WO2007072595A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2007072595A1
WO2007072595A1 PCT/JP2006/312574 JP2006312574W WO2007072595A1 WO 2007072595 A1 WO2007072595 A1 WO 2007072595A1 JP 2006312574 W JP2006312574 W JP 2006312574W WO 2007072595 A1 WO2007072595 A1 WO 2007072595A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
positive electrode
heat
insulating layer
resistant insulating
Prior art date
Application number
PCT/JP2006/312574
Other languages
English (en)
French (fr)
Inventor
Hajime Nishino
Shinji Kasamatsu
Hideharu Takezawa
Kazuhiro Okamura
Mikinari Shimada
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2005/023373 external-priority patent/WO2006068143A1/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to KR1020077012936A priority Critical patent/KR100874560B1/ko
Priority to EP06767224A priority patent/EP1881545A1/en
Priority to JP2006551665A priority patent/JP5236880B2/ja
Publication of WO2007072595A1 publication Critical patent/WO2007072595A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to improvement of its safety.
  • a positive electrode of a non-aqueous electrolyte secondary battery generally includes a composite lithium oxide having a high redox potential.
  • the composite lithium oxide for example, lithium cobaltate, lithium nickelate, lithium manganate and the like are used.
  • the negative electrode of a non-aqueous electrolyte secondary battery generally contains a carbon material.
  • the nonaqueous electrolyte secondary battery includes an electrolyte made of a nonaqueous solvent in which a lithium salt is dissolved.
  • the lithium salt for example, LiClO, LiPF or the like is used.
  • a separator is interposed between the negative electrode.
  • the separator for example, a microporous film made of a polyolefin-based material is used.
  • metal powder is managed and dust in the manufacturing atmosphere is managed to prevent foreign matter from entering the battery. Also, the internal short circuit is suppressed as much as possible by protecting the exposed portion of the current collector having low resistance with, for example, insulating tape.
  • a separator having a shutdown function is also used.
  • the pores of the separator having a shutdown function are blocked at about 135 ° C to block the ionic current. Therefore, the short-circuit current is cut and heat generation stops.
  • the battery surface temperature rises to about 120 ° C.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-220759
  • Patent Document 2 Japanese Patent Laid-Open No. 9-208736
  • the shutdown function of the separator appears.
  • the battery temperature rises to about 120 ° C. This rise in temperature is due to the Jule heat generated inside the battery due to the short-circuit current.
  • the short-circuit current is cut by the shutdown function of the separator, so that the heat generation to the extent that the battery temperature reaches more than that is suppressed.
  • the standard for safety evaluation in the nail penetration test and crushing test established by the Storage Battery Industry Association it is required that there is no smoke, ignition or rupture.
  • the standard regarding battery temperature is not specifically defined. Therefore, even if the surface temperature of the battery reaches about 120 ° C, the safety standard will be satisfied if heat generation is suppressed by the shutdown function.
  • Patent Document 1 a proposal of forming a layer made of inorganic fine particles and a resin binder and having a thickness of 0.1 to 200 m on the electrode
  • the battery temperature in the nail penetration test is High temperatures in excess of 80 ° C may be reached.
  • the battery surface temperature may reach a high temperature exceeding 80 ° C in the nail penetration test.
  • the expansion of the short circuit point can be prevented by the presence of a layer made of inorganic fine particles and a resin binder and a heat-resistant resin. Since the short-circuit point is burnt out instantly due to its own heat generation, the short-circuit state is completed in 0.1 to 0.5 seconds, and then the electrical insulation is restored. When the short-circuit current is interrupted, the generated heat diffuses throughout the battery. Therefore, the battery temperature does not reach that high temperature. Since the low temperature parts other than the short circuit point are relatively low temperature, heat diffusion occurs quickly.
  • the internal short-circuit state continues and the battery surface temperature continues to rise to around 120 ° C where the shutdown function operates. If it is a single internal short circuit, the thermal decomposition reaction of the positive electrode active material will not proceed. It is thought that the number of short-circuit points does not increase due to falling off or burning out of the cathode active material.
  • the present invention is intended to improve the above situation, and provides a non-aqueous electrolyte secondary battery with higher safety than before while maintaining a high energy density.
  • the present invention intervenes between a positive electrode mixture containing a composite lithium oxide and a positive electrode current collector carrying the positive electrode mixture, a negative electrode containing a material capable of inserting and extracting lithium, and a positive electrode and a negative electrode.
  • a non-aqueous electrolyte secondary battery comprising a separator containing polyolefin resin, a non-aqueous electrolyte, and a heat-resistant insulating layer interposed between the positive electrode and the negative electrode, wherein the positive electrode and the negative electrode are interposed therebetween.
  • the present invention relates to a nonaqueous electrolyte secondary battery that is wound together with an intervening separator and a heat-resistant insulating layer, and has an estimated heat generation rate at 200 ° C of a positive electrode mixture of 50 WZkg or less.
  • the thickness of the heat-resistant insulating layer is, for example, not less than 1 ⁇ m and not more than 15 m, or not less than 1 ⁇ m and not more than 5 ⁇ m.
  • ARC accelerating calorimeter or runaway reaction measuring device
  • the heat generation region refers to a region where the absolute value of the slope of the approximate straight line having a negative slope is the largest in the plot based on the above Arrhenius theorem.
  • the approximate straight line is drawn so that the absolute value of the negative slope is maximized.
  • Extrapolation is a method for obtaining numerical values that are expected to be out of the data range based on known numerical data, and is used in various fields.
  • the composite lithium oxide for example, the following is preferably used.
  • e, Cu, Mg, Ti, Zn, Zr and Mo are at least one selected from the group force, and the element Me is at least one selected from the group force consisting of Ni and Co. 1) is 0.9 ⁇ a ⁇ l.2, 0.02 ⁇ b ⁇ 0.5, 0.5.5 ⁇ c ⁇ 0.98, and 0.95 ⁇ b + c ⁇ l.05 Satisfying complex lithium oxide.
  • element M It has an arbitrary composition, includes element M, and element M is selected from the group forces consisting of Al, Mn, Sn, In, Fe, Cu, Mg, Ti, Zn, Zr, and Mo At least one element, element M is a composite lithium oxide distributed more in the surface layer than in the interior. In the composite lithium oxide represented by the general formulas (1) and (2), it is desirable that the element M is distributed more in the surface layer portion than in the composite lithium oxide.
  • the composite lithium oxide is treated with a Si compound represented by the general formula (3): X-Si-Y.
  • X includes a functional group that reacts with the composite lithium oxide
  • Y includes a functional group including C, H, 0, F, or Si.
  • the present invention even in a harsh situation where a large number of short-circuit points occur at the same time, heat generation due to internal short-circuiting and a chained exothermic reaction are effectively suppressed. Therefore, since the short circuit is avoided, the maximum temperature of the battery can be stably suppressed to 80 ° C or lower.
  • ADVANTAGE OF THE INVENTION According to this invention, the nonaqueous electrolyte secondary battery which improved safety
  • FIG. 1 is an example of an Arrhenius plot showing the relationship between the absolute temperature T obtained by ARC and the heat generation rate V of various positive electrode materials.
  • FIG. 2 is an explanatory diagram of the ARC measurement principle.
  • the nonaqueous electrolyte secondary battery of the present invention is a negative electrode containing a positive electrode mixture containing a composite lithium oxide and a positive electrode containing a positive electrode current collector carrying the same, and a material capable of inserting and extracting lithium. And a separator containing polyolefin resin, a non-aqueous electrolyte, and a heat-resistant insulating layer interposed between the positive electrode and the negative electrode.
  • the heat-resistant insulating layer may be formed, for example, on one of the positive electrode and the negative electrode on the surface facing the other electrode, but the arrangement of the heat-resistant insulating layer is not limited to this.
  • the heat-resistant insulating layer may be formed only on at least one surface of the positive electrode, or may be formed only on at least one surface of the negative electrode. Good.
  • the heat-resistant insulating layer may be formed only on at least one surface of the positive electrode and at least one surface of the negative electrode, or may be formed only on at least one surface of the negative electrode and at least one surface of the separator. It may be formed only on at least one surface of the separator and at least one surface of the positive electrode.
  • the heat-resistant insulating layer may be formed on at least one surface of the positive electrode, at least one surface of the negative electrode, and at least one surface of the separator. Furthermore, the heat-resistant insulating layer may be in the form of a sheet independent of the positive electrode force, the negative electrode, and the separator. However, it is desirable that the heat-resistant insulating layer is bonded to at least one surface of the positive electrode, at least one surface of the negative electrode, or at least one surface of the separator.
  • the present invention has one feature in that the estimated heat generation rate at 200 ° C of the positive electrode mixture is controlled to 50 WZkg or less.
  • the estimated heat generation rate of the positive electrode mixture at 200 ° C can be suppressed to 50 WZkg or less.
  • the positive electrode mixture has a composition represented by the general formula (1): Li M Me O, and the element M is Al, Mn, Sn, I abc 2
  • the element Me is at least one selected from the group force consisting of Ni and Co, and the general formula (1) is 0.9 ⁇ a ⁇ l.2, 0.02 ⁇ b ⁇ 0.5, 0. 5 ⁇ c ⁇ 0.98, and 0.9.95 ⁇ b + c ⁇ l.
  • a composite lithium oxide satisfying 05 can be cited as a positive electrode material effective for suppressing the estimated heat generation rate to 50 WZkg or less.
  • Mg is preferred Mn is most preferred. Al, Mn, Sn, In, Fe, Cu, Mg, Ti, Zn,
  • Zr and Mo have the effect of lowering the estimated heat generation rate even if they are shifted.
  • the value a is an initial value, and increases or decreases due to charging / discharging of the battery.
  • the initial value substantially matches the a value of the composite lithium oxide contained in the discharged battery.
  • the standard a value of the composite lithium oxide immediately after synthesis is 1.
  • the c value is less than 0.5, it is difficult to secure a certain capacity or more. If it exceeds 0.98, the effect of reducing the estimated heat generation rate cannot be obtained.
  • General Formula (2) is 0.9 ⁇ a ⁇ l.2, 0.02. ⁇ b ⁇ 0.5, 0. l ⁇ d ⁇ 0.5, 0. l ⁇ e ⁇ 0.5, and 0. Estimated composite lithium oxide, satisfying 95 ⁇ b + d + e ⁇ l.05 It can be cited as a positive electrode material effective for suppressing the heat generation rate to 50 WZkg or less. It is particularly preferable that the general formula (2) satisfies 0.15 ⁇ b ⁇ 0.4, 0.3 ⁇ d ⁇ 0.5 and 0.15 ⁇ e ⁇ 0.4.
  • the value a is an initial value, and increases or decreases as the battery is charged / discharged. Also, b value is If it is less than 0.02, the effect of the element M cannot be confirmed, and if it exceeds 0.5, the capacity reduction becomes large.
  • the effect of Ni addition (for example, the effect of improving the theoretical capacity) is low.
  • the e value is less than 0.1, the effect of adding Co (for example, the effect of increasing the voltage) is low.
  • the value exceeds 0.5 the utilization factor of the positive electrode is lowered.
  • the positive electrode material represented by the general formula (2) and controlling the estimated heat generation rate at 200 ° C to 50 WZkg or less for example, LiMn Ni Co O (0. 15 ⁇ b ⁇ 0.35, 0. 3 ⁇ d ⁇ 0 bde 2
  • the element M has an arbitrary composition and includes the element M, and the element M is selected from the group force consisting of Al, Mn, Sn, In, Fe, Cu, Mg, Ti, Zn, Zr, and Mo.
  • the element M can be cited as a positive electrode material effective for suppressing the estimated heat release rate to 50 WZkg or less of the composite lithium oxide that is distributed more in the surface layer than in the inside.
  • Such a positive electrode material includes a compound containing element M on the surface of a composite lithium oxide having an arbitrary composition (for example, a composite lithium oxide represented by the general formula (1) or (2)) (for example, , Nitrate, sulfate, etc.) and the element M can be obtained by diffusing into the composite lithium oxide.
  • a composite lithium oxide having an arbitrary composition for example, a composite lithium oxide represented by the general formula (1) or (2)
  • element M diffuses into the surface force of the complex lithium oxide.
  • a composite lithium oxide in which the element M is distributed more in the surface layer than in the interior can be obtained.
  • a composite lithium oxide containing the element M is obtained by mixing a liquid in which a compound containing the element M is dissolved or dispersed and a composite lithium oxide and then removing the liquid component. be able to.
  • this composite lithium oxide is fired at an appropriate temperature (for example, 300 to 700 ° C.)
  • the element M diffuses from the surface of the composite lithium oxide to the inside.
  • the compound containing the element M has a large effect of suppressing the estimated heat generation rate at 200 ° C.
  • the utilization factor of the positive electrode decreases, and the energy density of the battery decreases.
  • the exothermic reaction of the positive electrode occurs on the surface of the active material particles. Therefore, the presence of a large amount of element M in the surface layer portion of the active material particles can efficiently suppress heat generation without greatly reducing the utilization factor of the positive electrode.
  • the estimated heat generation rate can be suppressed by a small amount of the element M.
  • Oxides can be mentioned as positive electrode materials effective in suppressing the estimated heat generation rate to 50 WZkg or less.
  • X includes a functional group that reacts with the composite lithium oxide
  • Y includes a functional group including C, H, 0, F, or Si.
  • a composite lithium oxide is treated with a silane coupling agent represented by X-Si-Y
  • the method of treating with the agent is not particularly limited.
  • a silane coupling agent is mixed with water, and the resulting mixed solution is mixed with a composite lithium oxide and then dried.
  • the concentration of the silane coupling agent is preferably about 0.01 to 5% by weight, more preferably about 0.1 to 3% by weight.
  • the amount of the silane coupling agent is preferably from 0.001 to 0.5 parts by weight per 100 parts by weight of the composite lithium oxide, and more preferably from 0.01 to 0.1 parts by weight.
  • silane coupling agent examples include vinyltriethoxysilane, vinyltrimethoxysilane, butyltrichlorosilane, butyltris (2-methoxyethoxy) silane, ⁇ -metaatari mouth, xypropyltrimethoxysilane, ⁇ -metaatarily.
  • the heat resistant insulating layer includes, for example, an inorganic acid filler and a resin component.
  • Inorganic oxide fillers have high heat resistance. Therefore, even when the battery reaches a relatively high temperature, the heat-resistant insulating layer can maintain high mechanical strength.
  • Various resin components can be used for the heat-resistant insulating layer, but a particularly excellent heat-resistant insulating layer can be obtained by using a resin component having high heat resistance.
  • the heat-resistant insulating layer may include, for example, an inorganic oxide filler and a binder (a resin component) or a heat-resistant resin (a resin component), but is not particularly limited.
  • a heat-resistant insulating layer containing an inorganic oxide filler and a binder has a relatively high mechanical strength and therefore has a high durability.
  • the heat-resistant insulating layer containing the inorganic oxide filler and the binder mainly contains an inorganic oxide filler.
  • 80% by weight or more, preferably 90% by weight or more of the heat-resistant insulating layer is the inorganic oxide filler.
  • the heat-resistant insulating layer made of heat-resistant resin contains, for example, more than 20% by weight of heat-resistant resin.
  • a heat-resistant insulating layer made of a heat-resistant resin is more flexible than a heat-resistant insulating layer containing an inorganic oxide filler as a main component. This is because the heat-resistant resin is more flexible than the inorganic acid filler. Therefore, the heat-resistant insulating layer made of heat-resistant resin can easily keep high heat resistance following the expansion and contraction of the electrode plate accompanying charging and discharging. Therefore, nail penetration safety is also increased.
  • the heat-resistant insulating layer made of heat-resistant resin can contain, for example, less than 80% by weight of inorganic oxide filler.
  • inorganic oxide filler By including an inorganic oxide filler, a heat-resistant insulating layer excellent in flexibility and durability can be obtained.
  • the heat-resistant resin contributes to the flexibility of the heat-resistant insulating layer, and the inorganic acid filler with high mechanical strength contributes to the durability.
  • Inclusion of an inorganic oxide filler in the heat-resistant insulating layer improves the high output characteristics of the battery. Although details are unknown, it is thought that this is because the space structure of the heat-resistant insulating layer is optimized by the synergistic effect of flexibility and durability. From the viewpoint of ensuring good high-power characteristics, it is desirable that the heat-resistant insulating layer made of heat-resistant resin contains 25 to 75% by weight of an insulating filler.
  • the resin component (binder or heat-resistant resin) of the heat-resistant insulating layer preferably has a thermal decomposition initiation temperature of 250 ° C or higher. It is desirable that the resin component does not deform significantly at high temperatures. Therefore, it is desirable that the rosin component is amorphous or non-crystalline. It is desirable that the thermal deformation start temperature or glass transition temperature (Tg) of the resin component is 250 ° C or higher.
  • Thermal decomposition initiation temperature, thermal deformation initiation temperature, and glass transition temperature of the resin component are determined by differential scanning calorimetry (DSC) and thermogravimetry—differential thermal analysis (TG DTA). thermal analysis) Measure more than 0; For example, the starting point of weight change in TG-DTA measurement corresponds to the thermal decomposition start temperature, and the inflection point in the endothermic direction in DSC measurement corresponds to the thermal deformation temperature or glass transition temperature.
  • binder constituting the heat-resistant insulating layer include, for example, a fluoropolymer such as poly (vinylidene fluoride) (PVDF), and a rubbery polymer containing an acrylonitrile unit (modified atari mouth-tolyl rubber).
  • PVDF poly (vinylidene fluoride)
  • acrylonitrile unit modified atari mouth-tolyl rubber
  • the heat resistant resin constituting the heat resistant insulating layer for example, polyamide resin such as aromatic polyamide (aramide), polyimide resin, polyamideimide resin, and the like can be preferably used. These may be used alone or in combination of two or more.
  • the heat-resistant insulating layer containing the inorganic oxide filler and the binder is preferably formed or adhered to both surfaces of the negative electrode, preferably formed or adhered to at least one surface of the negative electrode. Further preferred.
  • the heat-resistant insulating layer made of heat-resistant resin is preferably formed or bonded to at least one side of the separator. Or it is more preferable that it is bonded.
  • the ratio between the thickness A of the separator and the thickness B of the heat-resistant insulating layer: AZB is the heat-resistant insulating layer
  • 3 ⁇ AZB ⁇ 12 or 4 ⁇ A / B ⁇ 6 from the viewpoint of preventing damage.
  • inorganic oxide fillers include alumina (Al 2 O 3), titer (TiO 2), and silica (SiO 2).
  • Zircoyua, magnesia, etc. can be used. These may be used alone or in combination of two or more. Of these, alumina (particularly a-alumina) and magnesia are particularly preferable from the viewpoints of stability, cost, and ease of handling.
  • the median diameter (D50: average particle diameter) of the inorganic oxide filler is not particularly limited, but is generally in the range of 0.1 to 5 / ⁇ ⁇ , and 0.2 to 1.5. m is desirable.
  • the content of the inorganic oxide filler in the heat-resistant insulating layer containing the inorganic oxide filler and the binder is preferably 50 wt% or more and 99 wt% or less. 90 wt% or more 9 9 More preferably, it is not more than% by weight. If the content of the inorganic oxide filler is less than 50% by weight, the amount of the resin component becomes excessive. Therefore, it may be difficult to control the pore structure with filler particles. On the other hand, if the content of the inorganic acid filler exceeds 99% by weight, the resin component becomes too small. Therefore, the strength of the heat-resistant insulating layer and the adhesion to the electrode surface or separator surface may be reduced.
  • the thickness of the heat-resistant insulating layer is not particularly limited. From the viewpoint of ensuring short-circuit suppression by the heat-resistant insulating layer or ensuring sufficient insulation at the short-circuit point and maintaining design capacity
  • the thickness of the insulating layer is, for example, 1 ⁇ m or more and 15 m or less.
  • the thickness of the heat resistant insulating layer containing the inorganic oxide filler and the binder is, for example, 3 to 15 m, or 3 to 8 ⁇ m.
