JP2007125926A - Non-contact power supplying method and non-contact power supplying device - Google Patents

Non-contact power supplying method and non-contact power supplying device Download PDF

Info

Publication number
JP2007125926A
JP2007125926A JP2005318367A JP2005318367A JP2007125926A JP 2007125926 A JP2007125926 A JP 2007125926A JP 2005318367 A JP2005318367 A JP 2005318367A JP 2005318367 A JP2005318367 A JP 2005318367A JP 2007125926 A JP2007125926 A JP 2007125926A
Authority
JP
Japan
Prior art keywords
inductance
power
contact
line
power feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005318367A
Other languages
Japanese (ja)
Inventor
Harumasa Yamamoto
治正 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2005318367A priority Critical patent/JP2007125926A/en
Publication of JP2007125926A publication Critical patent/JP2007125926A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-contact power supplying method capable of increasing the number of carriers which enter a power supply line in comparison with a fixedly arranged power supply line by correcting fluctuation of inductance even if the number of carriers is changed. <P>SOLUTION: In this non-contact power supplying method of supplying power to carriers without a contact from a ground facility with electromagnetic induction, inductance of the power supply line is measured, and compared with a target value, and on the basis of the deviation, variable inductance connected to the power supply line is driven so as to adjust the inductance of the power supply line to be changed in response to the number of carriers, which enter the power supply line, to the target value with the variable inductance. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非接触給電方法及び非接触給電装置に関し、特に、搬送車の台数が変化してもインダクタンスの変動を補正することにより、固定的に調整した給電線路に比較して、給電線路に入る搬送車の台数を増やすことができる非接触給電方法及び非接触給電装置に関するものである。   The present invention relates to a non-contact power feeding method and a non-contact power feeding device, and more particularly to a power feeding line compared to a fixedly adjusted power feeding line by correcting a variation in inductance even when the number of transport vehicles changes. The present invention relates to a non-contact power feeding method and a non-contact power feeding device that can increase the number of entering transport vehicles.

例えば、液晶工場等のクリーンルーム内の搬送装置等においては、電磁誘導により地上設備から搬送車に非接触で電力を給電する非接触給電装置が使用されている。   For example, in a transfer device or the like in a clean room such as a liquid crystal factory, a non-contact power supply device that supplies power from a ground facility to a transfer vehicle in a non-contact manner by electromagnetic induction is used.

非接触で負荷に電力を給電する場合、一定電圧で給電線に励磁電流を流すと、給電線の線路長が長くなるとインダクタンスにより線路に流れる電流が減少する。
また、受電コイルにおいても、給電線と受電コイルの空隙により生じる漏れインダクタンスが大きいため、受電コイルの一次側すなわち給電線路側と受電コイルの二次側の両方に共振回路を構成する。
When power is supplied to the load in a non-contact manner, if an excitation current is passed through the power supply line at a constant voltage, the current flowing through the line decreases due to the inductance when the line length of the power supply line increases.
Also, in the power receiving coil, since the leakage inductance generated by the gap between the power feeding line and the power receiving coil is large, a resonance circuit is configured on both the primary side of the power receiving coil, that is, the power feeding line side and the secondary side of the power receiving coil.

ところで、給電線路に複数の搬送車が出入りするような搬送装置では、給電線路に入っている搬送車の台数によって、給電線路を駆動する高周波電源から見たインダクタンスは変動し、共振条件が変化するため、搬送車の入線台数が限定されるという問題を有している。   By the way, in a transport apparatus in which a plurality of transport vehicles enter and exit the feed line, the inductance seen from the high-frequency power source that drives the feed line varies depending on the number of transport vehicles in the feed line, and the resonance condition changes. Therefore, there is a problem that the number of incoming lines of the transport vehicle is limited.

本発明は、上記従来の非接触給電装置が有する問題点に鑑み、搬送車の台数が変化してもインダクタンスの変動を補正し、固定的に調整した給電線路に比較して、給電線路に入る搬送車の台数を増やすことができる非接触給電方法及び非接触給電装置を提供することを目的とする。   In view of the problems of the conventional non-contact power feeding device, the present invention corrects the variation in inductance even when the number of transport vehicles changes, and enters the power feeding line as compared to the fixedly adjusted power feeding line. It is an object of the present invention to provide a non-contact power feeding method and a non-contact power feeding device that can increase the number of transport vehicles.

上記目的を達成するため、本発明の非接触給電方法は、電磁誘導により地上設備から搬送車に非接触で電力を給電する非接触給電方法において、給電線路のインダクタンスを計測して目標値と比較するとともに、その偏差に基づいて給電線路に接続した可変インダクタンスを駆動し、給電線路に入る搬送車の台数により変化する給電線路のインダクタンスを、該可変インダクタンスにより目標値に調節することを特徴とする。   In order to achieve the above object, the non-contact power feeding method of the present invention is a non-contact power feeding method in which power is supplied from a ground facility to a transport vehicle in a non-contact manner by electromagnetic induction. And driving the variable inductance connected to the feed line based on the deviation, and adjusting the inductance of the feed line, which varies depending on the number of transport vehicles entering the feed line, to a target value by the variable inductance. .

また、同じ目的を達成するため、本発明の非接触給電装置は、電磁誘導により地上設備から搬送車に非接触で電力を給電する非接触給電装置において、給電線路に直列に接続された可変インダクタンスと、給電線路のインダクタンスを計測するインダクタンス計測器と、該インダクタンス計測器の計測値を目標値と比較するとともに、その偏差に基づいて可変インダクタンスを駆動する比例・積分制御器とを備えたことを特徴とする。   In order to achieve the same object, the non-contact power feeding device of the present invention is a non-contact power feeding device that feeds power from a ground facility to a transport vehicle in a non-contact manner by electromagnetic induction. And an inductance measuring instrument that measures the inductance of the feeder line, and a proportional / integral controller that drives the variable inductance based on the deviation while comparing the measured value of the inductance measuring instrument with the target value. Features.

本発明の非接触給電方法及び非接触給電装置によれば、給電線路のインダクタンスを計測して目標値と比較するとともに、その偏差に基づいて給電線路に接続した可変インダクタンスを駆動し、給電線路に入る搬送車の台数により変化する給電線路のインダクタンスを、該可変インダクタンスにより目標値に調節することから、給電線路上の搬送車の台数が変化しても、それに応じてインダクタンスの変動を補正することができ、これにより、固定的に調整した給電線路に比較して、給電線路に入る搬送車の台数を増やすことができる。   According to the non-contact power feeding method and the non-contact power feeding device of the present invention, the inductance of the feed line is measured and compared with the target value, and the variable inductance connected to the feed line is driven based on the deviation to Since the inductance of the feed line that changes depending on the number of transport vehicles entering is adjusted to the target value by the variable inductance, even if the number of transport vehicles on the feed line changes, the variation in inductance is corrected accordingly. Thus, the number of transport vehicles entering the feed line can be increased as compared with the feed line that is fixedly adjusted.

以下、本発明の非接触給電方法及び非接触給電装置の実施の形態を、図面に基づいて説明する。   Embodiments of a non-contact power feeding method and a non-contact power feeding apparatus according to the present invention will be described below with reference to the drawings.

非接触給電装置の構成を図5に示す。
高周波電源装置1に接続した給電線路2を、搬送車(図示省略)の移動する範囲に渡って敷設する。
搬送車の移動範囲が数100mになると、1台の高周波電源装置では電源容量が不足するため、複数の区間に給電線路を分割し、区間ごとに高周波電源装置を設ける。図5はその1区間を示している。
搬送車には、受電コイル3が給電線路2をまたぐように配置されており、電磁誘導により給電線路2から受電コイル3に電力が供給される。他の搬送車に関しても、それぞれ受電コイル4、5を配置し、搬送車に電力を供給するようにしている。
The configuration of the non-contact power feeding device is shown in FIG.
The feeder line 2 connected to the high frequency power supply device 1 is laid over a range in which a transport vehicle (not shown) moves.
When the moving range of the transport vehicle reaches several hundreds of meters, the power capacity of one high frequency power supply device is insufficient. Therefore, the feeder line is divided into a plurality of sections, and the high frequency power supply apparatus is provided for each section. FIG. 5 shows the one section.
In the carrier vehicle, the power receiving coil 3 is disposed so as to straddle the power feeding line 2, and power is supplied from the power feeding line 2 to the power receiving coil 3 by electromagnetic induction. For other transport vehicles, power receiving coils 4 and 5 are arranged to supply power to the transport vehicles.

このように単一の給電区間で構成されている非接触給電システムでは、給電線路に存在する搬送車台数は一定であるが、複数の区間で構成されている場合には、区間ごとに搬送車の台数が異なる。
給電線路のインピーダンスに着目すると、給電線路2の上に存在する受電コイルの数とインダクタンスの関係は、図6(a)に示すように、受電コイルの数に比例してインダクタンスが増加する。
一方、給電線路2の長さに比例したインダクタンスが、受電コイルの数がゼロの場合にも存在する。
In this way, in the non-contact power feeding system configured with a single power feeding section, the number of transport vehicles existing in the power feed line is constant, but when configured with a plurality of sections, the transport vehicles for each section. The number of is different.
Focusing on the impedance of the feeder line, as shown in FIG. 6A, the inductance increases in proportion to the number of the receiving coils on the feeder line 2 and the inductance.
On the other hand, an inductance proportional to the length of the feeder line 2 exists even when the number of receiving coils is zero.

一定の電圧で給電線に励磁電流を流すと、給電線の線路長が長くなるとインダクタンスにより線路に流れる電流が減少する。また、受電コイルにおいても、給電線と受電コイルの空隙により生じる漏れインダクタンスが大きいため、受電コイルの一次側すなわち給電線路側と受電コイルの二次側の両方に共振回路を構成する。
一次側の共振回路に着目すると、一次共振周波数は給電線路自体のインダクタンスと受電コイルのインダクタンスの総和と線路に直列に接続するインピーダンス補償コンデンサの静電容量できまり、共振周波数はインダクタンスの平方根に反比例する。
このため、回路が安定して動作し、電力が供給できるインダクタンスの適正範囲が存在し、この適正範囲から外れると、電力が十分に供給できなくなったり、あるいは回路動作が不安定になる。
When an exciting current is passed through the feeder line at a constant voltage, the current flowing through the line decreases due to the inductance when the line length of the feeder line is increased. Also, in the power receiving coil, since the leakage inductance generated by the gap between the power feeding line and the power receiving coil is large, a resonance circuit is configured on both the primary side of the power receiving coil, that is, the power feeding line side and the secondary side of the power receiving coil.
Focusing on the resonant circuit on the primary side, the primary resonant frequency is determined by the sum of the inductance of the feeder line itself, the inductance of the receiving coil, and the capacitance of the impedance compensation capacitor connected in series with the line, and the resonant frequency is inversely proportional to the square root of the inductance. To do.
For this reason, the circuit operates stably and there is an appropriate range of inductance that can supply power. If the circuit is outside this proper range, power cannot be supplied sufficiently, or circuit operation becomes unstable.

インピーダンスの抵抗成分に着目すると、受電コイルの数と抵抗の関係は、図6(b)に示すような関係になる。負荷電力によって抵抗成分は変動し、無負荷状態では非常に大きな抵抗となり、インダクタンスによる無効電流だけが回路に流れるようになる。
インダクタンスの適正範囲は、給電線路のインダクタンスと受電コイルのインダクタンスの比率によりその個数が変わる。
例えば、単位長さ当り4μH/mの給電線路を50m敷設した場合、給電線路は200μHのインダクタンスをもつ。
この上に受電コイル1つ当り30μHの受電コイルをn個載せるとn×30μHのインダクタンスになる。
線路のインダクタンスは、受電コイルが0個の場合の200μHに対し、4個では320μHと大きく変動し、受電コイル2個の260μHを適正範囲の中心になるようにインピーダンス補償コンデンサの容量を選定したとしても、インダクタンスの変動は±23%で変動し、共振周波数はインダクタンスの平方根に反比例するため、約12%変動する。
しかしながら、実運用では、インダクタンスの変動幅は概ね10%前後の範囲で運用しなければならない。
Focusing on the resistance component of the impedance, the relationship between the number of power receiving coils and the resistance is as shown in FIG. The resistance component fluctuates depending on the load power and becomes a very large resistance in the no-load state, so that only the reactive current due to the inductance flows in the circuit.
The appropriate range of the inductance varies depending on the ratio of the inductance of the feeder line and the inductance of the receiving coil.
For example, when a feed line of 4 μH / m per unit length is laid 50 m, the feed line has an inductance of 200 μH.
If n power receiving coils of 30 μH are mounted on each power receiving coil, an inductance of n × 30 μH is obtained.
The inductance of the line fluctuates as much as 320 μH with four receiving coils compared to 200 μH when there are zero receiving coils, and the capacitance of the impedance compensation capacitor is selected so that 260 μH of the two receiving coils are at the center of the appropriate range. However, since the variation of the inductance varies by ± 23% and the resonance frequency is inversely proportional to the square root of the inductance, it varies by about 12%.
However, in actual operation, the fluctuation range of inductance must be operated in the range of approximately 10%.

これに対し、本発明では、インダクタンスの変動幅を少なくし、給電線路上に乗せられる受電コイルの数を増大する方法を提案する。
本発明の非接触給電方法及び非接触給電装置の実施例を以下に説明する。
図2に、本実施例のインダクタンスと受電コイル数の関係を示す。
n台の搬送車、例としてn=12台を給電線路に入れた場合、従来の固定的にインピーダンス補償コンデンサを入れる場合、適正範囲は9台から12台になる。インピーダンスの適正範囲をn=11台のインダクタンスでインピーダンス補償コンデンサを設定する。
この場合、搬送車の台数が8台以下では給電線路のインダクタンスが不足し、適正範囲を逸脱する。
本実施例では、搬送車の台数が8台以下、すなわちゼロから8×30μH=240μHの範囲が給電線路に直列に入り、インダクタンスが補正できればよい。
実際には、インダクタンスがゼロは実現が困難であり、適正範囲に入る2台から8台分、すなわち60μHから240μHの間でインダクタンスを補正する手段を提供すれば、搬送車が0台から12台の間で変動しても見かけ上のインダクタンス変動は適正範囲に入り、運用することができる。
On the other hand, the present invention proposes a method of reducing the inductance fluctuation range and increasing the number of power receiving coils placed on the feeder line.
Embodiments of the non-contact power feeding method and the non-contact power feeding apparatus of the present invention will be described below.
FIG. 2 shows the relationship between the inductance and the number of receiving coils in this embodiment.
When n transport vehicles, for example, n = 12 units are put in the feeder line, when an impedance compensation capacitor is conventionally fixedly inserted, the appropriate range is 9 to 12 units. The impedance compensation capacitor is set with n = 11 inductances in an appropriate impedance range.
In this case, if the number of transport vehicles is eight or less, the inductance of the feed line is insufficient and deviates from the appropriate range.
In the present embodiment, it is only necessary that the number of transport vehicles is eight or less, that is, a range from zero to 8 × 30 μH = 240 μH enters the power supply line in series and the inductance can be corrected.
Actually, when the inductance is zero, it is difficult to realize, and if a means for correcting the inductance is provided for 2 to 8 units within the appropriate range, that is, between 60 μH and 240 μH, 0 to 12 transport vehicles are provided. Even if it fluctuates between, apparent inductance fluctuation falls within an appropriate range and can be operated.

図1に、本実施例の非接触給電装置の回路構成を示す。
高周波電源6と直列に、インピーダンス補償コンデンサ7と可変インダクタンス8が接続される。各搬送車に設置する受電コイル11はトランスと等価で、受電コイル11の二次側には、二次回路共振コンデンサ12と整流・平滑回路13とを接続し、負荷14を接続する。
同様に、他の搬送車も受電コイル15はトランスと等価で、受電コイル15の二次側には二次回路共振コンデンサ16と整流・平滑回路17とを接続し、負荷18を接続する。
給電線路自体のインダクタンス20は等価的にこれらのインダクタンスと直列に入る。
給電線路の電圧と電流トランス19で検出した電流とを制御回路10に入力し、アクチュエータ9を介して可変インダクタンス8のインダクタンスを変化させる。
In FIG. 1, the circuit structure of the non-contact electric power feeder of a present Example is shown.
An impedance compensation capacitor 7 and a variable inductance 8 are connected in series with the high frequency power source 6. The power receiving coil 11 installed in each conveyance vehicle is equivalent to a transformer, and a secondary circuit resonance capacitor 12 and a rectifying / smoothing circuit 13 are connected to a secondary side of the power receiving coil 11 and a load 14 is connected.
Similarly, in other transport vehicles, the power receiving coil 15 is equivalent to a transformer, and a secondary circuit resonance capacitor 16 and a rectifying / smoothing circuit 17 are connected to the secondary side of the power receiving coil 15 and a load 18 is connected.
The inductance 20 of the feed line itself is equivalently in series with these inductances.
The voltage of the feeder line and the current detected by the current transformer 19 are input to the control circuit 10, and the inductance of the variable inductance 8 is changed via the actuator 9.

可変インダクタンスの構造の断面を、図3(a)〜(c)に3種類示す。
最も単純な構造は、図3(a)に示すように、円筒状に巻いたコイル21の中にフェライトコア22を入れ、機械的にコアを出し入れし、22’の場所まで移動させる。
コア21がコイル21の中に入っているときはインダクタンスが大きく、コアが外に移動するのにともないインダクタンスが低下する。
この方法は構造が簡単であるが、コイルの発生する磁束が周囲に漏洩すること、インダクタンスが大きくできないことがあり、装置が大型になる。
Three types of cross sections of the variable inductance structure are shown in FIGS.
In the simplest structure, as shown in FIG. 3A, a ferrite core 22 is placed in a coil 21 wound in a cylindrical shape, and the core is mechanically inserted and removed, and moved to a position 22 '.
When the core 21 is in the coil 21, the inductance is large, and the inductance decreases as the core moves outward.
This method is simple in structure, but the magnetic flux generated by the coil may leak to the surroundings, and the inductance may not be increased, resulting in a large apparatus.

図3(b)に示す可変インダクタンスは、U字型のコア24にコイル23を巻き、可動コア25を機械的に25’の場所に移動させる。漏洩する磁束が少なく、装置を小型化でき、インダクタンスも大きくすることができる。   In the variable inductance shown in FIG. 3B, the coil 23 is wound around the U-shaped core 24, and the movable core 25 is mechanically moved to the position 25 '. The leakage magnetic flux is small, the device can be downsized, and the inductance can be increased.

図3(c)に示す可変インダクタンスは、更に漏洩インダクタンスを減らす構造となる。 G字型の固定コア27にコイル26を巻き、可動コア28を28’の位置まで移動させる。
実用的には、図3(b)あるいは図3(c)に示す可変インダクタンスの構造が好適である。
The variable inductance shown in FIG. 3C has a structure that further reduces the leakage inductance. The coil 26 is wound around the G-shaped fixed core 27, and the movable core 28 is moved to the position 28 '.
Practically, the variable inductance structure shown in FIG. 3B or 3C is preferable.

図4に、制御回路10の詳細を示す。
インダクタンス計測器29により、線路電圧と線路電流からインダクタンスを計測し、インダクタンスの目標値と比較し、その偏差により、PI比例・積分制御器30を介してリニアアクチュエータ9を駆動し、可変インダクタンス8の可動コアを移動させる。
なお、リニアアクチュエータはリニアモータのごとく機械的に線形動作するもの、あるいは回転モータを機械的に線形運動に変換するもののいずれでもよく、可動コアが線形に移動することができればその種類を問わない。
また、搬送車の台数がわからない状態で制御を開始するため、高周波電源を動作させる前に可動コアをインダクタンスが最小になる方向に移動させ、インダクタンスの目標値をゼロに設定する。
可動コアが移動したあとに高周波電源を投入し、インダクタンス目標値を運転値に再設定する。
この操作により、搬送車台数は少ない方向から増加する方向でインダクタンスが変化し、インダクタンスの範囲が小さい方向から目標に向かって収束し、負荷に電力を供給することができる。
FIG. 4 shows details of the control circuit 10.
The inductance measuring device 29 measures the inductance from the line voltage and the line current, compares it with the target value of the inductance, and drives the linear actuator 9 via the PI proportional / integral controller 30 based on the deviation. Move the movable core.
The linear actuator may be either one that linearly moves mechanically like a linear motor or one that mechanically converts a rotary motor into linear motion, and any type can be used as long as the movable core can move linearly.
In addition, in order to start the control without knowing the number of transport vehicles, the movable core is moved in the direction in which the inductance is minimized before the high-frequency power supply is operated, and the target value of the inductance is set to zero.
After moving the movable core, turn on the high-frequency power and reset the inductance target value to the operating value.
By this operation, the inductance changes in the direction in which the number of transport vehicles increases from a small direction, converges from the direction in which the inductance range is small toward the target, and power can be supplied to the load.

かくして、本実施例の非接触給電方法及び非接触給電装置は、給電線路2のインダクタンスを計測して目標値と比較するとともに、その偏差に基づいて給電線路2に接続した可変インダクタンス8を駆動し、給電線路2に入る搬送車の台数により変化する給電線路2のインダクタンスを、該可変インダクタンス8により目標値に調節することから、給電線路上の搬送車の台数が変化しても、それに応じてインダクタンスの変動を補正することができ、これにより、固定的に調整した給電線路に比較して、給電線路2に入る搬送車の台数を増やすことができる。   Thus, the non-contact power feeding method and the non-contact power feeding device of this embodiment measure the inductance of the power feed line 2 and compare it with the target value, and drive the variable inductance 8 connected to the power feed line 2 based on the deviation. Since the inductance of the feed line 2 that changes depending on the number of transport vehicles entering the feed line 2 is adjusted to the target value by the variable inductance 8, even if the number of transport vehicles on the feed line changes, Variations in inductance can be corrected, thereby increasing the number of transport vehicles entering the feed line 2 as compared to a fixedly adjusted feed line.

以上、本発明の非接触給電方法及び非接触給電装置について、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、実施例に記載した構成を適宜組み合わせるなど、その趣旨を逸脱しない範囲において適宜その構成を変更することができる。   As mentioned above, although the non-contact electric power feeding method and non-contact electric power feeding apparatus of this invention were demonstrated based on the Example, this invention is not limited to the structure described in the said Example, The structure described in the Example The configuration can be changed as appropriate without departing from the spirit of the invention, for example, by appropriately combining the two.

本発明の非接触給電方法及び非接触給電装置は、搬送車の台数が変化してもインダクタンスの変動を補正することにより、固定的に調整した給電線路に比較して、給電線路に入る搬送車の台数を増やすことができるという特性を有していることから、例えば、搬送車に非接触で電力を供給する半導体あるいは液晶工場等のクリーンルーム内の搬送装置等に適用することができる。   The non-contact power feeding method and the non-contact power feeding apparatus according to the present invention correct the fluctuation of inductance even when the number of transport vehicles changes, so that the transport vehicle entering the power feed line compared to the fixedly adjusted power feed line. Therefore, the present invention can be applied to, for example, a semiconductor that supplies power to a transport vehicle in a contactless manner or a transport device in a clean room such as a liquid crystal factory.

本発明の非接触給電装置の一実施例を示す回路図である。It is a circuit diagram which shows one Example of the non-contact electric power feeder of this invention. 同非接触給電装置の給電線路のインダクタンスと受電コイル数の関係を示すグラフである。It is a graph which shows the relationship between the inductance of the feeder line of the non-contact electric power feeder, and the number of receiving coils. (a)〜(c)は可変インダクタンスの実施例を示す断面図である。(A)-(c) is sectional drawing which shows the Example of a variable inductance. 制御回路の詳細を示す回路図である。It is a circuit diagram which shows the detail of a control circuit. 非接触給電装置の構成を示す説明図である。It is explanatory drawing which shows the structure of a non-contact electric power feeder. (a)は従来の非接触給電装置の給電線路のインダクタンスと受電コイル数の関係を示すグラフ、(b)は給電線路の抵抗と受電コイル数の関係を示すグラフである。(A) is a graph which shows the relationship between the inductance of the feeder line of the conventional non-contact electric power feeder, and the number of receiving coils, (b) is a graph which shows the relationship between the resistance of a feeder line, and the number of receiving coils.

符号の説明Explanation of symbols

1 高周波電源装置
2 給電線路
3 受電コイル
4 受電コイル
5 受電コイル
6 高周波電源
7 インピーダンス補償コンデンサ
8 可変インダクタンス
9 アクチュエータ
10 制御回路
11 受電コイル
12 二次回路共振コンデンサ
13 整流・平滑回路
14 負荷
15 受電コイル
16 二次回路共振コンデンサ
17 整流・平滑回路
18 負荷
19 電流トランス
20 インダクタンス
21 コイル
22 コア
23 コイル
24 コア
25 可動コア
26 コイル
27 コア
28 可動コア
29 インダクタンス計測器
30 PI比例・積分制御器
DESCRIPTION OF SYMBOLS 1 High frequency power supply device 2 Feeding line 3 Power receiving coil 4 Power receiving coil 5 Power receiving coil 6 High frequency power supply 7 Impedance compensation capacitor 8 Variable inductance 9 Actuator 10 Control circuit 11 Power receiving coil 12 Secondary circuit resonance capacitor 13 Rectification / smoothing circuit 14 Load 15 Power receiving coil 16 Secondary Circuit Resonant Capacitor 17 Rectification / Smoothing Circuit 18 Load 19 Current Transformer 20 Inductance 21 Coil 22 Core 23 Coil 24 Core 25 Movable Core 26 Coil 27 Core 28 Movable Core 29 Inductance Measuring Instrument 30 PI Proportional / Integration Controller

Claims (2)

電磁誘導により地上設備から搬送車に非接触で電力を給電する非接触給電方法において、給電線路のインダクタンスを計測して目標値と比較するとともに、その偏差に基づいて給電線路に接続した可変インダクタンスを駆動し、給電線路に入る搬送車の台数により変化する給電線路のインダクタンスを、該可変インダクタンスにより目標値に調節することを特徴とする非接触給電方法。   In a non-contact power feeding method in which electric power is fed from a ground facility to a transport vehicle in a non-contact manner by electromagnetic induction, the inductance of the feed line is measured and compared with a target value, and a variable inductance connected to the feed line based on the deviation is calculated. A non-contact power feeding method, wherein the inductance of a power feed line that is driven and changes depending on the number of transport vehicles entering the power feed line is adjusted to a target value by the variable inductance. 電磁誘導により地上設備から搬送車に非接触で電力を給電する非接触給電装置において、給電線路に直列に接続された可変インダクタンスと、給電線路のインダクタンスを計測するインダクタンス計測器と、該インダクタンス計測器の計測値を目標値と比較するとともに、その偏差に基づいて可変インダクタンスを駆動する比例・積分制御器とを備えたことを特徴とする非接触給電装置。   In a non-contact power feeding device that feeds electric power from a ground facility to a transport vehicle by electromagnetic induction in a non-contact manner, a variable inductance connected in series to the power feeding line, an inductance measuring instrument that measures the inductance of the feeding line, and the inductance measuring instrument A non-contact power feeding apparatus comprising: a proportional / integral controller that compares the measured value with a target value and drives a variable inductance based on the deviation.
JP2005318367A 2005-11-01 2005-11-01 Non-contact power supplying method and non-contact power supplying device Pending JP2007125926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005318367A JP2007125926A (en) 2005-11-01 2005-11-01 Non-contact power supplying method and non-contact power supplying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005318367A JP2007125926A (en) 2005-11-01 2005-11-01 Non-contact power supplying method and non-contact power supplying device

Publications (1)

Publication Number Publication Date
JP2007125926A true JP2007125926A (en) 2007-05-24

Family

ID=38148973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005318367A Pending JP2007125926A (en) 2005-11-01 2005-11-01 Non-contact power supplying method and non-contact power supplying device

Country Status (1)

Country Link
JP (1) JP2007125926A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010068646A (en) * 2008-09-11 2010-03-25 Hitachi Plant Technologies Ltd Non-contact power feed apparatus
JP2011514781A (en) * 2008-03-05 2011-05-06 クゥアルコム・インコーポレイテッド Wireless Power Device Packaging and Details
WO2011070637A1 (en) * 2009-12-07 2011-06-16 富士通株式会社 Magnetic-field resonance power transmission device and magnetic-field resonance power receiving device
WO2011057733A3 (en) * 2009-11-12 2012-08-16 Sew-Eurodrive Gmbh & Co. Kg Electrical appliance having means for producing an alternating current and system
JP2013005591A (en) * 2011-06-16 2013-01-07 Ihi Corp Non contact power supply device
US8497658B2 (en) 2009-01-22 2013-07-30 Qualcomm Incorporated Adaptive power control for wireless charging of devices
WO2013111430A1 (en) * 2012-01-24 2013-08-01 村田機械株式会社 Non-contact power supply system and non-contact power supply method
JP2015012658A (en) * 2013-06-27 2015-01-19 株式会社東芝 Power transmission device, power reception device, and radio power transmission system
US9450456B2 (en) 2008-04-21 2016-09-20 Qualcomm Incorporated System and method for efficient wireless power transfer to devices located on and outside a charging base

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176649A (en) * 1999-12-20 2001-06-29 Fuji Electric Co Ltd Induction heating device
JP2005064308A (en) * 2003-08-18 2005-03-10 Rikogaku Shinkokai Variable inductor
JP2005162119A (en) * 2003-12-05 2005-06-23 Daifuku Co Ltd Non-contact power supply facility
JP2005168220A (en) * 2003-12-04 2005-06-23 Daifuku Co Ltd Method for adjusting inductance of guide line of non-contact power supply equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176649A (en) * 1999-12-20 2001-06-29 Fuji Electric Co Ltd Induction heating device
JP2005064308A (en) * 2003-08-18 2005-03-10 Rikogaku Shinkokai Variable inductor
JP2005168220A (en) * 2003-12-04 2005-06-23 Daifuku Co Ltd Method for adjusting inductance of guide line of non-contact power supply equipment
JP2005162119A (en) * 2003-12-05 2005-06-23 Daifuku Co Ltd Non-contact power supply facility

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231665A (en) * 2008-03-05 2012-11-22 Qualcomm Inc Packaging and details of wireless power device
JP2011514781A (en) * 2008-03-05 2011-05-06 クゥアルコム・インコーポレイテッド Wireless Power Device Packaging and Details
US9461714B2 (en) 2008-03-05 2016-10-04 Qualcomm Incorporated Packaging and details of a wireless power device
US8855554B2 (en) 2008-03-05 2014-10-07 Qualcomm Incorporated Packaging and details of a wireless power device
US9450456B2 (en) 2008-04-21 2016-09-20 Qualcomm Incorporated System and method for efficient wireless power transfer to devices located on and outside a charging base
US9979230B2 (en) 2008-04-21 2018-05-22 Qualcomm Incorporated Short range efficient wireless power transfer including a charging base transmitter built into a desktop component and a power relay integrated into a desktop
JP2010068646A (en) * 2008-09-11 2010-03-25 Hitachi Plant Technologies Ltd Non-contact power feed apparatus
US8497658B2 (en) 2009-01-22 2013-07-30 Qualcomm Incorporated Adaptive power control for wireless charging of devices
US8823319B2 (en) 2009-01-22 2014-09-02 Qualcomm Incorporated Adaptive power control for wireless charging of devices
US9559526B2 (en) 2009-01-22 2017-01-31 Qualcomm Incorporated Adaptive power control for wireless charging of devices
WO2011057733A3 (en) * 2009-11-12 2012-08-16 Sew-Eurodrive Gmbh & Co. Kg Electrical appliance having means for producing an alternating current and system
JP5510460B2 (en) * 2009-12-07 2014-06-04 富士通株式会社 Magnetic field resonance power transmission device and magnetic field resonance power reception device
WO2011070637A1 (en) * 2009-12-07 2011-06-16 富士通株式会社 Magnetic-field resonance power transmission device and magnetic-field resonance power receiving device
JP2013005591A (en) * 2011-06-16 2013-01-07 Ihi Corp Non contact power supply device
WO2013111430A1 (en) * 2012-01-24 2013-08-01 村田機械株式会社 Non-contact power supply system and non-contact power supply method
JP2015012658A (en) * 2013-06-27 2015-01-19 株式会社東芝 Power transmission device, power reception device, and radio power transmission system
US10224748B2 (en) 2013-06-27 2019-03-05 Kabushiki Kaisha Toshiba Power transmitting device, power receiving device, and wireless power transmitting system

Similar Documents

Publication Publication Date Title
JP2007125926A (en) Non-contact power supplying method and non-contact power supplying device
US7825537B2 (en) Inductive power transfer system and method
KR101108925B1 (en) Non-contact power transmission apparatus
US10020687B2 (en) Coupled-coil power control for inductive power transfer systems
JP5941046B2 (en) Inductive power receiver device
WO2016051484A1 (en) Non-contact power feeding device
US20140252868A1 (en) Resonator and Wireless Power Transmitting Apparatus
JP6154835B2 (en) Non-contact power supply device
JP2008259419A (en) Noncontact feeder system
JP2015136287A5 (en)
WO2014136391A1 (en) Wireless power supply system
JPWO2015016146A1 (en) Gate power supply device and semiconductor circuit breaker using the same
TWI417910B (en) Electromagnetic apparatus using shared flux in a multi-load parallel magnetic circuit and method of operation
JP6354437B2 (en) Non-contact power feeding device
US11462953B2 (en) Dynamic transmission coil positioning system, wireless power transfer system and method of positioning a transmit coil
JP6364864B2 (en) Resonant type DC / DC converter
CN102037525A (en) Inductance and arrangement
US9098029B2 (en) Fixing device including a plurality of coils, coil drivers, and a drive circuit
Zaheer et al. Parallel tuned contactless power pickup using saturable core reactor
JP3356135B2 (en) Mobile contactless power supply
JP6165791B2 (en) Transformer and switching power supply
JP6496563B2 (en) Transformer and switching power supply
CA3008659A1 (en) High frequency power supply system with closely regulated output for heating a workpiece
US20160181825A1 (en) Inductive rotary joint
JP6858151B2 (en) Wireless power supply device and its impedance adjustment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120321