明 細 書
非水電解質二次電池
技術分野
[0001] 本発明は、非水電解質二次電池に関し、特にその安全性の改善に関する。
背景技術
[0002] 近年、電子機器のポータブル化およびコードレス化が急速に進んでいる。これに伴 い、電子機器の駆動用電源として、高電圧および高エネルギー密度を有する非水電 解質二次電池の実用化が進んで 、る。
[0003] 非水電解質二次電池の正極は、一般に酸化還元電位の高い複合リチウム酸化物 を含む。複合リチウム酸ィ匕物には、例えばコバルト酸リチウム、ニッケル酸リチウム、マ ンガン酸リチウム等が用いられる。一方、非水電解質二次電池の負極は、一般に炭 素材料を含む。また、非水電解質二次電池は、リチウム塩を溶解させた非水溶媒か らなる電解質を含む。リチウム塩には、例えば LiClO、 LiPF等が用いられる。正極と
4 6
負極との間にはセパレータが介在している。セパレータには、例えばポリオレフイン系 材料からなる微多孔フィルムが用いられて 、る。
[0004] 何らかの要因により、電池内部で比較的低い抵抗の短絡が発生した場合、短絡点 には大きな電流が集中して流れる。そのため、電池が発熱して高温に至ることがある 。このような現象が起こらないように、電池には様々な安全対策が講じられている。
[0005] 製造工程の側面では、金属粉の管理や、製造雰囲気中の粉塵の管理を行い、電 池内部への異物の混入を防止している。また、抵抗の低い集電体の露出部分を、例 えば絶縁テープで保護することにより、内部短絡を極力抑制している。
[0006] シャットダウン機能を有するセパレータも用いられている。万一、電池内部で比較的 低 、抵抗の短絡が発生した場合、シャットダウン機能を有するセパレータの細孔は、 約 135°Cで閉塞し、イオン電流を遮断する。よって、短絡電流はカットされ、発熱が停 止する。しかし、電池の表面温度は約 120°C程度に上昇する。
[0007] 内部短絡を防止するために、電極上に、無機微粒子および榭脂結着剤からなり、 厚さ 0. 1〜200 /ζ πιである層を形成することも提案されている。電池の内部短絡は、
電池の製造工程中に、電極力も部分的に脱落する材料に起因する。この提案は、こ のような内部短絡を抑制し、生産歩留まりを向上させることを目的とする(特許文献 1 参照)。
[0008] セパレータ上に、耐熱性榭脂 (例えばァラミド)を付与することも提案されている。こ の提案も、電池の内部短絡を防止するための安全対策を意図したものである (特許 文献 2参照)。
特許文献 1:特開平 7— 220759号公報
特許文献 2:特開平 9 - 208736号公報
発明の開示
発明が解決しょうとする課題
[0009] 従来の提案によれば、局所的な内部短絡が発生した場合には、ある程度、発熱を 抑制することが可能である。しかし、例えば釘刺し試験を行う場合には、同時に多数 の短絡部が発生する。釘刺し試験は、電池が多数の内部短絡を伴って破損した際の 安全性を評価する試験である。このような極端な短絡状態では、必ずしも電池の発熱 を抑制することができず、電池が高温に至ることがある。
[0010] 例えば、正極がコバルト酸リチウムを含み、負極がグラフアイトを含み、セパレータが ポリエチレン製微多孔フィルムである一般的なリチウムイオン電池の釘刺し試験を行 うと、セパレータのシャットダウン機能が発現するまで電池温度は上昇し、電池の表面 温度は 120°C付近になる。この温度上昇は、短絡電流により電池内部で発生したジ ユール熱による。
[0011] セパレータのシャットダウン機能により、短絡電流がカットされるため、電池温度がそ れ以上に達するほどの発熱は抑制される。蓄電池工業会で定められている釘刺し試 験および圧壊試験における安全性評価の基準によれば、発煙、発火および破裂の ないことが要求される。一方、電池温度に関する基準は特に定められていない。その ため、電池の表面温度が 120°C程度となっても、シャットダウン機能により発熱が抑 制されれば、安全性の基準を満たすことになる。
[0012] しかし、安全性の基準を満たす場合であっても、電池の表面温度が 120°C付近に まで上昇すると、その電池を内蔵した電子機器の温度も上昇する。よって、電子機器
の筐体の変形等が起こり、電子機器の安全性が低減する可能性がある。よって、電 池の安全性もしくは信頼性を更に高めることが望まれている。例えば内部短絡が発 生した場合でも、電池表面の最高到達温度を 80°C以下に抑制することが熱望されて いる。
[0013] 特許文献 1の提案 (電極上に、無機微粒子および榭脂結着剤からなり、厚さ 0. 1〜 200 mである層を形成する提案)では、釘刺し試験においては、電池温度が 80°C を超える高温に達する場合がある。
[0014] 特許文献 2の提案 (セパレータ上に、耐熱性榭脂を付与する提案)でも、釘刺し試 験においては、電池表面温度が 80°Cを超える高温に達する場合がある。
[0015] よって、従来の提案では、釘刺し試験のように、同時に多数の短絡点が発生する場 合には、必ずしも電池表面温度を 80°C以下に抑制することができない。釘刺し試験 にお 、て、電池表面高温が 80°Cを超える理由として以下が考えられる。
[0016] 単発的な内部短絡であれば、無機微粒子および榭脂結着剤からなる層や耐熱性 榭脂の存在により、短絡点の拡大は防がれる。短絡点は自己の発熱によって瞬時に 焼失するため、短絡状態は 0. 1〜0. 5秒間で終了し、その後、電気的な絶縁が回復 する。短絡電流が遮断されると、発生した熱は電池全体へ拡散する。よって、電池温 度がそれほど高温に達することはない。短絡点以外の低温部位は、比較的低温であ るため、熱の拡散は速やかに起こる。
[0017] 一方、釘刺し試験の場合、電池内に同時に多数の短絡点が発生する。このような 過酷な状況では、内部短絡による発熱だけでなぐ正極活物質の熱分解反応による 発熱が連続的に発生すると考えられる。よって、熱を拡散する放熱速度が、発熱速 度に追いつかず、正極活物質の熱分解反応が連鎖的に拡大すると考えられる。これ により、短絡点付近では、正極活物質の脱落や焼失が起こる。よって、正極集電体( 例えばアルミニウム箔)が露出し、新たな短絡点が生成される。その結果、内部短絡 状態が持続し、電池表面温度はシャットダウン機能が作動する 120°C付近まで上昇 し続けることになる。なお、単発的な内部短絡であれば、正極活物質の熱分解反応 が進行することはな 、。正極活物質の脱落や焼失による短絡点の増加も起こらな 、と 考えられる。
課題を解決するための手段
[0018] 本発明は、上記状況の改善を図るものであり、高エネルギー密度を維持しながら、 従来よりも安全性を高めた非水電解質二次電池を提供するものである。
[0019] 本発明は、複合リチウム酸化物を含む正極合剤およびこれを担持する正極集電体 を含む正極、リチウムを吸蔵および放出可能な材料を含む負極、ポリオレフイン榭脂 を含むセパレータ、非水電解質、ならびに、正極と負極との間に介在する耐熱性絶 縁層を具備する非水電解質二次電池であって、正極合剤の 200°Cにおける推定発 熱速度は、 50WZkg以下であり、推定発熱速度は、(i)加速速度熱量計もしくは暴 走反応測定装置 (ARC)により、絶対温度 Tと、正極合剤の発熱速度 Vとの関係を求 め、(ii)ァレニウスの定理に基づいて、絶対温度 Tの逆数 (X座標)と、発熱速度 Vの 対数 (Y座標)との関係をプロットし、 (iii)T< 200°C (473K)の発熱領域に存在する プロットに適合する近似直線を求め、(iv)得られた近似直線を、 T= 200°C (473K) の温度軸に外挿することにより求められる、非水電解質二次電池に関する。
[0020] ここで、発熱領域とは、上記ァレニウスの定理に基づくプロットにおいて、負の傾き を有する近似直線の傾きの絶対値が最も大きくなる領域を指す。すなわち、近似直 線は、負の傾きの絶対値が最大となるように描く。また、外挿 (Extrapolation)は、既知 の数値データを基にして、そのデータの範囲外にお!/、て予想される数値を求める方 法であり、様々な分野で用いられている。
[0021] 複合リチウム酸ィ匕物には、例えば以下を用いることが好ましい。
(i)一般式(1): Li M Me Oで表される組成を有し、元素 Mは、 Al、 Mn、 Sn、 In、 F a b c 2
e、 Cu、 Mg、 Ti、 Zn、 Zrおよび Moよりなる群力 選択される少なくとも 1種であり、元 素 Meは、 Niおよび Coよりなる群力 選択される少なくとも 1種であり、一般式(1)は、 0. 9< a< l. 2、 0. 02≤b≤0. 5、 0. 5≤c≤0. 98、および 0. 95≤b + c≤l. 05 を満たす複合リチウム酸化物。
(ii)一般式(2): Li M Ni Co Oで表される組成を有し、元素 Mは、 Al、 Mn、 Sn、 In a b d e 2
、 Fe、 Cu、 Mg、 Ti、 Zn、 Zrおよび Moよりなる群から選択される少なくとも 1種であり 、一般式(2)は、 0. 9< a< l. 2、 0. 02≤b≤0. 5、 0. l≤d≤0. 5、 0. l≤e≤0. 5、および 0. 95≤b + d+e≤l. 05を満たす複合リチウム酸化物。一般式(2)は、 0
. 15≤b≤0. 4、0. 3≤d≤0. 5および 0. 15≤e≤0. 4を満たすこと力特に好まし!/ヽ
(iii)任意の糸且成を有し、元素 Mを含み、元素 Mは、 Al、 Mn、 Sn、 In、 Fe、 Cu、 Mg、 Ti、 Zn、 Zrおよび Moよりなる群力 選択される少なくとも 1種であり、元素 Mは、内部 よりも表層部に多く分布する複合リチウム酸化物。一般式(1)および (2)で表される 複合リチウム酸ィ匕物においても、元素 Mは、複合リチウム酸ィ匕物の内部よりも表層部 に多く分布することが望まし 、。
[0022] 複合リチウム酸化物は、一般式(3) :X-Si-Yで表される Siィ匕合物で処理されて
3
いることが望ましい。ここで、 Xは、複合リチウム酸化物と反応する官能基を含み、 Yは 、 C、 H、 0、 Fまたは Siを含む官能基を含む。
[0023] 耐熱性絶縁層の厚みは、: L m以上が好適である。
発明の効果
[0024] 本発明によれば、同時に多数の短絡点が生じる過酷な状況においても、内部短絡 による発熱と連鎖的な発熱反応とが効果的に抑制される。よって、短絡の持続が回 避されるため、電池の最高到達温度を安定して 80°C以下に抑制することが可能とな る。本発明によれば、高エネルギー密度を維持しながら、従来よりも安全性を高めた 非水電解質二次電池を提供できる。
図面の簡単な説明
[0025] [図 1]ARCにより求められた絶対温度 Tと各種正極材料の発熱速度 Vとの関係を示 すァレニウスプロットの一例である。
[図 2]ARCの測定原理の説明図である。
発明を実施するための最良の形態
[0026] 本発明の非水電解質二次電池は、複合リチウム酸化物を含む正極合剤およびこれ を担持する正極集電体を含む正極、リチウムを吸蔵および放出可能な材料を含む負 極、ポリオレフイン榭脂を含むセパレータ、非水電解質、ならびに、正極と負極との間 に介在する耐熱性絶縁層を具備する。
[0027] 耐熱性絶縁層は、例えば、正極および負極のどちらか一方において、他方の電極 と対向する面に形成すればよいが、耐熱性絶縁層の配置はこれに限定されない。ま
た、耐熱性絶縁層は、正極の少なくとも一方の面だけに形成してもよぐ負極の少なく とも一方の面だけに形成してもよぐセパレータの少なくとも一方の面だけに形成して もよい。また、耐熱性絶縁層は、正極の少なくとも一方の面と負極の少なくとも一方の 面だけに形成してもよぐ負極の少なくとも一方の面とセパレータの少なくとも一方の 面だけに形成してもよぐセパレータの少なくとも一方の面と正極の少なくとも一方の 面だけに形成してもよい。また、耐熱性絶縁層は、正極の少なくとも一方の面と負極 の少なくとも一方の面とセパレータの少なくとも一方の面に形成してもよい。さらに、耐 熱性絶縁層は、正極力もも、負極からも、セパレータからも独立したシート状であって ちょい。
[0028] 本発明は、正極合剤の 200°Cにおける推定発熱速度が 50WZkg以下に制御され ている点に一つの特徴を有する。ここで、推定発熱速度は、(i)加速速度熱量計もし くは暴走反応測定装置(Accelerated rate calorimeter: ARC)〖こより、絶対温度 Tと正 極合剤の発熱速度 Vとの関係を求め、(ii)ァレニウスの定理に基づいて、絶対温度 T の逆数 (X座標)および発熱速度 Vの対数 (Y座標)との関係をプロットし、 (iii) T< 20 0°C (473K)の発熱領域に存在するプロットに適合する近似直線を求め、(iv)得られ た近似直線を T= 200°C (473K)の温度軸に外挿することにより、求められる。
[0029] 上記外挿で求められる正極合剤の 200°Cにおける推定発熱速度が 50WZkg以下 である場合、特に同時多発的に短絡点が生じる過酷な状況において、耐熱性絶縁 層による安全性への寄与が顕著に高められる。本発明は、このような知見に基づい ており、従来に比べて極めて高度な安全性を実現している。
[0030] 例えば以下のような正極材料を用いることにより、正極合剤の 200°Cにおける推定 発熱速度を 50WZkg以下に抑制することができる。
第 1に、一般式(1): Li M Me Oで表される組成を有し、元素 Mは、 Al、 Mn、 Sn、 I a b c 2
n、 Fe、 Cu、 Mg、 Ti、 Zn、 Zrおよび Moよりなる群から選択される少なくとも 1種であり 、元素 Meは、 Niおよび Coよりなる群力 選択される少なくとも 1種であり、一般式(1) は、 0. 9< a< l. 2、 0. 02≤b≤0. 5、 0. 5≤c≤0. 98、および 0. 95≤b + c≤l. 05を満たす複合リチウム酸化物を、推定発熱速度を 50WZkg以下に抑制するのに 有効な正極材料として挙げることができる。
[0031] 推定発熱速度を小さくするという観点から、元素 Mのなかでも特に、 Mn、 A1および Mgが好ましぐ Mnが最も好ましい。なお、 Al、 Mn、 Sn、 In、 Fe、 Cu、 Mg、 Ti、 Zn、 Zrおよび Moは、 、ずれも推定発熱速度を低下させる効果がある。
[0032] ここで、 a値は、初期値であり、電池の充放電により増減する。初期値は、実質上、 放電状態の電池に含まれる複合リチウム酸化物の a値に一致する。合成直後の複合 リチウム酸ィ匕物の標準的な a値は 1である。
[0033] b値が 0. 02未満では、元素 Mの効果が確認できず、 0. 5を超えると、容量低下が 大きくなる。
c値が 0. 5未満では、一定以上の容量を確保することが困難であり、 0. 98を超えると 、推定発熱速度を低下させる効果が得られない。
