및 인-도핑된 실리콘 산화물 막 상에서 그리고 ALD를 사용하여 증착된 도핑되지 않은 실리콘 산화물 막 상에서 수행되었다.
막들은 200 ℃의 증착 온도에서 약 500 Å의 두께로 증착되었다. 막들은 에칭 레이트를 측정하기 위해 CF4/CHF3 에칭 화학물질에 노출되었다. 에칭은 70 Vb의 바이어스 전압을 사용하는 ICP 반응기 내에서 600 W의 플라즈마 전력으로 점화된 플라즈마를 사용하여 50 ℃ 및 5 mTorr에서 15 초 동안 수행되었다. 예상 에칭 선택도는 스핀-온 탄소 재료에 대한 에칭 선택도에 대해 계산되었다. 결과들은 표 1에 나타난다.
표 1. 도핑된 실리콘 산화물의 에칭 레이트 및 에칭 선택도
기판 에칭 레이트 (Å/hr) 스핀-온 탄소에 대한 SiO 2 예상 에칭 선택도
인-도핑된 SiO2 27221 4.1
붕소-도핑된 SiO2 24754 3.7
도핑되지 않은 SiO2 28116 4.2
붕소-도핑된 막들에 대한 에칭 레이트는 도핑되지 않은 SiO2의 에칭 레이트보다 15 % 느리다. 인-도핑된 막들에 대한 에칭 레이트는 도핑되지 않은 SiO2의 에칭 레이트보다 25 % 느리다. 이들 결과들은 스핀-온 탄소 재료들이 도핑되지 않은 실리콘 산화물 재료들에 대해 에칭되는 것과 대조적으로 스핀-온 탄소 재료들이 도핑된 실리콘 산화물 재료들에 대해 보다 빠른 레이트로 에칭할 수도 있도록 스핀-온 탄소 재료들에 대한 도핑된 실리콘 산화물 재료들의 에칭 선택도가 개선될 수도 있다는 것을 시사한다.
결론
전술한 실시예들이 이해의 명료성의 목적들을 위해 일부 상세히 기술되지만, 특정한 변화들 및 수정들이 첨부된 청구항들의 범위 내에서 실시될 수도 있다는 것이 자명할 것이다. 본 실시예들의 프로세스들, 시스템들, 및 장치를 구현하는 많은 대안적인 방식들이 있다는 것을 주의해야 한다. 따라서, 본 실시예들은 예시적인 것이지 제한적인 것으로 고려되지 않고, 본 실시예들은 본 명세서에 제공된 상세사항들에 제한되지 않는다.

Claims (19)