  • the thickness of the heat-resistant insulating layer made of the heat-resistant resin is, for example, 1.5 to 7 / ⁇ ⁇ or 1.7 to 6.7 m.
  • the heat-resistant insulating layer is too large, the heat-resistant insulating layer is brittle and may be damaged when the electrode is wound. On the other hand, if the thickness is too small, the strength of the heat-resistant insulating layer is reduced and may be damaged.
  • a separator having a single layer structure made of polyolefin resin such as polyethylene or polypropylene, or a separator having a multilayer structure made of polyolefin resin can be used.
  • the thickness of the separator is not particularly limited, but is preferably about 15 to 25 ⁇ m.
  • the positive electrode mixture includes an active material composed of a composite lithium oxide as an essential component, and includes a binder, a conductive material, and the like as optional components.
  • a binder for example, polytetrafluoroethylene (PTFE), modified acrylonitrile rubber particles, PVDF, or the like can be used. These may be used alone or in combination of two or more.
  • PTFE and modified acrylo-tolyl rubber particles are preferably used in combination with carboxymethylcellulose, polyethylene oxide, modified acrylo-tolyl rubber and the like. These are the thickeners for the paste containing the positive electrode mixture and the liquid component.
  • acetylene black, ketjen black, various graphites and the like can be used as the conductive material for the positive electrode. These may be used alone or in combination of two or more.
  • the amounts of the binder and the conductive material contained in the positive electrode mixture are preferably 0.1 to 5 parts by weight and 1 to LO parts by weight per 100 parts by weight of the active material.
  • the negative electrode including the carbon material or the alloy material various materials used in the conventional negative electrode can be used.
  • the carbon material for example, various natural graphites and various artificial graphites can be used.
  • the alloy material for example, a key alloy or a tin alloy can be used.
  • a composite of a carbon material and an alloy material can also be used.
  • the negative electrode can also contain a binder and a conductive material. The materials mentioned above as the binder and conductive material for the positive electrode can also be used for the negative electrode binder and conductive material.
  • a non-aqueous solvent in which a lithium salt is dissolved as a solute is preferably used.
  • Both lithium salt and non-aqueous solvent are not particularly limited, but lithium salt includes, for example, LiPF
  • Nonaqueous solvents include ethylene carbonate and propylene.
  • carbonate dimethylolene carbonate, jetinolecarbonate, methinorenoate carbonate, or the like. It is preferable to use two or more non-aqueous solvents in combination, rather than using one alone. In addition, it is desirable to add beylene carbonate, butyl ethylene carbonate, cyclohexyl benzene or the like as an additive to the non-aqueous electrolyte.
  • a heat resistant insulating layer made of an inorganic oxide filler and a resin component was formed on the surface. Using these cells, a nail penetration test was conducted, and it was investigated to what temperature the temperature near the short-circuit point rose within 0.5 seconds immediately after nail penetration.
  • thermocouple was attached to the battery surface, and a nail was pierced in the vicinity of the thermocouple to measure the battery surface temperature. The results are shown in Table 1.
  • the cylindrical 18650 non-aqueous electrolyte secondary battery was manufactured as follows.
  • nonaqueous electrolyte was prepared by dissolving lithium hexafluorophosphate (LiPF) at a concentration of ImolZL in a mixed solvent containing ethylene carbonate and methylethyl carbonate at a volume ratio of 1: 3.
  • LiPF lithium hexafluorophosphate
  • the raw material paste for the heat-resistant insulating layer was applied to both sides of the negative electrode, and the coating film was dried to form a heat-resistant insulating layer having a thickness of 0.5 ⁇ m on each side.
  • a positive electrode and a negative electrode on which a heat-resistant insulating layer with a thickness of 0.5 ⁇ m is formed are wound through a separator made of a single layer of polyethylene resin with a thickness of 20 ⁇ m to form a plate group. did.
  • This electrode group was inserted into the battery case, a nonaqueous electrolyte was injected into the 5.5 g battery case, and the opening of the case was sealed. Thus, a cylindrical non-aqueous electrolyte secondary battery (nominal capacity 2000 mAh) was completed.
  • each battery (cylindrical batteries 1 to 10) was charged as follows.
  • the positive electrode active material is required to be a material that does not easily decompose even when the temperature near the short-circuit point reaches 200 ° C or higher.
  • the thermal stability of the heat-resistant insulating layer and the positive electrode active material is a very important requirement.
  • the estimated heat release rate at 200 ° C. of the positive electrode mixture containing positive electrode materials 1 to 3 shown in Table 2 was measured.
  • batteries 1A to 3A the batteries produced using the positive electrode materials 1 to 3 are referred to as batteries 1A to 3A, respectively.
  • the positive electrode potential for metal Li is equivalent to 4.35V.
  • the charged batteries 1A to 3A were decomposed in an atmosphere having a dew point of 40 ° C or lower, and the positive electrode was taken out.
  • the positive electrode was cut into a 3 ⁇ 6 cm sample.
  • the positive electrode sample was sealed in an iron cylindrical case (diameter 8 mm, height 65 mm) with Ni plating on the inner surface, and the case opening was sealed.
  • Temperature rise step This is the temperature range of the environmental temperature (“1” in Fig. 2) that is forcibly raised in a stepwise manner in the region where spontaneous heat generation of the sample is not detected.
  • Sensitivity to detect self-heating of the sample (“2” in Fig. 2). Sensitivity is arbitrarily set based on the material. Sensitivity is expressed as ⁇ ⁇ ⁇ t, where ⁇ T is the temperature rise due to spontaneous heat generation of the sample within the detection time (A t).
  • Stabilization time after temperature increase After the environmental temperature is forcibly increased based on the specified temperature increase step, the sample temperature and the furnace environmental temperature are allowed to stabilize ("3" in Fig. 2) It is. This time is set arbitrarily.
  • Heat generation recognition temperature range This is the temperature range in which self-heating of the sample is recognized (“4” in Fig. 2). Heat generation recognition When the temperature range is 0.2 ° C and the heat detection sensitivity is 0.04 ° CZ min, the temperature increase over 0.04 ° CZ min continued for 5 min (0.2 / 0.04) If it is recognized that there is a fever.
  • thermal scanning such as differential scanning calorimetry (DSC) and thermogravimetry-differential thermal analysis (TG-DTA). An analyzer is used.
  • DSC differential scanning calorimetry
  • TG-DTA thermogravimetry-differential thermal analysis
  • the adhesive surface of the heat resistant insulating layer was set as shown in Table 5.
  • the thickness per adhesive surface after drying of the heat-resistant insulating layer was set as shown in Table 5. Otherwise, a cylindrical 18650 nonaqueous electrolyte secondary battery was fabricated in the same manner as in Experiment 1.
  • Cathode material A Mixture of cathode material 1 90% by weight and cathode material 2 10% by weight
  • Cathode material B Mixture of 80 wt% of cathode material 1 and 20 wt% of cathode material 2
  • Cathode material C Mixture of 70 wt% of cathode material 1 and 30 wt% of cathode material 2
  • Cathode material D Cathode material 1 Mixture of 60% by weight, positive electrode material 2 40% by weight
  • Positive electrode material E Mixture of positive electrode material 1 50% by weight, positive electrode material 2 50% by weight
  • batteries X7 to X12, X16 to X18, batteries Y3, ⁇ 4, ⁇ 8, Yll, Y12 are disclosed in the example of Patent Document 2 only on one side of the separator.
  • a film having a thickness of 0.5 to 5 / ⁇ ⁇ made of ruramid resin and an inorganic oxide filler was formed as a heat-resistant insulating layer.
  • a heat-resistant insulating layer was formed as follows.
  • a separable flask having a stirring blade, a thermometer, a nitrogen inflow pipe and a powder addition port is sufficiently installed. Dried in minutes.
  • 4200 g of NMP and 270 g of calcium chloride dried at 200 ° C. for 2 hours were added, and the temperature was raised to 100 ° C. After the calcium chloride was completely dissolved, the temperature in the flask was returned to 20 ⁇ 2 ° C., and 130 g of parapherediamine (PPD) was added and completely dissolved. While maintaining this solution at 20 ⁇ 2 ° C, 24 g of terephthalic acid chloride (TPC) was added every 5 minutes in 10 batches (total 240 g).
  • TPC terephthalic acid chloride
  • a battery nail penetration test was performed under the same conditions as in Experiment 1, and the maximum temperature reached on the battery surface away from the short-circuit point was investigated.
  • Ten batteries of batteries X1 to X18 and batteries Y1 to Y12 were prepared, and the nail penetration test was performed with 10 batteries.
  • the average value of the maximum temperature of the 10 batteries that did not reach 80 ° C and the number of batteries that reached 80 ° C were determined.
  • Table 10 shows “over 80 ° C” for all 10 that showed a maximum temperature of over 80 ° C. The results are shown in Table 5.
  • Cathode material 2 LiAl Ni Co O
  • Cathode material 3 LiCo ⁇ 2
  • the safe area where the action of the heat-resistant insulating layer can be used to the maximum extent is the area where the estimated heat generation rate of the positive electrode active material at 200 ° C is 50 WZ kg or less. It can be seen that it is. It can be seen that outside this region, the rise in the maximum temperature of the battery becomes significant. In the region where the estimated heat generation rate at 200 ° C of the positive electrode active material is 50 WZkg or less, the exothermic reaction chain is effectively suppressed, and the heat generated at the short-circuit point is considered to diffuse efficiently.
  • the thickness of the heat-resistant insulating layer exceeds a certain value, it should not significantly affect the effect of suppressing the maximum temperature of the battery when multiple shorts occur simultaneously. I understand. When the thickness of the heat-resistant insulating layer is large The maximum temperature reached is low, but if it is too thick, it will be difficult to maintain a high energy density of the battery, and it will be easily damaged during winding. Since the heat-resistant insulating layer is brittle, if it is too thick, the electrode surface partially loses the separator surface force during winding. This also confirms that in Comparative Example 2, the number of batteries that reached 80 ° C. or higher was increased specifically.
  • the thickness of the heat resistant insulating layer may be, for example, in the range of about 1 to 15 / ⁇ ⁇ or 3 to 10 m. Electricity with a heat-resistant insulating layer formed on the surface of the separator Similar results were obtained for Ponds X7-12.
  • the thickness of the heat-resistant insulating layer containing aramid resin may be, for example, 1.7 to 6.
  • the heat-resistant insulating layer has a thickness of less than 1 ⁇ m, the mechanical strength of the heat-resistant insulating layer itself decreases. Therefore, the heat-resistant insulating layer is easily destroyed due to an impact accompanying a short circuit. This confirms that the number of batteries that have reached 80 ° C or higher in battery Y1 has increased. Therefore, when the heat-resistant insulating layer has a thickness of less than 1 ⁇ m, the insulating function is considered to deteriorate to some extent.
  • the following positive electrode materials F to H obtained by mixing the positive electrode materials 4 to 13 shown in Table 6-2 and the positive electrode materials 1 and 3 were used.
  • the adhesive surface of the heat-resistant insulating layer was set as shown in Table 6-2.
  • the thickness of the heat-resistant insulating layer after drying was set as shown in Table 6-2.
  • a film having a thickness of 5 ⁇ m made of an aramid resin and an inorganic oxide filler disclosed in the example of Patent Document 2 was formed as a heat-resistant insulating layer only on one side of the separator. . Otherwise, a cylindrical 18650 nonaqueous electrolyte secondary battery was fabricated in the same manner as in Experiment 1.
  • Cathode material F Mixture of cathode material 1 90% by weight and cathode material 3 10% by weight
  • Cathode material G Mixture of cathode material 1 80% by weight, cathode material 3 20% by weight
  • Cathode material H Mixture of cathode material 1 70% by weight, cathode material 3 30% by weight
  • a battery nail penetration test was conducted under the same conditions as in Experiment 1 to determine the maximum temperature reached on the battery surface.
  • Batteries X19A to X30A, X19B to X30B, and batteries Y13A and Y13B were each made of 10 pieces, and the nail penetration test was conducted with 10 batteries.
  • the average value of the maximum temperature reached on the surface of 10 batteries was determined. The results are shown in Table 6-1 and Table 6-2. The maximum temperature reached for all 10 batteries was less than 80 ° C.
  • the positive electrode material H which has a ratio of 30%, reduces the safety of nail penetration. Therefore, when lithium cobaltate is used in combination, the amount is preferably 20% by weight or less of the entire active material.
  • Cathode materials 14-24 (composite lithium oxide with composition LiCo M O) shown in Table 8-2
  • Mn, Al, Sn, In, Fe, Cu, Mg, Ti, Zn, Zr and Mo were found to have the effect of reducing the estimated heat generation rate. Even in the composition based on the positive electrode material 3, by adding the element M, the estimated heat generation rate at 200 ° C could be suppressed to 50 W, kg or less. In addition, the synergistic effect of element M and the heat-resistant insulating layer dramatically improved nail penetration safety.
  • the positive electrode materials 25 to 35 shown in Table 9-1 were used. Similar to Battery X9, a heat-resistant insulating layer made of aramid resin and an inorganic oxide filler was formed on the separator surface so that the thickness after drying was 5 / z m. Otherwise, a cylindrical 18650 nonaqueous electrolyte secondary battery was fabricated in the same manner as in Experiment 1. Under the same conditions as in Experiment 2, the estimated heat generation rate of the positive electrode mixture at 200 ° C was determined. Each battery was subjected to a nail penetration test, and the average value of the maximum temperature reached on the surface of 10 batteries was determined. The results are shown in Table 91. The maximum temperature reached for all 10 batteries was less than 80 ° C.
  • the positive electrode materials 25 to 35 shown in Table 9-2 were used. Similar to Battery X4, a heat-resistant insulating layer containing an inorganic oxide boiler and BM-720H was formed on both sides of the negative electrode so that the thickness after drying was. Otherwise, as in Experiment 1, cylindrical 18650 non-aqueous electrolyte A secondary battery was produced. Under the same conditions as in Experiment 2, the estimated heat release rate at 200 ° C for the positive electrode mixture was determined. Each battery was subjected to a nail penetration test, and the average value of the maximum temperature reached on the surface of 10 batteries was determined. The results are shown in Table 92. The maximum temperature reached for all 10 batteries was less than 80 ° C.
  • Cathode materials 25 to 34 consist of cathode material 2 (LiAl Ni Co 2 O 3) and acid of element M shown in Table 9
  • the positive electrode material 35 was prepared by treating the positive electrode material 2 with butyltrimethoxysilane, which is a silane coupling agent.
  • a positive electrode material was impregnated in a mixed solution of silane coupling agent and water (the concentration of the silane coupling agent was 0.1% by weight) and then dried.
  • element M was found to have an effect of reducing the estimated heat generation rate. Since element M is distributed at a high concentration in the surface layer of the active material, the effect of suppressing the estimated heat generation rate was remarkable. In addition, the synergistic effect of element M and the heat-resistant insulating layer dramatically improved nail penetration safety. Also, the same effect as the addition of element M was obtained by treatment with a silane coupling agent.
  • the following positive electrode materials 36 to 38 obtained by mixing the positive electrode material 1 and the positive electrode material 24 were used. Similar to Battery X9, a heat-resistant insulating layer, which also serves as an aramid resin and an inorganic oxide filler, was formed on the separator surface so that the thickness after drying was 5 im. Otherwise, in the same manner as in Experiment 1, a cylindrical 18650 non-aqueous electrolyte secondary battery was fabricated. Under the same conditions as in Experiment 2, the estimated heat release rate of the positive electrode mixture at 200 ° C was determined. About each Example, the nail penetration test was done and the average value of the highest attained temperature of 10 battery surfaces was calculated
  • the following positive electrode materials 36 to 38 obtained by mixing the positive electrode material 1 and the positive electrode material 24 were used. Similar to Battery X4, a heat-resistant insulating layer containing an inorganic oxide filler and BM-720H was formed on both sides of the negative electrode so that the thickness after drying was 5 // m. Otherwise, as in Experiment 1, A cylindrical 18650 non-aqueous electrolyte secondary battery was fabricated. Under the same conditions as in Experiment 2, the estimated heat release rate of the positive electrode mixture at 200 ° C was determined. Each battery was subjected to a nail penetration test, and the average value of the maximum temperature reached on the surface of 10 batteries was determined. The results are shown in Table 10-2. The maximum temperature reached for all 10 batteries was less than 80 ° C.
  • Cathode material 36 Mixture of cathode material 1 at 10 wt% and cathode material 24 at 90 wt%
  • Positive electrode material 37 Mixture of positive electrode material 1 50% by weight and positive electrode material 24 50% by weight
  • Positive electrode material 38 Mixture of positive electrode material 1 90% by weight and positive electrode material 24 10% by weight [0121] [Table 10-1 ]
  • the adhesive surface of the heat resistant insulating layer was set as shown in Table 11.
  • the heat-resistant insulating layer was formed on the separator, the heat-resistant insulating layer was disposed only on the positive electrode side or the negative electrode side as shown in Table 11. Otherwise, as in Experiment 1, the cylindrical 18650 non-aqueous electrolyte secondary battery A pond was made.
  • a battery was fabricated in the same manner as Battery X9, except that polyamideimide resin (pyrolysis onset temperature 400 ° C or higher, amorphous, glass transition point 250 ° C) was used instead of aramid resin.
  • polyamideimide resin pyrolysis onset temperature 400 ° C or higher, amorphous, glass transition point 250 ° C
  • a battery was fabricated in the same manner as Battery X9, except that the heat-resistant insulating layer was disposed on the negative electrode side.
  • a battery was fabricated in the same manner as Battery X58, except that the heat resistant insulating layer was disposed on the negative electrode side.
  • the material paste of the heat-resistant insulating layer is applied onto the fluorine resin sheet, dried, and peeled off to produce a sheet consisting of a heat-resistant insulating layer having a thickness of 5 m, independent of the positive electrode, negative electrode force and separator. did.
  • a battery was fabricated in the same manner as Battery Y6, except that a sheet having heat resistant insulating layer strength was inserted between the positive electrode and the separator.
  • a sheet comprising a heat-resistant insulating layer containing a polyamide resin having the same composition as that of Battery X9 was prepared in accordance with Battery X62, and a battery was prepared in the same manner as Battery X62.
  • Battery X4 is the only inorganic oxide filler for heat-resistant insulating layers, except that magnesia (magnesium oxide) with a median diameter of 0.3 ⁇ m is used instead of alumina with a median diameter of 0.3 ⁇ m. A battery was similarly prepared.
  • a cylindrical nonaqueous electrolyte secondary battery was manufactured, but the shape of the battery of the present invention is not limited to a cylindrical shape.
  • a carbon material is used as the negative electrode material and a force Si alloy or Sn alloy is used as shown in the charging voltage of 4.25 V, the same safety improvement effect can be obtained.
  • batteries that are charged to a higher voltage range (4.2 to 4.6 V) can be similarly safe by using a positive electrode mixture with an estimated heat generation rate of 50 WZkg or less in combination with a heat-resistant insulating layer. The effect of improving the properties can be obtained.
  • the present invention is particularly suitable for non-aqueous electrolyte secondary batteries that require both high energy density and excellent safety, and is used as a power source for portable devices such as portable information terminals and portable electronic devices. Probability is high.
  • the lithium secondary battery of the present invention can be used for a power source of, for example, a small household electric power storage device, a motorcycle, an electric vehicle, a hybrid electric vehicle, and the use is not particularly limited.
  • the shape of the lithium secondary battery of the present invention is not particularly limited, but for example, a cylindrical shape or a rectangular shape is suitable.
  • the lithium secondary battery of the present invention is a multifunctional portable device (PDA), power tool, personal computer (PC), electric toy, electric robot power supply, large backup power supply, emergency backup power supply (USP), natural It is particularly suitable for leveling power sources for energy generation, regenerative energy utilization systems, and the like.
  • PDA portable device
  • PC personal computer
  • electric toy electric robot power supply
  • large backup power supply large backup power supply
  • USP emergency backup power supply
  • natural It is particularly suitable for leveling power sources for energy generation, regenerative energy utilization systems, and the like.