[0034] 一般式(1)は、 0. 95≤b + c≤l. 05を満たす。合成直後の初期状態(充放電の履 歴を有さない状態)において、 b + cの標準値は 1である力 b + cは厳密に 1である必 要はない。 0. 95≤b + c≤l . 05の範囲では、実質上 b + c= lと見なすことができる
[0035] 第 2に、一般式(2): Li M Ni Co Oで表される組成を有し、元素 Mは、 Al、 Mn、 S a b d e 2
n、 In、 Fe、 Cu、 Mg、 Ti、 Zn、 Zrおよび Moよりなる群から選択される少なくとも 1種 であり、一般式(2)は、 0. 9< a< l . 2、 0. 02≤b≤0. 5、 0. l≤d≤0. 5、 0. l≤e ≤0. 5、および 0. 95≤b + d+e≤l. 05を満たす複合リチウム酸化物を、推定発熱 速度を 50WZkg以下に抑制するのに有効な正極材料として挙げることができる。一 般式(2)は、 0. 15≤b≤0. 4、0. 3≤d≤0. 5および 0. 15≤e≤0. 4を満たすこと が特に好ましい。
一般式 (2)でも、 a値は、初期値であり、電池の充放電により増減する。また、 b値が 0 . 02未満では、元素 Mの効果が確認できず、 0. 5を超えると、容量低下が大きくなる d値が 0. 1未満では、 Niの添加効果 (例えば理論容量を向上させる効果)が低ぐ 0. 5を超えると、電圧が低くなる上に、寿命特性も低下する。
e値が 0. 1未満では、 Coの添加効果 (例えば電圧を向上させる効果)が低ぐ 0. 5を 超えると、正極の利用率が低下する。
[0036] 一般式(2)は、 0. 95≤b + d+e≤l. 05を満たす。ただし、合成直後の初期状態( 充放電の履歴を有さない状態)において、 b + d+eの標準値は 1である力 b + d+e は厳密に 1である必要はない。 0. 95≤b + d+e≤l. 05の範囲では、実質上 b + d + e = lと見なすことができる。
[0037] 一般式(2)で表され、 200°Cにおける推定発熱速度を 50WZkg以下に制御する 正極材料の具体例として、例えば LiMn Ni Co O (0. 15≤b≤0. 35、 0. 3≤d≤0 b d e 2
. 5および 0. 25≤e≤0. 35)力挙げられる。
[0038] 第 3に、任意の組成を有し、元素 Mを含み、元素 Mは、 Al、 Mn、 Sn、 In、 Fe、 Cu、 Mg、 Ti、 Zn、 Zrおよび Moよりなる群力 選択される少なくとも 1種であり、元素 Mは 、内部よりも表層部に多く分布する複合リチウム酸ィ匕物を、推定発熱速度を 50WZk g以下に抑制するのに有効な正極材料として挙げることができる。
[0039] このような正極材料は、任意の組成を有する複合リチウム酸化物(例えば一般式(1 )または(2)で表される複合リチウム酸化物)の表面に、元素 Mを含む化合物を付与 し、元素 Mを複合リチウム酸ィ匕物内に拡散させることにより得ることができる。例えば、 複合リチウム酸ィ匕物と少量の元素 Mを含む化合物を混合し、適温で焼成すれば、元 素 Mが複合リチウム酸ィ匕物の表面から内部に拡散する。その結果、元素 Mが内部よ りも表層部に多く分布する複合リチウム酸ィ匕物を得ることができる。あるいは、元素 M を含む化合物を溶解もしくは分散させた液と、複合リチウム酸化物とを混合し、その 後、液状成分を除去することで、元素 Mを担持した複合リチウム酸化物を得ることが できる。この複合リチウム酸化物を適温で焼成すれば、元素 Mが複合リチウム酸ィ匕物 の表面から内部に拡散する。
[0040] 元素 Mを含む化合物は、 200°Cにおける推定発熱速度を抑制する効果が大きい。
ただし、複合リチウム酸ィ匕物に添加する元素 Mを含む化合物の量が多くなると、正極 の利用率が低下し、電池のエネルギー密度が低下する。また、正極の発熱反応は、 活物質粒子の表面で起こる。よって、元素 Mを活物質粒子の表層部に多く存在させ ることで、正極の利用率を大きく低下させずに、効率よく発熱を抑制できる。すなわち 、元素 Mを活物質粒子の表層部に集中分布させることで、少量の元素 Mにより、推 定発熱速度を抑制できる。
[0041] 複合リチウム酸化物 1モルあたり、元素 Mが 0. 0001〜0. 05モルとなる量の元素
Mを含む化合物を用いることが好ま 、。
[0042] 第 4に、一般式(3) : X- Si-Yで表される Siィ匕合物で処理されている複合リチウム
3
酸化物を、推定発熱速度を 50WZkg以下に抑制するのに有効な正極材料として挙 げることができる。ここで、 Xは、複合リチウム酸化物と反応する官能基を含み、 Yは、 C、 H、 0、 Fまたは Siを含む官能基を含む。このような Siィ匕合物で複合リチウム酸ィ匕 物の表面を改質することにより、活物質粒子の表面で起こる発熱反応が抑制され、推 定発熱速度が抑制される。また、 Si化合物で複合リチウム酸化物を処理しても、正極 の利用率は大きく低下しない。
[0043] 例えば、複合リチウム酸化物を、 X- Si-Yで表されるシランカップリング剤で処理
3
することが望ましい。複合リチウム酸化物を、 X- Si-Yで表されるシランカップリング
3
剤で処理する方法は、特に限定されない。例えば、シランカップリング剤を水と混合し 、得られた混合液を複合リチウム酸ィ匕物と混合し、その後、乾燥させる。ここで、シラン カップリング剤と水との混合液において、シランカップリング剤の濃度は、 0. 01重量 %〜5重量%程度が好ましぐ 0. 1重量%〜3重量%程度が更に好ましい。また、シ ランカップリング剤の量は、複合リチウム酸ィ匕物 100重量部あたり、 0. 001-0. 5重 量部が好ましぐ 0. 01〜0. 1重量部が更に好ましい。
[0044] シランカップリング剤には、例えば、ビニルトリエトキシシラン、ビニルトリメトキシシラ ン、ビュルトリクロルシラン、ビュルトリス(2-メトキシエトキシ)シラン、 γ -メタアタリ口 キシプロピルトリメトキシシラン、 γ -メタアタリロキシプロピルトリエトキシシラン、 γ -ァ ミノプロピルトリエトキシシラン、 γ -ァミノプロピルトリメトキシシラン、 Ν- β - (アミノエ チル) - γ -ァミノプロピルトリメトキシシラン、 N- j8 - (アミノエチル) - Ύ -アミノプロピ ルトリエトキシシラン、 Ί -ウレイドプロピルトリエトキシシラン、 Ί -ウレイドプロピルトリメ トキシシラン、 13 - (3、 4エポキシシクロへキシル)ェチルトリメトキシシラン、 j8 - (3、4 エポキシシクロへキシル)ェチルトリエトキシシラン、 γ -グリシドキシプロピルトリメトキ シシラン、 γ -グリシドキシプロピルトリエトキシシラン、 γ -メルカプトプロピルトリメトキ シシラン、 γ -メルカプトプロピルトリエトキシシラン、 γ -クロルプロピルトリメトキシシ ラン、 Ύ -クロルプロピルトリエトキシシラン、メチルトリエトキシシラン、メチルトリメトキ
シシラン、フエニルトリエトキシシラン、フエニルトリメトキシシランなどを用いることがで きる。これらのうちでは、特に、ビュルトリエトキシシラン、ビュルトリメトキシシラン、ビ- ルトリス(2-メトキシェトキシ)シラン、 Ί -メタアタリロキシプロピルトリメトキシシラン、 γ -メタアタリロキシプロピルトリエトキシシラン、 γ -ァミノプロピルトリエトキシシラン、 y -ァミノプロピルトリメトキシシラン、 Ν— —(アミノエチル)― Ύ -ァミノプロピルトリメト キシシラン、 N- j8 - (アミノエチル) - γ -ァミノプロピルトリエトキシシラン、 γ -ゥレイ ドプロピルトリエトキシシラン、 γ -ウレイドプロピルトリメトキシシラン、 13 - (3、 4ェポキ シシクロへキシル)ェチルトリメトキシシラン、 /3 - (3、 4エポキシシクロへキシル)ェチ ルトリエトキシシラン、 Ί -グリシドキシプロピルトリメトキシシラン、 Ί -グリシドキシプロ ピルトリエトキシシランが好まし 、。
[0045] 耐熱性絶縁層は、例えば、無機酸化物フィラーおよび榭脂成分を含む。無機酸ィ匕 物フイラ一は、耐熱性が高い。よって、電池が比較的高温に至った場合でも、耐熱性 絶縁層は、機械的強度を高く維持することができる。耐熱性絶縁層には、様々な榭 脂成分を用いることができるが、耐熱性の高い榭脂成分を用いることにより、特に優 れた耐熱性絶縁層が得られる。
[0046] 耐熱性絶縁層の榭脂成分は、 250°C以上の熱分解開始温度を有することが望まし い。また、榭脂成分は、高温で大きく変形しないことが望ましい。よって、耐熱性絶縁 層の榭脂成分は、非晶質もしくは非結晶性であることが望ましい。また、榭脂成分の 熱変形開始温度もしくはガラス転移温度 (Tg)は 250°C以上であることが望ま 、。
[0047] なお、榭脂成分の熱分解開始温度や熱変形開始温度やガラス転移温度は、示差 走査熱量測定(DSC : differential scanning calorimetry)や、熱重量測定 示差熱分 析 (TG— DTA: thermogravimetry— differential thermal analysis)により測疋すること力 できる。例えば、 TG— DTA測定における重量変化の始点は、熱分解開始温度に相 当し、 DSC測定における吸熱方向への変曲点は、熱変形温度やガラス転移温度に 相当する。
[0048] 耐熱性絶縁層の榭脂成分の具体例としては、例えば、芳香族ポリアミド等のアミド 榭脂、ポリフッ化ビ-リデン (PVDF)等のフッ素榭脂、アクリロニトリル単位を含むゴム 性状高分子 (変性アクリロニトリルゴム)を好ましく用いることができる。これらは単独で
用いてもよぐ 2種以上を組み合わせて用いてもよい。なかでも適度な耐熱性、弾力 性および結着性を有することから、アクリロニトリル単位を含むゴム性状高分子が最も 適している。
[0049] 無機酸ィ匕物フイラ一には、例えばアルミナ (Al O )、チタ-ァ (TiO )、シリカ(SiO )
2 3 2 2
、ジルコユア、マグネシア等を用いることができる。これらは単独で用いてもよぐ 2種 以上を組み合わせて用いてもよい。これらのうちでは、安定性、コスト、取り扱いの容 易さの観点から、特にアルミナ (なかでも a—アルミナ)やマグネシアが好ましい。
[0050] 無機酸ィ匕物フイラ一のメディアン径 (D50 :平均粒径)は、特に限定されないが、一 般に 0. 1〜5 /ζ πιの範囲であり、 0. 2〜1. 5 mであることが望ましい。
[0051] 耐熱性絶縁層に占める無機酸化物フィラーの含有率は、 50重量%以上 99重量% 以下であることが好ましぐ 90重量%以上 99重量%以下であることが更に好ましい。 無機酸ィ匕物フイラ一の含有率が 50重量%を下回ると、榭脂成分が過多となる。よつ て、フィラー粒子による細孔構造の制御が困難になることがある。一方、無機酸化物 フィラーの含有率が 99重量%を上回ると、榭脂成分が過少となる。よって、耐熱性絶 縁層の強度や、電極表面もしくはセパレータ表面に対する密着性が低下する場合が ある。
[0052] 耐熱性絶縁層の厚みは、特に限定されな!ヽ。ただし、耐熱性絶縁層による短絡抑 制機能もしくは短絡点の絶縁ィ匕を十分に確保し、かつ設計容量を維持する観点から 、 1 μ m以上であることが望ましぐ 2〜10 μ mであることが特に好ましい。
[0053] 本発明には、様々な従来のセパレータを用いることができる。例えばポリオレフイン 榭脂からなる単層構造のセパレータゃ、ポリオレフイン榭脂からなる多層構造のセパ レータを用いることができる。セパレータの厚みは、特に限定されないが、 15〜25 m程度が望ましい。
[0054] 正極合剤は、複合リチウム酸化物からなる活物質を必須成分として含み、結着剤、 導電材などを任意成分として含む。正極の結着剤には、例えばポリテトラフルォロェ チレン(PTFE)、変性アクリロニトリルゴム粒子、 PVDF等を用いることができる。これ らは単独で用いてもよぐ 2種以上を組み合わせて用いても良い。 PTFEや変性ァク リロ-トリルゴム粒子は、カルボキシメチルセルロース、ポリエチレンォキシド、変性ァ
クリロ-トリルゴム等と組み合わせて用いることが好ましい。これらは、正極合剤と液状 成分を含むペーストの増粘剤となる。正極の導電材には、アセチレンブラック、ケツチ ヱンブラック、各種黒鉛等を用いることができる。これらは単独で用いてもよぐ 2種以 上を組み合わせて用いても良 ヽ。正極合剤に含まれる結着剤および導電材の量は、 活物質 100重量部あたり、それぞれ 0. 1〜5重量部および 1〜: LO重量部が好適であ る。
[0055] 炭素材料もしくは合金材料を含む負極には、従来の負極で用いられて 、る様々な 材料を用いることができる。炭素材料には、例えば各種天然黒鉛、各種人造黒鉛を 用いることができる。合金材料には、例えばケィ素合金、錫合金等を用いることができ る。炭素材料と合金材料とを複合して用いることもできる。負極にも、結着剤や導電材 を含ませることができる。負極の結着剤や導電材にも、正極の結着剤や導電材として 挙げた上記の材料を用いることができる。
[0056] 非水電解質には、リチウム塩を溶質として溶解した非水溶媒が好ましく用いられる。
リチウム塩および非水溶媒ともに特に限定されないが、リチウム塩には、例えば LiPF
6
、 LiBF等を用いることが好ましい。非水溶媒には、エチレンカーボネート、プロピレ
4
ンカーボネート、ジメチノレカーボネート、ジェチノレカーボネート、メチノレエチノレカーボ ネート等を用いることが好ましい。非水溶媒は、 1種を単独で用いるよりも、 2種以上を 組み合わせて用いることが好ましい。また、非水電解質には、添加剤として、ビ-レン カーボネート、ビュルエチレンカーボネート、シクロへキシルベンゼン等を添カ卩するこ とが望ましい。
[0057] 以下、本発明を各種実験および実施例に基づいて具体的に説明するが、本発明 は以下の実施例に限定されるものではない。
[実験 1]
短絡点近傍温度の測定
円筒形 18650 (直径 18mm、高さ 65mm)の非水電解質二次電池を 10セル作製し た。ここで、正極活物質には、コバルト酸リチウム (LiCoO )を用いた。また、負極表
2
面に、無機酸化物フィラーおよび榭脂成分からなる耐熱性絶縁層を形成した。これら のセルを用いて、釘刺し試験を行い、釘刺し直後の 0. 5秒間に、短絡点近傍の温度
が何 °cまで上昇するかを調べた。
[0058] ここでは、電池表面に熱電対を取り付け、熱電対近傍に釘を刺して、電池表面温度 を測定した。結果を表 1に示す。
[0059] [表 1]
[0060] 上記の円筒形 18650の非水電解質二次電池は、以下の要領で作製した。
(i)正極の作製
コバルト酸リチウム 3kgと、結着剤としての呉羽化学 (株)製の PVDF # 1320 (PVD Fを 12重量0 /0含む N—メチルー 2—ピロリドン(NMP)溶液) 1kgと、アセチレンブラッ ク 90gと、適量の NMPとを、双腕式練合機で攪拌し、正極合剤ペーストを調製した。 このペーストを 15 μ m厚のアルミニウム箔の両面に塗布し、乾燥後、圧延して、正極 合剤層を形成した。この際、アルミニウム箔および正極合剤層からなる極板の厚みを 160 /z m〖こ制御した。得られた極板を、直径 18mm、高さ 65mmサイズの円筒形の 電池ケースに挿入可能な幅と長さに裁断し、正極を得た。
(ii)負極の作製
人造黒鉛 3kgと、 日本ゼオン (株)製の BM—400B (スチレン ブタジエン共重合 体を 40重量%含む水性分散液) 75gと、増粘剤としてのカルボキシメチルセルロース (CMC) 30gと、適量の水とを、双腕式練合機で攪拌し、負極合剤ペーストを調製し た。このペーストを 10 m厚の銅箔の両面に塗布し、乾燥後、圧延して、負極合剤層
を形成した。この際、銅箔および負極合剤層からなる極板の厚みを 180 mに制御 した。得られた極板を、前記電池ケースに挿入可能な幅と長さに裁断し、負極を得た
(iii)非水電解質の調製
エチレンカーボネートと、メチルェチルカーボネートとを、体積比 1 : 3で含む混合溶 媒に、六フッ化リン酸リチウム (LiPF )を ImolZLの濃度で溶解し、非水電解質を調
6
製した。
(iv)耐熱性絶縁層の原料ペーストの調製
無機酸ィ匕物フイラ一であるメディアン径 0. 3 mのアルミナを 950gと、榭脂成分で ある日本ゼオン (株)製の BM - 720H (アクリロニトリル単位を含むゴム性状高分子を 8重量%含む NMP溶液) 625gと、適量の NMPとを、双腕式練合機で攪拌し、耐熱 性絶縁層の原料ペーストを調製した。
(V)電池の糸且立
耐熱性絶縁層の原料ペーストを負極の両面に塗布し、塗膜を乾燥させて、各面に 厚みが 0. 5 μ mの耐熱性絶縁層を形成した。
[0061] 正極と、厚み 0. 5 μ mの耐熱性絶縁層を形成した負極とを、厚み 20 μ mのポリエ チレン榭脂の単層カゝらなるセパレータを介して捲回して、極板群を構成した。この極 板群を電池ケース内に挿入し、非水電解質を 5. 5g電池ケース内に注液し、ケース の開口部を封口した。こうして、円筒形の非水電解質二次電池 (公称容量 2000mA h)を完成させた。
[0062] 釘刺し試験は、以下の条件で行った。
[0063] まず、各電池(円筒形電池 1〜10)に対し、以下の充電を行った。
[0064] 定電流充電: 1400mA (終止電圧 4. 25V)
定電圧充電: 4. 25V (終止電流 100mA)
充電後の電池に対して、その側面から、 2. 7mm径の鉄製丸釘を、 20°C環境下で 、 5mmZ秒の速度で貫通させ、貫通後 0. 5秒間の短絡点近傍 (すなわち釘刺し点 近傍)の電池温度を観測した。
[0065] 表 1の結果より、短絡点近傍の温度は 0. 5秒間で、最低でも 200°Cまで上昇してい
ることがわ力つた。充電状態のコバルト酸リチウムは、 200°C付近になると熱分解を起 こすことが一般的に知られている。このことから、釘刺し試験のように同時多発的に短 絡点が生じる状況では、短絡点近傍で電流によるジュール発熱が «続的に起こり、 正極活物質の分解反応熱が発生したと予想される。このことは、無機酸ィ匕物フイラ一 と榭脂成分力 なる耐熱性絶縁層を具備する従来の電池では、同時多発的に内部 短絡が発生する状況では、安全性を確実に確保できな ヽことを示唆して ヽる。
[0066] 以上の結果より、同時多発的に内部短絡が発生する状況においても安全性を確実 に確保するためには、正極材料の熱安定性を制御することが非常に重要であること が理解できる。より具体的には、耐熱性絶縁層による短絡防止を講じるだけではなく 、正極活物質の熱分解反応を抑制することが重要となる。正極活物質は、短絡点近 傍が 200°C以上の高温に達した場合でも分解しにくい材料であることが要望される。
[実験 2]
正極活物質の検討
耐熱性絶縁層と正極活物質の熱安定性が非常に重要な要件であることから、次に 正極合剤の熱安定性の検討を行った。ここでは、表 2に示す正極材料 1〜3を含む正 極合剤の 200°Cにおける推定発熱速度を測定した。
[0067] [表 2]
[0068] まず、表 2に示した材料を正極活物質として用い、実験 1と同様にして、円筒形 186 50の非水電解質二次電池を作製し、得られた電池を以下の条件で充電した。以下、 正極材料 1〜3を用いて作製した電池を、それぞれ電池 1A〜3Aと称する。
[0069] 定電流充電: 1400mA (終止電圧 4. 25V)
定電圧充電: 4. 25V (終止電流 100mA)
ただし、電池電圧 4. 25Vのとき、金属 Liに対する正極電位は 4. 35Vに相当する。
[0070] 充電状態の電池 1A〜3Aを、露点 40°C以下の雰囲気で分解し、正極を取り出し
た。その正極を 3 X 6cmの試料に切り出した。次いで、正極の試料を、内面に Niメッ キを施した鉄製円筒ケース(直径 8mm、高さ 65mm)に封入し、ケースの開口部を封 口した。
[0071] 次に、円筒ケース内に密封された正極の試料を用い、加速速度熱量計もしくは暴 走反応測定装置(Accelerated rate calorimeter: ARC)を用いて、表 3に示す条件で 、絶対温度 Tと正極合剤の発熱速度 Vとの関係に関するデータを求めた。
[0072] [表 3]
[0073] ARCでは、試料が断熱環境に置かれるため、試料の温度上昇速度は、そのまま試 料の発熱速度を反映する。発熱反応が検知感度以上の発熱速度を有するまで、段 階的に強制的な昇温を繰り返し、検知感度以上の発熱速度を検知すると、断熱環境 で、試料の発熱速度の測定が行われる。
表 3中の用語の意味を、概念図 2を参照しながら以下に記す。
昇温ステップ:試料の自発的な発熱が検知されない領域において、段階的に強制的 に上昇させる環境温度の温度幅(図 2の「1」)である。
発熱検知感度:試料の自己発熱を検知する感度(図 2の「2」 )である。感度は材料に 基づ!ヽて任意に設定される。検知時間( Δ t)内における試料の自発的な発熱による 温度上昇幅を Δ Tとした場合、感度は Δ ΤΖ Δ tで表される。
昇温後安定時間:所定の昇温ステップに基づ 、て、強制的に環境温度を昇温させた 後、試料温度と炉内環境温度とが安定するまで放置する時間(図 2の「3」)である。こ の時間は任意に設定される。
発熱認識温度幅:試料の自己発熱を認識する温度幅(図 2の「4」 )である。発熱認識 温度幅が 0. 2°Cで、発熱検知感度が 0. 04°CZ分である場合、 0. 04°CZ分以上の 昇温が 5分間(0. 2/0. 04)継続した場合に発熱有りと認識される。
[0074] なお、従来、正極活物質の熱安定性の評価には、示差走査熱量測定 (DSC: differ ential scanning calorimetry)や然重量 定—示差熱分析 (TG― DTA: thermogravi metry- differential thermal analysis)等の熱分析装置が利用されている。し力し、 DS Cや TG— DTAによる熱安定性の評価には、以下の問題点がある。まず、 DSCや T G— DTA等による測定では、発熱速度や発熱ピークが測定条件 (昇温速度やサン プル量)によって変化する。よって、発熱速度を正確に求めるには適さない。次に、内 部短絡等では、短絡点近傍が瞬時に 200°C以上まで上昇する。よって、 200°C未満 で起こる発熱も同時に発生する。しかし、 DSCや TG— DTA等では温度域の異なる 発熱の速度を予測することができない。反面、 ARCは断熱測定のため、サンプルの 温度上昇速度は、そのままサンプルの発熱速度を表す。このため、 ARCは、熱分析 手法と異なり、発熱反応の反応速度を測定するのに非常に有効である。そこで、本発 明では、内部短絡時における正極合剤の熱安定性の評価にぉ 、て ARCを用いた。
[0075] ARCにより得られたデータは、図 1に示すように、ァレニウスの定理に基づいてプロ ットした。すなわち、絶対温度 Tの逆数 (X座標)と、発熱速度 Vの対数 (Y座標)との 関係をプロットした。こうして得られた化学反応の発熱速度を示すプロットの集合は、 直線で近似することができる。よって、近似直線を所定の温度軸に外挿することによ つて、実際に発熱が観測された温度領域とは異なる温度領域における発熱速度を推 定することが可能となる。ここでは、図 1に示すように、 Tく 200°C (473K)の発熱領 域に存在するプロットに適合した近似直線を求め、その近似直線を T= 200°C (473 K)の温度軸に外挿して、推定発熱速度を求めた。得られた推定発熱速度の結果を 表 4に示す。
[0076] [表 4] 正極材料 1 L i n 1 3 N i i / 3 C ο π /302 1 O W/ k g 正捶材料 2 L i A 1 0. 0 5 N i 0. 8 C o , 50 2 1 0 O W/ k g 正極材料 3 L i C o 02 2 5 0 O W/ k g
[0077] 次に、電池 1A〜3Aの釘刺し試験を、実験 1と同じ条件で行ったところ、正極材料 1 (LiMn Ni Co O )を用いた電池 1Aの場合だけ、釘刺し直後の短絡点近傍の
1/3 1/3 1/3 2
温度が 200°Cに達しな力つた。また、試験後の電池電圧は、試験前に比べて、ほとん ど降下しておらず、試験終了まで電池表面 (短絡点から離れた位置)の最高温度も 8 0°Cに達しな力つた。このこと力ら、内部短絡発生後、短絡点の絶縁ィ匕が有効に働き 、ジュール発熱の発生を最小限に抑制できたと考えられる。
[0078] 以上の結果より、正極材料の熱安定性が所定値、すなわち ARC測定カゝら導かれた 200°Cにおける推定発熱速度が lOWZkgである場合には、同時多発的に内部短絡 が発生する状況においても、安全性を確保できたものと考えることができる。この結果 は、耐熱性絶縁層の作用と正極材料の熱安定性との相乗効果によるものであり、この ような相乗効果が、従来にない高い安全性を有する電池の実現を可能にしたものと 考えられる。このことは、従来は同時多発的に短絡点が生じる状況では電池温度を 8 0°C未満に抑制することが不可能であった力 本発明によれば、それが可能となるこ とを意味する。
[0079] 次に、実施例について説明する。
《実施例 1〜 12および比較例 1〜8》
表 2に示した正極材料 1〜 3およびそれらを混合した以下の正極材料 A〜Eを用い た。また、耐熱性絶縁層の接着面を表 5記載のように設定した。さらに耐熱性絶縁層 の乾燥後の接着面一つあたりの厚さを表 5記載のように設定した。それ以外は、実験 1と同様にして、円筒形 18650の非水電解質二次電池を作製した。
正極材料 A:正極材料 1が 90重量%、正極材料 2が 10重量%の混合物
正極材料 B:正極材料 1が 80重量%、正極材料 2が 20重量%の混合物 正極材料 C:正極材料 1が 70重量%、正極材料 2が 30重量%の混合物 正極材料 D:正極材料 1が 60重量%、正極材料 2が 40重量%の混合物 正極材料 E:正極材料 1が 50重量%、正極材料 2が 50重量%の混合物 ただし、実施例 4〜6、 10〜12においては、セパレータの片面だけに、特許文献 2 の実施例で開示されて 、るァラミド榭脂と無機酸ィ匕物フイラ一力もなる厚み 0. 5〜5 mの膜を耐熱性絶縁層として形成した。具体的には、以下の要領で耐熱性絶縁層
を形成した。
[0080] 攪拌翼、温度計、窒素流入管および粉体添加口を有するセパラブルフラスコを十 分に乾燥した。乾燥したセパラブルフラスコ内に、 NMP4200gと、 200°Cで 2時間乾 燥させた塩化カルシウム 270gを添カ卩し、 100°Cに昇温した。塩化カルシウムが完全 に溶解した後に、フラスコ内を 20± 2°Cに戻し、パラフエ-レンジァミン(PPD) 130g を添加し、完全に溶解させた。この溶液を 20 ± 2°Cに保ったまま、テレフタル酸クロラ イド (TPC)を 5分毎に 24gずつ、 10回(計 240g)分割投入した。その後、この溶液を 1時間熟成させ、減圧下で 30分間攪拌し、脱気し、ポリパラフエ-レンテレフタルアミ ド (PPTA:熱分解開始温度 400°C以上、非晶質)の重合液を得た。
[0081] この重合液に、 5. 8重量%の塩化カルシウムを溶かした NMP溶液を徐々に添加し 、最終的に PPTAが 2. 8重量%となるようにした。ここに平均粒径 0. のアルミ ナ粒子を添カ卩し、 PPTA溶液:アルミナが重量比で 97 : 3のペーストを得た。このぺー ストをバーコ一タでセパレータの片面に塗布し、 80°Cの熱風で乾燥させた。その後、 イオン交換水を用いてセパレータを洗浄し、塩化カルシウム除去し、 PPTA力 なる 耐熱性絶縁層を有するセパレータを得た。極板群においては、耐熱性絶縁層が正 極側になるようにセパレータを配置した。
[0082] 比較例 1、 2においては、正極、負極およびセパレータのいずれにも耐熱性絶縁層 を形成しなかった。
[0083] また、実験 2と同様の条件で、正極合剤の 200°Cにおける推定発熱速度を求めた。
結果を表 5に示す。
[0084] さらに、実験 1と同様の条件で、電池の釘刺し試験を行!、、短絡点から離れた電池 表面の最高到達温度を調べた。実施例 1〜12および比較例 1〜8の電池は、それぞ れ 10個ずつ作製し、釘刺し試験は 10個の電池で行った。各実施例および各比較例 について、 10個の電池の最高到達温度の平均値を求めた。その結果を表 5に示す。
[0085] [表 5]
推定発熱速度 耐熱性絶縁層 耐熱性铯縁層 最高到達 正極材料
(W/kg) の接着面 厚み( m) 温度 (°c) 実施例 1 1 1 0 負極表面 0. 5 52 実施例 2 1 1 0 負捶表面 1 33 実施例 3 1 1 0 負極表面 5 30 実施例 4 1 1 0 Wレ-タ表面 0. 5 58 実施例 5 1 1 0 セ Λ'レ-タ表面 1 39 実施例 6 1 1 0 セ Λ'レ-タ表面 5 35 実施例 7 A 1 5 負極表面 5 35 実施例 8 B 33 負極表面 5 38 実施例 9 C 46 負極表面 5 42 実施例 1 0 A 1 5 セ Λ°レ-タ表面 5 39 実施例 1 1 B 33 セ Λ·レ-タ表面 5 42 実施例 1 2 C 46 レ-タ表面 5 43 比較例 1 2 1 00 なし - 80以上 比較例 2 1 1 0 なし ― 80以上 比較例 3 3 2500 負極表面 5 80以上 比較例 4 3 2500 セ Λ·レ-タ表面 5 80以上 比較例 5 D 61 負極表面 5 80以上 比較例 6 E 72 負極表面 5 80以上 比較例 7 D 61 セ Λ'レ-タ表面 5 80以上 比較例 8 E 72 セ Λ·レ-タ表面 5 80以上 正極材料 1 : LiMn1/3Nil/3Co,/30:
正極材料 2 : Li Al005Ni08Co0 ,02
正極材料 3 : LiCo02
正極材料 A :正極材料 1 正極材料 2 = 90/1 0 (wt¾)
正極材料 B :正極材料 1 Z正極材料 2 =80/20 (wt%)
正極材料 C :正極材料 1 正極材料 2 = 70/30 (wt%)
正極材料 D :正極材料〗 Z正極材料 2 =60/40 (wt¾)
正極材料 E :正極材料 1 /正極材料 2 = 50/50 (wt¾)
[0086] 以下、評価結果について説明する。
[0087] 比較例 1、 2より、コバルト酸リチウムに比べて比較的熱安定性の高い正極活物質を 用いたとしても、同時多発的な内部短絡が発生すると、耐熱性絶縁層が存在しない 場合には、電池表面の最高到達温度を常に 80°C未満に抑えられないことが理解で きる。
[0088] 比較例 3〜8に示されるように、耐熱性絶縁層を有する電池であっても、上記方法 で求めた 200°Cにおける推定発熱速度が 50WZkgを超える正極活物質を用いた場 合には、発熱反応の連鎖を抑制することができず、電池表面の最高到達温度を常に 80°C未満に抑えられないことが理解できる。
[0089] 実施例 7〜12および比較例 5〜8の対比から、耐熱性絶縁層の作用を最大限に有 効活用できる安全領域は、正極活物質の 200°Cにおける推定発熱速度が 50WZkg 以下の領域であることがわかる。この領域を外れると、電池の最高到達温度の上昇が 顕著となることが理解できる。正極活物質の 200°Cにおける推定発熱速度が 50WZ kg以下の領域では、発熱反応の連鎖が効果的に抑制され、短絡点で発生した発熱 が効率良く拡散するものと考えられる。
[0090] 実施例 1〜3より、耐熱性絶縁層の厚みは、同時多発的に短絡が生じる場合の電 池の最高到達温度を抑制する効果に、それほど大きく影響しないことがわかる。耐熱 性絶縁層の厚みが大きい方が、最高到達温度は低くなつているが、あまり厚くなると 電池のエネルギー密度を高く維持することが困難になる。よって、耐熱性絶縁層の厚 みは、 1〜: LO /z m程度の範囲が好適である。耐熱性絶縁層をセパレータの表面に形 成した実施例 4〜6にお 、ても、同様の結果が得られて!/、る。
[0091] なお、耐熱性絶縁層が 1 μ m未満の厚みになると、耐熱性絶縁層それ自身の機械 的強度が低下する。よって、短絡に伴う衝撃により、耐熱性絶縁層が破壊されやすく なる。よって、耐熱性絶縁層が 1 μ m未満の厚みになると、絶縁化機能は、ある程度 低下すると考えられる。
《実施例 13〜24および比較例 9》
表 6に示した正極材料 4〜 13および正極材料 1と 3とを混合した以下の正極材料 F 〜Hを用いた。また、耐熱性絶縁層の接着面を表 6記載のように設定した。さらに耐 熱性絶縁層の乾燥後の接着面一つあたりの厚さを表 6記載のように設定した。それ 以外は、実験 1と同様にして、円筒形 18650の非水電解質二次電池を作製した。な お、正極材料 4〜13には、表 7記載の組成 (LiM Ni Co O )の複合リチウム酸化物 b d e 2
を用いた。
[0092] 正極材料 F:正極材料 1が 90重量%、正極材料 3が 10重量%の混合物
正極材料 G:正極材料 1が 80重量%、正極材料 3が 20重量%の混合物 正極材料 H:正極材料 1が 70重量%、正極材料 3が 30重量%の混合物 [0093] [表 6]
正極材料 F :正極材料 1 正極材料 3 = 90 Z 1 0 (wt¾)
正極材料 G:正極材料 1ノ正極材料 3 = 80/20 (wt¾)
正極材料 H :正極材料 1 /正極材料 3 = 70 30 (wt¾)
[0094] [表 7] 組成 LiMn027M'0 J, Ni05Co0202 原子比 0. 27 0. 03 0. 5 0. 2 正極材料 4 M n M n N i C o 正極材料 5 n A I N i C o 正極材料 6 M n C u N i C o 正極材料 7 M n M g N i C o 正極材料 8 M n T i N i C o 正極材料 9 n Z n N i C o 正極材料 1 0 M n M o N i C o 正極材料 1 1 M n S n N i C o 正極材料 1 2 M n I n N i C o 正極材料 1 3 M n F e N i C o
[0095] また、実験 2と同様の条件で、正極合剤の 200°Cにおける推定発熱速度を求めた。 結果を表 6に示す。
[0096] さらに、実験 1と同様の条件で、電池の釘刺し試験を行い、釘刺し直後の 0. 5秒間 における電池表面の最高到達温度を調べた。実施例 13〜24および比較例 9の電池 は、それぞれ 10個ずつ作製し、釘刺し試験は 10個の電池で行った。各実施例およ び各比較例について、 10個の電池表面の最高到達温度の平均値を求めた。その結 果を表 6に示す。
[0097] 以下、評価結果について説明する。
[0098] 実施例 15と実施例 16〜24との対比から、 Al、 Sn、 In、 Fe、 Cu、 Mg、 Ti、 Znおよ び Moには、推定発熱速度を低下させる効果があることが理解できる。なお、表 7記載 の複合リチウム酸ィ匕物のように、元素 Mとして Mnと他の元素 M1とを併用する場合、 Mnと元素 M1とのモル比は、 99 : 1〜50 : 50、さらには 97 : 3〜90: 10とすることが好 ましい。
なお、活物質にコバルト酸リチウム (正極材料 3)を添加することにより、正極の高密度 化が可能となるので、電池高容量ィ匕の観点からは好ましい。しかし、その割合が 30 %の正極材料 Hでは、釘刺し安全性が低下している。よって、コバルト酸リチウムを併 用する場合、その量は、活物質全体の 20重量%以下とするのが好ましい。
《実施例 25〜35》
表 8に示した正極材料 14〜24 (組成 LiCo M Oの複合リチウム酸ィ匕物)を用い
0.98 0.02 2
た。また、実施例 6と同様に、ァラミド榭脂と無機酸ィ匕物フイラ一力もなる耐熱性絶縁 層を、セパレータ表面に、乾燥後の厚さが 5 mになるように形成した。それ以外は、 実験 1と同様にして、円筒形 18650の非水電解質二次電池を作製した。また、実験 2 と同様の条件で、正極合剤の 200°Cにおける推定発熱速度を求めた。さらに、各実 施例につ 、て、釘刺し試験を行い 10個の電池表面の最高到達温度の平均値を求め た。結果を表 8に示す。
[0099] [表 8]
組成 L ' ^^0- 98^0.02^2 推定発熱速度 最高到達 原子比 0 . 9 8 0 . 0 2 (W/kg) 温度 C) 実施例 2 5 正極材料 1 4 C o M n 4 7 7 0 実施例 2 6 正極材料 1 5 C 0 A 1 4 2 6 3 実施例 2 7 正極材料 1 6 C 0 C u 4 6 6 5 実施例 2 8 正極材料 1 7 C 0 M g 4 6 6 5 実施例 2 9 正極材料 1 8 C 0 T i 3 8 6 1 実施例 3 0 正極材料 1 9 C 0 Z n 4 2 6 3 実施例 3 1 正極材料 2 0 C 0 M o 4 3 6 5 実施例 3 2 正極材料 2 1 C 0 S n 4 7 6 9 実施例 3 3 正極材料 2 2 C 0 1 n 4 7 6 7 実施例 3 4 正極材料 2 3 C 0 F e 4 6 6 7 実施例 3 5 正極材料 2 4 C 0 Z r 3 6 6 0
[0100] Mn、 Al、 Sn、 In、 Fe、 Cu、 Mg、 Ti、 Zn、 Zrおよび Moには、推定発熱速度を低下 させる効果が認められた。正極材料 3をベースとした組成においても、元素 Mを添カロ することにより、 200°Cにおける推定発熱速度を 50WZkg以下に抑制することができ た。また、元素 Mと耐熱性絶縁層との相乗効果により、釘刺し安全性が飛躍的に向 上した。
《実施例 36〜46》
実施例 36〜45では、表 9に示した正極材料 25〜34を用いた。また、実施例 6と同 様に、ァラミド榭脂と無機酸ィ匕物フイラ一力もなる耐熱性絶縁層を、セパレータ表面に 、乾燥後の厚さが 5 mになるように形成した。それ以外は、実験 1と同様にして、円 筒形 18650の非水電解質二次電池を作製した。また、実験 2と同様の条件で、正極 合剤の 200°Cにおける推定発熱速度を求めた。さらに、各実施例について、釘刺し 試験を行い 10個の電池表面の最高到達温度の平均値を求めた。結果を表 9に示す
[0101] なお、正極材料 25〜34は、正極材料 2 (LiAl Ni Co )と、表 9に示す元素 M
0.05 0.8 0.15
の酸化物とを混合し、 1000°Cで、空気雰囲気中で焼成して調製した。元素 Mの酸化 物の量は、 lmolの正極材料 2に対し、 0. Olmolとした。その結果、添加した酸化物 力 正極材料 2に元素 Mが拡散し、内部よりも表層部に元素 Mが多く分布する複合リ
チウム酸ィ匕物力もなる正極材料 25〜34が得られた。
[0102] 実施例 46では、正極材料 35を用いた。また、実施例 6と同様に、ァラミド榭脂と無 機酸ィ匕物フイラ一からなる耐熱性絶縁層を、セパレータ表面に、乾燥後の厚さが 5 mになるように形成した。それ以外は、実験 1と同様にして、円筒形 18650の非水電 解質二次電池を作製した。また、実験 2と同様の条件で、正極合剤の 200°Cにおける 推定発熱速度を求めた。さらに、各実施例について、釘刺し試験を行い 10個の電池 表面の最高到達温度の平均値を求めた。結果を表 9に示す。
なお、正極材料 35は、正極材料 2を、シランカップリング剤であるビニルトリメトキシシ ランで処理して調製した。ここでは、シランカップリング剤と水との混合液 (シランカツ プリング剤の濃度 0. 1重量%)に、正極材料を含浸させた後、乾燥させた。
[0103] [表 9]
[0104] 表 9の結果でも、表 8と同様に、元素 Mには、推定発熱速度を低下させる効果が認 められた。元素 Mが活物質の表層部に高濃度に分布しているため、推定発熱速度を 抑制する効果は顕著であった。また、元素 Mと耐熱性絶縁層との相乗効果により、釘 刺し安全性が飛躍的に向上した。また、シランカップリング剤による処理でも、元素 M の添加と同様の効果が得られた。
《実施例 47〜49》
実施例 47〜49では、正極材料 1と正極材料 24とを混合した以下の正極材料 36〜 38を用いた。また、実施例 6と同様に、ァラミド榭脂と無機酸ィ匕物フイラ一力もなる耐 熱性絶縁層を、セパレータ表面に、乾燥後の厚さが 5 mになるように形成した。そ れ以外は、実験 1と同様にして、円筒形 18650の非水電解質二次電池を作製した。 また、実験 2と同様の条件で、正極合剤の 200°Cにおける推定発熱速度を求めた。さ らに、各実施例について、釘刺し試験を行い 10個の電池表面の最高到達温度の平 均値を求めた。結果を表 10に示す。
[0105] 正極材料 36 :正極材料 1が 10重量%、正極材料 24が 90重量%の混合物
正極材料 37:正極材料 1が 50重量%、正極材料 24が 50重量%の混合物 正極材料 38:正極材料 1が 90重量%、正極材料 24が 10重量%の混合物 [0106] [表 10]
正極材料 3 6 :正極材料 1 正極材料 2 4 = 1 0 / 9 0 (wt¾) 正極材料 3 7 :正極材料 1 /正極材料 2 4 = 5 0 / 5 0 (wt¾) 正極材料 3 8 :正極材料 1 Z正極材料 2 4 = 9 0 / 1 0 (wt¾)
[0107] 表 10より、推定発熱速度が 50WZkg以下に抑制された正極材料同士を混合した 場合でも、釘刺し安全性が顕著に向上することがゎカゝつた。
《実施例 50、 51および 53》
耐熱性絶縁層の接着面を表 11記載のように設定した。さらに、セパレータに耐熱性 絶縁層を形成した場合には、表 11記載のように耐熱性絶縁層を正極側または負極 側だけに配置した。それ以外は、実験 1と同様にして、円筒形 18650の非水電解質 二次電池を作製した。
《実施例 52》
ァラミド榭脂の代わりにポリアミドイミド榭脂 (熱分解開始温度 400°C以上、非晶質、 ガラス転移点 250°C)を用いたこと以外、実施例 6と同様に電池を作製した。
《実施例 54》
耐熱性絶縁層を負極側に配置したこと以外、実施例 6と同様に電池を作製した。 《実施例 55》
耐熱性絶縁層を負極側に配置したこと以外、実施例 52と同様に電池を作製した。 《実施例 56》
耐熱性絶縁層の原料ペーストを、フッ素榭脂シート上に塗布し、乾燥後、剥離して 、正極からも負極力 もセパレータからも独立した、厚み 5 mの耐熱性絶縁層から なるシートを作製した。耐熱性絶縁層力もなるシートを、正極とセパレータとの間に挿 入したこと以外、比較例 2と同様に電池を作製した。
《実施例 57》
実施例 56に準じて、実施例 6と同様の組成のポリアミド榭脂を含む耐熱性絶縁層か らなるシートを作製し、実施例 56と同様に電池を作製した。
《実施例 58》
実施例 56に準じて、実施例 52と同様の組成のポリアミドイミド (PAI)榭脂を含む耐 熱性絶縁層からなるシートを作製し、実施例 56と同様に電池を作製した。
《実施例 59》
耐熱性絶縁層の無機酸ィ匕物フイラ一として、メディアン径 0. 3 μ mのアルミナの代 わりに、メディアン径 0. 3 μ mのマグネシア(酸化マグネシウム)を用いたこと以外、実 施例 3と同様に電池を作製した。
《実施例 60》
耐熱性絶縁層の無機酸ィ匕物フイラ一として、メディアン径 0. 3 μ mのアルミナの代 わりに、メディアン径 0. 3 μ mのマグネシア(酸化マグネシウム)を用いたこと以外、実 施例 50と同様に電池を作製した。
実施例 50〜60に関し、実験 1と同様の条件で、釘刺し試験を行い 10個の電池表 面の最高到達温度の平均値を求めた。結果を表 11に示す。
[0109] [表 11]
P A I :ポリアミドイミド
[0110] 以下評価結果について説明する。
表 11が示すように、耐熱性絶縁層がどのような材質であっても、釘刺し試験における 安全性は向上した。これにより、耐熱性および絶縁性を有する材質であれば、同様の 効果が得られることが確認できた。また、耐熱性絶縁層は、セパレータまたは負極の 表面に形成した方が、効果が大きいことがわかった。さらに、アルミナの代わりにマグ ネシァを用いても、同様の結果が得られることがわ力つた。
[0111] 上記実施例では、円筒形の非水電解質二次電池を作製したが、本発明の電池の 形状は円筒形に限定されるものではない。また、負極材料には炭素材料を用い、充 電電圧 4. 25Vにおける結果を示した力 Si合金や Sn合金を用いた場合にも、同様 に安全性向上の効果が得られる。また、より高電圧領域 (4. 2〜4. 6V)まで充電され る電池においても、推定発熱速度が 50WZkg以下である正極合剤と、耐熱性絶縁 層とを併用することにより、同様に安全性向上の効果が得られる。
産業上の利用可能性
[0112] 本発明は、特に、高いエネルギー密度と優れた安全性との両立が求められる非水
電解質二次電池に適しており、例えば携帯電子機器の電源として有用である。