  1. 포지티브 패터닝을 사용하여 기판을 패터닝하는 방법에 있어서,
    (a) 패터닝된 코어 재료를 가진 상기 기판을 제공하는 단계;
    (b) 상기 패터닝된 코어 재료 위에 도핑된 스페이서 재료를 컨포멀하게 증착하는 단계;
    (c) 마스크를 형성하기 위해 상기 도핑된 스페이서에 대해 상기 패터닝된 코어 재료를 선택적으로 에칭하는 단계로서, 상기 도핑된 스페이서의 에칭 레이트는 상기 패터닝된 코어 재료의 에칭 레이트보다 약 5 내지 약 20 배 더 빠른, 상기 도핑된 스페이서에 대해 상기 패터닝된 코어 재료를 선택적으로 에칭하는 단계; 및
    (d) 상기 마스크를 사용하여 타깃 층을 에칭하는 단계를 포함하는, 포지티브 패터닝을 사용하여 기판들을 패터닝하는 방법.
  2. 제 1 항에 있어서,
    상기 도핑된 스페이서를 증착하는 단계는 실리콘 산화물의 하나 이상의 층들을 증착하는 단계 및 도펀트 산화물의 하나 이상의 층들을 증착하는 단계를 포함하고, 상기 도펀트는 붕소, 갈륨, 인, 알루미늄, 및 비소로 구성된 그룹으로부터 선택되는, 포지티브 패터닝을 사용하여 기판들을 패터닝하는 방법.
  3. 제 1 항에 있어서,
    상기 도핑된 스페이서를 증착하는 단계는,
    (i) 상기 기판의 표면을 포화시키기에 불충분한 지속기간 동안 상기 기판을 제 1 도즈의 실리콘-함유 전구체에 노출시키는 단계;
    (ii) 상기 기판의 상기 표면 상에 상기 도펀트 및 상기 실리콘-함유 전구체의 부분적으로 포화된 표면을 형성하도록 상기 기판의 상기 표면을 포화시키기에 불충분한 지속기간 동안 상기 기판을 제 2 도즈의 도펀트 전구체에 노출시키는 단계; 및
    (iii) 컨포멀하게 도핑된 실리콘 산화물 재료를 형성하기 위해 상기 기판을 산화제에 노출시키는 단계를 포함하는, 포지티브 패터닝을 사용하여 기판들을 패터닝하는 방법.
  4. 제 1 항에 있어서,
    상기 도핑된 스페이서는 약 1E20 at/cc 내지 약 2E22 at/cc의 도펀트 밀도를 갖는, 포지티브 패터닝을 사용하여 기판들을 패터닝하는 방법.
  5. 제 1 항에 있어서,
    상기 도핑된 스페이서는 게르마늄 산화물의 하나 이상의 층들을 증착함으로써 증착된 게르마늄-함유 재료를 포함하고 그리고 상기 도핑된 스페이서는 인 또는 아르곤으로 도핑되는, 포지티브 패터닝을 사용하여 기판들을 패터닝하는 방법.
  6. 제 2 항에 있어서,
    상기 도핑된 스페이서를 증착한 후 그리고 상기 패터닝된 코어 재료를 선택적으로 에칭하기 전에, 상기 기판을 약 400 ℃ 미만의 온도로 어닐링하는 단계를 더 포함하는, 포지티브 패터닝을 사용하여 기판들을 패터닝하는 방법.
  7. 제 2 항에 있어서,
    상기 도펀트는 붕소이고 그리고 상기 도펀트 산화물의 상기 하나 이상의 층들을 증착하는 단계는 TMB (trimethylborate), TEB (triethylborate), B2H6 (diborane), 트리메틸보란, 트리에틸보란, 및 이들의 조합들로 구성된 그룹으로부터 선택된 도펀트 전구체에 상기 기판을 노출시키는 단계를 포함하는, 포지티브 패터닝을 사용하여 기판들을 패터닝하는 방법.
  8. 제 2 항에 있어서,
    상기 도펀트는 인이고 그리고 상기 도펀트 산화물의 상기 하나 이상의 층들을 증착하는 단계는 TEPO (triethyl phosphate) (PO(OC2H5)3); TMPO (trimethyl phosphate) (PO(OCH3)3); TMPi (trimethyl phosphite) (P(OCH3)3); TDMAP (trisdimethylaminophosphorus) (((CH3)2N)3P); 삼염화인 (PCl3); TMSP (trismethylsilyl phosphine) (P(Si(CH3)3)3); 및 옥시염화인 (POCl3) 으로 구성된 그룹으로부터 선택된 도펀트 전구체에 상기 기판을 노출시키는 단계를 포함하는, 포지티브 패터닝을 사용하여 기판들을 패터닝하는 방법.
  9. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서,
    상기 패터닝된 코어 재료는 상기 기판을 탄화불소 가스에 노출시키고 플라즈마를 점화함으로써 에칭되는, 포지티브 패터닝을 사용하여 기판들을 패터닝하는 방법.
  10. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서,
    상기 형성된 마스크는 약 50 ㎚ 미만의 피치를 갖는, 포지티브 패터닝을 사용하여 기판들을 패터닝하는 방법.
  11. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서,
    상기 도핑된 스페이서는 약 50 ℃ 내지 약 200 ℃의 기판 온도로 증착되는, 포지티브 패터닝을 사용하여 기판들을 패터닝하는 방법.
  12. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서,
    상기 도핑된 스페이서는 50 Å 내지 300 Å의 두께로 증착되는, 포지티브 패터닝을 사용하여 기판들을 패터닝하는 방법.
  13. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서,
    상기 패터닝된 코어 재료는 탄소를 포함하는, 포지티브 패터닝을 사용하여 기판들을 패터닝하는 방법.
  14. 제 3 항에 있어서,
    상기 산화제는 산소, 이산화탄소, 물, 아산화질소, 및 이들의 조합들로 구성된 그룹으로부터 선택되는, 포지티브 패터닝을 사용하여 기판들을 패터닝하는 방법.
  15. 제 3 항에 있어서,
    상기 기판을 상기 산화제에 노출시키는 단계는 아르곤, 질소, 및 헬륨으로 구성된 그룹으로부터 선택된 불활성 가스를 흘리는 단계를 포함하는, 포지티브 패터닝을 사용하여 기판들을 패터닝하는 방법.
  16. 제 3 항에 있어서,
    상기 기판을 하우징하는 프로세스 챔버는 상기 단계 (i) 을 수행하는 단계와 상기 단계 (ii) 를 수행하는 단계 사이에 퍼지되는, 포지티브 패터닝을 사용하여 기판들을 패터닝하는 방법.
  17. 제 9 항에 있어서,
    상기 탄화불소 가스는 CF4, CHF3, CH2F2, 및 CH3F로 구성된 그룹으로부터 선택되는, 포지티브 패터닝을 사용하여 기판들을 패터닝하는 방법.
  18. 기판들을 패터닝하는 장치에 있어서,
    (e) 하나 이상의 프로세스 챔버들;
    (f) 플로우-제어 하드웨어와 연관되고 상기 하나 이상의 프로세스 챔버들로의 하나 이상의 가스 유입부들;
    (g) LFRF (low frequency radio frequency) 생성기;
    (h) HFRF (high frequency radio frequency) 생성기; 및
    (i) 적어도 하나의 프로세서 및 메모리를 가진 제어기를 포함하고,
    상기 적어도 하나의 프로세서 및 상기 메모리는 서로 통신 가능하게 연결되고,
    상기 적어도 하나의 프로세서는 적어도 상기 플로우-제어 하드웨어, 상기 LFRF 생성기, 및 상기 HFRF 생성기와 동작 가능하게 연결되고, 그리고
    상기 메모리는,
    (i) 코어 재료 위에 실리콘 산화물의 하나 이상의 층들을 증착하고;
    (ii) 도핑된 스페이서 재료를 형성하기 위해 붕소 산화물, 갈륨 산화물, 인 산화물, 알루미늄 산화물, 및 비소 산화물로 구성된 그룹으로부터 선택된 도펀트 산화물의 하나 이상의 층들을 증착하고;
    (iii) 마스크를 형성하기 위해 상기 코어 재료의 에칭 레이트보다 약 5 내지 약 20 배 더 빠른 상기 도핑된 스페이서 재료의 에칭 레이트로 상기 도핑된 스페이서 재료에 대해 상기 코어 재료를 선택적으로 에칭하고; 그리고
    (iv) 상기 마스크를 사용하여 타깃 층을 에칭하기 위해서, 적어도 상기 플로우-제어 하드웨어, 상기 HFRF 생성기, 및 상기 LFRF 생성기를 제어하도록 상기 적어도 하나의 프로세서를 제어하기 위한 컴퓨터-실행 가능한 인스트럭션들을 저장하는, 기판들을 패터닝하는 장치.
  19. 기판들을 패터닝하는 장치에 있어서,
    (a) 하나 이상의 프로세스 챔버들;
    (b) 플로우-제어 하드웨어와 연관되고 상기 하나 이상의 프로세스 챔버들로의 하나 이상의 가스 유입부들;
    (c) LFRF (low frequency radio frequency) 생성기;
    (d) HFRF (high frequency radio frequency) 생성기; 및
    (e) 적어도 하나의 프로세서 및 메모리를 가진 제어기를 포함하고,
    상기 적어도 하나의 프로세서 및 상기 메모리는 서로 통신 가능하게 연결되고,
    상기 적어도 하나의 프로세서는 적어도 상기 플로우-제어 하드웨어, 상기 LFRF 생성기, 및 상기 HFRF 생성기와 동작 가능하게 연결되고, 그리고
    상기 메모리는,
    (i) 코어 재료 위에
    i. 상기 기판의 표면을 포화시키기에 불충분한 지속기간 동안 제 1 도즈의 실리콘-함유 전구체를 도입하고;
    ii. 상기 기판의 상기 표면 상에 상기 도펀트 및 상기 실리콘-함유 전구체의 부분적으로 포화된 표면을 형성하도록 상기 기판의 상기 표면을 포화시키기에 불충분한 지속기간 동안 제 2 도즈의 도펀트 전구체를 도입하고; 그리고
    iii. 도핑된 스페이서 재료를 형성하기 위해 산화제를 도입함으로써 도핑된 스페이서 재료를 증착하고;
    (ii) 마스크를 형성하기 위해 상기 코어 재료의 에칭 레이트보다 약 5 내지 약 20 배 더 빠른 상기 도핑된 스페이서 재료의 에칭 레이트로 상기 도핑된 스페이서 재료에 대해 상기 코어 재료를 선택적으로 에칭하고; 그리고
    (iii) 상기 마스크를 사용하여 타깃 층을 에칭하기 위해서, 적어도 상기 플로우-제어 하드웨어, 상기 HFRF 생성기, 및 상기 LFRF 생성기를 제어하도록 상기 적어도 하나의 프로세서를 제어하기 위한 컴퓨터-실행 가능한 인스트럭션들을 저장하는, 기판들을 패터닝하는 장치.
KR1020170093932A 2016-07-29 2017-07-25 반도체 패터닝 애플리케이션들을 위한 도핑된 ald 막들 KR102273916B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210086044A KR102510157B1 (ko) 2016-07-29 2021-06-30 반도체 패터닝 애플리케이션들을 위한 도핑된 ald 막들

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662368922P 2016-07-29 2016-07-29
US62/368,922 2016-07-29
US15/279,312 2016-09-28
US15/279,312 US10629435B2 (en) 2016-07-29 2016-09-28 Doped ALD films for semiconductor patterning applications

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020210086044A Division KR102510157B1 (ko) 2016-07-29 2021-06-30 반도체 패터닝 애플리케이션들을 위한 도핑된 ald 막들

Publications (2)

Publication Number Publication Date
KR20180013745A true KR20180013745A (ko) 2018-02-07
KR102273916B1 KR102273916B1 (ko) 2021-07-06

Family

ID=61010614

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020170093932A KR102273916B1 (ko) 2016-07-29 2017-07-25 반도체 패터닝 애플리케이션들을 위한 도핑된 ald 막들
KR1020210086044A KR102510157B1 (ko) 2016-07-29 2021-06-30 반도체 패터닝 애플리케이션들을 위한 도핑된 ald 막들

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020210086044A KR102510157B1 (ko) 2016-07-29 2021-06-30 반도체 패터닝 애플리케이션들을 위한 도핑된 ald 막들

Country Status (6)

Country Link
US (1) US10629435B2 (ko)
JP (1) JP6895836B2 (ko)
KR (2) KR102273916B1 (ko)
CN (2) CN113488379A (ko)
SG (1) SG10201705999TA (ko)
TW (1) TWI682056B (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200118354A (ko) * 2018-03-01 2020-10-15 램 리써치 코포레이션 반도체 프로세싱을 위한 실리콘-기반 증착
KR20210155127A (ko) 2020-06-15 2021-12-22 고려대학교 산학협력단 최적화된 패시베이션층을 포함하는 마이크로 발광 다이오드 및 그 제조 방법

