JP2007125926A - Non-contact power supplying method and non-contact power supplying device - Google Patents

Non-contact power supplying method and non-contact power supplying device Download PDF

Info

Publication number
JP2007125926A
JP2007125926A JP2005318367A JP2005318367A JP2007125926A JP 2007125926 A JP2007125926 A JP 2007125926A JP 2005318367 A JP2005318367 A JP 2005318367A JP 2005318367 A JP2005318367 A JP 2005318367A JP 2007125926 A JP2007125926 A JP 2007125926A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
inductance
non
feed line
contact power
number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005318367A
Other languages
Japanese (ja)
Inventor
Harumasa Yamamoto
治正 山本
Original Assignee
Hitachi Plant Technologies Ltd
株式会社日立プラントテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-contact power supplying method capable of increasing the number of carriers which enter a power supply line in comparison with a fixedly arranged power supply line by correcting fluctuation of inductance even if the number of carriers is changed. <P>SOLUTION: In this non-contact power supplying method of supplying power to carriers without a contact from a ground facility with electromagnetic induction, inductance of the power supply line is measured, and compared with a target value, and on the basis of the deviation, variable inductance connected to the power supply line is driven so as to adjust the inductance of the power supply line to be changed in response to the number of carriers, which enter the power supply line, to the target value with the variable inductance. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非接触給電方法及び非接触給電装置に関し、特に、搬送車の台数が変化してもインダクタンスの変動を補正することにより、固定的に調整した給電線路に比較して、給電線路に入る搬送車の台数を増やすことができる非接触給電方法及び非接触給電装置に関するものである。 The present invention relates to a non-contact power feeding method and the non-contact power feeding device, in particular, by correcting the variation of inductance with the number of transport vehicles is changed, as compared to the fixedly adjusted feed line, a feed line it relates contactless power feeding method and the non-contact power feeding device which can increase the number of guided vehicles that enter.

例えば、液晶工場等のクリーンルーム内の搬送装置等においては、電磁誘導により地上設備から搬送車に非接触で電力を給電する非接触給電装置が使用されている。 For example, in the conveying apparatus or the like in a clean room, such as a liquid crystal plant, the non-contact power feeding device is used for feeding a power contactlessly to the transport vehicle from the ground equipment by electromagnetic induction.

非接触で負荷に電力を給電する場合、一定電圧で給電線に励磁電流を流すと、給電線の線路長が長くなるとインダクタンスにより線路に流れる電流が減少する。 If feeding the power to a load without contact, when flow an exciting current to the feed line at a constant voltage, the current flowing through the line by inductance line length of the feed lines are longer decreases.
また、受電コイルにおいても、給電線と受電コイルの空隙により生じる漏れインダクタンスが大きいため、受電コイルの一次側すなわち給電線路側と受電コイルの二次側の両方に共振回路を構成する。 Also in the power receiving coil, the leakage inductance caused by a gap of the power receiving coil and the power supply line is large, it constitutes a resonant circuit on both the secondary side of the primary side or the feed line side of the power receiving coil receiving coil.

ところで、給電線路に複数の搬送車が出入りするような搬送装置では、給電線路に入っている搬送車の台数によって、給電線路を駆動する高周波電源から見たインダクタンスは変動し、共振条件が変化するため、搬送車の入線台数が限定されるという問題を有している。 Incidentally, the conveying device and out a plurality of guided vehicles on the feed line, depending on the number of transport vehicles are in the feed line, inductance seen from the high frequency power source for driving the feed line is variable, the resonant conditions change Therefore, there is a problem that the incoming line number of the transport vehicle is limited.

本発明は、上記従来の非接触給電装置が有する問題点に鑑み、搬送車の台数が変化してもインダクタンスの変動を補正し、固定的に調整した給電線路に比較して、給電線路に入る搬送車の台数を増やすことができる非接触給電方法及び非接触給電装置を提供することを目的とする。 In view of the problems of the conventional non-contact power feeding device has, also correct for variations in inductance number of guided vehicles has changed as compared to the fixedly adjusted feed line, into the feed line and to provide a non-contact power feeding method and the non-contact power feeding device which can increase the number of guided vehicles.

上記目的を達成するため、本発明の非接触給電方法は、電磁誘導により地上設備から搬送車に非接触で電力を給電する非接触給電方法において、給電線路のインダクタンスを計測して目標値と比較するとともに、その偏差に基づいて給電線路に接続した可変インダクタンスを駆動し、給電線路に入る搬送車の台数により変化する給電線路のインダクタンスを、該可変インダクタンスにより目標値に調節することを特徴とする。 To achieve the above object, comparing the non-contact power feeding method of the present invention, in the contactless power supply method for supplying a power contactlessly to the transport vehicle from the ground equipment by electromagnetic induction, and the target value by measuring the inductance of the feed line as well as to drive the variable inductance connected to the feed line on the basis of the deviation, the inductance of the feed line which varies by the number of guided vehicles that enter the feed line, and adjusting the target value by the variable inductance .

また、同じ目的を達成するため、本発明の非接触給電装置は、電磁誘導により地上設備から搬送車に非接触で電力を給電する非接触給電装置において、給電線路に直列に接続された可変インダクタンスと、給電線路のインダクタンスを計測するインダクタンス計測器と、該インダクタンス計測器の計測値を目標値と比較するとともに、その偏差に基づいて可変インダクタンスを駆動する比例・積分制御器とを備えたことを特徴とする。 In order to achieve the same purpose, a non-contact power feeding device of the present invention, in the non-contact power feeding device for feeding power contactlessly to the transport vehicle from the ground equipment by electromagnetic induction, variable inductance connected in series with the feeding line When the inductance measuring device for measuring the inductance of the feed lines, as well as compared with the target value a measurement of the inductance measuring instrument, that a proportional-integral controller that drives the variable inductance based on the deviation and features.

本発明の非接触給電方法及び非接触給電装置によれば、給電線路のインダクタンスを計測して目標値と比較するとともに、その偏差に基づいて給電線路に接続した可変インダクタンスを駆動し、給電線路に入る搬送車の台数により変化する給電線路のインダクタンスを、該可変インダクタンスにより目標値に調節することから、給電線路上の搬送車の台数が変化しても、それに応じてインダクタンスの変動を補正することができ、これにより、固定的に調整した給電線路に比較して、給電線路に入る搬送車の台数を増やすことができる。 According to the non-contact power feeding method and the non-contact power feeding device of the present invention, while compared with the target value by measuring the inductance of the feed lines, and drives the variable inductance connected to the feed line on the basis of the deviation, the feed line the inductance of the feed line which varies by the number of guided vehicles entering, the adjusting the target value by said variable inductance, even if the number of guided vehicles on the feed line is changed, to correct for variations in inductance accordingly it can be, thereby, compared to the fixedly adjusted feed line, it is possible to increase the number of guided vehicles entering the feed line.

以下、本発明の非接触給電方法及び非接触給電装置の実施の形態を、図面に基づいて説明する。 Hereinafter, the non-contact power feeding method and embodiments of the non-contact power feeding device of the present invention will be described with reference to the drawings.

非接触給電装置の構成を図5に示す。 The configuration of the non-contact power feeding device shown in FIG.
高周波電源装置1に接続した給電線路2を、搬送車(図示省略)の移動する範囲に渡って敷設する。 The feed line 2 connected to the high-frequency power supply device 1, laid over a range of movement of the transport vehicle (not shown).
搬送車の移動範囲が数100mになると、1台の高周波電源装置では電源容量が不足するため、複数の区間に給電線路を分割し、区間ごとに高周波電源装置を設ける。 When the movement range of the transport vehicle is several 100 m, due to the lack of power supply capacity by a single RF power supply, divide the feed line into a plurality of sections, it provided a high-frequency power supply to each section. 図5はその1区間を示している。 Figure 5 shows the one section.
搬送車には、受電コイル3が給電線路2をまたぐように配置されており、電磁誘導により給電線路2から受電コイル3に電力が供給される。 The transport vehicle, the receiving coil 3 is arranged so as to straddle the feed line 2, the power from the power supply line 2 to the power receiving coil 3 by electromagnetic induction is provided. 他の搬送車に関しても、それぞれ受電コイル4、5を配置し、搬送車に電力を供給するようにしている。 For the other transport vehicle, each receiving coil 4,5 is arranged, so that to supply power to the transport vehicle.

このように単一の給電区間で構成されている非接触給電システムでは、給電線路に存在する搬送車台数は一定であるが、複数の区間で構成されている場合には、区間ごとに搬送車の台数が異なる。 In the non-contact power supply system in this manner it is constituted by a single feeder section, but transport vehicle number present in the feed line is constant, if it is composed of a plurality of sections is guided vehicle for each section the number is different.
給電線路のインピーダンスに着目すると、給電線路2の上に存在する受電コイルの数とインダクタンスの関係は、図6(a)に示すように、受電コイルの数に比例してインダクタンスが増加する。 Focusing on the impedance of the feed line, the relationship between the number and the inductance of the power receiving coil present on the feed line 2, as shown in FIG. 6 (a), the inductance is increased in proportion to the number of the power receiving coil.
一方、給電線路2の長さに比例したインダクタンスが、受電コイルの数がゼロの場合にも存在する。 Meanwhile, inductance proportional to the length of the feed line 2, the number of receiving coil is present in the case of zero.

一定の電圧で給電線に励磁電流を流すと、給電線の線路長が長くなるとインダクタンスにより線路に流れる電流が減少する。 When passing a magnetizing current to the feeder at a constant voltage, the current flowing through the line by inductance line length of the feed lines are longer decreases. また、受電コイルにおいても、給電線と受電コイルの空隙により生じる漏れインダクタンスが大きいため、受電コイルの一次側すなわち給電線路側と受電コイルの二次側の両方に共振回路を構成する。 Also in the power receiving coil, the leakage inductance caused by a gap of the power receiving coil and the power supply line is large, it constitutes a resonant circuit on both the secondary side of the primary side or the feed line side of the power receiving coil receiving coil.
一次側の共振回路に着目すると、一次共振周波数は給電線路自体のインダクタンスと受電コイルのインダクタンスの総和と線路に直列に接続するインピーダンス補償コンデンサの静電容量できまり、共振周波数はインダクタンスの平方根に反比例する。 Focusing on the resonant circuit of the primary side, the primary resonance frequency is determined by the capacitance of the impedance compensation capacitor connected in series with the inductance of the sum and the line inductance and the receiving coil of the feed line itself, the resonance frequency is inversely proportional to the square root of inductance to.
このため、回路が安定して動作し、電力が供給できるインダクタンスの適正範囲が存在し、この適正範囲から外れると、電力が十分に供給できなくなったり、あるいは回路動作が不安定になる。 Therefore, the circuit operates stably, there is a proper range of the inductance can supply power, deviates from the proper range, or power is no longer able to adequately supply or circuit operation becomes unstable.

インピーダンスの抵抗成分に着目すると、受電コイルの数と抵抗の関係は、図6(b)に示すような関係になる。 Focusing on the resistance component of the impedance, the number and resistance relationship of the power receiving coil, a relationship as shown in Figure 6 (b). 負荷電力によって抵抗成分は変動し、無負荷状態では非常に大きな抵抗となり、インダクタンスによる無効電流だけが回路に流れるようになる。 Resistance component by the load power varies, becomes very large resistance at no load, only the reactive current due to the inductance is to flow in the circuit.
インダクタンスの適正範囲は、給電線路のインダクタンスと受電コイルのインダクタンスの比率によりその個数が変わる。 Proper range of inductance, and the number is changed by the ratio of the inductance of the power receiving coil of the feed line.
例えば、単位長さ当り4μH/mの給電線路を50m敷設した場合、給電線路は200μHのインダクタンスをもつ。 For example, if you 50m laid feed line of unit length per 4μH / m, the feed line has an inductance of 200μH.
この上に受電コイル1つ当り30μHの受電コイルをn個載せるとn×30μHのインダクタンスになる。 The power receiving coil of the power receiving coil one per 30MyuH thereon becomes inductance of n Post When n × 30μH.
線路のインダクタンスは、受電コイルが0個の場合の200μHに対し、4個では320μHと大きく変動し、受電コイル2個の260μHを適正範囲の中心になるようにインピーダンス補償コンデンサの容量を選定したとしても、インダクタンスの変動は±23%で変動し、共振周波数はインダクタンスの平方根に反比例するため、約12%変動する。 As the inductance of the line is to 200μH when the power receiving coil of zero, the four largely change and 320MyuH, was selected capacitance of the impedance compensation capacitor so that the center of the proper range power receiving coil two 260μH also, variations in the inductance varies with ± 23%, the resonant frequency is inversely proportional to the square root of the inductance varies about 12%.
しかしながら、実運用では、インダクタンスの変動幅は概ね10%前後の範囲で運用しなければならない。 However, in actual operation, it must operate at approximately 10% before and after the range fluctuation range of the inductance.

これに対し、本発明では、インダクタンスの変動幅を少なくし、給電線路上に乗せられる受電コイルの数を増大する方法を提案する。 In contrast, in the present invention, to reduce the fluctuation range of the inductance, we propose a method of increasing the number of receiving coil is placed on the feed line.
本発明の非接触給電方法及び非接触給電装置の実施例を以下に説明する。 Examples of the non-contact power feeding method and the non-contact power feeding device of the present invention will be described below.
図2に、本実施例のインダクタンスと受電コイル数の関係を示す。 Figure 2 shows the inductance and the receiving coil number of the context of the present embodiment.
n台の搬送車、例としてn=12台を給電線路に入れた場合、従来の固定的にインピーダンス補償コンデンサを入れる場合、適正範囲は9台から12台になる。 n stand guided vehicle, when you put the n = 12 units in the feed line as an example, if the conventional fixedly put impedance compensation capacitor, the appropriate range is 12 units from nine. インピーダンスの適正範囲をn=11台のインダクタンスでインピーダンス補償コンデンサを設定する。 The proper range of impedances set the impedance compensation capacitor at n = 11 units inductance.
この場合、搬送車の台数が8台以下では給電線路のインダクタンスが不足し、適正範囲を逸脱する。 In this case, the number of transport vehicles in the following eight missing inductance of the feed lines are, deviating from the proper range.
本実施例では、搬送車の台数が8台以下、すなわちゼロから8×30μH=240μHの範囲が給電線路に直列に入り、インダクタンスが補正できればよい。 In this embodiment, the number of guided vehicles following eight, i.e. enters in series in the range of 8 × 30μH = 240μH from zero feed line, inductance suffices correction.
実際には、インダクタンスがゼロは実現が困難であり、適正範囲に入る2台から8台分、すなわち60μHから240μHの間でインダクタンスを補正する手段を提供すれば、搬送車が0台から12台の間で変動しても見かけ上のインダクタンス変動は適正範囲に入り、運用することができる。 In fact, the inductance is zero is difficult to realize, 8 cars from two entering the proper range, i.e. if provide a means for correcting the inductance between 240μH from 60MyuH, 12 cars transporting vehicle from 0 units inductance variation of apparent be varied between enters the appropriate range, it is possible to operate.

図1に、本実施例の非接触給電装置の回路構成を示す。 Figure 1 shows a circuit configuration of the non-contact power feeding device of the present embodiment.
高周波電源6と直列に、インピーダンス補償コンデンサ7と可変インダクタンス8が接続される。 The high-frequency power source 6 and the series impedance compensation capacitor 7 and the variable inductance 8 are connected. 各搬送車に設置する受電コイル11はトランスと等価で、受電コイル11の二次側には、二次回路共振コンデンサ12と整流・平滑回路13とを接続し、負荷14を接続する。 Receiving coil 11 installed in each transport vehicle is equivalent to a transformer, the secondary side of the power receiving coil 11 is connected to the secondary circuit resonant capacitor 12 and the rectifying and smoothing circuit 13, connects the load 14.
同様に、他の搬送車も受電コイル15はトランスと等価で、受電コイル15の二次側には二次回路共振コンデンサ16と整流・平滑回路17とを接続し、負荷18を接続する。 Similarly, other transport vehicle also receiving coil 15 is equivalent to a transformer, connects the secondary circuit resonant capacitor 16 and the rectifying and smoothing circuit 17 on the secondary side of the power receiving coil 15, connecting the load 18.
給電線路自体のインダクタンス20は等価的にこれらのインダクタンスと直列に入る。 Feed line inductance 20 of itself is equivalently enter these inductances in series.
給電線路の電圧と電流トランス19で検出した電流とを制御回路10に入力し、アクチュエータ9を介して可変インダクタンス8のインダクタンスを変化させる。 Inputs the current detected by the voltage and current transformer 19 of the power supply line to the control circuit 10 changes the inductance of the variable inductance 8 via the actuator 9.

可変インダクタンスの構造の断面を、図3(a)〜(c)に3種類示す。 The cross-section of the variable inductance of the structure, shown three types in FIG. 3 (a) ~ (c).
最も単純な構造は、図3(a)に示すように、円筒状に巻いたコイル21の中にフェライトコア22を入れ、機械的にコアを出し入れし、22'の場所まで移動させる。 The simplest structure, as shown in FIG. 3 (a), the ferrite core 22 placed in a coil 21 wound into a cylindrical shape, mechanically and out of the core, is moved to the location of 22 '.
コア21がコイル21の中に入っているときはインダクタンスが大きく、コアが外に移動するのにともないインダクタンスが低下する。 Large inductance when the core 21 is contained within the coil 21, the core has no inductance drops and to move out.
この方法は構造が簡単であるが、コイルの発生する磁束が周囲に漏洩すること、インダクタンスが大きくできないことがあり、装置が大型になる。 This method is simple structure, that magnetic flux generated by the coil from leaking to the surroundings, inductance may not be increased, the apparatus becomes large.

図3(b)に示す可変インダクタンスは、U字型のコア24にコイル23を巻き、可動コア25を機械的に25'の場所に移動させる。 Variable inductance shown in FIG. 3 (b), winding the coil 23 to the core 24 of U-shaped, moves the movable core 25 in place mechanically 25 '. 漏洩する磁束が少なく、装置を小型化でき、インダクタンスも大きくすることができる。 Less magnetic flux leakage, can miniaturize the device, it is possible inductance to increase.

図3(c)に示す可変インダクタンスは、更に漏洩インダクタンスを減らす構造となる。 Variable inductance shown in FIG. 3 (c), a structure to further reduce the leakage inductance. G字型の固定コア27にコイル26を巻き、可動コア28を28'の位置まで移動させる。 Winding the coil 26 on the G-shaped stationary core 27, moves the movable core 28 to the position 28 '.
実用的には、図3(b)あるいは図3(c)に示す可変インダクタンスの構造が好適である。 In practice, it is preferred structure of the variable inductance shown in FIG. 3 (b) or FIG. 3 (c).

図4に、制御回路10の詳細を示す。 Figure 4 shows details of the control circuit 10.
インダクタンス計測器29により、線路電圧と線路電流からインダクタンスを計測し、インダクタンスの目標値と比較し、その偏差により、PI比例・積分制御器30を介してリニアアクチュエータ9を駆動し、可変インダクタンス8の可動コアを移動させる。 The inductance measuring instrument 29, the inductance measured from the line voltage and line current, is compared with the target value of the inductance, by the deviation, and drives the linear actuator 9 via a PI proportional and integral controller 30, the variable inductance 8 moving the movable core.
なお、リニアアクチュエータはリニアモータのごとく機械的に線形動作するもの、あるいは回転モータを機械的に線形運動に変換するもののいずれでもよく、可動コアが線形に移動することができればその種類を問わない。 Incidentally, the linear actuator is intended to be mechanically linear operation as a linear motor, or may the rotation motor any of those converted into mechanical linear movement, not of any type as long as the movable core is moved linearly.
また、搬送車の台数がわからない状態で制御を開始するため、高周波電源を動作させる前に可動コアをインダクタンスが最小になる方向に移動させ、インダクタンスの目標値をゼロに設定する。 Also, to start the control in a state where the number of guided vehicles do not know, the movable core is moved in the direction in which the inductance is minimized before operating the high frequency power source, the target value of inductance to zero.
可動コアが移動したあとに高周波電源を投入し、インダクタンス目標値を運転値に再設定する。 The high-frequency power was introduced after the movable core moves, it resets the inductance target value to the operation value.
この操作により、搬送車台数は少ない方向から増加する方向でインダクタンスが変化し、インダクタンスの範囲が小さい方向から目標に向かって収束し、負荷に電力を供給することができる。 This operation, transport car number inductance changes in the increasing direction from the small direction, converge towards the target range of inductance is from a small direction, it is possible to supply power to the load.

かくして、本実施例の非接触給電方法及び非接触給電装置は、給電線路2のインダクタンスを計測して目標値と比較するとともに、その偏差に基づいて給電線路2に接続した可変インダクタンス8を駆動し、給電線路2に入る搬送車の台数により変化する給電線路2のインダクタンスを、該可変インダクタンス8により目標値に調節することから、給電線路上の搬送車の台数が変化しても、それに応じてインダクタンスの変動を補正することができ、これにより、固定的に調整した給電線路に比較して、給電線路2に入る搬送車の台数を増やすことができる。 Thus, the non-contact power feeding method and the non-contact power feeding device of this embodiment, as well as compared with the target value by measuring the inductance of the power supply line 2, and drives the variable inductance 8 connected to the feed line 2 on the basis of the deviation , the inductance of the power supply line 2 which changes the number of guided vehicles entering the feed line 2, since it is adjusted to the target value by said variable inductance 8, even if the number of guided vehicles on the feed line is changed, accordingly it is possible to correct the variation of inductance, thereby, compared to the fixedly adjusted feed line, it is possible to increase the number of guided vehicles entering the feed line 2.

以上、本発明の非接触給電方法及び非接触給電装置について、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、実施例に記載した構成を適宜組み合わせるなど、その趣旨を逸脱しない範囲において適宜その構成を変更することができる。 Although the non-contact power feeding method and the non-contact power feeding device of the present invention has been described based on the embodiments, the present invention is not limited to the configuration described in the above examples were described in Example Configuration etc. appropriately combined, it can be changed as appropriate its configuration without departing from the scope and spirit thereof.

本発明の非接触給電方法及び非接触給電装置は、搬送車の台数が変化してもインダクタンスの変動を補正することにより、固定的に調整した給電線路に比較して、給電線路に入る搬送車の台数を増やすことができるという特性を有していることから、例えば、搬送車に非接触で電力を供給する半導体あるいは液晶工場等のクリーンルーム内の搬送装置等に適用することができる。 Non-contact power feeding method and the non-contact power feeding device of the present invention, by correcting the variation of the inductance number of guided vehicles is changed, as compared to the fixedly adjusted feed line, transport vehicle entering the feed line since has a characteristic that it is possible to increase the number, for example, it can be applied to a conveying device or the like in a clean room of a semiconductor or a liquid crystal plant or the like for supplying electric power in a non-contact manner the transport vehicle.

本発明の非接触給電装置の一実施例を示す回路図である。 Is a circuit diagram showing an embodiment of a non-contact power feeding device of the present invention. 同非接触給電装置の給電線路のインダクタンスと受電コイル数の関係を示すグラフである。 It is a graph showing the inductance and the receiving coil number relationship of the feed line of the non-contact power feeding device. (a)〜(c)は可変インダクタンスの実施例を示す断面図である。 (A) ~ (c) is a sectional view showing an embodiment of a variable inductance. 制御回路の詳細を示す回路図である。 Is a circuit diagram showing details of a control circuit. 非接触給電装置の構成を示す説明図である。 It is an explanatory view showing a configuration of a contactless power transfer system. (a)は従来の非接触給電装置の給電線路のインダクタンスと受電コイル数の関係を示すグラフ、(b)は給電線路の抵抗と受電コイル数の関係を示すグラフである。 (A) is a graph showing the inductance and the receiving coil number relationship of the feed line of conventional non-contact power feeding device, (b) is a graph showing the resistance and the receiving coil number of relationships feed line.

符号の説明 DESCRIPTION OF SYMBOLS

1 高周波電源装置 2 給電線路 3 受電コイル 4 受電コイル 5 受電コイル 6 高周波電源 7 インピーダンス補償コンデンサ 8 可変インダクタンス 9 アクチュエータ 10 制御回路 11 受電コイル 12 二次回路共振コンデンサ 13 整流・平滑回路 14 負荷 15 受電コイル 16 二次回路共振コンデンサ 17 整流・平滑回路 18 負荷 19 電流トランス 20 インダクタンス 21 コイル 22 コア 23 コイル 24 コア 25 可動コア 26 コイル 27 コア 28 可動コア 29 インダクタンス計測器 30 PI比例・積分制御器 1 high-frequency power supply device 2 feed line 3 power receiving coil 4 receiving coil 5 receiving coil 6 high-frequency power supply 7 impedance compensation capacitor 8 variable inductance 9 actuator 10 control circuit 11 receiving coil 12 secondary circuit resonant capacitor 13 rectifying and smoothing circuit 14 load 15 receiving coil 16 secondary circuit resonant capacitor 17 rectifying and smoothing circuit 18 load 19 current transformer 20 inductance 21 the coil 22 core 23 coil 24 core 25 movable core 26 coil 27 core 28 movable core 29 the inductance meter 30 PI proportional and integral controller

Claims (2)

  1. 電磁誘導により地上設備から搬送車に非接触で電力を給電する非接触給電方法において、給電線路のインダクタンスを計測して目標値と比較するとともに、その偏差に基づいて給電線路に接続した可変インダクタンスを駆動し、給電線路に入る搬送車の台数により変化する給電線路のインダクタンスを、該可変インダクタンスにより目標値に調節することを特徴とする非接触給電方法。 In the non-contact power feeding method of feeding power without contact to the transport vehicle from the ground equipment by electromagnetic induction, as well as compared with the target value by measuring the inductance of the feed line, a variable inductance connected to the feed line on the basis of the deviation non-contact power feeding method driven, the inductance of the feed line which varies by the number of guided vehicles that enter the feed line, and adjusting the target value by the variable inductance.
  2. 電磁誘導により地上設備から搬送車に非接触で電力を給電する非接触給電装置において、給電線路に直列に接続された可変インダクタンスと、給電線路のインダクタンスを計測するインダクタンス計測器と、該インダクタンス計測器の計測値を目標値と比較するとともに、その偏差に基づいて可変インダクタンスを駆動する比例・積分制御器とを備えたことを特徴とする非接触給電装置。 In the non-contact power feeding device for feeding power contactlessly to the transport vehicle from the ground equipment by electromagnetic induction, a variable inductance connected in series with the feed line, and an inductance measuring device for measuring the inductance of the feed line, the inductance meter non-contact power feeding device of the measured value as well as compared to a target value, characterized by comprising a proportional-integral controller that drives the variable inductance based on the deviation.
JP2005318367A 2005-11-01 2005-11-01 Non-contact power supplying method and non-contact power supplying device Pending JP2007125926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005318367A JP2007125926A (en) 2005-11-01 2005-11-01 Non-contact power supplying method and non-contact power supplying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005318367A JP2007125926A (en) 2005-11-01 2005-11-01 Non-contact power supplying method and non-contact power supplying device

Publications (1)

Publication Number Publication Date
JP2007125926A true true JP2007125926A (en) 2007-05-24

Family

ID=38148973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005318367A Pending JP2007125926A (en) 2005-11-01 2005-11-01 Non-contact power supplying method and non-contact power supplying device

Country Status (1)

Country Link
JP (1) JP2007125926A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010068646A (en) * 2008-09-11 2010-03-25 Hitachi Plant Technologies Ltd Non-contact power feed apparatus
JP2011514781A (en) * 2008-03-05 2011-05-06 クゥアルコム・インコーポレイテッドQualcomm Incorporated Of a wireless power device packaging and details
WO2011070637A1 (en) * 2009-12-07 2011-06-16 富士通株式会社 Magnetic-field resonance power transmission device and magnetic-field resonance power receiving device
WO2011057733A3 (en) * 2009-11-12 2012-08-16 Sew-Eurodrive Gmbh & Co. Kg Electrical appliance having means for producing an alternating current and system
JP2013005591A (en) * 2011-06-16 2013-01-07 Ihi Corp Non contact power supply device
US8497658B2 (en) 2009-01-22 2013-07-30 Qualcomm Incorporated Adaptive power control for wireless charging of devices
WO2013111430A1 (en) * 2012-01-24 2013-08-01 村田機械株式会社 Non-contact power supply system and non-contact power supply method
JP2015012658A (en) * 2013-06-27 2015-01-19 株式会社東芝 Power transmission device, power reception device, and radio power transmission system
US9450456B2 (en) 2008-04-21 2016-09-20 Qualcomm Incorporated System and method for efficient wireless power transfer to devices located on and outside a charging base

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176649A (en) * 1999-12-20 2001-06-29 Eguchi Koshuha:Kk Induction heating device
JP2005064308A (en) * 2003-08-18 2005-03-10 Rikogaku Shinkokai Variable inductor
JP2005168220A (en) * 2003-12-04 2005-06-23 Daifuku Co Ltd Method for adjusting inductance of guide line of non-contact power supply equipment
JP2005162119A (en) * 2003-12-05 2005-06-23 Daifuku Co Ltd Non-contact power supply facility

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176649A (en) * 1999-12-20 2001-06-29 Eguchi Koshuha:Kk Induction heating device
JP2005064308A (en) * 2003-08-18 2005-03-10 Rikogaku Shinkokai Variable inductor
JP2005168220A (en) * 2003-12-04 2005-06-23 Daifuku Co Ltd Method for adjusting inductance of guide line of non-contact power supply equipment
JP2005162119A (en) * 2003-12-05 2005-06-23 Daifuku Co Ltd Non-contact power supply facility

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514781A (en) * 2008-03-05 2011-05-06 クゥアルコム・インコーポレイテッドQualcomm Incorporated Of a wireless power device packaging and details
US9461714B2 (en) 2008-03-05 2016-10-04 Qualcomm Incorporated Packaging and details of a wireless power device
JP2012231665A (en) * 2008-03-05 2012-11-22 Qualcomm Inc Packaging and details of wireless power device
US8855554B2 (en) 2008-03-05 2014-10-07 Qualcomm Incorporated Packaging and details of a wireless power device
US9979230B2 (en) 2008-04-21 2018-05-22 Qualcomm Incorporated Short range efficient wireless power transfer including a charging base transmitter built into a desktop component and a power relay integrated into a desktop
US9450456B2 (en) 2008-04-21 2016-09-20 Qualcomm Incorporated System and method for efficient wireless power transfer to devices located on and outside a charging base
JP2010068646A (en) * 2008-09-11 2010-03-25 Hitachi Plant Technologies Ltd Non-contact power feed apparatus
US8497658B2 (en) 2009-01-22 2013-07-30 Qualcomm Incorporated Adaptive power control for wireless charging of devices
US8823319B2 (en) 2009-01-22 2014-09-02 Qualcomm Incorporated Adaptive power control for wireless charging of devices
US9559526B2 (en) 2009-01-22 2017-01-31 Qualcomm Incorporated Adaptive power control for wireless charging of devices
WO2011057733A3 (en) * 2009-11-12 2012-08-16 Sew-Eurodrive Gmbh & Co. Kg Electrical appliance having means for producing an alternating current and system
WO2011070637A1 (en) * 2009-12-07 2011-06-16 富士通株式会社 Magnetic-field resonance power transmission device and magnetic-field resonance power receiving device
JP5510460B2 (en) * 2009-12-07 2014-06-04 富士通株式会社 Magnetic resonance power transmitting device, and the magnetic field resonance receiving device
JP2013005591A (en) * 2011-06-16 2013-01-07 Ihi Corp Non contact power supply device
WO2013111430A1 (en) * 2012-01-24 2013-08-01 村田機械株式会社 Non-contact power supply system and non-contact power supply method
JP2015012658A (en) * 2013-06-27 2015-01-19 株式会社東芝 Power transmission device, power reception device, and radio power transmission system

Similar Documents

Publication Publication Date Title
US20120007437A1 (en) Inductive power supply
US20100315039A1 (en) Device housing a battery and charging pad
Elliott et al. Multiphase pickups for large lateral tolerance contactless power-transfer systems
US20090085408A1 (en) Apparatus and method for wireless energy and/or data transmission between a source device and at least one target device
US20120139355A1 (en) Wireless energy transfer for medical applications
US4679007A (en) Matching circuit for delivering radio frequency electromagnetic energy to a variable impedance load
US7969045B2 (en) Installation
Covic et al. A three-phase inductive power transfer system for roadway-powered vehicles
US20110090723A1 (en) Contactless power receiver and method of operation
JP2009164293A (en) Non-contact power transmission device
WO1993023908A1 (en) A non-contact power distribution system
WO2010090539A1 (en) Inductive power transfer apparatus
US20110241436A1 (en) Wireless power receiving apparatus and wireless power supply system
Lee et al. Reflexive field containment in dynamic inductive power transfer systems
US6252386B1 (en) Non-contact power supply system and apparatus and carrying equipment using the system
US6686823B2 (en) Inductive power transmission and distribution apparatus using a coaxial transformer
JP2010239777A (en) Wireless power apparatus and wireless power-receiving method
US6239557B1 (en) Transformer winding technique with reduced parasitic capacitance effects
JP2009188131A (en) Non-contact power transmission device
JP2011083132A (en) Power supply system
JP2011061942A (en) Contactless power supply apparatus of relay system
JP2010141977A (en) Power transmission method in non-contact power transmission apparatus, and the non-contact power transmission apparatus
JP2013123306A (en) Non-contact power transmission apparatus
JP2010141976A (en) Non-contact power transmission apparatus
JP2009252970A (en) Noncontact power transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120321