Abstract

 正極合剤およびこれを担持する正極集電体を含む正極、負極、ポリオレフィン樹脂を含むセパレータ、非水電解質、ならびに、耐熱性絶縁層を具備する非水電解質二次電池であり、正極合剤の200°Cにおける推定発熱速度は、50W/kg以下である。正極と負極とは、これらの間に介在するセパレータおよび耐熱性絶縁層とともに捲回されている。

Description

非水電解質二次電池
技術分野
[0001] 本発明は、非水電解質二次電池に関し、特にその安全性の改善に関する。
背景技術
[0002] 近年、電子機器のポータブル化およびコードレス化が急速に進んでいる。これに伴 い、電子機器の駆動用電源として、高電圧および高エネルギー密度を有する非水電 解質二次電池の実用化が進んで 、る。
[0003] 非水電解質二次電池の正極は、一般に酸化還元電位の高い複合リチウム酸化物 を含む。複合リチウム酸ィ匕物には、例えばコバルト酸リチウム、ニッケル酸リチウム、マ ンガン酸リチウム等が用いられる。一方、非水電解質二次電池の負極は、一般に炭 素材料を含む。また、非水電解質二次電池は、リチウム塩を溶解させた非水溶媒か らなる電解質を含む。リチウム塩には、例えば LiClO、 LiPF等が用いられる。正極と
4 6
負極との間にはセパレータが介在している。セパレータには、例えばポリオレフイン系 材料からなる微多孔フィルムが用いられて 、る。
[0004] 何らかの要因により、電池内部で比較的低い抵抗の短絡が発生した場合、短絡点 には大きな電流が集中して流れる。そのため、電池が発熱して高温に至ることがある 。このような現象が起こらないように、電池には様々な安全対策が講じられている。
[0005] 製造工程の側面では、金属粉の管理や、製造雰囲気中の粉塵の管理を行い、電 池内部への異物の混入を防止している。また、抵抗の低い集電体の露出部分を、例 えば絶縁テープで保護することにより、内部短絡を極力抑制している。
[0006] シャットダウン機能を有するセパレータも用いられている。万一、電池内部で比較的 低 、抵抗の短絡が発生した場合、シャットダウン機能を有するセパレータの細孔は、 約 135°Cで閉塞し、イオン電流を遮断する。よって、短絡電流はカットされ、発熱が停 止する。しかし、電池の表面温度は約 120°C程度に上昇する。
[0007] 内部短絡を防止するために、電極上に、無機微粒子および榭脂結着剤からなり、 厚み 0. 1〜200 mである層を形成することも提案されている。電池の内部短絡は、 電池の製造工程中に、電極力も部分的に脱落する材料に起因する。この提案は、こ のような内部短絡を抑制し、生産歩留まりを向上させることを目的とする(特許文献 1 参照)。
[0008] セパレータ上に、耐熱性榭脂 (例えばァラミド)を付与することも提案されている。こ の提案も、電池の内部短絡を防止するための安全対策を意図したものである (特許 文献 2参照)。
特許文献 1:特開平 7— 220759号公報
特許文献 2:特開平 9 - 208736号公報
発明の開示
発明が解決しょうとする課題
[0009] 従来の提案によれば、局所的な内部短絡が発生した場合には、ある程度、発熱を 抑制することが可能である。しかし、例えば釘刺し試験を行う場合には、同時に多数 の短絡部が発生する。釘刺し試験は、電池が多数の内部短絡を伴って破損した際の 安全性を評価する試験である。このような極端な短絡状態では、必ずしも電池の発熱 を抑制することができず、電池が高温に至ることがある。
[0010] 例えば、正極がコバルト酸リチウムを含み、負極がグラフアイトを含み、セパレータが ポリエチレン製微多孔フィルムである一般的なリチウムイオン電池の釘刺し試験を行 うと、セパレータのシャットダウン機能が発現するまで電池温度は上昇し、電池の表面 温度は 120°C付近になる。この温度上昇は、短絡電流により電池内部で発生したジ ユール熱による。
[0011] セパレータのシャットダウン機能により、短絡電流がカットされるため、電池温度がそ れ以上に達するほどの発熱は抑制される。蓄電池工業会で定められている釘刺し試 験および圧壊試験における安全性評価の基準によれば、発煙、発火および破裂の ないことが要求される。一方、電池温度に関する基準は特に定められていない。その ため、電池の表面温度が 120°C程度となっても、シャットダウン機能により発熱が抑 制されれば、安全性の基準を満たすことになる。
[0012] しかし、安全性の基準を満たす場合であっても、電池の表面温度が 120°C付近に まで上昇すると、その電池を内蔵した電子機器の温度も上昇する。よって、電子機器 の筐体の変形等が起こり、電子機器の安全性が低減する可能性がある。よって、電 池の安全性もしくは信頼性を更に高めることが望まれている。例えば内部短絡が発 生した場合でも、電池表面の最高到達温度を 80°C以下に抑制することが熱望されて いる。
[0013] 特許文献 1の提案 (電極上に、無機微粒子および榭脂結着剤からなり、厚み 0. 1〜 200 mである層を形成する提案)では、釘刺し試験においては、電池温度が 80°C を超える高温に達する場合がある。
[0014] 特許文献 2の提案 (セパレータ上に、耐熱性榭脂を付与する提案)でも、釘刺し試 験においては、電池表面温度が 80°Cを超える高温に達する場合がある。
[0015] よって、従来の提案では、釘刺し試験のように、同時に多数の短絡点が発生する場 合には、必ずしも電池表面温度を 80°C以下に抑制することができない。釘刺し試験 にお 、て、電池表面高温が 80°Cを超える理由として以下が考えられる。
[0016] 単発的な内部短絡であれば、無機微粒子および榭脂結着剤からなる層や耐熱性 榭脂の存在により、短絡点の拡大は防がれる。短絡点は自己の発熱によって瞬時に 焼失するため、短絡状態は 0. 1〜0. 5秒間で終了し、その後、電気的な絶縁が回復 する。短絡電流が遮断されると、発生した熱は電池全体へ拡散する。よって、電池温 度がそれほど高温に達することはない。短絡点以外の低温部位は、比較的低温であ るため、熱の拡散は速やかに起こる。
[0017] 一方、釘刺し試験の場合、電池内に同時に多数の短絡点が発生する。このような 過酷な状況では、内部短絡による発熱だけでなぐ正極活物質の熱分解反応による 発熱が連続的に発生すると考えられる。よって、熱を拡散する放熱速度が、発熱速 度に追いつかず、正極活物質の熱分解反応が連鎖的に拡大すると考えられる。これ により、短絡点付近では、正極活物質の脱落や焼失が起こる。よって、正極集電体( 例えばアルミニウム箔)が露出し、新たな短絡点が生成される。その結果、内部短絡 状態が持続し、電池表面温度はシャットダウン機能が作動する 120°C付近まで上昇 し続けることになる。なお、単発的な内部短絡であれば、正極活物質の熱分解反応 が進行することはな 、。正極活物質の脱落や焼失による短絡点の増加も起こらな 、と 考えられる。 課題を解決するための手段
[0018] 本発明は、上記状況の改善を図るものであり、高エネルギー密度を維持しながら、 従来よりも安全性を高めた非水電解質二次電池を提供するものである。
[0019] 本発明は、複合リチウム酸化物を含む正極合剤およびこれを担持する正極集電体 を含む正極、リチウムを吸蔵および放出可能な材料を含む負極、正極と負極との間 に介在するポリオレフイン榭脂を含むセパレータ、非水電解質、ならびに、正極と負 極との間に介在する耐熱性絶縁層を具備する非水電解質二次電池であって、正極 と負極とが、これらの間に介在するセパレータおよび耐熱性絶縁層とともに捲回され ており、正極合剤の 200°Cにおける推定発熱速度は、 50WZkg以下である、非水電 解質二次電池に関する。
耐熱性絶縁層の厚みは、例えば 1 μ m以上、 15 m以下、もしくは、 1 μ m以上、 5 μ m以" hである。
推定発熱速度は、例えば (i)加速速度熱量計もしくは暴走反応測定装置 (ARC)に より、絶対温度 Tと、正極合剤の発熱速度 Vとの関係を求め、(ii)ァレニウスの定理に 基づいて、絶対温度 Tの逆数 (X座標)と、発熱速度 Vの対数 (Y座標)との関係をプ ロットし、(m)T< 200°C (473K)の発熱領域に存在するプロットに適合する近似直 線を求め、(iv)得られた近似直線を、 T= 200°C (473K)の温度軸に外挿することに より求められる。
[0020] ここで、発熱領域とは、上記ァレニウスの定理に基づくプロットにおいて、負の傾き を有する近似直線の傾きの絶対値が最も大きくなる領域を指す。すなわち、近似直 線は、負の傾きの絶対値が最大となるように描く。また、外挿 (Extrapolation)は、既知 の数値データを基にして、そのデータの範囲外にお!/、て予想される数値を求める方 法であり、様々な分野で用いられている。
[0021] 複合リチウム酸ィ匕物には、例えば以下を用いることが好ましい。
(i)一般式(1): Li M Me Oで表される組成を有し、元素 Mは、 Al、 Mn、 Sn、 In、 F a b c 2
e、 Cu、 Mg、 Ti、 Zn、 Zrおよび Moよりなる群力 選択される少なくとも 1種であり、元 素 Meは、 Niおよび Coよりなる群力 選択される少なくとも 1種であり、一般式(1)は、 0. 9< a< l. 2、 0. 02≤b≤0. 5、 0. 5≤c≤0. 98、および 0. 95≤b + c≤l. 05 を満たす複合リチウム酸化物。
[0022] (ii)一般式(2): Li M Ni Co Oで表される組成を有し、元素 Mは、 Al、 Mn、 Sn、 In a b d e 2
、 Fe、 Cu、 Mg、 Ti、 Zn、 Zrおよび Moよりなる群から選択される少なくとも 1種であり 、一般式(2)は、 0. 9< a< l. 2、 0. 02≤b≤0. 5、 0. l≤d≤0. 5、 0. l≤e≤0. 5、および 0. 95≤b + d+e≤l. 05を満たす複合リチウム酸化物。一般式(2)は、 0 . 15≤b≤0. 4、0. 3≤d≤0. 5および 0. 15≤e≤0. 4を満たすこと力特に好まし!/ヽ
[0023] (iii)任意の組成を有し、元素 Mを含み、元素 Mは、 Al、 Mn、 Sn、 In、 Fe、 Cu、 Mg、 Ti、 Zn、 Zrおよび Moよりなる群力 選択される少なくとも 1種であり、元素 Mは、内部 よりも表層部に多く分布する複合リチウム酸化物。一般式(1)および (2)で表される 複合リチウム酸ィ匕物においても、元素 Mは、複合リチウム酸ィ匕物の内部よりも表層部 に多く分布することが望まし 、。
[0024] 複合リチウム酸化物は、一般式(3) :X-Si-Yで表される Siィ匕合物で処理されて
3
いることが望ましい。ここで、 Xは、複合リチウム酸化物と反応する官能基を含み、 Yは 、 C、 H、 0、 Fまたは Siを含む官能基を含む。
発明の効果
[0025] 本発明によれば、同時に多数の短絡点が生じる過酷な状況においても、内部短絡 による発熱と連鎖的な発熱反応とが効果的に抑制される。よって、短絡の持続が回 避されるため、電池の最高到達温度を安定して 80°C以下に抑制することが可能とな る。本発明によれば、高エネルギー密度を維持しながら、従来よりも安全性を高めた 非水電解質二次電池を提供できる。
図面の簡単な説明
[0026] [図 1]ARCにより求められた絶対温度 Tと各種正極材料の発熱速度 Vとの関係を示 すァレニウスプロットの一例である。
[図 2]ARCの測定原理の説明図である。
発明を実施するための最良の形態
[0027] 本発明の非水電解質二次電池は、複合リチウム酸化物を含む正極合剤およびこれ を担持する正極集電体を含む正極、リチウムを吸蔵および放出可能な材料を含む負 極、ポリオレフイン榭脂を含むセパレータ、非水電解質、ならびに、正極と負極との間 に介在する耐熱性絶縁層を具備する。
[0028] 耐熱性絶縁層は、例えば、正極および負極のどちらか一方において、他方の電極 と対向する面に形成すればよいが、耐熱性絶縁層の配置はこれに限定されない。ま た、耐熱性絶縁層は、正極の少なくとも一方の面だけに形成してもよぐ負極の少なく とも一方の面だけに形成してもよぐセパレータの少なくとも一方の面だけに形成して もよい。また、耐熱性絶縁層は、正極の少なくとも一方の面と負極の少なくとも一方の 面だけに形成してもよぐ負極の少なくとも一方の面とセパレータの少なくとも一方の 面だけに形成してもよぐセパレータの少なくとも一方の面と正極の少なくとも一方の 面だけに形成してもよい。また、耐熱性絶縁層は、正極の少なくとも一方の面と負極 の少なくとも一方の面とセパレータの少なくとも一方の面に形成してもよい。さらに、耐 熱性絶縁層は、正極力もも、負極からも、セパレータからも独立したシート状であって もよい。ただし、耐熱性絶縁層は、正極の少なくとも一方の面、負極の少なくとも一方 の面、または、セパレータの少なくとも一方の面に、接着されていることが望ましい。
[0029] 本発明は、正極合剤の 200°Cにおける推定発熱速度が 50WZkg以下に制御され ている点に一つの特徴を有する。ここで、推定発熱速度は、例えば (i)加速速度熱量 計もしくは暴走反応測定装置(Accelerated rate calorimeter: ARC)〖こより、絶対温度 Tと正極合剤の発熱速度 Vとの関係を求め、(ii)ァレニウスの定理に基づいて、絶対 温度 Tの逆数 (X座標)および発熱速度 Vの対数 (Y座標)との関係をプロットし、 (iii) T< 200°C (473K)の発熱領域に存在するプロットに適合する近似直線を求め、(iv) 得られた近似直線を T=200°C (473K)の温度軸に外挿することにより、求められる
[0030] 上記外挿で求められる正極合剤の 200°Cにおける推定発熱速度が 50WZkg以下 である場合、特に同時多発的に短絡点が生じる過酷な状況において、耐熱性絶縁 層による安全性への寄与が顕著に高められる。本発明は、このような知見に基づい ており、従来に比べて極めて高度な安全性を実現している。
[0031] 例えば以下のような正極材料を用いることにより、正極合剤の 200°Cにおける推定 発熱速度を 50WZkg以下に抑制することができる。 第 1に、一般式(1): Li M Me Oで表される組成を有し、元素 Mは、 Al、 Mn、 Sn、 I a b c 2
n、 Fe、 Cu、 Mg、 Ti、 Zn、 Zrおよび Moよりなる群から選択される少なくとも 1種であり
、元素 Meは、 Niおよび Coよりなる群力 選択される少なくとも 1種であり、一般式(1) は、 0. 9< a< l. 2、 0. 02≤b≤0. 5、 0. 5≤c≤0. 98、および 0. 95≤b + c≤l.
05を満たす複合リチウム酸化物を、推定発熱速度を 50WZkg以下に抑制するのに 有効な正極材料として挙げることができる。
[0032] 推定発熱速度を小さくするという観点から、元素 Mのなかでも特に、 Mn、 A1および
Mgが好ましぐ Mnが最も好ましい。なお、 Al、 Mn、 Sn、 In、 Fe、 Cu、 Mg、 Ti、 Zn、
Zrおよび Moは、 、ずれも推定発熱速度を低下させる効果がある。
[0033] ここで、 a値は、初期値であり、電池の充放電により増減する。初期値は、実質上、 放電状態の電池に含まれる複合リチウム酸化物の a値に一致する。合成直後の複合 リチウム酸ィ匕物の標準的な a値は 1である。
[0034] b値が 0. 02未満では、元素 Mの効果が確認できず、 0. 5を超えると、容量低下が 大きくなる。
c値が 0. 5未満では、一定以上の容量を確保することが困難であり、 0. 98を超える と、推定発熱速度を低下させる効果が得られない。
[0035] 一般式(1)は、 0. 95≤b + c≤l. 05を満たす。合成直後の初期状態(充放電の履 歴を有さない状態)において、 b + cの標準値は 1である力 b + cは厳密に 1である必 要はない。 0. 95≤b + c≤l . 05の範囲では、実質上 b + c= lと見なすことができる
[0036] 第 2に、一般式(2): Li M Ni Co Oで表される組成を有し、元素 Mは、 Al、 Mn、 S a b d e 2
n、 In、 Fe、 Cu、 Mg、 Ti、 Zn、 Zrおよび Moよりなる群から選択される少なくとも 1種 であり、一般式(2)は、 0. 9< a< l . 2、 0. 02≤b≤0. 5、 0. l≤d≤0. 5、 0. l≤e ≤0. 5、および 0. 95≤b + d+e≤l. 05を満たす複合リチウム酸化物を、推定発熱 速度を 50WZkg以下に抑制するのに有効な正極材料として挙げることができる。一 般式(2)は、 0. 15≤b≤0. 4、0. 3≤d≤0. 5および 0. 15≤e≤0. 4を満たすこと が特に好ましい。
[0037] 一般式(2)でも、 a値は、初期値であり、電池の充放電により増減する。また、 b値が 0. 02未満では、元素 Mの効果が確認できず、 0. 5を超えると、容量低下が大きくな る。
d値が 0. 1未満では、 Niの添加効果 (例えば理論容量を向上させる効果)が低ぐ 0
. 5を超えると、電圧が低くなる上に、寿命特性も低下する。
e値が 0. 1未満では、 Coの添加効果 (例えば電圧を向上させる効果)が低ぐ 0. 5 を超えると、正極の利用率が低下する。
[0038] 一般式(2)は、 0. 95≤b + d+e≤l. 05を満たす。ただし、合成直後の初期状態( 充放電の履歴を有さない状態)において、 b + d+eの標準値は 1である力 b + d+e は厳密に 1である必要はない。 0. 95≤b + d+e≤l. 05の範囲では、実質上 b + d
+ e = lと見なすことができる。
[0039] 一般式(2)で表され、 200°Cにおける推定発熱速度を 50WZkg以下に制御する 正極材料の具体例として、例えば LiMn Ni Co O (0. 15≤b≤0. 35、 0. 3≤d≤0 b d e 2
. 5および 0. 25≤e≤0. 35)力挙げられる。
[0040] 第 3に、任意の組成を有し、元素 Mを含み、元素 Mは、 Al、 Mn、 Sn、 In、 Fe、 Cu、 Mg、 Ti、 Zn、 Zrおよび Moよりなる群力 選択される少なくとも 1種であり、元素 Mは 、内部よりも表層部に多く分布する複合リチウム酸ィ匕物を、推定発熱速度を 50WZk g以下に抑制するのに有効な正極材料として挙げることができる。
[0041] このような正極材料は、任意の組成を有する複合リチウム酸化物(例えば一般式(1 )または(2)で表される複合リチウム酸化物)の表面に、元素 Mを含む化合物(例えば 、硝酸塩、硫酸塩など)を付与し、元素 Mを複合リチウム酸ィ匕物内に拡散させることに より得ることができる。例えば、複合リチウム酸化物と少量の元素 Mを含む化合物を 混合し、適温で焼成すれば、元素 Mが複合リチウム酸ィ匕物の表面力 内部に拡散す る。その結果、元素 Mが内部よりも表層部に多く分布する複合リチウム酸ィ匕物を得る ことができる。あるいは、元素 Mを含む化合物を溶解もしくは分散させた液と、複合リ チウム酸化物とを混合し、その後、液状成分を除去することで、元素 Mを担持した複 合リチウム酸ィ匕物を得ることができる。この複合リチウム酸化物を適温 (例えば 300〜 700°C)で焼成すれば、元素 Mが複合リチウム酸ィ匕物の表面から内部に拡散する。
[0042] 元素 Mを含む化合物は、 200°Cにおける推定発熱速度を抑制する効果が大きい。 ただし、複合リチウム酸ィ匕物に添加する元素 Mを含む化合物の量が多くなると、正極 の利用率が低下し、電池のエネルギー密度が低下する。また、正極の発熱反応は、 活物質粒子の表面で起こる。よって、元素 Mを活物質粒子の表層部に多く存在させ ることで、正極の利用率を大きく低下させずに、効率よく発熱を抑制できる。すなわち 、元素 Mを活物質粒子の表層部に集中分布させることで、少量の元素 Mにより、推 定発熱速度を抑制できる。
[0043] 複合リチウム酸化物 1モルあたり、元素 Mが 0. 0001〜0. 05モルとなる量の元素 Mを含む化合物を用いることが好ま 、。
[0044] 第 4に、一般式(3) :X-Si-Yで表される Siィ匕合物で処理されている複合リチウム
3
酸化物を、推定発熱速度を 50WZkg以下に抑制するのに有効な正極材料として挙 げることができる。ここで、 Xは、複合リチウム酸化物と反応する官能基を含み、 Yは、 C、 H、 0、 Fまたは Siを含む官能基を含む。このような Siィ匕合物で複合リチウム酸ィ匕 物の表面を改質することにより、活物質粒子の表面で起こる発熱反応が抑制され、推 定発熱速度が抑制される。また、 Si化合物で複合リチウム酸化物を処理しても、正極 の利用率は大きく低下しない。
[0045] 例えば、複合リチウム酸化物を、 X-Si-Yで表されるシランカップリング剤で処理
3
することが望ましい。複合リチウム酸化物を、 X-Si-Yで表されるシランカップリング
3
剤で処理する方法は、特に限定されない。例えば、シランカップリング剤を水と混合し 、得られた混合液を複合リチウム酸ィ匕物と混合し、その後、乾燥させる。ここで、シラン カップリング剤と水との混合液において、シランカップリング剤の濃度は、 0. 01重量 %〜5重量%程度が好ましぐ 0. 1重量%〜3重量%程度が更に好ましい。また、シ ランカップリング剤の量は、複合リチウム酸ィ匕物 100重量部あたり、 0. 001-0. 5重 量部が好ましぐ 0. 01〜0. 1重量部が更に好ましい。
[0046] シランカップリング剤には、例えば、ビニルトリエトキシシラン、ビニルトリメトキシシラ ン、ビュルトリクロルシラン、ビュルトリス(2-メトキシエトキシ)シラン、 γ -メタアタリ口 キシプロピルトリメトキシシラン、 γ -メタアタリロキシプロピルトリエトキシシラン、 γ -ァ ミノプロピルトリエトキシシラン、 γ -ァミノプロピルトリメトキシシラン、 Ν- β - (アミノエ チル) - γ -ァミノプロピルトリメトキシシラン、 N- j8 - (アミノエチル) - Ύ -アミノプロピ ルトリエトキシシラン、 Ί -ウレイドプロピルトリエトキシシラン、 Ί -ウレイドプロピルトリメ トキシシラン、 13 - (3、 4エポキシシクロへキシル)ェチルトリメトキシシラン、 j8 - (3、4 エポキシシクロへキシル)ェチルトリエトキシシラン、 γ -グリシドキシプロピルトリメトキ シシラン、 γ -グリシドキシプロピルトリエトキシシラン、 γ -メルカプトプロピルトリメトキ シシラン、 γ -メルカプトプロピルトリエトキシシラン、 γ -クロルプロピルトリメトキシシ ラン、 Ί -クロルプロピルトリエトキシシラン、メチルトリエトキシシラン、メチルトリメトキ シシラン、フエニルトリエトキシシラン、フエニルトリメトキシシランなどを用いることがで きる。これらのうちでは、特に、ビュルトリエトキシシラン、ビュルトリメトキシシラン、ビ- ルトリス(2-メトキシェトキシ)シラン、 Ί -メタアタリロキシプロピルトリメトキシシラン、 γ -メタアタリロキシプロピルトリエトキシシラン、 γ -ァミノプロピルトリエトキシシラン、 y -ァミノプロピルトリメトキシシラン、 Ν— —(アミノエチル)― Ύ -ァミノプロピルトリメト キシシラン、 N- j8 - (アミノエチル) - γ -ァミノプロピルトリエトキシシラン、 γ -ゥレイ ドプロピルトリエトキシシラン、 γ -ウレイドプロピルトリメトキシシラン、 13 - (3、 4ェポキ シシクロへキシル)ェチルトリメトキシシラン、 /3 - (3、 4エポキシシクロへキシル)ェチ ルトリエトキシシラン、 Ί -グリシドキシプロピルトリメトキシシラン、 Ί -グリシドキシプロ ピルトリエトキシシランが好まし 、。
耐熱性絶縁層は、例えば、無機酸ィ匕物フイラ一および榭脂成分を含む。無機酸ィ匕 物フイラ一は、耐熱性が高い。よって、電池が比較的高温に至った場合でも、耐熱性 絶縁層は、機械的強度を高く維持することができる。耐熱性絶縁層には、様々な榭 脂成分を用いることができるが、耐熱性の高い榭脂成分を用いることにより、特に優 れた耐熱性絶縁層が得られる。
耐熱性絶縁層は、例えば、無機酸化物フィラーおよび結着剤 (榭脂成分)を含む場 合と、耐熱性榭脂 (榭脂成分)からなる場合があるが、特に限定されない。無機酸ィ匕 物フイラ一および結着剤を含む耐熱性絶縁層は、機械強度が比較的高いので、耐 久性が高い。ここで、無機酸ィ匕物フイラ一および結着剤を含む耐熱性絶縁層は、無 機酸化物フィラーを主成分とする。例えば耐熱性絶縁層の 80重量%以上、好ましく は 90重量%以上が無機酸ィ匕物フイラ一である。耐熱性榭脂からなる耐熱性絶縁層 は、例えば 20重量%を超える耐熱性榭脂を含む。 耐熱性榭脂からなる耐熱性絶縁層は、無機酸化物フィラーを主成分として含む耐熱 性絶縁層に比べ、柔軟性が高い。これは無機酸ィ匕物フイラ一よりも耐熱性榭脂の方 が柔軟なためである。よって、耐熱性榭脂からなる耐熱性絶縁層は、充放電に伴う極 板の膨張および収縮に追従しやすぐ高い耐熱性を保持できる。よって、釘刺し安全 性も高くなる。
耐熱性榭脂からなる耐熱性絶縁層は、例えば 80重量%未満の無機酸ィ匕物フイラ 一を含むことができる。無機酸ィ匕物フイラ一を含ませることにより、柔軟性と耐久性と のノ ランスに優れた耐熱性絶縁層が得られる。耐熱性榭脂は耐熱性絶縁層の柔軟 性に寄与し、機械的強度の高い無機酸ィ匕物フイラ一は耐久性に寄与する。耐熱性絶 縁層に無機酸ィ匕物フイラ一を含ませることにより、電池の高出力特性が向上する。詳 細は不明であるが、これは、柔軟性と耐久性との相乗効果により、耐熱性絶縁層の空 隙構造が適正化されるためと考えられる。良好な高出力特性を確保する観点から、 耐熱性榭脂からなる耐熱性絶縁層は、 25重量%〜75重量%の絶縁性フイラ一を含 むことが望ましい。
[0048] 耐熱性絶縁層の榭脂成分 (結着剤もしくは耐熱性榭脂)は、 250°C以上の熱分解 開始温度を有することが望ましい。榭脂成分は、高温で大きく変形しないことが望まし い。よって、榭脂成分は、非晶質もしくは非結晶性であることが望ましい。榭脂成分の 熱変形開始温度もしくはガラス転移温度 (Tg)は 250°C以上であることが望ま 、。
[0049] 榭脂成分の熱分解開始温度や熱変形開始温度やガラス転移温度は、示差走査熱 量測定(DSC : differential scanning calorimetry)や、熱重量測定—示差熱分析 (TG DTA: thermogravimetry— differential thermal analysis)〖こより測定す oこと; 0できる 。例えば、 TG— DTA測定における重量変化の始点は、熱分解開始温度に相当し、 DSC測定における吸熱方向への変曲点は、熱変形温度やガラス転移温度に相当す る。
[0050] 耐熱性絶縁層を構成する結着剤の具体例としては、例えば、ポリフッ化ビ-リデン( PVDF)等のフッ素榭脂、アクリロニトリル単位を含むゴム性状高分子 (変性アタリ口- トリルゴム)を好ましく用いることができる。これらは単独で用いてもよぐ 2種以上を組 み合わせて用いてもよい。なかでも適度な耐熱性、弾力性および結着性を有すること から、アクリロニトリル単位を含むゴム性状高分子が最も適して 、る。
耐熱性絶縁層を構成する耐熱性榭脂の具体例としては、例えば、芳香族ポリアミド (ァラミド)等のポリアミド榭脂、ポリイミド榭脂、ポリアミドイミド榭脂などを好ましく用い ることができる。これらは単独で用いてもよぐ 2種以上を組み合わせて用いてもよい。 無機酸ィ匕物フイラ一および結着剤を含む耐熱性絶縁層は、負極の少なくとも一方 の面に形成もしくは接着されていることが好ましぐ負極の両面に形成もしくは接着さ れていることが更に好ましい。耐熱性榭脂からなる耐熱性絶縁層は、セパレータの少 なくとも一方の面に形成もしくは接着されていることが好ましぐ耐熱性絶縁層は比較 的脆いため、セパレータの一方の面だけに形成もしくは接着されていることが更に好 ましい。耐熱性榭脂からなる耐熱性絶縁層が、セパレータの一方の面だけに形成さ れている場合、セパレータの厚み Aと、耐熱性絶縁層の厚み Bとの比率: AZBは、耐 熱性絶縁層の破損を防ぐ観点から、例えば 3≤AZB≤12、もしくは、 4≤A/B≤6 である。
[0051] 無機酸ィ匕物フイラ一には、例えばアルミナ (Al O )、チタ-ァ (TiO )、シリカ(SiO )
2 3 2 2
、ジルコユア、マグネシア等を用いることができる。これらは単独で用いてもよぐ 2種 以上を組み合わせて用いてもよい。これらのうちでは、安定性、コスト、取り扱いの容 易さの観点から、特にアルミナ (なかでも a—アルミナ)やマグネシアが好ましい。
[0052] 無機酸ィ匕物フイラ一のメディアン径 (D50 :平均粒径)は、特に限定されないが、一 般に 0. 1〜5 /ζ πιの範囲であり、 0. 2〜1. 5 mであることが望ましい。
[0053] 無機酸化物フィラーおよび結着剤を含む耐熱性絶縁層に占める無機酸化物フイラ 一の含有率は、 50重量%以上 99重量%以下であることが好ましぐ 90重量%以上 9 9重量%以下であることが更に好ましい。無機酸化物フィラーの含有率が 50重量% を下回ると、榭脂成分が過多となる。よって、フィラー粒子による細孔構造の制御が困 難になることがある。一方、無機酸ィ匕物フイラ一の含有率が 99重量%を上回ると、榭 脂成分が過少となる。よって、耐熱性絶縁層の強度や、電極表面もしくはセパレータ 表面に対する密着性が低下する場合がある。
[0054] 耐熱性絶縁層の厚みは、特に限定されな!ヽ。耐熱性絶縁層による短絡抑制機能も しくは短絡点の絶縁化を十分に確保し、かつ設計容量を維持する観点から、耐熱性 絶縁層の厚みは、例えば 1 μ m以上、 15 m以下である。無機酸ィ匕物フイラ一およ び結着剤を含む耐熱性絶縁層の厚みは、例えば 3〜15 m、もしくは、 3〜8 μ mで ある。耐熱性榭脂からなる耐熱性絶縁層の厚みは、例えば 1. 5〜7 /ζ πι、もしくは、 1 . 7〜6. 7 mである。耐熱性絶縁層の厚みが大きすぎると、耐熱性絶縁層は脆いた め、電極を捲回する際に破損する場合がある。一方、厚みが小さすぎると、耐熱性絶 縁層の強度が小さくなり、破損する場合がある。
[0055] 本発明には、様々な従来のセパレータを用いることができる。例えばポリエチレン、 ポリプロピレンなどのポリオレフイン榭脂からなる単層構造のセパレータゃ、ポリオレフ イン榭脂からなる多層構造のセパレータを用いることができる。セパレータの厚みは、 特に限定されないが、 15〜25 μ m程度が望ましい。
[0056] 正極合剤は、複合リチウム酸化物からなる活物質を必須成分として含み、結着剤、 導電材などを任意成分として含む。正極の結着剤には、例えばポリテトラフルォロェ チレン(PTFE)、変性アクリロニトリルゴム粒子、 PVDF等を用いることができる。これ らは単独で用いてもよぐ 2種以上を組み合わせて用いても良い。 PTFEや変性ァク リロ-トリルゴム粒子は、カルボキシメチルセルロース、ポリエチレンォキシド、変性ァ クリロ-トリルゴム等と組み合わせて用いることが好ましい。これらは、正極合剤と液状 成分を含むペーストの増粘剤となる。正極の導電材には、アセチレンブラック、ケツチ ヱンブラック、各種黒鉛等を用いることができる。これらは単独で用いてもよぐ 2種以 上を組み合わせて用いても良 ヽ。正極合剤に含まれる結着剤および導電材の量は、 活物質 100重量部あたり、それぞれ 0. 1〜5重量部および 1〜: LO重量部が好適であ る。
[0057] 炭素材料もしくは合金材料を含む負極には、従来の負極で用いられて 、る様々な 材料を用いることができる。炭素材料には、例えば各種天然黒鉛、各種人造黒鉛を 用いることができる。合金材料には、例えばケィ素合金、錫合金等を用いることができ る。炭素材料と合金材料とを複合して用いることもできる。負極にも、結着剤や導電材 を含ませることができる。負極の結着剤や導電材にも、正極の結着剤や導電材として 挙げた上記の材料を用いることができる。
[0058] 非水電解質には、リチウム塩を溶質として溶解した非水溶媒が好ましく用いられる。 リチウム塩および非水溶媒ともに特に限定されないが、リチウム塩には、例えば LiPF
6
、 LiBF等を用いることが好ましい。非水溶媒には、エチレンカーボネート、プロピレ
4
ンカーボネート、ジメチノレカーボネート、ジェチノレカーボネート、メチノレエチノレカーボ ネート等を用いることが好ましい。非水溶媒は、 1種を単独で用いるよりも、 2種以上を 組み合わせて用いることが好ましい。また、非水電解質には、添加剤として、ビ-レン カーボネート、ビュルエチレンカーボネート、シクロへキシルベンゼン等を添カ卩するこ とが望ましい。
[0059] 以下、本発明を各種実験および実施例に基づいて具体的に説明するが、本発明 は以下の実施例に限定されるものではない。
[0060] [実験 1]
短絡点近傍温度の測定
円筒形 18650 (直径 18mm、高さ 65mm)の非水電解質二次電池を 10セル作製し た。ここで、正極活物質には、コバルト酸リチウム (LiCoO )を用いた。また、負極表
2
面に、無機酸化物フィラーおよび榭脂成分からなる耐熱性絶縁層を形成した。これら のセルを用いて、釘刺し試験を行い、釘刺し直後の 0. 5秒間に、短絡点近傍の温度 が何 °Cまで上昇するかを調べた。
[0061] ここでは、電池表面に熱電対を取り付け、熱電対近傍に釘を刺して、電池表面温度 を測定した。結果を表 1に示す。
[0062] [表 1]
短絡点近傍温度
電池
(°C)
円筒形電池 1 2 0 5 円筒形電池 2 2 0 3 円筒形電池 3 2 0 1 円筒形電池 4 2 0 5 円筒形電池 5 2 1 6 円筒形電池 6 2 0 3 円筒形電池 7 2 0 8 円筒形電池 8 2 0 4 円筒形電池 9 2 1 0 円筒形電池 1 0 2 0 1
[0063] 上記の円筒形 18650の非水電解質二次電池は、以下の要領で作製した。
(i)正極の作製
コバルト酸リチウム 3kgと、結着剤としての呉羽化学 (株)製の PVDF # 1320 (PVD Fを 12重量0 /0含む N—メチルー 2—ピロリドン(NMP)溶液) 1kgと、アセチレンブラッ ク 90gと、適量の NMPとを、双腕式練合機で攪拌し、正極合剤ペーストを調製した。 このペーストを 15 μ m厚のアルミニウム箔の両面に塗布し、乾燥後、圧延して、正極 合剤層を形成した。この際、アルミニウム箔および正極合剤層力 なる極板の厚みを 160 /z mに制御した。得られた極板を、直径 18mm、高さ 65mmサイズの円筒形の 電池ケースに挿入可能な幅と長さに裁断し、正極を得た。
[0064] (ii)負極の作製
人造黒鉛 3kgと、 日本ゼオン (株)製の BM—400B (スチレン ブタジエン共重合 体を 40重量0 /0含む水性分散液) 75gと、増粘剤としてのカルボキシメチルセルロース (CMC) 30gと、適量の水とを、双腕式練合機で攪拌し、負極合剤ペーストを調製し た。このペーストを 10 μ m厚の銅箔の両面に塗布し、乾燥後、圧延して、負極合剤層 を形成した。この際、銅箔および負極合剤層からなる極板の厚みを 180 μ mに制御 した。得られた極板を、前記電池ケースに挿入可能な幅と長さに裁断し、負極を得た
(iii)非水電解質の調製 エチレンカーボネートと、メチルェチルカーボネートとを、体積比 1 : 3で含む混合溶 媒に、六フッ化リン酸リチウム (LiPF )を ImolZLの濃度で溶解し、非水電解質を調
6
製した。
[0066] (iv)耐熱性絶縁層の原料ペーストの調製
無機酸ィ匕物フイラ一であるメディアン径 0. 3 mのアルミナを 950gと、榭脂成分で ある日本ゼオン (株)製の BM - 720H (アクリロニトリル単位を含むゴム性状高分子を 8重量%含む NMP溶液) 625gと、適量の NMPとを、双腕式練合機で攪拌し、耐熱 性絶縁層の原料ペーストを調製した。
[0067] (V)電池の組立
耐熱性絶縁層の原料ペーストを負極の両面に塗布し、塗膜を乾燥させて、各面に 厚みが 0. 5 μ mの耐熱性絶縁層を形成した。
正極と、厚み 0. 5 μ mの耐熱性絶縁層を形成した負極とを、厚み 20 μ mのポリエ チレン榭脂の単層カゝらなるセパレータを介して捲回して、極板群を構成した。この極 板群を電池ケース内に挿入し、非水電解質を 5. 5g電池ケース内に注液し、ケース の開口部を封口した。こうして、円筒形の非水電解質二次電池 (公称容量 2000mA h)を完成させた。
[0068] 釘刺し試験は、以下の条件で行った。
まず、各電池(円筒形電池 1〜10)に対し、以下の充電を行った。
定電流充電: 1400mA (終止電圧 4. 25V)
定電圧充電: 4. 25V (終止電流 100mA)
充電後の電池に対して、その側面から、 2. 7mm径の鉄製丸釘を、 20°C環境下で 、 5mmZ秒の速度で貫通させ、貫通後 0. 5秒間の短絡点近傍 (すなわち釘刺し点 近傍)の電池温度を観測した。
[0069] 表 1の結果より、短絡点近傍の温度は 0. 5秒間で、最低でも 200°Cまで上昇してい ることがわ力つた。充電状態のコバルト酸リチウムは、 200°C付近になると熱分解を起 こすことが一般的に知られている。このことから、釘刺し試験のように同時多発的に短 絡点が生じる状況では、短絡点近傍で電流によるジュール発熱が «続的に起こり、 正極活物質の分解反応熱が発生したと予想される。このことは、無機酸ィ匕物フイラ一 と榭脂成分力 なる耐熱性絶縁層を具備する従来の電池では、同時多発的に内部 短絡が発生する状況では、安全性を確実に確保できな ヽことを示唆して ヽる。
[0070] 以上の結果より、同時多発的に内部短絡が発生する状況においても安全性を確実 に確保するためには、正極材料の熱安定性を制御することが非常に重要であること が理解できる。より具体的には、耐熱性絶縁層による短絡防止を講じるだけではなく 、正極活物質の熱分解反応を抑制することが重要となる。正極活物質は、短絡点近 傍が 200°C以上の高温に達した場合でも分解しにくい材料であることが要望される。
[0071] [実験 2]
正極活物質の検討
耐熱性絶縁層と正極活物質の熱安定性が非常に重要な要件であることから、次に 正極合剤の熱安定性の検討を行った。ここでは、表 2に示す正極材料 1〜3を含む正 極合剤の 200°Cにおける推定発熱速度を測定した。
[0072] [表 2]
Figure imgf000019_0001
[0073] 表 2に示した材料を正極活物質として用い、実験 1と同様にして、円筒形 18650の 非水電解質二次電池を作製し、得られた電池を以下の条件で充電した。以下、正極 材料 1〜3を用いて作製した電池を、それぞれ電池 1A〜3Aと称する。
定電流充電: 1400mA (終止電圧 4. 25V)
定電圧充電: 4. 25V (終止電流 100mA)
ただし、電池電圧 4. 25Vのとき、金属 Liに対する正極電位は 4. 35Vに相当する。
[0074] 充電状態の電池 1A〜3Aを、露点 40°C以下の雰囲気で分解し、正極を取り出し た。その正極を 3 X 6cmの試料に切り出した。次いで、正極の試料を、内面に Niメッ キを施した鉄製円筒ケース(直径 8mm、高さ 65mm)に封入し、ケースの開口部を封 口した。
[0075] 次に、円筒ケース内に密封された正極の試料を用い、加速速度熱量計もしくは暴 走反応測定装置(Accelerated rate calorimeter: ARC)を用いて、表 3に示す条件で 、絶対温度 Tと正極合剤の発熱速度 Vとの関係に関するデータを求めた。
[表 3]
Figure imgf000020_0001
[0077] ARCでは、試料が断熱環境に置かれるため、試料の温度上昇速度は、そのまま試 料の発熱速度を反映する。発熱反応が検知感度以上の発熱速度を有するまで、段 階的に強制的な昇温を繰り返し、検知感度以上の発熱速度を検知すると、断熱環境 で、試料の発熱速度の測定が行われる。
[0078] 表 3中の用語の意味を、概念図 2を参照しながら以下に記す。
昇温ステップ:試料の自発的な発熱が検知されない領域において、段階的に強制的 に上昇させる環境温度の温度幅(図 2の「 1」)である。
発熱検知感度:試料の自己発熱を検知する感度(図 2の「2」 )である。感度は材料に 基づいて任意に設定される。検知時間(A t)内における試料の自発的な発熱による 温度上昇幅を Δ Tとした場合、感度は Δ ΤΖ Δ tで表される。
昇温後安定時間:所定の昇温ステップに基づいて、強制的に環境温度を昇温させた 後、試料温度と炉内環境温度とが安定するまで放置する時間(図 2の「3」)である。こ の時間は任意に設定される。
発熱認識温度幅:試料の自己発熱を認識する温度幅(図 2の「4」)である。発熱認識 温度幅が 0. 2°Cで、発熱検知感度が 0. 04°CZ分である場合、 0. 04°CZ分以上の 昇温が 5分間(0. 2/0. 04)継続した場合に発熱有りと認識される。 [0079] 従来、正極活物質の熱安定性の評価には、示差走査熱量測定 (DSC: differential scanning calorimetry)や熱重量 定一示差熱分析 (TG― DTA: thermogravimetry- differential thermal analysis)等の熱分析装置が利用されている。し力し、 DSCや TG DTAによる熱安定性の評価には、以下の問題点がある。まず、 DSCや TG— DT A等による測定では、発熱速度や発熱ピークが測定条件 (昇温速度やサンプル量) によって変化する。よって、発熱速度を正確に求めるには適さない。次に、内部短絡 等では、短絡点近傍が瞬時に 200°C以上まで上昇する。よって、 200°C未満で起こ る発熱も同時に発生する。しかし、 DSCや TG— DTA等では温度域の異なる発熱の 速度を予測することができない。反面、 ARCは断熱測定のため、サンプルの温度上 昇速度は、そのままサンプルの発熱速度を表す。このため、 ARCは、熱分析手法と 異なり、発熱反応の反応速度を測定するのに非常に有効である。そこで、本発明で は、内部短絡時における正極合剤の熱安定性の評価にお!ヽて ARCを用いた。
[0080] ARCにより得られたデータは、図 1に示すように、ァレニウスの定理に基づいてプロ ットした。すなわち、絶対温度 Tの逆数 (X座標)と、発熱速度 Vの対数 (Y座標)との 関係をプロットした。こうして得られた化学反応の発熱速度を示すプロットの集合は、 直線で近似することができる。よって、近似直線を所定の温度軸に外挿することによ つて、実際に発熱が観測された温度領域とは異なる温度領域における発熱速度を推 定することが可能となる。ここでは、図 1に示すように、 Tく 200°C (473K)の発熱領 域に存在するプロットに適合した近似直線を求め、その近似直線を T= 200°C (473 K)の温度軸に外挿して、推定発熱速度を求めた。得られた推定発熱速度の結果を 表 4に示す。