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9564312B2 (en) 2014-11-24 2017-02-07 Lam Research Corporation Selective inhibition in atomic layer deposition of silicon-containing films
US9601693B1 (en) 2015-09-24 2017-03-21 Lam Research Corporation Method for encapsulating a chalcogenide material
US10074543B2 (en) 2016-08-31 2018-09-11 Lam Research Corporation High dry etch rate materials for semiconductor patterning applications
US10454029B2 (en) 2016-11-11 2019-10-22 Lam Research Corporation Method for reducing the wet etch rate of a sin film without damaging the underlying substrate
US10832908B2 (en) 2016-11-11 2020-11-10 Lam Research Corporation Self-aligned multi-patterning process flow with ALD gapfill spacer mask
US10134579B2 (en) 2016-11-14 2018-11-20 Lam Research Corporation Method for high modulus ALD SiO2 spacer
JP6814057B2 (ja) * 2017-01-27 2021-01-13 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
US10147611B1 (en) * 2017-08-28 2018-12-04 Nanya Technology Corporation Method for preparing semiconductor structures
US10269559B2 (en) 2017-09-13 2019-04-23 Lam Research Corporation Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer
JP6833657B2 (ja) * 2017-11-07 2021-02-24 東京エレクトロン株式会社 基板をプラズマエッチングする方法
US11276572B2 (en) * 2017-12-08 2022-03-15 Tokyo Electron Limited Technique for multi-patterning substrates
WO2019169335A1 (en) 2018-03-02 2019-09-06 Lam Research Corporation Selective deposition using hydrolysis
WO2019207864A1 (ja) 2018-04-27 2019-10-31 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
JP7073924B2 (ja) * 2018-06-06 2022-05-24 東京エレクトロン株式会社 原子層成長法を用いて基板上に薄膜を成膜する方法、または装置
US20190390341A1 (en) * 2018-06-26 2019-12-26 Lam Research Corporation Deposition tool and method for depositing metal oxide films on organic materials
JP7079686B2 (ja) * 2018-07-27 2022-06-02 東京エレクトロン株式会社 成膜方法及び成膜装置
US10991583B2 (en) * 2018-09-28 2021-04-27 Taiwan Semiconductor Manufacturing Co., Ltd. Self aligned litho etch process patterning method
CN109456361B (zh) * 2018-12-14 2021-08-24 苏州祺添新材料有限公司 一种三(三烃基硅基)亚磷酸酯的合成方法
US11315787B2 (en) * 2019-04-17 2022-04-26 Applied Materials, Inc. Multiple spacer patterning schemes
KR102606651B1 (ko) * 2019-11-01 2023-11-24 어플라이드 머티어리얼스, 인코포레이티드 결정화에 대한 내성이 있는 비정질 실리콘-기반 막들
JP7412257B2 (ja) * 2019-12-20 2024-01-12 東京エレクトロン株式会社 エッチング方法、基板処理装置、及び基板処理システム
WO2021172449A1 (ja) * 2020-02-27 2021-09-02 Agc株式会社 ガラス基板の製造方法、及びeuvl用マスクブランクの製造方法
US11232952B2 (en) 2020-03-05 2022-01-25 Nanya Technology Corporation Semiconductor device structure with fine patterns and method for forming the same
CN113517230B (zh) * 2020-04-09 2023-12-08 长鑫存储技术有限公司 半导体结构及其形成方法
CN113621942A (zh) * 2020-05-06 2021-11-09 中国科学院微电子研究所 一种铝掺杂氧化镓膜及其制备方法
CN115605979A (zh) * 2020-05-11 2023-01-13 朗姆研究公司(Us) 用于图案化cd控制的自动前馈和反馈序列
US11264474B1 (en) * 2020-08-18 2022-03-01 Nanya Technology Corporation Semiconductor device with boron nitride layer and method for fabricating the same
CN114203874A (zh) * 2020-09-17 2022-03-18 东莞市中图半导体科技有限公司 一种图形化复合衬底、制备方法及led外延片
US11961739B2 (en) * 2020-10-05 2024-04-16 Applied Materials, Inc. Boron concentration tunability in boron-silicon films
US20220189771A1 (en) * 2020-12-10 2022-06-16 Applied Materials, Inc. Underlayer film for semiconductor device formation
US12077852B2 (en) * 2021-04-26 2024-09-03 Applied Materials, Inc. Metal-doped boron films
US20230402285A1 (en) * 2022-06-14 2023-12-14 Applied Materials, Inc. Method of forming carbon-based spacer for euv photoresist patterns
WO2024073220A1 (en) * 2022-09-28 2024-04-04 Lam Research Corporation Layered metal oxide-silicon oxide films

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528719A (en) * 1993-10-26 1996-06-18 Sumitomo Metal Mining Company Limited Optical fiber guide structure and method of fabricating same
KR20010020758A (ko) * 1999-05-05 2001-03-15 포만 제프리 엘 유전체 박막의 선택적 에칭 방법
KR20010075177A (ko) * 1998-09-17 2001-08-09 토토라노 제이. 빈센트 집적 회로 게이트 전도체 위에 형성된 스페이서를식각하기 위한 디바이스 및 방법
KR20090131821A (ko) * 2008-06-19 2009-12-30 삼성전자주식회사 미세 패턴 형성 방법
JP2010527138A (ja) * 2006-04-07 2010-08-05 マイクロン テクノロジー, インク. 簡易化ピッチダブリング工程
JP2011192776A (ja) * 2010-03-15 2011-09-29 Toshiba Corp 半導体装置の製造方法
JP2012142574A (ja) * 2010-12-28 2012-07-26 Asm Japan Kk 金属酸化物のハードマスクの形成方法
JP2012169408A (ja) * 2011-02-14 2012-09-06 Taiyo Nippon Sanso Corp マスク用材料、マスクの形成方法、パターン形成方法、及びエッチング保護膜
US20140216337A1 (en) * 2010-04-15 2014-08-07 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US20160247680A1 (en) * 2015-02-20 2016-08-25 Tokyo Electron Limited Material processing to achieve sub-10nm patterning

Family Cites Families (271)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR93097E (fr) 1965-10-11 1969-02-07 Ibm Procédé de dépot de films isolants et dispositifs électriques utilisant de tels films.
US4158717A (en) 1977-02-14 1979-06-19 Varian Associates, Inc. Silicon nitride film and method of deposition
US4419809A (en) * 1981-12-30 1983-12-13 International Business Machines Corporation Fabrication process of sub-micrometer channel length MOSFETs
US4500563A (en) 1982-12-15 1985-02-19 Pacific Western Systems, Inc. Independently variably controlled pulsed R.F. plasma chemical vapor processing
US4575921A (en) 1983-11-04 1986-03-18 General Motors Corporation Silicon nitride formation and use in self-aligned semiconductor device manufacturing method
CA1327338C (en) 1987-02-02 1994-03-01 Chorng-Ping Chang Process for producing devices containing silicon nitride films
EP0313683A1 (en) 1987-10-30 1989-05-03 International Business Machines Corporation Method for fabricating a semiconductor integrated circuit structure having a submicrometer length device element
US5420067A (en) 1990-09-28 1995-05-30 The United States Of America As Represented By The Secretary Of The Navy Method of fabricatring sub-half-micron trenches and holes
US5091332A (en) 1990-11-19 1992-02-25 Intel Corporation Semiconductor field oxidation process
EP0519079B1 (en) 1991-01-08 1999-03-03 Fujitsu Limited Process for forming silicon oxide film
US5202272A (en) * 1991-03-25 1993-04-13 International Business Machines Corporation Field effect transistor formed with deep-submicron gate
US5230929A (en) 1992-07-20 1993-07-27 Dow Corning Corporation Plasma-activated chemical vapor deposition of fluoridated cyclic siloxanes
US5496608A (en) 1993-09-22 1996-03-05 Brother Kogyo Kabushiki Kaisha Optical recording medium
US6342277B1 (en) 1996-08-16 2002-01-29 Licensee For Microelectronics: Asm America, Inc. Sequential chemical vapor deposition
US5670432A (en) 1996-08-01 1997-09-23 Taiwan Semiconductor Manufacturing Company, Ltd. Thermal treatment to form a void free aluminum metal layer for a semiconductor device
US5731235A (en) 1996-10-30 1998-03-24 Micron Technology, Inc. Methods of forming a silicon nitrite film, a capacitor dielectric layer and a capacitor
US5891805A (en) 1996-12-13 1999-04-06 Intel Corporation Method of forming contacts
US6039834A (en) 1997-03-05 2000-03-21 Applied Materials, Inc. Apparatus and methods for upgraded substrate processing system with microwave plasma source
US6153519A (en) 1997-03-31 2000-11-28 Motorola, Inc. Method of forming a barrier layer
US6225175B1 (en) * 1997-06-20 2001-05-01 Texas Instruments Incorporated Process for defining ultra-thin geometries
US5854105A (en) * 1997-11-05 1998-12-29 Vanguard International Semiconductor Corporation Method for making dynamic random access memory cells having double-crown stacked capacitors with center posts
US5856003A (en) 1997-11-17 1999-01-05 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming pseudo buried layer for sub-micron bipolar or BiCMOS device
US5976990A (en) 1998-01-09 1999-11-02 Micron Technology, Inc. Method for optimization of thin film deposition
US6197701B1 (en) 1998-10-23 2001-03-06 Taiwan Semiconductor Manufacturing Company Lightly nitridation surface for preparing thin-gate oxides
US6380056B1 (en) 1998-10-23 2002-04-30 Taiwan Semiconductor Manufacturing Company Lightly nitridation surface for preparing thin-gate oxides
US6228779B1 (en) 1998-11-06 2001-05-08 Novellus Systems, Inc. Ultra thin oxynitride and nitride/oxide stacked gate dielectrics fabricated by high pressure technology
US6403416B1 (en) * 1999-01-07 2002-06-11 Taiwan Semiconductor Manufacturing Company Method for making a double-cylinder-capacitor structure for dynamic random access memory (DRAM)
KR100273473B1 (ko) 1999-04-06 2000-11-15 이경수 박막 형성 방법
KR100340716B1 (ko) 1999-10-29 2002-06-20 윤종용 실리콘 질화막 형성방법
KR100742473B1 (ko) 1999-11-02 2007-07-25 동경 엘렉트론 주식회사 제 1 및 제 2 소재를 초임계 처리하는 장치 및 방법
KR100338125B1 (ko) 1999-12-31 2002-05-24 구본준, 론 위라하디락사 박막 트랜지스터 및 그 제조방법
AU2001245388A1 (en) 2000-03-07 2001-09-17 Asm America, Inc. Graded thin films
KR100693691B1 (ko) 2000-04-25 2007-03-09 동경 엘렉트론 주식회사 금속 필름의 침착방법 및 초임계 건조/세척 모듈을포함하는 금속침착 복합공정장치
KR100366621B1 (ko) 2000-06-28 2003-01-09 삼성전자 주식회사 반도체 소자의 도전성 콘택체를 형성하는 방법
US6632741B1 (en) 2000-07-19 2003-10-14 International Business Machines Corporation Self-trimming method on looped patterns
US6548368B1 (en) 2000-08-23 2003-04-15 Applied Materials, Inc. Method of forming a MIS capacitor
US6416822B1 (en) 2000-12-06 2002-07-09 Angstrom Systems, Inc. Continuous method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD)
US6428859B1 (en) 2000-12-06 2002-08-06 Angstron Systems, Inc. Sequential method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD)
US6632478B2 (en) 2001-02-22 2003-10-14 Applied Materials, Inc. Process for forming a low dielectric constant carbon-containing film
JP3696119B2 (ja) 2001-04-26 2005-09-14 株式会社日立製作所 半導体装置、及び半導体装置の製造方法
US6709928B1 (en) 2001-07-31 2004-03-23 Cypress Semiconductor Corporation Semiconductor device having silicon-rich layer and method of manufacturing such a device
JP4116283B2 (ja) 2001-11-30 2008-07-09 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード ヘキサキス(モノヒドロカルビルアミノ)ジシランおよびその製造方法
US6638879B2 (en) 2001-12-06 2003-10-28 Macronix International Co., Ltd. Method for forming nitride spacer by using atomic layer deposition
US6911391B2 (en) 2002-01-26 2005-06-28 Applied Materials, Inc. Integration of titanium and titanium nitride layers
KR20030081144A (ko) 2002-04-11 2003-10-17 가부시키가이샤 히다치 고쿠사이 덴키 종형 반도체 제조 장치
US6518167B1 (en) 2002-04-16 2003-02-11 Advanced Micro Devices, Inc. Method of forming a metal or metal nitride interface layer between silicon nitride and copper
US7041335B2 (en) 2002-06-04 2006-05-09 Applied Materials, Inc. Titanium tantalum nitride silicide layer
KR100469126B1 (ko) 2002-06-05 2005-01-29 삼성전자주식회사 수소 함유량이 적은 박막 형성방법
US7297641B2 (en) 2002-07-19 2007-11-20 Asm America, Inc. Method to form ultra high quality silicon-containing compound layers
US7294582B2 (en) 2002-07-19 2007-11-13 Asm International, N.V. Low temperature silicon compound deposition
US6967159B2 (en) 2002-08-28 2005-11-22 Micron Technology, Inc. Systems and methods for forming refractory metal nitride layers using organic amines
US6794284B2 (en) 2002-08-28 2004-09-21 Micron Technology, Inc. Systems and methods for forming refractory metal nitride layers using disilazanes
JP4358492B2 (ja) 2002-09-25 2009-11-04 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 熱化学気相成長法によるシリコン窒化物膜またはシリコンオキシ窒化物膜の製造方法
US7531679B2 (en) 2002-11-14 2009-05-12 Advanced Technology Materials, Inc. Composition and method for low temperature deposition of silicon-containing films such as films including silicon nitride, silicon dioxide and/or silicon-oxynitride
KR100496265B1 (ko) 2002-11-29 2005-06-17 한국전자통신연구원 반도체 소자의 박막 형성방법
CN100567564C (zh) 2002-12-20 2009-12-09 应用材料有限公司 形成高质量的低温氮化硅层的方法和设备
US7172792B2 (en) 2002-12-20 2007-02-06 Applied Materials, Inc. Method for forming a high quality low temperature silicon nitride film
US7713592B2 (en) 2003-02-04 2010-05-11 Tegal Corporation Nanolayer deposition process
JP4329403B2 (ja) 2003-05-19 2009-09-09 東京エレクトロン株式会社 プラズマ処理装置
US7125582B2 (en) 2003-07-30 2006-10-24 Intel Corporation Low-temperature silicon nitride deposition
DE10335099B4 (de) 2003-07-31 2006-06-08 Advanced Micro Devices, Inc., Sunnyvale Verfahren zum Verbessern der Dickengleichförmigkeit von Siliziumnitridschichten für mehrere Halbleiterscheiben
US6943097B2 (en) 2003-08-19 2005-09-13 International Business Machines Corporation Atomic layer deposition of metallic contacts, gates and diffusion barriers
US20050227017A1 (en) 2003-10-31 2005-10-13 Yoshihide Senzaki Low temperature deposition of silicon nitride
US20050109276A1 (en) 2003-11-25 2005-05-26 Applied Materials, Inc. Thermal chemical vapor deposition of silicon nitride using BTBAS bis(tertiary-butylamino silane) in a single wafer chamber
US7291271B2 (en) 2003-12-09 2007-11-06 Separation Design Group, Llc Meso-frequency traveling wave electro-kinetic continuous adsorption system
JP2005210076A (ja) 2003-12-25 2005-08-04 Semiconductor Leading Edge Technologies Inc 窒化珪素膜の成膜方法及びこの方法を使用する半導体装置の製造方法
KR100560654B1 (ko) 2004-01-08 2006-03-16 삼성전자주식회사 질화실리콘막을 형성을 위한 질소화합물 및 이를 이용한질화실리콘 막의 형성방법
US20050170104A1 (en) 2004-01-29 2005-08-04 Applied Materials, Inc. Stress-tuned, single-layer silicon nitride film
JP4279176B2 (ja) 2004-03-02 2009-06-17 株式会社アルバック シリコン窒化膜の形成方法
US7550067B2 (en) 2004-06-25 2009-06-23 Guardian Industries Corp. Coated article with ion treated underlayer and corresponding method
US7585396B2 (en) 2004-06-25 2009-09-08 Guardian Industries Corp. Coated article with ion treated overcoat layer and corresponding method
JP4396547B2 (ja) 2004-06-28 2010-01-13 東京エレクトロン株式会社 成膜方法、成膜装置及び記憶媒体
JP4595702B2 (ja) 2004-07-15 2010-12-08 東京エレクトロン株式会社 成膜方法、成膜装置及び記憶媒体
JP4179311B2 (ja) 2004-07-28 2008-11-12 東京エレクトロン株式会社 成膜方法、成膜装置及び記憶媒体
JP4470023B2 (ja) 2004-08-20 2010-06-02 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード シリコン窒化物膜の製造方法
US7271464B2 (en) 2004-08-24 2007-09-18 Micron Technology, Inc. Liner for shallow trench isolation
US7629270B2 (en) 2004-08-27 2009-12-08 Asm America, Inc. Remote plasma activated nitridation
US7910288B2 (en) * 2004-09-01 2011-03-22 Micron Technology, Inc. Mask material conversion
US20060084283A1 (en) 2004-10-20 2006-04-20 Paranjpe Ajit P Low temperature sin deposition methods
JP4701691B2 (ja) 2004-11-29 2011-06-15 東京エレクトロン株式会社 エッチング方法
US7429820B2 (en) 2004-12-07 2008-09-30 Motorola, Inc. Field emission display with electron trajectory field shaping
US7482247B1 (en) 2004-12-30 2009-01-27 Novellus Systems, Inc. Conformal nanolaminate dielectric deposition and etch bag gap fill process
US20060162661A1 (en) 2005-01-22 2006-07-27 Applied Materials, Inc. Mixing energized and non-energized gases for silicon nitride deposition
KR100622609B1 (ko) 2005-02-16 2006-09-19 주식회사 하이닉스반도체 박막 형성 방법
US7629267B2 (en) 2005-03-07 2009-12-08 Asm International N.V. High stress nitride film and method for formation thereof
JP4258518B2 (ja) 2005-03-09 2009-04-30 東京エレクトロン株式会社 成膜方法、成膜装置及び記憶媒体
JP4506677B2 (ja) 2005-03-11 2010-07-21 東京エレクトロン株式会社 成膜方法、成膜装置及び記憶媒体
JP2006261434A (ja) 2005-03-17 2006-09-28 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude シリコン酸化膜の形成方法
JP4607637B2 (ja) 2005-03-28 2011-01-05 東京エレクトロン株式会社 シリコン窒化膜の形成方法、シリコン窒化膜の形成装置及びプログラム
US7875556B2 (en) 2005-05-16 2011-01-25 Air Products And Chemicals, Inc. Precursors for CVD silicon carbo-nitride and silicon nitride films
US7560390B2 (en) 2005-06-02 2009-07-14 Micron Technology, Inc. Multiple spacer steps for pitch multiplication
US7651955B2 (en) 2005-06-21 2010-01-26 Applied Materials, Inc. Method for forming silicon-containing materials during a photoexcitation deposition process
US7700492B2 (en) * 2005-06-22 2010-04-20 Tokyo Electron Limited Plasma etching method and apparatus, control program and computer-readable storage medium storing the control program
JP4305427B2 (ja) 2005-08-02 2009-07-29 東京エレクトロン株式会社 成膜方法、成膜装置及び記憶媒体
US7696101B2 (en) 2005-11-01 2010-04-13 Micron Technology, Inc. Process for increasing feature density during the manufacture of a semiconductor device
US7465669B2 (en) 2005-11-12 2008-12-16 Applied Materials, Inc. Method of fabricating a silicon nitride stack
KR100714305B1 (ko) 2005-12-26 2007-05-02 삼성전자주식회사 자기정렬 이중패턴의 형성방법
US7301210B2 (en) * 2006-01-12 2007-11-27 International Business Machines Corporation Method and structure to process thick and thin fins and variable fin to fin spacing
JP4434149B2 (ja) 2006-01-16 2010-03-17 東京エレクトロン株式会社 成膜方法、成膜装置及び記憶媒体
US7491630B2 (en) * 2006-03-15 2009-02-17 Freescale Semiconductor, Inc. Undoped gate poly integration for improved gate patterning and cobalt silicide extendibility
JP4929811B2 (ja) 2006-04-05 2012-05-09 東京エレクトロン株式会社 プラズマ処理装置
JP2007281181A (ja) 2006-04-06 2007-10-25 Elpida Memory Inc 半導体装置の製造方法
FR2900276B1 (fr) 2006-04-25 2008-09-12 St Microelectronics Sa Depot peald d'un materiau a base de silicium
US8232176B2 (en) 2006-06-22 2012-07-31 Applied Materials, Inc. Dielectric deposition and etch back processes for bottom up gapfill
US7611980B2 (en) * 2006-08-30 2009-11-03 Micron Technology, Inc. Single spacer process for multiplying pitch by a factor greater than two and related intermediate IC structures
JP4929932B2 (ja) 2006-09-01 2012-05-09 東京エレクトロン株式会社 成膜方法、成膜装置及び記憶媒体
KR101057877B1 (ko) 2006-09-19 2011-08-19 도쿄엘렉트론가부시키가이샤 플라즈마 세정 방법 및 플라즈마 cvd 방법
US7939455B2 (en) 2006-09-29 2011-05-10 Tokyo Electron Limited Method for forming strained silicon nitride films and a device containing such films
US20080139003A1 (en) 2006-10-26 2008-06-12 Shahid Pirzada Barrier coating deposition for thin film devices using plasma enhanced chemical vapor deposition process
US20080119057A1 (en) 2006-11-20 2008-05-22 Applied Materials,Inc. Method of clustering sequential processing for a gate stack structure
US20080124946A1 (en) 2006-11-28 2008-05-29 Air Products And Chemicals, Inc. Organosilane compounds for modifying dielectrical properties of silicon oxide and silicon nitride films
US20080213479A1 (en) 2007-02-16 2008-09-04 Tokyo Electron Limited SiCN film formation method and apparatus
US20080207007A1 (en) 2007-02-27 2008-08-28 Air Products And Chemicals, Inc. Plasma Enhanced Cyclic Chemical Vapor Deposition of Silicon-Containing Films
US7488659B2 (en) 2007-03-28 2009-02-10 International Business Machines Corporation Structure and methods for stress concentrating spacer
US20080242032A1 (en) 2007-03-29 2008-10-02 Texas Instruments Incorporated Carbon-Doped Epitaxial SiGe
US7651961B2 (en) 2007-03-30 2010-01-26 Tokyo Electron Limited Method for forming strained silicon nitride films and a device containing such films
US7807578B2 (en) * 2007-06-01 2010-10-05 Applied Materials, Inc. Frequency doubling using spacer mask
JP5151260B2 (ja) 2007-06-11 2013-02-27 東京エレクトロン株式会社 成膜方法及び成膜装置
KR100956210B1 (ko) 2007-06-19 2010-05-04 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 금속 실리콘 질화물 박막의 플라즈마 강화 사이클릭증착방법
US7910497B2 (en) 2007-07-30 2011-03-22 Applied Materials, Inc. Method of forming dielectric layers on a substrate and apparatus therefor
JP5098882B2 (ja) 2007-08-31 2012-12-12 東京エレクトロン株式会社 プラズマ処理装置
TWI489547B (zh) 2007-09-18 2015-06-21 Air Liquide 形成含矽膜的方法
US7651959B2 (en) 2007-12-03 2010-01-26 Asm Japan K.K. Method for forming silazane-based dielectric film
US8440569B2 (en) 2007-12-07 2013-05-14 Cadence Design Systems, Inc. Method of eliminating a lithography operation
US20090155606A1 (en) 2007-12-13 2009-06-18 Asm Genitech Korea Ltd. Methods of depositing a silicon nitride film
US7678715B2 (en) 2007-12-21 2010-03-16 Applied Materials, Inc. Low wet etch rate silicon nitride film
JP4935684B2 (ja) 2008-01-12 2012-05-23 東京エレクトロン株式会社 成膜方法及び成膜装置
JP4935687B2 (ja) 2008-01-19 2012-05-23 東京エレクトロン株式会社 成膜方法及び成膜装置
JP5297048B2 (ja) 2008-01-28 2013-09-25 三菱重工業株式会社 プラズマ処理方法及びプラズマ処理装置
JP2009260151A (ja) 2008-04-18 2009-11-05 Tokyo Electron Ltd 金属ドープ層の形成方法、成膜装置及び記憶媒体
US8383525B2 (en) 2008-04-25 2013-02-26 Asm America, Inc. Plasma-enhanced deposition process for forming a metal oxide thin film and related structures
US8133797B2 (en) 2008-05-16 2012-03-13 Novellus Systems, Inc. Protective layer to enable damage free gap fill
US7622369B1 (en) 2008-05-30 2009-11-24 Asm Japan K.K. Device isolation technology on semiconductor substrate
US8298628B2 (en) 2008-06-02 2012-10-30 Air Products And Chemicals, Inc. Low temperature deposition of silicon-containing films
JP5190307B2 (ja) 2008-06-29 2013-04-24 東京エレクトロン株式会社 成膜方法、成膜装置及び記憶媒体
US8076208B2 (en) * 2008-07-03 2011-12-13 Micron Technology, Inc. Method for forming transistor with high breakdown voltage using pitch multiplication technique
JP5233562B2 (ja) 2008-10-04 2013-07-10 東京エレクトロン株式会社 成膜方法及び成膜装置
US7745346B2 (en) 2008-10-17 2010-06-29 Novellus Systems, Inc. Method for improving process control and film conformality of PECVD film
JP2010103303A (ja) 2008-10-23 2010-05-06 Toshiba Corp 磁気抵抗素子及びその製造方法
US8647722B2 (en) 2008-11-14 2014-02-11 Asm Japan K.K. Method of forming insulation film using plasma treatment cycles
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
US20100136313A1 (en) 2008-12-01 2010-06-03 Asm Japan K.K. Process for forming high resistivity thin metallic film
US7833906B2 (en) 2008-12-11 2010-11-16 Asm International N.V. Titanium silicon nitride deposition
US9640396B2 (en) 2009-01-07 2017-05-02 Brewer Science Inc. Spin-on spacer materials for double- and triple-patterning lithography
US7919416B2 (en) 2009-01-21 2011-04-05 Asm Japan K.K. Method of forming conformal dielectric film having Si-N bonds by PECVD
US7972980B2 (en) 2009-01-21 2011-07-05 Asm Japan K.K. Method of forming conformal dielectric film having Si-N bonds by PECVD
US8268727B2 (en) 2009-04-20 2012-09-18 GlobalFoundries, Inc. Methods for fabricating FinFET semiconductor devices using planarized spacers
CN102484070B (zh) 2009-06-26 2014-12-10 康奈尔大学 用于铝-硅氮化物的化学气相沉积处理
KR20110002208A (ko) 2009-07-01 2011-01-07 삼성전자주식회사 반도체 소자의 형성방법
JP2011023718A (ja) 2009-07-15 2011-02-03 Asm Japan Kk PEALDによってSi−N結合を有するストレス調節された誘電体膜を形成する方法
US8105901B2 (en) * 2009-07-27 2012-01-31 International Business Machines Corporation Method for double pattern density
US7989365B2 (en) 2009-08-18 2011-08-02 Applied Materials, Inc. Remote plasma source seasoning
US8173554B2 (en) 2009-10-14 2012-05-08 Asm Japan K.K. Method of depositing dielectric film having Si-N bonds by modified peald method
US8354331B2 (en) * 2009-12-01 2013-01-15 International Business Machines Corporation Multiplying pattern density by single sidewall imaging transfer
US8021949B2 (en) * 2009-12-01 2011-09-20 International Business Machines Corporation Method and structure for forming finFETs with multiple doping regions on a same chip
JP2013515376A (ja) 2009-12-22 2013-05-02 アプライド マテリアルズ インコーポレイテッド 連続プラズマを用いるpecvd(プラズマ化学気相堆積)マルチステップ処理
JP5742185B2 (ja) 2010-03-19 2015-07-01 東京エレクトロン株式会社 成膜装置、成膜方法、回転数の最適化方法及び記憶媒体
US20110244142A1 (en) * 2010-03-30 2011-10-06 Applied Materials, Inc. Nitrogen doped amorphous carbon hardmask
EP2730676A1 (en) 2010-04-01 2014-05-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for deposition of silicon nitride layers
US9611544B2 (en) 2010-04-15 2017-04-04 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US8728956B2 (en) 2010-04-15 2014-05-20 Novellus Systems, Inc. Plasma activated conformal film deposition
US8993460B2 (en) 2013-01-10 2015-03-31 Novellus Systems, Inc. Apparatuses and methods for depositing SiC/SiCN films via cross-metathesis reactions with organometallic co-reactants
CN102906305B (zh) * 2010-04-15 2016-01-13 诺发系统公司 气体和液体的喷射的方法和装置
US9390909B2 (en) 2013-11-07 2016-07-12 Novellus Systems, Inc. Soft landing nanolaminates for advanced patterning
US9892917B2 (en) * 2010-04-15 2018-02-13 Lam Research Corporation Plasma assisted atomic layer deposition of multi-layer films for patterning applications
US9076646B2 (en) 2010-04-15 2015-07-07 Lam Research Corporation Plasma enhanced atomic layer deposition with pulsed plasma exposure
US8669185B2 (en) 2010-07-30 2014-03-11 Asm Japan K.K. Method of tailoring conformality of Si-containing film
KR101147728B1 (ko) 2010-08-02 2012-05-25 주식회사 유진테크 사이클릭 박막 증착 방법
US8394466B2 (en) 2010-09-03 2013-03-12 Asm Japan K.K. Method of forming conformal film having si-N bonds on high-aspect ratio pattern
US8138097B1 (en) 2010-09-20 2012-03-20 Kabushiki Kaisha Toshiba Method for processing semiconductor structure and device based on the same
US9685320B2 (en) 2010-09-23 2017-06-20 Lam Research Corporation Methods for depositing silicon oxide
WO2012039833A2 (en) 2010-09-24 2012-03-29 Applied Materials, Inc. Low temperature silicon carbide deposition process
US20120213940A1 (en) 2010-10-04 2012-08-23 Applied Materials, Inc. Atomic layer deposition of silicon nitride using dual-source precursor and interleaved plasma
WO2012057889A1 (en) 2010-10-29 2012-05-03 Applied Materials, Inc. Atomic layer deposition film with tunable refractive index and absorption coefficient and methods of making
US8679914B2 (en) 2010-11-02 2014-03-25 Micron Technology, Inc. Method of forming a chalcogenide material and methods of forming a resistive random access memory device including a chalcogenide material
US8288083B2 (en) 2010-11-05 2012-10-16 Micron Technology, Inc. Methods of forming patterned masks
KR20120062385A (ko) * 2010-12-06 2012-06-14 에스케이하이닉스 주식회사 반도체 메모리 소자의 형성방법
KR101225601B1 (ko) * 2010-12-16 2013-01-24 한국과학기술원 대면적 나노스케일 패턴형성방법
JP5682290B2 (ja) * 2010-12-20 2015-03-11 東京エレクトロン株式会社 炭素含有薄膜のスリミング方法及び酸化装置
JP5689398B2 (ja) 2010-12-21 2015-03-25 東京エレクトロン株式会社 窒化シリコン膜の成膜方法及び成膜装置
KR101172272B1 (ko) 2010-12-30 2012-08-09 에스케이하이닉스 주식회사 매립비트라인을 구비한 반도체장치 제조 방법
US8883649B2 (en) 2011-03-23 2014-11-11 International Business Machines Corporation Sidewall image transfer process
KR101923167B1 (ko) 2011-04-07 2018-11-29 피코순 오와이 플라즈마 소오스를 갖는 원자층 퇴적
US8298951B1 (en) 2011-04-13 2012-10-30 Asm Japan K.K. Footing reduction using etch-selective layer
US8298954B1 (en) * 2011-05-06 2012-10-30 International Business Machines Corporation Sidewall image transfer process employing a cap material layer for a metal nitride layer
TW201319299A (zh) 2011-09-13 2013-05-16 Applied Materials Inc 用於低溫電漿輔助沉積的活化矽前驅物
WO2013043330A1 (en) 2011-09-23 2013-03-28 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US8809169B2 (en) 2011-09-30 2014-08-19 Tokyo Electron Limited Multi-layer pattern for alternate ALD processes
US9318431B2 (en) 2011-11-04 2016-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit having a MOM capacitor and method of making same
US20130115778A1 (en) 2011-11-04 2013-05-09 Applied Materials, Inc. Dry Etch Processes
US20130189845A1 (en) * 2012-01-19 2013-07-25 Applied Materials, Inc. Conformal amorphous carbon for spacer and spacer protection applications
US8592328B2 (en) 2012-01-20 2013-11-26 Novellus Systems, Inc. Method for depositing a chlorine-free conformal sin film
JP5882776B2 (ja) 2012-02-14 2016-03-09 信越化学工業株式会社 レジスト下層膜形成用組成物、及びパターン形成方法
US8846484B2 (en) 2012-02-15 2014-09-30 Intermolecular, Inc. ReRAM stacks preparation by using single ALD or PVD chamber
WO2013137115A1 (ja) 2012-03-15 2013-09-19 東京エレクトロン株式会社 成膜方法及び成膜装置
JP6125247B2 (ja) 2012-03-21 2017-05-10 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
US8936977B2 (en) 2012-05-29 2015-01-20 Globalfoundries Singapore Pte. Ltd. Late in-situ doped SiGe junctions for PMOS devices on 28 nm low power/high performance technologies using a silicon oxide encapsulation, early halo and extension implantations
US8703578B2 (en) 2012-05-29 2014-04-22 Globalfoundries Singapore Pte. Ltd. Middle in-situ doped SiGe junctions for PMOS devices on 28 nm low power/high performance technologies using a silicon oxide encapsulation, early halo and extension implantations
US9487869B2 (en) * 2012-06-01 2016-11-08 Carnegie Mellon University Pattern transfer with self-assembled nanoparticle assemblies
US8962078B2 (en) 2012-06-22 2015-02-24 Tokyo Electron Limited Method for depositing dielectric films
CN103515197A (zh) 2012-06-26 2014-01-15 中芯国际集成电路制造(上海)有限公司 自对准多重图形化的掩膜层及其形成方法
US9023737B2 (en) 2012-07-11 2015-05-05 Asm Ip Holding B.V. Method for forming conformal, homogeneous dielectric film by cyclic deposition and heat treatment
US20140023794A1 (en) 2012-07-23 2014-01-23 Maitreyee Mahajani Method And Apparatus For Low Temperature ALD Deposition
US8716136B1 (en) 2012-10-19 2014-05-06 Globalfoundries Inc. Method of forming a semiconductor structure including a wet etch process for removing silicon nitride
US9355839B2 (en) * 2012-10-23 2016-05-31 Lam Research Corporation Sub-saturated atomic layer deposition and conformal film deposition
KR102052936B1 (ko) 2012-11-13 2019-12-06 삼성전자 주식회사 반도체 소자 제조 방법
US8784951B2 (en) 2012-11-16 2014-07-22 Asm Ip Holding B.V. Method for forming insulation film using non-halide precursor having four or more silicons
US9362133B2 (en) 2012-12-14 2016-06-07 Lam Research Corporation Method for forming a mask by etching conformal film on patterned ashable hardmask
US9446965B2 (en) 2013-02-19 2016-09-20 Nanotech Industrial Solutions, Inc. Applications for inorganic fullerene-like particles
US8623770B1 (en) * 2013-02-21 2014-01-07 HGST Netherlands B.V. Method for sidewall spacer line doubling using atomic layer deposition of a titanium oxide
US9564309B2 (en) 2013-03-14 2017-02-07 Asm Ip Holding B.V. Si precursors for deposition of SiN at low temperatures
US20140273531A1 (en) 2013-03-14 2014-09-18 Asm Ip Holding B.V. Si PRECURSORS FOR DEPOSITION OF SiN AT LOW TEMPERATURES
US9824881B2 (en) 2013-03-14 2017-11-21 Asm Ip Holding B.V. Si precursors for deposition of SiN at low temperatures
US9721784B2 (en) * 2013-03-15 2017-08-01 Applied Materials, Inc. Ultra-conformal carbon film deposition
TW201441408A (zh) 2013-03-15 2014-11-01 Applied Materials Inc 包含氮化矽之膜的電漿輔助原子層沉積
US20140273530A1 (en) 2013-03-15 2014-09-18 Victor Nguyen Post-Deposition Treatment Methods For Silicon Nitride
US20140271097A1 (en) 2013-03-15 2014-09-18 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9012336B2 (en) 2013-04-08 2015-04-21 Applied Materials, Inc. Method for conformal treatment of dielectric films using inductively coupled plasma
US9209274B2 (en) * 2013-07-19 2015-12-08 Globalfoundries Inc. Highly conformal extension doping in advanced multi-gate devices
KR102081195B1 (ko) 2013-08-28 2020-02-25 삼성전자주식회사 반도체 장치 및 이의 제조 방법
US20150251917A1 (en) 2013-10-21 2015-09-10 Qualcomm Mems Technologies, Inc. Method of patterning pillars
US9159579B2 (en) * 2013-10-25 2015-10-13 Taiwan Semiconductor Manufacturing Company, Ltd. Lithography using multilayer spacer for reduced spacer footing
JP2016539361A (ja) 2013-11-08 2016-12-15 東京エレクトロン株式会社 Euvリソグラフィを加速するためのポスト処理メソッドを使用する方法
US10084016B2 (en) 2013-11-21 2018-09-25 Micron Technology, Inc. Cross-point memory and methods for fabrication of same
TWI480415B (zh) 2013-11-27 2015-04-11 Ind Tech Res Inst 多模式薄膜沉積設備以及薄膜沉積方法
US9123776B2 (en) 2013-12-04 2015-09-01 Taiwan Semiconductor Manufacturing Company, Ltd. Self-aligned double spacer patterning process
US9614053B2 (en) 2013-12-05 2017-04-04 Taiwan Semiconductor Manufacturing Company, Ltd. Spacers with rectangular profile and methods of forming the same
WO2015106261A1 (en) 2014-01-13 2015-07-16 Applied Materials, Inc. Self-aligned double patterning with spatial atomic layer deposition
US9806129B2 (en) 2014-02-25 2017-10-31 Micron Technology, Inc. Cross-point memory and methods for fabrication of same
US9660080B2 (en) 2014-02-28 2017-05-23 Stmicroelectronics, Inc. Multi-layer strained channel FinFET
US20150247238A1 (en) * 2014-03-03 2015-09-03 Lam Research Corporation Rf cycle purging to reduce surface roughness in metal oxide and metal nitride films
US9406522B2 (en) 2014-07-24 2016-08-02 Applied Materials, Inc. Single platform, multiple cycle spacer deposition and etch
US20160049307A1 (en) * 2014-08-15 2016-02-18 Yijian Chen Patterning method for IC fabrication using 2-D layout decomposition and synthesis techniques
US9318334B2 (en) 2014-08-27 2016-04-19 United Microelectronics Corp. Method for fabricating semiconductor device
US9576792B2 (en) 2014-09-17 2017-02-21 Asm Ip Holding B.V. Deposition of SiN
US9214333B1 (en) 2014-09-24 2015-12-15 Lam Research Corporation Methods and apparatuses for uniform reduction of the in-feature wet etch rate of a silicon nitride film formed by ALD
US9355837B2 (en) 2014-09-25 2016-05-31 Micron Technology, Inc. Methods of forming and using materials containing silicon and nitrogen
US9875888B2 (en) 2014-10-03 2018-01-23 Applied Materials, Inc. High temperature silicon oxide atomic layer deposition technology
US9791779B2 (en) 2014-10-16 2017-10-17 Tokyo Electron Limited EUV resist etch durability improvement and pattern collapse mitigation
US9589790B2 (en) 2014-11-24 2017-03-07 Lam Research Corporation Method of depositing ammonia free and chlorine free conformal silicon nitride film
US9564312B2 (en) 2014-11-24 2017-02-07 Lam Research Corporation Selective inhibition in atomic layer deposition of silicon-containing films
US9449971B2 (en) * 2014-12-01 2016-09-20 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of forming FinFETs
US9620377B2 (en) 2014-12-04 2017-04-11 Lab Research Corporation Technique to deposit metal-containing sidewall passivation for high aspect ratio cylinder etch
EP3035379B1 (en) 2014-12-15 2020-07-01 IMEC vzw Method for blocking a trench portion
US9576811B2 (en) * 2015-01-12 2017-02-21 Lam Research Corporation Integrating atomic scale processes: ALD (atomic layer deposition) and ALE (atomic layer etch)
US9673059B2 (en) * 2015-02-02 2017-06-06 Tokyo Electron Limited Method for increasing pattern density in self-aligned patterning integration schemes
US9530646B2 (en) 2015-02-24 2016-12-27 United Microelectronics Corp. Method of forming a semiconductor structure
US9472506B2 (en) * 2015-02-25 2016-10-18 International Business Machines Corporation Registration mark formation during sidewall image transfer process
US9748093B2 (en) 2015-03-18 2017-08-29 Applied Materials, Inc. Pulsed nitride encapsulation
US9502238B2 (en) 2015-04-03 2016-11-22 Lam Research Corporation Deposition of conformal films by atomic layer deposition and atomic layer etch
US9786503B2 (en) * 2015-04-08 2017-10-10 Tokyo Electron Limited Method for increasing pattern density in self-aligned patterning schemes without using hard masks
US9406693B1 (en) 2015-04-20 2016-08-02 Sandisk Technologies Llc Selective removal of charge-trapping layer for select gate transistors and dummy memory cells in 3D stacked memory
CN106298519A (zh) 2015-05-15 2017-01-04 联华电子股份有限公司 形成半导体结构的方法
US9653571B2 (en) 2015-06-15 2017-05-16 International Business Machines Corporation Freestanding spacer having sub-lithographic lateral dimension and method of forming same
US9508560B1 (en) * 2015-06-18 2016-11-29 International Business Machines Corporation SiARC removal with plasma etch and fluorinated wet chemical solution combination
US9530663B1 (en) * 2015-06-23 2016-12-27 Nanya Technology Corp. Method for forming a pattern
US9748110B2 (en) * 2015-09-03 2017-08-29 Tokyo Electron Limited Method and system for selective spacer etch for multi-patterning schemes
WO2017053316A1 (en) 2015-09-24 2017-03-30 Tokyo Electron Limited Methods of forming etch masks for sub-resolution substrate patterning
US9601693B1 (en) 2015-09-24 2017-03-21 Lam Research Corporation Method for encapsulating a chalcogenide material
US10141417B2 (en) * 2015-10-20 2018-11-27 Taiwan Semiconductor Manufacturing Company, Ltd. Gate structure, semiconductor device and the method of forming semiconductor device
CN108369899B (zh) 2015-11-20 2023-11-17 东京毅力科创株式会社 形成用于亚分辨率基板图案化的蚀刻掩模的方法
US9576817B1 (en) * 2015-12-03 2017-02-21 International Business Machines Corporation Pattern decomposition for directed self assembly patterns templated by sidewall image transfer
US9508604B1 (en) * 2016-04-29 2016-11-29 Globalfoundries Inc. Methods of forming punch through stop regions on FinFET devices on CMOS-based IC products using doped spacers
US20170323785A1 (en) 2016-05-06 2017-11-09 Lam Research Corporation Method to deposit conformal and low wet etch rate encapsulation layer using pecvd
US10062563B2 (en) 2016-07-01 2018-08-28 Lam Research Corporation Selective atomic layer deposition with post-dose treatment
US10037884B2 (en) 2016-08-31 2018-07-31 Lam Research Corporation Selective atomic layer deposition for gapfill using sacrificial underlayer
US10074543B2 (en) 2016-08-31 2018-09-11 Lam Research Corporation High dry etch rate materials for semiconductor patterning applications
US10832908B2 (en) 2016-11-11 2020-11-10 Lam Research Corporation Self-aligned multi-patterning process flow with ALD gapfill spacer mask
US10454029B2 (en) 2016-11-11 2019-10-22 Lam Research Corporation Method for reducing the wet etch rate of a sin film without damaging the underlying substrate
US10134579B2 (en) 2016-11-14 2018-11-20 Lam Research Corporation Method for high modulus ALD SiO2 spacer
US10269559B2 (en) 2017-09-13 2019-04-23 Lam Research Corporation Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528719A (en) * 1993-10-26 1996-06-18 Sumitomo Metal Mining Company Limited Optical fiber guide structure and method of fabricating same
KR20010075177A (ko) * 1998-09-17 2001-08-09 토토라노 제이. 빈센트 집적 회로 게이트 전도체 위에 형성된 스페이서를식각하기 위한 디바이스 및 방법
KR20010020758A (ko) * 1999-05-05 2001-03-15 포만 제프리 엘 유전체 박막의 선택적 에칭 방법
JP2010527138A (ja) * 2006-04-07 2010-08-05 マイクロン テクノロジー, インク. 簡易化ピッチダブリング工程
KR20090131821A (ko) * 2008-06-19 2009-12-30 삼성전자주식회사 미세 패턴 형성 방법
JP2011192776A (ja) * 2010-03-15 2011-09-29 Toshiba Corp 半導体装置の製造方法
US20140216337A1 (en) * 2010-04-15 2014-08-07 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
JP2012142574A (ja) * 2010-12-28 2012-07-26 Asm Japan Kk 金属酸化物のハードマスクの形成方法
JP2012169408A (ja) * 2011-02-14 2012-09-06 Taiyo Nippon Sanso Corp マスク用材料、マスクの形成方法、パターン形成方法、及びエッチング保護膜
US20160247680A1 (en) * 2015-02-20 2016-08-25 Tokyo Electron Limited Material processing to achieve sub-10nm patterning

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200118354A (ko) * 2018-03-01 2020-10-15 램 리써치 코포레이션 반도체 프로세싱을 위한 실리콘-기반 증착
KR20210155127A (ko) 2020-06-15 2021-12-22 고려대학교 산학협력단 최적화된 패시베이션층을 포함하는 마이크로 발광 다이오드 및 그 제조 방법

Also Published As

Publication number Publication date
CN107680903B (zh) 2021-06-15
CN113488379A (zh) 2021-10-08
JP6895836B2 (ja) 2021-06-30
US20180033622A1 (en) 2018-02-01
TWI682056B (zh) 2020-01-11
CN107680903A (zh) 2018-02-09
KR20210086594A (ko) 2021-07-08
TW201821637A (zh) 2018-06-16
US10629435B2 (en) 2020-04-21
JP2018061007A (ja) 2018-04-12
KR102273916B1 (ko) 2021-07-06
SG10201705999TA (en) 2018-02-27
KR102510157B1 (ko) 2023-03-14

Similar Documents

Publication Publication Date Title
KR102510157B1 (ko) 반도체 패터닝 애플리케이션들을 위한 도핑된 ald 막들
KR102474327B1 (ko) 반도체 패터닝 애플리케이션을 위한 고 건식 에칭 레이트 재료들
KR102514839B1 (ko) Ald 갭충진 스페이서 마스크를 사용하는 자기-정렬된 다중 패터닝 프로세스 플로우
CN109937467B (zh) 用于高模数ALD SiO2间隔物的方法
KR102439698B1 (ko) Peald 프로세스 및 열적 ald 프로세스에 의해 형성된 나이트라이드 막
KR20160118968A (ko) Ald 및 ale에 의해 컨포멀한 막들의 증착
US20240332007A1 (en) Modulated atomic layer deposition
CN114245832A (zh) 原子层沉积期间的膜特性的原位控制
US20230154754A1 (en) Loss prevention during atomic layer deposition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant