US20100038970A1 - Short Range Efficient Wireless Power Transfer - Google Patents

Short Range Efficient Wireless Power Transfer Download PDF

Info

Publication number
US20100038970A1
US20100038970A1 US12427318 US42731809A US2010038970A1 US 20100038970 A1 US20100038970 A1 US 20100038970A1 US 12427318 US12427318 US 12427318 US 42731809 A US42731809 A US 42731809A US 2010038970 A1 US2010038970 A1 US 2010038970A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
power
antenna
system
surface
devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12427318
Inventor
Nigel P. Cook
Lukas Sieber
Hanspeter Widmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Nigel Power LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J17/00Systems for supplying or distributing electric power by electromagnetic waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • H02J5/005Circuit arrangements for transfer of electric power between ac networks and dc networks with inductive power transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/022Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters characterised by the type of converter
    • H02J7/025Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters characterised by the type of converter using non-contact coupling, e.g. inductive, capacitive

Abstract

A device is powered wirelessly using magnetically coupled resonance, either from a short distance, e.g., on a surface, or from or on a longer distance.

Description

  • [0001]
    This application claims priority from provisional application 61/046,757, filed Apr. 21, 2008, the entire contents of which are herewith incorporated by reference.
  • BACKGROUND
  • [0002]
    Our previous applications and provisional applications, including, but not limited to, U.S. patent application Ser. No. 12/018,069, filed Jan. 22, 2008, entitled “Wireless Apparatus and Methods”, the entire contents of the disclosure of which is herewith incorporated by reference, describe wireless transfer of power between a transmitter and receiver.
  • [0003]
    The transmit and receiving antennas are preferably resonant antennas, which are substantially resonant, e.g., within 10% of resonance, 15% of resonance, or 20% of resonance. The antenna may be of a small size to allow it to fit into a mobile, handheld device where the available space for the antenna may be limited. An embodiment describes a high efficiency antenna for the specific characteristics and environment for the power being transmitted and received.
  • [0004]
    One embodiment uses an efficient power transfer between two antennas by storing energy in the near field of the transmitting antenna, rather than sending the energy into free space in the form of a travelling electromagnetic wave. This embodiment increases the quality factor (Q) of the antennas. This can reduce radiation resistance (Rr) and loss resistance (Rl).
  • [0005]
    The inventors noticed that many of the solutions raised by this system include power delivery at a distance, for example power delivery over inches or feet from a power transmitter to a receiver. The techniques disclosed in our co-pending applications allow delivery of power at reasonable efficiencies, for example between 3 and 5 feet, for example, and efficiencies from 5 to 40%.
  • SUMMARY
  • [0006]
    However, it was noticed that many users and/or manufacturers would actually prefer higher power-delivery efficiencies, and are willing to accept this power delivery at short distances. For example, many would prefer a power delivery solution which was over 90% efficient, even if that power delivery solution was less convenient to use. The inventors noticed that the resonant which have been used for delivery of power at a distance, could actually be used to produce very high efficiencies when used in a close contact situation.
  • [0007]
    An aspect describes a magnetically coupled resonance system, that includes a first pad surface against that accepts devices to be provided with power. The device uses the magnetically coupled resonance to provide power at a first efficiency of power transfer to devices on the pad surface. Power is provided at a second efficiency of power transfer, lower than said first efficiency, to other devices that are not on said first surface, e.g., devices that are remote from the pad by e.g., less than 12 inches or less than 3 feet.
  • [0008]
    The devices and pad can each use magnetically resonant circuits with antennas formed of an inductor formed by a coil, and a separate capacitor, tuned to an appropriate frequency.
  • [0009]
    The present application discloses use of these techniques to form a wireless desktop. The wireless desktop can be used to charge personal electronic devices such as communications terminals, cellular phones, or computer based peripheral devices these charged devices are either or both of powered or recharged, without wires, using a wireless energy transfer technique.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0010]
    FIG. 1 shows a wireless desktop with wireless powered items;
  • [0011]
    FIG. 2 shows an equivalent circuit;
  • [0012]
    FIGS. 3A-3F show single receivers on pads with and without foldouts;
  • [0013]
    FIG. 4 shows efficiencies for the single receivers;
  • [0014]
    FIGS. 5A-5D show pads with multiple receivers;
  • [0015]
    FIG. 6 shows transfer efficiencies for the multiple receivers;
  • [0016]
    FIG. 7 shows coplanar field coupling using parasitic; and
  • [0017]
    FIG. 8 shows a desktop parasitic.
  • DETAILED DESCRIPTION
  • [0018]
    An embodiment uses coupled magnetic resonance using magnetic field antennas. Embodiments may operate at any frequency, but two embodiments may operate either at LF (e.g. 135 kHz) or at HF (e.g. 13.56 MHz), but at short distances. One embodiment uses a loop coil in series with a capacitor as the antenna. In one embodiment, the receiver part (e.g., the portable device) is intended to be placed directly on the pad. In this embodiment, there is a relatively small, fixed distance between the transmitter and receiver. That fixed distance, for example, may be set by the thickness of the material of the pad and the material of the housing. This may be less than a centimeter or less than 10 mm, between the coils forming the transmitter and receiver. The distance will be constant, so the item is always the same distance from the antenna when pressed against the pad.
  • [0019]
    That fixed distance is dependent on the geometry of the pad and the geometry of the charged item. In the embodiment, the antenna can be tuned to have a maximum response at that constant distance. This tuning, as well as other tuning operations described in this specification, can be calculated and then optimized by trial and error, for example.
  • [0020]
    However, unlike other close-charging systems, this system can also charge items which are located at a distance, e.g., inches or feet from the antenna. The antenna is less efficient when charging at a distance, but will still provides power at that distance. That allows charging of items that are not directly placed on the charging pad - unlike pure inductive systems which provide in essence no charge at all other than at the very specific fixed distance and/or orientation.
  • [0021]
    This produces certain advantages, including the ability to use less precision in the placement of the device on the charging pad. Even if the device is placed off the pad, it will still receive charging at a lower level from proximity. The lower level charge can be, for example, between 0.05 watts and 0.25 watts, for example, even when the device is not precisely placed on the pad.
  • [0022]
    To utilize desktop space efficiently and to reduce desktop wiring, the antenna of the power transmitter/power base may be incorporated into a host device that normally exists on a desktop. Embodiments describe that host device as including either a PC monitor or a lamp, but can be any other item, such as a printer, scanner, fax machine, telephone, router, or the like.
  • [0023]
    The transmitter unit may be powered directly from the 110/230 VAC supply already existing in this host device, thus not requiring an extra power cord or power connection.
  • [0024]
    In one embodiment, as shown in FIG. 1, the transmit antenna is embedded in the pedestal 104 of a PC monitor screen 100 or in the pedestal 112 of a desk lamp 110. The pedestals may be disk-shaped, to house a circular wire loop antenna generating a symmetric magnetic field. This field is mostly vertically polarized at any position on the desk, in the plane of the antenna loop. This embodiment favors coplanar orientation of antenna loops integrated in wireless-power-enabled devices; that is, the best power-transfer will be obtained when a loop coil in the receiving device is oriented in a substantially parallel plane to a loop coil in the transmitting device. The surface of the charging base may be substantially parallel with the coil, so that the coplanar relationship can be maintained. FIG. 7 illustrates how the coplanar operation can extend to all the items on the desktop.
  • [0025]
    This coplanar orientation can be used, for example, for wire loop antennas integrated into keyboards, mouse devices, and into many other electronic devices such as mobile phones, MP3 players, PDAs, etc. if placed in the usual manner. This may, however, be used in other applications.
  • [0026]
    In another embodiment, there may be more than one power base on a desktop as shown in FIG. 1. Power is supplied from the base that is closest to the receiving device or from multiple different sources.
  • [0027]
    Each power base may also provide an area to place devices directly on the wire loop antenna, resulting in strongest coupling, thus enabling high power transfer at high efficiency. This close proximity coupling is attained by providing a surface 105, for example, adjacent the charging coil. In this embodiment, more than one device may be placed on such a charging pad surface 105. This has the other advantage of allowing a larger coil for the transmitting, which also provides improved efficiency.
  • [0028]
    Low power devices with long battery autonomy, such as a keyboard or a computer mouse, may be placed in the proximity or vicinity of a power base to charge by proximity coupling. Available power and transfer efficiency for these devices will be lower than for the fixed distance coupling. However, these devices may be constantly charged, and intermittently used. Hence, these devices do not require continuous charging. In one embodiment, the amount of charging may be reduced when other devices are additionally placed on the charging pad, because the multiple devices may more heavily load the system than a single device.
  • [0029]
    Magnetic field strength in the vicinity of a power base will preferably be below safety critical levels. The power base may additionally provide a function to automatically reduce magnetic field strength if a person is approaching. This function may use infrared or microwave person detection 108. This can be a proximity detector, e.g., one that can be activated by user proximity.
  • [0030]
    A first embodiment actuates the proximity detector manually. Persons that feel uncomfortable in presence of magnetic fields can turn on the function. This function will can also cause devices in the vicinity to stop receiving power during the time when persons are in proximity. This may use, for example, an IR detector to detect the presence of persons.
  • [0031]
    Another embodiment may always have the proximity detector active and automatically turn off the function when
  • [0032]
    Other devices such as cordless phones, digicams, etc. may be placed on a charging station. This allows the wireless power receiver and its antenna to be made an integral part of the recharging station. A charging station may provide more area and/or space to integrate an efficient power receiver other than the portable device itself. For example, this may use electrical contacts, or by using a wireless technique or a wireless parasitic antenna, as described herein. The charging station itself may be configured and used as a power relay or a parasitic antenna that improves coupling between the transmitter and the portable devices which receive the charge.
  • [0033]
    In an embodiment, shown in FIG. 1, there may be a number of different electrically operated devices on a user's “desktop”, which may be items used by a user for work every day. One such item is a monitor 100 for a PC. This operates off power provided by a 110 V connection 102 which plugs into the AC outlet. The 110 V connection 100 provides power for both the operation of the monitor, and also provides the power for the wireless surface 104 that is integrated into the base of the monitor. The charging pad may use the techniques that are described in detail herein.
  • [0034]
    Wireless proximity charging may be enabled in the area 105, which forms a flat surface on the base. According to this embodiment, the wireless proximity charging may be specifically tuned for short distance connections, although it may also operate properly over longer distance connections. Surface 105 may be sized such that devices such as cell phones and PDAs such as 107 may be rested on the surface. While charging is optimized for the area 105, charging is still carried out in other areas.
  • [0035]
    In this embodiment, there is also another charging base as part of a desk lamp 110. This forms a charging base 112 with an area 113 thereon. As in the 104 charging base, the charging is optimized for carrying out up close proximity charging of items such as 114 using magnetically coupled resonance. It may also charge items that are distant from the charging base.
  • [0036]
    In addition to charging items such as 114 on the charging base, either or both of the items produces magnetically resonant output power that is coupled to remote devices that are enabled for wireless charging. These remote devices, for example, may include a magnetically resonant antenna therein that is resonant to the same frequency of the transmission. In an embodiment, this may be at 13.56 MHz or at 135 Khz, or at any other frequency.
  • [0037]
    The charged devices can include a digital camera 121, a wireless mouse 122, and a wireless keyboard 123. Each of these devices, for example, can include a battery therein, which is charged by the operation of the device.
  • [0038]
    An important feature is that an up close charge can be carried out at high efficiency, or a distance charge can be carried out lower efficiency.
  • [0039]
    FIG. 2 shows an equivalent circuit of the power transmission system, and illustrates how the efficiency can be calculated. A power source 200 portion includes a power source 205, for example the AC socket. The power source 205 has an equivalent loss resistance 210. The loss resistance 210 models the resistance and power conversion losses. Alternatively, the power source can include some parts of the conversion electronics, for example in the case that the power from the power source is changed to some other frequency or some other power value.
  • [0040]
    The power source 205 is connected across terminals 215, to antenna part 220. Antenna includes an inductor 230 and series capacitance 235. The LC constant of the inductor and capacitance is tuned to be substantially at the frequency of the source 205. The antenna also has shows a loss resistance value 235, which is a parasitic value that represents the transmit antenna losses, including internal losses, external losses, and radiation losses.
  • [0041]
    A magnetic field 250 is created in the vicinity of the antenna 230. This is coupled to the antenna 240 of the receiver. As in the antenna 230, the antenna 240 includes an inductor 242 capacitor 244. The inductor and capacitor form a circuit that is resonant with the received frequency that is received.
  • [0042]
    Receive antenna losses are shown by the series resistance 246. The input power Pr is connected via the terminals 248 to a load 260. The load 260 also includes receive power losses 262 shown as a series resistance, which can be modeled as losses in the system.
  • [0043]
    These losses can include the power conversion losses as well as series resistance losses.
  • [0044]
    Another system can attempt to obtain maximum efficiency in various different scenarios. For example, in one scenario, the transmit antenna can be tuned by changing the capacitance to obtain resonance at the operating frequency in the presence of an unloaded receiver. In an unloaded receiver scenario, the resistance of the load is infinite. Loaded receivers change this resistance. Receiver measurements can also be carried out, by tuning the receiving antenna to change the capacitance etc. in the presence of an unloaded transmitter or in the case of multiple transmitters.
  • [0045]
    The different values can be measured. Capacitance value adjustments can be available, for example, for unloaded, moderately loaded (e.g, a single load) or highly loaded systems. Different capacitance values can be dynamically switched to create the highest efficiency value, and to operate with that value.
  • [0046]
    FIGS. 3A-3F show different scenarios of charging. FIG. 3A shows a conventional PDA 300 on a large charging pad 305. In the embodiment, this may be a low-frequency charging pad which may have a 26 cm diameter. Another embodiment may use a PDA 310 which includes a foldout antenna portion 315. The foldout antenna portion 315 may include a loop antenna that can be folded away from the body of the device to improve the coupling efficiency.
  • [0047]
    FIG. 3C shows a small pad embodiment, where the pad 320 is substantially the same size as the PDA 300. In this embodiment, the pad may be 6×9 cm. FIG. 3B shows how this pad might be used with a foldout embodiment, where the flap 315 fits directly over the pad 320. A medium pad is shown in FIGS. 3E and 3F. In this embodiment, the medium pad 330 includes the PDA 300 thereon, or a foldout PDA 310 with its foldout flat. The medium pad may be 18 cm in diameter in this embodiment.
  • [0048]
    The efficiency results for these devices are shown in FIG. 4, which shows how the different size devices can be located on the different size pads. Five of the six situations have efficiencies which are greater than 80%. Even the lowest efficiency, created by a large pad with an integrated receiver in the phone, had a transfer efficiency of 50%.
  • [0049]
    Another embodiment shown in FIGS. 5A-5D may use multiple receivers all on the same pad. Since the pads, especially the large and medium pads, have sizes that are large enough to physically hold multiple different phones, multiple different devices can be placed all on the pad.
  • [0050]
    FIGS. 5A-5D illustrates these different embodiments. In FIG. 5A, the pad 305 includes three PDA phones/devices thereon, shown as 400, 402 and 404; however, the pad may include more or fewer devices.
  • [0051]
    In the FIG. 5B embodiment, the devices have foldout antennas, with the devices 510, 512 and 514 each representing a PDA on the pad, along with its foldout flat against the pad and away from the body of the phone.
  • [0052]
    FIG. 5C shows the medium pad 330 with two phones thereon, 400, 402, while FIG. 5B shows this same pad with two foldouts thereon 510, 512.
  • [0053]
    FIG. 6 shows the measured efficiency of this system, with again most of the efficiencies being greater than 80%.
  • [0054]
    The efficiency of the system ηa can be calculated as the input power across the terminals 215 divided by receive power across the terminals 248
  • [0055]
    or ηa=Pr/Pt.
  • [0056]
    Another embodiment shown in FIG. 8 forms a power relay as a parasitic antenna that improves coupling between energy source and energy sink. The energy source is formed of a resonant antenna 810, which may be a resonant capacitor and inductor. A parasitic antenna 800, which may also be resonant at the same frequency, may be used. This parasitic antenna may be expanded to cover a large portion of the desktop area 820 as shown. Such a parasitic loop may either be mounted beneath the desk, or built into the desktop surface, or put on the desk's surface e.g. as a flat structure, such as a desk mat. The parasitic device can be excited by a single and small active power base, and can be used to dramatically improve performance and efficiency of wireless desktop powering and charging in that area.
  • [0057]
    Inductive excitation from a small power base may however be a convenient solution since it does not require integration of any part. This becomes particularly true when the parasitic antenna is invisibly integrated into the desktop. FIG. 8 illustrates a large parasitic loop thereby improving the coupling between power base and receiver devices. The parasitic loop can cover an entire desk surface, providing a hot zone throughout that desk surface. The parasitic antenna, in this embodiment, provides passive repeating of power to the entire desktop area.
  • [0058]
    The same kind of antenna, in another embodiment, may also be driven directly from a transmitter unit.
  • [0059]
    The general structure and techniques, and more specific embodiments which can be used to effect different ways of carrying out the more general goals are described herein.
  • [0060]
    Although only a few embodiments have been disclosed in detail above, other embodiments are possible and the inventors intend these to be encompassed within this specification. The specification describes specific examples to accomplish a more general goal that may be accomplished in another way. This disclosure is intended to be exemplary, and the claims are intended to cover any modification or alternative which might be predictable to a person having ordinary skill in the art.
  • [0061]
    Also, the inventors intend that only those claims which use the words “means for” are intended to be interpreted under 35 USC 112, sixth paragraph. Moreover, no limitations from the specification are intended to be read into any claims, unless those limitations are expressly included in the claims.
  • [0062]
    Where a specific numerical value is mentioned herein, it should be considered that the value may be increased or decreased by 20%, while still staying within the teachings of the present application, unless some different range is specifically mentioned. Where a specified logical sense is used, the opposite logical sense is also intended to be encompassed.

Claims (50)

  1. 1. A system comprising:
    a magnetically coupled resonance system, that includes a first surface against which devices to be provided with power are located, and providing power at a first efficiency of power transfer to said devices on said first surface, and providing power at a second efficiency of power transfer, lower than said first efficiency, to other devices that are not on said first surface, each of said devices receiving said power using magnetically coupled resonance between a transmitting antenna adjacent said first surface, and a receiving antenna in at least one device.
  2. 2. A system as in claim 1, wherein said system is tuned for maximum efficiency on said first surface.
  3. 3. A system as in claim 1, wherein said transmitting antenna is tuned for a thickness of a material of said first surface.
  4. 4. A system as in claim 1, wherein said devices which are not on said first surface are inches away from said first surface.
  5. 5. A system as in claim 1, wherein said devices which are not on said first surface are feet away from said first surface.
  6. 6. A system as in claim 1, wherein said first surface is integrated into a desktop component.
  7. 7. A system as in claim 6, wherein said desktop component is a base of a monitor.
  8. 8. A system as in claim 6, wherein said desktop component is a base of a lamp.
  9. 9. A system as in claim 6, wherein said desktop component is a base of a telephone charger.
  10. 10. A system as in claim 1, wherein said first surface is parallel to a coil of an antenna in said first surface.
  11. 11. A system as in claim 1, further comprising a device which allows detecting a proximity of a person, and terminating transmission upon detecting said proximity of a person.
  12. 12. A system as in claim 11, wherein said device is switched on to detect a proximity of the person, and switched off to transmit power continuously.
  13. 13. A system comprising:
    a magnetically coupled resonance system, that provides power to devices using magnetically coupled resonance,
    a device, coupled to said magnetically coupled resonance system, which allows detecting a proximity of a person, and terminating transmission upon detecting said proximity of a person.
  14. 14. A system as in claim 13, wherein said device is switched on to detect the proximity of the person, and switched off to transmit power continuously.
  15. 15. A system in claim 13, wherein said magnetically coupled resonance system includes a first surface against which devices to be charged are located, and providing power at a first efficiency of power transfer to devices on said first surface, each of said devices receiving said power using magnetically coupled resonance between a transmitting antenna adjacent said first surface, and a receiving antenna in at least one device.
  16. 16. A system in claim 15, wherein said magnetically coupled resonance system further provides power at a second efficiency of power transfer, lower than said first efficiency, to other devices that are not on said first surface.
  17. 17. A system as in claim 16, wherein said system is tuned for maximum efficiency on said first surface.
  18. 18. A system as in claim 16, wherein said transmitting antenna is tuned for a thickness of a material of said first surface.
  19. 19. A system as in claim 16, wherein said devices which are not on said first surface are less than 12 inches away from said first surface.
  20. 20. A system as in claim 16, wherein said devices which are not on said first surface are less than 3 feet away from said first surface.
  21. 21. A system as in claim 16, wherein said first surface is integrated into a desktop component.
  22. 22. A system as in claim 21, wherein said desktop component is a base of a monitor.
  23. 23. A system as in claim 21, wherein said desktop component is a base of a lamp.
  24. 24. A system as in claim 21, wherein said desktop component is a base of a telephone charger.
  25. 25. A system as in claim 16, wherein said first surface is parallel to a coil of an antenna in said first surface.
  26. 26. A method comprising:
    first powering a first device wirelessly, using a magnetically coupled resonance system, by resting said first device against a first surface against which devices to be provided with power are located, said first powering providing power at a first efficiency of power transfer to devices on said first surface; second powering a second device wirelessly, at a second efficiency of power transfer, lower than said first efficiency, said second device not being on said first surface, each of said second devices receiving said power using magnetically coupled resonance between a transmitting antenna adjacent said first surface, and a receiving antenna in at least one device.
  27. 27. A system comprising:
    a magnetically coupled resonance system, that includes a first surface against which devices to be provided with power are located, said resonance system including a repeater antenna, adjacent said surface, which repeats magnetically resonantly received power over a whole area of said first surface, thereby converting the whole desktop into a charging system.
  28. 28. A system as in claim 27, further comprising a magnetic transmitter, separated from said repeater antenna, and tuned to resonance with said repeater antenna.
  29. 29. A system as in claim 27, wherein said repeater antenna is integrated into a desktop component.
  30. 30. A system as in claim 29, wherein said desktop component is a base of a monitor.
  31. 31. A system as in claim 29, wherein said desktop component is a base of a lamp.
  32. 32. A system as in claim 29, wherein said desktop component is a base of a telephone charger.
  33. 33. A system as in claim 27, wherein said first surface is parallel to a coil of an antenna in said first surface.
  34. 34. A system as in claim 27, further comprising a device which allows detecting a proximity of a person, and terminating transmission upon detecting said proximity of a person.
  35. 35. A system as in claim 27, wherein said device is switched on to detect a proximity of the person, and switched off to transmit power continuously.
  36. 36. A system comprising:
    a magnetically coupled resonance system, that includes a first repeater antenna resonant with a first frequency, which repeats magnetically resonantly received power at said first frequency in an area of said first repeater antenna, and a second repeater antenna, spaced from said first repeater antenna and resonant with a first frequency, which repeats magnetically resonantly received power at said first frequency in an area of said second repeater antenna.
  37. 37. A system as in claim 36, further comprising a first surface against which devices to be provided with power are located, said first surface being adjacent said second repeater antenna.
  38. 38. A system as in claim 37, wherein said first surface is a desktop, and the whole desktop is used as a charging system.
  39. 39. A system as in claim 36, further comprising a magnetic transmitter, separated from said repeater antenna, and tuned to resonance with said repeater antenna.
  40. 40. A system as in claim 39, wherein said repeater antenna is integrated into a desktop component.
  41. 41. A system as in claim 40, wherein said desktop component comprises a base of a monitor.
  42. 42. A system as in claim 40, wherein said desktop component comprises a base of a lamp.
  43. 43. A system as in claim 40, wherein said desktop component comprises a base of a portable electronic device charger.
  44. 44. A system as in claim 36, wherein said first surface is parallel to a coil of an antenna in said first surface.
  45. 45. A system as in claim 36, further comprising a device which allows detecting a proximity of a person, and terminating transmission upon detecting said proximity of a person.
  46. 46. A system as in claim 36, wherein said system is switched on to detect a proximity of the person, and switched off to transmit power continuously.
  47. 47. A system as in claim 40, wherein said portable electronic device comprises a cellular communication device.
  48. 48. A system comprising:
    a magnetically coupled resonance system, that includes a transmitter antenna resonant with a first frequency, which transmits magnetically resonant power at said first frequency and a repeater antenna, spaced from said transmitter antenna and resonant with said first frequency, which repeats magnetically resonantly received power at said first frequency in an area of said repeater antenna,
    wherein said transmitter antenna and said repeater antenna are the same size.
  49. 49. A system comprising:
    a magnetically coupled resonance system, that includes a transmitter antenna resonant with a first frequency, which transmits magnetically resonant power at said first frequency and a repeater antenna, spaced from said transmitter antenna and resonant with said first frequency, which repeats magnetically resonantly received power at said first frequency in an area of said repeater antenna,
    wherein said transmitter antenna is larger in its overall size than said repeater antenna.
  50. 50. A system as in claim 49, wherein said transmitter antenna has a larger diameter than said repeater antenna.
US12427318 2008-04-21 2009-04-21 Short Range Efficient Wireless Power Transfer Abandoned US20100038970A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US4675708 true 2008-04-21 2008-04-21
US12427318 US20100038970A1 (en) 2008-04-21 2009-04-21 Short Range Efficient Wireless Power Transfer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12427318 US20100038970A1 (en) 2008-04-21 2009-04-21 Short Range Efficient Wireless Power Transfer
US13913036 US9450456B2 (en) 2008-04-21 2013-06-07 System and method for efficient wireless power transfer to devices located on and outside a charging base
US14163704 US9979230B2 (en) 2008-04-21 2014-01-24 Short range efficient wireless power transfer including a charging base transmitter built into a desktop component and a power relay integrated into a desktop

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13913036 Continuation US9450456B2 (en) 2008-04-21 2013-06-07 System and method for efficient wireless power transfer to devices located on and outside a charging base
US14163704 Continuation US9979230B2 (en) 2008-04-21 2014-01-24 Short range efficient wireless power transfer including a charging base transmitter built into a desktop component and a power relay integrated into a desktop

Publications (1)

Publication Number Publication Date
US20100038970A1 true true US20100038970A1 (en) 2010-02-18

Family

ID=41217384

Family Applications (3)

Application Number Title Priority Date Filing Date
US12427318 Abandoned US20100038970A1 (en) 2008-04-21 2009-04-21 Short Range Efficient Wireless Power Transfer
US13913036 Active 2030-12-29 US9450456B2 (en) 2008-04-21 2013-06-07 System and method for efficient wireless power transfer to devices located on and outside a charging base
US14163704 Active 2030-06-13 US9979230B2 (en) 2008-04-21 2014-01-24 Short range efficient wireless power transfer including a charging base transmitter built into a desktop component and a power relay integrated into a desktop

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13913036 Active 2030-12-29 US9450456B2 (en) 2008-04-21 2013-06-07 System and method for efficient wireless power transfer to devices located on and outside a charging base
US14163704 Active 2030-06-13 US9979230B2 (en) 2008-04-21 2014-01-24 Short range efficient wireless power transfer including a charging base transmitter built into a desktop component and a power relay integrated into a desktop

Country Status (6)

Country Link
US (3) US20100038970A1 (en)
EP (1) EP2277252A4 (en)
JP (3) JP2011518540A (en)
KR (4) KR101589836B1 (en)
CN (2) CN102017361B (en)
WO (1) WO2009131990A3 (en)

Cited By (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070222542A1 (en) * 2005-07-12 2007-09-27 Joannopoulos John D Wireless non-radiative energy transfer
US20070285619A1 (en) * 2006-06-09 2007-12-13 Hiroyuki Aoki Fundus Observation Device, An Ophthalmologic Image Processing Unit, An Ophthalmologic Image Processing Program, And An Ophthalmologic Image Processing Method
US20080278264A1 (en) * 2005-07-12 2008-11-13 Aristeidis Karalis Wireless energy transfer
US20090102292A1 (en) * 2007-09-19 2009-04-23 Nigel Power, Llc Biological Effects of Magnetic Power Transfer
US20090179502A1 (en) * 2008-01-14 2009-07-16 Nigelpower, Llc Wireless powering and charging station
US20090212638A1 (en) * 2008-02-25 2009-08-27 L & P Property Management Company Inductively coupled work surfaces
US20090212737A1 (en) * 2008-02-25 2009-08-27 L & P Property Management Company Inductively coupled shelving and storage containers
US20090286476A1 (en) * 2008-05-13 2009-11-19 Qualcomm Incorporated Reverse link signaling via receive antenna impedance modulation
US20090284083A1 (en) * 2008-05-14 2009-11-19 Aristeidis Karalis Wireless energy transfer, including interference enhancement
US20100109445A1 (en) * 2008-09-27 2010-05-06 Kurs Andre B Wireless energy transfer systems
US20100148589A1 (en) * 2008-10-01 2010-06-17 Hamam Rafif E Efficient near-field wireless energy transfer using adiabatic system variations
US20100164298A1 (en) * 2008-09-27 2010-07-01 Aristeidis Karalis Wireless energy transfer using magnetic materials to shape field and reduce loss
US20100164296A1 (en) * 2008-09-27 2010-07-01 Kurs Andre B Wireless energy transfer using variable size resonators and system monitoring
US20100164297A1 (en) * 2008-09-27 2010-07-01 Kurs Andre B Wireless energy transfer using conducting surfaces to shape fields and reduce loss
US20100171368A1 (en) * 2008-09-27 2010-07-08 Schatz David A Wireless energy transfer with frequency hopping
US20100181964A1 (en) * 2009-01-22 2010-07-22 Mark Huggins Wireless power distribution system and method for power tools
US20100181845A1 (en) * 2008-09-27 2010-07-22 Ron Fiorello Temperature compensation in a wireless transfer system
US20100201203A1 (en) * 2008-09-27 2010-08-12 Schatz David A Wireless energy transfer with feedback control for lighting applications
US20100201189A1 (en) * 2008-05-13 2010-08-12 Qualcomm Incorporated Wireless power transfer for vehicles
US20100201533A1 (en) * 2009-02-10 2010-08-12 Qualcomm Incorporated Conveying device information relating to wireless charging
US20100219694A1 (en) * 2008-09-27 2010-09-02 Kurs Andre B Wireless energy transfer in lossy environments
US20100231340A1 (en) * 2008-09-27 2010-09-16 Ron Fiorello Wireless energy transfer resonator enclosures
US20100259108A1 (en) * 2008-09-27 2010-10-14 Giler Eric R Wireless energy transfer using repeater resonators
US20100277121A1 (en) * 2008-09-27 2010-11-04 Hall Katherine L Wireless energy transfer between a source and a vehicle
US20100308939A1 (en) * 2008-09-27 2010-12-09 Kurs Andre B Integrated resonator-shield structures
US20110043049A1 (en) * 2008-09-27 2011-02-24 Aristeidis Karalis Wireless energy transfer with high-q resonators using field shaping to improve k
US20110043047A1 (en) * 2008-09-27 2011-02-24 Aristeidis Karalis Wireless energy transfer using field shaping to reduce loss
US20110056215A1 (en) * 2009-09-10 2011-03-10 Qualcomm Incorporated Wireless power for heating or cooling
US20110062789A1 (en) * 2009-09-16 2011-03-17 L & P Property Management Company Inductively coupled power module and circuit
US20110074346A1 (en) * 2009-09-25 2011-03-31 Hall Katherine L Vehicle charger safety system and method
US20110080054A1 (en) * 2009-10-07 2011-04-07 Tdk Corporation Wireless power feeder and wireless power transmission system
US20110089768A1 (en) * 2009-09-24 2011-04-21 Byrne Norman R Worksurface power transfer
US20110121920A1 (en) * 2008-09-27 2011-05-26 Kurs Andre B Wireless energy transfer resonator thermal management
US20110175812A1 (en) * 2010-01-20 2011-07-21 Kye Systems Corp. Radio-frequency mouse
US20110193416A1 (en) * 2008-09-27 2011-08-11 Campanella Andrew J Tunable wireless energy transfer systems
US20110193421A1 (en) * 2009-10-16 2011-08-11 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
US20110198940A1 (en) * 2009-10-19 2011-08-18 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
US20110281535A1 (en) * 2010-05-14 2011-11-17 Qualcomm Incorporated Controlling field distribution of a wireless power transmitter
US8061864B2 (en) 2009-05-12 2011-11-22 Kimball International, Inc. Furniture with wireless power
US20110316349A1 (en) * 2009-03-17 2011-12-29 Sony Corporation Electrical power transmission system and electrical power output device
US20120091794A1 (en) * 2008-09-27 2012-04-19 Campanella Andrew J Wirelessly powered laptop and desktop environment
US20120091819A1 (en) * 2008-09-27 2012-04-19 Konrad Kulikowski Computer that wirelessly powers accessories
US8169185B2 (en) 2006-01-31 2012-05-01 Mojo Mobility, Inc. System and method for inductive charging of portable devices
US20120299539A1 (en) * 2011-05-25 2012-11-29 Neil Jones Light with integrated inductive charger base station
US20130057203A1 (en) * 2011-03-01 2013-03-07 Neil Jones Assembly for mounting an inductive charger base station to a furniture work surface
US8400017B2 (en) 2008-09-27 2013-03-19 Witricity Corporation Wireless energy transfer for computer peripheral applications
US8410636B2 (en) 2008-09-27 2013-04-02 Witricity Corporation Low AC resistance conductor designs
US8441154B2 (en) 2008-09-27 2013-05-14 Witricity Corporation Multi-resonator wireless energy transfer for exterior lighting
WO2013069951A1 (en) * 2011-11-07 2013-05-16 Ls Cable Ltd. Wireless power transmission and receiving system capable of multi charge
US20130119924A1 (en) * 2011-11-15 2013-05-16 Qualcomm Incorporated Multi-band transmit antenna
US8461722B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape field and improve K
US8461721B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using object positioning for low loss
US8466583B2 (en) 2008-09-27 2013-06-18 Witricity Corporation Tunable wireless energy transfer for outdoor lighting applications
US8471410B2 (en) 2008-09-27 2013-06-25 Witricity Corporation Wireless energy transfer over distance using field shaping to improve the coupling factor
US8476788B2 (en) 2008-09-27 2013-07-02 Witricity Corporation Wireless energy transfer with high-Q resonators using field shaping to improve K
US8487480B1 (en) 2008-09-27 2013-07-16 Witricity Corporation Wireless energy transfer resonator kit
US8497601B2 (en) 2008-09-27 2013-07-30 Witricity Corporation Wireless energy transfer converters
US8569914B2 (en) 2008-09-27 2013-10-29 Witricity Corporation Wireless energy transfer using object positioning for improved k
US8587153B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using high Q resonators for lighting applications
US8598743B2 (en) 2008-09-27 2013-12-03 Witricity Corporation Resonator arrays for wireless energy transfer
US8629652B2 (en) 2006-06-01 2014-01-14 Mojo Mobility, Inc. Power source, charging system, and inductive receiver for mobile devices
US8629578B2 (en) 2008-09-27 2014-01-14 Witricity Corporation Wireless energy transfer systems
US20140035390A1 (en) * 2011-04-13 2014-02-06 Lg Innotek Co., Ltd. Power transmitter, repeater, power receiver, and wireless power transmission system
US8664803B2 (en) 2010-12-28 2014-03-04 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
US8667452B2 (en) 2011-11-04 2014-03-04 Witricity Corporation Wireless energy transfer modeling tool
US8669677B2 (en) 2010-12-28 2014-03-11 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US8686598B2 (en) 2008-09-27 2014-04-01 Witricity Corporation Wireless energy transfer for supplying power and heat to a device
US8729737B2 (en) 2008-09-27 2014-05-20 Witricity Corporation Wireless energy transfer using repeater resonators
US8729736B2 (en) 2010-07-02 2014-05-20 Tdk Corporation Wireless power feeder and wireless power transmission system
US8742627B2 (en) 2011-03-01 2014-06-03 Tdk Corporation Wireless power feeder
US8772977B2 (en) 2010-08-25 2014-07-08 Tdk Corporation Wireless power feeder, wireless power transmission system, and table and table lamp using the same
US8800738B2 (en) 2010-12-28 2014-08-12 Tdk Corporation Wireless power feeder and wireless power receiver
US8805530B2 (en) 2007-06-01 2014-08-12 Witricity Corporation Power generation for implantable devices
US8829727B2 (en) 2009-10-30 2014-09-09 Tdk Corporation Wireless power feeder, wireless power transmission system, and table and table lamp using the same
US8829726B2 (en) 2010-07-02 2014-09-09 Tdk Corporation Wireless power feeder and wireless power transmission system
US8829725B2 (en) 2010-03-19 2014-09-09 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
US8829729B2 (en) 2010-08-18 2014-09-09 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
US20140253024A1 (en) * 2013-03-06 2014-09-11 Nokia Corporation Method and apparatus for wirelessly charging mobile devices
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US8890470B2 (en) 2010-06-11 2014-11-18 Mojo Mobility, Inc. System for wireless power transfer that supports interoperability, and multi-pole magnets for use therewith
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US20150002086A1 (en) * 2011-06-21 2015-01-01 Gary N. Matos Apparatus, systems and methods for wireless charging for pc platforms and peripherals
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US20150022021A1 (en) * 2012-02-03 2015-01-22 Nec Corporation Electromagnetic wave transmission sheet and electromagnetic wave transmission device
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US8970069B2 (en) 2011-03-28 2015-03-03 Tdk Corporation Wireless power receiver and wireless power transmission system
US20150108841A1 (en) * 2013-10-22 2015-04-23 Studio Weber + Associates Multifunctional power supply device
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9058928B2 (en) 2010-12-14 2015-06-16 Tdk Corporation Wireless power feeder and wireless power transmission system
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US9106083B2 (en) 2011-01-18 2015-08-11 Mojo Mobility, Inc. Systems and method for positioning freedom, and support of different voltages, protocols, and power levels in a wireless power system
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9124308B2 (en) 2009-05-12 2015-09-01 Kimball International, Inc. Furniture with wireless power
US9143010B2 (en) 2010-12-28 2015-09-22 Tdk Corporation Wireless power transmission system for selectively powering one or more of a plurality of receivers
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US9257865B2 (en) 2009-01-22 2016-02-09 Techtronic Power Tools Technology Limited Wireless power distribution system and method
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9356659B2 (en) 2011-01-18 2016-05-31 Mojo Mobility, Inc. Chargers and methods for wireless power transfer
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9413429B2 (en) 2011-11-29 2016-08-09 Samsung Electronics Co., Ltd. Wireless power transmission system based on cell division
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9438070B2 (en) 2013-09-30 2016-09-06 Norman R. Byrne Articles with electrical charging surfaces
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9450456B2 (en) 2008-04-21 2016-09-20 Qualcomm Incorporated System and method for efficient wireless power transfer to devices located on and outside a charging base
US9461714B2 (en) 2008-03-05 2016-10-04 Qualcomm Incorporated Packaging and details of a wireless power device
US9484751B2 (en) 2013-09-30 2016-11-01 Norman R. Byrne Wireless power for portable articles
US9496732B2 (en) 2011-01-18 2016-11-15 Mojo Mobility, Inc. Systems and methods for wireless power transfer
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US20170012472A1 (en) * 2015-07-06 2017-01-12 Toshiba Tec Kabushiki Kaisha Wireless power supply system and wireless power supply device
US9559526B2 (en) 2009-01-22 2017-01-31 Qualcomm Incorporated Adaptive power control for wireless charging of devices
US9577440B2 (en) 2006-01-31 2017-02-21 Mojo Mobility, Inc. Inductive power source and charging system
US9583953B2 (en) 2009-02-10 2017-02-28 Qualcomm Incorporated Wireless power transfer for portable enclosures
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9722447B2 (en) 2012-03-21 2017-08-01 Mojo Mobility, Inc. System and method for charging or powering devices, such as robots, electric vehicles, or other mobile devices or equipment
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9837846B2 (en) 2013-04-12 2017-12-05 Mojo Mobility, Inc. System and method for powering or charging receivers or devices having small surface areas or volumes
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8928284B2 (en) * 2009-09-10 2015-01-06 Qualcomm Incorporated Variable wireless power transmission
JP2013511255A (en) 2009-11-17 2013-03-28 アップル インコーポレイテッド Use of the wireless power of the local computing environment
DE102010047579A1 (en) * 2010-10-07 2012-04-12 Christmann Informationstechnik+Medien Gmbh & Co. Kg A surface extending furniture component
WO2012071268A3 (en) * 2010-11-23 2013-04-25 Apple Inc. Wireless power utilization in a local computing environment
CN102570623A (en) * 2010-12-27 2012-07-11 佛山市顺德区顺达电脑厂有限公司 Wireless power supply control device and method
JP5218576B2 (en) * 2011-02-03 2013-06-26 株式会社デンソー Non-contact power supply control device and the contactless power supply system
KR101586135B1 (en) 2011-05-31 2016-01-21 애플 인크. Combining power from multiple resonance magnetic receivers in resonance magnetic power system
JP2013145654A (en) * 2012-01-13 2013-07-25 Panasonic Corp Electric appliance
KR101824766B1 (en) 2012-03-28 2018-02-01 후지쯔 가부시끼가이샤 Wireless power transmission system and wireless power transmission method
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
US9866279B2 (en) 2013-05-10 2018-01-09 Energous Corporation Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
US9887739B2 (en) 2012-07-06 2018-02-06 Energous Corporation Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves
US9143000B2 (en) 2012-07-06 2015-09-22 Energous Corporation Portable wireless charging pad
US9900057B2 (en) 2012-07-06 2018-02-20 Energous Corporation Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas
US9538382B2 (en) 2013-05-10 2017-01-03 Energous Corporation System and method for smart registration of wireless power receivers in a wireless power network
US9923386B1 (en) 2012-07-06 2018-03-20 Energous Corporation Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver
US9882427B2 (en) 2013-05-10 2018-01-30 Energous Corporation Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters
US9843763B2 (en) 2013-05-10 2017-12-12 Energous Corporation TV system with wireless power transmitter
US9893768B2 (en) 2012-07-06 2018-02-13 Energous Corporation Methodology for multiple pocket-forming
US9859756B2 (en) 2012-07-06 2018-01-02 Energous Corporation Transmittersand methods for adjusting wireless power transmission based on information from receivers
US9912199B2 (en) 2012-07-06 2018-03-06 Energous Corporation Receivers for wireless power transmission
US9906065B2 (en) 2012-07-06 2018-02-27 Energous Corporation Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array
US9537357B2 (en) 2013-05-10 2017-01-03 Energous Corporation Wireless sound charging methods and systems for game controllers, based on pocket-forming
US9824815B2 (en) 2013-05-10 2017-11-21 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9252628B2 (en) 2013-05-10 2016-02-02 Energous Corporation Laptop computer as a transmitter for wireless charging
US9973021B2 (en) 2012-07-06 2018-05-15 Energous Corporation Receivers for wireless power transmission
US9419443B2 (en) 2013-05-10 2016-08-16 Energous Corporation Transducer sound arrangement for pocket-forming
US9941754B2 (en) 2012-07-06 2018-04-10 Energous Corporation Wireless power transmission with selective range
US9893554B2 (en) 2014-07-14 2018-02-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
JP5999328B2 (en) * 2012-07-12 2016-09-28 パナソニックIpマネジメント株式会社 Non-contact power supply system for lighting
JP2014217093A (en) * 2013-04-22 2014-11-17 清水建設株式会社 Leakage electromagnetic wave control system, and method of controlling the same
US9893555B1 (en) 2013-10-10 2018-02-13 Energous Corporation Wireless charging of tools using a toolbox transmitter
US9899861B1 (en) 2013-10-10 2018-02-20 Energous Corporation Wireless charging methods and systems for game controllers, based on pocket-forming
US9941707B1 (en) 2013-07-19 2018-04-10 Energous Corporation Home base station for multiple room coverage with multiple transmitters
US9935482B1 (en) 2014-02-06 2018-04-03 Energous Corporation Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device
US9876379B1 (en) 2013-07-11 2018-01-23 Energous Corporation Wireless charging and powering of electronic devices in a vehicle
US9966765B1 (en) 2013-06-25 2018-05-08 Energous Corporation Multi-mode transmitter
US9847677B1 (en) 2013-10-10 2017-12-19 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US9859757B1 (en) 2013-07-25 2018-01-02 Energous Corporation Antenna tile arrangements in electronic device enclosures
US9831718B2 (en) 2013-07-25 2017-11-28 Energous Corporation TV with integrated wireless power transmitter
US9979440B1 (en) 2013-07-25 2018-05-22 Energous Corporation Antenna tile arrangements configured to operate as one functional unit
US9843213B2 (en) 2013-08-06 2017-12-12 Energous Corporation Social power sharing for mobile devices based on pocket-forming
KR20150019227A (en) * 2013-08-13 2015-02-25 삼성전자주식회사 Controlling method and apparatus of wireless charging in wireless power transfer system
US9819230B2 (en) 2014-05-07 2017-11-14 Energous Corporation Enhanced receiver for wireless power transmission
US9806564B2 (en) 2014-05-07 2017-10-31 Energous Corporation Integrated rectifier and boost converter for wireless power transmission
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US9800172B1 (en) 2014-05-07 2017-10-24 Energous Corporation Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves
US9847679B2 (en) 2014-05-07 2017-12-19 Energous Corporation System and method for controlling communication between wireless power transmitter managers
US9882430B1 (en) 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9973008B1 (en) 2014-05-07 2018-05-15 Energous Corporation Wireless power receiver with boost converters directly coupled to a storage element
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US9793758B2 (en) 2014-05-23 2017-10-17 Energous Corporation Enhanced transmitter using frequency control for wireless power transmission
US9853692B1 (en) 2014-05-23 2017-12-26 Energous Corporation Systems and methods for wireless power transmission
US9899873B2 (en) 2014-05-23 2018-02-20 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9954374B1 (en) 2014-05-23 2018-04-24 Energous Corporation System and method for self-system analysis for detecting a fault in a wireless power transmission Network
US9876536B1 (en) 2014-05-23 2018-01-23 Energous Corporation Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers
US9966784B2 (en) 2014-06-03 2018-05-08 Energous Corporation Systems and methods for extending battery life of portable electronic devices charged by sound
US9991741B1 (en) 2014-07-14 2018-06-05 Energous Corporation System for tracking and reporting status and usage information in a wireless power management system
WO2016109312A1 (en) * 2014-12-29 2016-07-07 Energous Corporation System and method for providing health safety in a wireless power transmission system
US9941747B2 (en) 2014-07-14 2018-04-10 Energous Corporation System and method for manually selecting and deselecting devices to charge in a wireless power network
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US9871301B2 (en) 2014-07-21 2018-01-16 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US9838083B2 (en) 2014-07-21 2017-12-05 Energous Corporation Systems and methods for communication with remote management systems
US9876648B2 (en) 2014-08-21 2018-01-23 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9965009B1 (en) 2014-08-21 2018-05-08 Energous Corporation Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver
US9887584B1 (en) 2014-08-21 2018-02-06 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9917477B1 (en) 2014-08-21 2018-03-13 Energous Corporation Systems and methods for automatically testing the communication between power transmitter and wireless receiver
US9939864B1 (en) 2014-08-21 2018-04-10 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9891669B2 (en) 2014-08-21 2018-02-13 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
CN104244133A (en) * 2014-09-12 2014-12-24 南京邮电大学 Wireless passive headset
US9893535B2 (en) 2015-02-13 2018-02-13 Energous Corporation Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy
US9906275B2 (en) 2015-09-15 2018-02-27 Energous Corporation Identifying receivers in a wireless charging transmission field
US9941752B2 (en) 2015-09-16 2018-04-10 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9893538B1 (en) 2015-09-16 2018-02-13 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US9948135B2 (en) 2015-09-22 2018-04-17 Energous Corporation Systems and methods for identifying sensitive objects in a wireless charging transmission field
US9899744B1 (en) 2015-10-28 2018-02-20 Energous Corporation Antenna for wireless charging systems
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
WO2017112949A1 (en) * 2015-12-24 2017-06-29 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6437685B2 (en) * 2000-06-30 2002-08-20 Mitsubishi Denki Kabushiki Kaisha Cordless power transmission system, power transmission terminal and electrical appliance
US6456856B1 (en) * 1998-07-28 2002-09-24 Koninklijke Philips Electronics N.V. Mobile radio equipment forming antenna pattern to project user from radiation
US20040227057A1 (en) * 2003-04-17 2004-11-18 Ailocom Oy Wireless power transmission
US20050068019A1 (en) * 2003-09-30 2005-03-31 Sharp Kabushiki Kaisha Power supply system
US6967462B1 (en) * 2003-06-05 2005-11-22 Nasa Glenn Research Center Charging of devices by microwave power beaming
US6972543B1 (en) * 2003-08-21 2005-12-06 Stryker Corporation Series resonant inductive charging circuit
US20060158152A1 (en) * 2005-01-19 2006-07-20 Fuji Photo Film Co., Ltd. Print system and print terminal, and image saving system and image saving unit
US20070029965A1 (en) * 2005-07-25 2007-02-08 City University Of Hong Kong Rechargeable battery circuit and structure for compatibility with a planar inductive charging platform
US20070103110A1 (en) * 2005-10-24 2007-05-10 Samsung Electronics Co., Ltd. Apparatus and method of wirelessly sharing power by inductive method
US20080238364A1 (en) * 2007-04-02 2008-10-02 Visteon Global Technologies, Inc. System for inductive power transfer
US7443057B2 (en) * 2004-11-29 2008-10-28 Patrick Nunally Remote power charging of electronic devices
US20090085522A1 (en) * 2007-09-27 2009-04-02 Denso Corporation Charging system
US20090102292A1 (en) * 2007-09-19 2009-04-23 Nigel Power, Llc Biological Effects of Magnetic Power Transfer
US20090160261A1 (en) * 2007-12-19 2009-06-25 Nokia Corporation Wireless energy transfer
US20090284245A1 (en) * 2008-05-13 2009-11-19 Qualcomm Incorporated Wireless power transfer for appliances and equipments
US7741734B2 (en) * 2005-07-12 2010-06-22 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US7825543B2 (en) * 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
US20120299389A1 (en) * 2011-05-27 2012-11-29 Jaesung Lee Establishing data communication connection using wireless power transmission

Family Cites Families (169)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3743974A (en) 1971-12-22 1973-07-03 Rca Corp Antenna matching network utilizing an adjustable high-power inductor
JPS56116738U (en) 1980-02-08 1981-09-07
GB2178616B (en) 1985-07-26 1989-04-26 Marconi Co Ltd Impedance matching arrangement
CA2050068A1 (en) 1990-09-27 1992-03-28 Richard Wayne Glaser Power factor improving arrangement
US5195045A (en) 1991-02-27 1993-03-16 Astec America, Inc. Automatic impedance matching apparatus and method
US5340968A (en) 1991-05-07 1994-08-23 Nippondenso Company, Ltd. Information storage medium with electronic and visual areas
JP2894002B2 (en) * 1991-06-06 1999-05-24 株式会社デンソー Electronic tag of the inquiry device
DE69330516D1 (en) 1992-05-10 2001-09-06 Auckland Uniservices Ltd System for contactless energy transfer
US5297664A (en) 1992-06-26 1994-03-29 Tseng Ling Yuan Electric charging/parking meter
JP3344593B2 (en) 1992-10-13 2002-11-11 株式会社ソニー木原研究所 Wireless power supply
US5519262A (en) 1992-11-17 1996-05-21 Wood; Mark B. Near field power coupling system
US5396251A (en) 1992-12-15 1995-03-07 Texas Instruments Deutschland Gmbh Electronic transponder tuning procedure
DE4327642C2 (en) 1993-05-17 1998-09-24 Anatoli Stobbe Reader for a detection wafer
US5446447A (en) 1994-02-16 1995-08-29 Motorola, Inc. RF tagging system including RF tags with variable frequency resonant circuits
DE69527222D1 (en) 1994-03-24 2002-08-08 Hitachi Int Electric Inc Relay station for radio paging
JPH0944772A (en) * 1995-05-22 1997-02-14 Mk Seiko Co Ltd Device for preventing proximity to television screen
EP0757444B1 (en) 1995-07-31 2004-10-06 SGS-THOMSON MICROELECTRONICS S.r.l. Electrically driven switch, integrated circuit and electronic card using the same
JPH09103037A (en) 1995-10-05 1997-04-15 Nippon Ido Tsushin Kk Power supply unit, unit to be supplied with power and power supply system
JP3228097B2 (en) 1995-10-19 2001-11-12 株式会社日立製作所 Charging system and electric vehicles
US5680106A (en) 1995-10-27 1997-10-21 International Business Machines Corporation Multibit tag with stepwise variable frequencies
JPH09128110A (en) * 1995-10-31 1997-05-16 Matsushita Electric Ind Co Ltd Personal computer
US5991608A (en) 1996-04-16 1999-11-23 U.S. Phillips Corporation Portable communication device with optimized transmission loss
WO1997047065A1 (en) 1996-06-04 1997-12-11 Murphy, Timothy, M. A device for transferring electromagnetic energy between primary and secondary coils
US6172608B1 (en) * 1996-06-19 2001-01-09 Integrated Silicon Design Pty. Ltd. Enhanced range transponder system
JP3392016B2 (en) 1996-09-13 2003-03-31 株式会社日立製作所 Power transmission system, as well as power transmission and information communication system
EP0829940A2 (en) 1996-09-13 1998-03-18 Hitachi, Ltd. Power transmission system, IC card and information communication system using IC card
JPH10187916A (en) 1996-12-27 1998-07-21 Rohm Co Ltd Responder for contactless ic card communication system
JP4063912B2 (en) 1997-04-10 2008-03-19 美和ロック株式会社 No wiring electric lock
US6164532A (en) * 1997-05-15 2000-12-26 Hitachi, Ltd. Power transmission system, power transmission/communication system and reader and/or writer
JP4009688B2 (en) * 1997-10-31 2007-11-21 竹中エンジニアリング株式会社 Object detector having a wireless power supply
EP1042731B1 (en) 1997-12-31 2001-10-04 On Track Innovations Ltd. Contact/contactless smart card having customizable antenna interface
JPH11244864A (en) * 1998-03-04 1999-09-14 Shinsei:Kk Drinking water reforming device
DE69936467D1 (en) 1998-03-24 2007-08-16 Seiko Epson Corp Electronic device process, method for controlling an electronic device, and method for determining the charge-in rechargeable battery, and method for charging a rechargeable battery
US6515919B1 (en) 1998-08-10 2003-02-04 Applied Wireless Identifications Group, Inc. Radio frequency powered voltage pump for programming EEPROM
US6094084A (en) 1998-09-04 2000-07-25 Nortel Networks Corporation Narrowband LC folded cascode structure
DE29816725U1 (en) 1998-09-17 1999-01-14 Chao Wen Chung Charging device for mobile phones
US6840440B2 (en) 1998-11-11 2005-01-11 Mitsubishi Materials Corporation Identifying system of overlapped tag
JP2000166276A (en) 1998-11-26 2000-06-16 Seiko Epson Corp Controlling device of robot
CA2265425A1 (en) 1999-03-12 2000-09-12 James W. Haslett Active tunable inductor
JP2001005938A (en) 1999-04-19 2001-01-12 Denso Corp Non-contact ic card
US6127799A (en) 1999-05-14 2000-10-03 Gte Internetworking Incorporated Method and apparatus for wireless powering and recharging
US7212414B2 (en) 1999-06-21 2007-05-01 Access Business Group International, Llc Adaptive inductive power supply
US7522878B2 (en) 1999-06-21 2009-04-21 Access Business Group International Llc Adaptive inductive power supply with communication
US6134130A (en) 1999-07-19 2000-10-17 Motorola, Inc. Power reception circuits for a device receiving an AC power signal
US6424232B1 (en) 1999-11-30 2002-07-23 Advanced Energy's Voorhees Operations Method and apparatus for matching a variable load impedance with an RF power generator impedance
JP3488166B2 (en) 2000-02-24 2004-01-19 日本電信電話株式会社 Contactless ic card system and its reader writer and the contactless ic card
JP2001275278A (en) 2000-03-28 2001-10-05 Sanyo Electric Co Ltd Standby power saving unit
JP4240748B2 (en) * 2000-04-25 2009-03-18 パナソニック電工株式会社 Non-contact power supply device
JP2001307032A (en) 2000-04-27 2001-11-02 Matsushita Electric Ind Co Ltd Portable terminal
US6291968B1 (en) 2000-05-08 2001-09-18 Lear Corporation System for automatically charging the battery of a remote transmitter for use in a vehicle security system
US6650213B1 (en) 2000-06-02 2003-11-18 Yamatake Corporation Electromagnetic-induction coupling apparatus
JP3650317B2 (en) 2000-08-23 2005-05-18 日本電信電話株式会社 Electromagnetic field receiving device
US6480110B2 (en) 2000-12-01 2002-11-12 Microchip Technology Incorporated Inductively tunable antenna for a radio frequency identification tag
US6498455B2 (en) 2001-02-22 2002-12-24 Gary Skuro Wireless battery charging system for existing hearing aids using a dynamic battery and a charging processor unit
US20040204781A1 (en) 2001-06-04 2004-10-14 Kye Systems Corp. Antenna device for a wireless device
JP2002354712A (en) 2001-05-22 2002-12-06 Shinko Electric Co Ltd Noncontact power feeder device
JP2003061267A (en) 2001-08-10 2003-02-28 Aichi Electric Co Ltd Outdoor illumination drive
JP2003079076A (en) * 2001-09-05 2003-03-14 Citizen Watch Co Ltd Wireless charging system composed of portable terminal and cradle
JP3983692B2 (en) 2002-03-19 2007-09-26 株式会社タキオン Microwave power transmission device, microwave power receiving device, a microwave power transmission method and microwave transmission systems
US6906495B2 (en) 2002-05-13 2005-06-14 Splashpower Limited Contact-less power transfer
US7239110B2 (en) * 2002-05-13 2007-07-03 Splashpower Limited Primary units, methods and systems for contact-less power transfer
JP4403285B2 (en) * 2002-05-13 2010-01-27 アムウェイ(ヨーロッパ)リミテッドAmway(Europe)Limited Improvement over non-contact power transmission
GB2388716B (en) 2002-05-13 2004-10-20 Splashpower Ltd Improvements relating to contact-less power transfer
US6960968B2 (en) 2002-06-26 2005-11-01 Koninklijke Philips Electronics N.V. Planar resonator for wireless power transfer
US7428438B2 (en) 2002-06-28 2008-09-23 Boston Scientific Neuromodulation Corporation Systems and methods for providing power to a battery in an implantable stimulator
US6556415B1 (en) 2002-06-28 2003-04-29 Industrial Technologies Research Institute Tunable/variable passive microelectronic components
US7256695B2 (en) 2002-09-23 2007-08-14 Microstrain, Inc. Remotely powered and remotely interrogated wireless digital sensor telemetry system
US7019617B2 (en) 2002-10-02 2006-03-28 Battelle Memorial Institute Radio frequency identification devices, backscatter communication device wake-up methods, communication device wake-up methods and a radio frequency identification device wake-up method
GB0225008D0 (en) * 2002-10-28 2002-12-04 Zap Wireless Technologies Ltd Improvements relating to automatically configuring rechargeable devices
EP1420357B1 (en) 2002-11-12 2006-06-14 Sharp Kabushiki Kaisha Electromagnetic coupling characteristic adjustment method in non-contact power supply system, power supply device, and non-contact power supply system
KR100466542B1 (en) 2002-11-13 2005-01-15 한국전자통신연구원 Stacked Variable Inductor
US8292433B2 (en) * 2003-03-21 2012-10-23 Queen's University At Kingston Method and apparatus for communication between humans and devices
US7023395B2 (en) 2003-08-05 2006-04-04 Matsushita Electric Industrial Co., Ltd. Antenna and communication system using the same
JP2005110409A (en) * 2003-09-30 2005-04-21 Sharp Corp Power supply system
JP4036813B2 (en) * 2003-09-30 2008-01-23 シャープ株式会社 A contactless power supply system
US7084605B2 (en) 2003-10-29 2006-08-01 University Of Pittsburgh Energy harvesting circuit
JP4501416B2 (en) 2003-11-17 2010-07-14 Tdk株式会社 The charging device and the path case for Ic card
US6940466B2 (en) 2003-11-25 2005-09-06 Starkey Laboratories, Inc. Enhanced magnetic field communication system
KR20070032271A (en) 2003-11-25 2007-03-21 스타키 러보러토리즈 인코포레이티드 Enhanced magnetic field communication system
JP4192775B2 (en) 2003-12-05 2008-12-10 株式会社ダイフク Non-contact power supply equipment
US7375492B2 (en) 2003-12-12 2008-05-20 Microsoft Corporation Inductively charged battery pack
US7378817B2 (en) * 2003-12-12 2008-05-27 Microsoft Corporation Inductive power adapter
US7283922B2 (en) 2004-01-12 2007-10-16 Kulite Semiconductor Products, Inc. Transducer employing wireless transmissions for sending and receiving signals
EP1555752A1 (en) 2004-01-14 2005-07-20 Dialog Semiconductor GmbH High Q linear controlled variable capacitor using translinear amplifier
JP2005208754A (en) 2004-01-20 2005-08-04 Matsushita Electric Ind Co Ltd Non-contact ic card communication equipment
JP3777577B2 (en) * 2004-02-12 2006-05-24 関西ティー・エル・オー株式会社 The wireless power supply system for mobile devices it
JP2005300219A (en) 2004-04-07 2005-10-27 Fuji Photo Film Co Ltd Radio tag, radio tag posture sensing device, and radio tag posture sensing system
DE602005016097D1 (en) 2004-04-30 2009-10-01 Gyland Olav Appliances and method for non-contact-energy transmission
CN1950914A (en) * 2004-05-04 2007-04-18 皇家飞利浦电子股份有限公司 A wireless powering device, an energizable load, a wireless system and a method for a wireless energy transfer
EP1751834B1 (en) 2004-05-11 2009-12-02 Access Business Group International LLC Controlling inductive power transfer systems
CN1674405A (en) 2004-06-11 2005-09-28 深圳市丕希软件科技有限公司 Non-contact type power supply method for electric device and apparatus thereof
KR20040072581A (en) 2004-07-29 2004-08-18 (주)제이씨 프로텍 An amplification relay device of electromagnetic wave and a radio electric power conversion apparatus using the above device
WO2006022365A1 (en) 2004-08-27 2006-03-02 Hokushin Denki Co., Ltd. Non-contact power transmission device
US7167090B1 (en) 2004-09-17 2007-01-23 Massachusetts Institute Of Technology Far-field RF power extraction circuits and systems
US7426373B2 (en) 2005-01-11 2008-09-16 The Boeing Company Electrically tuned resonance circuit using piezo and magnetostrictive materials
GB0501115D0 (en) 2005-01-19 2005-02-23 Innovision Res & Tech Plc Combined power coupling and rf communication apparatus
US20060207753A1 (en) 2005-03-18 2006-09-21 Homayoun Sanatgar Intank oil cooler
JP2006314181A (en) * 2005-05-09 2006-11-16 Sony Corp Non-contact charger, non-contact charging system, and non-contact charging method
KR20060122217A (en) 2005-05-25 2006-11-30 엘지전자 주식회사 Circuit for compensating matching automatically in mobile communication terminal
JP2006334208A (en) 2005-06-03 2006-12-14 Matsushita Electric Ind Co Ltd Multifunctional processor
CA2511051A1 (en) 2005-06-28 2006-12-29 Roger J. Soar Contactless battery charging apparel
KR20080031391A (en) 2005-07-08 2008-04-08 파워캐스트 코포레이션 Power transmission system, apparatus and method with communication
US20070021140A1 (en) 2005-07-22 2007-01-25 Keyes Marion A Iv Wireless power transmission systems and methods
US7548040B2 (en) 2005-07-28 2009-06-16 Zerog Wireless, Inc. Wireless battery charging of electronic devices such as wireless headsets/headphones
KR100792311B1 (en) 2005-07-30 2008-01-07 엘에스전선 주식회사 Rechargeable power supply, rechargeable device, battery device, contactless recharger system and method for charging rechargeable battery cell
KR100691255B1 (en) 2005-08-08 2007-03-12 (주)제이씨 프로텍 A Small and Light Wireless Power Transmitting and Receiving Device
US7269038B2 (en) 2005-09-12 2007-09-11 Fairchild Semiconductor Corporation Vrms and rectified current sense full-bridge synchronous-rectification integrated with PFC
JP2007089341A (en) 2005-09-22 2007-04-05 Fujifilm Corp Charging system, electronic equipment, charging device, and charging method for the electronic equipment
FR2892212A1 (en) 2005-10-17 2007-04-20 St Microelectronics Sa NFC reader having a passive mode has low electrical consumption
JP2007125926A (en) 2005-11-01 2007-05-24 Hitachi Plant Technologies Ltd Non-contact power supplying method and non-contact power supplying device
US7369056B2 (en) 2005-11-16 2008-05-06 Hendrix Wire & Cable, Inc. Photoelectric controller for electric street lighting
US7711337B2 (en) 2006-01-14 2010-05-04 Paratek Microwave, Inc. Adaptive impedance matching module (AIMM) control architectures
KR20070076071A (en) 2006-01-17 2007-07-24 삼성전자주식회사 Contactless card and contactless card system
US9130602B2 (en) 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
EP1992077B1 (en) * 2006-01-18 2018-03-21 QUALCOMM Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
US8447234B2 (en) * 2006-01-18 2013-05-21 Qualcomm Incorporated Method and system for powering an electronic device via a wireless link
US7952322B2 (en) 2006-01-31 2011-05-31 Mojo Mobility, Inc. Inductive power source and charging system
KR100792308B1 (en) 2006-01-31 2008-01-07 엘에스전선 주식회사 A contact-less power supply, contact-less charger systems and method for charging rechargeable battery cell
WO2007095267A3 (en) 2006-02-13 2008-08-21 Charles E Greene Implementation of an rf power transmitter and network
KR100992853B1 (en) 2006-03-06 2010-11-09 삼성전자주식회사 Broadcast signal processing apparatus and control method thereof
CN101385218A (en) 2006-03-15 2009-03-11 株式会社半导体能源研究所 Electric power supply system and electric power supply system for motor vehicle
JP5041830B2 (en) * 2006-03-15 2012-10-03 株式会社半導体エネルギー研究所 Automobile
US7595732B2 (en) 2006-03-31 2009-09-29 Broadcom Corporation Power generating circuit
JP4027967B2 (en) 2006-04-14 2007-12-26 松下電器産業株式会社 Polarized reconfigurable, variable directivity antenna
JP4239205B2 (en) 2006-06-08 2009-03-18 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 Portable communication terminal
WO2007146164A3 (en) 2006-06-14 2008-07-10 Powercast Corp Wireless power transmission
US7647510B2 (en) 2006-06-22 2010-01-12 Silicon Laboratories, Inc. System and method of classification in power over ethernet systems
WO2007150070A3 (en) 2006-06-23 2008-04-24 Danaher Corp Wireless electromagnetic parasitic power transfer
US7570220B2 (en) 2006-06-27 2009-08-04 Sensormatic Electronics Corporation Resonant circuit tuning system with dynamic impedance matching
US20070296548A1 (en) 2006-06-27 2007-12-27 Hall Stewart E Resonant circuit tuning system using magnetic field coupled reactive elements
US7876067B2 (en) 2006-08-04 2011-01-25 Intersil Americas Inc. High frequency connector-less charging scheme
ES2655870T3 (en) 2006-08-09 2018-02-22 Mbda Uk Limited Inductive power system
US7762471B2 (en) 2006-09-07 2010-07-27 Mastercard International, Inc. Proximity payment card with cost-effective connection between user-actuatable input switch and RFID IC
US9129741B2 (en) 2006-09-14 2015-09-08 Qualcomm Incorporated Method and apparatus for wireless power transmission
US7880337B2 (en) 2006-10-25 2011-02-01 Laszlo Farkas High power wireless resonant energy transfer system
US7586385B2 (en) 2006-11-18 2009-09-08 Rfmicron, Inc. Method and apparatus for varying an impedance
WO2008085503A3 (en) 2007-01-05 2008-09-18 Powercast Corp Powering cell phones and similar devices using rf energy harvesting
DE102007010896A1 (en) 2007-03-06 2008-09-11 Giesecke & Devrient Gmbh An apparatus for driving an actuator
JP2008250713A (en) 2007-03-30 2008-10-16 Renesas Technology Corp Semiconductor integrated circuit device
KR100903464B1 (en) 2007-04-25 2009-06-18 엘에스전선 주식회사 Contact-less chargeable battery in capable of lessening power loss and Battery charging set having the same
JP2008278592A (en) 2007-04-26 2008-11-13 Ntt Docomo Inc Apparatus for charging two or more portable devices
US8115448B2 (en) 2007-06-01 2012-02-14 Michael Sasha John Systems and methods for wireless power
US8179102B2 (en) 2007-06-20 2012-05-15 Motorola Mobility, Inc. Devices, systems, and methods for priority charging of a group of electronic devices
US7962186B2 (en) 2007-10-24 2011-06-14 Nokia Corporation Method and apparatus for transferring electrical power in an electronic device
CN107086677A (en) * 2007-11-28 2017-08-22 高通股份有限公司 Wireless power range increase using parasitic antennas
WO2009069844A1 (en) 2007-11-30 2009-06-04 Chun-Kil Jung Multiple non-contact charging system of wireless power transmision and control method thereof
JP4974171B2 (en) 2007-12-07 2012-07-11 ソニーモバイルコミュニケーションズ株式会社 The non-contact wireless communication apparatus, the resonance frequency of the non-contact wireless communication antenna adjusting method and a mobile terminal device
US20090153099A1 (en) * 2007-12-17 2009-06-18 Energy Recovery Technology, Llc Method of electric energy transfer between a vehicle and a stationary collector
CN101601169B (en) 2007-12-26 2013-08-14 株式会社村田制作所 Ic antenna apparatus and radio device
US9128687B2 (en) * 2008-01-10 2015-09-08 Qualcomm Incorporated Wireless desktop IT environment
US8487479B2 (en) 2008-02-24 2013-07-16 Qualcomm Incorporated Ferrite antennas for wireless power transfer
US8855554B2 (en) 2008-03-05 2014-10-07 Qualcomm Incorporated Packaging and details of a wireless power device
US8320143B2 (en) 2008-04-15 2012-11-27 Powermat Technologies, Ltd. Bridge synchronous rectifier
US20100038970A1 (en) 2008-04-21 2010-02-18 Nigel Power, Llc Short Range Efficient Wireless Power Transfer
US8278784B2 (en) 2008-07-28 2012-10-02 Qualcomm Incorporated Wireless power transmission for electronic devices
US8901880B2 (en) * 2008-08-19 2014-12-02 Qualcomm Incorporated Wireless power transmission for portable wireless power charging
US8947041B2 (en) 2008-09-02 2015-02-03 Qualcomm Incorporated Bidirectional wireless power transmission
KR101630890B1 (en) 2008-09-10 2016-06-15 콤랩스. 인크. Wide area positioning system
US8400017B2 (en) * 2008-09-27 2013-03-19 Witricity Corporation Wireless energy transfer for computer peripheral applications
US8629578B2 (en) * 2008-09-27 2014-01-14 Witricity Corporation Wireless energy transfer systems
US8004236B2 (en) 2008-11-14 2011-08-23 Industrial Technology Research Institute Contactless charging device and contactless charging method
US8497658B2 (en) 2009-01-22 2013-07-30 Qualcomm Incorporated Adaptive power control for wireless charging of devices
WO2010106636A1 (en) * 2009-03-17 2010-09-23 富士通株式会社 Wireless power supply system
US8390512B2 (en) 2009-06-05 2013-03-05 Qualcomm Incorporated On demand positioning
KR101623838B1 (en) 2010-03-29 2016-06-07 삼성전자주식회사 Power reciveing apparatus and wireless power transiver
WO2011122003A1 (en) 2010-03-30 2011-10-06 パナソニック株式会社 Wireless power transmission system
CN102439820B (en) 2010-05-03 2016-08-03 松下知识产权经营株式会社 Generator, the power generation system and the wireless power transmission apparatus
KR101184503B1 (en) 2010-08-13 2012-09-20 삼성전기주식회사 Wireless power transmission apparatus and transmission method thereof
KR101782354B1 (en) 2010-08-30 2017-09-27 삼성전자주식회사 Apparatus and method for resonant power transmission and resonant power reception

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456856B1 (en) * 1998-07-28 2002-09-24 Koninklijke Philips Electronics N.V. Mobile radio equipment forming antenna pattern to project user from radiation
US6437685B2 (en) * 2000-06-30 2002-08-20 Mitsubishi Denki Kabushiki Kaisha Cordless power transmission system, power transmission terminal and electrical appliance
US20040227057A1 (en) * 2003-04-17 2004-11-18 Ailocom Oy Wireless power transmission
US6967462B1 (en) * 2003-06-05 2005-11-22 Nasa Glenn Research Center Charging of devices by microwave power beaming
US6972543B1 (en) * 2003-08-21 2005-12-06 Stryker Corporation Series resonant inductive charging circuit
US20050068019A1 (en) * 2003-09-30 2005-03-31 Sharp Kabushiki Kaisha Power supply system
US7443057B2 (en) * 2004-11-29 2008-10-28 Patrick Nunally Remote power charging of electronic devices
US20060158152A1 (en) * 2005-01-19 2006-07-20 Fuji Photo Film Co., Ltd. Print system and print terminal, and image saving system and image saving unit
US7741734B2 (en) * 2005-07-12 2010-06-22 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US7825543B2 (en) * 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
US20070029965A1 (en) * 2005-07-25 2007-02-08 City University Of Hong Kong Rechargeable battery circuit and structure for compatibility with a planar inductive charging platform
US20070103110A1 (en) * 2005-10-24 2007-05-10 Samsung Electronics Co., Ltd. Apparatus and method of wirelessly sharing power by inductive method
US20080238364A1 (en) * 2007-04-02 2008-10-02 Visteon Global Technologies, Inc. System for inductive power transfer
US20090102292A1 (en) * 2007-09-19 2009-04-23 Nigel Power, Llc Biological Effects of Magnetic Power Transfer
US20090085522A1 (en) * 2007-09-27 2009-04-02 Denso Corporation Charging system
US20090160261A1 (en) * 2007-12-19 2009-06-25 Nokia Corporation Wireless energy transfer
US20090284245A1 (en) * 2008-05-13 2009-11-19 Qualcomm Incorporated Wireless power transfer for appliances and equipments
US20120299389A1 (en) * 2011-05-27 2012-11-29 Jaesung Lee Establishing data communication connection using wireless power transmission

Cited By (318)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8400022B2 (en) 2005-07-12 2013-03-19 Massachusetts Institute Of Technology Wireless energy transfer with high-Q similar resonant frequency resonators
US8097983B2 (en) 2005-07-12 2012-01-17 Massachusetts Institute Of Technology Wireless energy transfer
US20080278264A1 (en) * 2005-07-12 2008-11-13 Aristeidis Karalis Wireless energy transfer
US20110227530A1 (en) * 2005-07-12 2011-09-22 Aristeidis Karalis Wireless power transmission for portable wireless power charging
US20110227528A1 (en) * 2005-07-12 2011-09-22 Aristeidis Karalis Adaptive matching, tuning, and power transfer of wireless power
US20090195332A1 (en) * 2005-07-12 2009-08-06 John D Joannopoulos Wireless non-radiative energy transfer
US20090195333A1 (en) * 2005-07-12 2009-08-06 John D Joannopoulos Wireless non-radiative energy transfer
US8022576B2 (en) 2005-07-12 2011-09-20 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US20110198939A1 (en) * 2005-07-12 2011-08-18 Aristeidis Karalis Flat, asymmetric, and e-field confined wireless power transfer apparatus and method thereof
US8395282B2 (en) 2005-07-12 2013-03-12 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US20090224856A1 (en) * 2005-07-12 2009-09-10 Aristeidis Karalis Wireless energy transfer
US20090267709A1 (en) * 2005-07-12 2009-10-29 Joannopoulos John D Wireless non-radiative energy transfer
US20090267710A1 (en) * 2005-07-12 2009-10-29 Joannopoulos John D Wireless non-radiative energy transfer
US20110193419A1 (en) * 2005-07-12 2011-08-11 Aristeidis Karalis Wireless energy transfer
US20110181122A1 (en) * 2005-07-12 2011-07-28 Aristeidis Karalis Wirelessly powered speaker
US8395283B2 (en) 2005-07-12 2013-03-12 Massachusetts Institute Of Technology Wireless energy transfer over a distance at high efficiency
US9065286B2 (en) 2005-07-12 2015-06-23 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US20110162895A1 (en) * 2005-07-12 2011-07-07 Aristeidis Karalis Noncontact electric power receiving device, noncontact electric power transmitting device, noncontact electric power feeding system, and electrically powered vehicle
US20110148219A1 (en) * 2005-07-12 2011-06-23 Aristeidis Karalis Short range efficient wireless power transfer
US20110140544A1 (en) * 2005-07-12 2011-06-16 Aristeidis Karalis Adaptive wireless power transfer apparatus and method thereof
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US9450421B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US8400020B2 (en) 2005-07-12 2013-03-19 Massachusetts Institute Of Technology Wireless energy transfer with high-Q devices at variable distances
US20100096934A1 (en) * 2005-07-12 2010-04-22 Joannopoulos John D Wireless energy transfer with high-q similar resonant frequency resonators
US20100102640A1 (en) * 2005-07-12 2010-04-29 Joannopoulos John D Wireless energy transfer to a moving device between high-q resonators
US20100102639A1 (en) * 2005-07-12 2010-04-29 Joannopoulos John D Wireless non-radiative energy transfer
US20100102641A1 (en) * 2005-07-12 2010-04-29 Joannopoulos John D Wireless energy transfer across variable distances
US9450422B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless energy transfer
US20100117455A1 (en) * 2005-07-12 2010-05-13 Joannopoulos John D Wireless energy transfer using coupled resonators
US20100123355A1 (en) * 2005-07-12 2010-05-20 Joannopoulos John D Wireless energy transfer with high-q sub-wavelength resonators
US20100133919A1 (en) * 2005-07-12 2010-06-03 Joannopoulos John D Wireless energy transfer across variable distances with high-q capacitively-loaded conducting-wire loops
US8791599B2 (en) 2005-07-12 2014-07-29 Massachusetts Institute Of Technology Wireless energy transfer to a moving device between high-Q resonators
US7741734B2 (en) 2005-07-12 2010-06-22 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US20100277005A1 (en) * 2005-07-12 2010-11-04 Aristeidis Karalis Wireless powering and charging station
US8772971B2 (en) 2005-07-12 2014-07-08 Massachusetts Institute Of Technology Wireless energy transfer across variable distances with high-Q capacitively-loaded conducting-wire loops
US8772972B2 (en) 2005-07-12 2014-07-08 Massachusetts Institute Of Technology Wireless energy transfer across a distance to a moving device
US8766485B2 (en) 2005-07-12 2014-07-01 Massachusetts Institute Of Technology Wireless energy transfer over distances to a moving device
US8760008B2 (en) 2005-07-12 2014-06-24 Massachusetts Institute Of Technology Wireless energy transfer over variable distances between resonators of substantially similar resonant frequencies
US9509147B2 (en) 2005-07-12 2016-11-29 Massachusetts Institute Of Technology Wireless energy transfer
US20070222542A1 (en) * 2005-07-12 2007-09-27 Joannopoulos John D Wireless non-radiative energy transfer
US20110089895A1 (en) * 2005-07-12 2011-04-21 Aristeidis Karalis Wireless energy transfer
US8400023B2 (en) 2005-07-12 2013-03-19 Massachusetts Institute Of Technology Wireless energy transfer with high-Q capacitively loaded conducting loops
US9831722B2 (en) 2005-07-12 2017-11-28 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US8076800B2 (en) 2005-07-12 2011-12-13 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US20110074347A1 (en) * 2005-07-12 2011-03-31 Aristeidis Karalis Wireless energy transfer
US8760007B2 (en) 2005-07-12 2014-06-24 Massachusetts Institute Of Technology Wireless energy transfer with high-Q to more than one device
US20100237707A1 (en) * 2005-07-12 2010-09-23 Aristeidis Karalis Increasing the q factor of a resonator
US20100237708A1 (en) * 2005-07-12 2010-09-23 Aristeidis Karalis Transmitters and receivers for wireless energy transfer
US20100253152A1 (en) * 2005-07-12 2010-10-07 Aristeidis Karalis Long range low frequency resonator
US20110074218A1 (en) * 2005-07-12 2011-03-31 Aristedis Karalis Wireless energy transfer
US20100264745A1 (en) * 2005-07-12 2010-10-21 Aristeidis Karalis Resonators for wireless power applications
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
US8400021B2 (en) 2005-07-12 2013-03-19 Massachusetts Institute Of Technology Wireless energy transfer with high-Q sub-wavelength resonators
US8400018B2 (en) 2005-07-12 2013-03-19 Massachusetts Institute Of Technology Wireless energy transfer with high-Q at high efficiency
US8400019B2 (en) 2005-07-12 2013-03-19 Massachusetts Institute Of Technology Wireless energy transfer with high-Q from more than one source
US20100327660A1 (en) * 2005-07-12 2010-12-30 Aristeidis Karalis Resonators and their coupling characteristics for wireless power transfer via magnetic coupling
US20100327661A1 (en) * 2005-07-12 2010-12-30 Aristeidis Karalis Packaging and details of a wireless power device
US20110012431A1 (en) * 2005-07-12 2011-01-20 Aristeidis Karalis Resonators for wireless power transfer
US20110018361A1 (en) * 2005-07-12 2011-01-27 Aristeidis Karalis Tuning and gain control in electro-magnetic power systems
US20110025131A1 (en) * 2005-07-12 2011-02-03 Aristeidis Karalis Packaging and details of a wireless power device
US8400024B2 (en) 2005-07-12 2013-03-19 Massachusetts Institute Of Technology Wireless energy transfer across variable distances
US8084889B2 (en) 2005-07-12 2011-12-27 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US8629654B2 (en) 2006-01-31 2014-01-14 Mojo Mobility, Inc. System and method for inductive charging of portable devices
US8169185B2 (en) 2006-01-31 2012-05-01 Mojo Mobility, Inc. System and method for inductive charging of portable devices
US8947047B2 (en) 2006-01-31 2015-02-03 Mojo Mobility, Inc. Efficiency and flexibility in inductive charging
US9577440B2 (en) 2006-01-31 2017-02-21 Mojo Mobility, Inc. Inductive power source and charging system
US9276437B2 (en) 2006-01-31 2016-03-01 Mojo Mobility, Inc. System and method that provides efficiency and flexiblity in inductive charging
US9793721B2 (en) 2006-01-31 2017-10-17 Mojo Mobility, Inc. Distributed charging of mobile devices
US8629652B2 (en) 2006-06-01 2014-01-14 Mojo Mobility, Inc. Power source, charging system, and inductive receiver for mobile devices
US9461501B2 (en) 2006-06-01 2016-10-04 Mojo Mobility, Inc. Power source, charging system, and inductive receiver for mobile devices
US20070285619A1 (en) * 2006-06-09 2007-12-13 Hiroyuki Aoki Fundus Observation Device, An Ophthalmologic Image Processing Unit, An Ophthalmologic Image Processing Program, And An Ophthalmologic Image Processing Method
US9095729B2 (en) 2007-06-01 2015-08-04 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9318898B2 (en) 2007-06-01 2016-04-19 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9943697B2 (en) 2007-06-01 2018-04-17 Witricity Corporation Power generation for implantable devices
US9101777B2 (en) 2007-06-01 2015-08-11 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9843230B2 (en) 2007-06-01 2017-12-12 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US8805530B2 (en) 2007-06-01 2014-08-12 Witricity Corporation Power generation for implantable devices
US20090102292A1 (en) * 2007-09-19 2009-04-23 Nigel Power, Llc Biological Effects of Magnetic Power Transfer
US8614526B2 (en) 2007-09-19 2013-12-24 Qualcomm Incorporated System and method for magnetic power transfer
US8294300B2 (en) * 2008-01-14 2012-10-23 Qualcomm Incorporated Wireless powering and charging station
US20090179502A1 (en) * 2008-01-14 2009-07-16 Nigelpower, Llc Wireless powering and charging station
US20090212638A1 (en) * 2008-02-25 2009-08-27 L & P Property Management Company Inductively coupled work surfaces
US20090212639A1 (en) * 2008-02-25 2009-08-27 L & P Property Management Company Inductively coupled consoles
US20090212737A1 (en) * 2008-02-25 2009-08-27 L & P Property Management Company Inductively coupled shelving and storage containers
US8421407B2 (en) 2008-02-25 2013-04-16 L & P Property Management Company Inductively coupled work surfaces
US8228026B2 (en) 2008-02-25 2012-07-24 L & P Property Management Company Inductively coupled shelving and storage containers
US9461714B2 (en) 2008-03-05 2016-10-04 Qualcomm Incorporated Packaging and details of a wireless power device
US9450456B2 (en) 2008-04-21 2016-09-20 Qualcomm Incorporated System and method for efficient wireless power transfer to devices located on and outside a charging base
US9979230B2 (en) 2008-04-21 2018-05-22 Qualcomm Incorporated Short range efficient wireless power transfer including a charging base transmitter built into a desktop component and a power relay integrated into a desktop
US8487478B2 (en) 2008-05-13 2013-07-16 Qualcomm Incorporated Wireless power transfer for appliances and equipments
US8965461B2 (en) 2008-05-13 2015-02-24 Qualcomm Incorporated Reverse link signaling via receive antenna impedance modulation
US20090286475A1 (en) * 2008-05-13 2009-11-19 Qualcomm Incorporated Signaling charging in wireless power environment
US9130407B2 (en) 2008-05-13 2015-09-08 Qualcomm Incorporated Signaling charging in wireless power environment
US9178387B2 (en) 2008-05-13 2015-11-03 Qualcomm Incorporated Receive antenna for wireless power transfer
US9184632B2 (en) 2008-05-13 2015-11-10 Qualcomm Incorporated Wireless power transfer for furnishings and building elements
US9190875B2 (en) 2008-05-13 2015-11-17 Qualcomm Incorporated Method and apparatus with negative resistance in wireless power transfers
US9236771B2 (en) 2008-05-13 2016-01-12 Qualcomm Incorporated Method and apparatus for adaptive tuning of wireless power transfer
US20090286470A1 (en) * 2008-05-13 2009-11-19 Qualcomm Incorporated Repeaters for enhancement of wireless power transfer
US20090284082A1 (en) * 2008-05-13 2009-11-19 Qualcomm Incorporated Method and apparatus with negative resistance in wireless power transfers
US20100201202A1 (en) * 2008-05-13 2010-08-12 Qualcomm Incorporated Wireless power transfer for furnishings and building elements
US8878393B2 (en) 2008-05-13 2014-11-04 Qualcomm Incorporated Wireless power transfer for vehicles
US9991747B2 (en) 2008-05-13 2018-06-05 Qualcomm Incorporated Signaling charging in wireless power environment
US20100201189A1 (en) * 2008-05-13 2010-08-12 Qualcomm Incorporated Wireless power transfer for vehicles
US20090284227A1 (en) * 2008-05-13 2009-11-19 Qualcomm Incorporated Receive antenna for wireless power transfer
US20090284220A1 (en) * 2008-05-13 2009-11-19 Qualcomm Incorporated Method and apparatus for adaptive tuning of wireless power transfer
US20090284245A1 (en) * 2008-05-13 2009-11-19 Qualcomm Incorporated Wireless power transfer for appliances and equipments
US20090284218A1 (en) * 2008-05-13 2009-11-19 Qualcomm Incorporated Method and apparatus for an enlarged wireless charging area
US20090284369A1 (en) * 2008-05-13 2009-11-19 Qualcomm Incorporated Transmit power control for a wireless charging system
US20090286476A1 (en) * 2008-05-13 2009-11-19 Qualcomm Incorporated Reverse link signaling via receive antenna impedance modulation
US9954399B2 (en) 2008-05-13 2018-04-24 Qualcomm Incorporated Reverse link signaling via receive antenna impedance modulation
US8892035B2 (en) 2008-05-13 2014-11-18 Qualcomm Incorporated Repeaters for enhancement of wireless power transfer
US8629650B2 (en) 2008-05-13 2014-01-14 Qualcomm Incorporated Wireless power transfer using multiple transmit antennas
US8611815B2 (en) 2008-05-13 2013-12-17 Qualcomm Incorporated Repeaters for enhancement of wireless power transfer
US8076801B2 (en) 2008-05-14 2011-12-13 Massachusetts Institute Of Technology Wireless energy transfer, including interference enhancement
US20090284083A1 (en) * 2008-05-14 2009-11-19 Aristeidis Karalis Wireless energy transfer, including interference enhancement
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US9596005B2 (en) 2008-09-27 2017-03-14 Witricity Corporation Wireless energy transfer using variable size resonators and systems monitoring
US9584189B2 (en) 2008-09-27 2017-02-28 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US8461720B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape fields and reduce loss
US20100231340A1 (en) * 2008-09-27 2010-09-16 Ron Fiorello Wireless energy transfer resonator enclosures
US8461719B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer systems
US8461721B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using object positioning for low loss
US8466583B2 (en) 2008-09-27 2013-06-18 Witricity Corporation Tunable wireless energy transfer for outdoor lighting applications
US8471410B2 (en) 2008-09-27 2013-06-25 Witricity Corporation Wireless energy transfer over distance using field shaping to improve the coupling factor
US8476788B2 (en) 2008-09-27 2013-07-02 Witricity Corporation Wireless energy transfer with high-Q resonators using field shaping to improve K
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US8482158B2 (en) 2008-09-27 2013-07-09 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US8441154B2 (en) 2008-09-27 2013-05-14 Witricity Corporation Multi-resonator wireless energy transfer for exterior lighting
US8487480B1 (en) 2008-09-27 2013-07-16 Witricity Corporation Wireless energy transfer resonator kit
US8497601B2 (en) 2008-09-27 2013-07-30 Witricity Corporation Wireless energy transfer converters
US8552592B2 (en) 2008-09-27 2013-10-08 Witricity Corporation Wireless energy transfer with feedback control for lighting applications
US8569914B2 (en) 2008-09-27 2013-10-29 Witricity Corporation Wireless energy transfer using object positioning for improved k
US8587155B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using repeater resonators
US8587153B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using high Q resonators for lighting applications
US20100219694A1 (en) * 2008-09-27 2010-09-02 Kurs Andre B Wireless energy transfer in lossy environments
US8598743B2 (en) 2008-09-27 2013-12-03 Witricity Corporation Resonator arrays for wireless energy transfer
US20100259108A1 (en) * 2008-09-27 2010-10-14 Giler Eric R Wireless energy transfer using repeater resonators
US8410636B2 (en) 2008-09-27 2013-04-02 Witricity Corporation Low AC resistance conductor designs
US8618696B2 (en) 2008-09-27 2013-12-31 Witricity Corporation Wireless energy transfer systems
US20100277121A1 (en) * 2008-09-27 2010-11-04 Hall Katherine L Wireless energy transfer between a source and a vehicle
US8629578B2 (en) 2008-09-27 2014-01-14 Witricity Corporation Wireless energy transfer systems
US20100308939A1 (en) * 2008-09-27 2010-12-09 Kurs Andre B Integrated resonator-shield structures
US20100201203A1 (en) * 2008-09-27 2010-08-12 Schatz David A Wireless energy transfer with feedback control for lighting applications
US8643326B2 (en) 2008-09-27 2014-02-04 Witricity Corporation Tunable wireless energy transfer systems
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9515495B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless energy transfer in lossy environments
US20100181843A1 (en) * 2008-09-27 2010-07-22 Schatz David A Wireless energy transfer for refrigerator application
US20110043049A1 (en) * 2008-09-27 2011-02-24 Aristeidis Karalis Wireless energy transfer with high-q resonators using field shaping to improve k
US8686598B2 (en) 2008-09-27 2014-04-01 Witricity Corporation Wireless energy transfer for supplying power and heat to a device
US8692410B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Wireless energy transfer with frequency hopping
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US8716903B2 (en) 2008-09-27 2014-05-06 Witricity Corporation Low AC resistance conductor designs
US8723366B2 (en) 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
US8729737B2 (en) 2008-09-27 2014-05-20 Witricity Corporation Wireless energy transfer using repeater resonators
US9496719B2 (en) 2008-09-27 2016-11-15 Witricity Corporation Wireless energy transfer for implantable devices
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US8400017B2 (en) 2008-09-27 2013-03-19 Witricity Corporation Wireless energy transfer for computer peripheral applications
US8461722B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape field and improve K
US20100171368A1 (en) * 2008-09-27 2010-07-08 Schatz David A Wireless energy transfer with frequency hopping
US20100164297A1 (en) * 2008-09-27 2010-07-01 Kurs Andre B Wireless energy transfer using conducting surfaces to shape fields and reduce loss
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US20100164296A1 (en) * 2008-09-27 2010-07-01 Kurs Andre B Wireless energy transfer using variable size resonators and system monitoring
US20100164298A1 (en) * 2008-09-27 2010-07-01 Aristeidis Karalis Wireless energy transfer using magnetic materials to shape field and reduce loss
US20110043047A1 (en) * 2008-09-27 2011-02-24 Aristeidis Karalis Wireless energy transfer using field shaping to reduce loss
US20100109445A1 (en) * 2008-09-27 2010-05-06 Kurs Andre B Wireless energy transfer systems
US9843228B2 (en) 2008-09-27 2017-12-12 Witricity Corporation Impedance matching in wireless power systems
US9806541B2 (en) 2008-09-27 2017-10-31 Witricity Corporation Flexible resonator attachment
US20110121920A1 (en) * 2008-09-27 2011-05-26 Kurs Andre B Wireless energy transfer resonator thermal management
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US9780605B2 (en) 2008-09-27 2017-10-03 Witricity Corporation Wireless power system with associated impedance matching network
US20110193416A1 (en) * 2008-09-27 2011-08-11 Campanella Andrew J Tunable wireless energy transfer systems
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US8324759B2 (en) 2008-09-27 2012-12-04 Witricity Corporation Wireless energy transfer using magnetic materials to shape field and reduce loss
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US8304935B2 (en) 2008-09-27 2012-11-06 Witricity Corporation Wireless energy transfer using field shaping to reduce loss
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US9662161B2 (en) 2008-09-27 2017-05-30 Witricity Corporation Wireless energy transfer for medical applications
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US8035255B2 (en) 2008-09-27 2011-10-11 Witricity Corporation Wireless energy transfer using planar capacitively loaded conducting loop resonators
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US20120091819A1 (en) * 2008-09-27 2012-04-19 Konrad Kulikowski Computer that wirelessly powers accessories
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US20120091794A1 (en) * 2008-09-27 2012-04-19 Campanella Andrew J Wirelessly powered laptop and desktop environment
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8106539B2 (en) 2008-09-27 2012-01-31 Witricity Corporation Wireless energy transfer for refrigerator application
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US9748039B2 (en) 2008-09-27 2017-08-29 Witricity Corporation Wireless energy transfer resonator thermal management
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9698607B2 (en) 2008-09-27 2017-07-04 Witricity Corporation Secure wireless energy transfer
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9742204B2 (en) 2008-09-27 2017-08-22 Witricity Corporation Wireless energy transfer in lossy environments
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US20100181845A1 (en) * 2008-09-27 2010-07-22 Ron Fiorello Temperature compensation in a wireless transfer system
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US8362651B2 (en) 2008-10-01 2013-01-29 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US20100148589A1 (en) * 2008-10-01 2010-06-17 Hamam Rafif E Efficient near-field wireless energy transfer using adiabatic system variations
US9831682B2 (en) 2008-10-01 2017-11-28 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US8836172B2 (en) 2008-10-01 2014-09-16 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US20100181964A1 (en) * 2009-01-22 2010-07-22 Mark Huggins Wireless power distribution system and method for power tools
US9559526B2 (en) 2009-01-22 2017-01-31 Qualcomm Incorporated Adaptive power control for wireless charging of devices
US9257865B2 (en) 2009-01-22 2016-02-09 Techtronic Power Tools Technology Limited Wireless power distribution system and method
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
US20100201533A1 (en) * 2009-02-10 2010-08-12 Qualcomm Incorporated Conveying device information relating to wireless charging
US9583953B2 (en) 2009-02-10 2017-02-28 Qualcomm Incorporated Wireless power transfer for portable enclosures
US8854224B2 (en) 2009-02-10 2014-10-07 Qualcomm Incorporated Conveying device information relating to wireless charging
US9490638B2 (en) * 2009-03-17 2016-11-08 Sony Corporation Electrical power transmission system and electrical power output device
US20110316349A1 (en) * 2009-03-17 2011-12-29 Sony Corporation Electrical power transmission system and electrical power output device
US9572424B2 (en) 2009-05-12 2017-02-21 Kimball International, Inc. Furniture with wireless power
US9124308B2 (en) 2009-05-12 2015-09-01 Kimball International, Inc. Furniture with wireless power
US8262244B2 (en) 2009-05-12 2012-09-11 Kimball International, Inc. Furniture with wireless power
US8061864B2 (en) 2009-05-12 2011-11-22 Kimball International, Inc. Furniture with wireless power
US20110056215A1 (en) * 2009-09-10 2011-03-10 Qualcomm Incorporated Wireless power for heating or cooling
US8482160B2 (en) 2009-09-16 2013-07-09 L & P Property Management Company Inductively coupled power module and circuit
US20110062789A1 (en) * 2009-09-16 2011-03-17 L & P Property Management Company Inductively coupled power module and circuit
US20110089768A1 (en) * 2009-09-24 2011-04-21 Byrne Norman R Worksurface power transfer
US8937407B2 (en) * 2009-09-24 2015-01-20 Norman R. Byrne Worksurface power transfer
US20110074346A1 (en) * 2009-09-25 2011-03-31 Hall Katherine L Vehicle charger safety system and method
US8598745B2 (en) 2009-10-07 2013-12-03 Tdk Corporation Wireless power feeder and wireless power transmission system
US20110080054A1 (en) * 2009-10-07 2011-04-07 Tdk Corporation Wireless power feeder and wireless power transmission system
US20110193421A1 (en) * 2009-10-16 2011-08-11 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
US8981597B2 (en) 2009-10-16 2015-03-17 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
US8901776B2 (en) 2009-10-19 2014-12-02 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
US20110198940A1 (en) * 2009-10-19 2011-08-18 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
US8829727B2 (en) 2009-10-30 2014-09-09 Tdk Corporation Wireless power feeder, wireless power transmission system, and table and table lamp using the same
US20110175812A1 (en) * 2010-01-20 2011-07-21 Kye Systems Corp. Radio-frequency mouse
US8829725B2 (en) 2010-03-19 2014-09-09 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
US20110281535A1 (en) * 2010-05-14 2011-11-17 Qualcomm Incorporated Controlling field distribution of a wireless power transmitter
US20150115884A1 (en) * 2010-05-14 2015-04-30 Qualcomm Incorporated Controlling field distribution of a wireless power transmitter
CN104283330A (en) * 2010-05-14 2015-01-14 高通股份有限公司 Controlling field distribution of a wireless power transmitter
US8934857B2 (en) * 2010-05-14 2015-01-13 Qualcomm Incorporated Controlling field distribution of a wireless power transmitter
US9337666B2 (en) * 2010-05-14 2016-05-10 Qualcomm Incorporated Controlling field distribution of a wireless power transmitter
US8896264B2 (en) 2010-06-11 2014-11-25 Mojo Mobility, Inc. Inductive charging with support for multiple charging protocols
US8890470B2 (en) 2010-06-11 2014-11-18 Mojo Mobility, Inc. System for wireless power transfer that supports interoperability, and multi-pole magnets for use therewith
US8901881B2 (en) 2010-06-11 2014-12-02 Mojo Mobility, Inc. Intelligent initiation of inductive charging process
US8729736B2 (en) 2010-07-02 2014-05-20 Tdk Corporation Wireless power feeder and wireless power transmission system
US8829726B2 (en) 2010-07-02 2014-09-09 Tdk Corporation Wireless power feeder and wireless power transmission system
US8829729B2 (en) 2010-08-18 2014-09-09 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
US8772977B2 (en) 2010-08-25 2014-07-08 Tdk Corporation Wireless power feeder, wireless power transmission system, and table and table lamp using the same
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9058928B2 (en) 2010-12-14 2015-06-16 Tdk Corporation Wireless power feeder and wireless power transmission system
US8664803B2 (en) 2010-12-28 2014-03-04 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
US9143010B2 (en) 2010-12-28 2015-09-22 Tdk Corporation Wireless power transmission system for selectively powering one or more of a plurality of receivers
US8800738B2 (en) 2010-12-28 2014-08-12 Tdk Corporation Wireless power feeder and wireless power receiver
US8669677B2 (en) 2010-12-28 2014-03-11 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
US9112364B2 (en) 2011-01-18 2015-08-18 Mojo Mobility, Inc. Multi-dimensional inductive charger and applications thereof
US9496732B2 (en) 2011-01-18 2016-11-15 Mojo Mobility, Inc. Systems and methods for wireless power transfer
US9112363B2 (en) 2011-01-18 2015-08-18 Mojo Mobility, Inc. Intelligent charging of multiple electric or electronic devices with a multi-dimensional inductive charger
US9106083B2 (en) 2011-01-18 2015-08-11 Mojo Mobility, Inc. Systems and method for positioning freedom, and support of different voltages, protocols, and power levels in a wireless power system
US9112362B2 (en) 2011-01-18 2015-08-18 Mojo Mobility, Inc. Methods for improved transfer efficiency in a multi-dimensional inductive charger
US9178369B2 (en) 2011-01-18 2015-11-03 Mojo Mobility, Inc. Systems and methods for providing positioning freedom, and support of different voltages, protocols, and power levels in a wireless power system
US9356659B2 (en) 2011-01-18 2016-05-31 Mojo Mobility, Inc. Chargers and methods for wireless power transfer
US20130057203A1 (en) * 2011-03-01 2013-03-07 Neil Jones Assembly for mounting an inductive charger base station to a furniture work surface
US8742627B2 (en) 2011-03-01 2014-06-03 Tdk Corporation Wireless power feeder
US8970069B2 (en) 2011-03-28 2015-03-03 Tdk Corporation Wireless power receiver and wireless power transmission system
US20140035390A1 (en) * 2011-04-13 2014-02-06 Lg Innotek Co., Ltd. Power transmitter, repeater, power receiver, and wireless power transmission system
US9590454B2 (en) * 2011-04-13 2017-03-07 Lg Innotek Co., Ltd. Power transmitter, repeater, power receiver, and wireless power transmission system
US8947043B2 (en) * 2011-05-25 2015-02-03 Teknion Limited Light with integrated inductive charger base station
US20120299539A1 (en) * 2011-05-25 2012-11-29 Neil Jones Light with integrated inductive charger base station
US9853480B2 (en) * 2011-06-21 2017-12-26 Intel Corporation Apparatus, systems and methods for wireless charging for PC platforms and peripherals
US20150002086A1 (en) * 2011-06-21 2015-01-01 Gary N. Matos Apparatus, systems and methods for wireless charging for pc platforms and peripherals
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US9787141B2 (en) 2011-08-04 2017-10-10 Witricity Corporation Tunable wireless power architectures
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US8667452B2 (en) 2011-11-04 2014-03-04 Witricity Corporation Wireless energy transfer modeling tool
US8875086B2 (en) 2011-11-04 2014-10-28 Witricity Corporation Wireless energy transfer modeling tool
WO2013069951A1 (en) * 2011-11-07 2013-05-16 Ls Cable Ltd. Wireless power transmission and receiving system capable of multi charge
US20130119924A1 (en) * 2011-11-15 2013-05-16 Qualcomm Incorporated Multi-band transmit antenna
US9673872B2 (en) * 2011-11-15 2017-06-06 Qualcomm Incorporated Multi-band transmit antenna
US9413429B2 (en) 2011-11-29 2016-08-09 Samsung Electronics Co., Ltd. Wireless power transmission system based on cell division
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US9853501B2 (en) * 2012-02-03 2017-12-26 Nec Corporation Electromagnetic wave transmission sheet and electromagnetic wave transmission device
US20150022021A1 (en) * 2012-02-03 2015-01-22 Nec Corporation Electromagnetic wave transmission sheet and electromagnetic wave transmission device
US9722447B2 (en) 2012-03-21 2017-08-01 Mojo Mobility, Inc. System and method for charging or powering devices, such as robots, electric vehicles, or other mobile devices or equipment
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9465064B2 (en) 2012-10-19 2016-10-11 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9842684B2 (en) 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US20140253024A1 (en) * 2013-03-06 2014-09-11 Nokia Corporation Method and apparatus for wirelessly charging mobile devices
US9837846B2 (en) 2013-04-12 2017-12-05 Mojo Mobility, Inc. System and method for powering or charging receivers or devices having small surface areas or volumes
US9711991B2 (en) 2013-07-19 2017-07-18 Witricity Corporation Wireless energy transfer converters
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US9484751B2 (en) 2013-09-30 2016-11-01 Norman R. Byrne Wireless power for portable articles
US9608455B2 (en) 2013-09-30 2017-03-28 Norman R. Byrne Wireless power for portable articles
US9438070B2 (en) 2013-09-30 2016-09-06 Norman R. Byrne Articles with electrical charging surfaces
US20150108841A1 (en) * 2013-10-22 2015-04-23 Studio Weber + Associates Multifunctional power supply device
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US20170012472A1 (en) * 2015-07-06 2017-01-12 Toshiba Tec Kabushiki Kaisha Wireless power supply system and wireless power supply device
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems

Also Published As

Publication number Publication date Type
KR20130105943A (en) 2013-09-26 application
CN105471123A (en) 2016-04-06 application
EP2277252A2 (en) 2011-01-26 application
WO2009131990A2 (en) 2009-10-29 application
US20130270923A1 (en) 2013-10-17 application
JP2011518540A (en) 2011-06-23 application
CN102017361B (en) 2016-02-24 grant
US9450456B2 (en) 2016-09-20 grant
JP2015047067A (en) 2015-03-12 application
KR20130010089A (en) 2013-01-25 application
US20140139039A1 (en) 2014-05-22 application
CN102017361A (en) 2011-04-13 application
KR101572743B1 (en) 2015-12-01 grant
EP2277252A4 (en) 2017-04-26 application
KR20140023425A (en) 2014-02-26 application
KR20100134774A (en) 2010-12-23 application
WO2009131990A3 (en) 2010-02-18 application
JP2016105691A (en) 2016-06-09 application
US9979230B2 (en) 2018-05-22 grant
KR101589836B1 (en) 2016-01-28 grant
JP5882431B2 (en) 2016-03-09 grant
KR101247384B1 (en) 2013-03-25 grant

Similar Documents

Publication Publication Date Title
Hui Planar wireless charging technology for portable electronic products and Qi
US20090308933A1 (en) Wireless power receiving device
US8963486B2 (en) Wireless power from renewable energy
US20150022010A1 (en) Wireless charging and powering of electronic sensors in a vehicle
US20100190436A1 (en) Concurrent wireless power transmission and near-field communication
US9252628B2 (en) Laptop computer as a transmitter for wireless charging
US20090284245A1 (en) Wireless power transfer for appliances and equipments
US20100244576A1 (en) Optimization of wireless power devices
US8278784B2 (en) Wireless power transmission for electronic devices
US20140375258A1 (en) Wireless charger for electronic device
US20130106197A1 (en) Wireless power transmitter and power transmission method thereof
US20100194206A1 (en) Wireless power for charging devices
US20150029397A1 (en) Tv with integrated wireless power transmitter
US8947047B2 (en) Efficiency and flexibility in inductive charging
US20100225270A1 (en) Wireless power transfer for chargeable devices
US20110221388A1 (en) Detection and protection of devices within a wireless power system
US20100315389A1 (en) Devices and methods related to a display assembly including an antenna
US20110057606A1 (en) Safety feature for wireless charger
US20120104997A1 (en) Wireless charging device
US7952322B2 (en) Inductive power source and charging system
US20100210233A1 (en) Receive antenna arrangement for wireless power
US20150042265A1 (en) Wireless powering of electronic devices
US20130043734A1 (en) Wireless power receiver with multiple receiver coils
US7948208B2 (en) Power source, charging system, and inductive receiver for mobile devices
US9143000B2 (en) Portable wireless charging pad

Legal Events

Date Code Title Description
AS Assignment

Owner name: QUALCOMM INCORPORATED,CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NIGEL POWER LLC;REEL/FRAME:023445/0266

Effective date: 20090519

Owner name: QUALCOMM INCORPORATED, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NIGEL POWER LLC;REEL/FRAME:023445/0266

Effective date: 20090519

AS Assignment

Owner name: QUALCOMM INCORPORATED,CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COOK, NIGEL P.;WIDMER, HANSPETER;SIEBER, LUKAS;REEL/FRAME:023772/0040

Effective date: 20091214