KR20170042834A - 나노다공성 세퍼레이터 상의 전극 직접 코팅을 이용한 배터리 - Google Patents

나노다공성 세퍼레이터 상의 전극 직접 코팅을 이용한 배터리 Download PDF

Info

Publication number
KR20170042834A
KR20170042834A KR1020177010172A KR20177010172A KR20170042834A KR 20170042834 A KR20170042834 A KR 20170042834A KR 1020177010172 A KR1020177010172 A KR 1020177010172A KR 20177010172 A KR20177010172 A KR 20177010172A KR 20170042834 A KR20170042834 A KR 20170042834A
Authority
KR
South Korea
Prior art keywords
layer
separator
cathode
anode
assembly
Prior art date
Application number
KR1020177010172A
Other languages
English (en)
Inventor
스티븐 알렌 칼슨
Original Assignee
옵토도트 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 옵토도트 코포레이션 filed Critical 옵토도트 코포레이션
Publication of KR20170042834A publication Critical patent/KR20170042834A/ko

Links

Images

Classifications

    • H01M2/166
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/122
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • Y02T10/7011
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Primary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

(a) 제 1 캐소드층의 측 상에서 다공성 세퍼레이터층에 접합되는 제 1 캐소드층과 제 2 캐소드층 사이에 개재되는 캐소드 전류 컬렉터층의 세퍼레이터/캐소드 어셈블리로서, 상기 제 1 캐소드층은 상기 세퍼레이터층 상에 직접 코팅되는 세퍼레이터/캐소드 어셈블리, (b) 제 1 애노드층의 측 상에서 다공성 세퍼레이터층에 접합되는 제 1 애노드층과 제 2 애노드층 사이에 개재되는 애노드 전류 컬렉터층의 세퍼레이터/애노드 어셈블리로서, 상기 제 1 애노드층은 상기 세퍼레이터층 상에 직접 코팅되는 세퍼레이터/애노드 어셈블리, 및 (c) 전해질을 포함하고, 상기 세퍼레이터/캐소드 어셈블리 및 상기 세퍼레이터/애노드 어셈블리의 교대층을 포함하는 리튬 배터리가 제공된다. 바람직하게는, 세퍼레이터/캐소드 어셈블리 및 세퍼레이터/애노드 어셈블리의 부분들은 서로 간에 접촉하지 않고, 전기적 도전성 단부 접속이 이들 부분들을 통해 이루어진다. 또한 상기 배터리의 제조 방법이 제공된다.