[0081] [表 4]
Figure imgf000021_0001
次に、電池 1A〜3Aの釘刺し試験を、実験 1と同じ条件で行ったところ、正極材料 1 (LiMn Ni Co O )を用いた電池 1Aの場合だけ、釘刺し直後の短絡点近傍の 温度が 200°Cに達しな力つた。また、試験後の電池電圧は、試験前に比べて、ほとん ど降下しておらず、試験終了まで電池表面 (短絡点から離れた位置)の最高温度も 8 0°Cに達しな力つた。このこと力ら、内部短絡発生後、短絡点の絶縁ィ匕が有効に働き 、ジュール発熱の発生を最小限に抑制できたと考えられる。
[0083] 以上の結果より、正極材料の熱安定性が所定値、すなわち ARC測定カゝら導かれた 200°Cにおける推定発熱速度が lOWZkgである場合には、同時多発的に内部短絡 が発生する状況においても、安全性を確保できたものと考えることができる。この結果 は、耐熱性絶縁層の作用と正極材料の熱安定性との相乗効果によるものであり、この ような相乗効果が、従来にない高い安全性を有する電池の実現を可能にしたものと 考えられる。このことは、従来は同時多発的に短絡点が生じる状況では電池温度を 8 0°C未満に抑制することが不可能であった力 本発明によれば、それが可能となるこ とを意味する。
[0084] 次に、実施例について説明する。
《電池 X1〜X18および電池 Y1〜Y12》
表 2に示した正極材料 1〜 3およびそれらを混合した以下の正極材料 Α〜Εを用い た。耐熱性絶縁層の接着面を表 5記載のように設定した。さらに耐熱性絶縁層の乾 燥後の接着面一つあたりの厚みを表 5記載のように設定した。それ以外は、実験 1と 同様にして、円筒形 18650の非水電解質二次電池を作製した。
[0085] 正極材料 A:正極材料 1が 90重量%、正極材料 2が 10重量%の混合物
正極材料 B:正極材料 1が 80重量%、正極材料 2が 20重量%の混合物 正極材料 C:正極材料 1が 70重量%、正極材料 2が 30重量%の混合物 正極材料 D:正極材料 1が 60重量%、正極材料 2が 40重量%の混合物 正極材料 E:正極材料 1が 50重量%、正極材料 2が 50重量%の混合物
[0086] た し、電池 X7〜X12、 X16〜X18、電池 Y3、 Υ4、 Υ8、 Yl l、 Y12【こお!ヽて ίま、 セパレータの片面だけに、特許文献 2の実施例で開示されて 、るァラミド榭脂と無機 酸ィ匕物フイラ一からなる厚み 0. 5〜5 /ζ πιの膜を耐熱性絶縁層として形成した。具体 的には、以下の要領で耐熱性絶縁層を形成した。
[0087] 攪拌翼、温度計、窒素流入管および粉体添加口を有するセパラブルフラスコを十 分に乾燥した。乾燥したセパラブルフラスコ内に、 NMP4200gと、 200°Cで 2時間乾 燥させた塩化カルシウム 270gを添カ卩し、 100°Cに昇温した。塩化カルシウムが完全 に溶解した後に、フラスコ内を 20± 2°Cに戻し、パラフエ-レンジァミン(PPD) 130g を添加し、完全に溶解させた。この溶液を 20 ± 2°Cに保ったまま、テレフタル酸クロラ イド (TPC)を 5分毎に 24gずつ、 10回(計 240g)分割投入した。その後、この溶液を 1時間熟成させ、減圧下で 30分間攪拌し、脱気し、ポリパラフエ-レンテレフタルアミ ド (PPTA:熱分解開始温度 400°C以上、非晶質)の重合液を得た。
[0088] この重合液に、 5. 8重量%の塩化カルシウムを溶かした NMP溶液を徐々に添加し 、最終的に PPTAが 2. 8重量%となるようにした。ここに平均粒径 0. のアルミ ナ粒子を添カ卩し、 PPTA溶液:アルミナが重量比で 97 : 3のペーストを得た。このぺー ストをバーコ一タでセパレータの片面に塗布し、 80°Cの熱風で乾燥させた。その後、 イオン交換水を用いてセパレータを洗浄し、塩化カルシウム除去し、 PPTA力 なる 耐熱性絶縁層を有するセパレータを得た。極板群においては、耐熱性絶縁層が正 極側になるようにセパレータを配置した。
[0089] 電池 Y5、 6においては、正極、負極およびセパレータのいずれにも耐熱性絶縁層 を形成しなかった。
実験 2と同様の条件で、正極合剤の 200°Cにおける推定発熱速度を求めた。結果 を表 5に示す。
実験 1と同様の条件で、電池の釘刺し試験を行い、短絡点から離れた電池表面の 最高到達温度を調べた。電池 X1〜X18および電池 Y1〜Y12の電池は、それぞれ 10個ずつ作製し、釘刺し試験は 10個の電池で行った。各電池について、 10個の電 池のうち、 80°Cに達しなかった電池の最高到達温度の平均値と、 80°Cに達した電池 の個数を求めた。 10個すべてが 80°C以上の最高到達温度を示したものについては 、表 5に「80°C以上」と示した。結果を表 5に示す。
[0090] [表 5] 耐熱性 耐熱性 8 0 °C
正極 推定発熱 最高到達 絶縁層の 絶縁層の に達した
材料 速度 (W/kg) 温度 CC) 接着面 厚み( m) 電池個数
電池 Y 1 1 1 0 負極表面 0 . 5 3 5 2 電池 X 1 1 1 0 負極表面 1 1 3 3 電池 X 2 1 1 0 負極表面 2 . 5 1 3 3 電池 X 3 1 1 0 負極表面 3 0 3 0 電池 X 4 1 1 0 負極表面 5 0 3 0 電池 X 5 1 1 0 負極表面 1 0 0 2 9 電池 X 6 1 1 0 負極表面 1 5 0 2 9 電池 Υ 2 1 1 0 負極表面 1 7 3 4 5 電池 Υ 3 1 1 0 Wレ-タ表面 0 . 5 3 5 8 電池 X 7 1 1 0 セ Λ°レ-タ表面 1 1 3 9 電池 X 8 1 1 0 セ Λ°レ-タ表面 1 . 7 0 3 6 電池 X 9 1 1 0 セハ。レ-夕表面 5 0 3 5 電池 X 1 0 1 1 0 セ\。レ-タ表面 6 . 7 0 3 6 電池 X 1 1 1 1 0 セハ。レ-タ表面 1 0 1 3 8 電池 X 1 2 1 1 0 セ Λ°レ-タ表面 1 5 1 4 0 電池丫 4 1 1 0 セ レ-タ表面 1 7 3 5 4 電池 X 1 3 A 1 5 負極表面 5 0 3 5 電池 X 1 4 B 3 3 負極表面 5 0 3 8 電池 X 1 5 C 4 6 負極表面 5 0 4 2 電池 X 1 6 A 1 5 セ八'レ-タ表面 5 0 3 9 電池 X 1 7 B 3 3 セ Λ°レ-タ表面 5 0 4 2 電池 X 1 8 C 4 6 セ Λ°レ-タ表面 5 0 4 3 電池 Υ 5 2 1 0 0 なし - 1 0 8 0以上 電池 Υ 6 1 1 0 なし 一 1 0 8 0以上 電池 Υ 7 3 2 5 0 0 負極表面 5 1 0 8 0以上 電池 Υ 8 3 2 5 0 0 tA°レ-タ表面 5 1 0 8 0以上 電池 Υ 9 D 6 1 負極表面 5 1 0 8 0以上 電池 Υ 1 0 E 7 2 負極表面 5 1 0 8 0以上 電池 Υ 1 1 D 6 1 セ Λ'レ-タ表面 5 1 0 8 0以上 電池 Υ 1 2 E 7 2 セ Λ'レ-タ表面 5 1 0 8 0以上 正極材料 l :LiMn Ni Co O
' 1/3 1/3 1/3 2
正極材料 2 :LiAl Ni Co O
' 0.05 0.8 0.15 2
正極材料 3 :LiCo〇2
正極材料 A:正極材料 1 Z正極材料 2 = 90/10(wt%)
正極材料 B:正極材料 1/正極材料 2 = 80/20(wt%) 正極材料 C:正極材料 1Z正極材料 2 = 70/30(wt%)
正極材料 D:正極材料 1Z正極材料 2 = 60/40(wt%)
正極材料 E:正極材料 1Z正極材料 2 = 50/50(wt%)
[0092] 以下、評価結果について説明する。
電池 Y5、 Υ6より、コバルト酸リチウムに比べて比較的熱安定性の高い正極活物質 を用いたとしても、同時多発的な内部短絡が発生すると、耐熱性絶縁層が存在しな い場合には、電池表面の最高到達温度を常に 80°C未満に抑えられないことが理解 できる。
[0093] 電池 Y7〜Y12に示されるように、耐熱性絶縁層を有する電池であっても、上記方 法で求めた 200°Cにおける推定発熱速度が 50WZkgを超える正極活物質を用いた 場合には、発熱反応の連鎖を抑制することができず、電池表面の最高到達温度を常 に 80°C未満に抑えられないことが理解できる。
[0094] 電池 X13〜18および電池 Y9〜12の対比から、耐熱性絶縁層の作用を最大限に 有効活用できる安全領域は、正極活物質の 200°Cにおける推定発熱速度が 50WZ kg以下の領域であることがわかる。この領域を外れると、電池の最高到達温度の上 昇が顕著となることが理解できる。正極活物質の 200°Cにおける推定発熱速度が 50 WZkg以下の領域では、発熱反応の連鎖が効果的に抑制され、短絡点で発生した 発熱が効率良く拡散するものと考えられる。
[0095] 電池 Xl〜6より、耐熱性絶縁層の厚みは、一定以上の厚みがあれば、同時多発的 に短絡が生じる場合の電池の最高到達温度を抑制する効果に、それほど大きく影響 しないことがわかる。耐熱性絶縁層の厚みが大きい方力 最高到達温度は低くなつて いるが、あまり厚くなると電池のエネルギー密度を高く維持することが困難になるととも に、捲回の際に破損しやすくなる。耐熱性絶縁層は、脆いので、過剰に厚いと、捲回 の際に、部分的に電極表面ゃセパレータ表面力 脱落する。このことは、比較例 2に おいて、 80°C以上に達した電池の数が特異的に多くなつたこと力も確認できる。よつ て、熱安定性の高い正極活物質を用いた場合でも、釘刺し試験において、高度な安 全性を維持できなくなる。耐熱性絶縁層の厚みは、例えば 1〜15 /ζ πι程度の範囲、 もしくは、 3〜10 mであればよい。耐熱性絶縁層をセパレータの表面に形成した電 池 X7〜12においても、同様の結果が得られている。ァラミド榭脂を含む耐熱性絶縁 層の厚みは、例えば 1. 7〜6. であればよい。
[0096] 耐熱性絶縁層が 1 μ m未満の厚みになると、耐熱性絶縁層それ自身の機械的強度 が低下する。よって、短絡に伴う衝撃により、耐熱性絶縁層が破壊されやすくなる。こ のことは、電池 Y1において、 80°C以上に達した電池の数が特異的に多くなつたこと 力も確認できる。よって、耐熱性絶縁層が 1 μ m未満の厚みになると、絶縁化機能は 、ある程度低下すると考えられる。
[0097] 《電池 X19A〜X30Aおよび電池 Y13A》
表 6— 1に示した正極材料 4〜 13、および、正極材料 1と 3とを混合した以下の正極 材料 F〜Hを用いた。耐熱性絶縁層の接着面を表 6—1記載のように設定した。耐熱 性絶縁層の乾燥後の接着面一つあたりの厚みを表 6— 1記載のように設定した。それ 以外は、実験 1と同様にして、円筒形 18650の非水電解質二次電池を作製した。
[0098] 《電池 X19B〜X30Bおよび電池 Y13B》
表 6— 2に示した正極材料 4〜 13、および、正極材料 1と 3とを混合した以下の正極 材料 F〜Hを用いた。耐熱性絶縁層の接着面を表 6— 2記載のように設定した。耐熱 性絶縁層の乾燥後の厚みを表 6— 2記載のように設定した。ただし、電池 X9と同様に 、セパレータの片面だけに、特許文献 2の実施例で開示されているァラミド榭脂と無 機酸化物フィラーからなる厚み 5 μ mの膜を耐熱性絶縁層として形成した。それ以外 は、実験 1と同様にして、円筒形 18650の非水電解質二次電池を作製した。
正極材料 4〜13には、表 7記載の組成 (LiM Ni Co O )の複合リチウム酸化物を用 b d e 2
いた。
[0099] 正極材料 F:正極材料 1が 90重量%、正極材料 3が 10重量%の混合物
正極材料 G:正極材料 1が 80重量%、正極材料 3が 20重量%の混合物 正極材料 H:正極材料 1が 70重量%、正極材料 3が 30重量%の混合物
[0100] [表 6-1] 正極 推定発熱 耐熱性絶縁層 耐熱性絶縁層 最高到達 材料 速度(W/kg) の接着面 厚み(At m) 温度 (°c) 電池 X 1 9 A F 2 4 負極表面 5 5 5 電池 X 2 0 A G 4 9 負極表面 5 6 2 電池 X 2 1 A 4 4 7 負極表面 5 6 1 電池 X 2 2 A 5 3 5 負極表面 5 5 7 電池 X 2 3 A 6 4 0 負極表面 5 5 9 電池 X 2 4 A 7 4 1 負極表面 5 5 9 電池 X 2 5 A 8 3 4 負極表面 5 5 7 電池 X 2 6 A 9 3 7 負極表面 5 5 7 電池 X 2 7 A 1 0 3 8 負極表面 5 5 8 電池 X 2 8 A 1 1 4 5 負極表面 5 6 1 電池 X 2 9 A 1 2 4 2 負極表面 5 6 0 電池 X 3 0 A 1 3 4 2 負極表面 5 6 0 電池 Y 1 3 A H 7 2 負極表面 5 8 0以上
[0101] [表 6-2]
Figure imgf000027_0001
[0102] [表 7] 組成 L i n0 27 '0 03 N i 0 5Co0 202
原子比 0 . 2 7 0 . 0 3 0 . 5 0 . 2 正極材料 4 M n M n N i C o 正極材料 5 n A 1 N i C o 正極材料 6 M n C u N i C o 正極材料 7 M n g N i C o 正極材料 8 M n T i N i C o 正極材料 9 M n Z n N i C o 正極材料 1 0 M n M o N i C o 正極材料 1 1 M n S n N i C o 正極材料 1 2 M n 1 n N i C o 正極材料 1 3 M n F e N i C o
[0103] 実験 2と同様の条件で、正極合剤の 200°Cにおける推定発熱速度を求めた。結果 を表 6— 1および表 6— 2に示す。
実験 1と同様の条件で、電池の釘刺し試験を行い、電池表面の最高到達温度を調 ベた。電池 X19A〜X30A、 X19B〜X30Bおよび電池 Y13A、 Y13Bの電池は、そ れぞれ 10個ずつ作製し、釘刺し試験は 10個の電池で行った。各電池について、 10 個の電池表面の最高到達温度の平均値を求めた。その結果を表 6— 1および表 6— 2に示す。 10個全ての電池の最高到達温度は、 80°C未満であった。
[0104] 以下、評価結果について説明する。
電池 X21Aと電池 X22A〜X30Aとの対比、および、電池 X21Bと電池 X22B〜X3 OBとの対比力ら、 Al、 Sn、 In、 Fe、 Cu、 Mg、 Ti、 Znおよび Moには、推定発熱速度 を低下させる効果があることが理解できる。なお、表 7記載の複合リチウム酸ィ匕物のよ うに、元素 Mとして Mnと他の元素 M1とを併用する場合、 Mnと元素 M1とのモル比は 、 99 : 1〜50 : 50、さらには 97 : 3〜90: 10とすること力 子ましい。
[0105] 活物質にコバルト酸リチウム(正極材料 3)を添加することにより、正極の高密度化が 可能となるので、電池高容量ィ匕の観点力もは好ましい。しかし、その割合が 30%の 正極材料 Hでは、釘刺し安全性が低下している。よって、コバルト酸リチウムを併用す る場合、その量は、活物質全体の 20重量%以下とするのが好ましい。
[0106] 《電池 X31A〜X41A》 表 8— 1に示した正極材料 14〜24 (組成 LiCo M Oの複合リチウム酸化物)を
0.98 0.02 2
用いた。電池 X9と同様に、ァラミド榭脂と無機酸ィ匕物フイラ一力ゝらなる耐熱性絶縁層 を、セパレータ表面に、乾燥後の厚みが 5 mになるように形成した。それ以外は、実 験 1と同様にして、円筒形 18650の非水電解質二次電池を作製した。実験 2と同様 の条件で、正極合剤の 200°Cにおける推定発熱速度を求めた。各電池について、釘 刺し試験を行い 10個の電池表面の最高到達温度の平均値を求めた。結果を表 8— 1に示す。 10個全ての電池の最高到達温度は、 80°C未満であった。
[0107] 《電池 31 〜 41 》
表 8— 2に示した正極材料 14〜24 (組成 LiCo M Oの複合リチウム酸化物)を
0.98 0.02 2
用いた。電池 X4と同様に、無機酸ィ匕物フイラ一と BM— 720Hを含む耐熱性絶縁層 を、負極の両面に、乾燥後の厚みが 5 μ mになるように形成した。それ以外は、実験 1と同様にして、円筒形 18650の非水電解質二次電池を作製した。実験 2と同様の 条件で、正極合剤の 200°Cにおける推定発熱速度を求めた。各電池について、釘刺 し試験を行い 10個の電池表面の最高到達温度の平均値を求めた。結果を表 8— 2 に示す。 10個全ての電池の最高到達温度は、 80°C未満であった。
[0108] [表 8 - 1]
Figure imgf000029_0001
[0109] [表 8 - 2] 組成 し '。ひ. 推定発熱速 最高到達 原子比 0 . 9 8 0 . 0 2 度 (W/kg) 温度 (°c) 電池 X 3 1 B 正極材料 1 4 C o M n 4 7 6 7 電池 X 3 2 B 正極材料 1 5 C 0 A 1 4 2 6 1 電池 X 3 3 B 正極材料 1 6 C 0 C u 4 6 6 0 電池 X 3 4 B 正極材料 1 7 C 0 M g 4 6 6 1 電池 X 3 5 B 正極材料 1 8 C 0 丁 i 3 8 5 8 電池 X 3 6 B 正極材料 1 9 C 0 Z n 4 2 6 0 電池 X 3 7 B 正極材料 2 0 C 0 o 4 3 6 1 電池 X 3 8 B 正極材料 2 1 C 0 S n 4 7 6 5 電池 X 3 9 B 正極材料 2 2 C 0 1 n 4 7 6 4 電池 X 4 0 B 正極材料 2 3 C 0 F e 4 6 6 5 電池 X 4 1 B 正極材料 2 4 C 0 Z r 3 6 5 8
[0110] Mn、 Al、 Sn、 In、 Fe、 Cu、 Mg、 Ti、 Zn、 Zrおよび Moには、推定発熱速度を低下 させる効果が認められた。正極材料 3をベースとした組成においても、元素 Mを添加 することにより、 200°Cにおける推定発熱速度を 50W,kg以下に抑制することができ た。また、元素 Mと耐熱性絶縁層との相乗効果により、釘刺し安全性が飛躍的に向 上した。
[0111] 《電池 X42A〜X52A》
表 9—1に示した正極材料 25〜35を用いた。電池 X9と同様に、ァラミド榭脂と無機 酸ィ匕物フイラ一からなる耐熱性絶縁層を、セパレータ表面に、乾燥後の厚みが 5 /z m になるように形成した。それ以外は、実験 1と同様にして、円筒形 18650の非水電解 質二次電池を作製した。実験 2と同様の条件で、正極合剤の 200°Cにおける推定発 熱速度を求めた。各電池について、釘刺し試験を行い、 10個の電池表面の最高到 達温度の平均値を求めた。結果を表 9 1に示す。 10個全ての電池の最高到達温 度は、 80°C未満であった。
[0112] 《電池 X42B〜X52B》
表 9— 2に示した正極材料 25〜35を用いた。電池 X4と同様に、無機酸ィ匕物ブイラ 一と BM— 720Hを含む耐熱性絶縁層を、負極の両面に、乾燥後の厚みが に なるように形成した。それ以外は、実験 1と同様にして、円筒形 18650の非水電解質 二次電池を作製した。実験 2と同様の条件で、正極合剤の 200°Cにおける推定発熱 速度を求めた。各電池について、釘刺し試験を行い、 10個の電池表面の最高到達 温度の平均値を求めた。結果を表 9 2に示す。 10個全ての電池の最高到達温度 は、 80°C未満であった。
[0113] 正極材料 25〜34は、正極材料 2 (LiAl Ni Co O )と、表 9に示す元素 Mの酸
0.05 0.8 0.15 2
化物とを混合し、 1000°Cで、空気雰囲気中で焼成して調製した。元素 Mの酸化物の 量は、 lmolの正極材料 2に対し、 0. Olmolとした。その結果、添カ卩した酸化物から 正極材料 2に元素 Mが拡散し、内部よりも表層部に元素 Mが多く分布する複合リチウ ム酸ィ匕物力 なる正極材料 25〜 34が得られた。
[0114] 正極材料 35は、正極材料 2を、シランカップリング剤であるビュルトリメトキシシラン で処理して調製した。ここでは、シランカップリング剤と水との混合液 (シランカップリン グ剤の濃度 0. 1重量%)に、正極材料を含浸させた後、乾燥させた。
[0115] [表 9-1]
Figure imgf000031_0001
[0116] [表 9-2] Li AI。.。5Ni。.8Co。.,502 推定発熱速度 最高到達温度 組成
添加元素 (W/kg) CO 電池 X 42 B 正極材料 25 M n ( n 04) 44 66 電池 X 43 B 正極材料 26 C u (C u O) 40 64 電池 X 44 B 正極材料 27 g (MgO) 42 61 電池 X 45 B 正極材料 28 T i (Τ i 0) 34 58 電池 X 46 B 正極材料 29 Ζ η (Ζ η 0) 37 60 電池 X 47 B 正極材料 30 Μ ο ( ο 02) 39 61 電池 X 48 B 正極材料 31 S η (S η 0) 43 64 電池 X 49 B 正極材料 32 1 η ( 1 η 203) 42 63 電池 X 50 B 正極材料 33 F e (F e203) 45 64 電池 X 51 B 正極材料 34 Ζ r (Ζ r 0) 32 56 電池 X 52 B 正極材料 35 S i化合物 3 1 50
[0117] 表 9一 1および表 9一 2の結果でも、表 8— 1および表 8— 2と同様に、元素 Mには、 推定発熱速度を低下させる効果が認められた。元素 Mが活物質の表層部に高濃度 に分布しているため、推定発熱速度を抑制する効果は顕著であった。また、元素 Mと 耐熱性絶縁層との相乗効果により、釘刺し安全性が飛躍的に向上した。また、シラン カップリング剤による処理でも、元素 Mの添加と同様の効果が得られた。
[0118] 《電池 X53A〜X55A》
正極材料 1と正極材料 24とを混合した以下の正極材料 36〜38を用いた。電池 X9 と同様に、ァラミド樹脂と無機酸ィ匕物フイラ一力もなる耐熱性絶縁層を、セパレータ表 面に、乾燥後の厚みが 5 imになるように形成した。それ以外は、実験 1と同様にして 、円筒形 18650の非水電解質二次電池を作製した。実験 2と同様の条件で、正極合 剤の 200°Cにおける推定発熱速度を求めた。各実施例について、釘刺し試験を行い 、 10個の電池表面の最高到達温度の平均値を求めた。結果を表 10— 1に示す。 10 個全ての電池の最高到達温度は、 80°C未満であった。
[0119] 《電池 538〜 55 》
正極材料 1と正極材料 24とを混合した以下の正極材料 36〜38を用いた。電池 X4 と同様に、無機酸ィ匕物フイラ一と BM— 720Hを含む耐熱性絶縁層を、負極の両面 に、乾燥後の厚みが 5 //mになるように形成した。それ以外は、実験 1と同様にして、 円筒形 18650の非水電解質二次電池を作製した。実験 2と同様の条件で、正極合 剤の 200°Cにおける推定発熱速度を求めた。各電池について、釘刺し試験を行い、 10個の電池表面の最高到達温度の平均値を求めた。結果を表 10— 2に示す。 10 個全ての電池の最高到達温度は、 80°C未満であった。
[0120] 正極材料 36 :正極材料 1が 10重量%、正極材料 24が 90重量%の混合物
正極材料 37:正極材料 1が 50重量%、正極材料 24が 50重量%の混合物 正極材料 38:正極材料 1が 90重量%、正極材料 24が 10重量%の混合物 [0121] [表 10- 1]
Figure imgf000033_0001
[0122] [表 10- 2]
Figure imgf000033_0002
[0123] 表 10— 1および表 10— 2より、推定発熱速度が 50WZkg以下に抑制された正極 材料同士を混合した場合でも、釘刺し安全性が顕著に向上することがゎカゝつた。
[0124] 《電池 X56、 57および 59》
耐熱性絶縁層の接着面を表 11記載のように設定した。セパレータに耐熱性絶縁層 を形成した場合には、表 11記載のように耐熱性絶縁層を正極側または負極側だけ に配置した。それ以外は、実験 1と同様にして、円筒形 18650の非水電解質二次電 池を作製した。
[0125] 《電池 X58》
ァラミド榭脂の代わりにポリアミドイミド榭脂 (熱分解開始温度 400°C以上、非晶質、 ガラス転移点 250°C)を用いたこと以外、電池 X9と同様に電池を作製した。
[0126] 《電池 X60》
耐熱性絶縁層を負極側に配置したこと以外、電池 X9と同様に電池を作製した。
[0127] 《電池 X61》
耐熱性絶縁層を負極側に配置したこと以外、電池 X58と同様に電池を作製した。
[0128] 《電池 X62》
耐熱性絶縁層の原料ペーストを、フッ素榭脂シート上に塗布し、乾燥後、剥離して 、正極からも負極力 もセパレータからも独立した、厚み 5 mの耐熱性絶縁層から なるシートを作製した。耐熱性絶縁層力もなるシートを、正極とセパレータとの間に挿 入したこと以外、電池 Y6と同様に電池を作製した。
[0129] 《電池 X63》
電池 X62に準じて、電池 X9と同様の組成のポリアミド榭脂を含む耐熱性絶縁層か らなるシートを作製し、電池 X62と同様に電池を作製した。
[0130] 《電池 X64》
電池 X62に準じて、電池 X58と同様の組成のポリアミドイミド (PAI)榭脂を含む耐 熱性絶縁層からなるシートを作製し、電池 X62と同様に電池を作製した。
[0131] 《電池 X65》
耐熱性絶縁層の無機酸ィ匕物フイラ一として、メディアン径 0. 3 μ mのアルミナの代 わりに、メディアン径 0. 3 μ mのマグネシア(酸化マグネシウム)を用いたこと以外、電 池 X4と同様に電池を作製した。
[0132] 《電池 X66》
耐熱性絶縁層の無機酸ィ匕物フイラ一として、メディアン径 0. 3 μ mのアルミナの代 わりに、メディアン径 0. 3 μ mのマグネシア(酸化マグネシウム)を用いたこと以外、電 池 X56と同様に電池を作製した。
[0133] 電池 X56〜X66〖こ関し、実験 1と同様の条件で、釘刺し試験を行い、 10個の電池 表面の最高到達温度の平均値を求めた。結果を表 11に示す。
[0134] [表 11]
Figure imgf000035_0001
P A I :ポリアミドィミド
[0135] 以下評価結果について説明する。
表 11が示すように、耐熱性絶縁層がどのような材質であっても、釘刺し試験におけ る安全性は向上した。これにより、耐熱性および絶縁性を有する材質であれば、同様 の効果が得られることが確認できた。また、耐熱性絶縁層は、セパレータまたは負極 の表面に形成した方力 効果が大きいことがわ力つた。さらに、アルミナの代わりにマ グネシァを用いても、同様の結果が得られることがわ力つた。
[0136] 上記実施例では、円筒形の非水電解質二次電池を作製したが、本発明の電池の 形状は円筒形に限定されるものではない。また、負極材料には炭素材料を用い、充 電電圧 4. 25Vにおける結果を示した力 Si合金や Sn合金を用いた場合にも、同様 に安全性向上の効果が得られる。また、より高電圧領域 (4. 2〜4. 6V)まで充電され る電池においても、推定発熱速度が 50WZkg以下である正極合剤と、耐熱性絶縁 層とを併用することにより、同様に安全性向上の効果が得られる。 産業上の利用可能性
本発明は、特に、高いエネルギー密度と優れた安全性との両立が求められる非水 電解質二次電池に適しており、例えば携帯情報端末および携帯電子機器のようなポ ータブル機器の電源としての利用可能性が高い。ただし、本発明のリチウム二次電 池は、例えば家庭用小型電力貯蔵装置、自動二輪車、電気自動車、ハイブリッド電 気自動車等の電源にも用いることができ、用途は特に限定されない。本発明のリチウ ムニ次電池の形状は、特に限定されないが、例えば円筒型や角型が好適である。本 発明のリチウム二次電池は、多機能化ポータブル機器 (PDA)、電動工具、パーソナ ルコンピュータ (PC)、電動玩具、電動ロボット等の電源、大型バックアップ電源、非 常用バックアップ電源 (USP)、自然エネルギー発電の平準化電源、回生エネルギ 一利用システム等に特に好適である。

Claims

請求の範囲
[1] (a)複合リチウム酸化物を含む正極合剤およびこれを担持する正極集電体を含む正 極、
(b)リチウムを吸蔵および放出可能な材料を含む負極、
(c)前記正極と前記負極との間に介在するポリオレフイン榭脂を含むセパレータ、
(d)非水電解質、および
(e)前記正極と前記負極との間に介在する耐熱性絶縁層を具備する非水電解質二 次電池であって、
前記正極と前記負極とが、これらの間に介在する前記セパレータぉよび前記耐熱 性絶縁層とともに捲回されており、
前記正極合剤の 200°Cにおける推定発熱速度は、 50WZkg以下である、非水電 解質二次電池。
[2] 前記耐熱性絶縁層の厚みが、 1 μ m以上、 15 m以下である、請求項 1記載の非 水電解質二次電池。
[3] 前記耐熱性絶縁層の厚みが、 1 μ m以上、 5 μ m以下である、請求項 1記載の非水 電解質二次電池。
[4] 前記推定発熱速度は、
(i)加速速度熱量計もしくは暴走反応測定装置 (ARC)により、絶対温度 Tと、正極合 剤の発熱速度 Vとの関係を求め、
(ii)ァレニウスの定理に基づいて、 X座標である絶対温度 Tの逆数と、 Y座標である発 熱速度 Vの対数との関係をプロットし、
(iii) T< 200°C (473K)の発熱領域に存在するプロットに適合する近似直線を求め、
(iv)得られた近似直線を、 T= 200°C (473K)の温度軸に外挿する、
ことにより求められる、請求項 1記載の非水電解質二次電池。
[5] 前記複合リチウム酸化物が、一般式(1): Li M Me Oで表される組成を有し、 a b c 2
元素 Mは、 Al、 Mn、 Sn、 In、 Fe、 Cu、 Mg、 Ti、 Zn、 Zrおよび Moよりなる群から選 択される少なくとも 1種であり、
元素 Meは、 Niおよび Coよりなる群力 選択される少なくとも 1種であり、 前記一般式(1)は、
0. 9< a< l. 2、
0. 02≤b≤0. 5、
0. 5≤c≤0. 98、および
0. 95≤b + c≤l. 05
を満たす、請求項 1記載の非水電解質二次電池。
[6] 前記複合リチウム酸ィ匕物は、一般式(2): Li M Ni Co Oで表される組成を有し、 a b d e 2
元素 Mは、 Al、 Mn、 Sn、 In、 Fe、 Cu、 Mg、 Ti、 Zn、 Zrおよび Moよりなる群から選 択される少なくとも 1種であり、
前記一般式 (2)は、
0. 9< a< l. 2、
0. 02≤b≤0. 5、
0. l≤d≤0. 5、
0. l≤e≤0. 5、および
0. 95≤b + d+e≤l. 05
を満たす、請求項 1記載の非水電解質二次電池。
[7] 前記一般式(2)力 0. 15≤b≤0. 4、 0. 3≤d≤0. 5および 0. 15≤e≤0. 4を満 たす、請求項 6記載の非水電解質二次電池。
[8] 前記複合リチウム酸化物は、元素 Mを含み、元素 Mは、 Al、 Mn、 Sn、 In、 Fe、 Cu
、 Mg、 Ti、 Zn、 Zrおよび Moよりなる群力 選択される少なくとも 1種であり、元素 M は、前記複合リチウム酸ィ匕物の内部よりも表層部に多く分布する、請求項 1記載の非 水電解質二次電池。
[9] 前記複合リチウム酸ィ匕物は、一般式(3) :X-Si-Yで表される Siィ匕合物で処理さ
3
れており、 Xは、前記複合リチウム酸化物と反応する官能基を含み、 Yは、 C、 H、 0、 Fまたは Siを含む官能基を含む、請求項 1記載の非水電解質二次電池。
PCT/JP2006/312574 2005-12-20 2006-06-23 非水電解質二次電池 WO2007072595A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020077012936A KR100874560B1 (ko) 2005-12-20 2006-06-23 비수전해질 2차전지
EP06767224A EP1881545A1 (en) 2005-12-20 2006-06-23 Nonaqueous electrolyte secondary battery
JP2006551665A JP5236880B2 (ja) 2005-12-20 2006-06-23 非水電解質二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2005/023373 WO2006068143A1 (ja) 2004-12-24 2005-12-20 非水電解質二次電池
JPPCT/JP2005/023373 2005-12-20

Publications (1)

Publication Number Publication Date
WO2007072595A1 true WO2007072595A1 (ja) 2007-06-28

Family

ID=38188380

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2006/312575 WO2007072596A1 (ja) 2005-12-20 2006-06-23 非水電解質二次電池
PCT/JP2006/312574 WO2007072595A1 (ja) 2005-12-20 2006-06-23 非水電解質二次電池

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312575 WO2007072596A1 (ja) 2005-12-20 2006-06-23 非水電解質二次電池

Country Status (4)

Country Link
EP (2) EP1881545A1 (ja)
KR (2) KR100874557B1 (ja)
CN (2) CN101160683A (ja)
WO (2) WO2007072596A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044963A (ja) * 2008-08-13 2010-02-25 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質、その製造方法および非水系電解質二次電池
US20120037846A1 (en) * 2010-08-13 2012-02-16 Samsung Sdi Co., Ltd. Positive active material and lithium battery including the same
JP2013522830A (ja) * 2010-03-15 2013-06-13 リ−テック・バッテリー・ゲーエムベーハー 熱暴走に対する内在的保護を備えたリチウムイオンセル
JP2013134819A (ja) * 2011-12-26 2013-07-08 Hitachi Ltd 正極材およびリチウムイオン二次電池

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187748B2 (en) 2004-12-24 2012-05-29 Panasonic Corporation Non-aqueous electrolyte secondary battery
WO2006068143A1 (ja) 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. 非水電解質二次電池
US7518503B2 (en) 2005-12-14 2009-04-14 Sony Ericsson Mobile Communications Ab Portable A/V relay device
JP2009266791A (ja) * 2008-03-31 2009-11-12 Sanyo Electric Co Ltd 非水電解質二次電池
JP2009277597A (ja) 2008-05-16 2009-11-26 Panasonic Corp 非水電解質二次電池
KR101113504B1 (ko) 2009-11-03 2012-02-29 삼성에스디아이 주식회사 전극의 이종 패턴 검출 장치
JP5172047B2 (ja) * 2010-12-17 2013-03-27 帝人株式会社 非水電解質電池用セパレータ及び非水電解質電池
KR101515678B1 (ko) 2011-12-07 2015-04-28 주식회사 엘지화학 출력특성이 향상된 복합 양극 활물질 및 이를 포함하는 이차전지
JP5888012B2 (ja) * 2012-03-08 2016-03-16 日産自動車株式会社 非水電解質二次電池およびその製造方法
JP2013222582A (ja) * 2012-04-16 2013-10-28 Sony Corp 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2015098022A1 (ja) * 2013-12-27 2015-07-02 三洋電機株式会社 非水電解質二次電池
KR101660210B1 (ko) * 2015-11-30 2016-10-10 스미또모 가가꾸 가부시키가이샤 비수 전해액 이차 전지용 적층 세퍼레이터, 비수 전해액 이차 전지용 부재 및 비수 전해액 이차 전지
JP2017212040A (ja) 2016-05-23 2017-11-30 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池
KR102295079B1 (ko) 2018-01-30 2021-08-27 주식회사 엘지에너지솔루션 전기화학소자용 분리막 및 상기 분리막을 제조하는 방법
CN116666582A (zh) * 2023-05-16 2023-08-29 广州凌顶能源科技有限公司 一种金属氧化物包覆氧化锂复合正极材料及其制备方法以及包含该正极材料的正极片和电池

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955210A (ja) * 1995-08-11 1997-02-25 Sony Corp 正極活物質及びそれを用いた非水電解質二次電池
JPH1116566A (ja) * 1997-06-20 1999-01-22 Hitachi Ltd 電 池
JPH11167918A (ja) * 1997-12-03 1999-06-22 Fuji Photo Film Co Ltd 非水二次電池用負極材料とその製造方法および電池
JPH11224664A (ja) * 1998-02-06 1999-08-17 Nikki Chemcal Co Ltd 高耐湿性、高安全性リチウムイオン二次電池
JPH11307094A (ja) * 1998-04-20 1999-11-05 Chuo Denki Kogyo Co Ltd リチウム二次電池用正極活物質とリチウム二次電池
JP2000030686A (ja) * 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd 非水電解質電池セパレ―タ―とリチウム二次電池
JP2000077071A (ja) * 1998-08-27 2000-03-14 Nec Corp 非水電解液二次電池
JP2003036838A (ja) * 2001-07-24 2003-02-07 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2003077460A (ja) * 2001-09-05 2003-03-14 Toshiba Corp 非水電解質二次電池
JP2004303642A (ja) * 2003-03-31 2004-10-28 Yuasa Corp 非水電解質電池
JP2005183179A (ja) * 2003-12-19 2005-07-07 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用極板およびリチウムイオン二次電池並びにその製造方法
JP2005339938A (ja) * 2004-05-26 2005-12-08 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用電極の製造方法
JP2006012788A (ja) * 2004-05-25 2006-01-12 Matsushita Electric Ind Co Ltd リチウムイオン二次電池およびその製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955210A (ja) * 1995-08-11 1997-02-25 Sony Corp 正極活物質及びそれを用いた非水電解質二次電池
JPH1116566A (ja) * 1997-06-20 1999-01-22 Hitachi Ltd 電 池
JPH11167918A (ja) * 1997-12-03 1999-06-22 Fuji Photo Film Co Ltd 非水二次電池用負極材料とその製造方法および電池
JPH11224664A (ja) * 1998-02-06 1999-08-17 Nikki Chemcal Co Ltd 高耐湿性、高安全性リチウムイオン二次電池
JPH11307094A (ja) * 1998-04-20 1999-11-05 Chuo Denki Kogyo Co Ltd リチウム二次電池用正極活物質とリチウム二次電池
JP2000030686A (ja) * 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd 非水電解質電池セパレ―タ―とリチウム二次電池
JP2000077071A (ja) * 1998-08-27 2000-03-14 Nec Corp 非水電解液二次電池
JP2003036838A (ja) * 2001-07-24 2003-02-07 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2003077460A (ja) * 2001-09-05 2003-03-14 Toshiba Corp 非水電解質二次電池
JP2004303642A (ja) * 2003-03-31 2004-10-28 Yuasa Corp 非水電解質電池
JP2005183179A (ja) * 2003-12-19 2005-07-07 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用極板およびリチウムイオン二次電池並びにその製造方法
JP2006012788A (ja) * 2004-05-25 2006-01-12 Matsushita Electric Ind Co Ltd リチウムイオン二次電池およびその製造方法
JP2005339938A (ja) * 2004-05-26 2005-12-08 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用電極の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044963A (ja) * 2008-08-13 2010-02-25 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質、その製造方法および非水系電解質二次電池
JP2013522830A (ja) * 2010-03-15 2013-06-13 リ−テック・バッテリー・ゲーエムベーハー 熱暴走に対する内在的保護を備えたリチウムイオンセル
US20120037846A1 (en) * 2010-08-13 2012-02-16 Samsung Sdi Co., Ltd. Positive active material and lithium battery including the same
US9368786B2 (en) * 2010-08-13 2016-06-14 Samsung Sdi Co., Ltd. Positive active material and lithium battery including the same
JP2013134819A (ja) * 2011-12-26 2013-07-08 Hitachi Ltd 正極材およびリチウムイオン二次電池

Also Published As

Publication number Publication date
KR100874560B1 (ko) 2008-12-16
KR100874557B1 (ko) 2008-12-16
KR20070088678A (ko) 2007-08-29
CN101069305A (zh) 2007-11-07
KR20070098797A (ko) 2007-10-05
CN101160683A (zh) 2008-04-09
WO2007072596A1 (ja) 2007-06-28
EP1819008A1 (en) 2007-08-15
EP1881545A1 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
WO2007072595A1 (ja) 非水電解質二次電池
WO2006068143A1 (ja) 非水電解質二次電池
JP5534718B2 (ja) 電極組立体、および二次電池
EP3654422B1 (en) A battery
WO2020098743A1 (zh) 一种电池
US11329280B2 (en) Lithium-ion battery with layered positive active material
US8574760B2 (en) Safety-enhanced electrochemical device including electrode containing binder and wax
WO2020098768A1 (zh) 一种电池
EP3683874B1 (en) A battery
US11362364B2 (en) Battery
US20210367280A1 (en) Positive electrode plate and electrochemical device
US8187748B2 (en) Non-aqueous electrolyte secondary battery
JP2011181386A (ja) 非水電解質二次電池
TW201205920A (en) Lithium-ion secondary battery
KR100954591B1 (ko) 전극조립체 및 이를 구비하는 리튬 이차 전지
JP5236940B2 (ja) 非水電解質二次電池
JP5236880B2 (ja) 非水電解質二次電池
JP2020017422A (ja) 非水電解質二次電池
CN117577780A (zh) 正极极片以及二次电池
JP2009099392A (ja) 非水電解質電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006551665

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006767224

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680001303.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077012936

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2006767224

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE