KR20110114704A - 차량에 대한 무선 전력 전송 - Google Patents

차량에 대한 무선 전력 전송 Download PDF

Info

Publication number
KR20110114704A
KR20110114704A KR1020117020641A KR20117020641A KR20110114704A KR 20110114704 A KR20110114704 A KR 20110114704A KR 1020117020641 A KR1020117020641 A KR 1020117020641A KR 20117020641 A KR20117020641 A KR 20117020641A KR 20110114704 A KR20110114704 A KR 20110114704A
Authority
KR
South Korea
Prior art keywords
antenna
power
transmit
transmit antenna
power transmission
Prior art date
Application number
KR1020117020641A
Other languages
English (en)
Inventor
마일스 에이 커비
리나트 버도
버지니아 더블유 키팅
매튜 에스 그롭
스튜어트 에이 헤일스버그
마이클 제이 맨건
어니스트 티 오자키
Original Assignee
퀄컴 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퀄컴 인코포레이티드 filed Critical 퀄컴 인코포레이티드
Publication of KR20110114704A publication Critical patent/KR20110114704A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
    • H02J50/502Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices the energy repeater being integrated together with the emitter or the receiver
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Near-Field Transmission Systems (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

예시적인 실시형태들은 무선 전력 전송에 관한 것이다. 전력 송신 디바이스는 기존의 차량 아이템에 부착되거나 또는 차량 엘리먼트에 임베디드된다. 전력 송신 디바이스는 커플링 모드 영역 내에 근거리장 방사를 생성함으로써 전력을 수신 안테나에 무선 전송하는 송신 안테나를 포함한다. 증폭기는 송신 안테나에 구동 신호를 인가한다. 존재 검출기는 커플링 모드 영역 내의 수신기 디바이스의 존재를 검출할 수도 있다. 또한, 존재 검출기는 인간 존재를 검출할 수도 있다. 폐쇄형 격실 검출기는 차량 엘리먼트가 폐쇄된 상태에 있는지를 검출할 수도 있다. 폐쇄된 상태, 수신기 디바이스의 존재, 및 인간의 존재에 응답하여 전력 출력이 조정될 수도 있다.

Description

차량에 대한 무선 전력 전송{WIRELESS POWER TRANSFER FOR VEHICLES}
35 U.S.C.§119 하의 우선권 주장
본 출원은 35 U.S.C.§119(e) 하에서,
여기의 양수인에게 양도되고 여기에 참조로 명백히 포함되는, 2009년 2월 11일에 출원된 "WIRELESS POWER IN VEHICLES" 라는 명칭의 미국 가특허 출원 제61/151,830호;
여기의 양수인에게 양도되고 여기에 참조로 명백히 포함되는, 2009년 2월 12일에 출원된 "WIRELESS POWER IN TRANSPORTATION" 라는 명칭의 미국 가특허 출원 제61/152,092호; 및
여기의 양수인에게 양도되고 여기에 참조로 명백히 포함되는, 2009년 2월 10일에 출원된 "MULTI DIMENSIONAL WIRELESS CHARGER" 라는 명칭의 미국 가특허 출원 제61/151,290호에 대한 우선권을 주장한다.
통상적으로, 무선 전자 디바이스와 같은 배터리 전력공급 디바이스 각각은 그 자신의 충전기 및 일반적으로 교류 (AC) 전력 아웃렛인 전원을 요구한다. 이러한 유선 구성은 다수의 디바이스들이 충전을 필요로 할 때 불편하게 된다.
충전될 전자 디바이스에 커플링된 수신기와 송신기 사이에서 OTA (over-the-air) 또는 무선 전력 송신을 이용하는 접근방식들이 개발되고 있다. 이러한 접근방식들은 일반적으로 2개의 카테고리 내에 있다. 하나는, 충전될 디바이스 상의 수신 안테나와 송신 안테나 사이의 평면파 방사 (또한 원거리장 방사라 칭함) 의 커플링에 기초한다. 수신 안테나는 배터리를 충전하기 위해, 방사된 전력을 수집하고 그 전력을 정류한다. 안테나들은 일반적으로 커플링 효율을 개선하기 위해 공진 길이를 갖는다. 이러한 접근방식은, 전력 커플링이 안테나들 사이의 거리에 따라 급격히 떨어진다는 사실에 어려움이 있어서, (예를 들어, 1 내지 2 미터 미만의) 적정한 거리 이상의 충전은 어려워진다. 추가로, 송신 시스템이 평면파들을 방사하기 때문에, 필터링을 통해 적절하게 제어되지 않으면, 의도치 않은 방사가 다른 시스템과 간섭할 수 있다.
무선 에너지 송신 기법들에 대한 다른 접근방식들은, 예를 들어, "충전" 매트 또는 표면에 임베디드된 송신 안테나와 충전될 호스트 전자 디바이스에 임베디드된 수신 안테나 (및 정류 회로) 사이의 유도 커플링에 기초한다. 이러한 접근방식은, 송신 안테나와 수신 안테나 사이의 간격이 매우 근접 (예를 들어, 수천 미터 내) 해야 한다는 단점을 갖는다. 이러한 접근방식이 동일한 영역에서 다수의 디바이스를 동시에 충전하는 능력을 갖지만, 이러한 영역은 통상적으로 매우 작아서, 사용자가 디바이스를 특정한 영역에 정확히 위치시키는 것을 필요로 한다. 따라서, 송신 안테나와 수신 안테나의 유연한 배치 및 배향을 도모하는 무선 충전 장치를 제공할 필요성이 존재한다.
무선 전력 송신에 따라, 편리하고 지나치지 않은 무선 전력 송신을 위해 차량에 송신 안테나를 배치하기 위한 시스템 및 방법에 대한 필요성이 존재한다. 또한, 상이한 상황에 적응하고 전력 송신 특성들을 최적화하기 위해 안테나들의 동작 특성들을 조정하기 위한 필요성도 존재한다.
도 1 은 무선 전력 전송 시스템의 단순 블록도를 도시한다.
도 2 는 무선 전력 전송 시스템의 단순 개략도를 도시한다.
도 3 은 본 발명의 예시적인 실시형태들에서 사용하기 위한 루프 안테나의 개략도를 도시한다.
도 4 는 송신 안테나와 수신 안테나 사이의 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다.
도 5a 및 도 5b 는 본 발명의 예시적인 실시형태들에 따른 송신 안테나와 수신 안테나에 대한 루프 안테나들에 대한 레이아웃들을 도시한다.
도 6 은 도 5a 및 도 5b 에 예시된 정사각형 및 원형 송신 안테나들에 대한 다양한 원주 사이즈에 대한 송신 안테나와 수신 안테나 사이의 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다.
도 7 은 도 5a 및 도 5b 에 예시된 정사각형 및 원형 송신 안테나들에 대한 다양한 표면적에 대한 송신 안테나와 수신 안테나 사이의 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다.
도 8 은 공면 (coplanar) 및 동축 배치들에서의 커플링 강도들을 예시하기 위해 송신 안테나에 관한 수신 안테나에 대한 다양한 배치 포인트를 도시한다.
도 9 는 송신 안테나와 수신 안테나 사이의 다양한 거리에서 동축 배치에 대한 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다.
도 10 은 본 발명의 예시적인 실시형태에 따른 송신기의 단순 블록도이다.
도 11 은 본 발명의 예시적인 실시형태에 따른 수신기의 단순 블록도이다.
도 12 는 송신기와 수신기 사이에서 메시징을 수행하는 송신 회로의 일부의 단순 개략도를 도시한다.
도 13a 내지 도 13c 는 수신기와 송신기 사이의 메시징을 예시하기 위해 다양한 상태들에서의 수신 회로의 일부의 단순 개략도를 도시한다.
도 14a 내지 도 14c 는 수신기와 송신기 사이의 메시징을 예시하기 위해 다양한 상태들에서의 다른 수신 회로의 일부의 단순 개략도를 도시한다.
도 15a 내지 도 15d 는 송신기와 수신기 사이에서 전력을 송신하는 비컨 전력 모드를 예시하는 단순 블록도이다.
도 16a 는 송신 안테나와 공면 및 동축 배치된 소형 중계기 안테나를 갖는 대형 송신 안테나를 예시한다.
도 16b 는 송신 안테나에 대해 동축 배치를 갖는 대형 중계기 안테나를 갖는 송신 안테나를 예시한다.
도 17a 는 송신 안테나와 공면 배치되고 송신 안테나의 주변 이내 배치된 3개의 상이한 소형 중계기 안테나들을 갖는 대형 송신 안테나를 예시한다.
도 17b 는 송신 안테나에 대하여 오프셋 동축 배치 및 오프셋 공면 배치를 갖는 소형 중계기 안테나들을 갖는 대형 송신 안테나를 예시한다.
도 18 은 송신 안테나, 중계기 안테나 및 수신 안테나 간의 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다.
도 19a 는 중계기 안테나들이 없는 송신 안테나와 수신 안테나 사이의 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다.
도 19b 는 중계기 안테나를 갖는 송신 안테나와 수신 안테나 사이의 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다.
도 20 은 본 발명의 하나 이상의 예시적인 실시형태들에 따른 송신기의 단순 블록도이다.
도 21 은 본 발명의 예시적인 실시형태에 따른 다중 송신 안테나 무선 충전 장치의 단순 블록도이다.
도 22 는 본 발명의 또 다른 예시적인 실시형태에 따른 다중 송신 안테나 무선 충전 장치의 단순 블록도이다.
도 23a 내지 도 23c 는 복수의 방향으로 배향된 송신 안테나들을 지탱하는 아이템의 예시적인 실시형태를 예시한다.
도 24a 및 도 24b 는 복수의 방향으로 배향된 송신 안테나들을 지탱하는 캐비넷의 예시적인 실시형태를 예시한다.
도 25 는 자동차 대시보드의 섹션 내에 또는 섹션 상에 배치된 안테나의 예시적인 실시형태를 예시한다.
도 26 은 자동차 콘솔 내에 또는 자동차 콘솔 상에 배치된 안테나의 예시적인 실시형태를 예시한다.
도 27 은 자동차에 대한 바닥 매트 내에 또는 바닥 매트 상에 배치된 안테나의 예시적인 실시형태를 예시한다
도 28a 및 도 28b 는 자동차 저장 빈 내에 또는 자동차 저장 빈 상에 배치된 안테나의 예시적인 실시형태를 예시한다.
도 29a 및 도 29b 는 다수의 방향으로 배향된 송신 안테나들을 포함하는 자동차 저장 빈의 예시적인 실시형태를 예시한다.
도 30 은 자동차의 좌석의 후면 상에 걸쳐진 저장 백 내에 또는 저장 백 상에 배치된 안테나의 예시적인 실시형태를 예시한다.
도 31 은 차량에서의 적재가능 면 내에 또는 적재가능 면 상에 배치된 안테나의 예시적인 실시형태를 예시한다.
도 32 는 본 발명의 하나 이상의 예시적인 실시형태에서 수행될 수도 있는 동작들을 예시한 단순 흐름도이다.
단어 "예시적인" 은 "예, 경우, 또는 예시로서 기능하는" 을 의미하는 것으로 여기에서 사용된다. "예시적인" 으로서 여기에 설명된 임의의 실시형태가 다른 실시형태보다 바람직하거나 유용한 것으로서 반드시 해석되지는 않는다.
첨부한 도면과 관련하여 아래에 설명된 상세한 설명은, 본 발명의 예시적인 실시형태들의 설명으로서 의도되고, 본 발명의 실시될 수 있는 실시형태들만을 나타내는 것으로 의도되지 않는다. 이러한 설명 전반적으로 사용된 용어 "예시적인" 은 "예, 경우, 또는 예시로서 기능하는" 을 의미하고, 다른 예시적인 실시형태들 보다 바람직하거나 유용한 것으로서 반드시 해석되지 않아야 한다. 상세한 설명은 본 발명의 예시적인 실시형태들의 완전한 이해를 제공하기 위한 특정한 상세를 포함한다. 본 발명의 예시적인 실시형태들이 이들 특정한 상세없이도 실시될 수도 있다는 것이 당업자에게는 명백할 것이다. 일부 경우에서, 널리 공지된 구조들 및 디바이스들은 여기에 제공된 예시적인 실시형태들의 신규성을 모호하게 하는 것을 회피하기 위해 블록도 형태로 도시된다.
단어 "무선 전력" 은 물리적인 전자기 도체들을 사용하지 않고 송신기로부터 수신기로 송신되는 전기장, 자기장, 전자기장, 또는 그 외 것과 관련된 임의의 형태의 에너지를 의미하는 것으로 여기에서 사용된다.
도 1 은 본 발명의 다양한 예시적 실시형태에 따른 무선 송신 또는 충전 시스템 (100) 을 예시한다. 에너지 전달을 제공하기 위한 방사장 (radiated field; 106) 을 생성하기 위해 입력 전력 (102) 이 송신기 (104) 에 제공된다. 수신기 (108) 는 방사장 (106) 에 커플링되며, 출력 전력 (110) 에 커플링된 디바이스 (미도시) 에 의한 소비 또는 저장을 위해 출력 전력 (110) 을 생성한다. 송신기 (104) 및 수신기 (108) 양자는 거리 (112) 만큼 분리되어 있다. 하나의 예시적 실시형태에서, 송신기 (104) 및 수신기 (108) 는 상호 공진 관계에 따라 구성되며, 수신기 (108) 의 공진 주파수 및 송신기 (104) 의 공진 주파수가 정확히 동일한 경우, 수신기 (108) 가 방사장 (106) 의 "근거리장" 에 위치될 때 송신기 (104) 와 수신기 (108) 사이의 송신 손실이 최소화된다.
송신기 (104) 는 에너지 송신을 위한 수단을 제공하는 송신 안테나 (114) 를 더 포함하고, 수신기 (108) 는 에너지 수신을 위한 수단을 제공하는 수신 안테나 (118) 를 더 포함한다. 송신 및 수신 안테나는 그들과 관련된 애플리케이션 및 디바이스에 따라 사이징된다. 진술된 바와 같이, 전자기파로 에너지의 대부분을 원거리장에 전파하기보다는 송신 안테나의 근거리장 내의 에너지의 큰 부분을 수신 안테나에 커플링함으로써, 효율적인 에너지 전달이 발생한다. 이러한 근거리장에 있을 때, 송신 안테나 (114) 와 수신 안테나 (118) 사이에 커플링 모드가 발생될 수도 있다. 여기에서, 이러한 근거리장 커플링이 발생할 수도 있는 안테나 (114 및 118) 주변의 영역은 커플링 모드 영역으로 지칭된다.
도 2 는 무선 전력 송신 시스템의 단순한 개략도를 도시한다. 송신기 (104) 는 오실레이터 (122), 전력 증폭기 (124) 및 필터 및 정합 회로 (126) 를 포함한다. 오실레이터는 조정 신호 (123) 에 응답하여 조정될 수도 있는 원하는 주파수에서 오실레이터 신호를 생성하도록 구성된다. 오실레이터 신호는 제어 신호 (125) 에 응답하는 증폭량으로 전력 증폭기 (124) 에 의해 증폭될 수도 있다. 고조파 또는 다른 원치않는 주파수를 필터링하고 송신기 (104) 의 임피던스를 송신 안테나 (114) 에 정합시키기 위해 필터 및 정합 회로 (126) 가 포함될 수도 있다.
수신기는, DC 전력 출력을 생성하여 도 2 에 도시된 바와 같이 배터리 (136) 를 충전시키거나 수신기에 커플링된 디바이스 (미도시) 에 전력공급하기 위한 정합 회로 (132) 및 정류기 및 스위칭 회로를 포함할 수도 있다. 수신기 (108) 의 임피던스를 수신 안테나 (118) 에 정합시키기 위해 정합 회로 (132) 가 포함될 수도 있다.
도 3 에 예시된 바와 같이, 예시적 실시형태에서 사용된 안테나는 여기에서 "자기" 안테나라고도 또한 지칭될 수도 있는 "루프" 안테나 (150) 로서 구성될 수도 있다. 루프 안테나는 페라이트 코어와 같은 물리적 코어 또는 공심 (air core) 을 포함하도록 구성될 수도 있다. 공심 루프 안테나는 코어 근방에 배치된 외부의 물리적 디바이스들에 대해 더 허용가능할 수도 있다. 또한, 공심 루프 안테나는 코어 영역 내에 다른 컴포넌트들의 배치를 허용한다. 또한, 공심 루프는 송신 안테나 (114) (도 2) 의 평면 내의 수신 안테나 (118) (도 2) 의 배치를 더 용이하게 가능하게 할 수도 있으며, 여기서 송신 안테나 (114) (도 2) 의 커플링 모드 영역은 더 강력할 수도 있다.
진술된 바와 같이, 송신기 (104) 와 수신기 (108) 사이의 정합 또는 거의 정합된 공진 동안에 송신기 (104) 와 수신기 (108) 사이의 에너지의 효율적인 전달이 발생한다. 그러나, 송신기 (104) 와 수신기 (108) 사이의 공진이 정합되지 않는 경우라도, 에너지가 저효율로 전달될 수도 있다. 에너지의 전달은 송신 안테나로부터 자유 공간으로 에너지를 전파하는 것보다는, 송신 안테나의 근거리장으로부터의 에너지를 이러한 근거리장이 확립된 이웃에 상주하는 수신 안테나에 커플링함으로써 발생한다.
루프 또는 자기 안테나의 공진 주파수는 인덕턴스 및 커패시턴스에 기초한다. 루프 안테나의 인덕턴스는 일반적으로 단순히 그 루프에 의해 생성된 인덕턴스이지만, 커패시턴스는 일반적으로 원하는 공진 주파수에서 공진 구조를 생성하기 위해 루프 안테나의 인덕턴스에 부가된다. 제한하지 않는 예로서, 공진 신호 (156) 를 생성하는 공진 회로를 생성하기 위해, 커패시터 (152) 및 커패시터 (154) 가 안테나에 부가될 수도 있다. 따라서, 더 큰 직경의 루프 안테나의 경우, 공진을 유도하는데 필요한 커패시턴스의 사이즈는, 그 루프의 직경 또는 인덕턴스가 증가함에 따라 감소한다. 또한, 루프 또는 자기 안테나의 직경이 증가함에 따라, 근거리장의 효율적인 에너지 전달 영역이 증가한다. 물론, 다른 공진 회로들도 가능하다. 다른 제한하지 않는 예로서, 커패시터는 루프 안테나의 2 개의 단자 사이에서 병렬로 배치될 수도 있다. 또한, 송신 안테나의 경우 공진 신호 (156) 가 루프 안테나 (150) 로의 입력일 수도 있다는 것을 당업자는 인식할 것이다.
본 발명의 예시적 실시형태는 서로의 근거리장에 존재하는 2 개의 안테나 사이의 전력을 커플링하는 것을 포함한다. 진술된 바와 같이, 근거리장은 안테나 주변의 영역이며, 여기서 전자기장은 존재하지만 안테나로부터 멀리 전파되거나 방사되지 않을 수도 있다. 통상적으로, 그들은 안테나의 물리적인 볼륨과 비슷한 볼륨으로 한정된다. 본 발명의 예시적 실시형태에서, 싱글 및 멀티-턴 루프 안테나와 같은 자기 타입의 안테나는, 자기 근거리장 진폭이 전기 타입의 안테나 (예를 들어, 작은 다이폴) 의 전기 근거리장과 비교하여 자기 타입의 안테나에 대해 더 높은 경향이 있기 때문에, 송신 (Tx) 및 수신 (Rx) 안테나 시스템 양자에 사용된다. 이것은 그 쌍 사이의 잠재적으로 더 큰 커플링을 허용한다. 또한, "전기" 안테나 (예를 들어, 다이폴 및 모노폴) 또는 자기 및 전기 안테나의 조합이 또한 고려된다.
Tx 안테나는 상술된 원거리장 및 유도성 접근방식들에 의해 허용된 것보다 상당히 더 큰 거리에서 작은 Rx 안테나에 대한 양호한 커플링 (예를 들어, >-4 ㏈) 을 달성하는데 충분히 큰 안테나 사이즈를 갖고 충분히 낮은 주파수에서 동작될 수도 있다. Tx 안테나가 정확히 사이징되면, 호스트 디바이스 상의 Rx 안테나가 구동 Tx 루프 안테나의 커플링 모드 영역 내에 (즉, 근거리장에) 배치될 때, 높은 커플링 레벨 (예를 들어, -2 ㏈ 내지 -4 ㏈) 이 달성될 수 있다.
도 4 는 송신 안테나와 수신 안테나 사이의 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다. 곡선들 170 및 172 는, 송신 안테나 및 수신 안테나 각각에 의한 전력의 수용의 측정치를 나타낸다. 다시 말해, 큰 음수를 가지면, 매우 근접한 임피던스 정합이 있고 대부분의 전력이 수용되며, 그 결과, 송신 안테나에 의해 방사된다. 반대로, 작은 음수는 대부분의 전력이 소정의 주파수에서 근접한 임피던스 정합이 없기 때문에 안테나로부터 반사된다는 것을 나타낸다. 도 4 에서, 송신 안테나 및 수신 안테나는 약 13.56 MHz 의 공진 주파수를 갖도록 동조된다.
곡선 170 은 다양한 주파수들에서 송신 안테나로부터 송신된 전력량을 예시한다. 따라서, 약 13.528 MHz 및 13.593 MHz 에 대응하는 포인트들 (1a 및 3a) 에서, 대부분의 전력은 반사되고 송신 안테나 외부로 송신되지 않는다. 그러나, 약 13.56 MHz 에 대응하는 포인트 (2a) 에서, 다량의 전력이 수용되고 안테나 외부로 송신된다는 것을 알 수 있다.
유사하게는, 곡선 172 는 다양한 주파수들에서 수신 안테나에 의해 수신된 전력량을 예시한다. 따라서, 약 13.528 MHz 및 13.593 MHz 에 대응하는 포인트들 (1b 및 3b) 에서, 대부분의 전력이 반사되고 수신 안테나를 통해 수신기로 전달되지 않는다. 그러나, 약 13.56 MHz 에 대응하는 포인트 (2b) 에서, 대량의 전력이 수신 안테나에 의해 수용되고 수신기로 전달된다는 것을 알 수 있다.
곡선 174 는 송신 안테나를 통해 송신기로부터 전송되고, 수신 안테나를 통해 수신되며 수신기로 전달된 이후에 수신기에서 수신된 전력량을 나타낸다. 따라서, 약 13.528 MHz 및 13.593 MHz 에 대응하는 포인트들 (1c 및 3c) 에서, 송신기 외부로 전송된 대부분의 전력은 (1) 송신 안테나가 송신기로부터 송신 안테나로 전송된 대부분의 전력을 거부하고 (2) 송신 안테나와 수신 안테나 사이의 커플링은 주파수가 공진 주파수로부터 이격하여 이동할 때 덜 효율적이기 때문에, 수신기에서 이용가능하지 않다. 그러나, 약 13.56 MHz 에 대응하는 포인트 (2c) 에서, 송신기로부터 전송된 대량의 전력이 수신기에서 이용가능하고, 이것은 송신 안테나와 수신 안테나 사이의 커플링의 높은 정도를 나타낸다.
도 5a 및 도 5b 는 본 발명의 예시적인 실시형태들에 따른 송신 안테나와 수신 안테나에 대한 루프 안테나들의 레이아웃들을 도시한다. 루프 안테나들은 광범위한 사이즈에서의 단일 루프들 또는 다수의 루프들을 갖는, 다수의 상이한 방식으로 구성될 수도 있다. 또한, 루프들은 단지 예를 들어, 원형, 타원형, 정사각형 및 직사각형과 같은 다수의 상이한 형상일 수도 있다. 도 5a 는 대형 정사각형 루프 송신 안테나 (114S) 및 그 송신 안테나 (114S) 와 동일한 평면 및 송신 안테나 (114S) 의 중심 근처에 배치된 소형 정사각형 루프 수신 안테나 (118) 를 예시한다. 도 5b 는 대형 원형 루프 송신 안테나 (114C) 및 그 송신 안테나 (114C) 와 동일한 평면 및 그 송신 안테나 (114C) 의 중심 근처에 배치된 소형 정사각형 루프 수신 안테나 (118') 를 예시한다. 정사각형 루프 송신 안테나 (114S) 는 측면 길이 "a" 를 갖고, 원형 루프 송신 안테나 (114C) 는 직경 "Φ" 를 갖는다. 정사각형 루프에 대해, 그 직경이
Figure pct00001
로서 정의될 수도 있는 등가의 원형 루프가 존재한다는 것을 나타낼 수 있다.
도 6 은 도 4a 및 도 4b 에 예시된 정사각형 및 원형 송신 안테나들에 대한 다양한 원주들에 대한 송신 안테나와 수신 안테나 사이의 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다. 따라서, 곡선 180 은 원형 루프 송신 안테나 (114C) 에 대한 다양한 원주 사이즈에서 원형 루프 송신 안테나 (114C) 와 수신 안테나 (118) 사이의 커플링 강도를 도시한다. 유사하게는, 곡선 182 는 송신 루프 송신 안테나 (114S) 에 대한 다양한 등가의 원주 사이즈에서 정사각형 루프 송신 안테나 (114S) 와 수신 안테나 (118') 사이의 커플링 강도를 도시한다.
도 7 은 도 5a 및 도 5b 에 예시된 정사각형 및 원형 송신 안테나들에 대한 다양한 표면적에 대한 송신 안테나와 수신 안테나 사이의 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다. 따라서, 곡선 190 은 원형 루프 송신 안테나 (114C) 에 대한 다양한 표면적에서 원형 루프 송신 안테나 (114C) 와 수신 안테나 (118) 사이의 커플링 강도를 도시한다. 유사하게는, 곡선 192 는 송신 루프 송신 안테나 (114S) 에 대한 다양한 표면적에서 정사각형 루프 송신 안테나 (114S) 와 수신 안테나 (118') 사이의 커플링 강도를 도시한다.
도 8 은 공면 및 동축 배치에서의 커플링 강도들을 예시하기 위해 송신 안테나에 관한 수신 안테나에 대한 다양한 배치 포인트들을 도시한다. 여기에서 사용되는 바와 같은 "공면" 은, 송신 안테나 및 수신 안테나가 실질적으로 정렬되고 (즉, 실질적으로 동일한 방향으로 포인팅하는 표면 법선들을 갖고) 송신 안테나와 수신 안테나의 평면들 사이에 거리가 없는 (또는 작은 거리를 갖는) 평면들을 갖는다는 것을 의미한다. 여기에서 사용되는 바와 같은 "동축" 은, 송신 안테나 및 수신 안테나가 실질적으로 정렬되는 (즉, 실질적으로 동일한 방향으로 포인팅하는 표면 법선들을 갖는) 평면들을 갖고 2개의 평면들 사이의 거리가 사소하지 않으며, 또한, 송신 안테나 및 수신 안테나의 표면 법선이 실질적으로 동일한 벡터를 따라 놓여 있거나, 2개의 법선들이 사다리꼴을 이룬다는 것을 의미한다.
예들로서, 포인트들 (p1, p2, p3, 및 p7) 은 송신 안테나에 대한 수신 안테나에 대해 모두 공면 배치 포인트들이다. 다른 예로서, 포인트 (p5 및 p6) 는 송신 안테나에 대한 수신 안테나에 대해 동축 배치 포인트들이다. 아래의 표는 도 8 에 예시된 다양한 배치 포인트들 (p1 내지 p7) 에서의 커플링 강도 (S21) 및 커플링 효율 (수신 안테나에 도달한 송신 안테나로부터 송신된 전력의 퍼센티지로서 표현됨) 을 나타낸다.
표 1
Figure pct00002
Figure pct00003
알 수 있는 바와 같이, 공면 배치 포인트들 (p1, p2, 및 p3) 모두는 상대적으로 높은 커플링 효율을 나타낸다. 배치 포인트 (p7) 는 또한 공면 배치 포인트이지만, 송신 루프 안테나 외부이다. 배치 포인트 (p7) 가 높은 커플링 효율을 갖지는 않지만, 일부 커플링이 존재하고 커플링 모드 영역이 송신 루프 안테나의 주변을 넘어 연장한다는 것이 명백하다.
배치 포인트 (p5) 는 송신 안테나와 동축이고, 상당한 커플링 효율을 나타낸다. 배치 포인트 (p5) 에 대한 커플링 효율은 공면 배치 포인트들에 대한 커플링 효율들 만큼 높지는 않다. 그러나, 배치 포인트 (p5) 에 대한 커플링 효율은, 상당한 전력이 동축 배치에서 송신 안테나와 수신 안테나 사이에서 전달될 수 있을 만큼 충분히 높다.
배치 포인트 (p4) 는 송신 안테나의 원주 이내이지만, 오프셋 동축 배치 (즉, 실질적으로 동일한 방향이지만 상이한 위치에서 표면 법선들을 가짐) 또는 오프셋 공면 (즉, 실질적으로 동일한 방향에서 표면 법선들을 갖지만 서로에 대하여 오프셋인 평면들을 가짐) 으로서 칭할 수도 있는 포지션에서 송신 안테나의 평면 상부에서 약간의 거리에 있다. 표로부터, 2.5 cm의 오프셋 거리로, 배치 포인트 (p4) 는 여전치 상대적으로 양호한 커플링 효율을 갖는다는 것을 알 수 있다.
배치 포인트 (p6) 는 송신 안테나의 평면상에서 상당한 거리에 있고 송신 안테나의 원주 외부의 배치 포인트를 예시한다. 표로부터 알 수 있는 바와 같이, 배치 포인트 (p7) 는 송신 안테나와 수신 안테나 사이에 커플링 효율을 거의 나타내지 않는다.
도 9 는 송신 안테나와 수신 안테나 사이의 다양한 거리들에서 동축 배치에 대한 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다. 도 9 에 대한 시뮬레이션은 모두 약 1.2 미터의 측면을 갖고 10 MHz 의 송신 주파수에서의 동축 배치의 정사각형 송신 및 수신 안테나들에 대한 것이다. 커플링 강도는 약 0.5 미터 보다 작은 거리에서 매우 높고 균일하게 유지된다는 것을 알 수 있다.
도 10 은 본 발명의 예시적 실시형태에 따른 송신기의 단순화된 블록도이다. 송신기 (200) 는 송신 회로 (202) 및 송신 안테나 (204) 를 포함한다. 일반적으로, 송신 회로 (202) 는 송신 안테나 (204) 에 관한 근거리장 에너지의 생성을 야기하는 발진 신호를 제공함으로써 RF 전력을 송신 안테나 (204) 에 제공한다. 예로서, 송신기 (200) 는 13.56 MHz ISM 대역에서 동작할 수도 있다.
예시적인 송신 회로 (202) 는 송신 회로 (202) 의 임피던스 (예를 들어, 50 옴) 를 송신 안테나 (204) 에 정합시키는 고정 임피던스 정합 회로 (206) 및 수신기 (108) (도 1) 에 커플링된 디바이스의 자기 재밍을 방지하기 위한 레벨로 고조파 방사를 감소시키도록 구성된 로우 패스 필터 (LPF) (208) 를 포함한다. 다른 예시적인 실시형태들은 특정 주파수를 감쇠시키지만 다른 주파수는 통과시키는 노치 필터 (이에 한정되지 않음) 를 포함하는 상이한 필터 토폴로지를 포함할 수도 있고, 전력 증폭기에 의한 DC 전류 인출 또는 안테나로의 출력 전력과 같은 측정가능한 송신 메트릭에 기초하여 변화될 수도 있는 적응형 임피던스 정합을 포함할 수도 있다. 송신 회로 (202) 는 오실레이터 (212) 에 의해 결정되는 RF 신호를 구동하도록 구성된 전력 증폭기 (210) 를 더 포함한다. 송신 회로는 개별 디바이스들 또는 회로들로 구성될 수도 있고, 또는 대안으로는 집적 어셈블리로 구성될 수도 있다. 송신 안테나 (204) 로부터 출력된 예시적인 RF 전력은 대략 2.5 와트일 수도 있다.
송신 회로 (202) 는 특정 수신기에 대한 송신 페이즈 (또는 듀티 사이클) 동안에 오실레이터 (212) 를 인에이블시키고, 오실레이터의 주파수를 조정하며, 부착된 수신기를 통해 인접하는 디바이스들과 상호작용하는 통신 프로토콜을 구현하기 위해 출력 전력 레벨을 조정하기 위한 프로세서 (214) 를 더 포함한다.
송신 회로 (202) 는 송신 안테나 (204) 에 의해 생성된 근거리장의 근방에서 액티브 수신기의 존재 또는 부재를 검출하는 부하 감지 회로 (216) 를 더 포함할 수도 있다. 예로서, 부하 감지 회로 (216) 는 전력 증폭기 (210) 로 흐르는 전류를 모니터링하고, 그 전력 증폭기 (210) 는 송신 안테나 (204) 에 의해 생성된 근거리장의 근방에서 액티브 수신기의 존재 또는 부재에 의해 영향을 받는다. 액티브 수신기와 통신하기 위한 에너지를 송신하기 위해 오실레이터 (212) 를 인에이블시킬지 여부를 결정하는데 이용하기 위해, 전력 증폭기 (210) 상의 부하에 대한 변화의 검출이 프로세서 (214) 에 의해 모니터링된다.
송신 안테나 (204) 는 저항 손실을 낮게 유지하도록 선택된 두께, 폭 및 금속 타입을 갖는 안테나 스트립으로서 구현될 수도 있다. 종래의 구현에서, 송신 안테나 (204) 는 일반적으로 테이블, 매트, 램프 또는 다른 휴대성이 작은 구성과 같은 더 큰 구조와 연관되도록 구성될 수도 있다. 따라서, 송신 안테나 (204) 는 일반적으로 실제 치수로 되기 위하여 "턴 (turn)" 을 필요로 하지 않을 것이다. 송신 안테나 (204) 의 예시적인 구현은 "전기적으로 작을" 수도 있고 (즉, 파장의 일부), 공진 주파수를 정의하기 위해 커패시터를 사용함으로써 더 작은 가용 주파수에서 공진하도록 동조될 수도 있다. 송신 안테나 (204) 가 수신 안테나에 비해 직경에 있어서 더 클 수도 있거나, 또는 사각 루프인 경우 측면의 길이 (예를 들어, 0.50 미터) 에 있어서 클 수도 있는 예시적인 애플리케이션에서, 송신 안테나 (204) 는 적정한 커패시턴스를 획득하기 위해 다수의 턴을 반드시 필요로 하지는 않을 것이다.
도 11 은 본 발명의 예시적인 실시형태에 따른 수신기의 블록도이다. 수신기 (300) 는 수신 회로 (302) 및 수신 안테나 (304) 를 포함한다. 수신기 (300) 는 수신된 전력을 거기에 제공하는 디바이스 (350) 에 또한 커플링된다. 수신기 (300) 가 디바이스 (350) 외부에 존재하는 것으로 예시되어 있지만, 디바이스 (350) 내로 통합될 수도 있다는 것에 유의해야 한다. 일반적으로, 에너지가 수신 안테나 (304) 에 무선 전파된 후에, 수신 회로 (302) 를 통해 디바이스 (350) 에 커플링된다.
수신 안테나 (304) 는 송신 안테나 (204) (도 10) 와 같이, 동일한 주파수에서 또는 동일한 주파수 근처에서 공진하도록 동조된다. 수신 안테나 (304) 는 송신 안테나 (204) 와 유사하게 치수가 정해질 수도 있고, 또는 관련된 디바이스 (350) 의 치수에 기초하여 상이하게 사이징될 수도 있다. 예로서, 디바이스 (350) 는 송신 안테나 (204) 의 직경 또는 길이보다 작은 직경 또는 길이 치수를 갖는 휴대용 전자 디바이스일 수도 있다. 이러한 예에서, 동조 커패시터 (미도시) 의 커패시턴스 값을 감소시키고 수신 안테나의 임피던스를 증가시키기 위하여 수신 안테나 (304) 가 멀티-턴 안테나로서 구현될 수도 있다. 예로서, 안테나 직경을 최대화하고 수신 안테나의 루프 턴 (즉, 권선) 의 수 및 권선간 커패시턴스를 감소시키기 위하여 수신 안테나 (304) 가 디바이스 (350) 의 실질적인 원주 주위에 배치될 수도 있다.
수신 회로 (302) 는 수신 안테나 (304) 에 대한 임피던스 정합을 제공한다. 수신 회로 (302) 는 수신된 RF 에너지 소스를 디바이스 (350) 에 의한 사용을 위한 충전 전력으로 변환하는 전력 변환 회로 (306) 를 포함한다. 전력 변환 회로 (306) 는 RF-DC 변환기 (308) 를 포함하고, 또한 DC-DC 변환기 (310) 를 포함할 수도 있다. RF-DC 변환기 (308) 는 수신 안테나 (304) 에 의해 수신된 RF 에너지 신호를 비-교류 전력으로 정류하는 한편, DC-DC 변환기 (310) 는 정류된 RF 에너지 신호를 디바이스 (350) 와 호환성이 있는 에너지 전위 (예를 들어, 전압) 로 변환한다. 다양한 RF-DC 변환기는 선형 및 스위칭 변환기 뿐만 아니라, 부분파 및 전파 정류기, 레귤레이터, 브리지, 더블러 (doubler) 를 포함하는 것으로 고려된다.
수신 회로 (302) 는 수신 안테나 (304) 를 전력 변환 회로 (306) 에 연결하거나 또는 대안으로는 전력 변환 회로 (306) 를 연결해제하는 스위칭 회로 (312) 를 더 포함할 수도 있다. 더욱 충분히 후술하는 바와 같이, 수신 안테나 (304) 를 전력 변환 회로 (306) 로부터 연결해제하는 것은 디바이스 (350) 의 충전을 중지시킬 뿐만 아니라, 송신기 (200) (도 2) 에 의해 "확인" 되는 "부하" 를 변경한다. 상술한 바와 같이, 송신기 (200) 는 송신기 전력 증폭기 (210) 에 제공되는 바이어스 전류의 변동을 검출하는 부하 감지 회로 (216) 를 포함한다. 따라서, 송신기 (200) 는 수신기가 송신기의 근거리장에 존재하는 때를 결정하기 위한 메커니즘을 갖는다.
다수의 수신기 (300) 가 송신기의 근거리장에 존재할 때, 하나 이상의 수신기의 로딩 및 언로딩을 시간 멀티플렉싱하여 다른 수신기들로 하여금 송신기에 더욱 효율적으로 커플링할 수 있게 하는 것이 바람직할 수도 있다. 또한, 다른 근처의 수신기에 커플링하는 것을 제거하거나 또는 근처의 송신기 상의 로딩을 감소시키기 위하여 수신기가 은폐 (cloak) 될 수도 있다. 또한, 이러한 수신기의 "언로딩" 은 여기에서 "은폐" 로서 인식된다. 또한, 수신기 (300) 에 의해 제어되고 송신기 (200) 에 의해 검출된 언로딩과 로딩 사이의 이러한 스위칭은 더욱 완전하게 후술되는 바와 같이 수신기 (300) 로부터 송신기 (200) 로의 통신 메커니즘을 제공한다. 추가로, 프로토콜은 수신기 (300) 로부터 송신기 (200) 로의 메시지의 전송을 가능하게 하는 스위칭과 연관될 수도 있다. 예로서, 스위칭 속도는 대략 100 μsec 일 수도 있다.
예시적 실시형태에서, 송신기와 수신기 사이의 통신은 종래의 양방향 통신보다는 디바이스 감지 및 충전 제어 메커니즘으로 지칭한다. 다시 말해, 송신기는 송신된 신호의 온/오프 키잉 (keying) 을 이용하여 에너지가 근거리장에서 이용가능한지를 조정한다. 수신기는 에너지의 이들 변화를 송신기로부터의 메시지로서 해석한다. 수신기측으로부터, 수신기는 수신 안테나의 동조 및 이조를 이용하여 근거리장으로부터 얼마나 많은 전력이 수용되고 있는지를 조정한다. 송신기는 근거리장으로부터 이용된 이러한 전력의 차이를 검출하여 이들 변화를 수신기로부터의 메시지로서 해석할 수도 있다.
수신 회로 (302) 는 수신된 에너지 변동을 식별하는데 사용되는 시그널링 검출기 및 비컨 회로 (314) 를 더 포함할 수도 있고, 그 수신된 에너지 변동은 송신기로부터 수신기로의 정보 시그널링에 대응할 수도 있다. 또한, 시그널링 및 비컨 회로 (314) 는 또한 무선 충전을 위한 수신 회로 (302) 를 구성하기 위하여, 감소된 RF 신호 에너지 (즉, 비컨 신호) 의 송신을 검출하고, 감소된 RF 신호 에너지를 수신 회로 (302) 내의 미전력공급형 또는 전력격감형 회로 중 어느 하나를 지각하기 위한 공칭 전력으로 정류하는데 사용될 수도 있다.
수신 회로 (302) 는 여기에서 설명된 스위칭 회로 (312) 의 제어를 포함하여 여기에서 설명된 수신기 (300) 의 프로세스를 조정하는 프로세서 (316) 를 더 포함한다. 또한, 충전 전력을 디바이스 (350) 에 제공하는 외부의 유선 충전 소스 (예를 들어, 벽/USB 전력) 의 검출을 포함하는 다른 이벤트의 발생시 수신기 (300) 의 은폐가 발생할 수도 있다. 또한, 프로세서 (316) 는, 수신기의 은폐를 제어하는 것 이외에도, 비컨 회로 (314) 를 모니터링하여 비컨 상태를 결정하고 송신기로부터 전송된 메시지를 추출할 수도 있다. 또한, 프로세서 (316) 는 성능을 개선하기 위해 DC-DC 변환기 (310) 를 조정할 수도 있다.
도 12 는 송신기와 수신기 사이에서 메시징을 수행하는 송신 회로의 일부의 단순 개략도를 도시한다. 본 발명의 일부 예시적인 실시형태들에서, 통신 수단이 송신기와 수신기 사이에서 인에이블될 수도 있다. 도 12 에서, 전력 증폭기 (210) 는 방사장을 생성하기 위해 송신 안테나 (204) 를 구동한다. 전력 증폭기는 송신 안테나 (204) 에 대해 원하는 주파수에서 발진하는 캐리어 신호 (220) 에 의해 구동된다. 송신 변조 신호 (224) 는 전력 증폭기 (210) 의 출력을 제어하기 위해 사용된다.
송신 회로는 전력 증폭기 (210) 상에서 온/오프 (ON/OFF) 키잉 프로세스들을 사용함으로써 수신기로 신호를 전송할 수 있다. 다시 말해, 송신 변조 신호 (224) 가 선언되면, 전력 증폭기 (210) 는 송신 안테나 (204) 상의 캐리어 신호 (220) 의 주파수를 구동할 것이다. 송신 변조 신호 (224) 가 무효가 되면, 전력 증폭기는 송신 안테나 (204) 상의 어떠한 주파수도 구동하지 않을 것이다.
도 12 의 송신 회로는 또한, 전력 증폭기 (210) 에 전력을 공급하고 수신 신호 (235) 출력을 생성하는 부하 감지 회로 (216) 를 포함한다. 부하 감지 회로 (216) 에서, 저항 (RS) 양단의 전압 강하는 전력 입력 신호 (226) 와 전력 증폭기 (210) 에 대한 전원 (228) 사이에서 나타난다. 전력 증폭기 (210) 에 의해 소모된 전력에서의 임의의 변화는, 차동 증폭기 (230) 에 의해 증폭될 전압 강하에서의 변화를 야기할 것이다. 송신 안테나가 수신기 (도 12 에는 미도시) 에서의 수신 안테나와 커플링된 모드에 있으면, 전력 증폭기 (210) 에 의해 인출된 전류량이 변화할 것이다. 다시 말해, 송신 안테나 (210) 에 대해 커플링된 모드 공진이 존재하지 않으면, 방사장을 구동하기 위해 요구되는 전력은 제 1 양이다. 커플링된 모드 공진이 존재하면, 많은 전력이 수신 안테나에 커플링되어 있기 때문에 전력 증폭기 (210) 에 의해 소모된 전력량은 상승한다. 따라서, 수신 신호 (235) 는 송신 안테나 (235) 에 커플링된 수신 안테나의 존재를 나타낼 수 있고, 후술하는 바와 같이, 수신 안테나로부터 전송된 신호를 또한 검출할 수 있다. 추가로, 수신기 전류 인출에서의 변화는 송신기의 전력 증폭기 전류 인출에서 관측가능하고, 이러한 변화는 후술하는 바와 같이, 수신 안테나로부터의 신호를 검출하는데 사용될 수 있다.
도 13a 내지 도 13c 는 수신기와 송신기 사이의 메시징을 예시하기 위한 다양한 상태에서의 수신 회로의 일부의 단순 개략도를 도시한다. 도 13a 내지 도 13c 전부는 다양한 스위치의 상태에 차이가 있는 동일한 회로 엘리먼트를 도시한다. 수신 안테나 (304) 는 특성 인덕턴스 (L1) 를 포함하고, 그 특성 인덕턴스 (L1) 는 노드 (350) 를 구동한다. 노드 (350) 는 스위치 (S1A) 를 통해 접지에 선택적으로 커플링된다. 또한, 노드 (350) 는 스위치 (S1B) 를 통해 다이오드 (D1) 및 정류기 (318) 에 선택적으로 커플링된다. 정류기 (318) 는 DC 전력 신호 (322) 를 수신 디바이스 (미도시) 에 공급하여 수신 디바이스에 전력공급하고, 배터리, 또는 이들의 조합을 충전한다. 다이오드 (D1) 는 커패시터 (C3) 및 저항기 (R1) 로 고조파 및 원치않는 주파수를 제거하기 위해 필터링되는 송신 신호 (320) 에 커플링된다. 따라서, D1, C3, 및 R1 의 조합은 도 12 의 송신기를 참조하여 상기 논의된 송신 변조 신호 (224) 에 의해 생성된 송신 변조처럼 보이는 송신 신호 (320) 에 대한 신호를 생성할 수 있다.
본 발명의 예시적인 실시형태들은 수신 디바이스의 전류 인출의 변조 및 수신 안테나의 임피던스의 변조를 포함하여 역방향 링크 시그널링을 달성한다. 도 13a 및 도 12 양자를 참조하면, 수신 디바이스의 전력 인출이 변화함에 따라, 부하 감지 회로 (216) 는 송신 안테나상에서 결과적인 전력 변화를 검출하고, 이들 변화로부터 수신 신호 (235) 를 생성할 수 있다.
도 13a 내지 도 13c 의 예시적인 실시형태에서, 송신기를 통한 전류 인출은 스위치 (S1A 및 S2A) 의 상태를 변경함으로써 변화될 수도 있다. 도 13a 에서, 스위치 (S1A) 및 스위치 (S2A) 는 양자가 개방되어 "DC 개방 상태" 를 생성하고 본질적으로는 송신 안테나 (204) 로부터의 부하를 제거한다. 이것은 송신기에 의해 확인되는 전류를 감소시킨다.
도 13b 에서, 스위치 (S1A) 가 폐쇄되고 스위치 (S2A) 가 개방되어 수신 안테나 (304) 에 대한 "DC 단락 상태" 를 생성한다. 따라서 도 13b 의 상태는 송신기에 의해 확인되는 전류를 증가시키는데 사용될 수 있다.
도 13c 에서, 스위치 (S1A) 가 개방되고 스위치 (S2A) 가 폐쇄되어 (여기에서 "DC 동작 상태" 라고도 지칭되는) 정상 수신 모드를 생성하고, 여기서 전력은 DC 출력 신호 (322) 에 의해 공급될 수 있고 송신 신호 (320) 가 검출될 수 있다. 도 13c 에 도시된 상태에서, 수신기는 정상량의 전력을 수신하여, DC 개방 상태 또는 DC 단락 상태보다 많거나 적은, 송신 안테나로부터의 전력을 소모한다.
DC 동작 상태 (도 13c) 와 DC 단락 상태 (도 13b) 사이에서 스위칭함으로써 역방향 링크 시그널링이 달성될 수도 있다. 또한, DC 동작 상태 (도 13c) 와 DC 개방 상태 (도 13a) 사이에서 스위칭함으로써 역방향 링크 시그널링이 달성될 수도 있다.
도 14a 내지 도 14c 는 수신기와 송신기 사이의 메시징을 예시하기 위한 다양한 상태에서의 다른 수신 회로의 일부의 단순 개략도를 도시한다.
도 14a 내지 도 14c 전부는 다양한 스위치의 상태에 차이가 있는 동일한 회로 엘리먼트를 도시한다. 수신 안테나 (304) 는 특성 인덕턴스 (L1) 를 포함하고, 그 특성 인덕턴스 (L1) 는 노드 (350) 를 구동한다. 노드 (350) 는 커패시터 (C1) 및 스위치 (S1B) 를 통해 접지에 선택적으로 커플링된다. 또한, 노드 (350) 는 커패시터 (C2) 를 통해 다이오드 (D1) 및 정류기 (318) 에 커플링된 AC 이다. 다이오드 (D1) 는 커패시터 (C3) 및 저항기 (R1) 로 고조파 및 원치않는 주파수를 제거하기 위해 필터링되는 송신 신호 (320) 에 커플링된다. 따라서, D1, C3, 및 R1 의 조합은 도 12 의 송신기를 참조하여 상기 논의된 송신 변조 신호 (224) 에 의해 생성된 송신 변조처럼 보이는 송신 신호 (320) 에 대한 신호를 생성할 수 있다.
정류기 (318) 는 스위치 (S2B) 에 연결되고, 그 스위치 (S2B) 는 저항기 (R2) 및 접지와 직렬로 연결된다. 또한, 정류기 (318) 는 스위치 (S3B) 에 연결된다. 스위치 (S3B) 의 타측은 DC 전력 신호 (322) 를 수신 디바이스 (미도시) 에 공급하여 그 수신 디바이스에 전력공급하고, 배터리, 또는 이들의 조합을 충전한다.
도 13a 내지 도 13c 에서, 스위치 (S1B) 통해 수신 안테나를 접지에 선택적으로 커플링함으로써 수신 안테나 (304) 의 DC 임피던스가 변화된다. 반대로, 도 14a 내지 도 14c 의 예시적 실시형태에서, 스위치 (S1B, S2B, 및 S3B) 의 상태를 변경하여 수신 안테나 (304) 의 AC 임피던스를 변화시킴으로써 안테나의 임피던스가 변경되어 역방향 링크 시그널링을 발생시킬 수 있다. 도 14a 내지 도 14c 에서, 수신 안테나 (304) 의 공진 주파수가 커패시터 (C2) 와 동조될 수도 있다. 따라서, 본질적으로는 송신 안테나와 최적으로 커플링되는 범위 밖에 있는 상이한 주파수로 공진 회로를 변화시키는 스위치 (S1B) 를 사용하여, 커패시터 (C1) 를 통해 수신 안테나 (304) 를 선택적으로 커플링함으로써 수신 안테나 (304) 의 AC 임피던스가 변화될 수도 있다. 수신 안테나 (304) 의 공진 주파수가 송신 안테나의 공진 주파수에 근접하고, 수신 안테나 (304) 가 송신 안테나의 근거리장에 있으면, 커플링 모드가 발생할 수도 있고, 여기서 수신기는 방사장 (106) 으로부터 상당한 전력을 인출할 수 있다.
도 14a 에서, 스위치 (S1B) 가 폐쇄되고, 이는 안테나를 이조시키고, "AC 은폐 상태" 를 생성하여, 본질적으로는, 수신 안테나가 송신 안테나의 주파수에서 공진하지 않기 때문에 송신 안테나 (204) 에 의한 검출로부터 수신 안테나를 "은폐" 시킨다. 수신 안테나가 커플링 모드에 있지 않을 것이기 때문에, 스위치 (S2B 및 S3B) 의 상태가 본 논의에서는 특히 중요하지 않다.
도 14b 에서, 스위치 (S1B) 가 개방되고, 스위치 (S2B) 가 폐쇄되며, 스위치 (S3B) 가 개방되어, 수신 안테나 (304) 에 대한 "동조된 더미-부하 상태" 를 생성한다. 스위치 (S1B) 가 개방되기 때문에, 커패시터 (C1) 는 공진 회로에 기여하지 않으며, 커패시터 (C2) 와 커플링된 수신 안테나 (304) 는 송신 안테나의 공진 주파수와 정합할 수도 있는 공진 주파수 내에 존재할 것이다. 개방된 스위치 (S3B) 및 폐쇄된 스위치 (S2B) 의 조합은 정류기에 대한 비교적 고전류의 더미 부하를 생성하고, 그 정류기는 수신 안테나 (304) 를 통해 더 많은 전력을 인출할 것이고, 이는 송신 안테나에 의해 감지될 수 있다. 또한, 수신 안테나가 송신 안테나로부터의 전력을 수신하기 위한 상태에 있기 때문에 송신 신호 (320) 가 검출될 수 있다.
도 14c 에서, 스위치 (S1B) 가 개방되고, 스위치 (S2B) 가 개방되며, 스위치 (S3B) 가 폐쇄되어, 수신 안테나 (304) 에 대한 "동조된 동작 상태" 를 생성한다. 스위치 (S1B) 가 개방되기 때문에, 커패시터 (C1) 는 공진 회로에 기여하지 않으며, 커패시터 (C2) 와 커플링된 수신 안테나 (304) 는 송신 안테나의 공진 주파수와 정합할 수도 있는 공진 주파수 내에 존재할 것이다. 개방된 스위치 (S2B) 및 폐쇄된 스위치 (S3B) 의 조합은 정상 동작 상태를 생성하고, 여기서 전력은 DC 출력 신호 (322) 에 의해 공급될 수 있고 송신 신호 (320) 가 검출될 수 있다.
동조된 동작 상태 (도 14c) 와 AC 은폐 상태 (도 14a) 사이에서 스위칭함으로써 역방향 링크 시그널링이 달성될 수도 있다. 또한, 동조된 더미-부하 상태 (도 14b) 와 AC 은폐 상태 (도 14a) 사이에서 스위칭함으로써 역방향 링크 시그널링이 달성될 수도 있다. 또한, 송신기에서의 부하 감지 회로에 의해 검출될 수 있는 수신기에 의해 소모된 전력량에 차이가 있기 때문에, 동조된 동작 상태 (도 14c) 와 동조된 더미-부하 상태 (도 14b) 사이에서 스위칭함으로써 역방향 링크 시그널링이 달성될 수도 있다.
물론, 스위치 (S1B, S2B, 및 S3B) 의 다른 조합이 은폐를 생성하고, 역방향 링크 시그널링을 생성하고, 수신 디바이스로 전력을 공급하기 위해 사용될 수도 있다는 것을 당업자는 인식할 것이다. 또한, 은폐, 역방향 링크 시그널링, 및 수신 디바이스로의 전력공급을 위한 다른 가능한 조합을 생성하기 위해 스위치 (S1A 및 S1B) 가 도 14a 내지 도 14c 의 회로에 부가될 수도 있다.
따라서, 도 12 를 참조하여 상기 논의된 바와 같이, 커플링 모드 신호가 송신기로부터 수신기로 전송될 수도 있다. 또한, 도 13a 내지 도 13c 및 도 14a 내지 도 14c 를 참조하여 상기 논의된 바와 같이, 커플링 모드 신호가 수신기로부터 송신기로 전송될 수도 있다.
도 15a 내지 도 15d 는 송신기와 하나 이상의 수신기 사이에서 전력을 송신하는 비컨 전력 모드를 예시하는 단순 블록도이다. 도 15a 는 비컨 커플링 모드 영역 (510) 에 수신 디바이스가 없을 때 저전력 "비컨" 신호 (525) 를 갖는 송신기 (520) 를 예시한다. 비컨 신호 (525) 는 제한하지 않는 예로서, 예를 들어, ~10 내지 ~20mW RF 의 범위일 수도 있다. 이러한 신호는 커플링 모드 영역에 배치될 때 충전될 디바이스에 초기 전력을 제공하는데 알맞다.
도 15b 는 비컨 신호 (525) 를 송신하는 송신기 (520) 의 비컨 커플링 모드 영역 (510) 내에 배치된 수신 디바이스 (530) 를 예시한다. 수신 디바이스 (530) 가 온이고 송신기와의 커플링을 발생시키면, 실제로 비컨 신호 (525) 로부터의 수신기 수용 전력인 역방향 링크 커플링 (535) 을 생성할 것이다. 이러한 부가적 전력은 송신기의 부하 감지 회로 (216; 도 12) 에 의해 감지될 수도 있다. 그 결과, 송신기는 고전력 모드로 들어간다.
도 15c 는 고전력 커플링 모드 영역 (510') 을 발생시키는 고전력 신호 (525') 를 생성하는 송신기 (520) 를 예시한다. 수신 디바이스 (530) 가 전력을 수용하고, 그 결과, 역방향 링크 커플링 (535) 을 생성하는 한은, 송신기는 고전력 상태를 유지한다. 오직 하나의 수신 디바이스 (530) 만이 예시되어 있지만, 다수의 수신 디바이스 (530) 가 커플링 모드 영역 (510) 에 존재할 수도 있다. 다수의 수신 디바이스 (530) 가 존재하면, 이들은 각 수신 디바이스 (530) 가 얼마나 잘 커플링되는지에 기초하여 송신기에 의해 송신된 전력량을 공유할 것이다. 예를 들어, 커플링 효율은 도 8 및 도 9 를 참조하여 상술한 바와 같이, 디바이스가 커플링 모드 영역 (510) 내에 배치되는 위치에 따라 각 수신 디바이스 (530) 에 대해 상이할 수도 있다.
도 15d 는, 수신 디바이스 (530) 가 비컨 커플링 모드 영역 (510) 에 있을 때에도 비컨 신호 (525) 를 생성하는 송신기 (520) 를 예시한다. 이러한 상태는, 아마도 더이상 전력을 필요로 하지 않기 때문에, 수신 디바이스 (530) 가 차단되거나, 디바이스가 스스로 은폐할 때 발생할 수도 있다.
수신기 및 송신기는 개별 통신 채널 (예를 들어, 블루투스, 지그비 등) 을 통해 통신할 수도 있다. 개별 통신 채널로, 송신기는 커플링 모드 영역 (510) 에서의 수신 디바이스의 수 및 그들 각각의 전력 요건에 기초하여, 비컨 모드와 고전력 모드 사이에서 스위칭할 때를 결정할 수도 있거나, 다수의 전력 레벨을 생성할 수도 있다.
본 발명의 예시적인 실시형태는, 중계기로서 작용하고, 송신 안테나로부터 수신 안테나로의 전력 흐름을 강화하는 커플링된 안테나의 시스템으로의 부가적 안테나의 도입을 통해 2개의 안테나 사이의 근거리장 전력 전송에서 비교적 대형인 송신 안테나와 소형인 수신 안테나 사이의 커플링을 강화하는 것을 포함한다.
예시적인 실시형태에서, 시스템에서의 송신 안테나와 수신 안테나에 커플링하는 하나 이상의 추가 안테나가 사용된다. 이들 추가 안테나는 액티브 또는 패시브 안테나와 같은 중계기 안테나를 포함한다. 패시브 안테나는 단순한 안테나 루프 및 안테나의 공진 주파수를 동조시키기 위한 용량성 엘리먼트를 포함할 수도 있다. 액티브 엘리먼트는 안테나 루프 및 하나 이상의 동조 커패시터에 부가하여, 중계된 근거리장 방사의 강도를 증가시키는 증폭기를 포함할 수도 있다.
전력 전송 시스템에서의 송신 안테나와 수신 안테나의 조합은, 매우 소형의 수신 안테나에 대한 전력의 커플링이 종단 부하, 동조 컴포넌트, 공진 주파수, 및 송신 안테나에 대한 중계기 안테나의 배치와 같은 팩터들에 기초하여 강화되도록 최적화될 수도 있다.
단일 송신 안테나는 유한 근거리장 커플링 모드 영역을 나타낸다. 따라서, 송신 안테나의 근거리장 커플링 모드 영역에서 수신기를 통해 충전하는 디바이스의 사용자는, 금지적이거나 적어도 불편한 상당한 사용자 액세스 공간을 요구한다. 또한, 커플링 모드 영역은, 수신 안테나가 송신 안테나로부터 멀리 이동할 때 급격히 축소할 수도 있다.
중계기 안테나는, 중계기 안테나 주위에 제 2 커플링 모드 영역을 생성하기 위해 송신 안테나로부터의 커플링 모드 영역에 리포커싱(refocus)하고 리세이핑(reshape)할 수도 있고, 이것은 수신 안테나에 에너지를 커플링하는데 더욱 적합할 수도 있다. 중계기 안테나를 포함하는 실시형태들의 몇몇 제한하지 않는 예들이 도 16a 내지 도 19b 에서 이하 논의된다.
도 16a 는 송신 안테나 (610A) 와 공면 배치되고 송신 안테나 (610A) 의 주변 이내 배치된 소형 중계기 안테나 (620A) 를 갖는 대형 송신 안테나 (610A) 를 예시한다. 제한하지 않는 예로서, 송신 안테나 (610A) 및 중계기 안테나 (620A) 양자는 테이블 (640) 상에 형성된다. 수신 안테나 (630A) 를 포함하는 디바이스가 중계기 안테나 (620A) 의 주변 내에 배치된다. 매우 대형의 안테나들에 의해, 송신 안테나 (610A) 의 중심 부근에 비교적 약한 커플링 모드 영역의 영역들이 존재할 수도 있다. 이 약한 영역의 존재는 매우 소형의 수신 안테나 (630A) 에 커플링하려고 시도할 때 특히 현저할 수도 있다. 송신 안테나 (610A) 와 공면 배치되지만 더 작은 사이즈를 갖는 중계기 안테나 (620A) 는, 송신 안테나 (610A) 에 의해 생성된 커플링 모드 영역을 중계기 안테나 (620A) 주변의 더 작고 더 강한 중계된 커플링 모드 영역으로 리포커싱하는 것이 가능할 수도 있다. 그 결과, 비교적 강한 중계된 근거리장 방사가 수신 안테나 (630A) 에 대해 이용가능하다.
도 16b 는 송신 안테나 (610B) 에 대해 동축 배치를 갖는 대형 중계기 안테나 (620B) 를 갖는 송신 안테나 (610B) 를 예시한다. 수신 안테나 (630B) 를 포함하는 디바이스는 중계기 안테나 (620B) 의 주변 내에 배치된다. 송신 안테나 (610B) 는 전등 갓 (642) 의 하단 원주 주변에 형성되지만, 중계기 안테나 (620B) 는 테이블 (640) 상에 배치된다. 동축 배치에 의한 것을 상기하면, 근거리장 방사는 안테나의 평면으로부터 이격된 거리에 비해 비교적 급격히 감소될 수도 있다. 그 결과, 송신 안테나 (610B) 에 대해 동축 배치로 배치된 소형 수신 안테나 (630B) 는 약한 커플링 모드 영역에 존재할 수도 있다. 그러나, 송신 안테나 (610B) 와 동축 배치된 대형 중계기 안테나 (620B) 는 송신 안테나 (610B) 의 커플링된 모드 영역을 중계기 안테나 (620B) 주변의 상이한 위치에서의 또 다른 커플링된 모드 영역으로 리세이핑하는 것이 가능할 수도 있다. 그 결과, 비교적 강한 중계된 근거리장 방사가 중계기 안테나 (620B) 와 공면 배치된 수신 안테나 (630B) 에 대해 이용가능하다.
도 17a 는 송신 안테나 (610C) 와 공면 배치되고, 그 송신 안테나의 주변 내에 배치된 3개의 소형 중계기 안테나 (620C) 를 갖는 대형 송신 안테나 (610C) 를 예시한다. 송신 안테나 (610C) 및 중계기 안테나 (620C) 는 테이블 (640) 상에 형성된다. 수신 안테나 (630C) 를 포함하는 다양한 디바이스가 송신 안테나 (610C) 및 중계기 안테나 (620C) 내의 다양한 위치에 배치된다. 도 16a 에 예시된 예시적인 실시형태에 의한 바와 같이, 도 17a 의 예시적인 실시형태는 송신 안테나 (610C) 에 의해 생성된 커플링 모드 영역을 중계기 안테나 (620C) 각각의 주변의 더 작고 더 강한 중계된 커플링 모드 영역으로 리포커싱하는 것이 가능할 수도 있다. 그 결과, 비교적 강한 중계된 근거리장 방사가 수신 안테나 (630C) 에 대해 이용가능하다. 수신 안테나 중 일부는 임의의 중계기 안테나 (620C) 외부에 배치된다. 커플링된 모드 영역이 안테나의 주변 외부로 어느 정도 연장할 수도 있다는 것을 상기한다. 따라서, 수신 안테나 (630C) 는 임의의 근처의 중계기 안테나 (620C) 뿐만 아니라 송신 안테나 (610C) 의 근거리장 방사로부터 전력을 수신할 수도 있다. 그 결과, 임의의 중계기 안테나 (620C) 외부에 배치된 수신 안테나는 임의의 근처의 중계기 안테나 (620C) 뿐만 아니라 송신 안테나 (610C) 의 근거리장 방사로부터 전력을 여전히 수신하는 것이 가능할 수도 있다.
도 17b 는 송신 안테나 (610D) 에 대해 오프셋 동축 배치 및 오프셋 공면 배치를 갖는 소형 중계기 안테나 (620D) 를 갖는 대형 송신 안테나 (610D) 를 예시한다. 수신 안테나 (630D) 를 포함하는 디바이스는 중계기 안테나 (620D) 중 하나의 주변내에 배치된다. 제한하지 않는 예로서, 송신 안테나 (610D) 는 천장 (646) 에 배치될 수도 있고, 중계기 안테나 (620D) 는 테이블 (640) 상에 배치될 수도 있다. 도 16b 의 예시적인 실시형태에 의한 바와 같이, 오프셋 동축 배치에서의 중계기 안테나 (620D) 는 중계기 안테나 (620D) 주변의 중계된 근거리장 방사에 대해 송신 안테나 (610D) 로부터의 근거리장 방사를 리세이핑하고 강화하는 것이 가능할 수도 있다. 그 결과, 비교적 강한 중계된 근거리장 방사가 중계기 안테나 (620D) 와 공면 배치된 수신 안테나 (630D) 에 대해 이용가능하다.
다양한 송신 안테나 및 중계기 안테나가 일반적으로 표면 상에 도시되었지만, 이들 안테나들은 표면 아래 (예를 들어, 테이블 아래, 바닥 아래, 벽 뒤, 또는 천장 뒤) 또는 표면 내 (예를 들어, 테이블 탑, 벽, 바닥, 또는 천장) 에 또한 배치될 수도 있다.
도 18 은 송신 안테나, 중계기 안테나 및 수신 안테나 간의 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다. 송신 안테나, 중계기 안테나, 및 수신 안테나는 약 13.56 MHz 의 공진 주파수를 갖도록 동조된다.
곡선 662 는 다양한 주파수에서 송신 안테나에 공급된 총 전력 중에서 송신 안테나로부터 송신된 전력량에 대한 측정치를 예시한다. 유사하게는, 곡선 664 는 다양한 주파수에서 단말기의 근방에서 이용가능한 총 전력 중에서 중계기 안테나를 통해 수신 안테나에 의해 수신된 전력량에 대한 측정치를 예시한다. 마지막으로, 곡선 668 은 다양한 주파수에서 중계기 안테나를 통해 송신 안테나와 수신 안테나 사이에 실제로 커플링된 전력량을 예시한다.
약 13.56 MHz 에 대응하는 곡선 668 의 피크에서, 송신기로부터 전송된 대량의 전력이 수신기에서 이용가능하다는 것을 확인할 수 있고, 이것은, 송신 안테나, 중계기 안테나 및 수신 안테나의 조합 사이에서 고도의 커플링을 나타낸다.
도 19a 는 중계기 안테나 없이 송신 안테나에 대해 동축 배치로 배치된 수신 안테나와 송신 안테나 사이의 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다. 송신 안테나 및 수신 안테나는 약 10 MHz 의 공진 주파수를 갖도록 동조된다. 이러한 시뮬레이션에서의 송신 안테나는 일 측상에서 약 1.3 미터이고, 수신 안테나는 일 측상에서 약 30 mm의 멀티-루프 안테나이다. 수신 안테나는 송신 안테나 평면으로부터 약 2 미터 이격되어 배치된다. 곡선 682A 는 다양한 주파수에서 단자에 공급된 총 전력 중에서 송신 안테나로부터 송신된 전력량에 대한 측정치를 예시한다. 유사하게는, 곡선 684A 는 다양한 주파수에서 단자 근방에서 이용가능한 총 전력 중에서 수신 안테나에 의해 수신된 전력량의 측정치를 예시한다. 마지막으로, 곡선 686A 는 다양한 주파수에서 송신 안테나와 수신 안테나 사이에 실제로 커플링된 전력량을 예시한다.
도 19b 는 중계기 안테나가 시스템에 포함될 때 도 19a 의 송신 안테나와 수신 안테나 사이의 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다. 송신 안테나와 수신 안테나는 도 19a 와 동일한 사이즈 및 배치이다. 중계기 안테나는 일 측상에서 약 28 cm 이고, 수신 안테나와 공면 배치된다 (즉, 송신 안테나의 평면으로부터 약 0.1 미터 이격된다). 도 19b 에서, 곡선 682B 는 다양한 주파수에서 단말기에 공급된 총 전력 중에서 송신 안테나로부터 송신된 전력량의 측정치를 예시한다. 곡선 684B 는 다양한 주파수에서 단말기 근방에서 이용가능한 총 전력 중에서 중계기 안테나를 통해 수신 안테나에 의해 수신된 전력량을 예시한다. 마지막으로, 곡선 686B 는 다양한 주파수에서 중계를 안테나를 통해 송신 안테나와 수신 안테나에 실제로 커플링된 전력량을 예시한다.
도 19a 및 도 19b 로부터 커플링된 전력 (686A 및 686B) 을 비교할 때, 중계기 안테나 없이, 커플링된 전력 (686A) 은 약 -36dB 에서 피크이다는 것을 확인할 수 있다. 반면에, 중계기 안테나를 가지면, 커플링된 전력 (686B) 은 약 -5 dB 에서 피크이다. 따라서, 공진 주파수 근처에서, 중계기 안테나의 포함으로 인해 수신 안테나에 대해 이용가능한 전력량의 상당한 증가가 존재한다.
본 발명의 예시적인 실시형태는, 송신기가 충전 전력을 개별 디바이스들로 전달하는 효율성을 최적화하기 위해 송신기가 단일 및 다수의 디바이스 및 디바이스 타입들로 어떻게 방사하는지를 적절하게 관리하는 저가의 과도하지 않은 방식을 포함한다.
도 20 은 수송 (299) 의 다른 모드들 및 차량 (299) 에서의 사용을 위한 송신기 (200) 의 단순 블록도이다. 제한하지 않는 예로서, 차량은 자동차, 트럭, 열차, 비행기, 보트, 및 수송의 다른 적합한 수단일 수도 있다. 송신기는 도 10 의 송신기와 유사하고, 따라서, 다시 설명할 필요는 없다. 그러나, 도 20 에서는, 송신기 (200) 는 제어기 (214) (여기에서 프로세서로 또한 지칭됨) 에 연결된 존재 검출기 (280), 폐쇄형 검출기 (enclosed detector; 290), 또는 이들의 조합을 포함할 수도 있다. 제어기 (214) 는 존재 검출기 (280) 및 폐쇄형 검출기 (290) 로부터의 존재 신호들에 응답하여 증폭기 (210) 에 의해 전달된 전력량을 조정할 수도 있다. 송신기는 예를 들어, 차량 (299) 에 존재하는 종래의 AC 전력을 변환하기 위한 AC-DC 변환기 (미도시), 종래의 DC 전력 소스를 송신기 (200) 에 적합한 전압으로 변환하기 위한 DC-DC 변환기 (미도시) 와 같은 다수의 전력 소스를 통해, 또는 종래의 DC 전력 소스 (미도시) 로부터 직접 전력을 수신할 수도 있다.
제한하지 않는 예로서, 존재 검출기 (280) 는 송신기의 커버리지 영역으로 삽입되는 충전될 디바이스의 초기 존재를 감지하기 위해 활용된 모션 검출기일 수도 있다. 검출 이후에, 송신기는 턴 온되고, 디바이스에 의해 수신된 RF 전력은 송신기의 구동 포인트 임피던스에 대한 변화를 발생시키는 사전결정된 방식으로 Rx 디바이스상의 스위치를 토글링하기 위해 사용된다.
다른 제한하지 않는 예로서, 존재 검출기 (280) 는 예를 들어, 적외선 검출, 모션 검출, 또는 다른 적합한 수단에 의해 인간을 검출할 수 있는 검출기일 수도 있다. 일부 예시적인 실시형태에서, 송신 안테나가 특정 주파수에서 송신할 수도 있는 전력량을 제한하는 규제가 있을 수도 있다. 일부 경우에서, 이들 규제들은 전자기 방사로부터 인간을 보호하는 것으로 여겨진다. 그러나, 송신 안테나가 예를 들어, 차고, 작업 현장, 공장 직영 매장 등과 같은 인간에 의해 점유되지 않거나 인간에 의해 덜 빈번하게 점유되는 영역에 배치되는 환경이 존재할 수도 있다. 이들 환경이 인간으로부터 자유로우면, 송신 안테나의 전력 출력을 정상 전력 제한 규제보다 높게 증가시키는 것이 허용될 수도 있다. 다시 말해, 제어기 (214) 는 인간의 존재에 응답하여 송신 안테나 (204) 의 출력 전력을 규제 레벨 이하로 조정할 수도 있고, 인간이 송신 안테나 (204) 의 전자기장으로부터 규제 거리 외부에 있을 때 규제 레벨보다 높은 레벨로 송신 안테나 (204) 의 전력 출력을 조정할 수도 있다.
제한하지 않는 예로서, 폐쇄형 검출기 (290) (여기에서 폐쇄형 격실 검출기 또는 폐쇄형 공간 검출기라고도 지칭될 수도 있다) 는, 더욱 상세히 후술되는 바와 같이, 인클로저가 폐쇄 또는 개방 상태에 있을 때를 결정하기 위한 감지 스위치와 같은 디바이스일 수도 있다. 아래의 다수의 예들에서, 오직 하나의 게스트 디바이스가 충전되는 것으로 도시된다. 실제로는, 다수의 디바이스가 각 호스트에 의해 생성된 근거리장으로부터 충전될 수 있다.
예시적인 실시형태에서, 송신기 (200) 가 무기한으로 유지되지 않는 방법이 사용될 수도 있다. 이러한 경우에서, 송신기 (200) 는 사용자 결정된 시간량 이후에 중단하도록 프로그램될 수도 있다. 이러한 특징은, 주변의 무선 디바이스가 완전하게 충전된 오랜 이후에 송신기 (200), 특히, 전력 증폭기가 구동하는 것을 방지한다. 이러한 이벤트는, 디바이스가 완전하게 충전된 수신 코일 또는 중계기로부터 전송된 신호를 검출하기 위한 회로의 고장으로 인한 것일 수도 있다. 다른 디바이스가 그 주변에 배치되는 경우에 송신기 (200) 가 자동으로 중지하는 것을 방지하기 위해, 송신기 (200) 자동 중단 특징은 그 주변에서 검출된 일정 기간의 모션의 부족 이후에만 활성화될 수도 있다. 사용자는 비활성 시간 간격을 결정할 수도 있고, 원하는 경우 변경할 수도 있다. 제한하지 않는 예로서, 시간 간격은 디바이스가 초기에 완전하게 방전되었다는 가정하에서 특정 타입의 무선 디바이스를 완전하게 충전하는데 필요한 것보다 길 수도 있다.
본 발명의 예시적인 실시형태들은 송신 안테나 및 전력의 다른 소형의 수신기 디바이스로의 무선 전송에 종종 필요한 다른 회로를 완전히 또는 부분적으로 하우징하는 전력 송신 디바이스를 지탱하기 위해, 저장 빈, 대시보드, 적재가능 면, 콘솔 및 저장 백과 같은 수송의 다른 모드 및 차량에서의 엘리먼트를 이용하는 것을 포함한다.
전력 송신 디바이스들은 이를테면 제조시에 상술된 차량들 및 차량 엘리먼트들에 부분적으로 또는 완전히 임베디드될 수도 있다.
또한, 전력 송신 디바이스들는 송신 안테나를 부착시킴으로써 기존의 차량 엘리먼트들로 개조될 수도 있다. 이러한 차량 엘리먼트들은 기존의 차량 아이템들이라고 여기에서 지칭된다. 이 문맥에서, 부착은 송신 안테나가 고정될 수 있도록 예를 들어, 벽 또는 격실의 밑면과 같은 기존의 차량 아이템에 안테나를 부착시키는 것을 의미할 수도 있다. 또한, 부착은 예를 들어, 격실 바닥 또는 대시보드 위와 같은 저절로 고정되는 위치에 송신 안테나를 단순히 배치시키는 것을 의미할 수도 있다.
전기적으로 소형의 안테나는 종종, 소형 안테나의 이론에 의해 설명되는 바와 같이 수 퍼센트보다 크지 않은 저효율을 갖는다. 안테나의 전기적 사이즈가 작을수록, 그 효율은 더 낮아진다. 무선 전력 전달은, 전력이 이러한 무선 전달 시스템의 수신단에 있는 디바이스에 중요한 거리에 걸쳐 전송될 수 있는 경우에 산업적, 상업적, 및 가정적 애플리케이션들에서의 전기 격자에 대한 유선 연결을 대체하는 실행가능한 기법이 될 수 있다. 이러한 거리가 애플리케이션 의존형이지만, 수십 센티미터 내지 수 미터가 대부분의 애플리케이션들에 대해 적합한 범위로 여겨질 수 있다. 일반적으로, 이러한 범위는 5 MHz 내지 100 MHz 사이의 간격에서 전력에 대한 유효 주파수를 감소시킨다.
본 발명의 예시적인 실시형태는 게스트 디바이스들의 재충전가능한 배터리들을 충전하기 위해 또는 게스트 디바이스들에게 직접 공급하기 위해 다양한 차량 엘리먼트들을 게스트 디바이스들에게 전력을 무선 전송할 수 있는 호스트들로 변환하는 것을 포함한다.
도 21 및 도 22 는 예시적인 실시형태에 따른, 다중 송신 안테나 무선 충전 장치의 블록도들의 평면도들이다. 전술한 바와 같이, 무선 충전에 수신기를 참여시키기 위해 송신기의 근거리장 커플링 모드 영역에 수신기를 위치시키는 것은, 송신 안테나의 근거리장 커플링 모드 영역에서 수신기의 정확한 포지셔닝을 요구함으로써 과도하게 부담스러울 수도 있다. 또한, 고정 위치 송신 안테나의 근거리장 커플링 모드 영역에 수신기를 위치시키는 것은 또한, 특히 사용자가 디바이스에 대한 동시 물리적 액세스를 필요로 하는 다수의 사용자 액세스가능한 디바이스 (예를 들어, 랩탑, PDA, 무선 디바이스) 에 다수의 수신기가 각각 커플링될 때, 수신기에 커플링된 디바이스의 사용자에 의해 액세스불가능할 수도 있다. 예를 들어, 단일 송신 안테나는 유한 근거리장 커플링 모드 영역을 나타낸다.
따라서, 송신 안테나의 근거리장 커플링 모드 영역에서 수신기를 통해 충전하는 디바이스의 사용자는 동일한 송신 안테나의 근거리장 커플링 모드 영역 내에서 또한 무선 충전하기 위한 다른 디바이스의 다른 사용자에 대해 금지적이거나 적어도 불편한 상당한 사용자 액세스 공간을 요구할 수도 있고, 또한 개별 사용자 액세스 공간을 요구할 수도 있다. 예를 들어, 단일 송신 안테나로 구성된 대형의 자동차 트렁크를 커버하는 것은 송신기 근거리장 커플링 모드 영역의 로컬 특성으로 인해 트렁크의 상이한 영역들에서의 디바이스들을 액세스하는 것이 어려울 수도 있다.
도 21 을 참조하면, 다중 송신 안테나 무선 충전 장치 (700) 의 예시적인 실시형태는, 확장된 무선 충전 영역 (708) 을 정의하기 위해 복수의 인접하게 위치된 송신 안테나 회로들 (702A 내지 702D) 의 배치를 제공한다. 제한하지 않는 예로서, 송신 안테나 회로는 전자 디바이스 (예를 들어, 무선 디바이스, 핸드셋, PDA, 랩탑 등) 와 연관되거나 전자 디바이스에 피팅되는 수신 안테나 (미도시) 에 균일한 커플링을 제공하기 위해 예를 들어, 대략 30 내지 40 센티미터의 직경 또는 측면 치수를 갖는 송신 안테나 (710) 를 포함한다. 송신 안테나 회로 (702) 를 다중 송신 안테나 무선 충전 장치 (700) 의 유닛 또는 셀로서 고려함으로써, 예를 들어, 실질적으로 단일 평면 (704) (예를 들어, 테이블 상부) 상에서 서로에 이어서 이들 송신 안테나 회로 (702A 내지 702D) 를 적층하거나 인접하게 타일링하는 것은, 충전 영역을 증가시키거나 확장하는 것을 허용한다. 확장된 무선 충전 영역 (708) 은 하나 이상의 디바이스에 대한 증가된 충전 영역을 발생시킨다.
다중 송신 안테나 무선 충전 장치 (700) 는 구동 신호를 송신 안테나 (710) 에 제공하는 송신 전력 증폭기 (720) 를 더 포함한다. 하나의 송신 안테나 (710) 의 근거리장 커플링 모드 영역들이 다른 송신 안테나 (710) 의 근거리장 커플링 모드 영역을 간섭하는 구성에서, 간섭하는 인접 송신 안테나 (710) 는 "은폐"되어, 활성 송신 안테나 (710) 의 개선된 무선 충전 효율을 허용한다.
다중 송신 안테나 무선 충전 장치 (700) 에서의 송신 장치 (710) 의 활성화의 시퀀싱은 시간 도메인 기반 시퀀스에 따라 발생할 수도 있다. 송신 전력 증폭기 (720) 의 출력은, 송신기 프로세서로부터의 제어 신호 (724) 에 따라, 송신 전력 증폭기 (720) 로부터 송신 안테나 (710) 각각으로의 출력 신호를 시간 멀티플렉싱하는 멀티플렉서 (722) 에 커플링된다.
전력 증폭기 (720) 가 활성 송신 안테나를 구동할 때 인접한 비활성 송신 안테나 (710) 에서 공진을 유도하는 것을 방지하기 위해, 비활성 안테나는 예를 들어, 은폐 회로 (714) 를 활성화함으로써 그 송신 안테나의 공진 주파수를 변경함으로써 "은폐"될 수도 있다. 구현으로서, 직접 또는 거의 인접한 송신 안테나 회로 (702) 의 동시 동작은 동시에 활성화되고 물리적으로 근처 또는 인접한 다른 송신 안테나 회로들 (702) 사이에서 간섭 효과를 발생시킬 수도 있다. 따라서, 송신 안테나 회로 (702) 는 송신 안테나 (710) 의 공진 주파수를 변경하기 위한 송신기 은폐 회로 (714) 를 더 포함할 수도 있다.
송신기 은폐 회로는 송신 안테나 (710) 의 리액티브 엘리먼트, 예를 들어, 커패시터 (716) 의 값을 변경하거나 쇼트-아웃 (short-out) 하기 위한 스위칭 수단 (예를 들어, 스위치) 으로서 구성될 수도 있다. 스위칭 수단은 송신기의 프로세서로부터의 제어 신호에 의해 제어될 수도 있다. 동작 중에, 송신 안테나 (710) 중 하나가 활성화되고, 공진하도록 허용되지만, 다른 송신 안테나 (710) 는 공진이 금지되며, 따라서, 활성 송신 안테나 (710) 와 인접하게 간섭하는 것이 금지된다. 따라서, 송신 안테나 (710) 의 커패시턴스를 쇼트-아웃하거나 변경함으로써, 송신 안테나 (710) 의 공진 주파수는 다른 송신 안테나 (710) 로부터의 공진 커플링을 방지하도록 변경된다. 공진 주파수를 변경하는 다른 기법들이 또한 고려된다.
다른 예시적인 실시형태에서, 송신 안테나 회로 (702) 각각은, 수신기들이 존재하고 무선 충전할 준비가 될 때 송신 안테나 회로 (702) 중 송신 안테나 회로들을 활성화하거나 수신기들이 각각의 근거리장 커플링 모드 영역에 존재하지 않거나 충전할 준비가 안되어 있을 때 송신 안테나 회로 (702) 중 송신 안테나 회로들의 활성화를 포기하는 것을 선택하는 송신기 프로세서로 각각의 근거리장 커플링 모드 영역 내에서 수신기의 존재 또는 부재를 결정할 수 있다. 존재 또는 준비된 수신기들의 검출은 여기에 설명된 수신기 검출 시그널링 프로토콜에 따라 발생할 수도 있거나 송신 안테나의 근거리장 커플링 모드 영역 내에서 수신기의 존재를 결정하는 모션 감지, 압력 감지, 이미지 감지 또는 다른 감지 기법들과 같은 수신기의 물리적 감지에 따라 발생할 수도 있다. 또한, 복수의 안테나 회로 중 적어도 하나에 강화된 비례 듀티 사이클을 제공함으로써 하나 이상의 송신 안테나 회로의 우선적 활성화가 본 발명의 범위 이내인 것으로 또한 고려된다.
도 22 를 참조하면, 다중 송신 안테나 무선 충전 장치 (800) 의 예시적인 실시형태는 확장된 무선 충전 영역 (808) 을 정의하는 송신 안테나 (801) 내부의 복수의 인접하게 위치된 중계기 안테나 회로들 (802A 내지 802D) 의 배치를 제공한다. 송신 전력 증폭기 (820) 에 의해 구동될 때, 송신 안테나 (801) 는 중계기 안테나 (810A 내지 810D) 각각에 대한 공진 커플링을 유도한다. 제한하지 않는 예로서, 예를 들어, 약 30 내지 40 센티미터의 직경 또는 측면 치수를 갖는 중계기 안테나 (810) 는 전자 디바이스와 연관되거나 전자 디바이스에 부착되는 수신 안테나 (미도시) 에 균일한 커플링을 제공한다. 중계기 안테나 회로 (802) 를 다중 송신 안테나 무선 충전 장치 (800) 의 유닛 또는 셀로서 고려함으로써, 이들 중계기 안테나 회로들 (802A 내지 802D) 을 실질적으로 단일 평면 (804) (예를 들어, 테이블 상부) 상에 서로에 이어서 적층하거나 인접하게 타일링하는 것은, 충전 영역의 증가 또는 확장을 허용한다. 확장된 무선 충전 영역 (808) 은 하나 이상의 디바이스에 대해 증가된 충전 공간을 발생시킨다.
다중 송신 안테나 무선 충전 장치 (800) 는 구동 신호를 송신 안테나 (801) 에 제공하는 송신 전력 증폭기 (820) 를 포함한다. 하나의 중계기 안테나 (810) 의 근거리장 커플링 모드 영역이 다른 중계기 안테나 (810) 의 근거리장 커플링 모드 영역과 간섭하는 구성에서, 간섭하는 인접 중계기 안테나들 (810) 은 "은폐"되어, 활성 중계기 안테나 (810) 의 개선된 무선 충전 효율을 허용한다.
다중 송신 안테나 무선 충전 장치 (800) 에서의 중계기 안테나 (810) 의 활성의 시퀀싱은, 시간 도메인 기반 시퀀스에 따라 발생할 수도 있다. 송신 전력 증폭기 (820) 의 출력은 일반적으로 (여기에 설명되는 바와 같이 수신기 시그널링 동안은 제외하고) 송신 안테나 (801) 에 일정하게 커플링된다. 본 예시적인 실시형태에서, 중계기 안테나 (810) 는 송신 프로세서로부터의 제어 신호 (821) 에 따라 시간 멀티플렉싱된다. 구현으로서, 직접 또는 거의 인접한 중계기 안테나 회로들 (802) 의 동시 동작은, 동시에 활성화되고 물리적으로 근처 또는 인접한 다른 중계기 안테나 회로들 (802) 사이에서 간섭 효과를 발생시킬 수도 있다. 따라서, 중계기 안테나 회로 (802) 는 중계기 안테나 (810) 의 공진 주파수를 변경하기 위한 중계기 은폐 회로 (814) 를 더 포함할 수도 있다.
중계기 은폐 회로는 중계기 안테나 (810) 의 리액티브 엘리먼트, 예를 들어, 커패시터 (816) 의 값을 쇼트-아웃하거나 변경하기 위한 스위칭 수단 (예를 들어, 스위치) 으로서 구성될 수도 있다. 스위칭 수단은 송신기의 프로세서로부터의 제어 신호 (821) 에 의해 제어될 수도 있다. 동작 중에, 중계기 안테나들 (810) 중 하나가 활성화되고 공진하도록 허용되지만, 중계기 안테나들 (810) 중 다른 중계기 안테나가 공진하는 것이 금지되어서, 활성 중계기 안테나 (810) 와 인접하게 간섭한다. 따라서, 중계기 안테나 (810) 의 커패시턴스를 쇼트-아웃하거나 변경함으로써, 중계기 안테나 (810) 의 공진 주파수가 변경되어 다른 중계기 안테나 (810) 로부터의 공진 커플링을 방지한다. 공진 주파수를 변경하는 다른 기법들이 또한 고려된다.
다른 예시적인 실시형태에서, 중계기 안테나 회로들 (802) 각각은 수신기들이 존재하고 무선 충전할 준비가 될 때 중계기 안테나 회로들 (802) 중 중계기 안테나 회로들을 활성화하거나 수신기들이 각각의 근거리장 커플링 모드 영역에 존재하지 않거나 충전할 준비가 안되어 있을 때 중계기 안테나 회로들 (802) 중 중계기 안테나 회로들의 활성화를 포기하는 것을 선택하는 송신기 프로세서로 각각의 근거리장 커플링 모드 영역 내에서 수신기의 존재 또는 부재를 결정할 수 있다. 존재 또는 준비 수신기들의 검출은 여기에 설명된 수신기 검출 시그널링 프로토콜에 따라 발생할 수도 있거나 수신기가 중계기 안테나의 근거리장 커플링 모드 영역 내인 것으로 결정하는 모션 감지, 압력 감지, 이미지 감지 또는 다른 감지 기법들과 같은 수신기의 물리적 감지에 따라 발생할 수도 있다.
다중 송신 안테나 무선 충전 장치 (700 및 800) 의 다양한 예시적인 실시형태들은, 특정한 수신기들의 우선순위 충전, 상이한 안테나의 근거리장 커플링 모드 영역에서 수신기들의 변화하는 양, 수신기들에 커플링된 특정한 디바이스들의 요건과 같은 팩터들 뿐만 아니라 다른 팩터들에 기초하여 송신/중계기 안테나들에 대한 활성 시간 슬롯의 비대칭 할당에 기초하여 송신/중계기 안테나들 (710, 810) 에 커플링된 입력 신호의 시간 도메인 멀티플렉싱을 더 포함할 수도 있다.
전술한 바와 같이, 송신기와 수신기 사이의 에너지의 효율적 전달은, 송신기와 수신기 사이의 정합되거나 거의 정합된 공진 동안 발생한다. 그러나, 송신기와 수신기 사이의 공진이 정합되지 않을 때에도, 에너지는 더 낮은 효율에서 전달될 수도 있다. 에너지의 전달은 송신 안테나의 근거리장으로부터의 에너지를 이웃에 상주하는 수신 안테나에 커플링함으로써 발생하고, 여기서, 송신 안테나로부터 자유 공간으로 에너지를 전파하기보다는 이러한 근거리장이 확립된다.
상술한 접근방식은 CDMA, WCDMA, OFDM 등과 같은 다양한 통신 표준들에 적용 가능하다는 것에 유의해야 한다. 당업자는 정보 및 신호들이 임의의 다양한 다른 기술 및 기법을 사용하여 표현될 수도 있다는 것을 이해할 것이다. 예를 들어, 상기 설명 전반적으로 참조될 수도 있는 데이터, 명령들, 커맨드들, 정보, 신호들, 비트들, 심볼들 및 칩들은, 전압, 전류, 전자기파, 자기장 또는 자기 입자, 광학장 또는 광입자, 또는 이들의 임의의 조합에 의해 표현될 수도 있다.
도 21 및 도 22 는 실질적으로 평면인 충전 영역에서의 다수의 루프를 예시한다. 그러나, 본 발명의 예시적인 실시형태는 이에 제한되지 않는다. 여기에 설명된 예시적인 실시형태들에서, 다수의 안테나를 갖는 다차원 영역들이 여기에 설명된 기법들에 의해 수행될 수도 있다. 또한, 다차원 무선 전력공급 및 충전은, 이를테면, 다목적으로 그 내용이 참조로 전체가 여기에 포함되는 2009년 9월 25일에 출원된 "SYSTEMS AND METHOD RELATING TO MULTI-DIMENSIONAL WIRELESS CHARGING" 라는 명칭의 미국 특허 출원 제12/567,339호에 기재된 수단이 이용될 수도 있다.
무선 충전 장치 (예를 들어, 근거리장 자기 공진, 유도 커플링 등) 에 하나 이상의 디바이스를 배치할 때, 수신기와 무선 충전 장치의 송신 안테나(들) 사이의 배향은 변화할 수도 있다. 예를 들어, 의료 디바이스를 충전하면서 용액조에서 소독할 때 또는 기구들을 충전하면서 물 아래에서 작업할 때이다. 디바이스가 내부에 유체를 갖는 컨테이너로 떨어질 때, 디바이스가 컨테이너의 바닥에 착지하는 각도는 그것의 질량이 분포되는 방식에 의존할 것이다. 다른 제한하지 않는 예로서, 무선 충전 장치가 박스 또는 보울 (bowl) 의 형태를 취할 때, 편리하지만 디바이스를 부주의하게 배치시키는 것은, 무선 충전 장치에 대한 디바이스의 유용한 포지셔닝을 보장하지 않을 수도 있다. 무선 충전 장치는 또한 무선 충전을 위해 특수하게 설계된 인클로저 또는 전문가 장비 (예를 들어, 필드 기술자 장비) 용 차량에서의 글로브 박스, 콘솔, 수하물 트렁크, 콘테이너와 같은 다수의 디바이스들을 홀딩할 수 있는 대형 컨테이너 또는 캐비넷에 통합될 수도 있다. 이들 디바이스들로의 수신기 통합은, 디바이스가 상이한 폼 팩터들을 갖고, 무선 전력 송신기에 대해 상이한 배향으로 배치될 수도 있기 때문에 일관성이 없을 수도 있다.
무선 충전 장치의 기존의 설계들은 미리 정의된 배향하에서 최상으로 수행할 수도 있고, 무선 충전 장치와 수신기 사이의 배향이 상이하면 더 낮은 전력 레벨을 전달할 수도 있다. 또한, 충전된 디바이스가, 무선 전력의 일부만이 전달될 수 있는 포지션에 배치될 때, 충전 시간이 증가할 수도 있다. 일부 솔루션들은, 사용자가 충전될 디바이스를 바람직한 배향으로 포지셔닝하는 특수한 크래들 또는 홀더에 디바이스를 배치해야 하는 방식으로 무선 충전 장치를 설계할 수도 있어서, 사용자에게 편리성이 손실되는 것을 초래할 수 있다.
다른 접근방식들은, 예를 들어, "충전" 매트 또는 표면에 임베디드된 송신 안테나와 충전될 호스트 디바이스에 임베디드된 수신 안테나와 정류 회로 사이의 유도 커플링에 기초한다. 이러한 접근방식은, 송신 안테나와 수신 안테나 사이의 간격이 일반적으로 매우 근접 (예를 들어, 수 밀리미터) 해야 한다.
또한, 사용자들이 그들 디바이스를 더욱 편리하게 충전하는 것이 가능해지도록, 충전될 그들의 디바이스의 배치에 대해 사용자들에 의해 가장 많이 사용되는 장소들에서 이용가능한 무선 전력을 갖는 것이 바람직하다. 다수의 사용자들은 구조화된 그들의 홈, 차량, 또는 직장을 유지하는 것의 일부로서 컨테이너에 또는 가구 내부에 대상물들을 저장하는 것을 선호한다. 때때로 사용자들은 저장 공간에 디바이스들을 두지만, 그 디바이스들은 백, 포켓 또는 (예를 들어, 소매점에서의) 패키지 내부에 있다. 그러나, 충전된 디바이스들을 유지할 필요성이 있다면, 사용자는 그 디바이스들을 꺼내서 충전해야 한다. 또한, 사용자는 그 디바이스들이 실제로 필요할 때 이들 디바이스들을 충전하는 것을 잊어버릴 수도 있고 지연될 수도 있다.
도 23a 내지 도 23c 는 다수의 방향으로 배향된 아이템 베어링 송신 안테나들의 예시적인 실시형태를 예시한다. 이 다차원 배향은 송신 안테나들의 다차원에 관련하여 다양한 배향으로 포지셔닝된 수신기에 전달될 수 있는 전력을 증가시킬 수도 있다.
도 23a 내지 도 23c 에서, 송신 안테나(들) 가 X, Y, 및 Z 축을 따라 대략 직교하는 표면들에 임베디드된 3차원 무선 충전 장치가 도시되어 있다. 이 표면들은 예를 들어, 직사각형 인클로저의 3개 측면일 수 있다. 3개의 Tx 안테나들 중 임의의 하나, 그들 Tx 안테나들의 임의의 쌍, 또는 3개의 Tx 안테나들 모두가 동시에, 인클로저 내에 배치된 디바이스에서 RF 전력을 Rx 안테나에 무선으로 제공하는데 사용될 수 있도록 유연성이 제공된다. 상이하게 배향된 안테나들 간에서 선택 및 멀티플렉싱하기 위해 도 21 및 도 22 에 대해 상술된 것과 같은 수단이 사용될 수도 있다.
도 23a 내지 도 23c 에서, 예시적인 툴 (930) 이 툴 박스 (910) 에 배치된다. 제 1 배향 송신 안테나 (912) 가 툴 박스 (910) 의 바닥 상에 배치된다. 제 2 배향 송신 안테나 (914) 가 툴 박스 (910) 의 제 1 측면 상에 배치되고, 제 3 배향 송신 안테나 (916) 가 툴 박스 (910) 의 제 2 측면 상에 배치되며 제 2 배향 송신 안테나 (914) 에 실질적으로 직교한다. 도 23a 는 툴 박스 (910) 에 배치된 툴 (930) 을 도시하기 위해 개방된 리드를 갖는 툴 박스 (910) 를 예시한다. 도 23b 는 폐쇄된 리드를 갖는 툴 박스 (910) 를 예시한다.
도 23c 는 실질적으로 직교 방향에서 다수의 패싯 (facet) 을 포함하는 연속 루프 송신 안테나 (920) 의 다른 구성을 예시한다. 도 23c 의 예시적인 실시형태의 경우, 연속 루프 송신 안테나 (920) 는 툴 박스 (910) 의 바닥에 따른 제 1 패싯 (922), 툴 박스 (910) 의 측면을 따른 제 2 패싯 (924), 및 툴 박스 (910) 의 후면을 따른 제 3 패싯 (926) 을 포함한다.
소형의 무선 충전 장치에서, 각 차원에서 오직 하나의 송신기가 존재할 수도 있다. 대형의 무선 충전 장치에서, 평행 패널들이 간섭을 방지하기 위해 서로로부터 충분하게 이격되고, 대향 패널들 사이의 중간에 배치된 디바이스들이 양 방향으로부터 전력을 얻을 수 있도록 송신기가 대향 패널들 상에 설치될 수도 있다.
도 24a 및 도 24b 는 대향 패널들에서 송신 안테나를 갖는, 다수의 방향으로 배향된 송신 안테나를 지탱하는 캐비넷 (950) 의 예시적인 실시형태를 예시한다. 도 24a 는 개방 도어를 갖는 캐비넷 (950) 을 도시하고, 도 24b 는 폐쇄된 도어를 갖는 캐비넷 (950) 을 도시한다.
송신 안테나들 (972 및 974) 은 캐비넷 (950) 의 대향하는 측면들 (즉, 각각 왼쪽 및 오른쪽) 상에 있다. 송신 안테나들 (962 및 964) 은 캐비넷 (950) 의 대향하는 측면 (즉, 각각 도어 및 후면) 상에 있다. 송신 안테나들 (982 및 984) 은 캐비넷 (950) 의 대향하는 측면 (즉, 각각 상부 및 바닥) 상에 있다.
도 23a 내지 도 24b 를 참조하면, 디바이스에 의해 수신되는 가장 높은 전력을 유발하는 Tx 안테나의 최적의 선택을 정의한 자가보정 방법이 제공될 수도 있다. 다수의 디바이스가 동일한 인클로저에서 충전되어야 하는 경우, 각각의 디바이스에 대해 Tx 안테나들의 상이한 선택을 할당하기 위한 수단은 각각의 디바이스에 대해 상이한 시간 슬롯들을 할당함으로써 가능한다.
도 23a 내지 도 23c 는 일반 박스 (910) 를 예시하고 도 24a 및 도 24b 는 일반 캐비넷 (950) 을 예시한다. 그러나, 이 박스 (910) 또는 캐비넷 (950) 은, 예를 들어, 무선 충전을 위해 특수하게 설계된 인클로저, 또는 전문가 장비 (예를 들어, 필드 기술자 장비) 용 차량에서의 글로브 박스, 콘솔, 수하물 트렁크, 콘테이너와 같은 차량에서의 임의의 인클로저일 수 있다.
예시적인 실시형태에서, 합리적으로 사이징된 Tx 안테나가 서로의 근거리장 영역 내에 존재하도록 동작의 주파수가 충분히 낮게 선택된다. 이것은 안테나가 더 멀리 이격되어 있는 경우에 가능할 수 있는 것보다 훨씬 더 높은 커플링 레벨 (-1.5 내지 -3 dB) 을 허용한다. 임베디드된 Tx 안테나들의 표면의 직교성은, 이들 Tx 안테나들에 의해 방사되는 전자기장이 대략 직교로 분극화되는 것을 유발하여, 결국 이들 Tx 안테나들 사이의 분리를 개선하여서, 원치않는 커플링으로 인한 전력 손실이 감소된다. 각각의 Tx 안테나로부터 송신된 전력이 지능적으로 선택가능하도록 허용하는 것은, 전체의 Tx 안테나와 임의로 배치된 Rx 안테나 사이에 분극화 미스매치로 인한 저감 효율 손실을 허용한다.
예시적인 실시형태에서, 각각의 Rx 디바이스와 Tx 안테나는 도 13a 내지 도 15d 에 관하여 상술한 그들 간의 시그널링을 위한 기법들을 이용할 수도 있다. 또한, 그 내용이 참조로 전체가 여기에 포함되는 2008년 10월 10일에 출원된 "SIGNALING CHARGING IN WIRELESS POWER ENVIRONMENT" 라는 명칭의 미국 특허 출원 제12/249,816호에 기재된 수단과 같은 더욱 정교한 시그널링 수단이 이용될 수도 있다.
이들 시그널링 방법은 순차적인 Tx 안테나들과 수신된 가장 높은 전력을 발생시키는 Rx 신호들의 각각의 가능한 조합 모두에 대해 전력이 송신되는 "보정 기간" 동안에 이용될 수 있다. 그 후에, Tx 시스템은 Tx 안테나들의 이러한 최적의 조합을 이용하여 충전 기간을 시작할 수 있다. 동일한 인클로저에서 다수의 임의 배향된 디바이스들을 충전시키는 경우, 시그널링 구조는 Tx 시스템이 디바이스에 1/N×T 의 지속기간의 시간 슬롯을 할당하는 것을 허용하고, 여기서 N 은 충전될 유닛들의 수이고, T 는 충전 기간이다. 그 디바이스의 시간 슬롯 동안에, Rx 디바이스는 다른 Rx 디바이스들에 대해 원하는 조합과 관계없이, 최상의 전력 송신을 위한 Tx 안테나들의 최적의 조합을 결정할 수 있다. 이것은 다수의 디바이스들로의 최적의 전력 전송을 위해 시간 슬롯화가 요구된다는 것은 아니다. 예를 들어, 2개의 Rx 디바이스들의 상대적 배향은 그 Rx 디바이스들의 안테나들의 분극화가 서로 직교하도록 하는 것이 가능하다 (예를 들어, 디바이스 (A) 의 경우 X-Y 평면, 디바이스 (B) 의 경우 Y-Z 평면). 이 경우, 최적의 Tx 안테나 구성은 디바이스 (A) 의 경우 X-Y 평면에서 배향된 Tx 안테나 및 디바이스 (B) 의 경우 Y-Z 평면에서의 Tx 안테나를 이용하는 것일 수 있다. 2개의 Tx 안테나들 간의 본래부터의 분리로 인해, 그들 Tx 안테나들을 동시에 충전하는 것이 가능할 수도 있다. 각각의 Rx 디바이스에 의한 지능적 성질의 Tx 안테나 선택은 이러한 상황에 대해 허용된다.
본 발명의 예시적인 실시형태들은 게스트 디바이스들의 재충전가능한 배터리들을 충전하기 위해 또는 게스트 디바이스들에게 직접 공급하기 위해, 차량 주위의 다양한 장비를, 수신기들을 갖는 게스트 디바이스들에게 전력을 무선 전송할 수 있는 송신기들, 중계기들, 또는 이들의 조합을 갖는 호스트들로 변환하는 것을 포함한다. 이 장비는 일반적으로 차량 엘리먼트들 및 기존의 차량 아이템들이라고 여기에서 지칭될 수도 있다. 따라서, 이들 차량 엘리먼트들은 전력의 무선 송신을 위한 독립적인 인프라스트럭처를 확립해야 하는 것 없이 게스트 디바이스들로의 전력의 무선 전송을 위해 호스트들이 위치된 환경에 수개의 핫 스폿들을 제공할 수 있다. 이들 예시적인 실시형태들은 종종 주위 장식과 조화시키는 것이 더 어렵고 심미적으로 수용가능하지 않은 대형 송신 안테나를 요구하지 않을 수도 있다. 또한, 대형 안테나들은 큰 전자기 (EM) 장을 생성할 수도 있어서 안전성 문제에 따르는 것이 어려울 수도 있다.
개시된 예시적인 실시형태들은 차량 엘리먼트들에서의 송신 안테나들 뿐만 아니라 동일하거나 다른 차량 엘리먼트들에서의 중계기들과 같은 부가적 안테나들을 이용할 수도 있다. 이들 중계기들은 전력이 공급될 수 있거나 또는 그 중계기들은 수동적으로 중료될 수 있다. 매우 소형의 Rx 안테나들에 대한 전력의 커플링이 강화되도록, 전력 전송 시스템에서의 송신 안테나들 및 커플링된 중계기 안테나들의 조합이 최적화될 수 있다. 시스템에서의 전력 전송을 최적화하기 위해 중계기들에서의 종단 저항 및 동조 컴포넌트가 또한 사용될 수도 있다.
도 25 내지 도 31 은 본 발명의 예시적인 실시형태들이 실시될 수 있는 차량들, 열차들 등과 같은 예시적인 수송 모드들을 예시한다. 예시적인 목적을 위해, 열차들, 비행기들 및 자동차들이 여기에 사용되지만, 본 발명의 예시적인 실시형태들이 이에 제한되지 않는다는 것을 이해한다.
수송 수단 내에서, 무선 충전은 예를 들어, 뮤직 플레이어들, 개인용 디지털 보조기들, 셀 폰들, 레이더 검출기들, GPS 와 같은 항행 유닛들 등과 같은 커플링 모드 영역 내의 근접한 구조들을 충전하는데 유용할 수도 있다.
또한, 이들 예시적인 실시형태들 및 폐쇄된 영역을 갖는 본 발명의 범위 내의 다른 실시형태들 중 임의의 실시형태는, 차량 엘리먼트가 폐쇄 상태 또는 개방 상태에 있는지를 결정하기 위해 도 20 을 참조하여 상술된 폐쇄형 검출기 (290) 를 이용할 수도 있다. 폐쇄된 상태에서의 경우, 강화된 전력 레벨이 가능할 수도 있다. 폐쇄형 검출기 (290) 는 예를 들어 도어 또는 서랍 상의 스위치와 같은 폐쇄된 상태를 검출하는 것이 가능한 임의의 센서일 수도 있다. 또한, 이들 예시적인 실시형태들 및 본 발명의 범위 내의 다른 실시형태들 중 임의의 실시형태는, 수신기 디바이스가 송신 안테나 또는 중계기 안테나의 커플링 모드 영역 내에 있는지 또는 인간이 커플링 모드 영역 근처에 있는지를 결정하기 위해 도 20 을 참조하여 상술된 존재 검출기 (280) 를 이용할 수도 있고, 이들 결정에 응답하여 송신 안테나들의 전력 레벨을 조정할 수도 있다.
예를 들어, 유도 커플링된, 근거리장 자기 공진 전력 에너지 전달 등을 이용하여 무선 충전이 구현될 수 있다. 송신기는 하나 이상의 내부 표면들 (선반, 측면 패널, 후면 패널, 상부 패널 등) 에 통합 (빌트인) 되거나, 덮어 씌우거나 또는 부착될 수 있다. 수신기는 전자 디바이스에 부속물로서 연결되거나 또는 전자 디바이스에 통합된다.
유도 커플링된 구현으로는, 지정된 스폿, 액티브 영역, 슬롯, 선반, 홈 또는 홀더일 수도 있고, 여기서 저장 영역의 내부 패널에 부착된 오버레이 패드를 이용하여 1차 코일이 통합 또는 설치된다. 충전된 디바이스는 송신 코일과 수신 코일 사이의 적절한 얼라이먼트 (및 그에 따라 커플링) 를 보장하기 위해, 수신 코일을 송신 코일과 정렬시키기 위한 이 지정된 위치에 배치된다. 제한하지 않는 예로서, 지정된 영역은 자동차의 글로브 박스 또는 콘솔 내의 특수 슬롯의 형태로 존재할 수 있다.
근거리장 자기 공진 구현에서, 송신 루프 및 중계기 루프가 하나 이상의 표면에 부가될 수 있다. 하나의 표면에 부가할 때, 충전된 디바이스는 그 표면과 병렬로 배치될 수 있고, (송신되는 전력 레벨에 따라) 그 표면으로부터의 단거리 내에서 충전될 수도 있다. 수신기를 갖는 충전된 디바이스는 송신 루프 경계 내의 어디에서나 배치될 수 있다. 표면 상의 송신 루프 레이아웃은 사용자들이 충전된 디바이스를 그 경계 상에 배치시키는 것을 방지하기 위한 것일 수도 있다. 부가적 안테나들을 다수의 표면에 부가하는 것은 도 23a 내지 도 24b 를 참조하여 상술된 바와 같이 충전된 디바이스의 배향에 있어서 더욱 유연성을 제공한다. 이들 다수의 배향 송신 안테나들 및 중계기 안테나들은, 서로의 위에 다른 구조물들을 포함하는 영역 내부 (예를 들어, 저장 빈) 에 수신기 디바이스가 배치되는 경우, 그 후에 커플링 모드 영역에 배치되는 가방 내부에 수신기 디바이스가 배치되는 경우, 또는 인간에 대해 수신기 디바이스가 배치되는 경우, 특히 유용할 수도 있다.
도 25 는 자동차 대시보드 (1010) 의 섹션 내에 또는 섹션 상에 배치된 안테나 (1015) 의 예시적인 실시형태를 예시한다. 안테나 (1015) 는 송신 안테나 또는 중계기 안테나일 수도 있다. 안테나 (1015) 는 대시보드 (1010) 의 일부 (즉, 차량 엘리먼트) 로서 본래부터 제조될 수도 있다. 대시보드의 플라스틱 또는 다른 비전도성 물질 내의 송신 안테나의 통합은 커플링을 향상시킬 수도 있다.
또한, 안테나 (1015) 는 이후에 대시보드 (즉, 기존의 차량 아이템) 상에 배치될 수도 있다. 제한하지 않는 예로서, 안테나 (1015) 는 대시보드 (1010) 상에 위치하는 대시보드 충전 패드 (미도시) 아래에 있거나, 위에 있거나, 또는 임베디드될 수도 있다.
현재, 대시보드 근처에 배치될 수도 있는 레이더 검출기들 및 항행 유닛들과 같은 자동차 부품 전자기기는, 자동차의 전력 공급 시스템 (통상적으로는, 시가 라이터) 으로의 유선 연결을 통해 전력공급될 수도 있다. 본 발명의 예시적인 실시형태를 이용하면, 자동차 소비자 전자기기가 자동차 대시보드 상에 또는 그 근처에 있는 동안 그 자동차 소비자 전자기기가 무선으로 전력공급될 수 있다. 대시보드 (1010) 상에 배치된 충전 패드를 이용한 무선 충전 자동차 전자기기는 자동차 내의 케이블을 감소시키고, 다수의 자동차 전자 디바이스들이 동시에 전력공급되는 것을 허용한다.
예시적인 실시형태는 다음 중 하나 이상이 가능한 안테나 (1015) 를 갖는 무선 충전 대시보드를 포함하고, 다른 것들 사이에서도, (a) 시가 라이터, USB 포트, 또는 다른 보조 플러그를 통해 자동차 전기 시스템들로 플러그될 수도 있고, (b) 충전될 자동차 전자기기들 아래의 대시보드 상에 위치될 수도 있으며, (c) 자동차의 대시보드의 윤곽 및 컬러를 맞추기 위해 유연성이 있을 수도 있다.
도 26 은 자동차 콘솔 (1020) 내의 또는 자동차 콘솔 (1020) 상의 안테나들 (1025, 1035, 및 1037) 의 예시적인 실시형태를 예시한다. 이들 예시적인 실시형태에서, 송신 안테나들 (1025, 1035, 및 1037) 은 콘솔 (1020) 의 일부 (즉, 차량 엘리먼트) 로서 본래부터 제조될 수도 있고 또는 송신 안테나들 (1025, 1035, 및 1037) 은 이후에 콘솔 (1020) (즉, 기존의 차량 아이템) 상에 또는 내에 배치될 수도 있다. 이들 예시적인 실시형태들은 운전자들이 운전 중에 편리하고 안정한 방식으로 전자 디바이스들을 충전하는 것을 허용한다. 예시적인 실시형태에서, 컵 홀더들 (1030) 및 저장 빈 (1022) 은 다수의 운전자들이 운전 중에 그들의 휴대용 전자 장비를 이미 배치시킨 본래의 위치들에 있다. 컵 홀더들 (1030) 및 저장 빈 (1022) 을 무선 충전 영역들로 변환하는 것은, 소비자들이 그들의 장비를 본래의 편리한 방식으로 충전하는 것을 허용한다.
제한하지 않는 예로서, 안테나들 (1035) 은 컵 홀더들 (1030) 의 베이스 내에 통합되거나 또는 컵 홀더들 (1030) 의 바닥에 배치되어 커플링 모드 영역을 생성할 수도 있다. 또한, 베이스 안테나들 (1035) 에 직교 배치될 때 3차원 무선 충전 장치를 생성하기 위해 실질적으로 수직인 안테나 (1037) 와 같은 다른 안테나들이 부가될 수도 있다.
다른 제한하지 않는 예로서, 안테나 (1025) 는 저장 빈 (1022) 의 베이스 또는 리드 내에 통합되어 커플링 모드 영역을 생성할 수도 있다. 도 26 에 예시되지는 않았지만, 당업자는 본 발명의 범위 내에서, 저장 빈에서의 제 1 안테나 (1025) 에 직교하는 하나 이상의 부가적 안테나들을 갖는 베이스 또는 리드에서 안테나 (1035) 를 증가시킴으로써 저장 빈은 3차원 무선 충전 장치에 대한 양호한 후보일 수도 있다는 것을 인식할 것이다. 또한, 도 20 을 참조하여 상술한 바와 같이, 존재 검출 및 폐쇄 상태 검출은 송신 안테나들 (1025, 1035, 및 1037) 의 전력 레벨을 조정하는데 사용될 수도 있다.
도 27 은 자동차에 대한 바닥 매트 (1040) 내에 또는 바닥 매트 (1040) 상에 배치된 안테나 (1045) 의 예시적인 실시형태를 예시한다. 예시적인 실시형태에서, 무선 충전 수신기 (1045) 는 바닥 매트 (1040) 내에 통합될 수 있다. 따라서, 자동차의 바닥 상에 위치된 디바이스가 충전되는 것을 허용한다.
도 28a 및 도 28b 는 자동차 저장 빈 (1060) 내에 또는 자동차 저장 빈 (1060) 상에 배치된 안테나 (1065) 의 예시적인 실시형태를 예시한다. 저장 빈은 예를 들어 글로브 박스 또는 코인 박스와 같은 격실일 수도 있다. 도 29a 및 도 29b 는 다수의 방향으로 배향된 송신 안테나들 (1065) 을 포함하는 자동차 저장 빈 (1060) 의 예시적인 실시형태를 예시한다. 안테나들 (1065) 은 송신 안테나들, 중계기 안테나들, 또는 이들의 조합일 수도 있다. 안테나들 (1065) 은 저장 빈 (1060) 의 일부 (즉, 차량 엘리먼트) 로서 본래부터 제조될 수도 있다. 저장 빈 (1060) 의 플라스틱 또는 다른 비전도성 물질 내의 송신 안테나의 통합은 커플링을 향상시킬 수도 있다.
또한, 안테나 (1065) 는 이후에 저장 빈 (1060) (즉, 기존의 차량 아이템) 에 배치될 수도 있다. 제한하지 않는 예로서, 송신 안테나들 (1065) 은 도어, 저장 빈 (1060) 의 베이스, 측면들, 후면, 또는 상부에 부착될 수도 있다.
자동차 글로브 박스 (1060) 는 운전 중에 개인용 아이템들을 저장하는데 종종 사용된다. 셀 폰, 휴대용 미디어 플레이어, 카메라, 또는 충전될 수 있는 임의의 다른 전자 컴포넌트와 같은 휴대용 전자 디바이스가 자동차 글로브 박스 (1060) 에 배치되는 경우, 그 휴대용 전자 디바이스는 일반적으로 글로브 박스 (1060) 외부의 자동차 충전기에 연결될 수 없다. 또한, 자동차 글로브 박스는 다른 개인용 아이템들을 포함할 수도 있다. 따라서, 글로브 박스 내부에서 충전하기 위한 솔루션들은 수신 안테나와 송신 안테나 (1065) 사이의 배향과 관련하여 글로브 박스 (1060) 내측의 충전된 디바이스의 포지션을 고려해야 한다.
도 28a 에서는, 싱글의 안테나 (1065) 가 저장 빈 (1060) 의 베이스에 도시되어 있다. 도 28b 에서는, 수신 안테나를 포함하는 수신기 디바이스 (1069) 가 저장 빈 (1060) 에서의 송신 안테나 (1065) 를 따라 도시되어 있다.
도 29a 에서는, 다수의 송신 안테나들 (1065) 이 저장 빈 (1060) 내에 실질적으로 직교하는 배치로 도시되어 있다. 도 29b 에서는, 수신 안테나를 포함하는 수신기 디바이스 (1069) 가 저장 빈 (1060) 에 도시되어 있다. 명료성을 위해, 다수의 송신 안테나들 (1065) 은 도 29b 에 도시되어 있지 않다.
또한, 도 20 을 참조하여 상술한 바와 같이, 존재 검출 및 폐쇄형 상태 검출은 도 28a 내지 도 29b 의 예시적인 실시형태들에서의 송신 안테나들 (1065) 의 전력 레벨을 조정하는데 사용될 수도 있다.
도 30 은 저장 백 (1078) 에 그리고 그 근처에 커플링 모드 영역 (1076) 을 생성하기 위해 자동차의 좌석 (1072) 의 후면 상에 걸쳐진 저장 백 (1078) 내에 또는 저장 백 (1078) 상에 배치된 송신 안테나 (1075) 의 예시적인 실시형태를 예시한다. 다른 예로서, 안테나 (1075) 는 자동차의 앞 좌석의 후면과 같은 사용자 정면에서의 좌석의 후면에서의 포켓 내에 통합되거나, 또는 포켓에 부착될 수도 있다. 비행기들, 열차들, 자동차들, 버스들, 택시들 등에 착석한 승객들은 착석한 동안 그들이 휴대한 전자 디바이스들이 충전되도록 하거나, 또는 그들 정면에서의 좌석의 후면에서의 포켓에 그들의 전자 디바이스들을 배치시키고 그 포켓 내의 충전기가 여행자의 소비자 전자 디바이스들을 충전하도록 할 수 있다. 제한하지 않는 예로서, 송신 안테나 (1075) 는 대량 수송 차량 상의 각각의 좌석 (즉, 차량 엘리먼트) 내에 통합될 수도 있고, 충전기 뒤에 앉아 있는 사람이 소유한 전자 디바이스들을 충전하도록 배향될 것이다. 대안으로, 송신 안테나 (1075) 는 여행자 정면의 좌석의 후면에서의 포켓 내에 통합될 수도 있다. 자기 공진의 무선 충전 기법은, 충전을 수용하는 소비자 전자 디바이스의 정확한 배치를 필요로 하지 않음에 따라 이러한 무선 충전기에 매우 적합할 수도 있다. 이와 같이, 충전 디바이스들은 디바이스의 소유자에 의한 임의의 상호작용 없이 디바이스들을 충전하는 것을 허용할 수도 있고, 디바이스들을 임의의 종류의 충전소에 의식적으로 배치시킬 필요가 있는 빈도를 감소시킬 수도 있다. 따라서, 좌석 내에 임베디드된 송신 안테나 (1075) 는, 디바이스의 소유자가 차량으로 이동하는 동안에 그 디바이스가 충전되는 것을 허용할 수도 있다.
예시적인 실시형태에서, 송신 안테나 (1075) 는 충전을 수용하고 있는 전자 디바이스들의 소유자 정면의 좌석 내측에 삽입될 수도 있다. 충전 유닛은 수직으로 배향되어 충전기 뒤에 앉아 있는 사람이 소유한 충전 디바이스들을 충전하는 것이 가능할 수도 있다. 다른 예시적인 실시형태에서, 송신 안테나 (1075) 는 여행자 정면의 좌석의 후면에서의 포켓 또는 저장 백 (1078) 내에 삽입될 수도 있어서 그 포켓 내에 배치된 디바이스들만을 충전할 것이다. 이 작은 범위 요건은 낮아서 더 안전한 송신 전력 레벨을 허용할 수도 있다.
도 31 은, 예를 들어, 팔걸이를 접고 피거나, 또는 비행기, 열차들, 및 버스들 상의 좌석들과 같은 차량의 좌석에 착석한 사용자의 편의를 위해 다른 방법으로 포지셔닝되는 트레이와 같은, 차량에서의 적재가능 면 (1080) 내에 또는 적재가능 면 (1080) 상에 배치된 송신 안테나 (1085) 의 예시적인 실시형태를 예시한다. 이 예시적인 실시형태에서, 충전 패드는 트레이 테이블 (1080) 에 부착되거나 트레이 테이블 (1080) 내에 통합될 수도 있다. 송신 안테나 (1085) 를 트레이 테이블 (1080) 내에 임베디드하여 커플링 모드 영역 (1086) 을 생성함으로써, 충전 서비스가 트레이 테이블 (1080) 상의 디바이스들 또는 그 근처의 디바이스들에게 제공될 수 있다. 따라서, 이들 전자 디바이스들이 재충전 없이 동작할 수 있는 지속기간은, 트레이 테이블 (1080) 상의 전자 디바이스들과 연결될 필요가 있는 다루기 힘든 충전 케이블을 필요로 하지 않고 연장될 수도 있다.
비행기 트레이 (1080) 에서의 무선 충전의 예시적인 실시형태에서, 무선 충전 패드는 각각의 승객 정면의 좌석 상에 장착된 트레이 (1080) 에 부착되거나 또는 트레이 (1080) 내에 통합될 것이다. 무선 충전 패드 또는 송신 안테나 (1085) 는 플라스틱의 트레이 (1080) 자체에 임베디드될 수도 있고, 트레이 상의 소비자 전자 디바이스의 정확한 배치가 불필요하도록 자기 공진 무선 충전 기술을 이용할 수도 있다. 무선 충전 패드는 항공기 전기 시스템으로부터 전력을 공급할 수도 있다. 따라서, 비행기와 같은 대량 수송 차량의 트레이 (1080) 에서의 무선 전력 송신기는, 비행 중에 사용된 소비자 전자기기에 대해 전력공급된 지속기간을 연장할 수도 있고, 비행 중에 유선 충전 케이블에 의해 야기되는 클러터 (clutter) 를 감소시킬 수도 있으며, 사용자가 항공기를 벗어날 때 디바이스가 완전히 충전되도록 사용자 친화적인 방식으로 디바이스들을 충전할 수도 있다. 이 충전은, 사용자 움직임에 매칭할 수도 있고, 비행 중에 디바이스가 사용되지 않고 항공기 트레이 상에 단순히 배치시켰을지라도 발생할 수도 있다.
도 32 는 본 발명의 하나 이상의 예시적인 실시형태에서 수행될 수도 있는 동작들을 예시한 단순 흐름도 (2100) 이다. 다양한 예시적인 실시형태들은 예시되지 않은 다른 동작들 뿐만 아니라, 도 32 에 예시된 동작들의 일부 또는 모두를 포함할 수도 있다. 동작 2102 에서, 하나 이상의 송신 안테나들, 하나 이상의 중계기 안테나들, 또는 이들의 조합을 포함하는 무선 충전 장치는 차량 엘리먼트 또는 기존의 차량 아이템 상에 또는 차량 엘리먼트 또는 기존의 차량 아이템 내에 배치될 수도 있다. 동작 2104 에서, 송신 안테나의 공진 주파수에서의 전자기장이 생성되어 송신 안테나의 근거리장 내에 커플링 모드 영역을 생성할 수도 있다. 동작 2106 에서, 수신 안테나를 갖는 수신 디바이스가 커플링 모드 영역에 배치될 수도 있다.
동작 2108 에서, 프로세스는 수신기가 커플링 모드 영역에 존재하는지를 확인하기 위해 검사할 수도 있다. 존재한다면, 동작 2110 에서, 무선 충전 장치가 송신 안테나에 전력을 인가하거나, 또는 전력을 증가시킬 수도 있다. 존재하지 않다면, 동작 2112 에서, 무선 충전 장치가 송신 안테나로부터의 전력을 제거하거나, 또는 송신 안테나로의 전력을 감소시킬 수도 있다.
동작 2114 에서, 프로세스는 차량 엘리먼트가 폐쇄된 상태에 있는지를 확인하기 위해 검사할 수도 있다. 폐쇄된 상태에 있다면, 동작 2116 에서 무선 충전 장치는 차량 엘리먼트의 폐쇄된 상태와 호환성이 있는 레벨로 송신 안테나에 전력을 증가시킬 수도 있다.
동작 2118 에서, 프로세스는 커플링 모드 영역 내에 또는 그 근처에 사람이 존재하는지를 확인하기 위해 검사할 수도 있다. 존재한다면, 동작 2120 에서 무선 충전 장치는 송신 안테나의 전력 출력을 규제 레벨 이하로 조정할 수도 있다. 존재하지 않다면, 동작 2124 에서 무선 충전 장치는 송신 안테나의 전력 출력을 규제 레벨보다 높게 조정할 수도 있다.
당업자는 정보 및 신호들이 임의의 다양한 다른 기술 및 기법을 사용하여 표현될 수도 있다는 것을 이해할 것이다. 예를 들어, 상기 설명 전반적으로 참조될 수도 있는 데이터, 명령들, 커맨드들, 정보, 신호들, 비트들, 심볼들 및 칩들은, 전압, 전류, 전자기파, 자기장 또는 자기 입자, 광학장 또는 광입자, 또는 이들의 임의의 조합에 의해 표현될 수도 있다.
당업자는, 여기에 개시된 다양한 실시형태들과 관련하여 설명된 다양한 예시적인 논리 블록들, 모듈들, 회로들 및 알고리즘 단계들이 전자 하드웨어, 컴퓨터 소프트웨어, 또는 양자의 조합으로서 구현될 수도 있다는 것을 더 이해할 것이다. 하드웨어와 소프트웨어의 이러한 상호교환성을 명확하게 예시하기 위해, 다양한 예시적인 컴포넌트들, 블록들, 모듈들, 회로들, 및 단계들이 그들의 기능과 관련하여 일반적으로 상술되었다. 이러한 기능이 하드웨어 또는 소프트웨어로서 구현되는지는 전체 시스템상에 부과된 설계 제약들 및 특정한 애플리케이션에 의존한다. 당업자는 설명된 기능을 각 특정한 애플리케이션에 대해 변화하는 방식으로 구현할 수도 있지만, 이러한 구현 결정이 본 발명의 예시적인 실시형태의 범위를 벗어나는 것으로서 해석되어서는 안된다.
여기에 개시된 다양한 실시형태들과 관련하여 설명한 다양한 예시적인 논리 블록들, 모듈들, 및 회로들은 범용 프로세서, 디지털 신호 프로세서 (DSP), 응용 주문형 집적 회로 (ASIC), 필드 프로그램가능한 게이트 어레이 (FPGA) 또는 다른 프로그램가능한 로직 디바이스, 개별 게이트 또는 트랜지스터 로직, 개별 하드웨어 컴포넌트, 또는 여기에 설명된 기능들을 수행하도록 설계된 이들의 임의의 조합으로 구현되거나 수행될 수도 있다. 범용 프로세서는 마이크로프로세서일 수도 있지만, 대안으로는, 프로세서는 임의의 종래의 프로세서, 제어기, 마이크로제어기, 또는 상태 머신일 수도 있다. 프로세서는 또한 컴퓨팅 디바이스들의 조합, 예를 들어, DSP 와 마이크로프로세서의 조합, 복수의 마이크로프로세서, DSP 와 연결된 하나 이상의 마이크로프로세서, 또는 임의의 다른 이러한 구성으로서 구현될 수도 있다.
여기에 개시된 예시적인 실시형태들과 관련하여 설명한 방법 및 알고리즘의 단계들은 하드웨어, 하드웨어에 의해 실행된 소프트웨어 모듈, 또는 이 둘의 조합에서 직접적으로 구현될 수도 있다. 소프트웨어 모듈은 랜덤 액세스 메모리 (RAM), 플래시 메모리, 판독 전용 메모리 (ROM), 전기적으로 프로그램가능한 ROM (EPROM), 전기적으로 소거가능한 프로그램가능한 ROM (EEPROM), 레지스터, 하드 디스크, 착탈식 디스크, CD-ROM, 또는 당업계에 알려진 임의의 다른 형태의 저장 매체에 상주할 수도 있다. 예시적인 저장 매체는 프로세서에 커플링되어서, 프로세서는 저장 매체로부터 정보를 판독할 수도 있고 저장 매체에 정보를 기록할 수도 있다. 대안으로는, 저장 매체는 프로세서와 일체형일 수도 있다. 프로세서 및 저장 매체는 ASIC 에 상주할 수도 있다. ASIC 는 사용자 단말기에 상주할 수도 있다. 대안으로는, 프로세서 및 저장 매체는 사용자 단말기에 개별 컴포넌트로서 상주할 수도 있다.
하나 이상의 예시적인 실시형태에서, 설명된 기능들은 하드웨어, 소프트웨어, 펌웨어, 또는 이들의 조합에서 구현될 수도 있다. 소프트웨어에서 구현되면, 기능들은 컴퓨터 판독가능한 매체상에 하나 이상의 명령 또는 코드로서 저장되거나 송신될 수도 있다. 컴퓨터 판독가능한 매체는 일 장소로부터 다른 장소로 컴퓨터 프로그램의 전송을 용이하게 하는 임의의 매체를 포함하는 통신 매체 및 컴퓨터 저장 매체 양자를 포함한다. 저장 매체는 컴퓨터에 의해 액세스될 수 있는 임의의 가용 매체일 수도 있다. 제한하지 않는 예로서, 이러한 컴퓨터 판독가능한 매체는 RAM, ROM, EEPROM, CD-ROM 또는 다른 광 디스크 저장 디바이스, 자기 디스크 저장 디바이스 또는 다른 자기 저장 디바이스, 또는 원하는 프로그램 코드를 명령들 또는 데이터 구조들의 형태로 반송하거나 저장하기 위해 사용될 수 있고 컴퓨터에 의해 액세스될 수 있는 임의의 다른 매체를 포함할 수 있다. 또한, 임의의 문맥이 컴퓨터 판독가능한 매체를 적절하게 칭한다. 예를 들어, 소프트웨어가 동축 케이블, 광섬유 케이블, 트위스트 페어 (twisted pair), 디지털 가입자 라인 (DSL), 또는 적외선, 라디오, 및 마이크로파와 같은 무선 기술들을 사용하여 웹사이트, 서버, 또는 다른 원격 소스로부터 송신된다면, 이러한 동축 케이블, 광섬유 케이블, 트위스트 페어, DSL, 또는 적외선, 라디오, 및 마이크로파와 같은 무선 기술들은 매체의 정의에 포함된다. 본 명세서에 사용된 바와 같은 디스크 (disk) 및 디스크 (disc) 는 컴팩트 디스크 (compact disc; CD), 레이저 디스크 (laser disc), 광학 디스크 (optical disc), DVD (digital versatile disc), 플로피 디스크 (floppy disk) 및 블루-레이 디스크 (blu-ray disc) 를 포함하며, 여기서 디스크 (disk) 는 통상 데이터를 자기적으로 재생하는 한편 디스크 (disc) 는 레이저를 이용하여 광학적으로 데이터를 재생한다. 상기의 조합들도 또한 컴퓨터 판독가능 매체의 범위 내에 포함되어야 한다.
개시된 예시적인 실시형태들의 이전의 설명은, 당업자가 본 발명을 제조하거나 사용할 수 있게 하기 위해 제공된다. 이들 예시적인 실시형태들에 대한 다양한 변형물이 당업자에게는 쉽게 명백할 것이고, 여기에 정의된 일반 원리가 본 발명의 사상 또는 범위를 벗어나지 않고 다른 실시형태들에 적용될 수도 있다. 따라서, 본 발명은 여기에 나타낸 예시적인 실시형태들에 제한되는 것으로 의도되지 않고, 여기에 개시된 원리들 및 신규한 특징들과 부합하는 최광의 범위를 부여하려는 것이다.

Claims (25)

  1. 커플링 모드 영역 내에 공진 주파수로 근거리장 방사를 생성함으로써 수신 안테나에 전력을 무선 전송하는 송신 안테나; 및
    상기 송신 안테나에 구동 신호를 상기 공진 주파수로 인가하는 증폭기
    를 포함하는 차량 엘리먼트 상에서 사용하기 위한 전력 송신 디바이스를 포함하는, 장치.
  2. 제 1 항에 있어서,
    상기 송신 안테나의 적어도 평면 부분과 연관되는 차량 엘리먼트를 더 포함하는, 장치.
  3. 제 2 항에 있어서,
    상기 차량 엘리먼트의 부분으로서 통합된 하나 이상의 부가적 전력 송신 디바이스들을 더 포함하고,
    상기 하나 이상의 부가적 전력 송신 디바이스들 각각은, 그 부가적 전력 송신 디바이스의 커플링 모드 영역 내에 공진 주파수로 근거리장 방사를 생성함으로써 상기 수신 안테나에 전력을 무선 전송하기 위해 상기 증폭기에 동작가능하게 커플링된 송신 안테나를 포함하는, 장치.
  4. 제 3 항에 있어서,
    상기 전력 송신 디바이스 및 상기 하나 이상의 부가적 전력 송신 디바이스들 각각의 공진의 활성화를 제어하는 제어기; 및
    상기 제어기에 커플링되고, 상기 증폭기로부터의 공통 구동 신호를 상기 전력 송신 디바이스 및 상기 하나 이상의 부가적 전력 송신 디바이스들 각각의 구동 신호로 멀티플렉싱하는 멀티플렉서를 포함하는, 장치.
  5. 제 4 항에 있어서,
    상기 제어기는, 상기 전력 송신 디바이스 및 상기 하나 이상의 부가적 전력 송신 디바이스들의 활성화의 시간 도메인 시퀀싱에 따라 상기 멀티플렉서를 제어함으로써 상기 전력 송신 디바이스 및 상기 하나 이상의 부가적 전력 송신 디바이스들 각각의 활성화를 제어하는, 장치.
  6. 제 3 항에 있어서,
    상기 하나 이상의 부가적 전력 송신 디바이스들은 상기 전력 송신 디바이스에 실질적으로 직교하는 평면에 포지셔닝되는, 장치.
  7. 제 1 항에 있어서,
    상기 송신 안테나는 복수의 방향들로 배향된 복수의 패싯들을 포함하는 연속 루프 송신 안테나를 포함하는, 장치.
  8. 제 7 항에 있어서,
    상기 복수의 방향들은 실질적으로 직교하는, 장치.
  9. 제 1 항에 있어서,
    상기 전력 송신 디바이스는,
    상기 커플링 모드 영역 내의 상기 수신 안테나를 포함하는 수신기 디바이스의 존재를 검출하고, 존재 신호를 생성하는 존재 검출기; 및
    상기 존재 검출기 및 상기 증폭기에 동작가능하게 커플링되는 제어기로서, 상기 제어기는 상기 존재 신호에 응답하여 상기 증폭기의 전력 출력을 조정하는, 상기 제어기를 더 포함하는, 장치.
  10. 제 2 항에 있어서,
    상기 차량 엘리먼트는, 상기 수신 안테나를 지탱하는 하나 이상의 수신기 디바이스들을 수용하는 인클로저를 포함하는, 장치.
  11. 제 10 항에 있어서,
    상기 전력 송신 디바이스는,
    상기 차량 엘리먼트에 대한 폐쇄된 상태 (enclosed state) 를 검출하는 폐쇄형 격실 검출기; 및
    상기 폐쇄형 격실 검출기 및 상기 증폭기에 동작가능하게 커플링되는 제어기로서, 상기 제어기는 상기 차량 엘리먼트에 대한 상기 폐쇄된 상태에 응답하여 상기 증폭기의 전력 출력을 조정하는, 상기 제어기를 더 포함하는, 장치.
  12. 제 10 항에 있어서,
    상기 인클로저는 콘솔 및 저장 빈 중 적어도 하나를 포함하는, 장치.
  13. 제 2 항에 있어서,
    상기 차량 엘리먼트는 대시보드, 바닥 매트, 컵 홀더, 적재가능 면, 및 저장 백으로 이루어진 그룹으로부터 선택되는, 장치.
  14. 제 1 항에 있어서,
    상기 송신 안테나는 기존의 차량 아이템의 실질적으로 평면인 부분 상의 개조 배치를 위해 구성되는, 장치.
  15. 제 9 항에 있어서,
    상기 존재 검출기는 또한, 인간 존재를 검출하고, 상기 인간 존재 및 인간 부재를 나태나기 위해 상기 존재 신호를 변형하고;
    상기 제어기는 또한,
    상기 존재 신호가 상기 인간 부재를 나타내는 경우, 상기 증폭기의 상기 전력 출력을 규제 레벨보다 높은 고 전력 레벨로 조정하고,
    상기 존재 신호가 상기 인간 존재를 나타내는 경우, 상기 증폭기의 상기 전력 출력을 상기 규제 레벨 이하로 조정하는, 장치.
  16. 제 2 항에 있어서,
    기존의 차량 아이템은, 상기 수신 안테나를 지탱하는 하나 이상의 수신기 디바이스들을 수용하는 인클로저를 포함하는, 장치.
  17. 제 16 항에 있어서,
    상기 전력 송신 디바이스는,
    상기 차량 엘리먼트에 대한 폐쇄된 상태를 검출하는 폐쇄형 격실 검출기; 및
    상기 폐쇄형 격실 검출기 및 상기 증폭기에 동작가능하게 커플링된 제어기로서, 상기 제어기는 상기 차량 엘리먼트에 대한 상기 폐쇄된 상태에 응답하여 상기 증폭기의 전력 출력을 조정하는, 상기 제어기를 더 포함하는, 장치.
  18. 제 2 항에 있어서,
    상기 송신 안테나의 상기 적어도 평면 부분은 상기 차량 엘리먼트 상에 배치되거나 또는 상기 차량 엘리먼트에 통합되는 것인, 장치.
  19. 기존의 차량 아이템 상에 송신 안테나를 지탱하는 전력 송신 디바이스를 배치하는 단계;
    상기 송신 안테나의 근거리장 내에 커플링 모드 영역을 생성하기 위해 상기 송신 안테나의 공진 주파수로 전자기장을 생성하는 단계; 및
    상기 커플링 모드 영역에 수신 안테나를 포함하는 수신기 디바이스를 배치하는 단계를 포함하는, 방법.
  20. 제 19 항에 있어서,
    상기 전자기장의 규제 거리 내에 인간 존재를 검출하는 단계;
    상기 인간 존재에 응답하여 상기 송신 안테나의 전력 출력을 규제 레벨 이하로 조정하는 단계; 및
    인간 부재에 응답하여 상기 송신 안테나의 상기 전력 출력을 상기 규제 레벨보다 높은 레벨로 조정하는 단계를 더 포함하는, 방법.
  21. 제 19 항에 있어서,
    상기 커플링 모드 영역 내의 상기 수신기 디바이스의 존재를 검출하는 단계; 및
    상기 존재를 검출하는 단계가 상기 커플링 모드 영역에서의 임의의 수신기 디바이스들의 부재를 나타내는 경우, 상기 전자기장을 생성하는 단계를 중지하는 단계를 더 포함하는, 방법.
  22. 제 19 항에 있어서,
    상기 기존의 차량 아이템에 대한 폐쇄된 상태를 검출하는 단계; 및
    상기 기존의 차량 아이템에 대한 상기 폐쇄된 상태에 응답하여 상기 송신 안테나의 전력 출력을 조정하는 단계를 더 포함하는, 방법.
  23. 전력 송신 디바이스를 차량 엘리먼트 내에 또는 그 위에 배치하는 수단;
    송신 안테나의 근거리장 내에 커플링 모드 영역을 생성하기 위해 상기 전력 송신 디바이스에서의 상기 송신 안테나의 공진 주파수로 전자기장을 생성하는 수단;
    상기 커플링 모드 영역에서 수신 안테나의 존재를 검출하는 수단;
    상기 수신 안테나의 존재에 응답하여 상기 송신 안테나의 전력 출력을 조정하는 수단; 및
    상기 커플링 모드 영역 내에 배치된 상기 수신 안테나를 이용하여 상기 커플링 모드 영역으로부터의 전력을 수신하는 수단을 포함하는, 무선 전력 전송 시스템.
  24. 제 23 항에 있어서,
    상기 전자기장의 규제 거리 내의 인간 존재를 검출하는 수단;
    상기 인간 존재에 응답하여 상기 송신 안테나의 상기 전력 출력을 규제 레벨 이하로 조정하는 수단; 및
    인간 부재에 응답하여 상기 송신 안테나의 상기 전력 출력을 상기 규제 레벨보다 높은 레벨로 조정하는 수단을 더 포함하는, 무선 전력 전송 시스템.
  25. 제 23 항에 있어서,
    상기 차량 엘리먼트에 대한 폐쇄된 상태를 검출하고, 상기 차량 엘리먼트에 대한 상기 폐쇄된 상태에 응답하여 상기 송신 안테나의 상기 전력 출력을 조정하는 수단을 더 포함하는, 무선 전력 전송 시스템.
KR1020117020641A 2009-02-10 2010-02-10 차량에 대한 무선 전력 전송 KR20110114704A (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US15129009P 2009-02-10 2009-02-10
US61/151,290 2009-02-10
US15183009P 2009-02-11 2009-02-11
US61/151,830 2009-02-11
US15209209P 2009-02-12 2009-02-12
US61/152,092 2009-02-12
US12/572,400 2009-10-02
US12/572,400 US8878393B2 (en) 2008-05-13 2009-10-02 Wireless power transfer for vehicles

Publications (1)

Publication Number Publication Date
KR20110114704A true KR20110114704A (ko) 2011-10-19

Family

ID=42539824

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117020641A KR20110114704A (ko) 2009-02-10 2010-02-10 차량에 대한 무선 전력 전송

Country Status (7)

Country Link
US (1) US8878393B2 (ko)
EP (1) EP2396900A1 (ko)
JP (1) JP5480300B2 (ko)
KR (1) KR20110114704A (ko)
CN (1) CN102318213B (ko)
TW (1) TW201042878A (ko)
WO (1) WO2010093724A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101409225B1 (ko) * 2012-10-08 2014-06-18 한국오므론전장 주식회사 컵홀더를 이용한 충전 시스템
KR101409224B1 (ko) * 2012-09-07 2014-06-19 한국오므론전장 주식회사 차량 주파수 간섭 회피 기능을 가지는 무선충전 장치 및 방법
KR20140134901A (ko) * 2013-05-15 2014-11-25 주식회사 한림포스텍 차량내에 설치되는 무선 충전 기능을 구비한 멀티미디어 시스템, 이를 이용한 멀티미디어 파일 재생 방법, 및 이에 이용되는 무선 전력 전송 장치
WO2022025328A1 (ko) * 2020-07-31 2022-02-03 엘지전자 주식회사 무선 전력 송신 장치

Families Citing this family (403)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US8115448B2 (en) 2007-06-01 2012-02-14 Michael Sasha John Systems and methods for wireless power
US20090284369A1 (en) 2008-05-13 2009-11-19 Qualcomm Incorporated Transmit power control for a wireless charging system
WO2009140506A1 (en) 2008-05-14 2009-11-19 Massachusetts Institute Of Technology Wireless energy transfer, including interference enhancement
JP5756754B2 (ja) * 2008-09-11 2015-07-29 オークランド ユニサービシズ リミテッドAuckland Uniservices Limited 誘導結合交流電力伝達
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US8723366B2 (en) 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US8476788B2 (en) 2008-09-27 2013-07-02 Witricity Corporation Wireless energy transfer with high-Q resonators using field shaping to improve K
US8482158B2 (en) 2008-09-27 2013-07-09 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US8598743B2 (en) 2008-09-27 2013-12-03 Witricity Corporation Resonator arrays for wireless energy transfer
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8441154B2 (en) 2008-09-27 2013-05-14 Witricity Corporation Multi-resonator wireless energy transfer for exterior lighting
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8304935B2 (en) 2008-09-27 2012-11-06 Witricity Corporation Wireless energy transfer using field shaping to reduce loss
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8552592B2 (en) 2008-09-27 2013-10-08 Witricity Corporation Wireless energy transfer with feedback control for lighting applications
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US8487480B1 (en) 2008-09-27 2013-07-16 Witricity Corporation Wireless energy transfer resonator kit
US8686598B2 (en) 2008-09-27 2014-04-01 Witricity Corporation Wireless energy transfer for supplying power and heat to a device
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US8461722B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape field and improve K
US8629578B2 (en) 2008-09-27 2014-01-14 Witricity Corporation Wireless energy transfer systems
US8410636B2 (en) 2008-09-27 2013-04-02 Witricity Corporation Low AC resistance conductor designs
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
CN107415706B (zh) 2008-09-27 2020-06-09 韦特里西提公司 无线能量转移系统
US8400017B2 (en) 2008-09-27 2013-03-19 Witricity Corporation Wireless energy transfer for computer peripheral applications
US8587155B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using repeater resonators
US8569914B2 (en) 2008-09-27 2013-10-29 Witricity Corporation Wireless energy transfer using object positioning for improved k
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US8692410B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Wireless energy transfer with frequency hopping
US8324759B2 (en) 2008-09-27 2012-12-04 Witricity Corporation Wireless energy transfer using magnetic materials to shape field and reduce loss
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US8461720B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape fields and reduce loss
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8461721B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using object positioning for low loss
US8471410B2 (en) 2008-09-27 2013-06-25 Witricity Corporation Wireless energy transfer over distance using field shaping to improve the coupling factor
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US8466583B2 (en) 2008-09-27 2013-06-18 Witricity Corporation Tunable wireless energy transfer for outdoor lighting applications
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US8643326B2 (en) 2008-09-27 2014-02-04 Witricity Corporation Tunable wireless energy transfer systems
US8587153B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using high Q resonators for lighting applications
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US8946938B2 (en) * 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8497601B2 (en) 2008-09-27 2013-07-30 Witricity Corporation Wireless energy transfer converters
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US8362651B2 (en) 2008-10-01 2013-01-29 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
JP2012514971A (ja) 2009-01-06 2012-06-28 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー 装置電力コンプライアンスを有するワイヤレス充電システム
US20100201312A1 (en) * 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless power transfer for portable enclosures
US20100201201A1 (en) * 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless power transfer in public places
US20100201311A1 (en) * 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless charging with separate process
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
US8854224B2 (en) 2009-02-10 2014-10-07 Qualcomm Incorporated Conveying device information relating to wireless charging
JP5434330B2 (ja) * 2009-07-22 2014-03-05 ソニー株式会社 電力受信装置、電力伝送システム、充電装置および電力伝送方法
US8374545B2 (en) * 2009-09-02 2013-02-12 Qualcomm Incorporated De-tuning in wireless power reception
EP2519424A2 (en) * 2009-12-28 2012-11-07 Toyoda Gosei Co., Ltd. Recharging or connection tray for portable electronic devices
JP5211088B2 (ja) * 2010-02-12 2013-06-12 トヨタ自動車株式会社 給電装置および車両給電システム
KR101104513B1 (ko) * 2010-02-16 2012-01-12 서울대학교산학협력단 시간 분할 방식을 이용한 다중 무선 전력 전송 방법 및 시스템
US10343535B2 (en) 2010-04-08 2019-07-09 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
US9561730B2 (en) * 2010-04-08 2017-02-07 Qualcomm Incorporated Wireless power transmission in electric vehicles
KR101744162B1 (ko) * 2010-05-03 2017-06-07 삼성전자주식회사 소스-타겟 구조의 매칭을 제어하는 장치 및 방법
US8692505B2 (en) * 2010-07-09 2014-04-08 Industrial Technology Research Institute Charge apparatus
US10211664B2 (en) 2010-07-09 2019-02-19 Industrial Technology Research Institute Apparatus for transmission of wireless energy
US9438063B2 (en) 2010-07-09 2016-09-06 Industrial Technology Research Institute Charge apparatus
JP2012044827A (ja) * 2010-08-23 2012-03-01 Midori Anzen Co Ltd 非接触充電装置
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
FR2964518B1 (fr) * 2010-09-06 2013-03-08 Continental Automotive France Procede et emetteur d'optimisation de la puissance d'emission rf de systeme de controle de vehicule a distance
US9391476B2 (en) 2010-09-09 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Power feeding device, wireless power feeding system using the same and wireless power feeding method
US8981714B2 (en) * 2010-09-15 2015-03-17 Toyoda Gosei Co. Ltd. Storage tray with charging
KR101222749B1 (ko) * 2010-12-14 2013-01-16 삼성전기주식회사 무선 전력 전송 장치 및 그 전송 방법
KR101777221B1 (ko) * 2011-01-03 2017-09-26 삼성전자주식회사 무선 전력 송신 장치 및 이의 무선 전력 전송 시스템
JP2012143146A (ja) * 2011-01-03 2012-07-26 Samsung Electronics Co Ltd 無線電力送信装置及びその無線電力送信システム
US9819209B2 (en) * 2011-01-18 2017-11-14 Texas Instrument Incorporated Contactless charging of BLUETOOTH other wireless headsets
JP5264974B2 (ja) * 2011-02-01 2013-08-14 本田技研工業株式会社 無接点電力伝送装置
JP2012165527A (ja) 2011-02-04 2012-08-30 Nitto Denko Corp 無線電力供給システム
US9148201B2 (en) 2011-02-11 2015-09-29 Qualcomm Incorporated Systems and methods for calibration of a wireless power transmitter
JP5439416B2 (ja) * 2011-03-04 2014-03-12 株式会社東芝 無線電力伝送装置
US8686590B2 (en) * 2011-03-14 2014-04-01 Simmonds Precision Products, Inc. Wireless power transmission system and method for an aircraft sensor system
EP2518863A1 (en) * 2011-04-27 2012-10-31 Research In Motion Limited Methods and apparatuses for wireless power transfer
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
EP3435389A1 (en) 2011-08-04 2019-01-30 WiTricity Corporation Tunable wireless power architectures
WO2013033834A1 (en) * 2011-09-07 2013-03-14 Solace Power Inc. Wireless electric field power transmission system and method
KR20130028446A (ko) * 2011-09-09 2013-03-19 엘지이노텍 주식회사 무선 전력 송신 장치 및 그 방법
KR101573347B1 (ko) * 2011-09-09 2015-12-01 쥬코쿠 덴료쿠 가부시키 가이샤 비접촉 급전 시스템 및 비접촉 급전 방법
KR101241712B1 (ko) 2011-09-09 2013-03-11 엘지이노텍 주식회사 무선 전력 수신 장치 및 그 방법
KR101305579B1 (ko) * 2011-09-09 2013-09-09 엘지이노텍 주식회사 무선전력 중계장치 및 무선전력 전송 장치
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US20130062966A1 (en) 2011-09-12 2013-03-14 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
KR101332163B1 (ko) * 2011-09-30 2013-11-21 삼성전기주식회사 무선 충전 시스템
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
CN103988391A (zh) 2011-11-04 2014-08-13 WiTricity公司 无线能量传输建模工具
JP2013118734A (ja) * 2011-12-01 2013-06-13 Panasonic Corp 非接触式電力伝送装置
JP5379841B2 (ja) * 2011-12-08 2013-12-25 株式会社ホンダアクセス 車載充電装置
WO2013113017A1 (en) 2012-01-26 2013-08-01 Witricity Corporation Wireless energy transfer with reduced fields
EP2810356A1 (en) * 2012-02-05 2014-12-10 Humavox Ltd. Remote charging system
US8933589B2 (en) 2012-02-07 2015-01-13 The Gillette Company Wireless power transfer using separately tunable resonators
US9276645B2 (en) * 2012-03-29 2016-03-01 GM Global Technology Operations LLC Inductive charger for providing radio frequency (“RF”) signal to a portable electric device
US9124109B2 (en) 2012-03-30 2015-09-01 Toyota Motor Engineering & Manufacturing North America, Inc. Console assembly with charging state indicator
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
DE102012012860A1 (de) * 2012-06-28 2014-01-23 Siemens Aktiengesellschaft Bereitstellen einer Assoziationsverbindung
US10128693B2 (en) 2014-07-14 2018-11-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US9891669B2 (en) 2014-08-21 2018-02-13 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9124125B2 (en) 2013-05-10 2015-09-01 Energous Corporation Wireless power transmission with selective range
US9923386B1 (en) 2012-07-06 2018-03-20 Energous Corporation Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver
US10230266B1 (en) 2014-02-06 2019-03-12 Energous Corporation Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US20140008993A1 (en) 2012-07-06 2014-01-09 DvineWave Inc. Methodology for pocket-forming
US9793758B2 (en) 2014-05-23 2017-10-17 Energous Corporation Enhanced transmitter using frequency control for wireless power transmission
US10008889B2 (en) 2014-08-21 2018-06-26 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US9847679B2 (en) 2014-05-07 2017-12-19 Energous Corporation System and method for controlling communication between wireless power transmitter managers
US10218227B2 (en) 2014-05-07 2019-02-26 Energous Corporation Compact PIFA antenna
US9899861B1 (en) 2013-10-10 2018-02-20 Energous Corporation Wireless charging methods and systems for game controllers, based on pocket-forming
US9882430B1 (en) 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US10063064B1 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9912199B2 (en) 2012-07-06 2018-03-06 Energous Corporation Receivers for wireless power transmission
US9876648B2 (en) 2014-08-21 2018-01-23 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9838083B2 (en) 2014-07-21 2017-12-05 Energous Corporation Systems and methods for communication with remote management systems
US9876379B1 (en) 2013-07-11 2018-01-23 Energous Corporation Wireless charging and powering of electronic devices in a vehicle
US9900057B2 (en) 2012-07-06 2018-02-20 Energous Corporation Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas
US9939864B1 (en) 2014-08-21 2018-04-10 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9143000B2 (en) 2012-07-06 2015-09-22 Energous Corporation Portable wireless charging pad
US9948135B2 (en) 2015-09-22 2018-04-17 Energous Corporation Systems and methods for identifying sensitive objects in a wireless charging transmission field
US10128699B2 (en) 2014-07-14 2018-11-13 Energous Corporation Systems and methods of providing wireless power using receiver device sensor inputs
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US10211674B1 (en) 2013-06-12 2019-02-19 Energous Corporation Wireless charging using selected reflectors
US10186913B2 (en) 2012-07-06 2019-01-22 Energous Corporation System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas
US9941707B1 (en) 2013-07-19 2018-04-10 Energous Corporation Home base station for multiple room coverage with multiple transmitters
US10270261B2 (en) 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9893555B1 (en) 2013-10-10 2018-02-13 Energous Corporation Wireless charging of tools using a toolbox transmitter
US10124754B1 (en) 2013-07-19 2018-11-13 Energous Corporation Wireless charging and powering of electronic sensors in a vehicle
US10050462B1 (en) 2013-08-06 2018-08-14 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US10038337B1 (en) 2013-09-16 2018-07-31 Energous Corporation Wireless power supply for rescue devices
US9893768B2 (en) 2012-07-06 2018-02-13 Energous Corporation Methodology for multiple pocket-forming
US9853692B1 (en) 2014-05-23 2017-12-26 Energous Corporation Systems and methods for wireless power transmission
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US10243414B1 (en) 2014-05-07 2019-03-26 Energous Corporation Wearable device with wireless power and payload receiver
US9438045B1 (en) 2013-05-10 2016-09-06 Energous Corporation Methods and systems for maximum power point transfer in receivers
US10199835B2 (en) 2015-12-29 2019-02-05 Energous Corporation Radar motion detection using stepped frequency in wireless power transmission system
US9831718B2 (en) 2013-07-25 2017-11-28 Energous Corporation TV with integrated wireless power transmitter
US9966765B1 (en) 2013-06-25 2018-05-08 Energous Corporation Multi-mode transmitter
US10090699B1 (en) 2013-11-01 2018-10-02 Energous Corporation Wireless powered house
US9899873B2 (en) 2014-05-23 2018-02-20 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9859757B1 (en) 2013-07-25 2018-01-02 Energous Corporation Antenna tile arrangements in electronic device enclosures
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US10090886B1 (en) 2014-07-14 2018-10-02 Energous Corporation System and method for enabling automatic charging schedules in a wireless power network to one or more devices
US9941754B2 (en) 2012-07-06 2018-04-10 Energous Corporation Wireless power transmission with selective range
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US9847677B1 (en) 2013-10-10 2017-12-19 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9824815B2 (en) 2013-05-10 2017-11-21 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9893554B2 (en) 2014-07-14 2018-02-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US9252628B2 (en) 2013-05-10 2016-02-02 Energous Corporation Laptop computer as a transmitter for wireless charging
US10148097B1 (en) 2013-11-08 2018-12-04 Energous Corporation Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US10312715B2 (en) 2015-09-16 2019-06-04 Energous Corporation Systems and methods for wireless power charging
US10223717B1 (en) 2014-05-23 2019-03-05 Energous Corporation Systems and methods for payment-based authorization of wireless power transmission service
US10211680B2 (en) 2013-07-19 2019-02-19 Energous Corporation Method for 3 dimensional pocket-forming
US10075008B1 (en) 2014-07-14 2018-09-11 Energous Corporation Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network
US10141791B2 (en) 2014-05-07 2018-11-27 Energous Corporation Systems and methods for controlling communications during wireless transmission of power using application programming interfaces
US10263432B1 (en) 2013-06-25 2019-04-16 Energous Corporation Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
US9991741B1 (en) 2014-07-14 2018-06-05 Energous Corporation System for tracking and reporting status and usage information in a wireless power management system
US9843213B2 (en) 2013-08-06 2017-12-12 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US10224982B1 (en) 2013-07-11 2019-03-05 Energous Corporation Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
US9887584B1 (en) 2014-08-21 2018-02-06 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US10224758B2 (en) 2013-05-10 2019-03-05 Energous Corporation Wireless powering of electronic devices with selective delivery range
US10103582B2 (en) 2012-07-06 2018-10-16 Energous Corporation Transmitters for wireless power transmission
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US10193396B1 (en) 2014-05-07 2019-01-29 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US9806564B2 (en) 2014-05-07 2017-10-31 Energous Corporation Integrated rectifier and boost converter for wireless power transmission
US10063106B2 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for a self-system analysis in a wireless power transmission network
US9941747B2 (en) 2014-07-14 2018-04-10 Energous Corporation System and method for manually selecting and deselecting devices to charge in a wireless power network
US9973021B2 (en) 2012-07-06 2018-05-15 Energous Corporation Receivers for wireless power transmission
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US10141768B2 (en) 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
US9368020B1 (en) 2013-05-10 2016-06-14 Energous Corporation Off-premises alert system and method for wireless power receivers in a wireless power network
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US10291055B1 (en) 2014-12-29 2019-05-14 Energous Corporation Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US20150326070A1 (en) 2014-05-07 2015-11-12 Energous Corporation Methods and Systems for Maximum Power Point Transfer in Receivers
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US9887739B2 (en) 2012-07-06 2018-02-06 Energous Corporation Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves
US9882427B2 (en) 2013-05-10 2018-01-30 Energous Corporation Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters
US10205239B1 (en) 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
US9906065B2 (en) 2012-07-06 2018-02-27 Energous Corporation Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array
US10291066B1 (en) 2014-05-07 2019-05-14 Energous Corporation Power transmission control systems and methods
US10199849B1 (en) 2014-08-21 2019-02-05 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10211682B2 (en) 2014-05-07 2019-02-19 Energous Corporation Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network
US10206185B2 (en) 2013-05-10 2019-02-12 Energous Corporation System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions
US9954374B1 (en) 2014-05-23 2018-04-24 Energous Corporation System and method for self-system analysis for detecting a fault in a wireless power transmission Network
US9859756B2 (en) 2012-07-06 2018-01-02 Energous Corporation Transmittersand methods for adjusting wireless power transmission based on information from receivers
KR102023548B1 (ko) * 2012-07-10 2019-11-04 삼성전자주식회사 무선 전력 송신기, 무선 전력 수신기 및 각각의 제어 방법
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9154189B2 (en) * 2012-08-17 2015-10-06 Qualcomm Incorporated Wireless power system with capacitive proximity sensing
US9991731B2 (en) * 2012-09-05 2018-06-05 Renesas Electronics Corporation Non-contact charging device with wireless communication antenna coil for data transfer and electric power transmitting antenna coil for transfer of electric power, and non-contact power supply system using same
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
WO2014063159A2 (en) 2012-10-19 2014-04-24 Witricity Corporation Foreign object detection in wireless energy transfer systems
CN104885324B (zh) * 2012-11-05 2019-05-28 苹果公司 感应耦合电力传输系统
US9842684B2 (en) 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
CN103840538A (zh) * 2012-11-21 2014-06-04 江苏天宇光伏科技有限公司 一种无线充电式移动电源
US8783752B2 (en) * 2012-12-18 2014-07-22 Toyota Motor Engineering & Manufacturing North America, Inc. Mobile device retention and charging tray
CN105075062B (zh) * 2013-02-19 2017-11-14 松下知识产权经营株式会社 异物检测装置、异物检测方法以及非接触充电系统
US10468914B2 (en) * 2013-03-11 2019-11-05 Robert Bosch Gmbh Contactless power transfer system
EP2984733B1 (en) * 2013-03-15 2018-10-24 WiTricity Corporation Wireless power transfer in a vehicle
US9352661B2 (en) * 2013-04-29 2016-05-31 Qualcomm Incorporated Induction power transfer system with coupling and reactance selection
US9866279B2 (en) 2013-05-10 2018-01-09 Energous Corporation Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network
US9819230B2 (en) 2014-05-07 2017-11-14 Energous Corporation Enhanced receiver for wireless power transmission
US9419443B2 (en) 2013-05-10 2016-08-16 Energous Corporation Transducer sound arrangement for pocket-forming
US9538382B2 (en) 2013-05-10 2017-01-03 Energous Corporation System and method for smart registration of wireless power receivers in a wireless power network
JP5819030B2 (ja) * 2013-05-27 2015-11-18 三菱電機エンジニアリング株式会社 無線電力伝送による多重化伝送システム、送信側多重化伝送装置及び課金・情報システム
CN103259315B (zh) * 2013-05-31 2015-04-22 苏州源辉电气有限公司 电动汽车充放电开关、其控制电路以及控制方法
US10103552B1 (en) 2013-06-03 2018-10-16 Energous Corporation Protocols for authenticated wireless power transmission
US10003211B1 (en) 2013-06-17 2018-06-19 Energous Corporation Battery life of portable electronic devices
US9590455B2 (en) * 2013-06-26 2017-03-07 Robert Bosch Gmbh Wireless charging system
US10021523B2 (en) 2013-07-11 2018-07-10 Energous Corporation Proximity transmitters for wireless power charging systems
US9979440B1 (en) 2013-07-25 2018-05-22 Energous Corporation Antenna tile arrangements configured to operate as one functional unit
US9577448B2 (en) * 2013-07-30 2017-02-21 Intel Corporation Integration of wireless charging unit in a wireless device
WO2015016898A1 (en) 2013-07-31 2015-02-05 Intel Corporation Wireless charging unit and coupler based docking combo for a wireless device
US9216695B2 (en) * 2013-08-05 2015-12-22 Ford Global Technologies, Llc Small storage pockets for a vehicle seat assembly
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US10135304B2 (en) 2013-09-05 2018-11-20 Lg Innotek Co., Ltd. Supporter
US20150091508A1 (en) * 2013-10-01 2015-04-02 Blackberry Limited Bi-directional communication with a device under charge
CN104638695B (zh) * 2013-11-11 2020-02-28 中兴通讯股份有限公司 移动终端无线充电的方法、充电发射面板和无线充电装置
KR20150063821A (ko) * 2013-12-02 2015-06-10 주식회사 대동 차량의 무선 충전 장치
KR101561471B1 (ko) * 2013-12-12 2015-10-30 주식회사 대동 차량의 무선충전 송신 장치 및 그 제어 방법
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9935482B1 (en) 2014-02-06 2018-04-03 Energous Corporation Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device
US10075017B2 (en) 2014-02-06 2018-09-11 Energous Corporation External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power
WO2015123614A2 (en) 2014-02-14 2015-08-20 Witricity Corporation Object detection for wireless energy transfer systems
CN106716763B (zh) * 2014-04-07 2020-09-29 赛峰座椅美国有限责任公司 飞机座椅内的感应电力传输
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
DE102014207384A1 (de) * 2014-04-17 2015-10-22 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung und System zum elektrischen Aufladen für ein Kraftfahrzeug
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9966784B2 (en) 2014-06-03 2018-05-08 Energous Corporation Systems and methods for extending battery life of portable electronic devices charged by sound
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US10153653B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver
US10153645B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters
US10170917B1 (en) 2014-05-07 2019-01-01 Energous Corporation Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter
US9800172B1 (en) 2014-05-07 2017-10-24 Energous Corporation Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves
JP2017518018A (ja) 2014-05-07 2017-06-29 ワイトリシティ コーポレーションWitricity Corporation 無線エネルギー伝送システムにおける異物検出
US9973008B1 (en) 2014-05-07 2018-05-15 Energous Corporation Wireless power receiver with boost converters directly coupled to a storage element
US9698632B2 (en) 2014-05-09 2017-07-04 Otter Products, Llc Wireless battery charger and charge-receiving device
US9876536B1 (en) 2014-05-23 2018-01-23 Energous Corporation Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers
WO2015196123A2 (en) 2014-06-20 2015-12-23 Witricity Corporation Wireless power transfer systems for surfaces
WO2015196302A1 (en) 2014-06-26 2015-12-30 Solace Power Inc. Wireless electric field power transmission system, transmitter and receiver therefor and method of wirelessly transferring power
US10574091B2 (en) * 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
JP6518316B2 (ja) 2014-07-08 2019-05-22 ワイトリシティ コーポレーションWitricity Corporation 無線電力伝送システムにおける共振器の均衡化
US9871301B2 (en) 2014-07-21 2018-01-16 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US10116143B1 (en) 2014-07-21 2018-10-30 Energous Corporation Integrated antenna arrays for wireless power transmission
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
KR20160011994A (ko) * 2014-07-23 2016-02-02 현대자동차주식회사 무선 충전 방법
US9522604B2 (en) 2014-08-04 2016-12-20 Ford Global Technologies, Llc Inductive wireless power transfer system having a coupler assembly comprising moveable permeable panels
US9917477B1 (en) 2014-08-21 2018-03-13 Energous Corporation Systems and methods for automatically testing the communication between power transmitter and wireless receiver
US9965009B1 (en) 2014-08-21 2018-05-08 Energous Corporation Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver
CN107005092B (zh) 2014-09-05 2020-03-10 索雷斯能源公司 无线电场电力传递系统、方法及其发射器和接收器
EP3204999A4 (en) 2014-10-06 2018-06-13 Robert Bosch GmbH Wireless charging system for devices in a vehicle
JP6338693B2 (ja) * 2014-12-05 2018-06-06 三菱電機エンジニアリング株式会社 共振型電力伝送装置及び給電範囲制御装置
US10122415B2 (en) 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US9893535B2 (en) 2015-02-13 2018-02-13 Energous Corporation Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy
US10326488B2 (en) 2015-04-01 2019-06-18 Otter Products, Llc Electronic device case with inductive coupling features
US9906066B2 (en) 2015-04-13 2018-02-27 Motorola Solutions, Inc. Visor-mountable wireless charger and method of wireless charging
US20160322851A1 (en) * 2015-04-30 2016-11-03 Jtouch Corporation Hanging-type flexible wireless charging device
US10744736B2 (en) 2015-06-12 2020-08-18 Neograf Solutions, Llc Graphite composites and thermal management systems
US10164468B2 (en) 2015-06-16 2018-12-25 Otter Products, Llc Protective cover with wireless charging feature
CN105024439B (zh) * 2015-07-16 2017-04-05 上海肖克利信息科技股份有限公司 一种无线储能平台
DE102015215240A1 (de) * 2015-08-10 2017-02-16 Volkswagen Aktiengesellschaft Vorrichtung zum Koppeln eines Mobilkommunikationsgeräts mit einem Kraftfahrzeug
US10326299B2 (en) * 2015-09-11 2019-06-18 Astronics Advanced Electronic Systems Corp. Moveable surface power delivery system
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US9906275B2 (en) 2015-09-15 2018-02-27 Energous Corporation Identifying receivers in a wireless charging transmission field
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9941752B2 (en) 2015-09-16 2018-04-10 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10008875B1 (en) 2015-09-16 2018-06-26 Energous Corporation Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver
US10199850B2 (en) 2015-09-16 2019-02-05 Energous Corporation Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter
US9893538B1 (en) 2015-09-16 2018-02-13 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US10158259B1 (en) 2015-09-16 2018-12-18 Energous Corporation Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field
US10033222B1 (en) 2015-09-22 2018-07-24 Energous Corporation Systems and methods for determining and generating a waveform for wireless power transmission waves
US10050470B1 (en) 2015-09-22 2018-08-14 Energous Corporation Wireless power transmission device having antennas oriented in three dimensions
US10153660B1 (en) 2015-09-22 2018-12-11 Energous Corporation Systems and methods for preconfiguring sensor data for wireless charging systems
US10027168B2 (en) 2015-09-22 2018-07-17 Energous Corporation Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter
US10135295B2 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for nullifying energy levels for wireless power transmission waves
US10020678B1 (en) 2015-09-22 2018-07-10 Energous Corporation Systems and methods for selecting antennas to generate and transmit power transmission waves
US10128686B1 (en) 2015-09-22 2018-11-13 Energous Corporation Systems and methods for identifying receiver locations using sensor technologies
US10135294B1 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US10333332B1 (en) 2015-10-13 2019-06-25 Energous Corporation Cross-polarized dipole antenna
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
WO2017070227A1 (en) 2015-10-19 2017-04-27 Witricity Corporation Foreign object detection in wireless energy transfer systems
CN108781002B (zh) 2015-10-22 2021-07-06 韦特里西提公司 无线能量传输系统中的动态调谐
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US9899744B1 (en) 2015-10-28 2018-02-20 Energous Corporation Antenna for wireless charging systems
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10135112B1 (en) 2015-11-02 2018-11-20 Energous Corporation 3D antenna mount
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
CN106684953A (zh) * 2015-11-09 2017-05-17 广东欧珀移动通信有限公司 一种无线充电袋
US10389140B2 (en) * 2015-11-13 2019-08-20 X Development Llc Wireless power near-field repeater system that includes metamaterial arrays to suppress far-field radiation and power loss
US10181729B1 (en) 2015-11-13 2019-01-15 X Development Llc Mobile hybrid transmit/receive node for near-field wireless power delivery
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
TWI614780B (zh) * 2015-12-21 2018-02-11 財團法人工業技術研究院 線圈組及無線傳能系統
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US10256677B2 (en) 2016-12-12 2019-04-09 Energous Corporation Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad
US10027159B2 (en) 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10116162B2 (en) 2015-12-24 2018-10-30 Energous Corporation Near field transmitters with harmonic filters for wireless power charging
US10320446B2 (en) 2015-12-24 2019-06-11 Energous Corporation Miniaturized highly-efficient designs for near-field power transfer system
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US10008886B2 (en) 2015-12-29 2018-06-26 Energous Corporation Modular antennas with heat sinks in wireless power transmission systems
JP6722462B2 (ja) * 2016-01-27 2020-07-15 日東電工株式会社 磁界形成装置、給電装置、受電装置、受給電装置、携帯機器、コイル装置、及び磁界形成方法
JP2017135827A (ja) * 2016-01-27 2017-08-03 日東電工株式会社 磁界形成装置及び受電装置
JP6767119B2 (ja) * 2016-01-27 2020-10-14 日東電工株式会社 磁界形成装置、給電装置、及び受給電装置
JP6909557B2 (ja) 2016-01-27 2021-07-28 日東電工株式会社 給電装置、及び受給電装置
US9729187B1 (en) 2016-02-01 2017-08-08 Otter Products, Llc Case with electrical multiplexing
JP6956728B2 (ja) 2016-02-02 2021-11-02 ワイトリシティ コーポレーションWitricity Corporation ワイヤレス電力伝送システムの制御
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
CN105552662B (zh) * 2016-02-25 2017-12-08 慈溪市明业通讯电子有限公司 一种多功能插线板
KR102359198B1 (ko) 2016-03-31 2022-02-07 네오그라프 솔루션즈, 엘엘씨 노이즈 억제 조립체
US10363820B2 (en) * 2016-03-31 2019-07-30 Ford Global Technologies, Llc Wireless power transfer to a tailgate through capacitive couplers
CN107294148A (zh) * 2016-04-01 2017-10-24 深圳市大疆创新科技有限公司 充放电控制装置、方法及电池组件
JP6637826B2 (ja) * 2016-04-20 2020-01-29 株式会社日立製作所 車上通信装置
CN107332293A (zh) * 2016-04-29 2017-11-07 比亚迪股份有限公司 车载无线充电方法及装置
WO2017209630A1 (en) 2016-06-01 2017-12-07 Powerbyproxi Limited A powered joint with wireless transfer
JP2018038199A (ja) * 2016-09-01 2018-03-08 大井電気株式会社 非接触給電装置
KR101927185B1 (ko) * 2016-10-06 2018-12-10 현대자동차 주식회사 다목적 이동장치
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
JP6691273B2 (ja) 2016-12-12 2020-04-28 エナージャス コーポレイション 配送される無線電力を最大化するために近接場充電パッドのアンテナ区域を選択的に活性化する方法
US10389161B2 (en) 2017-03-15 2019-08-20 Energous Corporation Surface mount dielectric antennas for wireless power transmitters
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
US10377315B2 (en) * 2017-01-16 2019-08-13 Ford Global Technologies, Llc In-board seat storage
US10530177B2 (en) * 2017-03-09 2020-01-07 Cochlear Limited Multi-loop implant charger
JP2018158644A (ja) * 2017-03-22 2018-10-11 豊田合成株式会社 コンソールボックス
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
KR102335522B1 (ko) 2017-04-03 2021-12-03 현대자동차주식회사 자동차용 팝업 콘솔
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
CN107069883A (zh) * 2017-05-15 2017-08-18 宁波微鹅电子科技有限公司 一种无线充电管理系统及无线电能发射端
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US10686336B2 (en) 2017-05-30 2020-06-16 Wireless Advanced Vehicle Electrification, Inc. Single feed multi-pad wireless charging
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
WO2019006376A1 (en) 2017-06-29 2019-01-03 Witricity Corporation PROTECTION AND CONTROL OF WIRELESS POWER SYSTEMS
EP3447994B1 (en) * 2017-07-03 2020-05-06 Grupo Antolin Ingenieria, S.A.U. Wireless coupling for coupling a vehicle with an electronic device disposed in an interior part of the vehicle
CN107801368B (zh) * 2017-08-08 2019-01-15 朗丝窗饰有限公司 避免辐射对人体身心健康造成伤害的系统
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
CN108363059A (zh) * 2017-12-28 2018-08-03 北京融创远大网络科技有限公司 一种减少信号干扰的智能车载雷达装置
US11462943B2 (en) 2018-01-30 2022-10-04 Wireless Advanced Vehicle Electrification, Llc DC link charging of capacitor in a wireless power transfer pad
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
DE102018210544A1 (de) * 2018-06-28 2020-01-02 Laird Dabendorf Gmbh Verfahren und Vorrichtung zur Signalübertragung zu einem Endgerät
US10958103B2 (en) 2018-08-14 2021-03-23 Otter Products, Llc Stackable battery pack system with wireless charging
US10432272B1 (en) 2018-11-05 2019-10-01 XCOM Labs, Inc. Variable multiple-input multiple-output downlink user equipment
US10812216B2 (en) 2018-11-05 2020-10-20 XCOM Labs, Inc. Cooperative multiple-input multiple-output downlink scheduling
US10756860B2 (en) 2018-11-05 2020-08-25 XCOM Labs, Inc. Distributed multiple-input multiple-output downlink configuration
US10659112B1 (en) 2018-11-05 2020-05-19 XCOM Labs, Inc. User equipment assisted multiple-input multiple-output downlink configuration
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
US11670961B2 (en) 2018-12-14 2023-06-06 Otis Elevator Company Closed loop control wireless power transmission system for conveyance system
US10756795B2 (en) 2018-12-18 2020-08-25 XCOM Labs, Inc. User equipment with cellular link and peer-to-peer link
US11063645B2 (en) 2018-12-18 2021-07-13 XCOM Labs, Inc. Methods of wirelessly communicating with a group of devices
US11330649B2 (en) 2019-01-25 2022-05-10 XCOM Labs, Inc. Methods and systems of multi-link peer-to-peer communications
US11539243B2 (en) 2019-01-28 2022-12-27 Energous Corporation Systems and methods for miniaturized antenna for wireless power transmissions
US10756767B1 (en) 2019-02-05 2020-08-25 XCOM Labs, Inc. User equipment for wirelessly communicating cellular signal with another user equipment
JP2022519749A (ja) 2019-02-06 2022-03-24 エナージャス コーポレイション アンテナアレイ内の個々のアンテナに使用するための最適位相を推定するシステム及び方法
US11689065B2 (en) 2019-02-15 2023-06-27 Honda Motor Co., Ltd. System and methods for charging a device
USD906958S1 (en) 2019-05-13 2021-01-05 Otter Products, Llc Battery charger
WO2021055900A1 (en) 2019-09-20 2021-03-25 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
US11411441B2 (en) 2019-09-20 2022-08-09 Energous Corporation Systems and methods of protecting wireless power receivers using multiple rectifiers and establishing in-band communications using multiple rectifiers
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
WO2021055898A1 (en) 2019-09-20 2021-03-25 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
WO2021119483A1 (en) 2019-12-13 2021-06-17 Energous Corporation Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
CN113131621A (zh) * 2020-01-14 2021-07-16 北京小米移动软件有限公司 无线充电方法及装置、终端设备、充电系统、存储介质
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
DE112021003224T5 (de) 2020-06-12 2023-04-20 Analog Devices International Unlimited Company Selbstkalibrierendes Polymer-Nanokomposit(PNC)-Erfassungselement
DE102020116323A1 (de) 2020-06-22 2021-12-23 Audi Aktiengesellschaft Transportbox für ein Fahrzeug
EP4173109A1 (en) * 2020-06-26 2023-05-03 Motherson Innovations Company Limited Magnetic resonance wireless charging system for a vehicle
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith

Family Cites Families (316)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1283307B (de) * 1967-10-21 1968-11-21 August Schwer Soehne Gmbh Antennenverstaerker
US4556837A (en) 1982-03-24 1985-12-03 Terumo Kabushiki Kaisha Electronic clinical thermometer
JPS5931054U (ja) 1982-08-23 1984-02-27 日本電子機器株式会社 酸素センサ
JPS6369335A (ja) 1986-09-11 1988-03-29 Nippon Denzai Kogyo Kenkyusho:Kk 非接触伝送装置
US4802080A (en) * 1988-03-18 1989-01-31 American Telephone And Telegraph Company, At&T Information Systems Power transfer circuit including a sympathetic resonator
US5161255A (en) 1990-01-26 1992-11-03 Pioneer Electronic Corporation Motor vehicle-mounted radio wave receiving gps apparatus requiring no drill holes for mounting
DE4004196C1 (en) 1990-02-12 1991-04-11 Texas Instruments Deutschland Gmbh, 8050 Freising, De Transponder transferring stored measurement data to interrogator - operates without battery using capacitor charged by rectified HF pulses
KR920011068B1 (ko) * 1990-07-25 1992-12-26 현대전자산업 주식회사 무선에 의한 채널 및 비밀코드 변경과 상호기억방식을 채용한 무선전화시스템 및 비밀코드 변경방법
JP3344593B2 (ja) 1992-10-13 2002-11-11 株式会社ソニー木原研究所 無線式電力供給装置
US5287112A (en) 1993-04-14 1994-02-15 Texas Instruments Incorporated High speed read/write AVI system
US5790946A (en) 1993-07-15 1998-08-04 Rotzoll; Robert R. Wake up device for a communications system
JPH0739077A (ja) 1993-07-22 1995-02-07 Sony Corp コードレスパワーステーション
US5539394A (en) 1994-03-16 1996-07-23 International Business Machines Corporation Time division multiplexed batch mode item identification system
WO1995027338A1 (en) * 1994-04-04 1995-10-12 Motorola Inc. Method and apparatus for detecting and handling collisions in a radio communication system
US5520892A (en) * 1994-04-11 1996-05-28 Bowen; John G. Sterilization unit for dental handpieces and other instruments
JPH087059A (ja) 1994-06-21 1996-01-12 Sony Chem Corp 非接触情報カード
MY120873A (en) 1994-09-30 2005-12-30 Qualcomm Inc Multipath search processor for a spread spectrum multiple access communication system
US5790080A (en) 1995-02-17 1998-08-04 Lockheed Sanders, Inc. Meander line loaded antenna
DE19519450C2 (de) 1995-05-26 1997-06-12 Oliver Simons Kontrollsystem
JP3761001B2 (ja) 1995-11-20 2006-03-29 ソニー株式会社 非接触型情報カード及びic
SE506626C2 (sv) 1995-11-27 1998-01-19 Ericsson Telefon Ab L M Impedansorgan
US5956626A (en) 1996-06-03 1999-09-21 Motorola, Inc. Wireless communication device having an electromagnetic wave proximity sensor
JP3392016B2 (ja) 1996-09-13 2003-03-31 株式会社日立製作所 電力伝送システム並びに電力伝送および情報通信システム
SG54559A1 (en) 1996-09-13 1998-11-16 Hitachi Ltd Power transmission system ic card and information communication system using ic card
JPH1090405A (ja) 1996-09-19 1998-04-10 Toshiba Corp 情報処理装置
FI106759B (fi) * 1996-11-13 2001-03-30 Nokia Mobile Phones Ltd Matkaviestimen lähetystehon rajoitinjärjestelmä
JPH10187916A (ja) 1996-12-27 1998-07-21 Rohm Co Ltd 非接触icカード通信システムにおける応答器
US5805067A (en) 1996-12-30 1998-09-08 At&T Corp Communication terminal having detector method and apparatus for safe wireless communication
JPH10210751A (ja) 1997-01-22 1998-08-07 Hitachi Ltd 整流回路および半導体集積回路並びにicカード
US5933421A (en) * 1997-02-06 1999-08-03 At&T Wireless Services Inc. Method for frequency division duplex communications
DE29710675U1 (de) 1997-06-16 1997-08-14 Tegethoff Marius Anzeigesystem für Fahrzeuge
JPH10240880A (ja) 1997-02-26 1998-09-11 Rohm Co Ltd Icカードシステム及びそれを用いた搬送システム
JPH10295043A (ja) 1997-04-16 1998-11-04 Fujiden Enji Kk 携帯型電子機器用電源装置
US6164532A (en) 1997-05-15 2000-12-26 Hitachi, Ltd. Power transmission system, power transmission/communication system and reader and/or writer
US5963144A (en) 1997-05-30 1999-10-05 Single Chip Systems Corp. Cloaking circuit for use in a radiofrequency identification and method of cloaking RFID tags to increase interrogation reliability
DE69838364T2 (de) 1997-06-20 2008-05-29 Hitachi Kokusai Electric Inc. Schreib-/Lesevorrichtung, Stromversorgungssystem und Kommunikationssystem
US6151500A (en) 1997-06-20 2000-11-21 Bellsouth Corporation Method and apparatus for directing a wireless communication to a wireline unit
JPH1125238A (ja) 1997-07-04 1999-01-29 Kokusai Electric Co Ltd Icカード
US6025780A (en) 1997-07-25 2000-02-15 Checkpoint Systems, Inc. RFID tags which are virtually activated and/or deactivated and apparatus and methods of using same in an electronic security system
JPH1169640A (ja) 1997-08-26 1999-03-09 Matsushita Electric Works Ltd 非接触式充電装置
JPH1198706A (ja) 1997-09-18 1999-04-09 Tokin Corp 非接触充電器
JPH11122832A (ja) 1997-10-07 1999-04-30 Casio Comput Co Ltd 充電装置
JP4009688B2 (ja) 1997-10-31 2007-11-21 竹中エンジニアリング株式会社 無線式電力供給装置を備えた物体検知器
JP3840765B2 (ja) 1997-11-21 2006-11-01 神鋼電機株式会社 非接触給電搬送システムにおける1次給電側電源装置
JPH11188113A (ja) 1997-12-26 1999-07-13 Nec Corp 電力伝送システムおよび電力伝送方法ならびにその電力伝送システムを備えた電気刺激装置
JP3881770B2 (ja) 1998-03-10 2007-02-14 松下電器産業株式会社 移動局装置および通信方法
US6570541B2 (en) * 1998-05-18 2003-05-27 Db Tag, Inc. Systems and methods for wirelessly projecting power using multiple in-phase current loops
JP3264266B2 (ja) 1998-06-04 2002-03-11 三菱マテリアル株式会社 盗難防止用タグ及びその使用方法
US6047214A (en) 1998-06-09 2000-04-04 North Carolina State University System and method for powering, controlling, and communicating with multiple inductively-powered devices
TW412896B (en) 1998-07-28 2000-11-21 Koninkl Philips Electronics Nv Communication apparatus, mobile radio equipment, base station and power control method
JP4099807B2 (ja) 1998-08-03 2008-06-11 詩朗 杉村 Icカードの電力供給装置
JP2000067195A (ja) 1998-08-26 2000-03-03 Sony Corp 情報カード
JP2000113127A (ja) 1998-09-30 2000-04-21 Toshiba Corp 無線タグシステム
US6072383A (en) 1998-11-04 2000-06-06 Checkpoint Systems, Inc. RFID tag having parallel resonant circuit for magnetically decoupling tag from its environment
JP2000172795A (ja) 1998-12-07 2000-06-23 Kokusai Electric Co Ltd リーダライタ
DE19858299A1 (de) * 1998-12-17 2000-06-29 Daimler Chrysler Ag Antennensystem für eine Datenkommunikationseinrichtung in einem Fahrzeug
US6666875B1 (en) * 1999-03-05 2003-12-23 Olympus Optical Co., Ltd. Surgical apparatus permitting recharge of battery-driven surgical instrument in noncontact state
FR2793360A1 (fr) 1999-05-04 2000-11-10 Cie Des Signaux Controle de la puissance rayonnee d'un lecteur de carte a circuit integre de proximite
WO2000074332A1 (en) 1999-06-01 2000-12-07 Peter Monsen Multiple access system and method for multibeam digital radio systems
US7522878B2 (en) * 1999-06-21 2009-04-21 Access Business Group International Llc Adaptive inductive power supply with communication
US7212414B2 (en) 1999-06-21 2007-05-01 Access Business Group International, Llc Adaptive inductive power supply
US7005985B1 (en) 1999-07-20 2006-02-28 Axcess, Inc. Radio frequency identification system and method
DE19958265A1 (de) 1999-12-05 2001-06-21 Iq Mobil Electronics Gmbh Drahtloses Energieübertragungssystem mit erhöhter Ausgangsspannung
US7478108B2 (en) * 1999-12-06 2009-01-13 Micro Strain, Inc. Data collection using sensing units and separate control units with all power derived from the control units
JP3488166B2 (ja) 2000-02-24 2004-01-19 日本電信電話株式会社 非接触icカードシステムとそのリーダライタおよび非接触icカード
US20020154705A1 (en) 2000-03-22 2002-10-24 Walton Jay R. High efficiency high performance communications system employing multi-carrier modulation
JP4522532B2 (ja) 2000-04-07 2010-08-11 日本信号株式会社 非接触型icカード
JP4240748B2 (ja) 2000-04-25 2009-03-18 パナソニック電工株式会社 無接点給電装置
US7248841B2 (en) 2000-06-13 2007-07-24 Agee Brian G Method and apparatus for optimization of wireless multipoint electromagnetic communication networks
JP3631112B2 (ja) 2000-07-14 2005-03-23 三洋電機株式会社 非接触型充電装置及び携帯電話機
JP2002050534A (ja) 2000-08-04 2002-02-15 Taiyo Yuden Co Ltd 電子部品
US6392544B1 (en) 2000-09-25 2002-05-21 Motorola, Inc. Method and apparatus for selectively activating radio frequency identification tags that are in close proximity
KR100355270B1 (ko) * 2000-10-11 2002-10-11 한국전자통신연구원 시분할 방법을 이용하는 핑거와, 이를 구비한 레이크 수신기
KR100566220B1 (ko) * 2001-01-05 2006-03-29 삼성전자주식회사 무접점 배터리 충전기
US6690264B2 (en) 2001-01-23 2004-02-10 Single Chip Systems Corporation Selective cloaking circuit for use in a radiofrequency identification and method of cloaking RFID tags
JP4784794B2 (ja) 2001-01-26 2011-10-05 ソニー株式会社 電子装置
DE10104019C1 (de) 2001-01-31 2002-01-31 Bosch Gmbh Robert Motoradschutzanzug
US7142811B2 (en) 2001-03-16 2006-11-28 Aura Communications Technology, Inc. Wireless communication over a transducer device
US6600931B2 (en) 2001-03-30 2003-07-29 Nokia Corporation Antenna switch assembly, and associated method, for a radio communication station
JP2003011734A (ja) 2001-04-26 2003-01-15 Denso Corp 車両用電気機器取付構造
JP3905418B2 (ja) 2001-05-18 2007-04-18 セイコーインスツル株式会社 電源装置および電子機器
US6970142B1 (en) 2001-08-16 2005-11-29 Raytheon Company Antenna configurations for reduced radar complexity
TW535341B (en) * 2001-09-07 2003-06-01 Primax Electronics Ltd Wireless peripherals charged by electromagnetic induction
US6489745B1 (en) 2001-09-13 2002-12-03 The Boeing Company Contactless power supply
US7039435B2 (en) * 2001-09-28 2006-05-02 Agere Systems Inc. Proximity regulation system for use with a portable cell phone and a method of operation thereof
US7146139B2 (en) 2001-09-28 2006-12-05 Siemens Communications, Inc. System and method for reducing SAR values
EP1527527B1 (en) 2001-11-20 2007-03-28 QUALCOMM Incorporated Reverse link power controlled repeater
CN1220339C (zh) 2001-12-12 2005-09-21 天瀚科技股份有限公司 无线压力电磁感应系统
US7304972B2 (en) 2002-01-10 2007-12-04 Harris Corporation Method and device for establishing communication links and handling unbalanced traffic loads in a communication system
US6954449B2 (en) 2002-01-10 2005-10-11 Harris Corporation Method and device for establishing communication links and providing reliable confirm messages in a communication system
WO2003105308A1 (en) * 2002-01-11 2003-12-18 City University Of Hong Kong Planar inductive battery charger
JP3932906B2 (ja) * 2002-01-23 2007-06-20 日本電気株式会社 基地局装置及びそれを用いた移動通信システム
JP2003224937A (ja) 2002-01-25 2003-08-08 Sony Corp 電力供給装置および方法、受電装置および方法、電力供給システム、記録媒体、並びにプログラム
US6777829B2 (en) 2002-03-13 2004-08-17 Celis Semiconductor Corporation Rectifier utilizing a grounded antenna
US7565108B2 (en) 2002-03-26 2009-07-21 Nokia Corporation Radio frequency identification (RF-ID) based discovery for short range radio communication with reader device having transponder functionality
JP3719510B2 (ja) 2002-04-08 2005-11-24 アルプス電気株式会社 非接触式充電器を有する保管庫
GB2388715B (en) * 2002-05-13 2005-08-03 Splashpower Ltd Improvements relating to the transfer of electromagnetic power
US6906495B2 (en) * 2002-05-13 2005-06-14 Splashpower Limited Contact-less power transfer
US20040002835A1 (en) * 2002-06-26 2004-01-01 Nelson Matthew A. Wireless, battery-less, asset sensor and communication system: apparatus and method
US7428438B2 (en) 2002-06-28 2008-09-23 Boston Scientific Neuromodulation Corporation Systems and methods for providing power to a battery in an implantable stimulator
US7069086B2 (en) * 2002-08-08 2006-06-27 Cardiac Pacemakers, Inc. Method and system for improved spectral efficiency of far field telemetry in a medical device
TW200419966A (en) * 2002-08-12 2004-10-01 Mobilewise Inc Enhanced RF wireless adaptive power provisioning system for small devices
JP2004096589A (ja) 2002-09-03 2004-03-25 General Res Of Electronics Inc 同調回路
US20040245473A1 (en) 2002-09-12 2004-12-09 Hisanobu Takayama Receiving device, display device, power supply system, display system, and receiving method
US7019617B2 (en) 2002-10-02 2006-03-28 Battelle Memorial Institute Radio frequency identification devices, backscatter communication device wake-up methods, communication device wake-up methods and a radio frequency identification device wake-up method
JP3821083B2 (ja) 2002-10-11 2006-09-13 株式会社デンソー 電子機器
JP4089778B2 (ja) 2002-11-07 2008-05-28 株式会社アイデンビデオトロニクス エネルギー供給装置
FR2847089B1 (fr) 2002-11-12 2005-02-04 Inside Technologies Circuit d'antenne accordable, notamment pour lecteur de circuit integre sans contact
GB2395627B (en) 2002-11-21 2006-05-10 Hewlett Packard Co Detector
US20090072782A1 (en) * 2002-12-10 2009-03-19 Mitch Randall Versatile apparatus and method for electronic devices
GB0229141D0 (en) 2002-12-16 2003-01-15 Splashpower Ltd Improvements relating to contact-less power transfer
JP4136649B2 (ja) * 2002-12-26 2008-08-20 トヨタ自動車株式会社 車両用盗難防止装置及び車両の制御方法
US7480907B1 (en) * 2003-01-09 2009-01-20 Hewlett-Packard Development Company, L.P. Mobile services network for update of firmware/software in mobile handsets
US8183827B2 (en) 2003-01-28 2012-05-22 Hewlett-Packard Development Company, L.P. Adaptive charger system and method
US6948505B2 (en) 2003-02-10 2005-09-27 Armen Karapetyan Cleaning apparatus for medical and/or dental tool
KR101032534B1 (ko) 2003-02-19 2011-05-04 콸콤 인코포레이티드 멀티-유저 통신 시스템들에서 향상된 코딩 방법들 및 장치
EP1454769A1 (fr) 2003-03-03 2004-09-08 Sokymat Identifikations Komponenten GmbH Dispositif de transmission de signaux par induction entre un circuit transpondeur et un circuit d'interrogation
US20040180637A1 (en) 2003-03-11 2004-09-16 Nobuyuki Nagai Wireless communication IC and wireless communication information storage medium using the same
JP2004297779A (ja) 2003-03-11 2004-10-21 Hitachi Maxell Ltd 無線通信icおよびこれを用いた無線通信情報記憶媒体
JP2004274972A (ja) 2003-03-12 2004-09-30 Toshiba Corp ケーブルレス電源装置
ATE415780T1 (de) * 2003-03-28 2008-12-15 Ericsson Telefon Ab L M Methode und apparat für die berechnung, ob energie niveau für datenübertragung genügend ist
JP4337383B2 (ja) 2003-04-10 2009-09-30 セイコーエプソン株式会社 消耗品容器を搭載可能な装置
FI115264B (fi) 2003-04-17 2005-03-31 Ailocom Oy Langaton tehonsiirto
EP1618830A4 (en) 2003-04-25 2010-06-23 Olympus Corp INFORMATION ACQUISITION SYSTEM FROM RADIO TYPE IN A PROBAND AND EXTERNAL PROBING DEVICE
CA2526544C (en) * 2003-05-23 2013-11-26 Auckland Uniservices Limited Methods and apparatus for control of inductively coupled power transfer systems
JP4172327B2 (ja) 2003-05-28 2008-10-29 松下電器産業株式会社 非接触icカードリード/ライト装置及びその調整方法
US6967462B1 (en) 2003-06-05 2005-11-22 Nasa Glenn Research Center Charging of devices by microwave power beaming
US7613497B2 (en) * 2003-07-29 2009-11-03 Biosense Webster, Inc. Energy transfer amplification for intrabody devices
TW200512964A (en) 2003-09-26 2005-04-01 Tse-Choun Chou Wireless microwave charge module
JP2005110412A (ja) 2003-09-30 2005-04-21 Sharp Corp 電力供給システム
US7233137B2 (en) 2003-09-30 2007-06-19 Sharp Kabushiki Kaisha Power supply system
JP3686067B2 (ja) 2003-10-28 2005-08-24 Tdk株式会社 磁気記録媒体の製造方法
US6940466B2 (en) 2003-11-25 2005-09-06 Starkey Laboratories, Inc. Enhanced magnetic field communication system
KR20070032271A (ko) 2003-11-25 2007-03-21 스타키 러보러토리즈 인코포레이티드 개선된 자기장 통신 시스템
JP2005159607A (ja) 2003-11-25 2005-06-16 Matsushita Electric Ind Co Ltd 携帯通信機器
US7515881B2 (en) 2003-11-26 2009-04-07 Starkey Laboratories, Inc. Resonance frequency shift canceling in wireless hearing aids
JP4457727B2 (ja) 2003-11-27 2010-04-28 セイコーエプソン株式会社 非接触識別タグ、データ通信システム及び非接触識別タグ制御プログラム
US7378817B2 (en) * 2003-12-12 2008-05-27 Microsoft Corporation Inductive power adapter
US7375492B2 (en) * 2003-12-12 2008-05-20 Microsoft Corporation Inductively charged battery pack
US7356588B2 (en) * 2003-12-16 2008-04-08 Linear Technology Corporation Circuits and methods for detecting the presence of a powered device in a powered network
JP4536496B2 (ja) 2003-12-19 2010-09-01 株式会社半導体エネルギー研究所 半導体装置及び半導体装置の駆動方法
US20050151511A1 (en) 2004-01-14 2005-07-14 Intel Corporation Transferring power between devices in a personal area network
JP2005208754A (ja) 2004-01-20 2005-08-04 Matsushita Electric Ind Co Ltd 非接触icカード通信装置
JP2005218021A (ja) 2004-02-02 2005-08-11 Fujitsu Frontech Ltd 誘導式読書き装置用小型ループアンテナ
JP2005224045A (ja) 2004-02-06 2005-08-18 Mitsubishi Heavy Ind Ltd 非接触給電装置および非接触給電装置を備えた架線レスシステム
JP3777577B2 (ja) 2004-02-12 2006-05-24 関西ティー・エル・オー株式会社 携帯it機器用無線電力供給システム
CN2681368Y (zh) 2004-03-16 2005-02-23 周彬 一种无线充电电池的贴膜
DE102004013177B4 (de) 2004-03-17 2006-05-18 Infineon Technologies Ag Datenübertragungseinheit mit einer Datenübertragungsschnittstelle und ein Verfahren zum Betreiben der Datenübertragungseinheit
US7132946B2 (en) 2004-04-08 2006-11-07 3M Innovative Properties Company Variable frequency radio frequency identification (RFID) tags
JP4578139B2 (ja) 2004-04-13 2010-11-10 富士通株式会社 所定の情報を受信する情報処理装置、プログラム、記憶媒体および方法
US20050239018A1 (en) 2004-04-27 2005-10-27 Scott Green Intraoral bite spacer and illumination apparatus
MXPA06012637A (es) 2004-04-28 2007-01-31 Checkpoint Systems Inc Sistema electronico de rastreo de articulos para anaquel al menudeo que utiliza antena de bucle.
GB2414120B (en) * 2004-05-11 2008-04-02 Splashpower Ltd Controlling inductive power transfer systems
US7605496B2 (en) 2004-05-11 2009-10-20 Access Business Group International Llc Controlling inductive power transfer systems
US7180403B2 (en) 2004-05-18 2007-02-20 Assa Abloy Identification Technology Group Ab RFID reader utilizing an analog to digital converter for data acquisition and power monitoring functions
KR20050120874A (ko) 2004-06-21 2005-12-26 주식회사 아트랑 모바일 차저
US20060028176A1 (en) 2004-07-22 2006-02-09 Qingfeng Tang Cellular telephone battery recharging apparatus
KR20040072581A (ko) 2004-07-29 2004-08-18 (주)제이씨 프로텍 전자기파 증폭중계기 및 이를 이용한 무선전력변환장치
JP2006060909A (ja) 2004-08-19 2006-03-02 Seiko Epson Corp 非接触電力伝送装置
US7944355B2 (en) * 2004-09-01 2011-05-17 Microsoft Corporation Security techniques in the RFID framework
NZ535390A (en) 2004-09-16 2007-10-26 Auckland Uniservices Ltd Inductively powered mobile sensor system
US7274913B2 (en) * 2004-10-15 2007-09-25 Broadcom Corporation Transceiver system and method of using same
JP2006141170A (ja) 2004-11-15 2006-06-01 Sharp Corp 電力供給システム及びこれに用いられる送電装置並びに受電装置
JP4639773B2 (ja) 2004-11-24 2011-02-23 富士電機ホールディングス株式会社 非接触給電装置
JP4779342B2 (ja) 2004-11-25 2011-09-28 パナソニック電工株式会社 無線センサ装置
TW200617792A (en) * 2004-11-26 2006-06-01 Ind Tech Res Inst Method and device applying RFID system tag to serve as local card reader and for power detection
US7443057B2 (en) * 2004-11-29 2008-10-28 Patrick Nunally Remote power charging of electronic devices
US8295940B2 (en) * 2004-12-17 2012-10-23 De Puy Products, Inc. System for recharging medical instruments
JP4525331B2 (ja) 2004-12-20 2010-08-18 日産自動車株式会社 車両用マイクロ波送電システム及び車両用マイクロ波送電装置
KR100695328B1 (ko) * 2004-12-21 2007-03-15 한국전자통신연구원 초격리 안테나
JP2006201959A (ja) 2005-01-19 2006-08-03 Fuji Photo Film Co Ltd プリントシステム及びプリント端末装置並びに画像保存システム及び画像保存装置
GB0501115D0 (en) * 2005-01-19 2005-02-23 Innovision Res & Tech Plc Combined power coupling and rf communication apparatus
US7646343B2 (en) * 2005-06-24 2010-01-12 Ruckus Wireless, Inc. Multiple-input multiple-output wireless antennas
JP2006229583A (ja) 2005-02-17 2006-08-31 Eastman Kodak Co 通信システム及びデジタルカメラ並びにドック装置
CN1829037A (zh) 2005-03-03 2006-09-06 陈居阳 具无线充电系统的电池装置及其方法
US20060197652A1 (en) 2005-03-04 2006-09-07 International Business Machines Corporation Method and system for proximity tracking-based adaptive power control of radio frequency identification (RFID) interrogators
JP2006254678A (ja) 2005-03-07 2006-09-21 Wise Media Technology Inc Rfid応答器用電力チャージボックス
US7262700B2 (en) 2005-03-10 2007-08-28 Microsoft Corporation Inductive powering surface for powering portable devices
JP2006295905A (ja) 2005-03-16 2006-10-26 Semiconductor Energy Lab Co Ltd 情報処理装置
US7786863B2 (en) 2005-03-16 2010-08-31 Semiconductor Energy Laboratory Co., Ltd. Information processing and wireless communication device wherein the resonant frequency of an antenna circuit is regularly corrected regardless of temperature
JP4602808B2 (ja) 2005-03-18 2010-12-22 富士通株式会社 アンテナ切換器
CN100416601C (zh) 2005-03-21 2008-09-03 财团法人工业技术研究院 运用无线射频识别的手推车
CN1808473A (zh) 2005-03-28 2006-07-26 上海中策工贸有限公司 无线标签电子纸交通标志
JP2006296123A (ja) 2005-04-13 2006-10-26 Yaskawa Electric Corp 非接触電力供給装置および送電方法
US20070072474A1 (en) * 2005-04-27 2007-03-29 Nigel Beasley Flexible power adapter systems and methods
US8111143B2 (en) 2005-04-29 2012-02-07 Hewlett-Packard Development Company, L.P. Assembly for monitoring an environment
JP2006314181A (ja) 2005-05-09 2006-11-16 Sony Corp 非接触充電装置及び非接触充電システム並びに非接触充電方法
CN101180766A (zh) 2005-05-24 2008-05-14 鲍尔卡斯特公司 电力输送电网
CN1881733A (zh) 2005-06-17 2006-12-20 乐金电子(沈阳)有限公司 无线遥控器充电系统
JP2007006029A (ja) 2005-06-22 2007-01-11 Sony Corp Rfid内蔵電子機器
CA2511051A1 (en) 2005-06-28 2006-12-29 Roger J. Soar Contactless battery charging apparel
US8830035B2 (en) * 2005-06-30 2014-09-09 Farpointe Data, Inc. Power consumption management for an RFID reader
US7825543B2 (en) * 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
KR101136889B1 (ko) * 2005-07-12 2012-04-20 메사추세츠 인스티튜트 오브 테크놀로지 무선 비-방사성 에너지 전달
US20070021140A1 (en) * 2005-07-22 2007-01-25 Keyes Marion A Iv Wireless power transmission systems and methods
SE529375C2 (sv) * 2005-07-22 2007-07-24 Sandvik Intellectual Property Anordning för förbättrad plasmaaktivitet i PVD-reaktorer
US7495414B2 (en) * 2005-07-25 2009-02-24 Convenient Power Limited Rechargeable battery circuit and structure for compatibility with a planar inductive charging platform
US7720439B2 (en) * 2005-07-28 2010-05-18 D-Link Systems, Inc. Wireless media device cradle
KR100792311B1 (ko) 2005-07-30 2008-01-07 엘에스전선 주식회사 충전전력 공급장치, 충전 장치, 배터리 장치, 무접점 충전 시스템 및 무접점 충전 방법
JP2007043773A (ja) 2005-08-01 2007-02-15 Nissan Motor Co Ltd マイクロ波の洩れ波監視・制御装置及びマイクロ波の洩れ波監視・制御方法
KR100691255B1 (ko) 2005-08-08 2007-03-12 (주)제이씨 프로텍 소형ㆍ경량의 무선 전력 송수신 장치
JP2007089279A (ja) 2005-09-21 2007-04-05 Asyst Shinko Inc 非接触給電装置
WO2007034543A1 (ja) 2005-09-21 2007-03-29 Matsushita Electric Industrial Co., Ltd. タグ読み取り装置
CN1941541A (zh) 2005-09-29 2007-04-04 英华达(上海)电子有限公司 手持设备的无线充电装置
GB2444682B (en) 2005-10-04 2011-01-12 Atmel Corp A means to deactivate a contactless device
US20070080804A1 (en) * 2005-10-07 2007-04-12 Edwin Hirahara Systems and methods for enhanced RFID tag performance
JP2007104868A (ja) 2005-10-07 2007-04-19 Toyota Motor Corp 車両用充電装置、電気機器及び車両用非接触充電システム
US7193578B1 (en) * 2005-10-07 2007-03-20 Lockhead Martin Corporation Horn antenna array and methods for fabrication thereof
US7382636B2 (en) * 2005-10-14 2008-06-03 Access Business Group International Llc System and method for powering a load
US7642918B2 (en) * 2005-10-21 2010-01-05 Georgia Tech Research Corporation Thin flexible radio frequency identification tags and subsystems thereof
US7592961B2 (en) * 2005-10-21 2009-09-22 Sanimina-Sci Corporation Self-tuning radio frequency identification antenna system
KR100768510B1 (ko) 2005-10-24 2007-10-18 한국전자통신연구원 다중안테나를 사용하는 직교 주파수 분할 다중 접속시스템의 전송 장치 및 그 방법
KR100717877B1 (ko) * 2005-11-03 2007-05-14 한국전자통신연구원 슬롯 알로하 기반 알에프아이디 시스템에서의 태그 개수추정방법
KR100811880B1 (ko) 2005-12-07 2008-03-10 한국전자통신연구원 다중 무선인식 리더 시스템 및 그 시스템에서의 다중무선인식 리더 제어 방법
JP2007166379A (ja) 2005-12-15 2007-06-28 Fujitsu Ltd ループアンテナ及びこのループアンテナを備えた電子機器
US7521890B2 (en) * 2005-12-27 2009-04-21 Power Science Inc. System and method for selective transfer of radio frequency power
TWM294779U (en) 2006-01-06 2006-07-21 Wen-Sung Li Portable charging device of mobile phone
EP1972088A2 (en) 2006-01-11 2008-09-24 Powercast Corporation Pulse transmission method
KR100752650B1 (ko) 2006-01-13 2007-08-29 삼성전자주식회사 데이터 버스라인의 부하를 감소시키기 위한 트라이스테이트 출력 드라이버 배치방법 및 이를 이용하는 반도체메모리장치
CN105896751B (zh) 2006-01-18 2019-09-24 高通股份有限公司 经由无线电线路传送能量至电气或电子设备的方法和装置
US9130602B2 (en) * 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
US8169185B2 (en) * 2006-01-31 2012-05-01 Mojo Mobility, Inc. System and method for inductive charging of portable devices
US7952322B2 (en) * 2006-01-31 2011-05-31 Mojo Mobility, Inc. Inductive power source and charging system
JP2009527147A (ja) 2006-02-13 2009-07-23 パワーキャスト コーポレイション Rf電力送信機の実装およびネットワーク
US20080261519A1 (en) 2006-03-16 2008-10-23 Cellynx, Inc. Dual cancellation loop wireless repeater
US7576657B2 (en) 2006-03-22 2009-08-18 Symbol Technologies, Inc. Single frequency low power RFID device
CA2637841A1 (en) 2006-03-22 2007-09-27 Powercast Corporation Method and apparatus for implementation of a wireless power supply
JP4759053B2 (ja) 2006-05-31 2011-08-31 株式会社日立製作所 非接触型電子装置及びそれに搭載される半導体集積回路装置
US7948208B2 (en) 2006-06-01 2011-05-24 Mojo Mobility, Inc. Power source, charging system, and inductive receiver for mobile devices
US7826873B2 (en) 2006-06-08 2010-11-02 Flextronics Ap, Llc Contactless energy transmission converter
US20070290654A1 (en) 2006-06-14 2007-12-20 Assaf Govari Inductive charging of tools on surgical tray
US7561050B2 (en) 2006-06-28 2009-07-14 International Business Machines Corporation System and method to automate placement of RFID repeaters
US20090246022A1 (en) 2006-07-21 2009-10-01 Zhenyou Huang Fire fighting pump and its operating methods
US20080030324A1 (en) * 2006-07-31 2008-02-07 Symbol Technologies, Inc. Data communication with sensors using a radio frequency identification (RFID) protocol
JP4769666B2 (ja) 2006-08-30 2011-09-07 京セラ株式会社 無線通信方法及び無線通信端末
US7764046B2 (en) 2006-08-31 2010-07-27 Semiconductor Energy Laboratory Co., Ltd. Power storage device and semiconductor device provided with the power storage device
US8463332B2 (en) * 2006-08-31 2013-06-11 Semiconductor Energy Laboratory Co., Ltd. Wireless communication device
WO2008026080A2 (en) * 2006-09-01 2008-03-06 Bio Aim Technologies Holding Ltd. Systems and methods for wireless power transfer
MX2009002213A (es) * 2006-09-01 2009-04-16 Powercast Corp Metodo y sistema de recoleccion de energia hibrida.
US7538666B2 (en) * 2006-09-06 2009-05-26 Grace Industries, Inc. Automated accountability locating system
US9129741B2 (en) * 2006-09-14 2015-09-08 Qualcomm Incorporated Method and apparatus for wireless power transmission
US7658247B2 (en) * 2006-09-20 2010-02-09 Gatekeeper Systems, Inc. Systems and methods for power storage and management from intermittent power sources
US7839124B2 (en) 2006-09-29 2010-11-23 Semiconductor Energy Laboratory Co., Ltd. Wireless power storage device comprising battery, semiconductor device including battery, and method for operating the wireless power storage device
JP5147345B2 (ja) 2006-09-29 2013-02-20 株式会社半導体エネルギー研究所 半導体装置
US7539465B2 (en) * 2006-10-16 2009-05-26 Assa Abloy Ab Tuning an RFID reader with electronic switches
US7626544B2 (en) 2006-10-17 2009-12-01 Ut-Battelle, Llc Robust low-frequency spread-spectrum navigation system
US8068984B2 (en) * 2006-10-17 2011-11-29 Ut-Battelle, Llc Triply redundant integrated navigation and asset visibility system
JP2008104295A (ja) 2006-10-19 2008-05-01 Voltex:Kk 非接触電源装置
KR100836634B1 (ko) 2006-10-24 2008-06-10 주식회사 한림포스텍 무선 데이타 통신과 전력 전송이 가능한 무접점 충전장치,충전용 배터리팩 및 무접점 충전장치를 이용한 휴대용단말기
WO2008050260A1 (en) 2006-10-26 2008-05-02 Philips Intellectual Property & Standards Gmbh Inductive power system and method of operation
EP2082468A2 (en) 2006-10-26 2009-07-29 Koninklijke Philips Electronics N.V. Floor covering and inductive power system
US9295444B2 (en) * 2006-11-10 2016-03-29 Siemens Medical Solutions Usa, Inc. Transducer array imaging system
JP4691000B2 (ja) 2006-11-15 2011-06-01 三菱重工業株式会社 移動体の非接触給電装置
TW200824215A (en) 2006-11-23 2008-06-01 Univ Nat Central A non-contact type power supply device having load and interval detection
US8099140B2 (en) * 2006-11-24 2012-01-17 Semiconductor Energy Laboratory Co., Ltd. Wireless power supply system and wireless power supply method
JP4650407B2 (ja) * 2006-12-12 2011-03-16 ソニー株式会社 無線処理システム、無線処理方法及び無線電子機器
CN100458841C (zh) 2006-12-28 2009-02-04 复旦大学 一种支持无线充电的半有源射频识别标签
US20080157711A1 (en) 2007-01-03 2008-07-03 Kuo Ching Chiang Portable device charging module
JP2008178195A (ja) 2007-01-17 2008-07-31 Seiko Epson Corp 送電制御装置、受電制御装置、無接点電力伝送システム、送電装置、受電装置及び電子機器
JP5312810B2 (ja) 2007-01-19 2013-10-09 株式会社半導体エネルギー研究所 充電装置
CN101802942A (zh) 2007-01-29 2010-08-11 普迈公司 无针式电源耦合
TWM317367U (en) 2007-01-30 2007-08-21 Hsin Chong Machinery Works Co Wireless power transmitting and receiving apparatus for use in cars
JP2008199857A (ja) 2007-02-15 2008-08-28 Fujifilm Corp レクテナ装置
JP4525747B2 (ja) 2007-02-20 2010-08-18 セイコーエプソン株式会社 送電制御装置、送電装置、電子機器及び無接点電力伝送システム
US7772802B2 (en) 2007-03-01 2010-08-10 Eastman Kodak Company Charging display system
US7793121B2 (en) 2007-03-01 2010-09-07 Eastman Kodak Company Charging display system
US9774086B2 (en) * 2007-03-02 2017-09-26 Qualcomm Incorporated Wireless power apparatus and methods
JP4379480B2 (ja) 2007-03-09 2009-12-09 ソニー株式会社 充電器および充電方法
US8095166B2 (en) 2007-03-26 2012-01-10 Qualcomm Incorporated Digital and analog power control for an OFDMA/CDMA access terminal
US7831757B2 (en) 2007-04-20 2010-11-09 Sony Corporation Data communication system, portable electronic device, server device, data communication method, and data communication program
JP2008289133A (ja) 2007-04-20 2008-11-27 Sony Corp データ通信システム、クレードル装置、サーバ装置、転送制御プログラム、通信制御プログラムおよびデータ通信方法
CN201044047Y (zh) 2007-05-09 2008-04-02 贺伟 可无线充电的表
WO2008147506A1 (en) 2007-05-22 2008-12-04 Powerwave Technologies, Inc. On frequency repeater with agc stability determination
JP5110966B2 (ja) 2007-05-24 2012-12-26 ソニーモバイルコミュニケーションズ株式会社 無接点充電装置及び無接点電力伝送システム
US8115448B2 (en) * 2007-06-01 2012-02-14 Michael Sasha John Systems and methods for wireless power
US9124120B2 (en) * 2007-06-11 2015-09-01 Qualcomm Incorporated Wireless power system and proximity effects
US7812481B2 (en) 2007-06-29 2010-10-12 Seiko Epson Corporation Power transmission control device, power transmission device, electronic instrument, and non-contact power transmission system
US9634730B2 (en) * 2007-07-09 2017-04-25 Qualcomm Incorporated Wireless energy transfer using coupled antennas
CN101123318A (zh) 2007-08-02 2008-02-13 深圳市杰特电信控股有限公司 一种无线充电手机、充电装置及其充电方法
US20090058189A1 (en) * 2007-08-13 2009-03-05 Nigelpower, Llc Long range low frequency resonator and materials
US7609157B2 (en) 2007-08-20 2009-10-27 Radio Systems Corporation Antenna proximity determining system utilizing bit error rate
GB0716679D0 (en) * 2007-08-28 2007-10-03 Fells J Inductive power supply
US9048945B2 (en) * 2007-08-31 2015-06-02 Intel Corporation Antenna training and tracking protocol
JP4727636B2 (ja) * 2007-09-13 2011-07-20 トヨタ自動車株式会社 車両の充電制御装置および車両
KR101473600B1 (ko) * 2007-09-17 2014-12-16 퀄컴 인코포레이티드 무선 전력 자기 공진기에서의 고효율 및 고전력 전송
US20090075704A1 (en) * 2007-09-18 2009-03-19 Kevin Peichih Wang Mobile communication device with charging module
JP2010539887A (ja) 2007-09-19 2010-12-16 クゥアルコム・インコーポレイテッド 無線電力磁気共振器から生じた電力を最大化すること
US7663490B2 (en) * 2007-09-28 2010-02-16 Intel Corporation Methods and apparatus for efficiently tracking activity using radio frequency identification
JP4600462B2 (ja) 2007-11-16 2010-12-15 セイコーエプソン株式会社 送電制御装置、送電装置、電子機器及び無接点電力伝送システム
US8729734B2 (en) * 2007-11-16 2014-05-20 Qualcomm Incorporated Wireless power bridge
TWI347724B (en) 2007-11-23 2011-08-21 Compal Communications Inc Method and apparatus for wireless charging
US8766483B2 (en) * 2007-11-28 2014-07-01 Qualcomm Incorporated Wireless power range increase using parasitic antennas
TWI361540B (en) 2007-12-14 2012-04-01 Darfon Electronics Corp Energy transferring system and method thereof
TWI358879B (en) 2008-01-08 2012-02-21 Asustek Comp Inc Bulti-in uninterruptible power supply system and e
US9128687B2 (en) 2008-01-10 2015-09-08 Qualcomm Incorporated Wireless desktop IT environment
TWM334559U (en) 2008-01-17 2008-06-11 ming-xiang Ye Attached wireless charger
TWM336621U (en) 2008-01-28 2008-07-11 Tennrich Int Corp Contactless electric charging apparatus
US7579913B1 (en) 2008-02-27 2009-08-25 United Microelectronics Corp. Low power comsumption, low noise and high power gain distributed amplifiers for communication systems
US8855554B2 (en) * 2008-03-05 2014-10-07 Qualcomm Incorporated Packaging and details of a wireless power device
US8421267B2 (en) 2008-03-10 2013-04-16 Qualcomm, Incorporated Packaging and details of a wireless power device
TWI366320B (en) 2008-03-24 2012-06-11 A wireless power transmission system
US20100038970A1 (en) * 2008-04-21 2010-02-18 Nigel Power, Llc Short Range Efficient Wireless Power Transfer
US20090284369A1 (en) 2008-05-13 2009-11-19 Qualcomm Incorporated Transmit power control for a wireless charging system
US7893564B2 (en) * 2008-08-05 2011-02-22 Broadcom Corporation Phased array wireless resonant power delivery system
US8248024B2 (en) * 2008-08-15 2012-08-21 Microsoft Corporation Advanced inductive charging pad for portable devices
TWM349639U (en) 2008-08-29 2009-01-21 Airwave Technologies Inc Wireless audio output apparatus with wireless audio receiving adaptors
CN107415706B (zh) * 2008-09-27 2020-06-09 韦特里西提公司 无线能量转移系统
JP5238472B2 (ja) * 2008-12-16 2013-07-17 株式会社日立製作所 電力伝送装置、および電力受信装置
US20100201310A1 (en) 2009-02-06 2010-08-12 Broadcom Corporation Wireless power transfer system
US20100201201A1 (en) 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless power transfer in public places
US20100201311A1 (en) * 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless charging with separate process
US20100201312A1 (en) 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless power transfer for portable enclosures
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
US8854224B2 (en) 2009-02-10 2014-10-07 Qualcomm Incorporated Conveying device information relating to wireless charging
US20110057606A1 (en) * 2009-09-04 2011-03-10 Nokia Corpation Safety feature for wireless charger
KR20110062841A (ko) * 2009-12-04 2011-06-10 한국전자통신연구원 무선 전력 전송 장치

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101409224B1 (ko) * 2012-09-07 2014-06-19 한국오므론전장 주식회사 차량 주파수 간섭 회피 기능을 가지는 무선충전 장치 및 방법
KR101409225B1 (ko) * 2012-10-08 2014-06-18 한국오므론전장 주식회사 컵홀더를 이용한 충전 시스템
KR20140134901A (ko) * 2013-05-15 2014-11-25 주식회사 한림포스텍 차량내에 설치되는 무선 충전 기능을 구비한 멀티미디어 시스템, 이를 이용한 멀티미디어 파일 재생 방법, 및 이에 이용되는 무선 전력 전송 장치
WO2022025328A1 (ko) * 2020-07-31 2022-02-03 엘지전자 주식회사 무선 전력 송신 장치

Also Published As

Publication number Publication date
CN102318213A (zh) 2012-01-11
JP2012517795A (ja) 2012-08-02
US20120019057A9 (en) 2012-01-26
EP2396900A1 (en) 2011-12-21
WO2010093724A1 (en) 2010-08-19
TW201042878A (en) 2010-12-01
CN102318213B (zh) 2014-02-26
JP5480300B2 (ja) 2014-04-23
US8878393B2 (en) 2014-11-04
US20100201189A1 (en) 2010-08-12

Similar Documents

Publication Publication Date Title
KR20110114704A (ko) 차량에 대한 무선 전력 전송
JP5362038B2 (ja) 公共施設における電力伝達システム、装置、および方法
EP2396896B1 (en) Wireless power transfer for furnishings and building elements
US9184632B2 (en) Wireless power transfer for furnishings and building elements
EP2396898B1 (en) Systems and methods relating to multi-dimensional wireless charging
EP2396867B1 (en) Wireless power from renewable energy
JP6030305B2 (ja) 可搬エンクロージャ用の無線電力伝達
US20100201311A1 (en) Wireless charging with separate process

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right