Description

나노다공성 세퍼레이터 상의 전극 직접 코팅을 이용한 배터리{BATTERIES UTILIZING ELECTRODE COATINGS DIRECTLY ON NANOPOROUS SEPARATORS}
본 발명은 일반적으로 배터리 분야 및 다른 전기적 전류 생산 전지에 관한 것이다. 보다 구체적으로, 본 발명은 나노다공성 세퍼레이터(separator)를 이용한 리튬 배터리 및 소망의 구성으로 배터리의 다른 층을 오버레이하는 나노다공성 구조의 세퍼레이터를 이용하여 리튬 배터리를 제조하는 방법에 관한 것이다.
재충전 가능한 또는 2차의 리튬 이온 배터리, 재충전 불가능한 또는 1차의 리튬 배터리, 및 리튬-유황 배터리와 같은 다른 타입을 포함하는 리튬 배터리는 통상적으로 플라스틱 세퍼레이터, 양측 상에 코팅된 캐소드층을 갖는 금속 기판, 다른 플라스틱 세퍼레이터 및 양측 상에 코팅된 애노드층을 갖는 다른 금속 기판을 인터리빙(interleaving)함으로써 이루어진다. 상기 재료의 스트립의 정렬을 유지하기 위해 그리고 다른 질적인 이유로 상기 인터리빙은 통상적으로 복잡하고 값비싼 자동 장비에서 행해진다. 또한, 충분한 기계적 강도 및 무결성을 이루기 위하여, 세퍼레이터 및 금속 기판은 10 미크론(micron) 이상의 두께와 같이 상대적으로 두껍다. 예컨대, 애노드 코팅층에 대한 구리 금속 기판의 통상적인 두께는 10 미크론이고, 캐소드 코팅층에 대한 알루미늄 금속 기판의 통상적인 두께는 12 미크론이고, 플라스틱 세퍼레이터는 통상적으로 12 내지 20 미크론의 범위의 두께를 가진다. 상기 두꺼운 세퍼레이터 및 금속 기판은 전기 화학적으로 활성이지 않고 따라서 리튬 배터리의 전극에서의 전기 활성 재료의 용량을 낮춘다. 이것은 리튬 배터리의 에너지 밀도 및 전력 밀도를 제한한다.
리튬 배터리에 대한 신규 애플리케이션 중에는 하이브리드, 플러그 인 하이브리드, 및 전기 차량을 위한 고전력 배터리가 있다. 휴대용 컴퓨터 및 다른 애플리케이션을 위한 리튬 배터리에 이용되는 원통형 금속 전지에 대비하여, 차량을 위한 많은 리튬 배터리들은 편평하거나 각기둥의 구조이다. 또한, 차량을 위한 리튬 배터리는 경제적일 필요가 있다. 차량 및 다른 애플리케이션을 위한 보다 고에너지 및 보다 경제적인 리튬 배터리를 만들기 위한 가능한 접근법에는 크게 각 배터리에서의 전기 활성 재료의 용량의 비율 또는 백분율을 증가시키는 것과 배터리를 제조할 자동화된 장비의 복잡성 및 비용을 저감하는 것이 포함된다.
리튬 배터리가 현재 이용되는 것보다 훨씬 얇은 금속 기판층 및 세퍼레이터로 이루어지고 이로써 전기 활성 재료의 더 많은 용적을 가진다면 유용할 것이다. 상기 리튬 배터리가 예컨대, 휴대용 컴퓨터 배터리를 위해 이용되고 또한 편평하거나 각기둥의 배터리를 만드는데 특히 적용되었던 와인딩 장비보다 덜 복잡하고 덜 비싼 자동화된 프로세싱 장비에서 제작될 수 있다면 특히 유용할 것이다.
본 발명은 배터리 및 다른 전기적 전류 생산 전지, 특히 200℃ 이상의 온도에서 치수 안정성을 갖는 특히 내열 세퍼레이터인 나노다공성 세퍼레이터를 이용하는 리튬 배터리, 및 세퍼레이터에서의 소망의 두께 및 구성으로 배터리의 다른 층을 직접 코팅하기 위해 나노다공성 구조의 세퍼레이터를 이용하여 리튬 배터리를 제조하는 방법에 관한 것이다.
본 발명의 하나의 양태는 리튬 배터리에 관한 것으로, 상기 리튬 배터리는 (a) 제 1 캐소드층과 제 2 캐소드층 사이에 개재되는 캐소드 전류 컬렉터층 및 상기 캐소드 전류 컬렉터층에 반대인 측 상의 상기 제 1 캐소드층의 측 상의 다공성 세퍼레이터층을 포함하고, 상기 제 1 캐소드층은 상기 세퍼레이터층 상에 직접 코팅되는 세퍼레이터/캐소드 어셈블리, (b) 제 1 애노드층과 제 2 애노드층 사이에 개재되는 애노드 전류 컬렉터층 및 상기 애노드 전류 컬렉터층에 반대의 측 상의 상기 제 1 애노드층의 측 상의 다공성 세퍼레이터층을 포함하고, 상기 제 1 애노드층은 상기 세퍼레이터층 상에 직접 코팅되는 세퍼레이터/애노드 어셈블리; 및 (c) 전해질을 포함하고, 상기 배터리는 상기 세퍼레이터/캐소드 어셈블리 및 상기 세퍼레이터/애노드 어셈블리의 교대층(alternating layer)을 포함한다. 일 실시형태에 있어서, 세퍼레이터/캐소드 어셈블리의 부분은 세퍼레이터/애노드 어셈블리와 접촉하지 않는다.
본 발명의 리튬 배터리의 일 실시형태에 있어서, 세퍼레이터/애노드 어셈블리와 접촉하지 않는 세퍼레이터/캐소드 어셈블리의 부분은 세퍼레이터/애노드 어셈블리와 접촉하지 않는 세퍼레이터/캐소드 어셈블리의 추가의 하나 이상의 부분과 접촉한다. 일 실시형태에 있어서, 전기적 도전성 핀을 갖는 디바이스는 세퍼레이터/캐소드 어셈블리의 부분 및 세퍼레이터/캐소드 어셈블리의 추가의 하나 이상의 부분과 전기 접촉하고 세퍼레이터/애노드 어셈블리의 어떤 부분과도 전기 접촉하지 않는다.
본 발명의 리튬 배터리의 일 실시형태에 있어서, 세퍼레이터/애노드 어셈블리의 부분은 세퍼레이터/캐소드 어셈블리와 접촉하지 않는다. 일 실시형태에 있어서, 세퍼레이터/애노드 어셈블리의 부분은 세퍼레이터/캐소드 어셈블리와 접촉하지 않는 세퍼레이터/애노드 어셈블리의 하나 이상의 부분과 접촉한다. 일 실시형태에 있어서, 전기적 도전성 핀을 갖는 디바이스는 세퍼레이터/애노드 어셈블리의 부분 및 세퍼레이터/애노드 어셈블리의 추가의 하나 이상의 부분과 전기 접촉하고 세퍼레이터/캐소드 어셈블리의 어떤 부분과도 전기 접촉하지 않는다. 일 실시형태에 있어서, 세퍼레이터/애노드 어셈블리와 접촉하지 않는 세퍼레이터/캐소드 어셈블리의 부분은 세퍼레이터/애노드 어셈블리와 접촉하지 않는 세퍼레이터/캐소드 어셈블리의 추가의 하나 이상의 부분과 접촉하는 것을 특징으로 하는 배터리. 일 실시형태에 있어서, 전기적 도전성 핀을 갖는 디바이스는 세퍼레이터/캐소드 어셈블리의 부분 및 세퍼레이터/캐소드 어셈블리의 추가의 하나 이상의 부분과 전기 접촉하고 세퍼레이터/애노드 어셈블리의 어떤 부분과도 전기 접촉하지 않는다.
본 발명의 리튬 배터리의 일 실시형태에 있어서, 캐소드 전류 컬렉터층은 제 1 캐소드층 상에 직접 코팅된다. 일 실시형태에 있어서, 세퍼레이터층에 인접한 제 1 캐소드층의 표면은 제 1 캐소드층에 인접한 세퍼레이터층의 표면의 외형과 부합하는 외형을 갖고, 세퍼레이터층의 표면의 외형은 세퍼레이터층 상의 제 1 캐소드층의 코팅 이전과 동일하다. 일 실시형태에 있어서, 제 1 캐소드층은 전기 활성 입자 및 전기적 도전성 입자로 구성되는 그룹으로부터 선택된 전극 입자를 포함하고, 전극 입자는 제 1 캐소드층에 인접한 세퍼레이터층에 존재하지 않는다. 일 실시형태에 있어서, 세퍼레이터/캐소드 어셈블리의 세퍼레이터층은 세퍼레이터 입자를 포함하고, 세퍼레이터 입자는 세퍼레이터층에 인접한 제 1 캐소드층에 존재하지 않는다. 일 실시형태에 있어서, 세퍼레이터/캐소드 어셈블리의 캐소드 전류 컬렉터층은 알루미늄층으로 이루어진다. 일 실시형태에 있어서, 알루미늄층의 두께는 3 미크론 미만이다.
본 발명의 리튬 배터리의 일 실시형태에 있어서, 애노드 전류 컬렉터층은 제 1 애노드층 상에 직접 코팅된다. 일 실시형태에 있어서, 세퍼레이터층에 인접한 제 1 애노드층의 표면은 제 1 애노드층에 인접한 세퍼레이터층의 표면의 외형과 부합하는 외형을 갖고, 세퍼레이터층의 표면의 외형은 세퍼레이터층 상의 제 1 애노드층의 코팅 이전과 동일하다. 일 실시형태에 있어서, 제 1 애노드층은 전기 활성 입자 및 전기적 도전성 입자로 구성되는 그룹으로부터 선택된 전극 입자를 포함하고, 전극 입자는 제 1 애노드층에 인접한 세퍼레이터층에 존재하지 않는다. 일 실시형태에 있어서, 세퍼레이터/애노드 어셈블리의 세퍼레이터층은 세퍼레이터 입자를 포함하고, 세퍼레이터 입자는 세퍼레이터층에 인접한 제 1 애노드층에 존재하지 않는다. 일 실시형태에 있어서, 세퍼레이터/애노드 어셈블리의 애노드 전류 컬렉터층은 구리층 및 니켈층으로 구성되는 그룹으로부터 선택된 금속층으로 이루어진다. 일 실시형태에 있어서, 금속층의 두께는 3 미크론 미만이다.
본 발명의 리튬 배터리의 일 실시형태에 있어서, 세퍼레이터/캐소드 어셈블리 및 세퍼레이터/애노드 어셈블리 양자의 세퍼레이터층은 0.2 미크론 미만 그리고 바람직하게는 0.1 미크론 미만의 기공 직경을 가진다. 일 실시형태에 있어서, 세퍼레이터/캐소드 어셈블리 및 세퍼레이터/애노드 어셈블리 양자의 세퍼레이터층은 0.2 미크론 미만 그리고 바람직하게는 0.1 미크론 미만의 평균 기공 직경을 갖는 기공을 포함한다. 일 실시형태에 있어서, 세퍼레이터/캐소드 어셈블리 및 세퍼레이터/애노드 어셈블리 양자의 세퍼레이터층은 9 미크론 미만 그리고 바람직하게는 6 미크론 미만의 두께를 가진다. 일 실시형태에 있어서, 세퍼레이터/캐소드 어셈블리 및 세퍼레이터/애노드 어셈블리 양자의 세퍼레이터층은 알루미늄 베마이트(aluminum boehmite)를 함유하는 다공성층으로 이루어진다.
본 발명의 다른 양태는 리튬 배터리에 관한 것으로, 상기 리튬 배터리는 (a) 제 1 캐소드층과 제 2 캐소드층 사이에 개재되는 캐소드 전류 컬렉터층 및 상기 캐소드 전류 컬렉터층에 반대의 측 상의 상기 제 1 캐소드층의 측 상의 다공성 세퍼레이터층을 포함하고, 상기 제 1 캐소드층은 상기 세퍼레이터층 상에 직접 코팅되는 세퍼레이터/캐소드 어셈블리, (b) 애노드층 및 상기 애노드층의 일측 상에 다공성 세퍼레이터층을 포함하고, 상기 애노드층은 상기 세퍼레이터층 상에 직접 코팅되는 세퍼레이터/애노드 어셈블리, 및 (c) 전해질을 포함하고, 상기 배터리는 상기 세퍼레이터/캐소드 어셈블리 및 상기 세퍼레이터/애노드 어셈블리의 교대층을 포함한다. 일 실시형태에 있어서, 애노드층은 리튬 금속으로 이루어진다. 일 실시형태에 있어서, 제 1 캐소드층 및 제 2 캐소드층은 화학식, Sx 2 -의 유황 또는 폴리설파이드(polysulfide)로 이루어지고, 여기서 x는 2 내지 8의 정수이다.
본 발명의 또 다른 양태는 리튬 배터리의 제조 방법에 관한 것으로, 상기 방법은 (a) 기판 상에 다공성 세퍼레이터층을 코팅하는 단계; (b) 상기 세퍼레이터층의 제 1 부분 상에 직접 제 1 캐소드층을 코팅하는 단계; (c) 상기 제 1 캐소드층 상에 직접 하나 이상의 캐소드 전류 컬렉터층을 코팅하는 단계; (d) 상기 하나 이상의 캐소드 전류 컬렉터층 상에 직접 제 2 캐소드층을 코팅하는 단계; (e) 상기 세퍼레이터층의 제 2 부분 상에 직접 제 1 애노드층을 코팅하는 단계; (f) 상기 제 1 애노드층 상에 직접 하나 이상의 애노드 전류 컬렉터층을 코팅하는 단계; 및 (g) 상기 하나 이상의 애노드 전류 컬렉터층 상에 직접 제 2 애노드층을 코팅하는 단계를 포함한다. 일 실시형태에 있어서, 단계 (g) 이후에, 세퍼레이터/캐소드 어셈블리 및 세퍼레이터/애노드 어셈블리를 만들기 위해 세페레이터층의 제 1 및 제 2 부분으로부터 기판을 박리하는 단계 (h)가 더 있다. 일 실시형태에 있어서, 단계 (h) 이후에, 세퍼레이터/전극 건전지를 형성하기 위해 상기 세퍼레이터/캐소드 어셈블리를 세퍼레이터/애노드 어셈블리와 인터리빙하는 단계 (i)가 더 있다. 일 실시형태에 있어서, 인터리빙하는 단계 이전에, 세퍼레이터/캐소드 어셈블리와 세퍼레이터/애노드 어셈블리는 시트 구성으로 되어 있다.
일 실시형태에 있어서, 단계 (i) 이후에, 세퍼레이터/캐소드 어셈블리의 부분은 세페레이터/애노드 어셈블리와 접촉하지 않고 세퍼레이터/애노드 어셈블리의 부분은 세퍼레이터/캐소드 어셈블리와 접촉하지 않고, 전기적 도전성 핀을 갖는 제 1 디바이스는 세퍼레이터/캐소드 어셈블리의 2개 이상의 부분을 전기 접속하고 전기적 도전성 핀을 갖는 제 2 디바이스는 세퍼레이터/애노드 어셈블리의 2개 이상의 부분을 전기 접속한다. 일 실시형태에 있어서, 상기 세퍼레이터/전극 건전지를 케이싱에 봉입하는 단계 (1) 및 전해질로 충전하고 시일링(sealing)하는 단계 (2)가 더 있다.
본 발명의 리튬 배터리 제조 방법의 일 실시형태에 있어서, 단계 (c)의 하나 이상의 캐소드 전류 컬렉터층 중 적어도 하나는 금속층으로 이루어지고 금속층의 두께는 3 미크론 미만이다. 일 실시형태에 있어서, 단계 (f)의 하나 이상의 애노드 전류 컬렉터층 중 적어도 하나는 금속층으로 이루어지고 금속층의 두께는 3 미크론 미만이다. 일 실시형태에 있어서, 세퍼레이터층은 0.2 미크론 미만 그리고 바람직하게는 0.1 미크론 미만의 기공 직경을 가진다. 일 실시형태에 있어서, 세퍼레이터층은 9 미크론 미만 그리고 바람직하게는 6 미크론 미만의 두께를 가진다.
본 발명의 리튬 배터리 및 리튬 배터리의 제조 방법은 보다 높은 에너지 및 전력 밀도를 갖는 그리고 낮은 제조 및 자본 설비 비용을 갖는 리튬 배터리에 대해 유연하고 효과적인 접근법을 제공한다.
본 발명을 예시할 목적으로 특정 배열 및 방법론이 도면에 나타나 있다. 그러나, 본 발명은 상세한 설명에 나타낸 정확한 배열 또는 상세한 설명의 방법론에 한정되지 않는다는 것을 이해하여야 한다.
도 1은 세퍼레이터/캐소드 어셈블리의 부분이 세퍼레이터/애노드 어셈블리와 접촉하지 않는 경우의 세퍼레이터/캐소드 어셈블리 및 세퍼레이터/애노드 어셈블리의 교대층의 단면도를 나타낸다.
도 2는 제 1 캐소드층과 제 2 캐소드층 사이에 개재되는 전류 컬렉터층을 갖는 그리고 제 1 캐소드층의 일측 상에 다공성 세퍼레이터층을 갖는 세퍼레이터/캐소드 어셈블리의 단면도를 나타낸다.
도 3은 제 1 애노드층과 제 2 애노드층 사이에 개재되는 전류 컬렉터층을 갖는 그리고 제 1 애노드층의 일측 상에 다공성 세퍼레이터층을 갖는 세퍼레이터/애노드 어셈블리의 단면도를 나타낸다.
도 4는 세퍼레이터/애노드 어셈블리와의 전기 접속을 행하지 않고 세퍼레이터/캐소드 어셈블리의 부분간에 전기 접속을 행하는 전기적 도전성 핀을 갖는 디바이스의 단면도를 나타낸다.
도 5는 세퍼레이터/애노드 어셈블리의 부분이 세퍼레이터/캐소드 어셈블리와 접촉하지 않는 경우의 세퍼레이터/캐소드 어셈블리 및 세퍼레이터/애노드 어셈블리의 교대층의 단면도를 나타낸다.
도 6은 세퍼레이터/캐소드 어셈블리와의 전기 접속을 행하지 않고 세퍼레이터/애노드 어셈블리의 부분간에 전기 접속을 행하는 전기적 도전성 핀을 갖는 디바이스의 단면도를 나타낸다.
도 7은 제 1 디바이스가, 도 4에 나타낸 바와 같이, 세퍼레이터/캐소드 어셈블리의 부분과, 그리고 도 1에 나타낸 바와 같이, 세퍼레이터/캐소드 어셈블리의 추가의 하나 이상의 하부 부분과 전기 접촉하는 경우와, 제 2 디바이스가, 도 6에 나타낸 바와 같이, 세퍼레이터/애노드 어셈블리의 부분과, 그리고 도 5에 나타낸 바와 같이, 세퍼레이터/애노드 어셈블리의 추가의 하나 이상의 하부 부분과 전기 접촉하는 경우의 교대층의 하향 시점도를 나타낸다.
도 8은 기판을 제거하기 위한 박리 단계 이전에 기판 상에 코팅되는 세퍼레이터/캐소드 어셈블리의 단면도를 나타낸다.
도 9는 기판을 제거하기 위한 박리 단계 이전에 기판 상에 코팅되는 세퍼레이터/애노드 어셈블리의 단면도를 나타낸다.
본 발명의 리튬 배터리 및 리튬 배터리의 제조 방법은 보다 높은 에너지 및 전력 밀도를 갖는 그리고 낮은 제조 및 자본 설비 비용을 갖는 리튬 배터리에 대해 유연하고 효과적인 접근법을 제공한다.
본 발명의 하나의 양태는 리튬 배터리에 관한 것으로, 상기 리튬 배터리는 (a) 제 1 캐소드층과 제 2 캐소드층 사이에 개재되는 캐소드 전류 컬렉터층 및 상기 캐소드 전류 컬렉터층에 반대의 상기 제 1 캐소드층의 측 상의 다공성 세퍼레이터층을 포함하고, 상기 제 1 캐소드층은 상기 세퍼레이터층 상에 직접 코팅되는 세퍼레이터/캐소드 어셈블리, (b) 제 1 애노드층과 제 2 애노드층 사이에 개재되는 애노드 전류 컬렉터층 및 상기 애노드 전류 컬렉터층에 반대의 상기 제 1 애노드층의 측 상의 다공성 세퍼레이터층을 포함하고, 상기 제 1 애노드층은 상기 세퍼레이터층 상에 직접 코팅되는 세퍼레이터/애노드 어셈블리; 및 (c) 전해질을 포함하고, 상기 배터리는 상기 세퍼레이터/캐소드 어셈블리 및 상기 세퍼레이터/애노드 어셈블리의 교대층을 포함한다. 일 실시형태에 있어서, 세퍼레이터/캐소드 어셈블리의 부분은 세퍼레이터/애노드 어셈블리와 접촉하지 않는다.
여기에 이용된 바와 같이, 용어 "배터리"는 단일 전기적 전류 생산 전지 및 케이싱 또는 팩에서 조합되는 다중 전기적 전류 생산 전지 양자에 관한 것이다. 여기에 이용된 바와 같이, 용어 "리튬 배터리"는 재충전 가능한 또는 2차의 리튬 이온 배터리, 재충전 불가능한 또는 1차의 리튬 배터리, 및 리튬-유황 배터리와 같은 다른 타입을 포함하지만, 여기에 한정되지 않는 관련 분야에 공지된 모든 타입의 리튬 배터리를 언급한다.
여기에 이용된 바와 같이, 용어 "전류 컬렉터층"은 전극층에 인접한 하나 이상의 전류 컬렉터층을 언급한다. 이것은 단일 도전성 금속층 또는 기판 및 카본 블랙 기반 폴리머 코팅층과 같은 상부 도전성 코팅을 갖는 단일 도전성 금속층 또는 기판을 포함하지만 여기에 한정되지 않는다. 전류 컬렉터로서의 도전성 금속 기판의 예는 양전극 또는 캐소드층에 대한 전류 컬렉터 및 기판으로서 통상적으로 이용되는 알루미늄으로 이루어진 금속 기판 및 음전극 또는 애노드층에 대한 전류 컬렉터 및 기판으로서 통상적으로 이용되는 구리로 이루어진 금속 기판이다. 세퍼레이터/캐소드 어셈블리 및 세퍼레이터/애노드 어셈블리 양자의 전류 컬렉터층은 금속 안료 또는 입자를 포함하는 전기적 도전성 금속, 카본 블랙 및 그라파이트 안료를 포함하는 전기적 도전성 카본, 및 전기적 도전성 폴리머로 구성되는 그룹으로부터 선택된 전기적 도전성 재료로 이루어질 수 있다. 상기 전기적 도전성 재료는 전류 컬렉터층을 형성하기 위해 추가되는 기계적 강도 및 유연성을 위해 유기 폴리머와 결합될 수 있다.
여기에 이용된 바와 같이, 용어 "전극층"은 전기 활성 재료로 이루어진 배터리의 층을 언급한다. 리튬이 1차 리튬 배터리인 경우 또는 재충전 가능한 리튬 배터리인 경우에, 전극층이 배터리의 충전시 동안 형성되고, 배터리의 방전시 동안 리튬 이온으로 산화될 때, 전극층은 애노드 또는 음전극층으로 불린다. 반대의 극성의 다른 전극은 캐소드 또는 양전극층으로 불린다. 리튬 배터리에 유용한 어떤 전기 활성 재료도 본 발명의 리튬 배터리에 대한 전극층에서 이용될 수 있다. 일례는 캐소드층에서의 전기 활성 재료로서 리튬 코발트 산화물, 리튬 망간 산화물, 리튬 철 인산염, 및 유황을 포함하고, 애노드층에서의 전기 활성 재료로서 리튬 티타네이트, 리튬-인터칼레이티드 카본(lithium-intercalated carbon), 리튬-인터칼레이티드 그라파이트, 및 리튬 금속을 포함하지만, 여기에 한정되지 않는다.
여기에 사용된 바와 같이, 용어 "전해질"은 리튬 배터리에 유용한 어떠한 전해질도 언급한다. 적합한 전해질은 액체 전해질, 겔 폴리머 전해질, 및 고체 폴리머 전해질을 포함하지만, 여기에 한정되지 않는다. 적합한 액체 전해질은 예컨대, 에틸렌 카보네이트, 프로필렌 카보네이트, 및 에틸 메틸 카보네이트의 혼합물과 같은 유기 용매의 혼합물에서의 LiPF6 용액을 포함하지만, 여기에 한정되지 않는다.
도 1은 세퍼레이터/캐소드 어셈블리(10)의 부분(12)이 세퍼레이터/애노드 어셈블리(20)와 접촉하지 않는 경우의 세퍼레이터/캐소드 어셈블리(10) 및 세퍼레이터/애노드 어셈블리(20)의 교대층의 단면도(축척 없음)의 일례를 나타낸다. 예컨대, 세퍼레이터/캐소드 어셈블리의 부분이 세퍼레이터/애노드 어셈블리의 어떤 상부 또는 하부층도 가지지 않는 것과 같이, 세퍼레이터/애노드 어셈블리와 접촉하지 않는 세퍼레이터/캐소드 어셈블리의 부분을 갖기 위한 하나의 목적은, 개별의 캐소드 전류 컬렉터층이 리튬 배터리의 보다 효율적인 동작을 위해 서로 간에 직접 전기 접속될 수 있는 세퍼레이터/캐소드 어셈블리의 영역에 대해 제공하는 것이다.
도 2는 제 1 캐소드층(16)과 제 2 캐소드층(17) 사이에 개재되는 캐소드 전류 컬렉터층(14)을 갖는 그리고 제 1 캐소드층(16)의 일측 상에 세퍼레이터층(18)을 갖는 본 발명의 세퍼레이터/캐소드 어셈블리(10)의 단면도(축척 없음)의 일례를 나타낸다. 도 3은 제 1 애노드층(26)과 제 2 애노드층(27) 사이에 개재되는 애노드 전류 컬렉터층(24)을 갖는 그리고 제 1 애노드층(26)의 일측 상에 세퍼레이터층(28)을 갖는 본 발명의 세퍼레이터/애노드 어셈블리(20)의 단면도(축척 없음)의 일례를 나타낸다.
본 발명의 리튬 배터리의 일 실시형태에 있어서, 세퍼레이터/애노드 어셈블리와 접촉하지 않는 세퍼레이터/캐소드 어셈블리의 부분은 세퍼레이터/애노드 어셈블리와 접촉하지 않는 세퍼레이터/캐소드 어셈블리의 추가의 하나 이상의 부분과 접촉한다. 일 실시형태에 있어서, 전기적 도전성 핀을 갖는 디바이스는 세퍼레이터/캐소드 어셈블리의 부분 및 세퍼레이터/캐소드 어셈블리의 추가의 하나 이상의 부분과 전기 접촉하고 세퍼레이터/애노드 어셈블리와 전기 접촉하지 않는다.
여기에 사용된 바와 같이, 용어 "전기적 도전성 핀을 갖는 디바이스" 및 "전기적 도전성 핀"은 세퍼레이터/캐소드 어셈블리의 2개 이상의 부분 또는 세퍼레이터/애노드 어셈블리의 2개 이상의 부분과 전기 접속하는 어떤 기계적 구성도 언급한다. 일례는 금속핀, 금속 로드, 다중층을 통해 관통하는 금속 돌출부를 갖는 또는 갖고 있지 않은 금속 클램프, 및 금속 스크류, 그리고 상기 금속 단부 접속 및 외부 전기 접속 재료들을 적소에 위치시키고 고정시키기 위한 설계 또는 개구부를 갖는 케이싱의 어떤 부분과도 결합되는 상기 금속 부분들을 포함하지만 이에 한정되지 않는다. 금속은 니켈일 수 있거나, 특정 전극층, 전류 컬렉터층, 및 전해질과 융화성(compatible) 있고 안정된 어떤 다른 전기적 도전성 금속 또는 비금속 재료일 수 있다.
도 4는 세퍼레이터/애노드 어셈블리(20)와의 전기 접속을 행하지 않고 세퍼레이터/캐소드 어셈블리(10)의 2개 이상의 부분들(12)간에 전기 접속을 행하는 전기적 도전성 핀(32)을 갖는 디바이스(30)의 단면도(축척 없음)의 일례를 나타낸다. 전기적 도전성 핀(32)은 바람직하게는 디바이스(30)에서의 개구부 또는 구멍을 통해 위치되고, 삽입되고, 개구부 또는 구멍에 의해 제 위치에 고정된다. 전기적 도전성 핀이 없는 디바이스(30)의 부분은 배터리의 케이싱으로 선택적으로 통합되는 비도전성 플라스틱 재료일 수 있고, 또는 대안으로 외부 회로로 배터리의 전기 접속을 행하는 것에 유용한 플라스틱 재료 내의 금속 또는 금속 입자와 같은 전기적 도전성 재료일 수 있다.
본 발명의 리튬 배터리의 일 실시형태에 있어서, 세퍼레이터/애노드 어셈블리의 부분은 세퍼레이터/캐소드 어셈블리와 접촉하지 않는다. 도 5는 세퍼레이터/애노드 어셈블리(20)의 부분(22)이 세퍼레이터/캐소드 어셈블리(10)와 접촉하지 않는 경우의 세퍼레이터/캐소드 어셈블리(10) 및 세퍼레이터/애노드 어셈블리(20)의 교대층의 단면도(축척 없음)의 일례를 나타낸다. 세퍼레이터/캐소드 어셈블리에 대해 상술한 바와 마찬가지로, 예컨대, 세퍼레이터/애노드 어셈블리의 부분이 세퍼레이터/캐소드 어셈블리의 어떤 상부 또는 하부층도 가지지 않는 것과 같이, 세퍼레이터/캐소드 어셈블리와 접촉하지 않는 세퍼레이터/애노드 어셈블리의 부분을 갖기 위한 하나의 목적은, 개별의 전류 컬렉터층이 리튬 배터리의 보다 효율적인 동작을 위해 서로 간에 직접 전기 접속될 수 있는 세퍼레이터/애노드 어셈블리의 영역에 대해 제공하는 것이다. 일 실시형태에 있어서, 세퍼레이터/캐소드 어셈블리와 접촉하지 않는 세퍼레이터/애노드 어셈블리의 부분은 세퍼레이터/캐소드 어셈블리와 접촉하지 않는 세퍼레이터/애노드 어셈블리의 하나 이상의 부분과 접촉한다. 일 실시형태에 있어서, 전기적 도전성 핀을 갖는 디바이스는 세퍼레이터/애노드 어셈블리의 부분 및 세퍼레이터/애노드 어셈블리의 추가의 하나 이상의 부분과 전기 접촉하고 세퍼레이터/캐소드 어셈블리와 전기 접촉하지 않는다. 도 6은 세퍼레이터/캐소드 어셈블리(10)와의 전기 접속을 행하지 않고 세퍼레이터/애노드 어셈블리(20)의 부분(22)간에 전기 접속을 행하는 전기적 도전성 핀(42)을 갖는 디바이스(40)의 단면도(축척 없음)의 일례를 나타낸다. 전기적 도전성 핀(42)은 바람직하게는 디바이스(40)의 개구부 또는 구멍을 통해 위치되고, 삽입되고, 개구부 또는 구멍에 의해 제 위치에 고정된다. 전기적 도전성 핀이 없는 디바이스(40)의 부분은 배터리의 케이싱으로 선택적으로 통합되는 비도전성 플라스틱 재료일 수 있고, 또는 대안으로 외부 회로로 배터리의 전기 접속을 행하는 것에 유용한 플라스틱 재료 내의 금속 또는 금속 입자와 같은 전기적 도전성 재료일 수 있다. 일 실시형태에 있어서, 세퍼레이터/애노드 어셈블리와 접촉하지 않는 세퍼레이터/캐소드 어셈블리의 부분은 세퍼레이터/애노드 어셈블리와 접촉하지 않는 세퍼레이터/캐소드 어셈블리의 추가의 하나 이상의 부분과 접촉한다. 일 실시형태에 있어서, 전기적 도전성 핀을 갖는 디바이스는 세퍼레이터/캐소드 어셈블리의 부분 및 세퍼레이터/캐소드 어셈블리의 추가의 하나 이상의 부분과 전기 접촉하고 세퍼레이터/애노드 어셈블리와 전기 접촉하지 않는다. 도 7은 디바이스(30)가, 도 4에 나타낸 바와 같이, 세퍼레이터/캐소드 어셈블리(10)의 부분(12)과, 그리고 도 1에 나타낸 바와 같이, 세퍼레이터/캐소드 어셈블리(10)의 추가의 하나 이상의 하부 부분(12)과 전기 접촉하는 경우와, 디바이스(40)가, 도 6에 나타낸 바와 같이, 세퍼레이터/애노드 어셈블리(20)의 부분(22)과, 그리고 도 5에 나타낸 바와 같이, 세퍼레이터/애노드 어셈블리(20)의 추가의 하나 이상의 하부 부분(22)과 전기 접촉하는 경우의 교대층의 하향 시점도(축척 없음)의 일례를 나타낸다.
본 발명의 리튬 배터리의 일 실시형태에 있어서, 캐소드 전류 컬렉터층은 제 1 캐소드층 상에 직접 코팅된다. 일 실시형태에 있어서, 제 2 캐소드층은 제 1 캐소드 전류 컬렉터층 상에 직접 코팅된다. 일 실시형태에 있어서, 세퍼레이터층에 인접한 제 1 캐소드층의 표면은 제 1 캐소드층에 인접한 세퍼레이터층의 표면의 외형과 부합하는 외형을 갖고, 세퍼레이터층의 표면의 외형은 세퍼레이터층 상의 제 1 캐소드층의 코팅 이전과 동일하다. 일 실시형태에 있어서, 제 1 캐소드층은 전기 활성 입자 및 전기적 도전성 입자로 구성되는 그룹으로부터 선택된 전극 입자를 포함하고, 전극 입자는 제 1 캐소드층에 인접한 세퍼레이터층에 존재하지 않는다. 일 실시형태에 있어서, 세퍼레이터/캐소드 어셈블리의 세퍼레이터층은 세퍼레이터 입자를 포함하고, 세퍼레이터 입자는 세퍼레이터층에 인접한 제 1 캐소드층에 존재하지 않는다. 일 실시형태에 있어서, 세퍼레이터/캐소드 어셈블리의 캐소드 전류 컬렉터층은 알루미늄층으로 이루어진다. 일 실시형태에 있어서, 알루미늄층의 두께는 3 미크론 미만이다.
본 발명의 리튬 배터리의 일 실시형태에 있어서, 애노드 전류 컬렉터층은 제 1 애노드층 상에 직접 코팅된다. 일 실시형태에 있어서, 제 2 애노드층은 애노드 전류 컬렉터층 상에 직접 코팅된다. 일 실시형태에 있어서, 세퍼레이터층에 인접한 제 1 애노드층의 표면은 제 1 애노드층에 인접한 세퍼레이터층의 표면의 외형과 부합하는 외형을 갖고, 세퍼레이터층의 표면의 외형은 세퍼레이터층 상의 제 1 애노드층의 코팅 이전과 동일하다. 일 실시형태에 있어서, 제 1 애노드층은 전기 활성 입자 및 전기적 도전성 입자로 구성되는 그룹으로부터 선택된 전극 입자를 포함하고, 전극 입자는 제 1 애노드층에 인접한 세퍼레이터층에 존재하지 않는다. 일 실시형태에 있어서, 세퍼레이터/애노드 어셈블리의 세퍼레이터층은 세퍼레이터 입자를 포함하고, 세퍼레이터 입자는 세퍼레이터층에 인접한 제 1 애노드층에 존재하지 않는다. 일 실시형태에 있어서, 세퍼레이터/애노드 어셈블리의 애노드 전류 컬렉터층은 구리층 및 니켈층으로 구성되는 그룹으로부터 선택된 금속층으로 이루어진다. 일 실시형태에 있어서, 금속층의 두께는 3 미크론 미만이다.
본 발명의 리튬 배터리의 캐소드 전류 컬렉터층 및 애노드 전류 컬렉터층의 일 실시형태에 있어서, 전류 컬렉터층은 전기적 도전성 금속, 전기적 도전성 카본, 및 전기적 도전성 폴리머로 구성되는 그룹으로부터 선택된 전기적 도전성 재료로 이루어진다. 일 실시형태에 있어서, 전류 컬렉터층은 제 1 캐소드 또는 제 1 애노드층 상에 직접 코팅된 2개 이상의 층을 포함하고 상기 2개 이상의 층 중 적어도 하나는 카본을 함유하는 전기적 도전성 재료로 이루어진다. 일 실시형태에 있어서, 전류 컬렉터층의 두께는 3 미크론 미만이다.
본 발명의 리튬 배터리의 일 실시형태에 있어서, 세퍼레이터/캐소드 어셈블리 및 세퍼레이터/애노드 어셈블리 양자의 세퍼레이터층은 0.2 미크론 미만 그리고 바람직하게는 0.1 미크론 미만의 기공 직경을 가진다. 일 실시형태에 있어서, 세퍼레이터/캐소드 어셈블리 및 세퍼레이터/애노드 어셈블리 양자의 세퍼레이터층은 0.2 미크론 미만 그리고 바람직하게는 0.1 미크론 미만의 평균 기공 직경을 갖는 기공을 포함한다. 일 실시형태에 있어서, 세퍼레이터/캐소드 어셈블리 및 세퍼레이터/애노드 어셈블리 양자의 세퍼레이터층은 9 미크론 미만 그리고 바람직하게는 6 미크론 미만의 두께를 가진다. 일 실시형태에 있어서, 세퍼레이터층은 크세로겔층(xerogel layer) 및 크세로겔 멤브레인(xerogel membrane)으로 이루어지는 다공성층을 포함하고, 알루미늄 베마이트로 이루어지는 다공성층을 포함하지만 여기에 한정되지 않는다. 일 실시형태에 있어서, 세퍼레이터/캐소드 어셈블리 및 세퍼레이터/애노드 어셈블리 양자의 세퍼레이터층은 예컨대, 알루미늄 산화물 및 알루미늄 베마이트와 같은 무기 산화물 입자; 무기 질화물 입자; 무기 탄산염 입자; 무기 황산염 입자; 및 폴리올레핀 비드(polyolefin bead) 또는 플루오르폴리머 비드와 같은 폴리머 입자로 구성되는 그룹으로부터 선택된 세퍼레이터 입자를 포함한다.
여기에 사용된 바와 같이, 용어 "크세로겔층"에 관해서는, 고체 겔 재료를 형성하기 위해 콜로이드 졸 액을 건조시키는 크세로겔 또는 졸 겔 프로세스에 의해 형성된 다공성층을 의미한다. 여기에 사용된 바와 같이, 용어 "크세로겔 멤브레인"에 관해서는, 크세로겔층의 기공이 층의 일측으로부터 층의 타측으로 지속하는 적어도 하나의 크세로겔층을 포함하는 멤브레인을 의미한다. 크세로겔층 및 멤브레인은 통상적으로 졸 겔 재료로서 산화 알루미늄, 알루미늄 베마이트, 및 산화 지르코늄과 같은 무기 산화 재료로 이루어진다. 본 발명에 대한 적합한 크세로겔 멤브레인의 일례는 칼슨(Carlson) 등에게 허여된 미국 특허 제 6,153,337 호 및 제 6,306,545 호 공보와, 칼슨에 허여된 미국 특허 제 6,488,721 호 및 제 6,497,780 호 공보에서 설명된 크세로겔 멤브레인을 포함하나 여기에 한정되지 않는다.
본 발명의 다른 양태는 리튬 배터리에 관한 것으로, 상기 리튬 배터리는 (a) 제 1 캐소드층과 제 2 캐소드층 사이에 개재되는 캐소드 전류 컬렉터층 및 상기 캐소드 전류 컬렉터층에 반대의 측 상의 상기 제 1 캐소드층의 측 상의 다공성 세퍼레이터층을 포함하고, 상기 제 1 캐소드층은 상기 세퍼레이터층 상에 직접 코팅되는 세퍼레이터/캐소드 어셈블리, (b) 애노드층 및 상기 애노드층의 일측 상에 다공성 세퍼레이터층을 포함하고, 상기 애노드층은 상기 세퍼레이터층 상에 직접 코팅되는 세퍼레이터/애노드 어셈블리, 및 (c) 전해질을 포함하고, 상기 배터리는 상기 세퍼레이터/캐소드 어셈블리 및 상기 세퍼레이터/애노드 어셈블리의 교대층을 포함한다. 일 실시형태에 있어서, 애노드층은 리튬 금속으로 이루어진다. 예컨대, 매우 큰 전기적 도전성이 있고 높은 함량의 리튬, 또는 리튬이나 다른 전기 활성 애노드 금속의 합금, 또는 금속 합금을 함유하는 것들과 같은 몇몇 애노드층에 대해, 애노드 전류 컬렉터층은 요구되지 않을 수 있다. 상기 경우에서, 애노드 전류 컬렉터층을 코팅하는 단계 및 제 2 애노드 층을 코팅하는 단계는 제거될 수 있고, 제 1 애노드층은 다공성 세퍼레이터층 상에 직접 코팅될 수 있다. 제 1 애노드층의 상기 코팅은 애노드층의 리튬 또는 다른 금속 조성물의 기상 증착일 수 있거나 리튬 배터리에 대한 금속 애노드층의 관련 분야에 공지된 어떤 다른 방법에 의한 코팅 또는 증착일 수 있다. 일 실시형태에 있어서, 제 1 및 제 2 캐소드층은 화학식, Sx 2 -의 유황 또는 폴리설파이드로 이루어지고, 여기서 x는 2 내지 8의 정수이다. 애노드 전류 컬렉터층 및 제 2 애노드층을 요구하지 않을 수 있는 리튬 배터리의 일례는 애노드가 통상적으로 리튬 금속의 층인 리튬-유황 배터리를 포함한다. 추가의 배터리층이 리튬 또는 다른 금속 애노드층의 일측 또는 양측 상에 코팅될 필요가 없다면, 상기 층은 세퍼레이터층 상에 또는 금속 애노드층 상에 직접 추가의 코팅 단계에서 코팅될 수 있다.
본 발명의 또 다른 양태는 리튬 배터리의 제조 방법에 관한 것으로, 상기 방법은 (a) 기판 상에 다공성 세퍼레이터층을 코팅하는 단계; (b) 상기 세퍼레이터층의 제 1 부분 상에 직접 제 1 캐소드층을 코팅하는 단계; (c) 상기 제 1 캐소드층 상에 직접 하나 이상의 캐소드 전류 컬렉터층을 코팅하는 단계; (d) 상기 하나 이상의 캐소드 전류 컬렉터층 상에 직접 제 2 캐소드층을 코팅하는 단계; (e) 상기 세퍼레이터층의 제 2 부분 상에 직접 제 1 애노드층을 코팅하는 단계; (f) 상기 제 1 애노드층 상에 직접 하나 이상의 애노드 전류 컬렉터층을 코팅하는 단계; 및 (g) 상기 하나 이상의 애노드 전류 컬렉터층 상에 직접 제 2 애노드층을 코팅하는 단계를 포함한다. 일 실시형태에 있어서, 단계 (g) 이후에, 세퍼레이터/캐소드 어셈블리 및 세퍼레이터/애노드 어셈블리를 만들기 위해 세페레이터층의 제 1 및 제 2 부분으로부터 기판을 박리하는 단계 (h)가 더 있다. 일 실시형태에 있어서, 단계 (h) 이후에, 세퍼레이터/전극 건전지를 형성하기 위해 상기 세퍼레이터/캐소드 어셈블리를 세퍼레이터/애노드 어셈블리와 인터리빙하는 단계 (i)가 더 있다. 일 실시형태에 있어서, 인터리빙하는 단계 이전에, 세퍼레이터/캐소드 어셈블리와 세퍼레이터/애노드 어셈블리는 시트 구성으로 있다.
본 발명의 리튬 배터리 제조 방법의 일 실시형태에 있어서, 단계 (a)는 다공성 세퍼레이터층을 제공하는 단계이다. 일 실시형태에 있어서, 단계 (a)는 기판 상에 다공성 세퍼레이터층을 코팅하는 단계로 이루어진다. 일 실시형태에 있어서, 기판은 릴리스 기판(release substrate)이고, 상기 단계 (d) 후에, 세퍼레이터/캐소드 어셈블리 및 세퍼레이터/애노드 어셈블리 양자를 형성하기 위해 세퍼레이터층으로부터 기판을 박리하는 단계가 더 있다. 일 실시형태에 있어서, 단계 (a)의 기판은 다공성 기판이고, 여기서 다공성 세퍼레이터층은 다공성 기판 상에 직접 코팅된다. 일 실시형태에 있어서, 다공성 기판은 다공성 폴리머 필름 및 다공성 부직(不織)의 폴리머 섬유 기판으로 구성되는 그룹으로부터 선택된다. 다공성 기판의 예는 예컨대, Polypore, Inc., Charlotte, NC.에 의해 CELGARD의 상표명 하에서 판매되는 것과 같은 다공성 폴리에틸렌 필름 및 다공성 폴리프로필렌 필름을 포함하지만 여기에 한정되지 않는다. 세퍼레이터의 전체 두께를 최소화하기 위해, 다공성 기판은 5 내지 12 미크론의 두께일 수 있고 다공성 기판 상에 코팅되는 다공성 세퍼레이터층은 2 내지 10 미크론의 두께일 수 있다. 다공성 기판이 독립적 필름으로서 또는 일시적인 릴리스 라이너(release liner)의 이용에 의해 코팅 장비상에서 취급되기에 충분한 기계적 강도를 갖고 리튬 배터리 세퍼레이터에 필요한 특성을 가진다면, 다공성 기판이 배터리의 층이 되고 세퍼레이터로서 기능하기 때문에 단계 (a)에서의 다공성 기판의 이용은 후의 박리 단계에 대한 필요를 없앤다. 다공성 기판 상에 직접 코팅되는 다공성 세퍼레이터층은 그것상에 직접 코팅되는 전극층의 어떤 입자의 관통도 방지하는 매우 작은 기공의 층을 제공하는 부가적 편의 및 200℃ 이상에서 치수 안정성을 갖는 보다 안전하고 보다 내열의 세퍼레이터를 제공하는 추가되는 편의를 가진다.
본 발명의 적합한 세퍼레이터 코팅의 예는 칼슨(Carlson) 등에 허여된 미국 특허 제 6,153,337 호 및 제 6,306,545 호 공보와, 칼슨에 허여된 미국 특허 제 6,488,721 호 및 제 6,497,780 호 공보에서 설명된 세퍼레이터 코팅을 포함하지만, 여기에 한정되지 않는다. 상기 세퍼레이터 코팅은 예컨대, 실리콘-처리된 플라스틱 및 페이퍼 기판, 폴리에스테르 필름 기판, 폴리올레핀-코팅된 페이퍼, 금속 기판, 다공성 폴리올레핀 필름, 및 다공성 부직의 폴리머 섬유 기판과 같은 다양한 기판 상에 수성 혼합물 또는 용매 혼합물로 코팅될 수 있다. 본 발명에 대한 기판 상에 세퍼레이터를 코팅하는 것의 이점은 (a) 리튬 배터리의 다른 층이 상기 세퍼레이터 코팅층 상부에 코팅되거나 적층될 수 있고 그 후 배터리층의 건조한 스택을 제공하기 위해 박리함으로써 기판이 제거될 수 있다는 점, (b) 세퍼레이터에 대한 압출 프로세스로부터 통상적으로 유용한 것보다 보다 얇은 세퍼레이터를 만들도록 세퍼레이터에 대한 코팅 프로세스를 적합하게 할 수 있다는 점, 및 (c) 코팅된 세퍼레이터층이 전극 및 다른 상부의 코팅층의 입자의 세퍼레이터층으로의 어떤 관통도 허용하지 않도록 너무 작은 0.1 미크론 미만의 기공 직경을 갖는 나노다공성일 수 있다는 점을 포함하지만 여기에 한정되지 않는다. 0.2 미크론까지의 기공 직경을 갖는 세퍼레이터층일지라도 리튬 배터리에 통상적으로 이용되는 것과 같은 카본 블랙 안료의 어떤 입자의 세퍼레이터층으로의 관통도 방지한다는 것을 알게 되었다.
전극 코팅층은 반대의 극성의 전류 컬렉터층 및 전극의 어떤 층을 전기 접촉하는 것에 기인하여 단락 회로를 가지는 것 없이 각 전극의 층으로부터 전류 수집을 하기 위하여 구체적 접근 및 최종 사용의 요구 사항에 따라, 세퍼레이터층의 전체 표면상에, 또는 세퍼레이터층 상에서 레인(lane) 또는 스트립(strip)으로, 또는 세퍼레이터층 상에서 패치 또는 직사각형 형상으로 코팅될 수 있다. 캐소드 코팅층은 N-메틸 피롤리돈(NMP : N-methyl pyrrolidone)과 같은 유기 용매를 함유하는 안료 분산으로 통상적으로 코팅되고, 안료 형태에서의 전기 활성 또는 캐소드 활성 재료, 도전성 카본 안료, 및 유기 폴리머를 함유한다. 애노드 코팅층은 유기 용매 또는 수분을 함유하는 안료 분산으로 통상적으로 코팅되고, 안료 형태에서의 전기 활성 또는 애노드 활성 재료, 도전성 카본 안료, 및 유기 폴리머를 함유한다. 상기 전극 안료는 통상적으로 0.1 미크론보다 크고 흔히 0.5 내지 5 미크론 범위의 직경을 갖는 입자이다.
그러나, 캐소드 및 애노드층 양자는 세퍼레이터/전극 어셈블리에서 코팅되고 상기 어셈블리는 세퍼레이터/전극 건전지를 형성하도록 조합될 수 있다. 상기 경우에서, 본 발명에서 설명한 바와 같이, 세퍼레이터층은 캐소드 및 애노드층 사이에서 "이중 세퍼레이터"층을 부여하기 위해 모든 전극층에 존재할 수 있거나, 또는 대안으로, 세퍼레이터/전극 어셈블리의 하나의 전극측에만 존재할 수 있다.
전류 컬렉터층에 대해, 대안으로, 리튬 배터리의 관련 분야에 공지된 바와 같은 카본 안료 코팅과 같은 도전성 비금속층은 향상된 전류 수집 및 배터리 효율 뿐만 아니라, 몇몇 추가되는 기계적 강도 및 유연성 제공을 이루기 위하여 금속 전류 컬렉터층의 증착 전에 그리고/또는 후에 코팅될 수 있다. 금속 전류 컬렉터층은 리튬 배터리에 이용되는 통상적으로 10 내지 12 미크론 두께의 금속 기판보다 훨씬 얇을 수 있다. 예컨대, 금속 전류 컬렉터는 3 미크론 미만의 두께를 가질 수 있고, 0.5 내지 1.5 미크론 두께의 범위에서와 같은 약 1 미크론만큼 얇을 수 있다. 이것은 리튬 배터리로의 전기 활성 재료의 더 높은 비율을 허용하고, 이로써 리튬 배터리의 에너지 및 전력 밀도를 향상시킨다. 금속 전류 컬렉터층은 알루미늄층의 경우에서 진공 증착에 의해서와 같은 관련 분야에 공지된 어떤 금속 증착 방법에 의해서도 증착될 수 있다.
도 8은 단계 (a)-(d) 후에 기판(52) 상에 직접 코팅되는 세퍼레이터/캐소드 어셈블리(50)의 단면도(축척 없음)의 일례를 나타낸다. 세퍼레이터/캐소드 어셈블리(50)는 세퍼레이터층(18), 제 1 캐소드층(16), 제 2 캐소드층(17), 및 캐소드 전류 컬렉터층(14)을 포함한다. 도 9는 단계 (a) 및 (e)-(g) 후에 기판(52) 상에 직접 코팅되는 세퍼레이터/애노드 어셈블리(60)의 단면도(축척 없음)의 일례를 나타낸다. 세퍼레이터/애노드 어셈블리(50)는 세퍼레이터층(28), 제 1 애노드층(26), 제 2 애노드층(27), 및 애노드 전류 컬렉터층(24)을 포함한다.
인접한 세퍼레이터층(18)으로부터 도 8의 기판(52)을 박리하는 것은 예를 들어, 도 2에 도시된 바와 같은 세퍼레이터/캐소드 어셈블리로 귀착된다. 인접한 세퍼레이터층(28)으로부터 도 9의 기판(52)을 박리하는 것은 예를 들어, 도 3에 도시된 바와 같은 세퍼레이터/애노드 어셈블리로 귀착된다.
세퍼레이터/캐소드 어셈블리 및 세퍼레이터/애노드 어셈블리는 반대의 극성의 전극을 갖는 상부 및 하부층에서 자유롭고 따라서 동일한 극성의 다중 전극 및 전류 컬렉터층의 전류 수집을 위한 구성이 되는 세퍼레이터/캐소드 어셈블리의 그리고 세퍼레이터/애노드 어셈블리의 부분을 갖는 배터리 건전지를 만들기 위해 그들을 인터리빙하기 이전에 더 좁은 폭으로 슬릿(slit)화되고 소망의 형상으로 시트(sheet)화될 수 있다. 또한, 세퍼레이터/캐소드 어셈블리 및 세퍼레이터/애노드 어셈블리는 서로 간에 다른 폭 및 단부 오프셋의 플라스틱 세퍼레이터, 캐소드, 플라스틱 세퍼레이터, 및 애노드 스트립을 함께 와인딩함으로써 원통형 리튬 배터리를 제조함에 있어서 행해지는 것과 유사하게 서로 간에 그들을 오프셋함으로써 더 좁은 폭으로 슬릿화 되고 인터리빙될 수 있다. 예컨대, 금속 태빙(tabbing) 및 기상 증착 금속 에지와 같은 리튬 배터리의 관련 분야에 공지된 에지 접속의 어떤 방법도 본 발명의 리튬 배터리에 또한 이용될 수 있다. 또한, 전기적 절연 재료가 반대의 극성의 전극 및 전류 컬렉터층에 의한 어떠한 단락 회로에 대한 추가의 보호를 제공하기 위해 세퍼레이터/캐소드 어셈블리 또는 세퍼레이터/애노드 어셈블리의 단부 상에 증착될 수 있다.
일 실시형태에 있어서, 단계 (i) 이후에, 세퍼레이터/캐소드 어셈블리의 부분은 세페레이터/애노드 어셈블리와 접촉하지 않고 세퍼레이터/애노드 어셈블리의 부분은 세퍼레이터/캐소드 어셈블리와 접촉하지 않고, 여기서 전기적 도전성 핀을 갖는 제 1 디바이스는 세퍼레이터/캐소드 어셈블리의 2개 이상의 부분을 전기 접속하고 전기적 도전성 핀을 갖는 제 2 디바이스는 세퍼레이터/애노드 어셈블리의 2개 이상의 부분을 전기 접속한다. 결과적인 전극/세퍼레이터 건전지의 일례를 도 7에 나타낸다. 일 실시형태에 있어서, 상기 세퍼레이터/전극 건전지를 케이싱에 봉입하는 단계 (1) 및 전해질로 충전하고 시일링하는 단계 (2)가 더 있다. 적합한 케이싱 재료 및 방법 및 전해질 충전 및 시일링 방법은 리튬 배터리의 관련 분야에 공지된 것들을 포함한다. 케이싱은 전해질의 누설을 방지하는 것과 추가의 기계적 보호를 제공하는 것을 돕는다. 전해질 충전 및 시일링은 배터리 건전지를 충전-방전 사이클링 및 소비자 이용에 준비가 된 "습식" 리튬 배터리로 변환한다.
본 발명의 리튬 배터리 및 리튬 배터리 제조 방법을 위한 케이싱은 인터리빙 단계에서의 세퍼레이터/캐소드 어셈블리 및 세퍼레이터/애노드 어셈블리의 위치 선정 및 정렬에 유용하도록 그리고 전기적 도전성 핀을 갖는 디바이스의 위치 선정 및 배치에 또한 유용하도록 설계될 수 있다. 예컨대, 편평형 배터리를 제조하는 하나의 접근법에 있어서, 케이싱의 저면 및 저면에 부착된 4개의 코너 포스트(corner post)는 4개의 코너 포스트 중 2개 사이에 위치되는 각 단부 상에 약 4 내지 10㎜의 각각 어셈블리의 근소한 오버랩을 갖고 서로가 직각으로 인터리빙된 세퍼레이터/캐소드 어셈블리 및 세퍼레이터/애노드 어셈블리를 적소에 위치 지정하고 고정할 수 있다. 도 7을 참조하면, 상기 4개의 코너 포스트는 인터리빙 단계 동안 그리고 전기적 도전성 핀을 갖는 디바이스와의 단부 접속 이전에 시트를 적소에 위치 지정하고 고정하기 위해 하향 시점도의 4개의 코너에 위치될 수 있다. 배터리 제작을 완료하기 위해, 예컨대 케이싱의 최상단은 그 후 저면 케이싱의 단부에서의 개구부 또는 구멍과 정렬되는 최상단 케이싱의 단부에서의 개구부를 갖고 4개의 코너 포스트에 부착되고 전기적 도전성 핀을 갖는 특정 디바이스를 받아들이도록 위치될 수 있다. 단부 상에 전기 접속을 한 후, 케이싱의 4개의 측부의 나머지는 그 후 케이싱에 부착될 수 있다. 편평형 배터리에 대한 케이싱의 상기 측부는 약 100 내지 200㎜와 같은 각 측부의 폭과 비교하여, 10㎜ 미만과 같이 높이가 매우 짧을 것이다. 케이싱은 측부들 중 하나에, 바람직하게는 케이싱의 최상단에 개구부로서의 전해질에 대한 충전 구멍을 가질 수 있다. 전해질의 충전 후 상기 충전 구멍은 소비자 사용 이전에 조성 사이클링 및 테스트에 준비가 된 "습식" 배터리를 제공하기 위해 시일링된다.
케이싱은 배터리의 외부 회로에 대해 전기 접속을 위한 경로를 또한 제공한다. 이것은 리튬 배터리 및 그것의 케이싱의 관련 분야에 공지된 다양한 방식으로 행해질 수 있다. 예컨대, 케이싱은 하나의 전극 접속으로서 알루미늄과 같은 금속, 및 다른 전극 접속으로서 케이싱의 외측 상에 외부 회로 접속을 위해 액세스 가능할 수 있는 금속 케이싱으로부터 전기 절연되는 금속 핀으로 이루어질 수 있다. 또한, 예컨대 케이싱은 각각의 전극에 대해 케이싱의 외측 상에 액세스 가능할 수 있는 전기적 도전성 핀을 갖는 디바이스 및 플라스틱일 수 있다. 단부 접속의 많은 다른 변형이 이용가능하다. 예컨대, 편평형 배터리에 대한 각 세퍼레이터/전극 어셈블리에 대한 단부 접속은 각 세퍼레이터/전극 어셈블리에 대해 양 단부 상에서 대신에, 하나의 단부 상에서만 행해질 수 있다. 상기 접근법은 배터리의 제작을 더욱 단순화할 수 있는 반면에, 여전히 효과적인 단부 접속을 제공한다. 전극의 길이 및 폭 치수는 우선시되는 단부 접속 및 외부 전기 접속과 부합하도록 최적화될 수 있다. 예컨대, 각각의 세퍼레이터/전극 어셈블리의 단지 일측 상에서의 단부 및 외부 전기 접속에 대해 상기 측부의 길이는 전기 접속을 하지 않은 측으로의 폭 거리보다 훨씬 클 수 있다.
본 발명의 리튬 배터리 제조 방법의 일 실시형태에 있어서, 단계 (c)의 하나 이상의 캐소드 전류 컬렉터층 중 적어도 하나는 금속층으로 이루어지고 금속층의 두께는 3 미크론 미만이다. 일 실시형태에 있어서, 단계 (f)의 하나 이상의 애노드 전류 컬렉터층 중 적어도 하나는 금속층으로 이루어지고 금속층의 두께는 3 미크론 미만이다. 일 실시형태에 있어서, 세퍼레이터층은 0.2 미크론 미만 그리고 바람직하게는 0.1 미크론 미만의 기공 직경을 가진다. 일 실시형태에 있어서, 세퍼레이터층은 0.2 미크론 미만 그리고 바람직하게는 0.1 미크론 미만의 평균 기공 직경을 갖는 기공을 포함한다. 일 실시형태에 있어서, 세퍼레이터층은 9 미크론 미만 그리고 바람직하게는 6 미크론 미만의 두께를 가진다. 리튬을 수반하지 않는 화학물질을 이용하는 배터리 및 커패시터와 같은 다른 전기적 전류 생산 전지는 상술한 것들과 마찬가지의 방법 및 제품 설계에 의해 또한 제작될 수 있다.

Claims (57)

  1. (a) 제 1 캐소드층과 제 2 캐소드층 사이에 개재되는 캐소드 전류 컬렉터층 및 상기 캐소드 전류 컬렉터층에 반대인 제 1 캐소드층의 측 상의 다공성 세퍼레이터층을 포함하고,
    상기 제 1 캐소드층은 다공성 세퍼레이터층 상에 직접 코팅되고,
    상기 세퍼레이터층에 인접한 제 1 캐소드층의 표면의 외형은 제 1 캐소드층에 인접한 세퍼레이터층의 표면의 외형과 부합하는, 세퍼레이터/캐소드 어셈블리;
    (b) 제 1 애노드층과 제 2 애노드층 사이에 개재되는 애노드 전류 컬렉터층 및 상기 애노드 전류 컬렉터층에 반대인 제 1 애노드층의 측 상의 다공성 세퍼레이터층을 포함하고,
    상기 제 1 애노드층은 다공성 세퍼레이터층 상에 직접 코팅되고,
    상기 세퍼레이터층에 인접한 제 1 애노드층의 표면의 외형은 제 1 애노드층에 인접한 세퍼레이터층의 표면의 외형과 부합하는, 세퍼레이터/애노드 어셈블리; 및
    (c) 전해질을 포함하고,
    상기 세퍼레이터/캐소드 어셈블리 및 세퍼레이터/애노드 어셈블리의 교대층을 포함하는, 리튬 배터리.
  2. 청구항 1에 있어서,
    상기 캐소드 전류 컬렉터층은 제 1 캐소드층 상에 직접 코팅되는, 리튬 배터리.
  3. 청구항 2에 있어서,
    상기 제 2 캐소드층은 캐소드 전류 컬렉터층 상에 직접 코팅되는, 리튬 배터리.
  4. 청구항 1에 있어서,
    상기 세퍼레이터층의 표면의 외형은 세퍼레이터층 상의 제 1 캐소드층의 코팅 이전과 동일한, 리튬 배터리.
  5. 청구항 1에 있어서,
    상기 제 1 캐소드층은 전기 활성 입자 및 전기적 도전성 입자로 구성되는 그룹으로부터 선택된 전극 입자를 포함하고, 상기 전극 입자는 제 1 캐소드층에 인접한 세퍼레이터층에 존재하지 않는, 리튬 배터리.
  6. 청구항 1에 있어서,
    상기 세퍼레이터/캐소드 어셈블리의 세퍼레이터층은 세퍼레이터 입자를 포함하고, 상기 세퍼레이터 입자는 제 1 캐소드층에 존재하지 않는, 리튬 배터리.
  7. 청구항 6에 있어서,
    상기 세퍼레이터 입자는 무기 산화물 입자, 무기 질화물 입자, 무기 탄산염 입자, 무기 황산염 입자 및 폴리머 입자로 구성되는 그룹으로부터 선택되는, 리튬 배터리.
  8. 청구항 1에 있어서,
    상기 세퍼레이터/캐소드 어셈블리의 일 부분은 세퍼레이터/애노드 어셈블리와 전기 접촉하지 않는, 리튬 배터리.
  9. 청구항 1에 있어서,
    상기 세퍼레이터/캐소드 어셈블리의 제 1 부분과 제 2 부분은 서로 전기 접촉하고, 세퍼레이터/애노드 어셈블리와 전기 접촉하지 않는, 리튬 배터리.
  10. 청구항 1에 있어서,
    상기 세퍼레이터/애노드 어셈블리의 제 1 부분과 제 2 부분은 서로 전기 접촉하고, 세퍼레이터/캐소드 어셈블리와 전기 접촉하지 않는, 리튬 배터리.
  11. 청구항 1에 있어서,
    상기 세퍼레이터/캐소드 어셈블리의 캐소드 전류 컬렉터층은 알루미늄층으로 이루어지는, 리튬 배터리.
  12. 청구항 11에 있어서,
    상기 알루미늄층의 두께는 3 미크론 미만인, 리튬 배터리.
  13. 청구항 1에 있어서,
    상기 세퍼레이터/애노드 어셈블리의 애노드 전류 컬렉터층은 구리층 및 니켈층으로 구성되는 그룹으로부터 선택된 금속층으로 이루어지는, 리튬 배터리.
  14. 청구항 13에 있어서,
    상기 금속층의 두께는 3 미크론 미만인, 리튬 배터리.
  15. 청구항 1에 있어서,
    상기 세퍼레이터/캐소드 어셈블리의 세퍼레이터층은 0.2 미크론 미만의 평균 기공 직경을 갖는 기공을 포함하는, 리튬 배터리.
  16. 청구항 1에 있어서,
    상기 세퍼레이터/캐소드 어셈블리의 세퍼레이터층은 0.1 미크론 미만의 평균 기공 직경을 갖는 기공을 포함하는, 리튬 배터리.
  17. 청구항 1에 있어서,
    상기 세퍼레이터/캐소드 어셈블리의 세퍼레이터층은 0.2 미크론 직경보다 크지 않은 기공을 포함하는, 리튬 배터리.
  18. 청구항 1에 있어서,
    상기 세퍼레이터/애노드 어셈블리의 세퍼레이터층은 0.2 미크론 직경보다 크지 않은 기공을 포함하는, 리튬 배터리.
  19. 청구항 1에 있어서,
    상기 세퍼레이터/애노드 어셈블리의 세퍼레이터층은 0.1 미크론 미만의 평균 기공 직경을 갖는 기공을 포함하는, 리튬 배터리.
  20. 청구항 1에 있어서,
    상기 세퍼레이터/캐소드 어셈블리의 세퍼레이터층의 두께는 9 미크론 미만인, 리튬 배터리.
  21. 청구항 1에 있어서,
    상기 세퍼레이터/캐소드 어셈블리의 세퍼레이터층의 두께는 6 미크론 미만인, 리튬 배터리.
  22. 청구항 1에 있어서,
    상기 세퍼레이터/애노드 어셈블리의 세퍼레이터층의 두께는 9 미크론 미만인, 리튬 배터리.
  23. 청구항 1에 있어서,
    상기 세퍼레이터/애노드 어셈블리의 세퍼레이터층의 두께는 6 미크론 미만인, 리튬 배터리.
  24. 청구항 1에 있어서,
    상기 세퍼레이터/캐소드 어셈블리의 세퍼레이터층은 크세로겔 멤브레인(xerogel membrane)으로 이루어지는, 리튬 배터리.
  25. 청구항 1에 있어서,
    상기 세퍼레이터/캐소드 어셈블리의 세퍼레이터층은 알루미늄 베마이트(aluminum boehmite)로 이루어지는, 리튬 배터리.
  26. 청구항 1에 있어서,
    상기 세퍼레이터/캐소드 어셈블리의 세퍼레이터층은 200℃에서 치수 안정성을 갖는 내열 세퍼레이터층인, 리튬 배터리.
  27. 청구항 1에 있어서,
    상기 세퍼레이터/애노드 어셈블리의 세퍼레이터층은 크세로겔 멤브레인으로 이루어지는, 리튬 배터리.
  28. 청구항 1에 있어서,
    상기 세퍼레이터/애노드 어셈블리의 세퍼레이터층은 알루미늄 베마이트로 이루어지는, 리튬 배터리.
  29. 청구항 1에 있어서,
    상기 세퍼레이터/애노드 어셈블리의 세퍼레이터층은 200℃에서 치수 안정성을 갖는 내열 세퍼레이터층인, 리튬 배터리.
  30. 청구항 1에 있어서,
    상기 세퍼레이터/캐소드 어셈블리의 캐소드 전류 컬렉터층은 전기적 도전성 금속, 전기적 도전성 카본 및 전기적 도전성 폴리머로 구성되는 그룹으로부터 선택된 전기적 도전성 재료로 이루어지는, 리튬 배터리.
  31. 청구항 1에 있어서,
    상기 세퍼레이터/캐소드 어셈블리의 캐소드 전류 컬렉터층은 제 1 캐소드층 상에 직접 코팅된 2개 이상의 층을 포함하고, 상기 2개 이상의 층 중 적어도 하나는 카본을 함유하는 전기적 도전성 재료로 이루어지는, 리튬 배터리.
  32. 청구항 1에 있어서,
    상기 세퍼레이터/캐소드 어셈블리의 캐소드 전류 컬렉터층의 두께는 3 미크론 미만인, 리튬 배터리.
  33. 청구항 1에 있어서,
    상기 세퍼레이터/애노드 어셈블리의 애노드 전류 컬렉터층은 전기적 도전성 금속, 전기적 도전성 카본 및 전기적 도전성 폴리머로 구성되는 그룹으로부터 선택된 전기적 도전성 재료로 이루어지는, 리튬 배터리.
  34. 청구항 1에 있어서,
    상기 세퍼레이터/애노드 어셈블리의 애노드 전류 컬렉터층은 제 1 애노드층 상에 직접 코팅된 2개 이상의 층을 포함하고, 상기 2개 이상의 층 중 적어도 하나는 카본을 함유하는 전기적 도전성 재료로 이루어지는, 리튬 배터리.
  35. 청구항 1에 있어서,
    상기 세퍼레이터/애노드 어셈블리의 애노드 전류 컬렉터층의 두께는 3 미크론 미만인, 리튬 배터리.
  36. 청구항 1에 있어서,
    상기 애노드 전류 컬렉터층은 제 1 애노드층 상에 직접 코팅되는, 리튬 배터리.
  37. 청구항 1에 있어서,
    상기 제 2 애노드층은 애노드 전류 컬렉터층 상에 직접 코팅되는, 리튬 배터리.
  38. 청구항 1에 있어서,
    상기 세퍼레이터층의 표면의 외형은 세퍼레이터층 상의 제 1 애노드층의 코팅 이전과 동일한, 리튬 배터리.
  39. 청구항 1에 있어서,
    상기 제 1 애노드층은 전기 활성 입자 및 전기적 도전성 입자로 구성되는 그룹으로부터 선택된 전극 입자를 포함하고, 상기 전극 입자는 제 1 애노드층에 인접한 세퍼레이터층에 존재하지 않는, 리튬 배터리.
  40. 청구항 1에 있어서,
    상기 세퍼레이터/애노드 어셈블리의 세퍼레이터층은 세퍼레이터 입자를 포함하고, 상기 세퍼레이터 입자는 제 1 애노드층에 존재하지 않는, 리튬 배터리.
  41. 청구항 40에 있어서,
    상기 세퍼레이터 입자는 무기 산화물 입자, 무기 질화물 입자, 무기 탄산염 입자, 무기 황산염 입자 및 폴리머 입자로 구성되는 그룹으로부터 선택되는, 리튬 배터리.
  42. (a) 제 1 캐소드층과 제 2 캐소드층 사이에 개재되는 캐소드 전류 컬렉터층 및 상기 캐소드 전류 컬렉터층에 반대인 제 1 캐소드층의 측 상의 다공성 세퍼레이터층을 포함하고,
    상기 제 1 캐소드층은 다공성 세퍼레이터층 상에 직접 코팅되고,
    상기 세퍼레이터층에 인접한 제 1 캐소드층의 표면의 외형은 제 1 캐소드층에 인접한 세퍼레이터층의 표면의 외형과 부합하는, 세퍼레이터/캐소드 어셈블리;
    (b) 애노드층 및 애노드층의 일측 상의 다공성 세퍼레이터층을 포함하고,
    상기 애노드층은 다공성 세퍼레이터층 상에 직접 코팅되고, 다공성 세퍼레이터층은 무기 산화물 입자를 포함하고,
    상기 세퍼레이터층에 인접한 제 1 애노층의 표면의 외형은 제 1 애노드층에 인접한 세퍼레이터층의 표면의 외형과 부합하는, 세퍼레이터/애노드 어셈블리; 및
    (c) 전해질을 포함하고,
    상기 세퍼레이터/캐소드 어셈블리 및 세퍼레이터/애노드 어셈블리의 교대층을 포함하는, 리튬 배터리.
  43. 청구항 42에 있어서,
    상기 애노드층은 리튬 금속으로 이루어지는, 리튬 배터리.
  44. 청구항 42에 있어서,
    상기 제 1 캐소드층 및 제 2 캐소드층은 화학식, Sx 2 -(여기서 x는 2 내지 8의 정수)의 유황 또는 폴리설파이드(polysulfide)로 이루어지는, 리튬 배터리.
  45. (a) 기판 상에 다공성 세퍼레이터층을 코팅하는 단계;
    (b) 상기 세퍼레이터층의 제 1 부분 상에 직접 제 1 캐소드층을 코팅하는 단계, 여기서 상기 세퍼레이터층에 인접한 제 1 캐소드층의 표면의 외형은 제 1 캐소드층에 인접한 세퍼레이터층의 표면의 외형과 부합하고;
    (c) 상기 제 1 캐소드층 상에 직접 하나 이상의 캐소드 전류 컬렉터층을 코팅하는 단계;
    (d) 상기 하나 이상의 캐소드 전류 컬렉터층 상에 직접 제 2 캐소드층을 코팅하는 단계;
    (e) 상기 세퍼레이터층의 제 2 부분 상에 직접 제 1 애노드층을 코팅하는 단계, 여기서 상기 세퍼레이터층에 인접한 제 1 애노드층의 표면의 외형은 제 1 애노드층에 인접한 세퍼레이터층의 표면의 외형과 부합하고;
    (f) 상기 제 1 애노드층 상에 직접 하나 이상의 애노드 전류 컬렉터층을 코팅하는 단계; 및
    (g) 상기 하나 이상의 애노드 전류 컬렉터층 상에 직접 제 2 애노드층을 코팅하는 단계를 포함하는, 리튬 배터리의 제조 방법.
  46. 청구항 45에 있어서,
    상기 단계 (g) 이후에, 세퍼레이터/캐소드 어셈블리 및 세퍼레이터/애노드 어셈블리를 만들기 위해, 세페레이터층의 제 1 및 제 2 부분으로부터 기판을 박리하는 단계 (h)를 더 포함하는, 리튬 배터리의 제조 방법.
  47. 청구항 46에 있어서,
    상기 단계 (h) 이후에, 세퍼레이터/전극 건전지를 형성하기 위해, 세퍼레이터/캐소드 어셈블리를 세퍼레이터/애노드 어셈블리와 인터리빙하는 단계 (i)를 더 포함하는, 리튬 배터리의 제조 방법.
  48. 청구항 47에 있어서,
    상기 인터리빙하는 단계 (i) 이전에, 상기 세퍼레이터/캐소드 어셈블리와 세퍼레이터/애노드 어셈블리는 시트 구성으로 되어 있는, 리튬 배터리의 제조 방법.
  49. 청구항 47에 있어서,
    상기 세퍼레이터/전극 건전지를 케이싱에 봉입하는 단계 (1) 및 전해질로 충전하고 시일링(sealing)하는 단계 (2)를 더 포함하는, 리튬 배터리의 제조 방법.
  50. 청구항 45에 있어서,
    상기 단계 (c)의 하나 이상의 캐소드 전류 컬렉터층은 금속층으로 이루어지고, 상기 금속층의 두께는 3 미크론 미만인, 리튬 배터리의 제조 방법.
  51. 청구항 45에 있어서,
    상기 세퍼레이터층은 0.1 미크론 미만의 평균 기공 직경을 갖는 기공을 포함하는, 리튬 배터리의 제조 방법.
  52. 청구항 45에 있어서,
    상기 세퍼레이터층은 0.2 미크론 직경보다 크지 않은 기공을 포함하는, 리튬 배터리의 제조 방법.
  53. 청구항 45에 있어서,
    상기 세퍼레이터층의 두께는 6 미크론 미만인, 리튬 배터리의 제조 방법.
  54. 청구항 45에 있어서,
    상기 단계 (f)의 하나 이상의 애노드 전류 컬렉터층은 금속층으로 이루어지고, 상기 금속층의 두께는 3 미크론 미만인, 리튬 배터리의 제조 방법.
  55. 청구항 45에 있어서,
    상기 단계 (a)의 기판은 다공성 기판이고, 단계 (d)는 세퍼레이터/캐소드 어셈블리를 형성하고, 단계 (g)는 세퍼레이터/애노드 어셈블리를 형성하고, 세퍼레이터/전극 건전지를 형성하기 위해, 세퍼레이터/캐소드 어셈블리를 세퍼레이터/애노드 어셈블리와 인터리빙하는 단계를 더 포함하는, 리튬 배터리의 제조 방법.
  56. 청구항 55에 있어서,
    상기 다공성 기판은 다공성 폴리머 필름 및 다공성 부직의 폴리머 섬유 기판으로 구성되는 그룹으로부터 선택되는, 리튬 배터리의 제조 방법.
  57. 청구항 55에 있어서,
    상기 세퍼레이터/전극 건전지를 케이싱에 봉입하는 단계 (1) 및 전해질로 충전하고 시일링하는 단계 (2)를 더 포함하는, 리튬 배터리의 제조 방법.
KR1020177010172A 2009-05-26 2010-05-26 나노다공성 세퍼레이터 상의 전극 직접 코팅을 이용한 배터리 KR20170042834A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US21713209P 2009-05-26 2009-05-26
US61/217,132 2009-05-26
PCT/US2010/001535 WO2010138176A1 (en) 2009-05-26 2010-05-26 Batteries utilizing electrode coatings directly on nanoporous separators

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020117030201A Division KR20120036862A (ko) 2009-05-26 2010-05-26 나노다공성 세퍼레이터 상의 전극 직접 코팅을 이용한 배터리

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020187015456A Division KR20180081752A (ko) 2009-05-26 2010-05-26 나노다공성 세퍼레이터 상의 전극 직접 코팅을 이용한 배터리

Publications (1)

Publication Number Publication Date
KR20170042834A true KR20170042834A (ko) 2017-04-19

Family

ID=43222998

Family Applications (8)

Application Number Title Priority Date Filing Date
KR1020117029651A KR20120025518A (ko) 2009-05-26 2010-05-26 나노다공성 세퍼레이터 상의 애노드 직접 코팅을 이용한 배터리
KR1020117030201A KR20120036862A (ko) 2009-05-26 2010-05-26 나노다공성 세퍼레이터 상의 전극 직접 코팅을 이용한 배터리
KR1020187015300A KR102025033B1 (ko) 2009-05-26 2010-05-26 나노다공성 세퍼레이터 상의 애노드 직접 코팅을 이용한 배터리
KR1020177010171A KR20170045366A (ko) 2009-05-26 2010-05-26 나노다공성 세퍼레이터 상의 애노드 직접 코팅을 이용한 배터리
KR1020117030198A KR20120027364A (ko) 2009-05-26 2010-05-26 나노다공성 세퍼레이터층을 이용한 리튬 배터리
KR1020177010172A KR20170042834A (ko) 2009-05-26 2010-05-26 나노다공성 세퍼레이터 상의 전극 직접 코팅을 이용한 배터리
KR1020187015456A KR20180081752A (ko) 2009-05-26 2010-05-26 나노다공성 세퍼레이터 상의 전극 직접 코팅을 이용한 배터리
KR1020187015813A KR102138988B1 (ko) 2009-05-26 2010-05-26 나노다공성 세퍼레이터층을 이용한 리튬 배터리

Family Applications Before (5)

Application Number Title Priority Date Filing Date
KR1020117029651A KR20120025518A (ko) 2009-05-26 2010-05-26 나노다공성 세퍼레이터 상의 애노드 직접 코팅을 이용한 배터리
KR1020117030201A KR20120036862A (ko) 2009-05-26 2010-05-26 나노다공성 세퍼레이터 상의 전극 직접 코팅을 이용한 배터리
KR1020187015300A KR102025033B1 (ko) 2009-05-26 2010-05-26 나노다공성 세퍼레이터 상의 애노드 직접 코팅을 이용한 배터리
KR1020177010171A KR20170045366A (ko) 2009-05-26 2010-05-26 나노다공성 세퍼레이터 상의 애노드 직접 코팅을 이용한 배터리
KR1020117030198A KR20120027364A (ko) 2009-05-26 2010-05-26 나노다공성 세퍼레이터층을 이용한 리튬 배터리

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020187015456A KR20180081752A (ko) 2009-05-26 2010-05-26 나노다공성 세퍼레이터 상의 전극 직접 코팅을 이용한 배터리
KR1020187015813A KR102138988B1 (ko) 2009-05-26 2010-05-26 나노다공성 세퍼레이터층을 이용한 리튬 배터리

Country Status (9)

Country Link
US (16) US8962182B2 (ko)
EP (4) EP2436061B1 (ko)
JP (12) JP6159083B2 (ko)
KR (8) KR20120025518A (ko)
CN (4) CN102460776B (ko)
AU (1) AU2010254533B2 (ko)
CA (1) CA2763959C (ko)
RU (1) RU2513988C2 (ko)
WO (4) WO2010138177A1 (ko)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883354B2 (en) 2006-02-15 2014-11-11 Optodot Corporation Separators for electrochemical cells
CN101584065B (zh) 2007-01-12 2013-07-10 易诺维公司 三维电池及其制造方法
JP6159083B2 (ja) * 2009-05-26 2017-07-05 オプトドット コーポレイション ナノ多孔性セパレータ層を利用するリチウム電池
CN103283060B (zh) 2010-07-19 2017-02-15 奥普图多特公司 用于电化学电池的隔膜
US8840687B2 (en) * 2010-08-23 2014-09-23 Corning Incorporated Dual-layer method of fabricating ultracapacitor current collectors
US9843027B1 (en) 2010-09-14 2017-12-12 Enovix Corporation Battery cell having package anode plate in contact with a plurality of dies
KR20130005732A (ko) 2011-07-07 2013-01-16 현대자동차주식회사 리튬-공기 하이브리드 배터리 및 이의 제조 방법
EP2608296A1 (fr) * 2011-12-21 2013-06-26 The Swatch Group Research and Development Ltd. Collecteur de courant en métal amorphe
US8841030B2 (en) * 2012-01-24 2014-09-23 Enovix Corporation Microstructured electrode structures
KR102480368B1 (ko) 2012-08-16 2022-12-23 에노빅스 코오퍼레이션 3차원 배터리들을 위한 전극 구조들
CN105308772B (zh) 2013-03-15 2018-11-16 艾诺维克斯公司 用于三维电池的隔膜
DE102013204863A1 (de) * 2013-03-20 2014-09-25 Robert Bosch Gmbh Elektrode und Verfahren zum Herstellen einer Elektrode
DE102013204851A1 (de) * 2013-03-20 2014-09-25 Robert Bosch Gmbh Elektrode und Verfahren zum Herstellen einer Elektrode
WO2014179355A1 (en) 2013-04-29 2014-11-06 Madico, Inc. Nanoporous composite separators with increased thermal conductivity
US20160126521A1 (en) * 2013-06-12 2016-05-05 Heikki Suonsivu Rechargeable battery cell
FR3007582B1 (fr) * 2013-06-24 2015-06-26 Inst Polytechnique Grenoble Procede d'impression ou de depot par atomisation pour la preparation d'une electrode flexible supportee et la fabrication d'une batterie lithium-ion
JP6840539B2 (ja) * 2013-08-12 2021-03-10 ソルヴェイ(ソシエテ アノニム) 固体複合フルオロポリマーセパレータ
US20150237722A1 (en) * 2014-02-20 2015-08-20 Ruey-Jen Hwu Anode Array
DE102014216435A1 (de) * 2014-08-19 2016-02-25 Volkswagen Varta Microbattery Forschungsgesellschaft Mbh & Co. Kg Batterie mit prismatischem Gehäuse und Herstellungsverfahren
JP2016051614A (ja) * 2014-08-29 2016-04-11 日東電工株式会社 リチウム金属二次電池
US10333173B2 (en) * 2014-11-14 2019-06-25 Medtronic, Inc. Composite separator and electrolyte for solid state batteries
KR20170085592A (ko) * 2014-11-26 2017-07-24 셀가드 엘엘씨 리튬 이온 재충전 가능한 배터리를 위한 개선된 미소공성 막 분리기 및 관련 방법
US10680237B2 (en) * 2015-03-24 2020-06-09 Sekisui Chemical Co., Ltd. Active material-exfoliated graphite composite, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
US10707526B2 (en) 2015-03-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US10381623B2 (en) 2015-07-09 2019-08-13 Optodot Corporation Nanoporous separators for batteries and related manufacturing methods
US12040506B2 (en) 2015-04-15 2024-07-16 Lg Energy Solution, Ltd. Nanoporous separators for batteries and related manufacturing methods
US20170098857A1 (en) 2015-04-15 2017-04-06 Optodot Corporation Coated stacks for batteries and related manufacturing methods
KR20180031628A (ko) * 2015-04-15 2018-03-28 옵토도트 코포레이션 배터리 코팅 적층체 및 그 제조방법
EP3828976B1 (en) 2015-05-14 2023-07-05 Enovix Corporation Longitudinal constraints for energy storage devices
KR102005870B1 (ko) * 2016-01-15 2019-07-31 삼성에스디아이 주식회사 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지
KR102601477B1 (ko) * 2016-03-14 2023-11-10 암테크 리서치 인터내셔널 엘엘씨 적층 가능한, 치수-안정성 미세다공성 웹
US11127999B2 (en) * 2016-03-15 2021-09-21 Intel Corporation Package-less battery cell apparatus, and method for forming the same
CN115513533A (zh) 2016-05-13 2022-12-23 艾诺维克斯公司 三维电池的尺寸约束
CN105977543A (zh) * 2016-07-05 2016-09-28 东莞市卓高电子科技有限公司 柔性电池
WO2018018036A1 (en) 2016-07-22 2018-01-25 Fluidic, Inc. Moisture and carbon dioxide management system in electrochemical cells
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
JP7421932B2 (ja) * 2016-11-07 2024-01-25 セルガード エルエルシー 電池セパレーター
TWI819481B (zh) 2016-11-16 2023-10-21 美商易諾維公司 具有可壓縮陰極之三維電池
US11394035B2 (en) 2017-04-06 2022-07-19 Form Energy, Inc. Refuelable battery for the electric grid and method of using thereof
US11128020B2 (en) 2017-11-15 2021-09-21 Enovix Corporation Electrode assembly, secondary battery, and method of manufacture
US10256507B1 (en) 2017-11-15 2019-04-09 Enovix Corporation Constrained electrode assembly
KR102207528B1 (ko) 2017-12-15 2021-01-26 주식회사 엘지화학 다공성 분리막 및 이를 포함하는 전기화학소자
US11611115B2 (en) 2017-12-29 2023-03-21 Form Energy, Inc. Long life sealed alkaline secondary batteries
US11038239B2 (en) * 2018-04-20 2021-06-15 Massachusetts Institute Of Technology Electrochemically active multifunctional interlayer for a Li-S battery
KR102543243B1 (ko) 2018-05-28 2023-06-14 주식회사 엘지에너지솔루션 리튬 전극 및 이의 제조방법
EP3815167A4 (en) 2018-06-29 2022-03-16 Form Energy, Inc. ELECTROCHEMICAL CELL BASED ON AQUEOUS POLYSULFIDE
US11552290B2 (en) 2018-07-27 2023-01-10 Form Energy, Inc. Negative electrodes for electrochemical cells
US11211639B2 (en) 2018-08-06 2021-12-28 Enovix Corporation Electrode assembly manufacture and device
KR102388261B1 (ko) 2018-10-12 2022-04-18 주식회사 엘지에너지솔루션 다공성 분리막 및 이를 포함하는 리튬 이차 전지
US20220069286A1 (en) * 2019-01-07 2022-03-03 Urban Electric Power Inc. Polymer embedded electrodes for batteries
JP7411975B2 (ja) * 2019-01-09 2024-01-12 エムテックスマート株式会社 全固体電池の製造方法
US11189828B2 (en) * 2019-02-27 2021-11-30 Battelle Memorial Institute Lithium metal pouch cells and methods of making the same
US11949129B2 (en) 2019-10-04 2024-04-02 Form Energy, Inc. Refuelable battery for the electric grid and method of using thereof
WO2021080052A1 (ko) * 2019-10-25 2021-04-29 주식회사 그리너지 리튬 메탈 음극 구조체, 이를 포함하는 전기화학소자, 및 상기 리튬 메탈 음극 구조체의 제조방법
CN112786969B (zh) * 2019-11-08 2023-08-29 辉能科技股份有限公司 锂电池结构及其极层结构
EP4200921B1 (en) 2020-09-18 2024-08-14 Enovix Corporation Process for delineating a population of electrode structures in a web using a laser beam
US20210399293A1 (en) * 2020-12-06 2021-12-23 Terence W. Unger Metal electrode
CN116783744A (zh) 2020-12-09 2023-09-19 艾诺维克斯公司 用于制造二次电池的电极组合件的方法及装置
CN117795420A (zh) 2021-08-23 2024-03-29 大阪有机化学工业株式会社 感光性树脂组合物、固化物及图像显示装置
DE102022107183A1 (de) 2022-03-25 2023-09-28 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines Elektrode-Separatoren-Verbunds für eine Batterie
CN115513602B (zh) * 2022-10-21 2024-01-26 武汉中金泰富新能源科技有限公司 一种含界面管理层结构电极的动力电池制造工艺
US20240145663A1 (en) * 2022-10-27 2024-05-02 Lawrence Livermore National Security, Llc Cold spray of solid-state batteries

Family Cites Families (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625771A (en) 1969-03-27 1971-12-07 Mc Donnell Douglas Corp Battery separator
US3647554A (en) 1969-04-17 1972-03-07 Mc Donnell Douglas Corp Battery separator and method of producing same
EP0143562A1 (en) 1983-11-02 1985-06-05 Raychem Limited Electrode article
JPH0614077B2 (ja) 1986-01-14 1994-02-23 株式会社村田製作所 表面電位検出装置
US4894301A (en) 1989-08-03 1990-01-16 Bell Communications Research, Inc. Battery containing solid protonically conducting electrolyte
DE3926977A1 (de) 1989-08-16 1991-02-21 Licentia Gmbh Hochenergiesekundaerbatterie
US5162175A (en) 1989-10-13 1992-11-10 Visco Steven J Cell for making secondary batteries
US5208121A (en) 1991-06-18 1993-05-04 Wisconsin Alumni Research Foundation Battery utilizing ceramic membranes
US5194341A (en) 1991-12-03 1993-03-16 Bell Communications Research, Inc. Silica electrolyte element for secondary lithium battery
CA2068290C (fr) 1992-05-08 1999-07-13 Michel Gauthier Prise de contact electrique sur des anodes de lithium
JPH0614077A (ja) 1992-06-25 1994-01-21 Toshiba Corp 通信システム
JP3116643B2 (ja) * 1992-09-11 2000-12-11 三菱電機株式会社 電気化学素子、及び組電池並びに電気化学素子の製造方法
US5326391A (en) 1992-11-18 1994-07-05 Ppg Industries, Inc. Microporous material exhibiting increased whiteness retention
CA2110097C (en) 1992-11-30 2002-07-09 Soichiro Kawakami Secondary battery
US5418091A (en) 1993-03-05 1995-05-23 Bell Communications Research, Inc. Polymeric electrolytic cell separator membrane
US5350645A (en) 1993-06-21 1994-09-27 Micron Semiconductor, Inc. Polymer-lithium batteries and improved methods for manufacturing batteries
EP0651455B1 (en) 1993-10-07 1997-07-30 Matsushita Electric Industrial Co., Ltd. Manufacturing method of a separator for a lithium secondary battery and an organic electrolyte lithium secondary battery using the same separator
US5314765A (en) 1993-10-14 1994-05-24 Martin Marietta Energy Systems, Inc. Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method
US5439760A (en) 1993-11-19 1995-08-08 Medtronic, Inc. High reliability electrochemical cell and electrode assembly therefor
US5569520A (en) 1994-01-12 1996-10-29 Martin Marietta Energy Systems, Inc. Rechargeable lithium battery for use in applications requiring a low to high power output
US5549717A (en) 1994-03-03 1996-08-27 Wilson Greatbatch Ltd. Method of making prismatic cell
JPH10512390A (ja) 1995-01-13 1998-11-24 エス・アール・アイ・インターナシヨナル 有機液体電解質と可塑剤
ATE310321T1 (de) 1995-06-28 2005-12-15 Ube Industries Nichtwässrige sekundärbatterie
JPH0927343A (ja) * 1995-07-10 1997-01-28 Hitachi Ltd 非水系二次電池及び該電池の作製法
JP3253632B2 (ja) 1995-08-28 2002-02-04 旭化成株式会社 新規な電池およびその製造方法
US5948464A (en) 1996-06-19 1999-09-07 Imra America, Inc. Process of manufacturing porous separator for electrochemical power supply
TW446731B (en) 1996-08-20 2001-07-21 Daiso Co Ltd Polymeric solid electrolyte
US5840087A (en) 1996-09-18 1998-11-24 Bell Communications Research, Inc. Method for making laminated rechargeable battery cells
JPH10214639A (ja) * 1997-01-31 1998-08-11 Toshiba Battery Co Ltd 電池の製造方法
US20040188880A1 (en) 1997-03-27 2004-09-30 Stephan Bauer Production of molded articles for lithium ion batteries
US5778515A (en) 1997-04-11 1998-07-14 Valence Technology, Inc. Methods of fabricating electrochemical cells
US5894656A (en) * 1997-04-11 1999-04-20 Valence Technology, Inc. Methods of fabricating electrochemical cells
US5882721A (en) 1997-05-01 1999-03-16 Imra America Inc Process of manufacturing porous separator for electrochemical power supply
CA2237457A1 (en) 1997-05-19 1998-11-19 Richard S. Bogner Battery cell with spray-formed separator
KR100220449B1 (ko) 1997-08-16 1999-09-15 손욱 리튬 이온 고분자 이차전지 제조방법
WO1999031751A1 (fr) * 1997-12-18 1999-06-24 Mitsubishi Denki Kabushiki Kaisha Batterie auxiliaire au lithium et sa fabrication
US6153337A (en) 1997-12-19 2000-11-28 Moltech Corporation Separators for electrochemical cells
US6811928B2 (en) 1998-01-22 2004-11-02 Mitsubishi Denki Kabushiki Kaisha Battery with adhesion resin layer including filler
JPH11233144A (ja) 1998-02-18 1999-08-27 Matsushita Electric Ind Co Ltd 有機電解質電池の製造方法
US6214061B1 (en) 1998-05-01 2001-04-10 Polyplus Battery Company, Inc. Method for forming encapsulated lithium electrodes having glass protective layers
DE19819752A1 (de) * 1998-05-04 1999-11-11 Basf Ag Für elektrochemische Zellen geeignete Zusammensetzungen
US6277514B1 (en) 1998-12-17 2001-08-21 Moltech Corporation Protective coating for separators for electrochemical cells
US6190426B1 (en) * 1998-12-17 2001-02-20 Moltech Corporation Methods of preparing prismatic cells
US6194098B1 (en) 1998-12-17 2001-02-27 Moltech Corporation Protective coating for separators for electrochemical cells
JP3471244B2 (ja) * 1999-03-15 2003-12-02 株式会社東芝 非水電解液二次電池の製造方法
US6148503A (en) 1999-03-31 2000-11-21 Imra America, Inc. Process of manufacturing porous separator for electrochemical power supply
US6451484B1 (en) 1999-04-21 2002-09-17 Samsung Sdi Co., Ltd. Lithium secondary battery and manufacturing method thereof
JP2000323129A (ja) 1999-05-14 2000-11-24 Matsushita Electric Ind Co Ltd 電池電極の製造方法
AU5604100A (en) 1999-06-09 2000-12-28 Moltech Corporation Methods of preparing a microporous article
WO2000079618A1 (en) 1999-06-22 2000-12-28 Mitsubishi Denki Kabushiki Kaisha Separator for cell, cell, and method for producing separator
US6724512B2 (en) 1999-11-03 2004-04-20 Optodot Corporation Optical switch device
WO2001039294A2 (en) * 1999-11-23 2001-05-31 Moltech Corporation Methods of preparing electrochemical cells
US7066971B1 (en) 1999-11-23 2006-06-27 Sion Power Corporation Methods of preparing electrochemical cells
WO2001039293A2 (en) 1999-11-23 2001-05-31 Moltech Corporation Methods of preparing electrochemical cells
US7247408B2 (en) * 1999-11-23 2007-07-24 Sion Power Corporation Lithium anodes for electrochemical cells
US6328770B1 (en) 1999-11-23 2001-12-11 Valence Technology (Nevada), Inc. Method of making multi-layer electrochemical cell devices
US6653018B2 (en) * 2000-03-17 2003-11-25 Tdk Corporation Electrochemical device
US6344293B1 (en) * 2000-04-18 2002-02-05 Moltech Corporation Lithium electrochemical cells with enhanced cycle life
US6645670B2 (en) * 2000-05-16 2003-11-11 Wilson Greatbatch Ltd. Efficient cell stack for cells with double current collectors sandwich cathodes
US6488721B1 (en) * 2000-06-09 2002-12-03 Moltech Corporation Methods of preparing electrochemical cells
JP2002042882A (ja) * 2000-07-28 2002-02-08 Matsushita Electric Ind Co Ltd 有機電解質電池の製造方法
DE60144235D1 (de) 2000-08-12 2011-04-28 Lg Chemical Ltd Zusammengesetzter film mit mehreren komponenten und verfahren zu seiner herstellung
KR100406690B1 (ko) 2001-03-05 2003-11-21 주식회사 엘지화학 다성분계 복합 필름을 이용한 전기화학소자
US7070632B1 (en) 2001-07-25 2006-07-04 Polyplus Battery Company Electrochemical device separator structures with barrier layer on non-swelling membrane
JPWO2003028142A1 (ja) 2001-09-19 2005-01-13 川崎重工業株式会社 三次元電池及びその電極構造並びに三次元電池の電極材の製造方法
JP3729112B2 (ja) * 2001-09-20 2005-12-21 ソニー株式会社 固体電解質電池
JP3904935B2 (ja) * 2002-01-29 2007-04-11 三菱化学株式会社 リチウムポリマー二次電池の製造方法
US7118828B2 (en) * 2002-03-11 2006-10-10 Quallion Llc Implantable battery
WO2003105251A2 (en) * 2002-06-05 2003-12-18 Reveo, Inc. Layered electrochemical cell and manufacturing method therefor
US20040043295A1 (en) 2002-08-21 2004-03-04 Rafael Rodriguez Rechargeable composite polymer battery
DE10238943B4 (de) 2002-08-24 2013-01-03 Evonik Degussa Gmbh Separator-Elektroden-Einheit für Lithium-Ionen-Batterien, Verfahren zu deren Herstellung und Verwendung in Lithium-Batterien sowie eine Batterie, aufweisend die Separator-Elektroden-Einheit
US6933077B2 (en) * 2002-12-27 2005-08-23 Avestor Limited Partnership Current collector for polymer electrochemical cells and electrochemical generators thereof
US7115339B2 (en) 2003-02-21 2006-10-03 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
JP4350439B2 (ja) 2003-06-30 2009-10-21 三笠産業株式会社 ノズルキャップ
EP1643583A4 (en) 2003-07-29 2010-01-20 Panasonic Corp LITHIUM ION SECONDARY BATTERY
CN1233058C (zh) * 2003-07-30 2005-12-21 黑龙江中强能源科技有限公司 聚合物锂离子电池及其制造方法
EP1667252B1 (en) 2003-08-06 2011-06-22 Mitsubishi Chemical Corporation Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same
WO2005022674A1 (ja) 2003-08-29 2005-03-10 Ube Industries, Ltd. 電池用セパレータ及びリチウム二次電池
DE112004002289D2 (de) * 2003-09-23 2006-08-10 Guenther Hambitzer Elektrochemische Batteriezelle
US7595130B2 (en) 2003-11-06 2009-09-29 Ube Industries, Ltd. Battery separator and lithium secondary battery
JP3953026B2 (ja) 2003-12-12 2007-08-01 松下電器産業株式会社 リチウムイオン二次電池用極板およびリチウムイオン二次電池並びにその製造方法
US7745042B2 (en) 2004-01-09 2010-06-29 Panasonic Corporation Lithium ion secondary battery
KR100666821B1 (ko) 2004-02-07 2007-01-09 주식회사 엘지화학 유/무기 복합 다공성 코팅층이 형성된 전극 및 이를포함하는 전기 화학 소자
EP1653532B1 (en) 2004-02-20 2010-05-19 Panasonic Corporation Method for producing lithium ion secondary battery
JP4454340B2 (ja) * 2004-02-23 2010-04-21 パナソニック株式会社 リチウムイオン二次電池
JP4667373B2 (ja) 2004-03-30 2011-04-13 パナソニック株式会社 リチウムイオン二次電池およびその充放電制御システム
EP1659650A4 (en) 2004-03-30 2008-12-24 Panasonic Corp NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
US7618724B2 (en) 2004-04-13 2009-11-17 Lg Chem, Ltd. Electrochemical device comprising electrode lead having protection device
US7816038B2 (en) 2004-04-19 2010-10-19 Panasonic Corporation Lithium ion secondary battery and method for producing the same
WO2005117169A1 (ja) 2004-05-27 2005-12-08 Matsushita Electric Industrial Co., Ltd. 捲回型非水系二次電池およびそれに用いる電極板
CN100452487C (zh) 2004-06-22 2009-01-14 松下电器产业株式会社 二次电池及其制造方法
WO2006004366A1 (en) 2004-07-07 2006-01-12 Lg Chem, Ltd. New organic/inorganic composite porous film and electrochemical device prepared thereby
TWI318018B (en) 2004-09-02 2009-12-01 Lg Chemical Ltd Organic/inorganic composite porous film and electrochemical device prepared thereby
US7638230B2 (en) 2004-09-03 2009-12-29 Panasonic Corporation Lithium ion secondary battery
US7829242B2 (en) * 2004-10-21 2010-11-09 Evonik Degussa Gmbh Inorganic separator-electrode-unit for lithium-ion batteries, method for the production thereof and use thereof in lithium batteries
KR100775310B1 (ko) 2004-12-22 2007-11-08 주식회사 엘지화학 유/무기 복합 다공성 분리막 및 이를 이용한 전기 화학소자
WO2006068143A1 (ja) 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. 非水電解質二次電池
CN100553025C (zh) * 2005-01-26 2009-10-21 松下电器产业株式会社 锂二次电池用负极和使用其的锂二次电池及它们的制造方法
US7981548B2 (en) * 2005-01-28 2011-07-19 Nec Energy Devices, Ltd. Multilayer secondary battery and method of making same
KR101223554B1 (ko) 2005-02-02 2013-01-17 삼성에스디아이 주식회사 하이브리드형 연료전지 시스템
EP1780820A4 (en) 2005-03-02 2009-09-09 Panasonic Corp LITHIUMION SECONDARY CELL AND MANUFACTURING METHOD THEREFOR
KR100857962B1 (ko) 2005-04-04 2008-09-09 마쯔시다덴기산교 가부시키가이샤 원통형 리튬2차전지
WO2006112243A1 (ja) 2005-04-15 2006-10-26 Matsushita Electric Industrial Co., Ltd. 角型リチウム二次電池
US20060234123A1 (en) 2005-04-15 2006-10-19 Avestor Limited Partnership Lithium Rechargeable Battery
US20060240290A1 (en) * 2005-04-20 2006-10-26 Holman Richard K High rate pulsed battery
KR100659851B1 (ko) 2005-04-27 2006-12-19 삼성에스디아이 주식회사 리튬 이차 전지
US7935442B2 (en) 2005-05-17 2011-05-03 Lg Chem, Ltd. Polymer binder for electrochemical device comprising multiply stacked electrochemical cells
KR100933427B1 (ko) 2005-08-16 2009-12-23 주식회사 엘지화학 교차분리막으로 이루어진 전기화학소자
RU2403653C2 (ru) 2005-12-06 2010-11-10 Эл Джи Кем, Лтд. Органическо/неорганический композитный разделитель, имеющий градиент морфологии, способ его изготовления и содержащее его электрохимическое устройство
JP2007188777A (ja) * 2006-01-13 2007-07-26 Sony Corp セパレータおよび非水電解質電池
US8192858B2 (en) * 2006-02-07 2012-06-05 Panasonic Corporation Electrode plate for battery and method and apparatus for forming the same
US20080182174A1 (en) 2006-02-15 2008-07-31 Carlson Steven A Microporous separators for electrochemical cells
US8883354B2 (en) 2006-02-15 2014-11-11 Optodot Corporation Separators for electrochemical cells
US20070189959A1 (en) 2006-02-15 2007-08-16 Steven Allen Carlson Methods of preparing separators for electrochemical cells
JP5135822B2 (ja) * 2006-02-21 2013-02-06 日産自動車株式会社 リチウムイオン二次電池およびこれを用いた組電池
US9070954B2 (en) 2006-04-12 2015-06-30 Optodot Corporation Safety shutdown separators
JP5061502B2 (ja) * 2006-05-20 2012-10-31 日産自動車株式会社 電池構造体
CN102163750A (zh) * 2006-05-23 2011-08-24 Iom技术公司 全固体二次电池
US7595133B2 (en) 2006-07-01 2009-09-29 The Gillette Company Lithium cell
JP4945189B2 (ja) * 2006-08-04 2012-06-06 株式会社東芝 電極の製造方法
JP2008048838A (ja) * 2006-08-23 2008-03-06 Samii Kk 遊技機
JP5093882B2 (ja) * 2006-10-16 2012-12-12 日立マクセル株式会社 電気化学素子用セパレータ、電気化学素子および電気化学素子の製造方法
US20080166202A1 (en) 2007-01-08 2008-07-10 Dunlap William L Conical nut
US8277977B2 (en) 2007-01-16 2012-10-02 Zeon Corporation Binder composition, slurry for electrodes, electrode and nonaqueous electrolyte secondary battery
KR100727248B1 (ko) 2007-02-05 2007-06-11 주식회사 엘지화학 다공성 활성층이 코팅된 유기/무기 복합 분리막 및 이를구비한 전기화학소자
JP2008226812A (ja) * 2007-02-13 2008-09-25 Matsushita Electric Ind Co Ltd 非水電解質二次電池
KR101367650B1 (ko) * 2007-02-13 2014-03-06 나믹스 가부시끼가이샤 전 고체 이차 전지
KR100754746B1 (ko) 2007-03-07 2007-09-03 주식회사 엘지화학 다공성 활성층이 코팅된 유기/무기 복합 분리막 및 이를구비한 전기화학소자
JP2008226566A (ja) 2007-03-12 2008-09-25 Hitachi Maxell Ltd 多孔性絶縁層形成用組成物、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極、およびリチウムイオン二次電池
JP2008234879A (ja) 2007-03-19 2008-10-02 Hitachi Maxell Ltd リチウムイオン二次電池
US9923180B2 (en) * 2007-05-31 2018-03-20 A123 Systems Llc Separator including electroactive material for overcharge protection
KR101147255B1 (ko) * 2007-06-04 2012-05-18 에스케이이노베이션 주식회사 고출력 리튬 전지의 적층 방법
KR101460640B1 (ko) * 2007-07-06 2014-12-02 소니 가부시끼가이샤 세퍼레이터, 세퍼레이터를 이용한 전지, 및 세퍼레이터를제조하는 방법
EP2181478A4 (en) 2007-07-25 2013-03-13 Lg Chemical Ltd ELECTROCHEMICAL DEVICE AND METHOD FOR MANUFACTURING THE SAME
KR101590339B1 (ko) * 2007-08-21 2016-02-01 에이일이삼 시스템즈 인코포레이티드 전기화학전지용 분리막 및 이의 제조방법
JP2009064566A (ja) * 2007-09-04 2009-03-26 Hitachi Maxell Ltd 電池用セパレータおよび非水電解質電池
JP5591704B2 (ja) 2007-09-28 2014-09-17 エー123 システムズ, インコーポレイテッド 無機/有機多孔質膜を有する電池
US9722275B2 (en) * 2007-12-14 2017-08-01 Nanotek Instruments, Inc. Anode protective layer compositions for lithium metal batteries
US20110097623A1 (en) 2008-02-12 2011-04-28 Massachusetts Institute Of Technology Small-scale batteries and electrodes for use thereof
KR20100137530A (ko) 2008-03-25 2010-12-30 에이일이삼 시스템즈 인코포레이티드 고에너지 고출력 전극 및 배터리
WO2010081150A1 (en) 2009-01-12 2010-07-15 A123 Systems, Inc. Laminated battery cell and methods for creating the same
JP6159083B2 (ja) * 2009-05-26 2017-07-05 オプトドット コーポレイション ナノ多孔性セパレータ層を利用するリチウム電池
CN102236429A (zh) 2010-04-23 2011-11-09 深圳富泰宏精密工业有限公司 触控笔
WO2013146126A1 (ja) 2012-03-30 2013-10-03 リンテック株式会社 工程フィルム付きリチウムイオン二次電池用セパレータ、及びその製造方法

Also Published As

Publication number Publication date
US20120064399A1 (en) 2012-03-15
JP2012528455A (ja) 2012-11-12
JP6608862B2 (ja) 2019-11-20
CA2763959A1 (en) 2010-12-02
CA2763959C (en) 2016-03-22
KR102025033B1 (ko) 2019-09-24
JP2017152386A (ja) 2017-08-31
JP2012528456A (ja) 2012-11-12
US20170222206A1 (en) 2017-08-03
JP2023040187A (ja) 2023-03-22
CN102460776B (zh) 2015-04-29
JP2015173115A (ja) 2015-10-01
AU2010254533A1 (en) 2011-12-08
JP2015156383A (ja) 2015-08-27
EP2436061A1 (en) 2012-04-04
KR20180082491A (ko) 2018-07-18
EP2436064B1 (en) 2018-03-21
JP6949379B2 (ja) 2021-10-13
US11777176B2 (en) 2023-10-03
US9065120B2 (en) 2015-06-23
US20200274127A1 (en) 2020-08-27
KR20170045366A (ko) 2017-04-26
JP6113210B2 (ja) 2017-04-12
KR20120025518A (ko) 2012-03-15
RU2011152902A (ru) 2013-07-10
US20220263197A1 (en) 2022-08-18
US11387523B2 (en) 2022-07-12
KR20120027364A (ko) 2012-03-21
CN102460775A (zh) 2012-05-16
US11283137B2 (en) 2022-03-22
JP2020024934A (ja) 2020-02-13
CN102460772A (zh) 2012-05-16
EP2436064A4 (en) 2014-04-09
WO2010138179A1 (en) 2010-12-02
CN102460776A (zh) 2012-05-16
EP2436061B1 (en) 2019-10-16
US20220263198A1 (en) 2022-08-18
US9209446B2 (en) 2015-12-08
JP2019216107A (ja) 2019-12-19
US10950837B2 (en) 2021-03-16
EP2928004A1 (en) 2015-10-07
US20160164145A1 (en) 2016-06-09
AU2010254533B2 (en) 2014-03-20
EP2436063A1 (en) 2012-04-04
US20120064404A1 (en) 2012-03-15
US20240039120A1 (en) 2024-02-01
EP2436063A4 (en) 2014-06-04
JP7213567B2 (ja) 2023-01-27
JP2017199680A (ja) 2017-11-02
US11621459B2 (en) 2023-04-04
WO2010138177A1 (en) 2010-12-02
JP6868299B2 (ja) 2021-05-12
EP2928004B1 (en) 2018-04-04
KR20120036862A (ko) 2012-04-18
US20150140205A1 (en) 2015-05-21
US20210242537A1 (en) 2021-08-05
EP2436061A4 (en) 2014-01-08
US10403874B2 (en) 2019-09-03
CN102460775B (zh) 2015-05-13
US20120115029A1 (en) 2012-05-10
JP2015130352A (ja) 2015-07-16
US20210184317A1 (en) 2021-06-17
US10651444B2 (en) 2020-05-12
JP2012528457A (ja) 2012-11-12
CN104916847A (zh) 2015-09-16
US20120070712A1 (en) 2012-03-22
US20220140442A1 (en) 2022-05-05
JP6082248B2 (ja) 2017-02-15
WO2010138178A1 (en) 2010-12-02
US20190386279A1 (en) 2019-12-19
US8962182B2 (en) 2015-02-24
US20220344776A1 (en) 2022-10-27
US11605862B2 (en) 2023-03-14
KR102138988B1 (ko) 2020-07-29
US11335976B2 (en) 2022-05-17
US9660297B2 (en) 2017-05-23
KR20180081749A (ko) 2018-07-17
JP6159083B2 (ja) 2017-07-05
US9118047B2 (en) 2015-08-25
RU2513988C2 (ru) 2014-04-27
KR20180081752A (ko) 2018-07-17
JP2021106167A (ja) 2021-07-26
EP2436064A1 (en) 2012-04-04
US11870097B2 (en) 2024-01-09
WO2010138176A1 (en) 2010-12-02
JP5782634B2 (ja) 2015-09-24
CN104916847B (zh) 2018-08-07

Similar Documents

Publication Publication Date Title
US11777176B2 (en) Lithium batteries utilizing nanoporous separator layers

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application